
AFIPS
CONFERENCE
PROCEEDINGS

VOLUME 43

1974
NATIONAL
COMPUTER

CONFERENCE
AND

EXPOSITION

May 6-10, 1974
Chicago, Illinois

The ideas and opinions expressed herein are solely those of the authors and are
not necessarily representative of or endorsed by the 1974 National Computer
Conference or the American Federation of Information Processing Societies,
Inc.

Library of Congress Catalog Card Number 55-44701
AFIPS PRESS

210 Summit Avenue
Montvale, New Jersey 07645

@1974 by the American Federation of Information Processing Societies, Inc.,
Montvale, New Jersey 07645. All rights reserved. This book, or parts thereof,
may not be reproduced in any form without permission of the publisher.

Printed in the United States of America

PREFACE

FOREWORD .. .

CONTENTS

ASSOCIATIVE PROCESSING

Some problems in associative processor applications to data base management
RADCAP-An operational parallel processing system

STARAN parallel processor system software
Some thoughts on associative processing languages

ADVANCES IN DATA BASE MANAGEMENT

User/system interface within the context of an integrated corporate data base

DUCHESS-A high level information system

An analytical model for information processing systems

A model for ~ generalized data access method

A data base management problem specification model

Integrating data base management into operating systems-An access method approach.

A prototype system for interactive data analysis.

Quantification in a relational data system

INFORMATION SYSTEMS FOR HEALTH CARE

A public health data system

Automated patient record summaries for health care auditing

An integrated health care information processing and retrieval system

Interface for rapid data transfer and evaluation

TECHNOLOGICAL AIDS FOR THE PHYSICALLY DISADVANTAGED

An alternate interface to computers for the physically handicapped-The autominitoring
communication board

A computing environment for the blind

Stephen S. Yau
General Chairman
T. M. Bellan
Technical Program Chairman

1
7

17
23

27

35

41

45

53

57

63

71

77

81

93

107

115

121

P. B. Berra
J. D. Feldman
L. C. Fulmer
E. W. Davis
W. W. Patterson

G. Altshuler
B. Plagman
B. J. Taylor
S. C. Lloyd
S. Huang
A. L. Goel
R. L. Frank
K. Yamaguchi
G. T. Capraro
P. B. Berra
A. C. S. Moreira
C. Pinheiro
L. F. D'Elia
G. Levitt
D. H. Stewart
B. Yormark
N. R. Greenfeld

J. C. Peck
F. M. Crowder
R. Chalice
O. M. Haring
R. Hochsprung
K. C. O'Kane
R. J. Hildebrandt
P.Shah
R. Haidle
G. Czerlinski

G. C. Vanderheiden
A. ~rL Volk
C. D. Geisler
M. A. Rahimi
J. B. Eulenberg

A computer based system of speed training aids for the deaf-A progress report

Computer-assisted instruction in mathematics and language arts for deaf students

COMPUTERS IN COMMUNICATION AND VOICE RECOGNITION

Integrated voice/data compression and multiplexing using associative processing
Speech as a man-computer communication channel

OPERATING SYSTEMS-I

Verifiable secure operating system software

An Interactive software engineering tool for memory management and user program
evaluation

INFORMATION SYSTEMS FOR AMBULATORY CARE

Development and implementation of a medical/management information system at the
Harvard Community Health Plan .. .

RECENT DEVELOPMENTS AND APPLICATIONS OF CAl

A status report with TICCET PROJECT
What classroom role should the PLATO computer system play?
Computer assisted instruction comes of age in a public school system ~ .. .

OPERATING SYSTEMS-II

Experimental data on page replacement algorithm
Some programming techniques for processing multi-dimensional matrices in a

paging environment .. .
The double paging anomaly

HEALTH CARE PLANNING AND ACCEPTANCE OF COMPUTER SYSTEMS

Effective planning for and justification of the extension of data processing in hospitals
A resource aUocation and planning system for the development and operation of health

care delivery systems
Medical data processing in the United States

BUSINESS DATA PROCESSING EDUCATION-A DECADE OF FAILURE

Why industry won't hire your graduates .. .
How the data processing industry has failed education
A springboard for data processing education in Oklahoma
Career education in business data processing teacher education

EQUIPMENT MONITORING AND INFORMATION USE (PART I)

Computer control of component insertion

125

127

133
139

145

153

159

167
169
175

179

185
195

201

207
215

227
231
235
239

241

R. S. Nickerson
D. N. Kalikow
K. N. Stevens
P. Suppes
J. D. Fletcher

L. D. Wald
R. Turn

G. J. Popek
C. S. Kline

W. W. Millbrandt
J. Rodriguez-Rosell

N. Justice
G. O. Barnett
R. Lurie
W. Cass

V. Bunderson
R. B. Davis
W. M. Richardson

N. A. Oliver

J. L. Elshoff
R. P. Goldberg
R. Hassinger

R. B. Freibrun

B. W. Bise
M. J. Ball

G. B. Shelly
T. J. Cashman
D. A. Pierce
J. M. Kinzer, Jr.

D. R. Magill
R. D. Memis

DISPL.t\.Y PROCESSING AND TECHNOLOGY

Display techniques for interactive text manipulation
Line processor-A device for amplification of display terminal capabilities for text

manipulation .. .
The Grafix I image processing system
Hardware/software design considerations for high speed/low cost interactive graphic

communication systems

SYSTEM IMPLEMENTATION TECHNIQUES

APL as a development tool for special purpose processors

Narrowing the generation gap between virtual machines and minicomputers

Pipelining-The generalized concept and sequencing strategies

NETWORK INTERFACES

Interfacing communication networks to IBM System/360 and System/370 host
processors-An end users viewpoint .. .

COMPUTER SCIENCE EDUCATION-RECOMMENDATIONS FOR CHANGE

Implications of changes in the secondary school mathematics curriculum for the computer
science and computer engineering curricula

A cognitive model for structuring an introductory programming curriculum

On the preparation of computer science professionals in academic institutions

EDP education-An acute crisis
An undergraduate/graduate program in information systems

THE HIGH COST OF SOFTWARE-CAUSES AND CORRECTIONS

Understanding the software problem .. .
Automated monitoring of software quality

Embedded computers-Software cost considerations

ARTIFICIAL INTELLIGENCE AND RELATED TOPICS

An examination of Tic-Tac-Toe like games
Provable programs and processors .. .
A language-independent programmers' interface

IMPROVING COMPUTER SYSTEM EFFECTIVENESS

Guidelines for the use of infinite source queueing models in the analysis of computer
system performance .. .

Data base concepts applied to generalized programming packages

On-line user-computer interface-The effects of interface flexibility, terminal type and
experience performance

247

257
267

273

279

285

289

299

303
307

313

321
327

333
337

343

349
357
365

371

375

379

C. H. Irby

D. 1. Andrews
A. K. Griffith

T. L. Boardman, Jr.

S. Levy
R. Doyle
R. Heller
H. J. Theberge
E. E. Beaverstock
C. V. Ramamoorthy
K. H. Kim

J. T. M. Pryke
L. J. Munini

M. E. Sloan
C. B. Kreitzberg
L. Swanson
J. A. Archibald, Jr.
M. Katzper
G. K. Kapur
C. Testa

J. B. Slaughter
J. A. Clapp
J. E. Sullivan
J. H. Manley

R. C. Gammill
D. 1. Good
R. M. Balzer

J. P. Buzen
P. S. Goldberg
G. C. Steinhorst
B. L. Bateman
D. L. Curtis

G. H. Walther

OPERATION STATUS OF LARGE SCALE DATA PROCESSING

The Control Data STAR-100-Performance measurements
Operational experiences with the TI advanced scientific computer

Multiprocessor performance analysis .. .

STARAN parallel processor system hardware

SOFTWARE FOR COMPUTER SYSTEMS ACQUISITION

A program for software quality control
Experiences in COBOL compiler validation

System for efficient program portability

An experiment in the use of synthetic programs for system benchmarking

MINI- AND MICRO-COMPUTERS IN DATA COMMUNICATION SYSTEMS

A microprocessor implementation of a dedicated store-and-forward data communication
system .. .

The multipurpose batch station (MBS) system-Software design

The MINICOM data entry system ,

THE PROPHET SYSTEM-COMPUTING IN PHARMACOLOGY

The implementation of the PROPHET system

Applications of the PROPHET system in correlating crystallographic structural data
with biological information .. .

Applications of the PROPHET system in molecular pharmacology-8tructure activity
relationships in monamine oxidase inhibitors

Applications of the PROPHET system in human clinical investigation

MANUFACTURING CONTROL SYSTEM

A simple distributed systems approach to manufacturing information systems
Interactive computer graphics application of the bi-cubic parameter surface to engineer

ing design problems. ..

385
389

399

405

411
417

423

431

439

447

453

457

469

473
477

485

491

C. J. Purcell
W. J. Watson
H. M. Carr
J. Mitchell
C. Knadeler
G. Lunsford
S. Yang
K. E. Batcher

P. Oliver
G. N. Baird
M. M. Cook
G. N. Baird
L. A. Johnson
P. Oliver
G. N. Baird
M. M. Cook
L. A. Johnson
P. M. Hoyt

P. M. Russo
M. D. Lippman
C. B. Hergenhan
M. M. Rochkind
J. F. Mollenauer
E. J. Sitar
V. B. Turner

P. A. Castleman
C. H. Russell
F. N. Webb
C. A. Hollister
J. R. Siegel
S. R. Zdonik
D. M. Fram

C. M. Weeks
V. Cody
S. Pokrywiecki
D. C. Rohrer
W. L. Duax

C. L. Johnson
B. J. Ransil

L. R. Kneppelt

G. J. Peters

Twinkle Box-A three-dimensional computer input device
APLG-An APL based system for interactice computer graphics

DARMOUTH TIME SHARING SYSTEM-THEN AND NOW

Project FIND-An integrated information and modeling system for management

MICROPROGRAMMING TECHNOLOGY

Design considerations for microprogramming languages

A flexible disk controller .. .

PLANNING AND DESIGN OF DATA COMMUNICATIONS NETWORKS

Planning and design of data communications networks ;
Management planning in the data communications environment
Effective use of data communications hardware
New line tariffs and their impact on network design '
Tools for planning and designing data communications networks

AUTOMATED WAREHOUSING

Automatic storage and retrieval system control , , ,

COOPERATIVE GOVERNMENT UTILIZATION OF INFORMATION
PROCESSING SYSTEMS

Supporting government cost planning of industrial wastewater treatment

The base-data cluster concept-A cooperative metropolitan approach to computer
utilization

ARCHITECTURAL PARAMETERS

Efficiency in generalized pipeline networks

An approach to the design of highly reliable and fail-safe digital systems

A study of fault tolerant techniques for associative processors

PROGRAMMING AND PROGRAlVIMING LANGUAGES

Toward the development of machine-independent systems programming languages

LPL-A generalized list processing language
Generalized structured programming.

TECHNOLOGY INVESTMENT MANAGEMENT

Computer performance analysis in mixed on-line/batch workloads
Systems performance/measurements-A quantitative base for management of computer

sjrsteII'.....s.
Two hat management-Project management with a difference
Controlled testing for computer performance evaluation

513
521

529

537

545

553
561
565
577
583

593

613

621

625

637

643

653

659
665

671

t:!,..,,.., v,.
683
693

R. P. Burton
W. K. Giloi
J. Encarnacao

J. S. McGeachie
D. L. Kreider

G. R. Lloyd
A. van Dam
R. G. Harris
J. E. Sustman
J. F. McDonald

W. Chou
L. Hopewell
P. McGregor
M. Gerla
A. Kershenbaum

P. R. Witt

E. H. Pechan III
R. A. Luken
J. E. Mendelssohn

L. Stitelman

C. V. Ramamoorthy
H. F. Li
H. Chuang
S. Das
B. Parhami
A. A vizienis

K. Magel
A. vanDam
M. Michel
B. G. Claybrook
J. J. Martin

J. Lockett

P. Malick
R. W. Kleffman
A. C. Shetler

INSTALLING AN ON-LINE INFORMATION SYSTEM IN THE
MANUFACTURING ENVIRONMENT

Installing an on-line information system in a manufacturing environment

STORE ORDERING SYSTEMS

Remote data collection case study telephone order processing system (TOPS)

COMPUTER SYSTEM DESIGN CONSIDERATIONS FOR CONTROL
APPLICATIONS

Use of a multi-programming mini-computer for real-time control applications

A data bank for on-line process control
Design of a mini-computer network for the automatic determination of amino acid

sequences in proteins ;

An approach to the optimization of an Olefins plant

NETWORK PERFORMANCE MEASUREMENTS

Computer performance variability .. .
On measured behavior of the ARPA network

THE COMPUTER-CAREER GUIDANCE TOOL OF THE PRESENT
AND FUTURE

The potential role of the computer in intuition and self development
Use of computer in relation to critical guidance factors

SELECTED TOPICS ON SYSTEM SIMULATION AND INTERACTION

Effective demonstration of mini-computer-based systems by a novel digital simulation.
Twenty commandments for managing the development of tactical computer programs.
An optimal pollution surveillance schedule generating system (OPGENS)

Use of a micro-computer in a missile simulator

ADVA..~CES IN MEMORY TECHNOLOGY

Charge-coupled devices for computer memories

Block-oriented random access MNOS memory ... , ,

DOT memory systems .. .

Capabilities of the bubble technology

701

709

737

743

749

753

761
767

781
791

799
803
807

821

827

837

841

847

T. J. Archbold

M. H. Resnick

F. C. Jaye
R. Reiner
A. Daneels

E. L. Baatz
B. W. Jordan, Jr.
K. J. King
W. J. Lennon
Z. Z. Stroll
S. Reiter
D. J. Svetlik
A. M. Fayon

T. E. Bell
L. Kleinrock
W. E. Naylor

D. V. Tiedeman
R. N. Cassell

S. S. Godbole
J. A. Ward
L. J. McKell
G. P. Wright
D. G. Olson
J. A. Rose
J. V. Leonard
H. A. Crosby

W. F. Kosonocky
J. E. Carnes
J. M. Chambers
D. J. Sauer
J. E. Brewer
D. R. Hadden, Jr.
R. J. Spain
H. I. Jauvtis
F. T. Duben
H. Chang

STANDARD FOR COMPUTER NETWORKS

Some computer network interconnection issues

CONTINUING EDUCATION AND CAREER DEVELOPMENT FOR
COMPUTER PROFESSIONALS

Step-by-Step-A career structure for systematic EDP growth
Career development-A new approach to performance appraisal.

A systems approach to career development-Report of two surveys

EDP certification-Is it necessary?·
Skills possessed and skills useful for MIS practitioners-A research report

DATA BASE ADMINISTRATION

Data base-An emerging organizational function
Data bases-Uncontrollable or uncontrolled?

SWITCHING AND SORTING NETWORKS

Interconnection networks-A survey and assessment
An economical construction for sorting networks

CONTINUING EDUCATION AND TRAINING THROUGH THE USE OF CAl

Business and industry in the 70's find computer-aided instruction a practical answer to
training problems .. .

The role of computer assisted instruction (CAl) in management information systems ..
Computer assisted instruction in industry
The use of computer assisted instruction at McDonnell Douglas Corporation

857

861
867

873

881
889

897
903

909
921

929
933
947
953

PANEL SESSION PAPERS AND PAPER ABSTRACTS. 959

AMERICAN FEDERATION OF INFORMATION PROCESSING SOCIEITIES, INC.
(AFIPS)

1974 NATIONAL COMPUTER CONFERENCE COMMITTEES
DISCUSSANTS, MODERA~ORS AND PANELISTS
REVIEWERS
SESSION CHAIRMEN AND AREA DIRECTORS
AUTHOR INDEX

A. M. McKenzie

N. L. Ayer
W. C. Andrews
L. J. Sontag
P. D. Oyer
D. L. Ray
D. R. Skeen
R. M. Henry

R. L. Nolan
C. M. Traver

K. J. Thurber
D. C. Van Voorhis

E. G. Kerr
R. J. Collins
C. P. Breen
B. H. Goddard

PREFACE

The 74 NCC has the objective of providing a forum for
eomputer specialists, users, potential users and manufacturers
to exchange information on new developments in computer
science and technology and their applications in various
areas.

The Conference Program focuses on five broad computer
science and technology areas, and ten applications areas.
Science and technology areas cover the latest developments
which should enable users to make more efficient use of their
resources in a wide range of areas. The applications areas not
only demonstrate how computer technology can indeed be
used to improve the efficiency of current operations, but also
point out potential usage in many other areas which should
generate new demands for further development in computer
science and technology. Although each area forms a "con
ference within a conference," all fifteen areas form a com
prehensive and cohesive program, instead of disjointed
-subprograms.

The Conference also features major addresses, a number of
sessions of special interest and other activities ranging from
a computer art fair, a science fair, a science theatre, to tours
and an "Oklahoma Night" reception.

You'll find there are about 250 companies and organiza
tions from the computer industry participating in the ex
hibits and occupying about 85,000 square feet. In spite of the
size of the Conference and Exhibits, we have been able to
arrange all of the Conference Program and Exhibition at one
place-McCormick Place and the adjacent McCormick Inn.
This arrangement should greatly help you receive the full
benefits of both the Conference Program and the Exhibits.

The 74 NCC is the result of the enthusiasm, talents and
efforts of many individuals from all the segments of the
information processing community. In particular, I would
like to thank the members of the 74 NCC Committees and
AFIPS staff for their devoted efforts. A great deal of credit,
however, should go to the session organizers, session chair
men, speakers, panelists and reviewers. Finally, I would like
to express my appreciation to AFIPS, the NCC Board and
the NCC Cf)mmittee for their full support during the or
ganization of the Conference.

Stephen S. Yau-General Chairman
Northwestern University
Evanston, Illinois

FOREWORD

The Conference Program has been structured around the
theme of computer productivity as it relates to the user. It
represents a comprehensive analysis of the U.S. computing
and data processing field, covering applications of user areas,
the latest developments of computer science and technology,
and a number of current high interest topics relative to the
impact of computers on today's society. A degree of inter
national flavor has been added by the introduction of selected
papers and panelists that can demonstrate positive and
interesting differences in computer development and applica
tion in various geographical areas.

Through the concerted efforts of a committee of prominent
technologists and industry specialists, the program has been
developed to meet the information requirements of the
corporate executive dependent on effective computer utiliza
tion, staff and line management of user organizations,
management within the computing field, applications
specialists and the computer professional. Each of the pro
gram areas has been shaped to form a "conference within a
conference," and provides a forum where outstanding indus
try representatives demonstrate how recent innovations in
computer technology and its application are being employed
to contribute to more effective operation of their organization.
In structuring the program schedule, serious consideration
has been given to provide an opportunity for the attendees to
benefit not only from presentations in their primary area of

interest, but also to have the opportunity to be exposed to
other areas of industry and technology that may be attacking
similar problems.

A significant amount of time and effort on the part of a
large number of interested, dedicated, professionals has gone
into the development of this program. Its success, measured
by your reception, is due to the participation of many volun
teers who gave freely of their time and talents to organize
sessions, prepare papers, referee submissions, and willingly
offer advice and counsel to the Committee, who Ultimately
had the task of consolidating this input into the outstanding
program that it is. To all who participated in the develop
ment of this program, our thanks for a job well done!

In an attempt to provide a more complete record of the
Conference Program for all attendees, we have tried some
thing new this year. In addition to publishing the formal
papers, and in some cases abstracts where detailed paper
material was not available at publication date, there are also
included a few panel overviews and panelist position state
ments. Unfortunately, all panels are not represented because
of the unavailability of some information at publication date.

T. M. Bellan-
Technical Program Chairman

McDonnell Douglas Corporation
St. Louis, Missouri

Some problems in associative processor applications
to data base management

by P. BRUCE BERRA

Syracuse University
Syracuse, New York

INTRODUCTION

Associative memories and processors have been discussed in
the literature for the past 15 years and a small number of
hardware devices have actually been built.21 The usefulness
of these devices can only be proven through actual applica
tions. A number of these applications have been considered
and include air traffic control,22 computer graphics,24,25 in
formation retrieval,9 numerical analysis,15 networks18,19 and
among others, data base management.2,4-8,10,1l,13,17

Vast computer resources are required for the managing
of large data bases. With hardware costs coming down, and
software and personnel costs going up it is important that
one investigate the application of associative devices to the
field of data base management to ascertain what gains might
be made.

In this paper, some background is given on the application
of these devices to data base management. This is followed
by a review of existing literature in the field. Searching, a
most important capability of an associative device is then
considered. It is shown that several data base management
functions such as retrieval and update have searching at
their core and therefore are well suited to these devices.
Furthermore, due to the simpleness of the associative storage
structure, increased performance can be obtained in some of
the other functions of data base management and therefore
one must look to these also. It is concluded that these devices
have a place in the solution of data base management prob
lems but represent only a step on the way to more sophisti
cated hardware/software/firm,vare devices designed especial
ly for data base management problems.

DATA BASE MAKAGE~IENT

With the rapid growth of the computer field has come a
commensurate growth in the need for software systems to
manage vast amounts of numeric and non-numeric data.
The development of these systems, called data base manage
ment systems, has kept pace so that there are more than 200
such systems with varying levels of capability in existence
today. Hmvever, there does not seem to be any universally
accepted definition for the term data base management sys-

1

tem. But, there does seem to be some universality on the
capabilities that such systems should have and some of the
functions that they must perform. It seems apparent that
one must go through a process of data definition in order to
create a data base. This implies that there is a data structure
that somehow represents the logical relationships among the
data and some storage structure that is utilized in the actual
storing of the data on physical media. One is given a free
rein in the selection of a data structure and it often appears
naturally in the problem. Hovvever, the storage structure is
yet another matter. One is limited to either a sequential or a
random storage structure. If one is fortunate there can be a
one-to-one mapping between the data structure and the
storage structure. However, this is generally not the case
and redundancies must then be incurred.

Once the data base has been loaded one wants to formulate
queries and extract data from it. This implies some sort of
processing capability whether it be through a high level
language such as COBOL or PL/l or through some self
contained capability.

Intermixed with the above is a consideration of the ques
tions of how much storage is being used to store the data
and how much is allocated to non-data such as directories,
pointers, etc. Also, one must not leave out consideration for
updating the data base by adding new pieces of data and
deleting or changing old ones. Beyond this, such ill defined
terms as flexibility, ability to respond to changing require
ments, data independence. data administrator and others
are often used. But this offers no difficulty here since most
of the work in the application of associative devices to this
field has been concerned with the more well defined aspects
of data base management.

ASSOCIATIVE ~fEMORIES/PROCESSORS

Several of the papers referred to in this paper5-7 ,14,17 ,21
contain background material on associative memories and
processors so only limited background will be provided here.
The interested reader can refer to the cited papers.

Essentiaily, associative memories address words in storage
by content and can perform several different parallel search

10 National Computer Conference, 1974

Figure 6-Typical printed circuit assembly from STARAN associative array

network and uses about the same fixed amount of logic as
the processing element; e.g., 1/8 to 1/32 gates per bit of
storage. The memory and the flip network together are
called the Multi-dimensional Array (MDA) memory.

M DA associative array

Figure 5 shows the organization of a 256 X 256 associative
array based on the MDA memory. The nondestructive stor
age function is provided by the memory, which consists of
256 standard LSI memory chips, each 256 X 1 bits. Access
to word or bit slices is provided in the flip network, which
consists of standard MSI logic circuits. The logic necessary
for the associative and arithmetic functions is contained in
the serial processing elements, which are implemented with
standard SSI logic circuits.

The entire associative array based on a serial by bit archi-

tecture uses about 2-1/2 gates per bit compared to 40 gates
per bit for the competing parallel by \vord and bit custom
LSI approach. The complete associative array is constructed
using standard printed circuit assemblies such as the one
shown in Figure 6. Figure 7 shows how the associative array
is viewed by the programmer. Table II gives the performance
data for the 256 X256 array. This associative array forms
the basis for the STARAN associative processor.

TABLE II-STARAN Associative Array Performance

Multi-Dimensional Access (Bit Slice or Word Slice)
Array Module Speed:

Typical Search
Typical Add or Subtract
Read Bit or Word Slice (256 Bits)
Write Bit or Word Slice (256 Bits)

150 Nanoseconds/Bit
800 Nanoseconds/Bit
150 Nanoseconds
300 Nanoseconds

2 National Computer Conference, 1974

COMPARAND
REGISTER

MASK
REGISTER

AVE 4

--------------- 111--1-------\

ARMON ALVIN 128 APPLE LN 472-5509

DREW PAMELA 715 LANCASTER AVE 476-6209

GOLDFARB SAM 53120 FOURTH ST 536-7112

LEE ROBERT 2 PEACHTREE AVE 321-5122

ORLOWSKY JULIUS 26 ELM ST 798-6453

ZWING ALVIN 92372 ROSECROFT DR 211-6675

Figure I-Associative memory telephone example

RESPONSE
STORE

instructions such as exact match, maximum, minimum, and
others plus Boolean operations. Associative processors can
be lo~ked upon as associative memories with arithmetic
capabilities such as add, subtract, multiply or divide. Present
implementations of these devices operate in a bit slice mod~.
That is, the operations are performed in parallel on one bIt
from each word. By processing each bit slice in succession
the entire contents of the memory can be processed. To
attain full parallelism one would have to construct the ma
chine so that every bit position of every word would be
processed simultaneously. For a comparison of various ar
chitectures see Shore:~3

Perhaps an example, albeit trivial, will be useful in illus
trating the concepts of an associative memory in searching
a data base. Suppose the data base is loaded in memory as
shown in Figure 1, and we would like to search for the records
of those persons who live on AVENUES and have a 4 as t~e
first digit of their telephone number. The Comparand RegiS
ter is first loaded with AVE and 4 in the proper positions.
The Mask Register is then loaded with ones in the position
of interest and zeros otherwise. This has the effect of masking
out unwanted positions in memory. An exact match search
is then performed which results in a mark in the Response
Store indicating that Pamela Drew's record satisfies the
query. The record can then be removed for furth:r processing
if required. This simple example also serves to Illustrate the
mapping between relational data base management systems
and associative hardware devices.

SOME RECENT RESULTS

There is a vast wealthl of information on data base man
agement in a sequential computer environment but a dearth
when an associative resource has been considered. Notable
research that has been conducted in data base management
and associative devices includes work by Moulder,17 Linde,
Gates and Peng,l3 DeFiore and Berra~·4-7 and Goti.lO In all
of the above, simplifying assumptions had to be made for
one reason or another and therefore no generalized data base

management system utilizing an associative resource exists
to~~ .

In previous research by DeFiore and Berra2•4-7 mathemati-
cal models were developed for sequential inverted list and
associative systems utilizing the criteria of retrieval, update,
storage requirements, and flexibility. The critical assumption
of all data fitting into main memory (both sequential and
associative) was made and thus limited the generality of the
results.

In the case of retrieval and update, equations were de
veloped that could be used to count the number of interroga
tions to main memory. The equations for retrieval were
more complex than those for update since multi-criteria
retrievals were considered while only single criteria updates
were considered. The equations for the associative system
were less complex than those for the inverted list system
owing primarily to the search capability of the associative
system. In the case of storage, equations for the number of
bits used to store data and any redundancies were developed.
This analysis yielded six equations, two each for retrieval,
update and storage. Since the pairs of equations had the
same units ratios were taken. This resulted in equations for
retrieval and update that gave the ratio of the number of
interrogations to memory for the sequential system to the
number of interrogations to memory for the associative sys-

, tem. The equation for storage was formed in a similar way.
It was felt that some numerical results would be important.
In order to facilitate this some additional assumptions had
to be made, primarily to remove summation terms. A dis
cussion of the development of these equations and the re
sulting numerical data can be found in Reference 6.

The general results are given as follows. For single criteria
searches the ratio of the number of interrogations to memory
for the sequential system to the associative system was pro
portional to the logarithm of the list length being searched,
and for multi-criteria searches ratios of 50 to 1 were common.
Also, the ratio for updating was about 30 to 1 for updating a
single item in a list of 16. However, the ratio was only about
3 to 1 for updating all items in the list, indicating the attrac
tiveness of the sequential batch updating. The amount of
storage required for the sequential system was from 2 to 4.5
times as much as for the associative system. Flexibility is
rather difficult to define but in this work it. concerned t.he
amount of indexing that was available in the associative
system versus what could be made available in the sequential
system. It also concerned the ease with which one could move
from one relation to another in the associative system or up
and down a hierarchy in a sequential system. Because of the
ease of mapping between the logical data structure and the
storage structure; and the search capabilities of the associa
tive device, it was concluded that the associative system
possessed greater flexibility.

Also included in this work was the implementation of a
system on an existing associative memory and the comparison
of the implemented system with an existing sequential data
base management system.5 This helped to verify the general
equations that were discussed above.

:Moulderl7 has developed an associative system that is in

Some Problems in Associative Processor Applications to Data Base Management 3

operation on an experimental basis utilizing the STARAN
Associative Array Processor.21 The hardware includes a small
sequential computer and a parallel head/track disk that are
connected to the STARAN through a custom input/output
unit. The sample data base being utilized in tests is hier
archical in nature and resides on the disk. The data base
management system software includes data definition, file
creation, interrogation and update modules. A search is per
formed in the following way. The STARAN memory is
loaded from the disk in approximately 100 p,sec. and searched
in another 100 p,Sec. Then the next load of data is brought in
and searched. Proceeding in this manner the entire data
base can be searched in approximately two revolutions of the
disk through this interleaving of loading and searching opera
tions.

In a somewhat more general way, Goti10 considered a
system with a large data base and investigated ways of
dividing the data base into memory loads so that the desired
data could be retrieved while minimizing the average number
of memory loads searched. Again the assumption is made
that the data are in fixed format and all data in a record must
be brought into the memory. However, this work allows for
the development of a directory that can be utilized in the
selection of which memory loads to search, whether the
memory loads contain full records or keys to records.

Linde, Gates and Peng13 developed a hypothetical Associa
tive Processor Computer System (APCS) in order to in
vestigate real time data management system functions. As
opposed to the work by DeFiore and Moulder who used bit
slice machines, the above authors suggested a byte slice
machine. They investigated search, retrieval and update
since they found that these are the functions most able to
use an associative memory with advantage.

They normalized the APCS to the IBM 370/145 computer
and found that the performance improvements varied from
32 to 110 times faster for search and retrieval and from 15
to 210 times faster for update. For loading the associative
memory, their design included either a 72 or a 4 million byte
mass storage device with a parallel I/O bandwidth of 1.6
billion bytes/second, depending upon the function being con
sidered.

For the past few years, research has been carried out in
distributed logic systems. Some of this work has been directed
toward placing logic elements on rotating storage devices.
These devices can be designed to have the same search
capabilities as the associative memory. This work can be
looked upon as a lower cost solution to the associative
memory size problem but at the expense of slower speed.3,12,2o

To this author's knowledge, there is little else in the litera
ture concerning data base management and associative pro
cessing ·with the exception of some early work by Green,
Minker and Shindlell and some recent work by Downs8 with
Illiac IV.

SOME ADVANTAGES OF ASSOCIATIVE DEVICES

Having reviewed the existing literature concerning the
application of associative memories and processors to data

base management one can ask about the usefulness of these
devices for this type of problem. Looking to the work of
previous authors we see that the functions of search, retrieval,
and update have been considered. The amount of computer
storage utilized for the data and any redundancies has also
been considered. Finally, the flexibility of a system has been
considered.

Ignoring parallel arithmetic operations for a moment, the
operation that associative devices can offer to the solution
of data base management problems is rapid search of data in·
memory. And search operations are at the heart of such data
base. management functions as retrieval (both single and
multi-criteria), update, merging and sorting.

Although one cannot directly attribute an effect of search
ing to the amount of storage utilized there is nevertheless an
indirect effect. For instance, we learned from Reference 6
that the amount of storage required in main memory was
from 2 to 4.5 times greater for the sequential computer
than for the associative device primarily because directories
were not needed in the latter case. Although the above refer
enced work was carried out under the assumption of all data
fitting into memory, one can extrapolate to a data base con
sisting of a great many memory loads. Thus, this would repre
sent a considerable saving in the amount of storage required
for the data base as well as having much less data to search.

Although flexibility is difficult to quantify, the fact that
each bit or any combination of bits of a word can be used as
a key for searching indicates that flexibility is increased for
the associative device, at least in those operations that have
been considered in the literature so far.

Another possible indirect advantage of these devices is in
the software. Although the data are sparse at this point, it
appears that the programming of these devices is consider
ably simplified both in logic and in the compactness of code.

In studying the use of associative memories and processors
in data base management, it has become clear that the arith
metic capabilities of the associative processor are seldom
required in data base problems since the opportunity for the
parallel processing of large quantities of data rarely exists.
So, at the present time it seems that it would only be useful
to utilize associative memories in this field. One exception
to this concerns mass updating of the data base in a real
time environment. For instance, in air traffic control applica
tions the data base of tracks may have to be manipulated in
real time and the need may arise to update all tracks simul
taneously. But this kind of mass updating would seldom be
required for a businESS or industrial type data base manage
ment problem.

SOME DISADVANTAGES OF ASSOCIATIVE DEVICES

The application of associative memories and processors
to data base management is not without its own share of
problems. The associative memory must be loaded before any
searching can take place and this may not be an easy task.
From a technological point of view the problem has essential
ly been solved but it may take a sizable amount of high

4 National Computer Conference, 1974

speed storage to keep the associative device rapidly supplied
with data for processing. As indicated earlier, in work by
Moulder17 a head/track disk is used to supply the associative
processor with data. Mter the memory has been loaded
it may take only 100 j.Lsec. to search and retrieve the neces
sary data before the memory is ready for loading again. Also
indicated earlier was work by Linde, Gates and Peng13 in
which a 72 or 4 million byte mass storage device with a
parallel I/O bandwidth of 1.6 billion bytes/second was as
sumed.

Another problem that exists is that of fixed field formatting.
As can be seen in Figure 1, the data must be left or right
justified in order to exploit the parallel search capability of
the memory. This means that the same number of bits must
be allocated to the same data items in each record (i.e., 10
character positions for Su or Pennacchia). This may be
wasteful of storage but must be done in order to allow rapid
search. A possible solution to this problem is the use of
delineators but this creates some additional problems that
may well degrade the performance of the system.

Still another problem that presently exists is the current
size of the memory. Sequential computers have been mass
produced for many years now but associative devices are in
the one of a kind stage. Because of this they are necessarily
small and costly. However, as more problems are solved
using these devices, the sizes will increase and the costs will
be reduced. With sequential computers there is always a
demand for a larger machine than is presently available and
this should not be any different with associative devices.
In order to help alleviate the problem there may well be a
virtual memory philosophy applied to associative processors
but this 1S probably still a few years off.

FUTURE RESEARCH

One of the messages of this paper is that it appears at the
present time that associative memories and processors have
a potential for reducing some of the pressing problems in the
field but that they are by no means the final answer; only
a step on the way to more sophisticated devices. It has long
been the contention of this author that there are thousands
of data base problems in existence today that would support
the development of computers strictly for the solution to
these problems. Imagine the vast amounts of data the various
government agencies must manage, let alone all of the in
dustrial organizations and businesses that are aspiring to
integrated corporate data bases. Imagine also the vast
amount of computer resources that are wasted in processing
largely non-sequential data on sequential computers.

Now what can be said of the future? It seems clear to this
author that for the next few years the associative device will
remain essentially a peripheral to a sequential computer.
One reason is that we just don't know enough about the
generic functions that must be performed in data base man
agement and therefore can't really define what we need from
the hardware t\.nother reason is that we are used to thinking

in terms of the sequential computer. Hopefully this will
change but it will be a slow and sometimes painful process.
One need only witness the behavior of those who have at
tempted to make the transition to the parallel field with a
bagful of good sequential algorithms only. to find out that
some poor obscure sequential algorithms worked more effi
ciently in the parallel environment than the ones in his/her
bag.

The research that has been reported on in this paper has
considered only limited sized data bases largely because of
the small size of the associative device and the I/O problem.
But, what of the large data base problem? The work
by Goti lO is important in this area. Using mathematical
models his approach was that of partitioning the data base
into blocks that could be made approximately equal in size
to an associative resource. This could then facilitate the
processing of the records once they were found. The data
base was assumed to be on conventional sequential storage
media. Although his work is independent of whether one
uses an associative resource or a sequential resource the
processing of some sort of directory to the data base can be
enhanced through the use of the associative resource. This
leads to the consideration of what kind of directory to build
when one has the resource available. We are presently con
sidering this problem but results are not available as yet.

During the next few years work will continue in the place
ment of logic on rotating devices in order to obtain the same
search capabilities as the associative memory. The added
advantage is mostly in terms of cost but the fixed format
and I/O problems are reduced considerably. The size limita
tion still exists and speed is of course slow in comparison to
an a.';;;sociative device but for some applications this presents
no problem.

In the opinion of this author, the real gains will come when
we are able to provide a one-to-one mapping between the
data structure and the storage structure for a wide class of
data structures. Some information is available already in
that the data structures for some relational data base man
agement systems have more of a one-to-one mapping with
associative devices than with sequential devices. But, to
really address the area we need to study large numbers of
data base management problems independently of any ex
isting systems in order to define a set of generic functions.
We can then select the most efficient implementations of
these functions whether in hardware, firmware, software or
combinations of the three. This will take a great deal of
time and effort but will be extremely important to the
efficient solutions of data base management problems.

REFERENCES

1. Berra, P. B., Some References in Data Management, May, 1973,
available from the author on request. (Approxi.rnately 200 refer
ences.)

2. Berra, P. B., "A Synopsis of Research Results in the Applications of
Associative/Parallel Processors to Operations Research, Data
Management and Change Detection," 1972 Sagamore Computer
Conference Proceedings, Syracuse University, August 23-25, 1972.

Some Problems in Associative Processor Applications to Data Base Management 5

3. Copeland Jr., G. P., G. J. Lipovski and S. Y. W. Su, "The Archi
tecture of CASSM: A Cellular System for Non-numeric Processing,"
Proceedings of the 1st Annual Symposium on Computer Architecture,
Dec. 9-11, 1973.

4. DeFiore, C. R., An Associative Approach to Data Management,
unpublished doctoral dissertation, Syracuse University, May, 1972.
(Also as RADC-TR-72-248, September, 1972.)

5. DeFiore, C. R. and P. B. Berra, "A Data Management System
Utilizing an Associative Memory," AFIPS Conference Proceedings,
Vol. 42, June, 1973.

6. DeFiore, C. R. and P. B. Berra, "A Quantitative Analysis of the
Utilizations of Associative Memories in Data Management,"
IEEE Transactions on Electronic Computers, February, 1974.

7. DeFiore, C. R., N. J. Stillman, and P. B. Berra, "Associative Tech
niques in the Solution of Data Management Problems," Proceedings
1971 ACM National Conference.

8. Downs, H. G., "Real-Time Algorithms and Data Management on
Iniac IV," IEEE Transactions on Electronic Computers, Vol. C-22,
No.8, August, 1973.

9. Goodyear Aerospace Corporation, "The Application of an Associa
tive Memory to Chemical Information Storage and Retrieval,"
GER 13224, April 14, 1967.

10. Goti, J. C., Optimal n-Rectangular Partitioning of Large Data Bases
for MuUiple Attribute Retrieval, unpublished doctoral dissertation,
Syracuse University, November, 1973.

11. Green, R. S., J. Minker, and W. E. Shindle, "Analysis of Small As
sociative Memories for Data Storage and Retrieval Systems,"
Vols. 1 & 2, RADC-TR-65-397, July, 1966.

12. Healy, L. D., G. J. Lipovski and K. L. Doty, "The Architecture of a
Context Addressed Segment-Sequential Storage," AFIPS Con
ference Proceedings, Vol. 41, December, 1972.

13. Linde, R. R., R. Gates, and T. Peng, "Associative Processor Appli
cations to Real-Time Data Management," AFIPS Conference
Proceedings, Vol. 42, June, 1973.

14. Minker, J., "Bibliography 25: An Overview of Associative or Con-

tent-Addressable Memory Systems and a KWIC Index to the
Literature: 1958-1970," University of Maryland and Auerbach
Corporation, Computing Reviews, October, 1971.

15. Miranker, W. L., "A Survey of Parallelism in Numerical Analysis,"
SIAM Review, Vol. 13, No.4, October, 1971.

16. Minsky, N., "Rotating Storage Devices as Partially Associative
Memories," AFIPS Conference Proceedings, Vol. 41, 1972.

17. Moulder, R., "An Implementation of a Data Management System
on an Associative Processor," AFIPS Conference Proceedings, Vol.
42, June, 1973.

18. Orlando, V. A., Associative Processing in the Solution of Network
Problems, unpublished doctoral dissertation, Syracuse University,
February, 1972.

19. Orlando, V. A. and P. B. Berra, "The Solution of the Minimum Cost
Flow and Maximum Cost Flow Network Problems Using Associa
tive Processing," AFIPS Conference Proceedings, Vol. 41, 1972.

20. Parhami, B., "A Highly Parallel Computing System for Informa
tion Retrieval," AFIPS Conference Proceedings, Vol. 41, December,
1972.

21. Rudolph, J. A., "A Production Implementation of an Associative
Array Processor-STARAN," AFIPS Conference Proceedings, Vol.
41, 1972.

22. Rudolph, J. A., L. C. Fulmer, and W. C. Meilander, "The Coming of
Age of the Associative Processor," Electronics, February, 1971.

23. Shore, J. E., "Second Thoughts on Parallel Processing," NRL
Report 7364, Naval Research Laboratory, Washington, D. C.,
December 30, 1971.

24. Stillman, N. J., A Feasibility Study of the Applicability of a Hardware
Associative Memory to Computer Graphics, unpublished doctoral
dissertation, Syracuse University, February, 1972. (Also as RADC
TR-72-57, April, 1972.)

25. Stillman, N. J., C. R. DeFiore, and P. B. Berra, "Associative Pro
cessing of Line Drawings," AFIPS Conference Proceedings, Vol. 38,
1971.

RA~CAP-An operational parallel processing facility

by JAMES D. FELDMAN and LOUIS C. FULMER

Goodyear Aerospace Corporation
Akron, Ohio

SUMMARY

An overview is presented of RADCAP, the operational asso
ciative array processor (AP) facility installed at Rome Air
Development Center (RADC). Basically, this facility con
sists of a Goodyear Aerospace STARAN* associative array
(parallel) processor and various peripheral devices, all inter
faced with a Honeywell Information Systems (HIS) 645
sequential computer, which runs under the Multics time
shared operating system. The RADCAP hardware and soft
ware are described only briefly here since they are detailed
in companion papers presented at this conference. I, 2 The
latter part of this paper dwells on the objectives of the
RADCAP facility and plans for its use.

The ST ARAN associative parallel processor is a processor
based on an associative or content addressable memory and
a related ensemble of bit serial processing elements. STARAN
is considered to be the first practical associative processor
ever produced.3 This claim of practicality is based on the
fact that the design concept for the associative memory of
ST ARAN allows the use of the same high-volume, standard,
large-scale integrated (LSI) circuit memory devices that are
in widespread use by the computer industry. In fact, every
electronic component used in the STARAN associative par
allel processor is-available from your local components dis
tributor. The significance of this fact is that now, for the
first time, associative processors enjoy the same cost per bit
of storage as does the conventional computer.

HISTORICAL BACKGROUND

From the time Slade and McMahon first described their
catalog memory4 in 1957, many attempts have been made to
implement an associative memory. Some of these attempts
were successful, but until recently none has been very practi
cal. Table I lists some of the device technologies that have
been used in the past to implement associative memo
ries in the laboratories and in a few experimental models.
Except for a few special applications of plated wire, none of
these device technologies have ever been used successfully
for conventional memory technology. Further, for associa-

* TM, Goodyear Aerospace Corporation, Akron, Ohio.

7

tive memory applications, none of these device technologies
have been very practical. All had one common character
istic-high cost per bit of storage. The exotic nature of the
device, the custom nature of the associative cell, and the
resulting low volumes were the factors contributing to the
high cost per bit.

The extension of an associative memory to an associative
processor by the addition of serial arithmetic units to each
word of associative storage was demonstrated using plated
wire technology and was reported5 in 1970. At about that
same time a new version of the STARAN associative parallel
processor was in the formative design stages at Goodyear
Aerospace Corporation. Two choices for the device tech
nology of the associative array were available: plated wire
or LSI. Plated wire was quickly discarded as a "squeezed"
memory technology caught between the well established
magnetic core memory and the emerging solid-state
integrated circuit memories. The choice was to go with LSI,
and the temptation to design a custom LSI associative array
was great.

The design of the associative array could be made parallel
by word and bit and could include a repetitive cellular
structure that would lend itself nicely to an LSI array. The
cell could be designed to include all of the desirable char
acteristics of an associative processor: nondestructive read
out storage, logic for the associative and arithmetic func
tions, and access to the cell in both the word and bit slice
directions.

Figure 1 is a simplified diagram of a two-dimensional
custom LSI associative array, where each cell has been de
signed to include the desirable storage, logic, and access
~haracteristics of an associative processor. The largest neg-

TABLE I-Associative Memory Element Technologies

Cryogenics
Cryoelectrics
Multiaperture Ferrites (MADS, MALE, BIAX)
Ferroelectrics
Toroidal Cores (FLUXLOK, BILOC)
Discrete Transistor Associative Cells
Discrete Integrated Circuit Associative Cells
Plated Wire
Custom LSI

8 National Computer Conference, 1974

BIT ACCESS REGISTER

WORD ACCESS REGISTER

Figure I-Custom LSI associative memory (parallel by word and bit)

ative technical factor in this approach is the large num
ber of gates for each associative cell. In one design 6 of this
type, the associative cell required about 40 gates. The high
gate count implies more silicon per cell and, therefore, lower
yield and higher cost. A second technical factor is the large
number of pins required to package the two-dimensional
LSI array. Another design7 that packages 128 associative
cells requires a 40-pin package and 256 cells requires a 56-
pin package. Tradeoffs between pin count and logic com
plexity are possible but limited. _ The high pin count results
in the use of expensive nonstandard integrated circuit pack
ages. A third technical factor in a design of this type is that
heat dissipation, geometry, and economics dictate the use
of external sense amplifiers.

Even if all of the above technical problems could be solved
economically, the largest problem is a nontechnical one
that of low volume. Due to the custom nature of the device,
it can only be used in the associative processor for which it is
designed, and unless an integrated circuit is produced in
response to a tremendous volume demand, its cost will aJ
ways be relatively high. Related to this custom device prob
lem is the fact that the designer of the associative processor
must bear the high nonrecurring costs by himself, usually
with a single source which further insures relatively high
prices, and without the benefit of a background of reliable
data for the specific device. Then, due to the high nonrecur
ring investment and the low volumes, the associative pro
cessor designer will not be able easily to take advantage of
the technological advances that are occurring rapidly in the
integrated circuit industry and he soon has an obsolete device
on his hands.

Further, the integrated circuit industry does not want to
be involved in 1mv volume production programs. An excerpt
from a 1973 report for the government entitled "Approaches

to Custom Large Scale Integration"8 is quoted below to
support this point.

"It is increasingly apparent that LSI offers considerable
benefits, most of them related to cost, in the implementa
tion of the digital portion of any system of reasonable com
plexity, provided it is produced in high volume. High
volume can be taken for granted in standard LSI devices,
such as memories. Such is not the case for logic, however,
which, in order to be near optimum, must be custom for
each function; the volume in which it is produced there
fore depends entirely on the number of systems to be built.
While the total number of systems required by the military
may be large, the number of anyone system type is often
small. However, in order to reap the full cost benefits of
LSI, the volume must be high, at least of the order of $100,000
to $200,000 per year per chip, and preferably higher.
Only at this level does it become economically feasible to
fully optimize the design by handcrafting for maximum
area utilization and performance, to "tweak" the process
for maximum yield, and to package at the lowest cost.
These cost savings are not realized at lower volume.

The following summarizes the major comments made by
the industry:

• High volume is the most important business criterion.
• Low-volume LSI development work was done prin

cipally with military funding. Work stopped when
funding dried up.

• Low-volume LSI is bad business for the big semi
conductor companies.

• Only systems houses with captive IC capability can
respond to low-volume LSI requirements.

• Manufacturing in IC houses is geared to very large
lots.

• The customer must be very sophisticated if he wants
low-volume LSI, preferably he generates his own de
sign.

• Limiting resources are: 1. Capital equipment;
2. Manpower. These cannot be wasted on low-volume
businesses.

• Every effort should be made to use standard products.

The custom LSI approach was -considered for ST ARAN
but was discarded primarily due to the nontechnical factors
discussed above. A custom LSI approach, although tech
nically appealing, would result in an impractical implementa
tion of the associative processor. That approach can never
break out of the "cost-volume hangup."

The GAC approach to using LSI for the associative proces
sor was just the opposite of the custom LSI approach. In
stead of combining the requirements of storage, logic, and
access into one custom LSI chip, the requirements were
divided to see if they could be implemented using several
standard, high-volume large-, medium-, and small-scale inte
grated circuit chips. Figure 2 is a schematic representation of
the approach to the problem. If this problem could be solved,
the resulting cost of associative processors would be low and
the "cost/volume hangup" would be solved.

STORAGE
USE STANDARD
(HIGH VOLUME)

USE STANDARD
(HIGH VOLUME)
MSI
LOGIC CIRCUITS

USE STANDARD
(HIGH VOLUME)

SSI
LOGIC CIRCUITS

Figure 2-Approach to implementing an associative processor memory

Storage

Figure 3 shows a typical standard LSI 1024 X 1 memory
chip in a 16-pin package. These memories are (or soon will
be) available in high-volume production in various device
technologies (MOS, TTL, ECL, CMOS) and are in wide
spread use in the conventional computer industry for main
frame memory. Since they are committed to replace the
magnetic core being used for that purpose, the volume lever
age for lower cost is already at work. For use in a serial by bit
(slice) associative processor, this memory chip is functionally
equivalent to single plated wire and can satisfy the non
destructive storage requirement very nicely. The number of
gates per bit of storage is approximately two.

Logic

In a serial by bit associative processor, the logic necessary
to perform the associative and arithmetic functions is em
bodied in a small bit-serial processing element sometimes
called a response store or a serial arithmetic unit. Typically,
this processing element has a complexity of about 32 gates
and consists of three or four flip-flops and some logic gates.

32 - ~
LINES

j 'ml
l

32
LINES ,~"'~ I 10

ADDRESS -< - IN 32 x 32
ARRAY

LINES

~@r
ADDRESS
DECODER

DATA IN J READ/WRITE I DATA OUT
WRITE ENABLE ~~~T:E~~E r

HIP SELECT ...

T i
POWER GROUND

Figure 3-Standard LSI random access memory (1024-bit chip in 16-piI.
package)

RADCAP-An Operational Parallel Processing Facility 9

FOUR MEMORY MODULES

\
3 / '-_____J.

STORAGE

DATA

IN/OUT

1

ACCESS
AND

LOGIC

PROBLEM

ACcESSTs
LIMITED TO

BIT SLICES

Figure 4-Standard LSI memory used in an associative processor

It is easily constructed of small-scale integrated (SSI) cir
cuits. When operated with a 256-bit store, the processing
element adds 32/256 or 1/8 gate per bit of storage. With a
1024-bit store, the ratio is 32/1024 or 1132 gate per bit of stor
age.

Access

Figure 4 shows a simplified diagram of four LSI memory
chips connected to four serial processing elements. This or
ganization is very similar to the plated-wire serial by bit
associative processor mentioned earlier. The problem with
this design is that access to a bit slice is accomplished in one
bit read or write time but access to a word or part of a word
requires (n) bit read or write times (where n is the number
of bits to be read or written). It would be desirable to access
either a bit slice or a word slice in one read· or write time.
There may also be cases where it is desirable to access in a
mixed mode (words and bits) addressing technique that
allows up to 256 cells to be accessed at once.

The problem of access to either bit slices or word slices or
combinations of the two has been solved with a proprietary
GAC design that uses a logical network between the memory
and the processing elements. This network is called a flip

t 256

256
2f6

I

1 (
-,

1
MEMORY I

FLIP 1 PROCESSING
NETWORK ELEMENTS

IACCESS)

\... /

7
256 256

.. " 256
(STORAGEI (LOGICI

OUTPUT

Figure 5-Organization of a ST ARAN associative array

RADCAP FACILITY

Figure 8 shows a block diagram of the hardware within
the RADCAP facility. The 645, which has been in existence
at RADC for several years, is a very large computer system
with a multitude of peripherals typical of large time-shared
systems. In March 1973, hardware was delivered to RADC
in the form of a ST ARAN parallel processor with four arrays,
a custom input/output unit (CIOU), a hardware perfor
mance monitor, and a variety of peripherals. Subsequently,
the CIOU was used to interface STARAN with a 645 I/O
channel. At the same time, ST ARAN software was inter
faced with the 645 Multics time-share~ operating system.

At present, the RADCAP facility is totally operational
and includes system software to allow for operation in both
a ST ARAN stand-alone mode and an fntegrated ST ARAN I
l\fultics mode.

STARAN PARALLEL PROCESSOR

STARAN can perform search, arithmetic, and logical op
erations simultaneously on either all or selected words of its
memory. Figure 9 shows the basic STARAN elements. The
most important are the associative array and its unique
multi-dimensional access capability, which, along with the
other -elements, are described in more detail in referenced
publications. 1, 3,9 Listed below are brief descriptions of the
ST ARAN elements:

1. Associative array: provides multi-dimensional access,
content-addressable memory with 65,536 (216) bits of

en o
ex:
o
~

TO/FROM CONTROL

I
:J
Q.

I
:J
o
..:.
:J

~~rrrr.~~77777KrrrT77~~~~~ ~

WORD
SLICE

256 PE'S

256 WORDS x 256 B!TS PER ARRAY

Figure 7-8TARAN associative processor array

...J
W
...J
...J
«
ex: «
Q.

RADCAP-An Operational Parallel Processing Facility 11

all:
ii

~ = ..

-------, ,--__ RADCHARDWARE __ _

cmOll
lID

=~

_~ER

WlTH.IlTICS
TWESIWIED
Cft8AlWG SYSTEM

h != ~~ !I .Ii
~! !i Z:~ ~f

Figure 8-RADCAP facility

storage and 256 processing elements; permits parallel
arithmetic, search, and logical operations.

2. AP control: performs data manipulation within asso
ciative arrays as directed by program stored in AP
control memory.

3. AP control memory: stores AP control instructions.
Can also store data and act as buffer between AP
control and other system elements.

4. Sequential controller and memory: performs main
tenance and test functions, controls peripherals, main
tains job control, provides means for operator com
munication between various ST ARAN elements, and
assembles STARAN programs written in MAPPLE
(Macro-Associative Processor Programming Lan
guagE).

5. External functions: transfers control information
among ST ARAN elements.

STARAN has been designed to provide a flexible I/O
capability. The standard peripherals for STARAN are listed
below, along with a typical list of optional peripherals:

1. Standard: cartridge disk drive and control, paper tape
reader, paper tape punch, and keyboard printer.

,,---
DIRECT --IDUI

_F£IIED
_I

L--~---------r-------.r ::n

Figure 9--ST ARAN block diagram

\
PMAl.UL
-I
DlmUr
!PIIII

/

12 National Computer Conference, 1974

2. Optional: line printer, card reader, magnetic tape,
keyboard crt, and other peripherals, as desired, that
are compatible with the Digital Equipment Corpora
tion (DEC) PDP-II.

All these peripherals interface with the STARAN system's
sequential controller, a PDP-ll mini-computer. STARAN
also provides facilities for interfacing with other processors.
The four buses provided (see STARAN block diagram,
Figure 9) are the direct memory access, the buffered I/O, ex
ternal function, and parallel I/O.

The direct memory access is a 32-bit bus for STARAN to
address external memory. The AP control or the sequential
controller can access external memory at a rate dependent
upon this memory's cycle time.

The buffered I/O is a 32-bit bus for processors to address
STARAN. Depending upon which portion of control memory
is accessed, the access rate is 0.4 to 1.0 micro sec per 32-bit
word.

The external function is a bus for exchange of control
signals. Discrete signals and interrupts can be both generated
and accepted across this bus.

The parallel I/O is a bus for STARAN array I/O. Up to
256 bits per array (e.g., one bit per array word) can be pro
vided. If all 32 arrays are implemented, up to 8192 bits can
be utilized in parallel at a transfer rate less than one micro
second, dependent upon the desired application.

STARAN PERFORl\1:ANCE SUMl\1:ARY

In a high-speed, asynchronous, pipe-line type processor
such as STARAN, it is difficult to summarize performance
since speeds vary with instruction types, types of loops, etc.
Also, the overall effective speed depends upon the number
of words in the arrays over which the simultaneous opera
tions are occurring. Hmvever, an effort is made below to list
the performance and the features of 256.X256 associative
array, the control unit, and the interface portion of
STARAN:

Associative Array Features

• Up to 32 arrays per system
• Multi-dimensional access (bit slice or word slice)
• Array module speed:

Typical search: 150 nsec/bit
Typical add or subtract: 800 nsec/bit
Read bit or word slice (256 bits): 150 nsec
Write bit or word slice (256 bits): 300 nsec

Control Unit Features

• Two separate processors: AP control, sequential con
troller

• Solid-state control memory capacity: 2K X 32 standard,
4KX32 maximum

• Solid-state control memory speed: 150 nsec/instruction
(typical)

• Bulk core capability: 16K,X32 standard, 32KX32 maxi
mum

• Bulk core speed: 1 microsec (read or write)

Interface Capabilities

• STARAN to address external memory: rate-memory
dependent

• External processor to address ST ARAN: 0.4 to 1.0 mi
crosec /32-bit word

• Parallel I/O to/from associative arrays: less than 1.0
microsec/8192 bits (maximum)

• Control signals and interrupts

Custom Input/Output Unit (CIOU)

Figure 10 shows a simplified block diagram of the
STARAN/RADCAP custom input/output unit (CIOU). As
indicated, the CIOU contains a parallel input/output (PIO)
module, a 645 computer interface, and an internal perfor
mance monitor. The CIOU functions as a mini-processor much
the same as the control unit portion of STARAN. Processing
within one array module (e.g., under STARAN control)
may be concurrent with I/O in another array module (e.g.,
under PIO control).

As directed by instructions stored in PIO control memory,
the optional PIO module manipulates data among and within
the associative arrays concurrent with operations as directed
by AP control. The PIO module contains eight ports, with
256 bits per port to accommodate associative array I/O
and to permute data.

The 645 interface logic provides a communication path
between the 645 computer and the ST ARAN system. This
interface logic contains a 30-character queue and a 32-bit
status register, which are tied to a 645 I/O channel. The
status register contains interface control signals, and the
queue buffers data being transferred to or from the 645.

The internal performance monitor, although contained in
the ClOU, is best discussed in the following description of
the hardware performance monitor.

14&
INTERFACE
LOGIC

PARALLEL 110 MODULE

INTERNAL
- - - - - - - - PERFORIIAICE t --:~:L --i-"ff ..

Figure IO-Simplified block diagram of custom I/O unit

Hardware performance monitor

To help meet a RADCAP facility objective of measuring
system performance, a hardware performance monitoring
capability has been provided by an internal performance
monitor in the CIOU cabinet and an external performance
monitor system. Measurements can be made to determine
instruction execution timing, control memory and bus utiliza
tion, array utilization, and activity in the pager, the PIO
module, and the 645 interface.

The internal performance monitor is used exclusively for
STARAN instruction execution times and instruction event
times. The events counted and timed are the execution of
flagged instructions in AP control. Between a start flag and
an end flag, a timer increments at a loo-nsec rate. Overflows
from this counter interrupt the sequential controller. In
addition, the sequential controller can interrogate the· event
counter and timer.

The external performance monitor is a self-contained sys
tem that can monitor any point of STARAN or the custom
I/O. Data are acquired via probes that detect logical signal
changes in either an event count or elapsed time mode.
Several probes can be logically connected via a patchboard
to trigger a counter. At regular intervals, the contents of the
counters are written as a record on a magnetic tape unit.
The performance monitor software then evaluates the col
lected data and produces the results in the form of reports
and graphs. The sofhvare for the performance monitor runs
on the 645.

Physical description of hardware

All the elements shown in the STARAN block diagram
(Figure 9), including the associative arrays, are built using
dual-in-line IC's (integrated circuits) mounted on multi
layer printed circuit boards. Thus, the physical construction
of STARAN and the CIOU is similar to that of typical
high-speed sequential processors.

Figure 11 shows Goodyear Aerospace's STARAN demon-

TABLE III-Approximate STARAN Component Count*

No. of
Printed No. of

STARAN* No. of No. of Circuit Integrated
Model Arrays Cabinets Boards " Circuits

8-250 3 220 9,OO()
8-500 2 3 276 11-,500
8-750 3 3 332 14,100
8-1000 4 4 412 16,700
8-1250 5 4 468 19,300
8-1500 6 4 524 21,900
8-1750 7 5 604 24,900
8-2000 8 5 660 27,500
8-4000 16 8 1156 48,700

* Without input/output.

RADCAP-An Operational Parallel Processing Facility 13

Figure ll-STARAN demonstration and evaluation facility

stration and evaluation facility; Table III gives the approxi
mate numbers of cabinets, boards, and IC's for the various
STARAN models. These figures do not account for I/O
logic, since this varies from one installation to another. The
STARAN/RADCAP CIOU, which includes the parallel I/O
option for all four arrays, contains approximately 200 boards
and 8,000 IC's.

Although up to three arrays can be packaged in one
cabinet, the RADCAP configuration has two arrays per
cabinet for symmetry. Figure 12 shows the equipment that
was delivered to RADC. This includes a sequential control
cabinet, an AP control cabinet, two AP memory cabinets
for the four associative arrays, and a CIOU cabinet. The
disk drive and line printer are mounted in separate cabinets.
The keyboard/printer, the card reader, and the graphics
display console can be mounted on table tops or pedestals.
As mentioned earlier, the internal performance monitor is
packaged within the CIOU cabinet. The external perfor-

Figure 12-STARAN complex at RADC

14 National Computer Conference, 1974

Figure 13-Flow of RADCAP research project

mance monitor, not shown in Figure 12. mounts on a table
top.

Summary of system software

The system software available for STARAN /RADCAP is
capable of operating STARAN in a stand-alone mode or,
when integrated with the 645, in a STARAN/Multics con
figuration. The system software is based upon a disk opera
ting system, which provides ready access to system programs,
device independent I/O, and a file system. Operation of
STARAN can be under direct control of the user at the
control console or run in a batch mode with a control stream
from an input device like the card reader.

The total assembly package for STARAN has a macro
language processor, an APPLE assembler, and a relocating
linker. Programs are written in the APPLE and MAPPLE
languages. Extensive string handling and substitution are
implemented in the macro-preprocessor. APPLE is a symbo
lic language that includes mnemonics for parallel and asso
ciative operations. The linker combines separately assembled
obje«t modules by reloqating code as necessary and resolving
globally defined symbols.

Control of processing in ST ARAN is through interactive
system routines. These routines are the interface between
application program execution and the user. They allow
the user to start and halt STARAN, to load programs and
overlays, and to debug programs with trace, memory modi
fication, and dump commands.

Diagnostic programs for STARAN hardware are disk resi
dent. The programs can be called individually, in groups
related to specific parts of the hardware, or as a total set for
complete system testing. Fault detection and location are
provided.

Additional software for the integrated STARAN/Multics
operation is designed to handle the interface between the
computers and the use of STARAN from Multics. For the
interface, a special device driver module has been added to
the STARAN disk operating system. This driver is similar

to drivers used for peripherals. It has been specialized for
Multics and can accommodate 16 open files simultaneously.
A device interface module (DIM) has been added to IVlultics
as the counterpart to the device driver. These two modules
are basic parts of each machine's operating system and are
transparent to the programmer.

STARAN can be operated from Multics by commands a
user inputs at a terminal or from a file. File control procedures
handle ST ARAN related keyboard inputs and provide the
interface between the DIM and the MULTICS storage sys
tem. With these procedures, a user process executing in the
645 can call for execution of a ST ARAN program.

To facilitate the assembly of ST ARAN programs, a cross
assembler is provided for time-shared use in :\;fultics. This
assembler accepts MAPPLE and APPLE as inputs.

Objectives and uses

The basic objective of the RADCAP facility is to explore
the performance of a hybrid computer configuration (STA
RAN associative processor interfaced with a 645 sequential
processor) on real-world, real-time problems. A specific goal
is to determine the cost-effectiveness of associative/parallel
processing in such an environment. Associative processing has
been studied extensively in both theoretical and simulation
studies, but no significant practical operating experience with
them exists. Experimentation is necessary to provide "hard"
data and fill in the presently existing void. Practical operating
experience also is required so that a general-purpose associ
ative processor configuration could be developed if results
warrant it.

The RADCAP facility will be used in an experimental
program to evaiuate the internal performance of this hybrid
computer configuration by means of hardware and/or soft
ware performance monitors to determine internal component
utilization and system bottlenecks. Programming aspects of
associative processing also will be investigated. Associative
processing programming is not well understood and repre
sents radical departures from the traditional programming
approach. The program loop is being replaced by hardware
processing elements. This requires a whole new programming
attitude. Programming languages suitable for associative
processors probably ,vill be quite different from present ones.
This basic uncertainty must be explored and some practical
operating experience gained. As a test problem, indicative
of high data rate and real-time processing requirements, the
data processing functions of an air surveillance system
(AWACS) have been chosen. The primary functions to be
investigated are tracking (both passive and active), display
processing, and weapons control.

The scope of the research program can be described with
the aid of Figure 13. The flow will begin with the develop
ment of associative-sequential algorithms for each of the
AWACS data processing functions. As these algorithms are
being developed, the application engineers will make known
to a language and system software group those instruction
level and system routine functions required to support the
AWACS processing functions.

Based on this input, the language group will develop a
language and implement this language on the RADCAP
testbed. The system software activity will implement rou
tines to support the command language. The applications
program will then be run on the testbed using, where possible,
nonsynthesized data as input. The machine activity will be
monitored to gather statistics on utilization, identify system
bottlenecks, and determine the efficiency with which the
algorithms provide solution.

The data collected will then be analyzed to determine
where cost-effective improvements can be made to software
and/ or hardware in order to improve the cost-effective per
formance of the system. These changes will be incorporated
into the system via micro-program or software routines. If
the change is to be a hardware design, that design will be
made to the gate level so that performance and cost-effective
ness determination can be made.

When the solution to the problem is finally refined, it will
be contrasted with known sequential solutions.

Initially each of the AWACS data processing functions
will be treated separately. The final task will then be to
develop a system executive and integrate all the functions
to reflect the real world.

RADCAP-An Operational Parallel Processing Facility 15

REFERENCES

1. Batcher, K. E., ST ARAN Parallel Processor System Hardware,
GER-15996, Akron, Ohio, Goodyear Aerospace Corporation, 19
November 1973.

2. Davis, E. W., ST ARAN Parallel Processor System Software, GER-
15997, Akron, Ohio, Goodyear Aerospace Corporation, Akron,
Ohio, 19 November 1973.

3. Rudolph, J. A., "A Production Implementation of an Associative
Array Processor-STARAN," 197~ Fall Joint Computer Conference
Proceedings, December 1972, pp. 229-241.

4. Slade, A. E. and H. O. McMahon, "The Cryatron Catalog Memory
System," 1957 Fall Joint Computer Conference Proceedings, Vol. 10,
pp. 115-120.

5. Fulmer, L. C. and W. C. Meilander, "A Modular Plated Wire As
sociative Processor," Proceedings of IEEE Computer Group Con
ference, June 1970.

6. Shore, J. E., "Second Thoughts on Parallel Processing," NRL
Report 7364, December 30, 197], page 7.

7. Kressler, R. R., C. E. Peet, Jr., and F. B. Frazee, "Development of
an LSI Associative Processor," A.ir Farce A_vionic-s Laboratory Tech
nical Report 70-142, August 1970.

8. Boyle, J. T. and C. A. Neugebauer, "Approaches to Custom Large
Scale Integration," Air Force Avionics Laboratory Technical Report
73-66, March 1973.

9. Batcher, K. E., "Flexible Parallel Processing and STARAN,"
1972 WESCON Technical Papers, Session 1.

ST ARAN parallel processor system software

by EDWARD W. DAVIS

Goodyear Aerospace Corporation
Akron, Ohio

INTRODUCTION

This paper is concerned with the features and concepts of
system software for a parallel associative array processor
STARAN.* Definitions of parallel processors have appeared
often. Essentially they are machines with a large number of
processing elements. They have the capability to operate
on multiple data streams with a single instruction stream.
ST ARAN is a line of parallel processors with a variable num
ber of processing elements.

Along with the multiple processing elements, ST ARAN
has a memory organization that allows access either by
location or association. That is the address of a memory
word can be used explicitly, or words can be selected by
association based on their content. Processing elements can
operate on data selected associatively, making the machine
an associative processor.

An alignment, or permutation, network in the machine
provides a flexible interconnection between processing ele
ments. This network is used to align data in the memory
with the processing elements requiring the data and to pro
vide communication between processors. This results in an
array organization, making the machine an array processor.
STARAN is thus a true parallel, associative, array processor.

It is expected that one might be curious about the use of
this machine: the operating system, language processing soft
ware, user program development, and execution control aids.
This paper gives a brief description of software for all these
purposes. Some parts will be recognizable as fundamental
members of the software for other general purpose computing
systems. Special development was required, however, to
handle features unique to the parallel organization.

The programming language is new. It includes declarations
for defining storage in the arrays and instructions for using
the parallel and associative properties of the machine~ Inter
active execution control software has been written. It simpli
fies development and debugging of user programs. This
software differs from conventional debugging tools by the
extensions related to the array memory organization. Discus
sion of the language and control soft,vare,' plus methods of
interfacing STARAN to other machines, are the major points
of the paper.

* TM, Goodyear Aerospace Corporation, Akron, Ohio.

17

ST ARAN SYSTEMS

STARAN is an operational computing system. The hard
ware architecture is described in a companion paper pre
sented at this conference! and in other literature.2,3 A par
ticular installation and its potential use is described in a
companion paper.4 This paper is concerned with a descrip
tion of the existing system software. There are two modes of
operation. First, STARAN can be operated as a stand-alone
parallel processing system. Peripherals for this mode typically
include a card reader, line printer, paper tape reader and
punch, and cartridge type disk unit. Second, STARAN and
a cooperating, or host, 'machine can be operated in an inte
grated fashion. This means that: (1) commands to the
STARAN disk operating system can originate in the other
machine, (2) the storage system of the host is available to
STARAN users for. program or data storage, and (3) a
single task can use both machines to satisfy its processing
requirements. All peripherals belonging to a stand-alone
STARAN and to the host are available when the machines
are integrated.

This paper describes the software for the ST ARAN stand
alone mode of operation, then covers the additional software
used with the integrated mode.

Since the STARAN processor architecture is detailed in a
companion paper! only a basic diagram is given in Figure l.
The multi-dimensional access associative arrays and their
controls are the main architectural features. The sequential
control, a Digital Equipment Corporation (DEC) PDP-ll
minicomputer, has a minor role in the architecture but is
important for software considerations. Other architectural
features are mentioned later in the paper.

SOFTWARE FOR STARAN STAND-ALONE MODE

Software for the ST ARAN stand-alone mode of operation
can be discussed from the standpoints of the operating sys
tem, language processing, and execution control procedures.

Batch disk operation system

In this paper, an operating system means the collection of
routines that give the user appropriate control of the com-

18 National Computer Conference, 1974

ASSOCIATIVE
CONTROL
MEMORY

ASSOCIATIVE
CONTROL

IIUL TIOIIiENSIONAL
ACCESS
ARRAY 0

IIUL TlOIIiENSIOMAL
ACCESS
ARRAY 1

IIU L TlOIIiENSIONAL
ACCESS
ARRAY. (. < 32)

COMMON
MEMORY
(WINDOW)

SEQUENTIAL
CONTROL
MEMORY

256
PROCESSING
ELEMENTS

PARALLEL
I/O

Figure l-STARAN block diagram

puting system, inform him of system status, provide input/
output (I/O) facilities, and provide access to system pro
grams. STARAN features a disk operating system (DOS)
and has a batch processing capability. The batch command
stream can be assigned to any character input device, allow
ing control to originate at the control console or from a user's
file on the batch device.

The disk is a file structured bulk storage medium. All
system software is resident on the device for easy, rapid
access by the user.

Listed below are the standard programs supplied with the
DEC PDP-ll batch system:

Program Name

MACRO
LINK
LIBR
PIP
EDIT
ODT

FORTRAN

Function

Macro-assembler
Linker
Librarian
File utility package
Text editor
On-line debugging

package
Fortran compiler

These programs are not discussed further since primary

emphasis in this paper is on the STARAN-related software
that has been added to the above list to build the STARAN
disk operating system.

One general rule used in software development was to
avoid changes to the basic DEC.batch system. This rule was
intended to simplify any future change to a new DEC
release.

Language processing

APPLE-Programs for STARAN are written in the
APPLE* assembly language (Associative Processor Program
ming LanguagE). 5 This language has some mnemonics that
generate one machine language instruction and others that
generate a sequence of machine instructions. The one-to
many mnemonics generally implement a parallel algorithm
for arithmetic or search operations using the arrays. Thus,
APPLE is at a higher level than sequential machine assembly
languages.

APPLE produces relocatable or absolute program sections
and has a conditional assembly capability. Groups of in
structions in the language are listed below:

1. Assembler directives
2. Branch instructions
3. Register load and store
4. Array instructions

a. Loads
b. Stores
c. Associative searches
d. Parallel moves
e. Parallel arithmetic operations

5. Control and test instructions
6. Input/output (I/O) instructions

Most of these groups of instructions resemble those of
other typical assemblers. The unique group-array instruc
tions--deals with operations on the multi-dimensional access
arrays and the registers in their processing elements (PE).
Some general comments apply to all the array instructions
listed above. Operations take place only on arrays enabled
by the array select register.2 Fields are of variable length
within each array word and are defined for various instruc
tions by field pointers and length counters. The common
register, a part of associative control, can contain an operand,
which is used in common by all selected array words.

More detail is presented below on the array instructions;
i.e., loads, stores, associative searches, parallel moves, and
parallel arithmetic operations.

The "load" array instructions load the processing element
(PE) registers or the common register with data from arrays.
Logical operations may be performed between the current
PE register contents and the array data. The language has
mnemonics for the common logical operations, while the
machine supports all 16 functions of two logical variables.

* TM, Goodyear Aerospace Corporation, Akron, Ohio

A given load instruction can increment, decrement, or leave
as is an array field pointer. Thus, a single one of these in
structions can load registers, perform logic, and change
pointer values. Operations to set, clear, or rotate the PE
registers are included in this group.

The "store" array instructions .are used to move PE or
common register data into the arrays. A mask feature is
provided that allows writing only in mask enabled array
words. As with the load instructions, logical operations may
be performed between the current PE registers contents and
the array data. Also, the array field pointer can be incre
mented, or left unchanged.

The "associative search" array instructions allow the pro
grammer to search for particular conditions in the arrays.
Only those words enabled by the mask register take part in
the searches. Searches can be performed that compare a
value in the common register with a value in a field of all
array words. Another variety of search compares one field
of a word with a second field of the same word for all array
words. Comparisons can be made for such conditions as
equal, not equal, greater than, greater than or equal, etc.
Maximum and minimum searches also can be performed.
Combinations of searches yield such functions as between
limits and next higher. Additional mnemonics in this group
are provided to resolve multiple responders to the searches.

The "parallel move" instructions are provided to move an
array memory field to another field within the same array
word. As with searches, a word is active for this instruction
only when enabled by the mask register. Types of moves are
direct, complement the field, increment or decrement the
field, and move the absolute value.

The "parallel arithmetic" array instructions allow the
programmer to perform parallel operations in the arrays.
These operations are subject to mask register word enabling.
Arithmetic can use a value in the common register as one
operand and a value in a field of all array words as the parallel
operand. Alternatively, one field of a word can be arith
metically combined with a second field of the same word for
all array words. Operations supplied by APPLE are add,
subtract, multiply, divide, and square root.

M aero-A macro language is provided to increase the
user's flexibility at assembly time. 6 The macro language has
a large set of arithmetic, logical, relational, and string manip
ulation operators. Adding macro variable symbol handling,
conditional expansion capability, and ability to nest macro
calls make it possible to write powerful macro instructions.
System and user macro libraries have been implemented.

Benefits to the user are the ability to define new
mnemonics, redefine existing mnemonics, and conveniently
generate standard instruction sequences.

Mnemonics have been added to the basic APPLE lan
guage by including macros in the system library. Primarily,
the added mnemonics are floating point instructions. They
are fixed field length operations in both single and double
precision.

Building Load Modules-Software used to convert source
language programs into executable load modules includes

STARAN Parallel Processor System Software 19

PROGRAM INTERMEDIATE FILE
I I
1 1
I MAPPlEIIAeRO-ASSEMBLER

I
1
1
I

OBJECT
MODULE

I
1
I
1
I
I
1
I

ADDITIONAL
OBJECT MODULES

Figure 2-Language processing software

LOAD
MODULE

1
I
1
1
I
1
I
I

an APPLE assembler, macro-preprocessor, and relocating
linker. Figure 2 shows this software and the flow of programs
or modules through it.

Building load modules begins with the original program
written in APPLE. This source program may contain macro
instructions. Translation of the source into a machine lan
guage object module is by l\fAPPLE (APPLE assembler
with Macro-preprocessor on the front end). If it is known
that the source program does not contain macro instruc
tions, it is possible to input the source directly to the APPLE
assembler.

A relocatable object module is converted to an absolute
load module by the STARAN linker. Multiple object modules
may be input to the linker since it has the function of re
solving symbols defined across object module boundaries
(global symbols) as well as adjusting addresses for reloca
tion.

Use of the language processing software is fully described
in the STARAN User's Guide. 7

Execution control

Execution control software is discussed below, covering
loading, executing, and debugging programs on STARAN.
Four modules are involved: the loader, STARAN program
supervisor, debug module, and control module.

Loader-Output of the STARAN linker is shown in Figure
2 as an absolute load module. The loader has the straight
forward task of moving a load module into STARAN control
memory beginning at the address specified in a text block.
Options on loading are to load and not execute or to load
and begin execution either at an address given with the
load module or at one given with the load command. The
load module is accessible from a user program to enable
calling for a load from an executing program. This means
that overlay modules can be brought in dynamically.

STARAN Program Supervisor (SPS)-The SPS is the
software interface between the associative and sequential
portions of STARAN. This module has services for system
users when programming in APPLE and when programming
a PDP-ll routine to interact with an APPLE program.

For the APPLE program, SPS makes the I/O instructions
of the disk operating system (DOS) available, provides a
program overlay capability, and provides a programmable
interrupt to a PDP-ll routine. The PDP-ll routine inter-

20 National Computer Conference, 1974

Figure 3-System software diagram

acts through a software link, which receives the APPLE
interrupts, and through the issuing of control information to
the associative control logic.

In addition, SPS supplies interface services. It transfers
data between associative and sequential memory through
the common memory window (Figure 1). SPS also fields
associative processor error interrupts.

Concurrent execution of associative and sequential rou
tines, with interaction, is made possible by SPS.

STARAN Debug Module (SDM)-The SDM helps the
user debug APPLE programs by giving him control of the
execution of the program being debugged, and access to
memory and registers. Such features as single step, trace,
and breakpoint provide good execution control. Durnps of
all memory areas can be taken, with both word slice and bit
slice available for the multi-dimensional access arrays. All
memory locations also can be modified.

STARAN Control ~Module (Seil-f)-This final operational
module is the interface between the user and execution of a
STARAN program. By running SGM, the user enters a
mode in which ST ARAN related commands are recognized.
Such commands as start, halt, and continue execution are
processed directly by SC:\1. When the load command is
used, SC:\1 passes control to the loader for that function.
If debug aids are needed, a simple command adds all debug
module features to SCM.

All the operational software modules are described more
fully in the STARAN User's Guide. 7

SOFTWARE FOR THE INTEGRATED MODE

General

The integrated use of the STARAN parallel processor and
a host sequential computer makes additional software neces
sary. One major concern is the interface between the com
puters; this requires a software module in both machines. A
second c~ncern involves reasonable ease of use for the inte-

grated mode; procedure packages are added as needed to
satisfy this concern.

Figure 3 is a block diagram of the software modules in
STARAN and a typical host machine. Interface software
can be seen as the channel device driver in STARAN and
the channel interface module in the host. Routines that
might be added to simplify operation in the integrated mode
are the storage system module to provide access to the host's
storage, a terminal handling module to provide smooth inter
action with a terminal user, and a set of utilities.

The STARAN/HIS-6J,.5 software

Figure 4 shows the relationship between software modules
in STARAN and the HIS-645, which runs under the -:\1ultics
time-shared operating system. 8 This facility exists at Rome
Air Development Center (RADC), N. Y. and is described
in a companion paper presented at this conference.4 As indi
cated, ::\1ultics contains three categories of software: com
mand level, user process, and system related. Command level
software is brought into execution by user-supplied com
mands, as from a Multics terminal. User process software
consists essentially of subroutines called from a user pro
gram. System-related software is the collection of routines
that support use of the system, such as handling input and
output, and are usually called indirectly by the user program.

Additional details on the design and use of this software
are described in the STARAN/HIS-64.1 User's Guide. 9

Interface 2lIodules-The two modules for the interface,
shown in Figure 4, are the 645 device driver in the STARAX

GAC STARAN

STARAN
DISK OPERATING SYSTEM
(DDS)

HIS 645

, MUL TICS

I

I SYSTEM RELATED SOFTWARE

STARAN

DEVICE INTERFACE MODULE
(DIM)

Figure 4-STARAN/645 system software relationship

batch disk operating system (DOS) and the STARAN device
interface module (DIM).

The 645 device driver provides the interface between the
DOS monitor and the 645 computer. It communicates with
the monitor as do other device drivers for standard per
ipherals. If the device looks like an input for character
information, then batch commands can come from it. The
batch stream can be assigned to the device. This is the sig
nificance, for Multics, of the batch feature on the DOS.

In reality, the device treated by the 645 driver is used
for much more than character input. The 645 appears as
three logical devices.

One device looks like the disk, logically. The driver sup
ports both ASCII and binary transfer modes, both formatted
and unformatted. At anyone time, up to 14 data-sets may
be open on this device.

A second device looks like a card reader, logically. It is a
read-only device with an ASCII transfer mode. This unit
serves as the batch command stream input so a Multics
user can control the system.

The third device looks like a paper tape punch, logically.
It is a write-only device with ASCII and binary transfer
modes. Job log output, in the integrated mode, is always
assigned to this unit.

STARAN DIM-In Multics terminology, a device inter
face module (DIM) coordinates communications with a par
ticular physical device. Data manipulation by the STARAN
DIM assumes all l\iultics data is in character form. It con
verts characters into the form needed for output to STARAN
and converts data received from STARAN into Multics
character form. This means, for example, that Multics arith
metic data must be converted to a character form prior to
output, and from characters following input. The conversion
is done by a procedure superior to the DIM. The DIM also
handles retransmission of bad data and reports a failure to
its caller after a specific number of unsuccessful tries on the
same data.

In the Multics software structure, the DIM is located in a
position inferior to the file control procedures, shown in
Figure 4 and described in the next part of this paper.

System Use M odules-'-The file control procedures (FCP)
greatly simplify operation of STARAN from Multics. It
enables a Multics user process (program) to interact with
STARAN by initializing the interface, handling communica
tion between the machines, and terminating the interface.
The FCP also makes the necessary calls to the DL\1 to
initialize and terminate the interface.

With FCP, a user process, executing in the 645, can call
for STARAK, and it can pass commands, programs, and
data to STARAN. The FCP raises the point at which the
user becomes involved from sequences of calls to the DIM
to a more symbolic call to FCP routines from the user
process.

User involvement in the interface to STARAN is raised
still higher from the user process to the Multics command
level by a "STARAN" module. Essentially, this module is a
supplied user process that passes parameters used in the

STARAN Parallel Processor System Software 21

terminal command to the FCP. The parameters identify
the STARAN batch command stream input and output de
vices. The module calls appropriate FCP routines to estab
lish interaction with STARAN.

In typical operation of STARAN from a terminal, this
Multics command is used with STARAN commands also
coming from the terminal. Initializing and terminating the
interface are not a concern of the user. The Multics terminal
becomes very similar to the STARAN control console when
this module is used.

STARAN and the 645 differ in the lengths of their data
representations. STARAN has a 32-bit control memory, while
the 645 has a 36-bit word length. Arithmetic format routines
are provided to convert either integer or floating point data
between the 645 format and the format used by the DIM
for transmission to STARAN.

A cross assembler has been written in PL/l. This is a
functionally equivalent version of the MAPPLE assembler
to be run in Multics. It is available to terminal users on the
time-shared basis. It accepts APPLE and macro statements
and produces STARAN object code in the Multics character
format required by the DIM for transmission to STARAN.

ST ARAN /"1:-5 integrated mode

A second method of interfacing ST ARAN with a host
machine has been implemented in the Evaluation and Test
Facility at Goodyear Aerospace Corporation. This facility
has an XDS "1:-5 as the host. The direct memory access
capability of ST ARAN has been used to allow an 8K area
of "1:-5 memory to be used as STARAN control memory.
Either programs or data may be stored here with control
provided by interrupts between the machines. Software for
this system is a communications library package with sub
routines callable from FORTRAN or machine language in
the "1:-5.

CONCLUSION

A brief description has been given of software packages that
compose the system for the operational STARAN parallel
associative array processor. Also described is the additional
software that makes STARAN operational when integrated
with HIS-645 or XDS "1:-5 sequential computers. The goal of
all the software is to provide tools to use STARAN in the
stand-alone and integrated modes. The tools are intended to
increase convenience for the user and improve total system
throughput.

Many modules have been discussed. Some of these are
essentially transparent to the user, some may not be needed
by certain users, and some may be required by all users.
For stand-alone STARAK operation, the programmer must
know APPLE and the uSe of the aSSembler and linker. He
must be able to run the control module and load programs.

22 National Computer Conference, 1974

He will probably be interested in the debug module. The
STARAN program superivsor is transparent for most users.
It is not necessary to know any of the sequential control
programs or languages.

REFERENCES

.1. Batcher, K. E., STARAN Parallel Processor System Hardware,
GER-15996, Goodyear Aerospace Corporation, 19 November 1973.

2. Rudolph, J. A., "A Production Implementation of an Associative
Array Processor-8TARAN," 1972 Fall Joint Computer Con
ference Proceedings December 1972, pp. 229-24].

3. ST ARAN Reference Manual, GER-15636A, Goodyear Aerospace
Corporation, September 1973.

4. Feldman, J. D. and L. C. Fulmer, RADCAP: An Operational
Parallel Processing Facility, GER-15946B, Goodyear Aerospace
Corporation, 21 December 1973.

5. STARAN APPLE Programming Manual, GER-15637A, Good
year Aerospace Corporation, September 1973.

6. STARAN MACRO Programming Manual, GER-15643, Goodyear
Aerospace Corporation, September 1973.

7. STARAN User's Guide, GER-15644, Goodyear Aerospace Corpora
tion, September 1973.

8. Organick, E. I., The Multics System, MIT Press, 1972.
9. STARAN /HIS-645 User's Guide, GER-15641, Goodyear Aero

space Corporation, September 1973.

Some thoughts on associative processing languages

by WILLIAM W. PATTERSON

Rome A ir Development Center
Griffiss AFB, New York

INTRODUCTION

Much effort has been expended in developing array and
associative processors CAP's). The most notable of the former
are Burroughs' ILLIAC IV and Honeywell's PEPE, while
the present representative of the latter technology is the
STARAN built by Goodyear Aerospace Corp. However,
very little has been published on higher order languages
which take advantage of the unique characteristics of these
architectures. There is at least one effort to develop tech
niques which "Win extract the parallelism in ordinary FOR
TRAN code,! as well as a number of efforts to formally
describe the parallelism in algorithms. Examples are in
References 2 and 3. It is true that many algorithms can be
put into efficient parallel code using these techniques; how
ever, there is a large body of problems which must be re
examined and recast into new algorithms which match the
parallelism of the machine to the natural parallelism of the
problem. These new algorithms will require a new language
which gives the programmer the flexibility to use the features
of the machine directly. The PFOR language4 developed for
PEPE is probably the only existing language for an array
processor, and some preliminary work for the RADC AP
projectS is the only published attempt on AP languages.
This paper will look at associative processing from the point
of view of a programmer who has tried to write programs
for an AP, and therefore will propose constructs which are
convenient for the programmer and not necessarily for the
compiler writer. They do, however stem from a reasonable
knowledge of the basic architecture of the AP, and hence
will tend to parallel it.

It is necessary at this point to talk about the general
architecture of the AP and, in the process, define some
terms that will be used in the paper. The two main units in
the AP are the control unit and the associative processing
elements. The control unit includes a mainframe memory
which holds the programs, constants and common singl;
valued variables; local arithmetic capability that can be
used to perform processes which concern only the common
variables; and control logic to drive the associative processing
elements. The associative processing elements each consist
of an associative word of 256 or more bits, and logic to
process the data in that word. The associative word is di
vided into several fields of either fixed or varying length.

23

Normally, if the fields are of varying length, they are defined
by the variables of the problem. Since the conventional
computer performs operations sequentially, the term "se
quential" will be used in the sequel to distinguish the con
ventional computer; however, the modifiers "sequential" and
"associative" may be left out if the context makes it clear
which is meant.

LANGUAGE

In designing a language such as this, two choices are
possible; one can design a complete new language, or he can
modify an existing language to include the proper constructs.
The latter approach was chosen because very few problems
are completely associative and it is anticipated that most
installations that include an AP will also have a conventional
computer "ith facilities for communication between the two.
This allows the programmer to write all his code in the same
basic language, identifying the associative parts. The lan
guage chosen is PL/l for several reasons, not the least of
which is the author's familiarity with the language. However
there are more cogent reasons; the first is that the basic
block structure of PL/l lends itself to segregation of se
quential and associative tasks into separate routines. Other
reasons include its basic self-documenting qualities, its ex
treme flexibility which allows its use for a large number of
problems and the fact that it has a degree of parallelism
already built in which might be exploited.

Declaration

The associative tasks in the problem should be segregated
from the sequential tasks on a procedure level. This is easily
facilitated by defining an associative procedure as qualified
procedure much like the presently defined recursive pro
cedure. The form of the procedure declaration statement
would be:

label: PROCEDURE (parameters) attributes
ASSOCIATIVE nr _entries;

or alternately:

label: PROC (parameters) attributes ASSOC nr_entries.

24 National Computer Conference, 1974

This statement would tell the compiler that procedure (label)
should be compiled into AP code. The parameters and
attributes fields are optional and follow the same rules as in
PL/l. The optional nr_entries field tells the number of as
sociative entries needed by this procedure, * where an as
sociative entry is one of a number of identical sets of vari
ables, each of which has a unique set of values and each of
which will be processed in parallel with all the others. As
sociative entries are distinct from associative words, since it
is quite possible to have more than one entry per word or
to have one entry fill more than one word. However, the
task of controlling these configurations is best left to the
computer. This allows the programmer to specify an associ
ative entry of the length appropriate to the problem, and
conceptually think of an entry as an associative word (this
being the case,· no distinction will be made between the two
in the sequel). An example of a set of associative entries is a
radar track file which keeps a record of all the tracks being
monitored by a radar set or system (for example, an air
traffic control radar). Each entry stores all the information
about one track, such as position coordinates, track quality
and any keys or flags which give additional information
about the vehicle being tracked.

It should be noted here that if a sequential procedure
calls an associative procedure or vice-versa, and there are
no data dependencies, then the two. procedures can run con
currently on the two machines. Therefore, suitable WAIT
statements must be inserted when the calling procedure needs
data from the called procedure. This will cause the calling
procedure to wait at this point in its execution until the
procedure it called has finished, thus assuring that the data
required is properly updated.

The question now arises as to what va;iables should be
passed between associative and sequential procedures. The
normal PL/l convention is that a variable declared in a
procedure is available to all procedures it calls but not to
procedures that call it. This seems impractical in this case
since any call from one type of procedure to the other implies
that the data must be passed over a physical channel. For
this reason, the author favors the restriction that only
formally declared parameters be passed between different
types of procedures, with the normal rules applying to calls
between two procedures of the same type. This dichotomy
should not be troublesome to the programmer, since he must
know that he is working on two different machines.

In associative processing, there are two basic types of
variables. The first type is the common variables and con
stants which are single valued and therefore are held in the
mainframe memory. The second type is the associative
variables which have a value for each of the associative
entries. The distinction between these two types of variables
will be made in the variable declaration of the associative
procedure. The variables of the first type would be declared
in the normal manner, where the STATIC attribute would

* If this field is absent, then the default would be that nr_entries =the
nu.-nbcr of associative words in the machine.

indicate that the variable would be assigned a static location
in the AP mainframe memory. Associative variables would
be declared in the same manner except that the keyword
ASSOCIATIVE (abbreviated ASSOC) would be appended
after the declaration. This declaration then defines a field
in each associative word. For example, the variable which
represents the range coordinate of the tracks in the track
file mentioned above would be declared:

RANGE FIXED BIN(xl,x2) ASSOCIATIVE;

This indicates an associative variable called RANGE, a fixed
binary quantity of precision xl (i.e., a field of xl bits in each
associative word) with fractional part x2.

Dimensionality of associative variables has to be handled
differently than "i.th sequential variables, of course. The first
dimension of all the associative variables is the number of
associative entries. Since this number is contained in the
procedure declaration, it would not appear in the variable
declaration. If arrays are desired in each entry, then, of
course, the normal convention would apply. Clearly, if an
array is passed from a sequential procedure to an associative
procedure and is stored as an associative variable, then the
associative declaration should not include the first dimension
of the array.

Association

The major unique feature of the AP is the ability to make
associations; that is, it is possible to make parallel compari
sons either between a comparand held in the control portion
of the AP and a field in each of the associative words or
between two fields in each of the associative words. Normally
the processing which follows is performed only on those
words that give an affirmative response or, in the jargon
"respond," or on a subset of these words. It is convenient
to talk about the words that have responded as being active.
There are two basic association actions to be performed. The
first is to associate only on those words that are active, and
thereby further reduce the number of active words. This will
be performed by an ASSOCIATE statement. The second
type of association is used to reactivate a number of words
after a series of ASSOCIATEs. This is accomplished by per
forming an association on all associative words and is invoked
by the ACTIVATE statement. Most AP's have the capability
to associate on the basis of the three basic relational operators,
greater than (», less than (<), and equal (=).

An ASSOCIATE statement would consist of the keyword
ASSOCIA TE followed by a conditional statement which
include conditions using one or a combination of the above
relations or logical combinations of the conditions using
logical AND (&), logical OR (+), and logical NOT (,).
As an example of this type of statement, suppose that the
associative variables RANGE_DIST and AZ_DIST hold
the polar vector distance of each track from a current radar
return, and we wish to determine which of these tracks is
within a certain distance from the point of the return, where

that distance is held in mainframe memory in locations
called RANGE_WINDOW and AZ_WINDOW. The state
ment would be:

ASSOCIATE RANGE_DIST <RANGE_WINDOW
& AZ_DIST<AZ_WINDOW;

This statement would leave active all associative words
which contained a track which fell within the window and
deactivate all others.

There are two special capabilities of the AP that should
be included in this section. These are the capability to find
the minimum value in a given field and to activate all words
which have that value in that field and an analogous capa
bility to find the maximum. These capabilities can be in
voked by an ASSOCIATE statement as follows:

To find the minimum value:

ASSOCIATE MINIMUM variable_name;

and to find the maximum value:

ASSOCIATE MAXIMUM variable_name;

Where "variable_name" is the name of the variable assigned
in that field.

The second type of association statement is used to re
activate a larger set of associative words. It is the ACTI
V ATE statement and it works the same as the ASSOCIATE
statement except that the keyword at the beginning of the
statement is ACTIVATE, and it activates all words that
meet the condition, not just the previously active ones. In
addition, the keyword without any condition has meaning
and that is that all associative words should be activated.
Pursuing the radar tracking example to illustrate the con
ditional ACTIVATE statement, suppose that you wish, after
a series of associations which identified a small number of
tracks, to reactivate all associative words that contain valid
tracks and that each track entry contains a one bit flag
called BUSY which is 1 for every valid track and 0 for all
others. The statement:

ACTIVATE BUSY;

would activate all valid tracks.
There are instances when it is necessary to activate one

and only one associative word in a group but it is not critical
which word is activated. In this case, the associative processor
has the provision to activate the first word which meets the
conditions of the search. This provision can be invoked by
adding the keyword FIRST to the ASSOCIATE or ACTI
V ATE statement. For example, suppose that in the radar
tracking problem, we wish to establish a new track, using the
first empty word. The word can be activated with the
statement:

ACTIVATE FIRST ,BUSY;

Another feature that is quite useful is the capability to
select a subset of the active words for execution of a short
series of instructions 'without deactivating the other words.

Some Thoughts on Associative Processing Languages 25

This can be invoked by using a FOR statement, which has
the same syntax as the normal IF statement, except that
the keyword FOR is substituted for IF. This signifies that
all associative processing elements which meet the condition
would execute the code between the THEN and END
brackets. If an ELSE portion is included in the statement,
it would be executed by all active words which do not meet
the condition. This means that both parts of the statement
are executed each time the statement is encountered.

Assignment

The last type of statement that will be discussed is the
assignment statement. The simplest type, of course, is the
move:

X=Y;

Let us now consider the four possible combinations of vari
ables. If both X and Yare common variables, then the move
is carried out in the normal manner. If both X and Yare
associative variables then the statement constitutes a move
of data from field Y to field X in each of the active words.
If X is an associative variable and Y is a common variable,
the statement constitutes a broadcast of the data in location
Y to field X in all active associative words. If X is a common
variable and Y is an associative variable, only one word can
supply data, since there is only one location in mainframe
memory to receive it. The source chosen is field Y of the
first active word.

For more complex assignment statements, containing two
or more variables on the right side of the equal sign, it is
clear that if anyone of the variables is associative, then the
operation must be performed in the associative processing
elements. Once the answer is found, the assignment will
follow the rules shown in the preceding paragraph. For
example, suppose we wish to calculate the distances used
earlier for association, given that the information on a new
report is stored in a structure in mainframe memory called
REPORT. The code would be:

RANGE_DIST=ABS(REPORT.RANGE-RANGE);
AZ_DIST=ABS(REPORT.AZ-AZ);

Since RANGE and AZ are both associative variables, these
calculations would both be performed in the associative
processing elements; and since RAKGE DIST and AZ DIST
are both associative variables, the result would be tran;ferred
directly to the proper fields in each associative word.

CONCLUSION

This paper has proposed language forms, based on the PL/l
language, which will give the programmer the capability to
directly use all of the features of an associative processor
without having to revert to assembly language coding. Many
of the statements will translate into one or two lines of
machine code, but this is necessary to use of the full power

26 National Computer Conference, 1974

of the machine. The capability is important, because there
are a class of problems which will require new algorithms to
effectively use the machine by matching the parallelism of
the machine to the parallelism of the problem.

REFERENCES

1. Lamport, L., "The Coordinate Method for the Parallel Execution
of DO Loops," Proceedings of the 1973 Sagamore Computer Con
ference, pp. 1-12, August 1973.

2. Muroaka, Y., Parallelism Exposure and Exploitation in Programs,
Ph.D. Dissertation, U. of Illinois, Urbana, 1971.

3. Ramamoorthy, C. V., J. H. Park and H. F. Lee, "Compilation
Techniques for Recognition of Parallel Processable Tasks in Arith
metic Expressions," IEEE Transactions on Computers, Vol. C-22,
pp. 986-998, November 1973.

4. Dingledine, J. R., H. G. Martin and W. M. Patterson, "Support
and Operating System Software for PEPE," Proceedings of the
1973 Sagamore Computer Conference, pp. 170-178, August 1973.

5. DeFiore, C. R., A. A. Vito and L. Bauer, "Toward the Develop
ment of a Higher Order Language for RADCAP," Proceedings of
the 1972 Sagamore Computer Conference, pp. 99-112. August 1972.

User / system interface within the context of an
integrated corporate data base

by GENE ALTSHULER

Stanfard Research Institute
Menlo Park, California

and

BERNARD PLAGMAN

The Federal Reserve Bank of New Yark
New York, New York

Man will constitute to a higher and higher degree the limiting
factor in man-computer achievements.1

INTRODUCTION

The ·world to come may be viewed as demanding the making
of more decisions per unit time, the taking into account of
more variables per decision, and the greater commitment of
resources per decision At the same time that the en
vironment is pressing for faster decisions, new esoteric tech
nologies are demanding longer planning cycles, earlier and
higher commitments of resources, and better integration and
coordination of a greater number of interacting elements
that make up new systems.2

The recognition of the truth in this statement is not by
any means recent. Nevertheless, only since the application
of the digital computer to the commercial environment has
the potential of a solution existed. Not until the invention,
application, and maturity of this technology was it deemed
possible that methods could be found to deal effectively
with the problem. It was realized that the unaided human
being could not hope to deal with the complex emerging
environment of modern business. Numerous works have dealt
with the limitations of human information processing (for
example, References 3, 4, and 5).

It was only some five years after the application of the
computer to commercial data processing that the notion
evolved that the ultimate extension of computerization was
not simple and repetitive transaction processing. It was
realized that managers process information as do clerks
though certainly not in transaction form, and against a wider
universe-and that computer systems can and should be
developed to aid them in this process. The term Management
Information Systems arose to encompass this concept, and
much was written and many attempts were made to develop
:MISs. :More orten than not these attempts failed. Early
proponents of the MIS concept did not realize that the task

27

of creating, maintaining, and accessing extremely large and
structurally complex data bases to be shared by multiple
users with diverse information requirements would
necessitate all of the following:

• Extremely sophisticated resource and task management
software.

• Very fast hardware logic and peripherals.
• Large-scale, inexpensive memory.
• Software to create, maintain, and access vast amounts

of data.
• Supportive subsystems to integrate and augment the

human user effectively.

Today, a search for even one example of the prophesied
total or integrated management information system might
prove futile. The unavailability of software to create, main
tain, and access corporatewide data is one fundamental
technical reason for the failures. Recognition of this state of
affairs has led to great activity toward the development of
constructs,6,7,8,9- requirements,lO,ll and specifications12 for
what have been termed Data Base Management Systems
(DBMS). Numerous DBMSs are in various stages of im
plementation, development, and use.13 ,14,15 It is important,
however, to view the DBMS as a necessary but not fully
sufficient component for the creation of information systems
that will provide support for human problem solving. The
task of problem solving is essentially a human one, and we
do not in any sense forecast that it will be totally assumed
by computers. What is recognized is that the human problem
solver, unaided, is not able to cope sufficiently ",i.th the data
that are available to be brought to bear on today's problems.
On the other hand, the machine alone cannot identify the
problems so as to begin to solve them. What we propose is a
man-machine symbiosis where a synergistic relationship is
established. When the problem solver or decision maker has
been forrnally and implicitly introduced into the system
definition, an interface can be clearly established between

28 National Computer Conference, 1974

man and machine. It is to this interface, embodied in the
concept of the User System Interface (USI), that the sub
stance of this paper is directed. Within this context the aim
of this paper is to:

• Introduce the concept of the USI via the decision process
that it must support.

• Architecturally place the USI concept as an element
within the ICDB.

• Discuss some design considerations of the USI.

THE DECISION PROCESS

Many researchers have published papers relating to the
construction of conceptual frameworks of human problem
solving activities, for example Simon,t6 Newell et al.,t7 Ger
rity,t8 and Miller.19 ,20,21,22 For convenience we refer to their
models as describing the "decision process."

Barkin and Lasky23 have synthesized much of the pre
ceding work and have established a sequential decision
process that succeeds in subdividing the whole process into
three distinct phases:

1. Intelligence Phase Identification of the problem
2. Design Phase Generation of alternative solu':'

3. Choice Phase
tions

Evaluation of alternatives and
selection of the final solution.

Miller's work is closely related to this structure, for it can
be viewed as subdividing the above three broad phases into
specific tasks:

1. Intelligence Phase

a. Status Inquiry-Equivalent to simple-inquiry. The
operation involves retrieval or update by a unique
identifier and/or attribute of interest.

b. Briefing-Request for information about what is
being accomplished or what has been accomplished,
usually according to a set of categories about sub
ject matter of interest or responsibility of the spe
cific user.

c. Exception Detection-Comparison of briefing in
formation (what is) with planning information
(what should be) and interpretation of the devia
tions. An exception exists if the user decides to
take action, even if that action is further inquiry.

d. Diagnosis-Posing of test questions to be answered,
leading by a logical process of exclusion to the
source of the gross symptoms.

2. Design Phase

a. Construction-The building of new systems based
on selected alternatives. The supporting system
does two main chores: It applies the rules and
constraints to each design action taken, and it
remembers the work already done by the user.

b. Evaluation/Optimization-Possible graphical simu-

lation of systems, where the problem solver uses a
graphic lanaguage to construct a model that will
simulate the problem set.

3. Choice Phase

a. Planning / Choosing-The matching of requirements
sets (what do I have to do?) against resource sets
(what do I have to do it with?). This is, in effect,
multiple-category statistics matching.

b. Discovery-Such operations as selective browsing
through a trail of references in search for ideas
that lead to concepts of trade-off structure and
complex system behavior, or examination of differ
ent slices and cuts of quantitative data from a
variety of experiments to derive a "hunch" as to
control variables that might explain diverse phe
nomena. The key is that the user may not know in
advance just what he is going to ask for or even
exactly how he will make use of what he is exposed
to.

The decision process, as outlined in this sequential list of
activities, is the process that the USI must support, for it is
inherent in almost all activities humans engage in. Individual
modules of the USI will provide specific support to some or
all of the activities in the decision process. Languages, for
example, will provide support across the entire process, while
simulation tools can assist in the design and choice phases.

Present-day computers (systems) are primarily designed to
solve preformulated problems or to process data according
to predetermined procedures.24 How then do we deal with
problems in which the time-frame for solution or t.he unique-

DATA
TYPE

DECISION
TYPE

o
ICC

<tl
i I I

QUANTIFIABLE H

I ~ i
NON

QUANTIFIABLE

ANTICIPATABLE

PAST AND
PRESENT

Figure I-Decision model

UNANTICIPATABLE

FUTURE

User/System Interface Within the Context of an Integrated Corporate Data Base 29

ness of situation does not allow, or even call for, the specifica
tion, coding, testing, debugging, and documentation of pro
cedurallogic?

Decision can be classified as falling into two types: Antici
patable or preformulatable decisions are those that we know
in advance must be made in the future, and unanticipatable
decisions are those that cannot be predicted or foreseen.
Although we cannot identify all the specific problems that
fall into the two categories, we can nevertheless establish
some general characteristics. The identification of these two
types of decisions and the need to integrate data into the
decision process are expressed in the model in Figure 1.
Anticipatable decisions tend to be repetitive, thus susceptible
to preestablished logic and less significant in terms of
resources allocated. The converse is true for unanticipatable
decisions.

Data relate directly to decisions; neither decision logic
nor data alone are sufficient to support a decision. Data are
not homogeneous; for our purposes they are divisible into
quantitative data, which can be expressed numerically, and
non quantitative data, which cannot be expressed numer
ically. Quantitative data may be thought of as being hard or
soft, soft being correlative or having a low level of confidence,
such as Gross National Product estimates or the Consumer
Price Index, and hard having a very high level of confidence,
such as the units of production in a manufacturing facility.

N onquantitative data are things like the mood of the
corporate stockholders, employee morale, or the legal con
straints on a corporation for acquisition. Such data are cer
tainly essential as input to the decision process and may be
stored and retrieved by a computer, against key words, in
narrative form, but they are not susceptible to algorithmic
manipulation. Because of the lack of ability to deal precisely
"with nonquantitative data, the best we can hope for it is to
bring more and more of such data into the realm of the
quantifiable, so as to increase the scope of our decision
processes.

ARCHITECTURAL PLACEMENT WITHIN AN
INTEGRATED CORPORATE DATA BASE

The ICDB is not a system. It is a concept under which
systems should be implemented. The ICDB concept and the
USI element have been evolved to handle the duality of
problems in supporting anticipatable and unanticipatable
decisions ",ith quantifiable and nonquantifiable data, in part
because proponents of DBMS software have been attempting
to establish this sub element as a panacea. As we pointed out
earlier, considerable work and attention have been paid to
the DBMS following recognition of the fact that the com
plexity of creating, maintaining, and accessing a repository
of corporatewide data was an order of magnitude higher than
available software could handle.

The ICDB is formally defined as:

The consideration of the collection, storage, and dis
semination of data as a logical, centrally controlled, and
standardized utility function. 8

Any attempted implementation of the ICDB concept im
plies the development of five subsystems or elements:

1. The Data Bank-The logically centralized repository
of all the data used by a corporation.

2. The Data Dictionary/Directory System-The reposi
tory of all the definitive information (meta-data)
about the Data Bank, such as characteristics, rela
tionships, and authorities.

3. Data Base Administration-A machine-aided human
function, with responsibility and authority over all
data-related activities.

4. The Data Base Management System-A software
function performing the storage, retrieval, and main
tenance of data.

5. The User/System Interface-The necessary subsys
tems to permit multiple classes and types of users to
direct the system to effectively structure and associate
available data into information and thus to com
municate with and fully utilize the system's resources.

At the beginning of this paper, we stated that "today, a
a search for even one example of the prophesied total or
integrated management information system would prove
futile." We stand by this statement even though one can
point to certain very powerful data management software
implementations, existing dictionary/directory systems, a
variety of generalized query languages, and a fair number of
data base administrators in place.

What has been lacking is that the conceptual construct to
integrate all these elements has not been established and
there has been a paucity of attention and work in the area of
user/system interface. (We will concede the point that the
need for the USI has been identified for many years, num
erous times.)

Architecturally, aspects of the USI affect all five ICDB
subsystems or elements, since ultimately all aspects of the
structure must service the user. For instance, the DBMS
must be able to retrieve data that may physically reside in
only one form and remap them, as specified, into many
different forms. Further, the DBA must provide the data in
the first place (data collection) and tune the system so that
all users are served optimally.25 But the actual execution of
the functions embodied in these two subsystems is essentially
transparent to the end users. Therefore, the remainder of
this paper focuses on the interface points of the various sub
systems that are not transparent to the end users. Two of
these are the user languages and the decision process aug
mentation tools.

USER LANGUAGES

In all probability, because language is so much a part of
our everyday lives, we tend to view it as a homogeneous
entity. This assumption is invalid, for in reality a language
is employed by various classes and types of users, each user
applying it to different depths and in different ways. For
example, an engineer and a psychologist may both use

30 National Computer Conference, 1974

Figure 2-Naturallanguage subset interaction

English as their natural or native language, and in their
dealings outside their respective fields virtually no com
munication problems should arise (assuming both possess
natural language competency). But extreme problems will
arise when either attempts to cross over into the other's
discipline (assuming no more than average familiarity ",i.th
the other field). This is so because each discipline tends to
create, hopefully out of necessity, specific jargon or nomen
clature unto itself. The practitioners of these disciplines, then,
tend to communicate in subsets of their natural or native
languages. This characterizell language users into t:ypes
centering around their expertise, the types of users being as
varied as the specific professions, such as accounting and
engineering. 26

The Venn diagram in Figure 2 portrays graphically a
simplistic situation. The "common core" is the native lan
guage base that is essentially used by all those to whom the
language is common, no matter what their specific disci
plines or even in the absence of a specific discipline. Further,
disciplines may have varying degrees of mutual dependency,
among themselves and ,,{ith the common core.

At the extremes we may find mutually independent disci
plines with virtually no overlap with the common core. A
major problem can arise if an enterprise encompasses a
multiplicity of mutually independentdisciplin~s with mini
mal overlap with the common core, for then the vocabulary
support essential in the user language area will tend to be
significant. A second major problem may arise when disci
pline crossover takes place, in that different nomenclature
may be associated with the same entity. A solution to the
problem of a multiplicity of user types using the same data
bank is a synonym resolution capability, in effect a. complex
to-simple mapping.

A second dimension to the problem is that we have varying
levels of application of a specific profession or discipline.
For example, a bookkeeper, a cost accountant, and a com
pany controller, or a nurse, a general practitioner, and a
specialist. Recognition of such hierarchies characterizes lan
guage users, even within a type, into broad classes. Extrapo
lating on the work of Senk027 we have structured users into

three classes, for the purpose of directing our research into
user language development:

1. Structurally independent
2. Structurally parametric
3. Structurally dependent.

The structurally independent user is generally charac
terized by his lack of interest in the storage structure of data
and his interest in the specific data values and sometimes
specific attributes of items of metadata (data about data,
e.g., frequency of update, source). This class of user is
usually personified by a manager who would, in all prob
ability, have an information model in mind. The work into
natural language recognition and programming is directed
at this class, in that the ultimate objective is the ability to
express a request for information in natural language and
have the system do all the work necessary to interpret the
request, search the data bank, select the necessary data,
structure and/or associate the data, and return the informa
tion.28

The structurally parametric user is characterized by a
limitation on what he may want to see data about (a finite
subset of the data bank) and the number of ways he will
want to see this subset structured or associated. The require
ment is for a specific logical view, not a physical one. Thus
the parametric user '''lill typically invoke one of an array of
preestablished transactions varying only in the values sup
plied at the time of retrieval. For example, someone within
the purchasing department might request the part numbers
of all the parts produced in plant three that are used in
assembly A and have an inventory lower than four weeks
production. Such a request can generally be anticipated in
advance; for example, a boolean query on "X" of "N"
fields in an employee record, so a screen display or hardcopy
report can be prestructured and invoked by a transaction
macro with associated parameters. The parametric user can
reside anywhere within an organization.

The structurally dependent user is one whose basic con
cern is the physical or storage structure of data and their
characteristics and attributes and who has little or no con
cern with specific data values. His primary objective is to
optimize repetitive procedural manipulation of data and
not to interpret or use the results. Jobs that typify this class
are the programmer and analyst where a data base adminis
tration function does not exist or, of course, the data base
administration function, if it is in place.

It is important to note that an individual within a job
may slide between specific classes or users, on the basis of
the function of the job he is performing at the moment. For
example, an analyst when looking into the feasibility of
developing a system will, on the basis of user requirements
and specifications, be operating as a structurally independent
user. At this time his prime concern will be to see whether
the proper data elements exist within the data bank to
satisfy his clients' needs. On the surface it would seem that
this task could be simply supported with an absolute mini
mum of data retrieval, but in reality multiple queries em
bodying substantial amounts of data might be required. For

User/System Interface Within the Context of an Integrated Corporate Data Base 31

example, if an analyst in a manufacturing environment were
developing a system for the credit department with the
intent of allowing the order clerk to approve a shipment,
two fields would have to be accessed: customer balance and
credit limit. But in reality there might be multiple fields
labeled customer balance, each potentially representing dif
ferent data values based on different frequencies of update
and calculation algorithms. For example, the files might be
so structured that customer balances were maintained for
each product line, and a separate field might have been
established by the marketing department to represent the
average monthly customer balance. In all probability all
these fields would be labeled simply "customer balance"
(to each of these applications, one of these fields would be
the customer balance required). Thus a-nutnber of attri
butes about a field would have to be called for by the analyst
before he could make the determination whether to use an
existing field or to create a new field. (Depending on organiza
tional structure and the establishment of a data administrator
function, this type of determination might not be performed
by an analyst.) Once into the general design of a system,
the analyst would have to operate as a structurally dependent
user, for to instruct the ICDB as to the proper data struc
tures (logical representations) he would have to be cognizant
of the storage structures (physical representations) embody
ing the elements with which he was concerned and the exact
physical characteristics and attributes of these data items.

Whether it would require many languages or one to satisfy
the above requirements is not of immediate concern. What
is important is that we provide the facilities for multiple
types of users to operate on the same data without attempting
to force these users out of their own natural language sub
sets. Further, it is important that the language facilities
provided support multiple classes of users, so that query,
parametric, and meta-data requests can be satisfied.

USER SYSTEM INTERFACE AUG:\1EKTATION
TOOLS

A reasonable amount of work has taken place in the area
of operands, possibly because they are more tangible and
thus more susceptible to definition. We have identified the
need for three types of operands: arithmetic, graphical, and
modeling.

Arithmetic operands are by far the most simplistic; they
relate closely to the original rationale behind the develop
ment of the digital computer, that is, to the ability to per
form basic arithmetic operations with a machine, orders of
magnitude faster than a human being could unaided. Basic
arithmetic operations are continuously performed on data
under the preestablished logic approach. But when we are
dealing with unanticipatable decisions, the time frame cannot
accommodate the development of this logic, and thus we
must be able to either establish it on an ad hoc basis or
presupply it, and possibly both.

The concept of the ad hoc establishment of procedural
logic is infinitely more difficult than that of attempting to

anticipate needs and presupplying the needed tools; there
fore we feel that we should approach the problem via the
anticipation of generalized needs and the prior establish
ment of a catalog of tools. (The discipline that attempts to
deal with the ad hoc establishment of procedural logic is
natural language programming; the best estimate for sub
stantive accomplishments in this field is from ten to twenty
years. On the other hand, the selection of bits and pieces
of preestablished procedural logic from a catalog and the
structuring of these into a program may be considered the
first step in this development, although the ultimate goal
is for this process to take place automatically on the basis
of a problem statement expressed in natural language.)

Examples of arithmetic operands to be supplied range
from the most basic, such as addition, subtraction, division,
and multiplication, to some of the more sophisticated, such
as confidence limits and standard deviations. All of them
would be callable via macros and capable of accepting as
input the subset of data the user has selected and retrieved
from the data bank.

The need for graphical operands is supportable, on the
basis of observation of the way people extract and synthesize
information from masses of data. In fact, it has become ob
vious to observers that people have a mechanistic inability
to extract the essence or primary aspects of large tables of
data without resorting to graphical or other means. Thus
people pictorially represent large collections of numeric data,
and upon the completion of the "picture," relationships,
trends, and key factors become almost obvious. Computers
perform graphical operations almost embarrassingly well,
and this is one of those functions better left to the machine
than to the human being. W"hat must be supplied is, again,
a catalog of graphs-curves, histograms, pie charts, or scatter
diagrams-plus the ability to contract or expand the axes
and to store, retrieve, overlay, and combine such graphs.

Lastly, and placed here because we are furthest away from
its realization on the basis of the state of the art, is interactive
modeling and simulation. Again, observations of people in
volved in the process of decision making have given rise to
the understanding that, when one is faced ",-.jth a problem
involving a number of variables, intuitive modeling or simu
lation-or both-takes place. For instance, when we are
faced with the relatively simple task of purchasing a number
of different items available only at several different locations,
a simplistic but identifiable transportation model is con
structed by taking into account current location, available
conveyance, and such constraints as one-way streets and
closing times of various purveyors, and a hopefully optimal
route is intuitively plotted.

Interactive computer-aided modeling is a necessary ad
junct to the use of arithmetic and graphical operands, for it
would allow the users to play "what if" games with extracted
data, identify and isolate key relationships between variables,
and identify and discard meaningless or insignificant vari
ables. Further, by the imposition of the formalized discipline
of modeling, it would aid in the identification of all necessary
variables. The key difference between the modeling/ simula
tion operand being discussed and the modeling and simula-

32 National Computer Conference, 1974

tion tools currently available is that the former should be
interactive and be accessible via the available query lan
guages. Thus we would be able to use these tools -without
resorting to specialized languages and be able to operate in a
conversational mode.

CONCLUSION AND SU1DIARY

The USI is not a new concept. It is the collection of multiple
existing concepts into a new environment, the ICDB. By
establishing an ICDB environment and providing appropri
ate interface mechanisms, the various phases and steps of
the decision process can be supported. It will not suffice to
develop the DB::\IS and feel that we have "solved the prob
lem." It is necessary to recognize that the end user must be
served by facilitating the proper support of the decision
process with the necessary data. This support "ill come in
the form of user languages and specific types of augumenta
tion tools collectively referred to as operands.

The essential points to be realized are:

1. The concept comprises five elements, which, when
vie,ved collectively, form a unified whole. Certainly,
each element, in and of itself, can be used effectively
by an organization and to varying degrees can allevi
ate some of the problems now faced. There are two
basic reasons for viewing, planning for, and imple
menting the concept as a whole:
a. The concept is synergistic, in that the whole is

greater than the sum of its parts. A data bank is
worth more to an organization when it can be
fully utilized by all those who require access to the
data stored within it. Further, extremely flexible
user languages "ill truly begin to return their cost
of acquisition when they have a full-fledged data
bank to access and a DBMS to structure and re
trieve the data.

b. EDP is evolving toward large data bases and,
multiple modes of reference. The primary question
is that of the cost/benefit trade-offs and the proper
growth rate at which to approach the objective.
It is almost unquestioned that the approach must
be via a disciplined, coordinated concept.

2. It is the decision process that we are trying to aid
and support and not a specific level within the hier
archy of the organization, a specific function, or that
nebulous and elusive figure called the manager. The
decision process is the common denominator among
all users. If this process is facilitated, those who carry
out the basic functions of a firm will be aided and sup
ported, and there will be no need to identify where
within the structure they reside.

3. The ICDB concept is so broad that we could not
begin to cover it in a single paper. This is the third
paper in a series. We had originally planned to write
one paper on each of the five basic elements, but
while the first (8) was being written a sixth (9) was
suggested. Although we plan to write and present

papers on the additional three elements, the DBMS,
the Data Bank, and the Data Base Administrator,
we have not yet done so, and a seventh paper has
already been suggested, regarding the planning and
implementation for the ICDB concept. Consequently,
many obvious questions (questions that we have been
thinking about and on which we have begun to formu
late our thinking) have not been addressed. The work
is far from complete. It is hoped that the series can
be completed in the near future, and all comments
are welcome on the work that has been completed,
as well as suggestions for that yet to come.

REFERENCES

1. Carbonell, J. R, "On Man-Computer Interaction: A Model and
Some Related Issues," IEEE Trans. on Systems Science and Cyber
netics, Vol. SSC-5, No.1, January 1969, p. 16.

2. Scott, A. E., "Information Systems-How Do We Get from Here to
There?," GUIDE Secretary Distributions, Vol. 29, Denver, Colorado,
~ovember 1969.

3. Miller, J. G., "Adjusting to Overloads of Information," in Organiza
tions, Vol. II, J. Litter (ed.), John Wiley and Sons, 1969.

4. Simon, H. A., Models of Man, John Wiley and Sons, 1957.
5. Schroder, H., M. Driver, and S. Strueferts, Human Information

Processing, Holt, Rinehart and Winston, 1967.
6. Engles, R W., A Tutorial on Data Base Organization, IBM Corpora

tion, San Jose, California, June 19G9.
7. Meltzer, H. S., Data Base Concepts and an Architecture for a Data

Base System, IBM Corporation, E'an Jose, California, August 1969.
8. Plagman, B. K. and G. P. Altshuler, "A Data Dictionary Directory

System Within the Context of an Integrated Corporate Data Base,"
AFIPS Conference Proc., Vol. 41, Montvale, Xew Jersey, 1972.

9. Plagman, B. K. and G. P. Altshuler, "An Integrated Corporate
Data Base Concept and Its Application," Proc. 1972 ACM SIG
FIDET Workshop on Data Description and Access, New York, 1972.

10. GUIDE/SHARE Taskforce Report, "Data Base Management
System Requirements," GUIDE Secretary Distribution (GSD-023),
November 1970.

11. Construction Management System Action Group, Data M anage
ment System Requirements, Miami, Florida, June, 1971.

12. CODASYL Systems Committee, . Data Base Task Group Report,
April 1971, Association for Computing Machinery, New York.

13. CODASYL Systems Committee, Feature Analysis of Generalized
Data Base Management Systems, Association for Computing Ma
chinery, New York, May 1971.

14. Trends in Data Management, Paris I and II, EDP Analyzer, (R G.
Canning, Pub.) May-June 1971, Vista, California.

15. Schubert, R F., "Basic Concepts in Data Base Management Sys
tems," Datamation, Vol. 18, No.7, July 1972.

16. Simon, H. A., New Science of Management Decisions, Harper and
Rowe, New York, 1960.

17. Newell, A., J. C. Shaw, and H. A. Simon, "Elements of a Theory of
Human Problem Solving," Psycholog. Rev., Vol. 65, May 1958.

18. Gerrity, T. P., "Design of Man Machine Decision Systems: An
Application to Portfolio Management," Sloan Management Rev.,
Winter 1971.

19. Miller, R B., Psychology for a Man-Machine Problem Solving Sys
tem, TR 00.1246, IBM Corporation, Data Systems Division
Development Laboratory, Poughkeepsie, New York, February 1965.

20. Miller, R B., Response Time in Man-Computer Conversational
Transactions, TR 00.1660-1, IBM Corporation, Systems Develop
ment Division, Poughkeepsie, New York, January 1968.

21. Miller, R B., Archetypes in Man-Computer Problem Solving, TR.
00.1909, IBM Corporation, Systems Development Division, Pough
keepsie, New York, August 1969.

User/System Interface Within the Context of an Integrated Corporate Data Base 33

22. Miller, R. B., A Conceptual Primer on Information Systems jor
Management, AR-0989-00-POK, IBM Corporation, Systems De
velopment Division, Poughkeepsie, New York, August 1971.

23. Barkin, S. R. and J. A. Lasky, The Analysis and Design oj Man
Machine Decision Systems: A Behavioral Perspective, Working Paper
Series, Management Information Systems Research Center, U ni
versity of Minnesota (unpublished).

24. Licklider, J. C. R., "Man-Computer Symbiosis," IRE Trans. on
Human Factors in Electronics, Vol. HFE-1, pp. 4-11, March 1960.

25. Ghosh, S. P., "File Organization: The Consecutive Retrieval Prop
erty," Communs. ACM, Vol. 15, No.9, September 1972.

26. GUIDE International Inc., "User Language System Requirements,"
GUIDE Secretary Distribution, 1973.

27. Senko, M. E., File Organization and Management Information Sys
tems, IBM Research Laboratories, San Jose, California (unpub
lished).

28. Montgomery, C. A., "Is Natural Language an Unnatural Query
Language?" Proc. ACM 197f3, pp. 1075-1078, August 1972.

· I

I

DUCHESS-A high level information system

by BRUCE J. TAYLOR and S. C. LLOYD

Duke University
Durham, North Carolina

The amount of time which has elapsed between Liebritz's
first theoretical description of a computing machine and
today's commonplace use of digital computers as extensions
of Man's intellectual faculties is a little more than three
hundred years. This period has witnessed the birth and death
of many trends in the art of mechanical computing, some no
more than fads and others becoming established as funda
mental truths which are now accepted as axioms of computer
science. One of the most firmly established of these latter
trends is the quest for generality. As early as 1833, Charles
Babbage discerned that in the ideal computing machine, the
human operator should have completely flexible control not
only over the data to be processed, but also over the al
gorithms.

The history of computing since Babbage has beeen marked
by a terrific emphasis upon flexibility. Turing and Von
Neuman laid a theoretical basis of generality in control
structures. Recent work in macro-modules (Clark and Bell)
has started an explosion in the generality even of hardware.
On the software scene, the growth of the concept of modular
"structured programming" has opened new horizons in the
generality of the programming process. However, it is the
myriad computer languages that most clearly point out the
trend towards generality. Of the hundreds of programming
languages which have grown up in the past decade, all but a
few have been designed with a delineated scope of applica
bility. No matter how well such a language covers its par
ticular field, it is forever relegated to that very restricted
area. The most important languages of the modern era,
FORTRAN, PL/1, ALGOL, and COBOL, are all marked
by a common feature: each provides facilities general enough
and powerful enough to implement a wide class of algorithms.

Sadly, the field of information processing and data base
management has lagged behind these trends. It seems that
the field of information processing systems is characterized
by a welter of small systems each designed to implement a
given complement of algorithms (such as storage, retrieval,
and cross-tabulations). While this set of algorithms is often
very large, and the designers may have anticipated many of
the needs of the target installations, still we await the advent
of a data base management which satisfies Babbage's ideal

'\ of flexible control.

35

The DUCHESS project marks an attempt to design an
information management system containing facilities for
implementing a wide range of data manipulation algorithms.
To this end, we have taken steps to generalize the three
basic subdivisions of an information system: the data base,
the control structure, and the operating system which sup
ports the system. The primary emphasis in the following
discussion will lie upon the desirability and practicality of
making every feature of the system as general as possible.

It would be appropriate at this point to present an over
view of the DUCHESS system to serve as a reference for
discussions to follow. DUCHESS is implemented on a DEC
PDP-ll minicomputer with 28 K words of memory. Pe
ripheral resources available to the system include: two RK11
disk drives (2.4 megabytes each), a console teletype, and
several CRT-type conversational terminals. It should be
mentioned that the DUCHESS concept is not specific to a
PDP-ll; it could be easily implemented on any machine
with similar computational capabilities.

The software side of the DUCHESS system may be di
vided into four distinct mod~s: (1) a data base access and
rrianagement system; (2) a high level programming language
with which to implement the data management algorithms.
This language provides facilities for interfacing with the
data base access module; (3) a complement of user service
routines which implement often-used system functions; (4) a
multi-user executive system which multiplexes the resources
outlined above between multiple users, each in control of
one of the CRT terminals. Because the length of this paper
is limited, only the first two modules will be discussed. The
user routines and the executive are essentially transparent
to the user and do not significantly relate to the concept of
generality which this paper illustrates.

DATA BASE-DATA DEFINITION LANGUAGE

The first question facing the designer of any data manage
ment system is "What data will the system need to record?"
In the case of DUCHESS the answer to this question came
easily: we would provide facilities for recording any type of
data which can be transcribed into a computer-readable
format. The next step was to select a suitable set of datatypes

36 National Computer Conference, 1974

for the representation of data. The following set was chosen as adequate to record any type of data:

DESCRIPTION INTERNAL STORAGE FORMAT DATATYPE

1. CODE (n) This type is used to record a selection from within a set of
n mutually exclusive choices. Typically, "multiple
choice" data is recorded in this format.

log n contiguous bits

2. BOOLEAN A special case of the CODE datatype used to record yesl
no data. The only permissible values are 0 (false) and 1
(true).

1 bit

3. FIXED (d, p) A fixed point number of d digits with p digits to the right
of the implied decimal point. The default for d and p is
6 and 0 respectively.

1 or 2 words (single or double precision is
chosen by the values of d and p). Decimal
Point location is implicit.

4. FLOAT A floating-point number of standard PDP-ll floating
point format

2 words mantissa
1 word exponent

5. DATE This datatype is used to record dates (a frequently used
datatype) in a compact format.

1 word
The date is compressed upon storage and

re-expanded at retrieval.

6. TIME Like the DATE datatype, this datatype records of ten
used sort of data in a compact format.

1 word.
Time is expressed as hours, minutes and

seconds since midnight.

7. TEXT (n) This type is used to record character strings known length
(as, for example, a set of three initials).

n consecutive bytes (0<n<256)

Character strings are truncated or padded with blanks to
fit the storage field.

8. TEXT This is the general case of the TEXT datatype used to re
cord varying length character strings, such as names
and addresses with no wastage

1 word pointer into a "free text buffer."
Within the free text buffer-one byte for
each plus one length byte (0 <length <
256)

It is immediately evident that, by recognizing many
different datatypes and choosing the most efficient represen
tation for each, DUCHESS can gain a considerable savings
in data storage space over other systems. Consider, for in
stance, a certain item of data which may take on anyone of
four different states. It is evident that the storage of this
datum should take no more than two bits to record the
alternatives. However, most data management systems allo
cate space for non-text nodes on word boundaries. This
means that, on a 16-bit machine like the PDP-H, 14 bits
are wasted. In a data base of ten thousand records, this
wastage amounts to more than 8.5 K words of wasted storage
space which could have been reclaimed if an appropriate
data type (like CODE(n» with allocation on bit boundaries,
had been available. DUCHESS solves the problem of data
alignment within records by aggregating all bit-aligned vari
ables into one field, all byte-aligned variables into another
field, and all word-aligned variables into a third field. In
this way, only one "filler" space is required per field.

It was decided that DUCHESS needed facilities to record
both fixed and variable length character strings. Fixed length
strings are stored in the most obvious manner: the appropriate
number of contiguous bytes are allocated to the string. The
length byte which normally precedes a DUCHESS character
string is not carried in the record because the length of the

string is bound via the data definition facilities. The fact
that the location of a fixed-length character string is always
known as an offset provides for rapid access via simple
address arithmetic. For variable-length strings, the process
is somewhat more complex. One word of storage is allocated
in the fixed length section of the record for a pointer into
free text buffers which are allocated on demand. Thus, it
takes two references to access a variable-length text string
stored in a DUCHESS record.

The most natural format devised for a data base represen
tation is that of a multi-level hierarchy. It speaks well of the
information management field that this format has been
almost universally adopted. Human beings tend to look at a
large mass of data (like that represented in a typical data
base) in terms of its logical subdivisions. Hence, the structural
hierarchy fits very naturally into a human's conception of
the informat.ion recorded in a data base. DUCHESS, like
other hierarchical information systems, faces a significant
problem in converting a human's data base definition specifi
cations (called the "hierarchy document") into a compact
model of the format of a data record.

The user must describe the data to be recorded by pre
paring a "hierarchy document" for the system. The format
of this document is very similar to the format of a PL/1
structure. As an example, we will consider the following

portion of a hierarchy:

1 BOOK SEGMENT
2 AUTHOR SEGMENT

3 NAME
4 FIRST TEXT
4 LAST TEXT
4 INITIAL TEXT (1)

2 REVIEWER SEGMENT
3 NAME

4 FIRST TEXT
4 LAST TEXT
4 INITIAL TEXT (1)

This document is used as input into a "hierarchy compiler"
which constructs a model of the record format for the data
base. This compiled version is used to create and initialize
the data base file and in compiling application programs.

The above example illustrates two forms of data par
titioning under DUCHESS. The simplest form is illustrated
by the level 3 node called NAME. Note that this node
serves purely as a structuring device and carries no data
whatsoever. However, one bit is allocated for each such node
in the record. This bit is initially clear and is set whenever
one of the nodes below it is given a value. This node type
acts as a BOOLEAN node, so that it is possible to poll a
node such as NAME and determine whether or not anyone
of its sub-items has been altered from its initial state. The
assignment of a value to a variable automatically invokes
the mechanisms to post such nodes, a process called upward
spreading. Of course, this spreading action will continue up
ward as far as necessary, each spreading operation triggering
a spread to the next higher level until a previously posted
level or the root node is reached.

The above example also illustrates the use of the segmented
data structure in the DUCHESS data base. This concept of a
data-dependent data structure is one of the most powerful
features of the DUCHESS system and deserves somewhat
of an introduction. One of the most significant problems
facing a user of a data base system is the tradeoff between
his desire to provide space for all possible data and the
knowledge that missing data wastes the space allocated for
it. The ideal solution to this problem would be to provide a
structure wherein no space is allocated for the storage of a
datum until it is actually needed. With such a system, the
developer could feel free to include even the smallest item
of data in his hierarchy structure, knowing that no space
will be used unless there is actually data to be recorded.
Several information systems have adopted such philosophies
with varying degrees of success. The most common technique
is to sequentially allocate space within the record value, as
it is stored, is prefixed by a node identifier. At retrieval time,
the entire record is searched sequentially for the desired node
identifier. If the identifier is found, the accompanying data
is read back. Certainly, this technique solves the problem
mentioned and may be acceptable for use in an inherently
sequential medium such as magnetic tape. However, the
sequential nature of the search required completely negates
the advantages gained in using a high-speed random access

Duchess 37

A. Fixed Format Record

JOHN FIRST

} } SMITH LAST NA.~ AUTHOR

INITIAL
BOOK

FIRST

} } LAST NAME REVIEWER

INITIAL

B. Segmented Record

~ MmroR } BOOK
REVIEWER

~I JOHN I FIRST }N_ SMITH

Q. ::lAl
Figure 1-Fixed vs. segmented record format

device like a disk. Furthermore, the space allotted for the
node identifiers often incurs significant overhead as opposed
to fixed field organizations. Clearly, "there's gotta be a
better way."

Data segmentation is an attempt to strike a workable
balance between complete freedom in hierarchy planning and
the advantages of associating fixed offsets with node infor
mation. To this end, there is another DUCHESS datatype
not mentioned in the preceding list, the SEGMENT type.
To the person generating the hierarchy, the use of the
SEGMENT datatype signifies that all nodes immediately
subordinate to the segment node are considered as a single
logical entity. In terms of our example, assume for a moment
that the REVIEWER substructure is not used in every
record. By coding REVIEWER with the datatype SEG
MENT,' the developer indicates that space is not to be
allocated in the record for the REVIEWER substructure
until one of the terminal sub-fields (FIRST, LAST, or
INITIAL) are assigned a value. When the value of any of
these fields is recorded in the record, an appropriate amount
of space' is allocated for the entire segment containing the
target node. The allocated space is then linked to its "parent"
segment in the record so that later access to the data can
descend from the father into the newly allocated segment.
It may be useful here to present a visual comparison between
the "standard" storage technique and the DUCHESS seg
ment structure. In our example, assume that the only infor
mation recorded is the name of the author, JOHN Q. SMITH.
The REVIEWER substructure is still in the initial state.
Compare the two storage structures diagrammed in Figure l.
For purposes of illustration, the structures ShOWll above have
been considerably simplified. Nonetheless, the substantial
savings in unused space within the record should be im-

38 National Computer Conference, 1974

mediately evident. The DUCHESS structure uses one word
for a null pointer to represent the missing REVIEWER
structure (always with the option of filling in the structure
by allocating space for the segment and establishing the
REVIEWER link in the BOOK segment). By contrast, the
fixed record format requires many bytes of unused space,
simply to maintain the record structure. Thus, an infre
quently used item costs the developer considerably less if he
uses the DUCHESS system of allocation. We feel that this
fact contributes significantly to the flexibility of the system.

Because the tradeoff of data to be recorded versus storage
used is so important to the data base developer, DUCHESS
provides a facility similar to the sequentiai search method
mentioned earlier. Each segment of the hierarchy may con
tain certain nodes labeled SPARSE. Such nodes generally
represent data which will only rarely be stored in the record.
Associated with each segment is a variable sized "sparse
buffer" to contain the values of all the SPARSE nodes
declared within the segment. When none of the SPARSE
nodes is assigned, the sparse buffer is not allocated and
takes up no storage. Upon assignment of a SPARSE node,
a sparse buffer is allocated within the record and linked to
the parent segment. Within this sparse buffer, the data of
the SPARSE node is recorded, preceded by a node identifier.
At retrieval time, the sparse buffer is sequentially searched
for the node identifier requested. This process seems identical
with the sequential technique mentioned earlier. However,
since SEGMENT nodes can be declared as SPARSE, the
DUCHESS implementation of this data structure actually
represents a mixture of fixed and variable record structure.

At this point, we will anticipate some objections by ad
mitting that the preceding paragraphs glossed over some
serious problems raised by the new structure. In a fixed
record format system, each datum has a certain offset from
the beginning of the record and is instantly accessible by a
simple address calculation. In the DUCHESS segmentation
system, each item of data is associated with an offset from
the base of its segment. The process of locating the segment
is mainly one of following a linked list through the data
base file. We admit that this is a potentially horrendous
task. However, we have succeeded in building enough
"intelligence" into the system so that nearly all of the list
searching can be obviated and the remaining traversal "Will
not seriously detract from system performance. Once again,
we feel that the flexibility gained by implementing this more
sophisticated record structure is well worth the extra proc
essing involved. The technique of avoiding the inherent
segment lookup is discussed in the next section on the
DUCHESS programming language.

DUCHESS PROGRAMMING LANGUAGE

We have already described in part our effort to produce a
powerful and flexible data base structure. We believe that
this data structure can efficiently record any sort of data
which can be transcribed into the computer's input devices.
However, this structure would be virtually worthless without

an equal degree of freedom in the facilities available for
manipulating the recorded data. As mentioned earlier, most
data management systems provide a stock set of algorithms
for data manipulation. However extensive this set may be,
it cannot possibly cover all the needs of an installation
which makes frequent use of a data base. A decision was
made early in the DUCHESS development to implement a
high-level language with two central features: (1) a set of
commands designed specifically to interact naturally "with
the DUCHESS data base system; and (2) an instruction
set of sufficient generality that any data-processing algorithm
could be realized without having to "strain" either the
language or the data base. It order to stay close to a familiar
model, we decided to pattern our language after PL/l. The
primary difference between the DUCHESS language and
PL/1 lies in three areas: (1) the DUCHESS language is a
subset of PL/1; we saw no need to implement the more
esoteric features of full PL/l. (2) A full set of CRT terminal
input/output, commands has been added to the GET/PUT
reperoire to take advantage of the conversational abilities
of a video terminal. (3) The variable reference structure of
PL/1 has been supplanted by one which interfaces more
naturally with the DUCHESS data base structure. It is this
third factor which is discussed in the remainder of the paper.

Recall the objections to the operational characteristic of
the DUCHESS segmented data structure raised in the last
chapter: the process of looking up a segment through the
~egment pointers is a slow operation and costly in storage
accesses. If a "segment lookup" was required for each refer
ence to a node in the data base, the system would be im
possibly slow. However, it is only necessary to perform the
"segment lookup" on the initial reference to a segment.
The use of a concrete example might serve to clarify the
process of "descending" through the segments. Consider the
process of setting the name of the author to JOHN Q.
SMITH. The requisite DUCHESS statements are:

AUTHOR.NAME.FIRST = 'JOHN';
AUTHOR.NAME.LAST = 'SMITH';
AUTHOR.NAME.INITIAL= 'Q'

The actions performed are as follows:

(1) Look up the BOOK segment
(2) Look up AUTHOR segment within the BOOK seg-

ment
(3) Assign N AME.FIRST
(4) Assign NAME.LAST
(5) Assign NAME.MIDDLE

Notice that only two ~~segment lookup" operations are
necessary to locate the segment AUTHOR. Once this segment
is located, all operations within the segment become auto
matic since the segment base is known. To highlight another
feature of this process, consider the job of setting the name
of the reviewer to JAMES H. DOE after having carried out
the process above:

(1) Discard the base of the AUTHOR segment

I

(2) Look up the REVIEWER segment within the BOOK
segment

(3) Assign NAME.FIRST
(4) Assign NAME.LAST
(5) Assign NAME.INITIAL

Because the segment BOOK had been located in the process
preceding this one, the base address of the BOOK segment
was already known and hence it was unnecessary to search
for it again.

This process of remembering the locations of segments in
the "active reference path" is known as "locality manage
ment." A locality is the address within the file of a given
segment of a given record and the addresses within the
record of all its "father" segments. A locality behaves much
like a stack: when a program references a segment "deeper"
in the hierarchy then the last reference, the top segment of
the locality is used as a starting site for the segment lookup,
thus short-circuiting part of the lookup procedure by using
data already on the stack. Similarly, when a reference is
made to a node "higher" in the hierarchy or down a different
branch of the hierarchy tree, segments are "popped" off the
locality stack until either the target segment is the top one
on the locality stack or until the locality stack is in an
appropriate state to begin the lookup procedure (as in the
preceding example). In order not to overwork a single
locality stack, DUCHESS can maintain up to 256 separate
active localities. Thus if an applications program needs to
reference data from several different segments concurrently,
each of the segments can be included in the set of active
localities. In these ways, proper locality management in the
DUCHESS language removes the primary objection to use
of the segmented data structures.

We have described a system of locality management that
lets the programmer move around efficiently within the
hierarchy structure. However, we find that this new freedom
imposes tremendous responsibilities upon the programmer to
set up the localities properly before attempting to access a
node of the file. Clearly, this new expansion of responsibilities
is unacceptable. To confront this new problem, we introduced
an element of "intelligence" into the system by placing the
bulk of the responsibility of locality management upon the
DUCHESS compiler. The compiler accepts as input not
only the user's program but also the processed versions of
the hierarchy documents for all files to be accessed in the
program. Through use of these documents, the compiler
has an intimate knowledge of the structure of the data base.
When the compiler is called upon to generate code to access
a node of the data base, it can check the set of current
localities open (even at compile time) for a locality which
will provide the appropriate segment base. If no such locality
is available, code is generated to establish a locality stack
for such use. Although the user retains the facilities for ex
plicit locality control (and he may exercise explicit control
over key localities in order to "fine tune" system operation),
the compiler has the facilities for carrying out all the "dirty
work" of locality management.

In order to ensure that the compiler has enough infor-

Duchess 39

mation to properly manage the localities, it is important
that the user write code which follows the stack nature of
locality growth. That is, any references to a node in the
data base should be preceded by the appropriate locality
management code (generated either by the compiler or by
the user). At compile time it must be possible to exhaustively
enumerate the paths the program control might take and,
in the code for each path, generate the appropriate locality
management code. The major obstacle to such analysis is
the abuse of the GOTO statement. The target statement of a
GO TO has two distinct entry paths, one by natural program
flow and the other by the action of the GOT9 statement.
Each of these entry locations requires a different sort of
locality management to bring the active localities into the
state needed by the target statement. In the case where
one statement is the target of multiple GOTO statements,
the problem becomes, for all intents and purposes, insoluble.
Apparently, we need a mechanism for insuring that each
DUCHESS statement has exactly one entry path: the
natural program flow. The mechanism chosen is distressingly
simple; the DUCHESS compiler prohibits any form of the
GO TO statement. To assume the function of this control
statement, a set of control structures have been imple
mented, providing such facilities as bypassing a group of
instructions, iterative looping, looping on condition, and a
form of multi-way branching. The basis of these control
structures results from current investigations in 'structured
programming.' It has been shown that not only can the
task of compilation be made more efficient and object code
be optimized but surprisingly, programs written with such
restraints are easier to debug. We anticipate that new pro
grammers, after an initial period of adjustment, will adapt
well to a new sort of control structure.

In this paper (which, in retrospect, seems woefully inade
quate to convey the new ideas generated in the course of the
DUCHESS design) we have tried to illustrate that the
primary problem with most modern information systems
lies in an inherent rigidity both in their data structure and
in the control structure. This ridigity tends to lead their
users into assuming that the scope of information manage
ment systems should include only those functions presently
implemented: storing, retrieval, searching and sorting, and
. elementary analysis. The ideal information system should
have these capabilities plus opportunities for developing
individualized procedures, via a programming language or
other means. We hope that the DUCHESS project will
illustrate that the practical implementation of such a flexible
system is not only possible but no more difficult that the
design and implementation of a rigidly restricted system.
Furthermore, we demonstrate that this flexibility does not
come with a higher price tag, for DUCHESS efficiency
compares favorably with its less flexible predessors.

REFERENCES

1. Dean, A. L. (editor), Proceedings of 1972 ACM-SIGFIDET Work
slwp Data Description, Access, and Control, (available from the
ACM).

40 National Computer Conference, 1974

2. Gates and Poplawski, itA Simple Technique for Structured Variable
Lookup," Communications of the ACM, Vol. 16, No.9, September
1973, pp. 561-564.

3. Jones et al., CODASYL Data Base Task Group Report, April 1971,
(available from the ACM).

4. McKeenan, Horning, and Wortman, A Compiler Generator, copy
right 1970, Prentice-Hall Inc., Englewood Cliffs, N.J.

5. Ornstein, Stucki, and Clark, itA Functional Description of Macro
modules," Proceedings of the Spring Joint Computer Conference,
1967, p. 337.

An analytical model for information processing systems*

by SHENG-CHAO HUANG

Sperry Gryoscope
Great Neck, New York

and

AMRIT L. GOEL

Syracuse University
Syracuse, New York

INTRODUCTION

Information processing systems are an important sector in the
application of computer technology to the fields of on-line
data processing and the management of large complicated
data bases. I With an increase in the number of systems being
designed and used, there has been an increasing emphasis on
the modeling and performance evaluation of such systems.
In Reference 4 Nunamaker presented a procedure for the
design and optimization ~ethodology of such systems. In
some cases,5 ,6 the evaluation procedure was reduced to the
evaluation of file structure and data base organization.
Kobayashi7 gave an algebraic modeling of information
structures. In this paper, we carry out the study of mean
response time by taking into consideration host processor
environment, user characteristics and the data base structure.
Total system response time is the main goal of this in
vestigation.

An information processing system is defined here as a total
operating environment consisting of users; information
management system, which includes jobs and procedure,
data definition and other software packages; host computer
system; and data base structures. The interrelationship
among elements of this total system is shown in the follo\\'ing
block diagram.

Information Host
System --""1 Management ~-~ Computer
users System System

In general, the information management system can be
considered as a special purpose operating system consisting
of two parts. The first part is called the main system which
has the capability of file creation, data maintenance, job and
procedure creation, etc. The second part includes subsystems
which could be treated as the internal service system for
data access, data index, storage allocation, privacy protec
tion, restart and recovery and other miscellaneous functions.

* This research was supported, in part, by RADe, Rome under contract
number F-30602-72-C-02S1.

41

The information management system interfaces with its
host processor through the host operating system. The data
base is stored in the memory hierarchical structure of the host
system. Thus, a user can reach his data only through the path
shown in the above diagram.

Total system model parameters to be included in the sequel
are (1) user characteristics, (2) overhead time from the
information management system and the host processor, (3)
host processor operating environment which would determine
the waiting time of a job and the main memory space allo
cated for the job execution, and (4) the data base structure
which is reflected in the logic data relationship and the
physical data storage.

In the next section, we briefly present an algebraic and
topological model of the data structure within an information
processing system.

DATA BASE STRUCTURE AND
DISTAKCE MATRICES

Let E be the set of entities to be considered within an
information processing environment. Let

II = (III ... , lIn)

be the distinct properties assigned to the elements of E. Then
II is to be treated as a mapping from the entity space E to
the property space V, i.e.,

II: E----')V=VI XV2 X···XVn •

The point II (e) E V is then called the record of e E E. A subset
D of V such that D= {II(e); eEE} is called the data base of
the entity E. If

D=Fl UF2 U··· UFr and FinFj=1> for i~j,

then Fi is called a data file in D, where 1> is an empty set.
From now on, we shall use Xi, i= 1, ... ,N, to denote a

record in D or F, i.e., Xi = II (ei), ei E E.
For every Xi in D, a unique physical space is assigned in

the secondary storage device. Let S indicate the physical
storage space. Then the address assignment can be considered

42 National Computer Conference, 1974

as a one-to-one mapping a from D to S, i.e.,

a: D~S. (1)

An essential element of information processing is data retrieval
which could be treated in two parts. One part is the mapping
a-I from S to D, and the other part is the data transmission
from the secondary storage device to the main memory. One
such operation is to find and retrieve all records within the
data base which possess certain property values. Explicitly,
let G be a subset of a data file F, such that

G= {x: xEF, p(x) = T} (2)

where P is a logic function and T is defined as logical true.
This implies a continual data retrieval within a system. For
example, the data retrieval for P is to find all records in F
such that P is true. To start with, the first record has to be
retrieved and after that other records will be retrieved
sequentially according to the topological relationship between
these records. In the next paragraph this topological relation
ship is defined probabilistically.

Let Xl, X2, . . . , XN be all records within a system which are
of interest to us. In other words, Xl, •.. ,XN could be all
records in a data base or in a certain data file. Suppose for an
arbitrary retrieval function Pr, we want to obtain records
among Xl, ... ,XN. We define a probability matrix p(r) of Pr

with its elements for i, j = 1, ... , N, being

Po/=probability that the first record to be obtained is
record Xi,

Pi/=probability that Xj is demanded immediately after
the retrieval of Xi,

and

P i / = probability of reaching the end of the process
immediately after the retrieval of Xi.

Note that there are many different jobs to be processed and
the number of occurrences of processing for a job vary from
one to another. Assume that there are M application pro
grams and M retrieval functions, PI, ... ,PM. Furthermore,
assume that the probability of occurrence of pr is pr such that
L!l pr = 1. Then we can define a matrix P

Pm ... PON

(3)

whose elements are defined as follows

M

P Oi = L prPO/, i = 1, ... , N; pOe = 0,
r=1

M

P ij = L prPi/, i,j=I, ... ,N, (4)
r=l

and
M

P ie = LPrPi/, i=I, ... ,N.
r=l

In practice, pr, r= 1, ... , M, and hence P is a function of

time. However, for simplicity, we shall assume that pr's are
constants and hence P is a constant matrix. Note that, for
i=O, 1, ... ,N, it can be easily shown that

N

L pij+Pie=1
;=1

(5)

The matrix P defined above is called the "logical distance
matrix" or the "reference matrix." It represents a pattern of
reference behavior in a particular system and can be con
sidered as the measurement of logical distance among ele
ments within a data file or a data base. It is apparent that the
elements of P are the parameters determined by the user's
characteristics and differ from one installation to another ..

The mapping a defined in (1) assigns a physical space to
every X in D. This should be done is such a way that the
preservation of distance is obtained as much as possible. The
physical distance, tii, between Xi and Xj is defined as the time
required for the retrieval of Xj immediately after the retrieval
of Xi. It is not necessarily true that tij=tji' Note that tij is a
random variable and let E(tij) denote the expected value of
tij. Thus we can define the "physical distance matrix" in a
data base as follows

C(~l) E(t02) ... E(tON) E(~')
E(T) = E(~l1) E (t12) ... E (tIN) E(~le) , (6)

E(tN1) E(tN2) ... E(tNN) E(tNe)

where

E(tOj) = the mean time to obtain Xj from the secondary
memory to the main memory when Xj is the first
record in the string of reference and

E(toe) =E(t1e) = ... =E(tNe) =0.

The distance matrix defined in (6) is not only dependent on
the physical file organization of the data base in the memory
hierarchy, but is also dependent on the search and indexing
methods within an information management system.

THE MEAN RETRIEVAL TIME

From the previous analysis it can be seen that the following
quantity T' can be used for the evaluation and optimum
design of physical storage assignment,

N N

T'= L L P;jE(tij) , ' (7)
;=0 j=1

where N is defined as before. Obviously, it is desirable to keep
T' as small as possible. In order to do so, one problem in the
address assignment is to minimize (7) with respect to
E(t;;), i,j=I, ... ,N, subject to certain appropriate con
straints. Because pi/s are determined by the user's char
acteristics, they are to be treated as constants in the
minimization procedure. Since it is not the main concern of
the paper at this point, we shall go back to the modeling
aspect of the average retrieval time.

The model given in (7) does not take into consideration

I

the fact that in certain jobs the string of references may be
quite long and some records may be referred to more than
once during the execution of a job. This means that, for a
fixed amount of main memory allocation, a record may
already be in residence when it is referred to so that a search
in the secondary memory space is unnecessary. Now assume
that the main memory space allocated for the execution of an
information processing job be m page frames (or blocks). For
a given job r, define a matrix Qr= (qi/) , i,j=l, ... , N, so
that qi/ is the probability of Xj being in residence immediately
after the retrieval of Xi. Thus a matrix for missing records
probability in the execution of job r could be defined as
[I_QrJ= (l-qi/) where I is defined as a matrix with all
entries equal to 1. It can be readily seen that the searching
probability of record Xj immediately after the retrieval of Xi

is given by Pi/(l-qi/). This naturally leads to the definition
of "search matrix" A r , as follows:

(

PO{ Po{ ... pONr PO/)

Ar= PI{(l ~qllr) PI2T (1-q12T
) ••• p1Nr(1- q1Nr) Pi/

PN{(l-qN{) PN{(1-qN2T
) ••• PNNr (l-qNNT

) PN/

(8)

Note that Qr matrix should be different for different jobs.
However, its probability average can be obtained in the same
way as we obtained the matrix P in the previous section. It
should be pointed out that since qi/'S are functions of time,
the search matrix AT is also dependent upon the duration of
a job being in the execution stage.

Suppose a job r is being processed and it keeps a string of
records as reference, i.e., let K = {Xl, ••• ,XkT } be the set of
records referred to during the processing of a job. Then the
total time spent in data retrieval is given by

N N

Tr=E(tor
) + L: L: Pi/(1-qi/)E(tii) (9)

i=1 ;=1

where E(to') is the expected retrieval time for the first record.
In general, qi/ depends upon pi/ as well as on the time
sequence. However, for simplicity, we here assume that

(10)

Equation (10) is based on the assumption that the system
has reached its steady state where all the allocated main
memory space has been occupied. Thus, this part of analysis
could be considered as a steady state analysis. The transient
case, which deals with the time interval between the starting
of a job and the time when all the main memory space is
occupied, shall be considered in another paper. Assuming
kr>m and substituting (10) into (9), we obtain

(11)

An Analytical Model for Information Processing Systems 43

Note that parameters kr and Pi/ are predetermined by the
application programs and jobs. Hence, all of them should be
considered part of the user's characteristics. The value of m is
hardware dependent and E(tij) are characteristics of physical
file organization and search mechanism. Thus, equation (11)
gives the total retrieval time for a job r in terms of the user's
characteristics, physical file organization, searching methods
and the hardware constraints.

If the total number of jobs within an information pro
cessing system is M and if each job r has the probability pr
of being processed, then the expected value of the total
retrieval time for a job is

E(TR) = EPr{E(tor)+ E EPil(l- £)E(tii)} (12)

Equation (12) can be further simplified by letting

1 N
E(t{) = N E E(toi) =E(to), for r=l, ... , M, (13)

and

M

L: prpi/=pij; (14)
r=l

By substituting (13) and (14) into (12), we have

(15)

Note that k and Pii are the parameters inherent within the
set of all possible user's jobs and thus represent a measure of
the user's characteristics.

It needs to be noted that E (tii) consists of two major parts;
one part is the search of data address and the other part is to
get the data from specific address in the secondary memory
to the main memory. The first part depends on the search
method and the way files are organized, while the second
part depends upon the way data are stored on the secondary
storage device. This means that both the search method and
the file organization are the parameters in equation (15).

TOTAL SYSTE:\1 RESPONSE TIME

The total system response time is defined as the interval
between the time a user submits his job and the time when
the satisfactory result is obtained. Suppose that the host
system is multiprogrammed and a job presented to it will be
forced to spend some time in the system queue. Thus, the
total response time could be divided into two portions:
waiting time T wand processing time T p. Since it is not our
intention to investigate the queueing properties of the host
system, we simply assume that the mean waiting time is T w

under the operating environment. Then the total system
response time, T, could be expressed as

(16)

The time spent in job processing could be viewed as the
sum of the time for information fetching, time for job execu-

44 National Computer Conference, 1974

tion which includes decoding and binding, etc., and the over
head time which will include input-output overhead as well as
system overhead. Let T R , Te and To denote the times spent in
data fetching, the time for job execution and the overhead
time, respectively. Then T p can be written as

(17)
or

(18)

In some information management systems the job execution
is divided into two stages. In the first stage a job is prepared
by the management system before transfer to the host
operating system for real execution. The procedure at this
stage of work could include data search and retrieval, data
binding, data decoding, etc. During the second stage of pro
cessing, the prepared jobs are executed through the host
operating system. Under such a circumstance, E(Te) could
be further divided into two terms:

(19)

where E (T em) is the mean time for the pre-execution of a job
which is under the control of the information management
subsystem and E(Teh) is the mean execution time under the
supervision of the host operating system. Likewise, the over
head time can also be classified into two categories as follows:

(20)

where TOm is due to the management subsystem and TOh is
the responsibility of the host operating system.

Assume that the overhead factor is approximately equal
for both the information management system and the host
operating system. Then we can write

(21)

where 0 will be called the overhead coefficient. Substituting
(21) into (18), the processing time becomes

1
E(Tp) = 1-5 [E(TR) +E(Te)] (22)

It then follows from (22), (15) and (16) that the mean
response time of an information processing system could be
expressed as follows:

In some cases Te can be assumed to be linear with respect
to the task length, i.e., for some constant C,

E(Te) =Ck.

Then (23) could be rewritten as

- 1
E(T) = Tw+ (1-5)

Equations (23) and (24) indicate that the response time of
an information processing system is a function of the user's
characteristics, host processor operation environment, over
head factor, and the data base structure. The user's char
acteristics are reflected in the fact that k and pi/s are param
eters determined by the jobs and procedures. The average
waiting time in the host system's queue and the overhead
time could be considered as the host system operating
environment and the E(tij)'S and Pi/S could be considered
as properties of the data base structure.

REMARKS

Since the research reported here is a first step toward analytic
modeling and performance evaluation of information pro
cessing systems, the results obtained here are by no means
final. Further research in this direction is needed. Currently,
two research efforts are being pursued; one in the area of
model refinement and the other in the area of data procure
ment and analysis.

REFERENCES

1. Tobias, M. J., and G. M. Booth, "The Future of Remote Informa
tion Processing Systems," Proceedings FJCC 1972, pp. 1025-1035.

2. Dixon, P. J., and J. Sable, "DM-1: A Generalized Data Manage
ment System," Proceedings SJCC 1967, pp. 185-198.

3. Fichten, J. P., "The Weyerhaeuser Information Systems-A Prog
ress Report," Proceedings FJCC 1972, pp. 1017-1024.

4. Nunamaker, J. F., Jr., "A Methodology for the Design and Opti
mization of Information Processing Systems," Proceedings SJCC
1971, pp. 283-294.

5. Myers, J. E., and S. K. Chooljian, "An Approach to the Develop
ment of an Advanced Information Management System," Proceed
ings SJCC 1970, pp. 297-306.

6. Severance, D. G., and A. G. Merten, "Performance Evaluation of
File Organizations through Modeling," Proceedings ACM 1972,
pp. 1061-1072.

7. Kobayshi, 1., "An Algebraic Model of Information Structure and
Information Processing," Proceedings ACM 1972, pp. 1090-1104.

I

A model for a generalized data access method*

by RAKDALL L. FRANK

The University of Utah
Salt Lake City, Utah

and

KOICHI YAMAGUCHI

The University of Michigan
Ann Arbor, Michigan

INTRODUCTION

The proliferation of the methods used in modern operating
systems to access data is apparent. In the operating system
OS/360 alone there exist multiple ways of accessing se
quential data (BSAM, QSAM, BPAM), indexed sequential
data (BISAM, QISAM) and directly addressable data
(BDAM).4 If one adds to this the variations of the above
used by various systems that run under the control of
OS/360, such as IBM's data base management system
IMS/360, there exists almost a countless number of ways to
access and store data within a computer system.

This proliferation of data access methods has left persons
involved in the design, implementation or evaluation of new
or existing access methods with an almost hopeless task.
In order to better understand the nature of data access
methods, a model has been developed in whose terms existing
and proposed data access methods can be stated. This paper
will discuss the components of such a generalized data access
method and give examples of its use in modeling existing data
access methods. Parts of the model to be presented are at a
further state of development than others, and, therefore, at
times a formal discussion of parts of the model may be
replaced by a more informal functional description.

A discussion of existing data access methods

Since the need for such a generalized data access method is
in part based on the fact that we lack a common basis with
which to discuss data access methods, it is difficult to offer
very many global remarks about existing data access meth
ods. Nevertheless, several general observations about data
access methods will be offered.

* Research sponsored in part by the Air Force Office of Scientific Re
search, Air Force Systems Command, USAF, under Grant No. AFOSR-
72-2219. The United States Government is authorized to reproduce and
distribute reprints for governmental purposes notwithstanding any
copyright notation hereon.

45

Computing hardware, in general, tends to be rather in
hospitable to the average users of a computing system. In
particular, input/output hardware and its associated protocol
tend at times even to make system's programmers cringe.
Thus, one of the more important functions of data access
methods is to provide a cleaner user interface between the
user and the underlying hardware.

While the hardware on a given computing system remains
fairly constant, user requirements and needs change con
stantly. Thus, another important function of data access
methods is to take a fixed hardware/input-output environ
ment and provide a virtual environment which more nearly
matches the environment desired for a particular application.
However, any time an operating system designer attempts to
provide a fixed number of such virtual applications oriented
environments, users will come along whose requirements are
not met by the access methods provided. Thus, many
operating systems provide for "escape" access methods which
allow the user (and, indeed, require him) to interact with
the intricacies of the input/output hardware, providing him
with only basic support. An example of such a facility is the
EXCP (Execute Channel Program) access method in
OS/360.5

Clearly, it would be desirable to provide for tailored ac
cessing methods without forcing a user to spend undue
amounts of time learning the details of a particular hardware
system. One purpose of the generalized data access method
model to be presented here is to allow for such data access
methods tailoring at a fairly high level. Thus, the parameters
to such a model must be in the form of user-oriented, and
where possible, machine independent languages. The user
should be able to state his access method requirements in
languages natural to his application, rather than those con
venient to a particular machine.

Goals of this research

Several of the goals of this research effort have been
alluded to above. Four primary goals to be set forth for this

46 National Computer Conference, 1974

effort are:

(1) the ability to model existing and proposed access
methods.

(2) the ability to compare different data access methods
in a common terminology.

(3) to provide a facility with which one can easily create
and tryout new access methods tailored to a par
ticular application.

(4) to enable one to read and write files which are foreign
to a particular hardware/software system.

The first two goals above are highly interrelated, and
amount to providing a common language with which to
discuss data access methods. Attempts to perform com
parative analysis of file organizations and access methods
(see, for example, Severance9) have found that before any
analysis could be performed, a common model had to be
developed. While models have been developed to facilitate
the analysis of specialized aspects of data access methods,
for example, performance aspects, little work has been done
previously in developing a model with applicability to a
wide range of problems.

As was mentioned earlier, when the access methods pro
vided by a vendor are not ideal for a particular application,
one is forced to either make do with an existing access
method, or design one from the ground up, and specify it
usually at the machine level. It is interesting to note that
even computer vendors have found their own provided access
methods unsuitable for some of the applications software
they provide. For example, IBM, in designing IMS/360,
decided not to use the standard access methods of OS/360,
but instead to develop new ones particular to IMS, such as
HISAM.6 Even programs such as the IHM: Mathematical
Programming System/360 have ignored operating system
provided access methods in favor of specialized accessing
techniques using the above mentioned EXCP facility. While
these above two major software efforts could afford the time
and expense needed to develop new access methods from
scratch, the normal user, finding himself in a situation where
existing access methods lead to sub-optimal results, often
cannot afford the time or money, or lacks the expertise, to
design and program a new access method. Thus, a high-level
access method design facility is called for.

The fourth goal, which was the original motivation behind
this work, has to do with the translation of foreign data
files. Foreign in this sense implies software and/or hardware
incompatabilities. In the course of research in general file
translation at The University of Michigan,3,1 it became ap
parent that two of the functional components of a generalized
data translator were readers and writers.

Since the basic premise of The University of Michigan
research was that data translation could be performed using
a very high level stored data description language, it follows
that these general readers and writers would likewise have
to be driven by statements in this high level language. While
the basic design of such general readers and writers is often
simpler than that of a completely general data access method,
much of the underlying model is the same. For example, in

general data translation the question of the data base update
function can be ignored while in a general data access method
this is a necessary function.

A review of related work

There are several research and/or developmental efforts
that are related to our endeavors. However, none of them
appear to fully comply with all four of our goals as stated in
the previous section. Some of the more interesting research
includes work on formulating a model for data description
by IBM and by the Stored-Data Definition and Translation
Task Group of CODASYL, and a development of a descrip
tion-driven data translator at The University of Michigan.

Data independent architecture model (DIAM)

A group at IBM research in San Jose has formulated a
model for describing data structures, as well as data accessing
properties of a wide variety of data base systems. 8 The
model, called the Data Independent Architecture Model
(DIAM), uses a limited number of basic concepts so that it
can be useful not only in describing and comparing various
aspects of existing data base systems, but also in designing
and implementing new data accessing methods.

The DIAM structure is based upon the four hierarchically
related models in describing data, starting at the very ab
stract view of data in terms of entities and relationships
among them, down to the encoding on physical devices. The
most interesting features of DIAM are seen in the second
and the third levels in the structure, the String (Access
Path) Model, and the Encoding Model. In the String Model,
various access path structures independent of their encoding
techniques and physical implementations are described by
varying parameter values of the three types of access path
(strings) and by specifying simple operations on these strings.

The stored representation of each element of the access
path structure thus defined is depicted in the Encoding
Model. All the relevant information on encoding each ele
ment of the access path structure is collected in a fundamental
unit, called the Basic Encoding Unit (BEU) , so that vari
ations· in encoding can· be nicely expressed in terms of the
BEU structure and the process of data factoring applied on
BEUs. The combination of these three concepts, access path
structures, BEUs, and data factoring, provides DIAM with
a general capability of characterizing and evaluating existing
and proposed data base systems.

Stored-data definition and translation task group
(SDDITG)

In 1970 a task group of the CODASYL Systems Com
mittee, the Stored-Data Definition and Translation Task
Group (SDDTTG), was formed to formulate a stored-data
definition language, which is a means of explicitly and
formally defining data as they appear on physical media, in

I

order to facilitate data exchange among possibly dissimilar
systems. The initial results of the Task Group were reported
at the 1970 SIGFIDET (then SICFIDET) Workshop.ll

Two major criteria have been set forth by the Task Group
in developing a model for stored-data description. One is the
generality of the model so that it cannot only be applied to
existing structures, but also easily be extended to new
structures. The other is the separation of logical aspects of
stored-data from its physical representation in storage.

In accordance with this guide line, the Task Group intro
duced a model at the 1972 SIGFIDET Workshop.12 The
model is based on the stored-data description models de
veloped by SmithlO and by Taylor.!3 The model currently
being revised by taking the concepts presented in DIAM
into consideration consists of two independent streams of
data description. One stream describes logical aspects of
stored-data; and the other describes the structure of storage
media on which the data is represented. These two descrip
tions are combined into one in order to complete the total
description of stored-data.

Data translation project

The Data Translation Project at The University of Michi
gan has expressed as its goal the development of a general
methodology for transferring data from one environment to
another. With this research goal in mind, the project under
took, as its first year's work, the task of developing a proto
type data translator, in order to demonstrate the feasibility
of the technical approach (i.e., a language-driven data trans
lator as stated in an earlier section), and to gain a better
understanding of the problems associated with data trans
lation.!

The prototype translator developed translates files gener
ated by NIPS, which operates on an IBM/360 computer,
into input files for WWDMS, which operates on a Honeywell
H-6000 computer.2 Although in a rather restricted manner,
the major components of the translator are driven by two
forms of high level languages: stored-data definition language
and translation definition language. The stored-data defi
nition language is used to describe input and output files
and the translation definition language is used to make an
association between input and output file descriptions. After
a successful accomplishment of the first year's task, the
project is currently undertaking the task of developing a more
general data translator by relaxing the allowable classes of
input and output files, as well as by making the translator
more language-driven.

OVERVIEW OF THE GENERALIZED DATA
ACCESS METHOD MODEL

This section will present and motivate the overall structure
of the generalized data access method model. Successive
sections will discuss in depth the various components of
the model.

The elements of the model to be presented shortly can be

A Model for a Generalized Data Access Method 47

divided into two categories, namely language elements and
algorithms. The generality of the model is derived from the
fact that the algorithms are driven by high-level language
descriptions of the desired access method to be modeled.
Thus, the algorithms do not as such constitute a particular
access method, but merely allow for the simulation of any
access method which can be described in the language ele
ments of the model.

A block diagram of the model will be useful for future
discussion, and is shown below:

Figure I-A model for a generalized data access method

The main substantial difference between the above model
and those of existing specialized access methods is the ad
dition of the access method description language. However,
it is this additional element which enables the remaining
components to act in a generalized fashion.

The operating system component is placed in the model
based upon the realization that such a generalized access
method would not be used in a vacuum. However, the
operating system here is meant to represent just the minimal
environment necessary to support the generalized access
method in a multi-user environment. The operating system
assumed here excludes components currently thought of as
file systems and specialized access methods. These latter
components would be built on top of the generalized access
method. Thus, the entire model could be considered to be
within the realm of a comprehensive operating system.

The "verbs" of the data manipulation language are, of
necessity, somewhat dependent on the access method de
scribed. For example, access methods which provide for no
direct addressing could not (easily) support a data manipu
lation command requesting that the system deliver a record
whose key has a certain value.

However, this is not meant to imply that there is a fixed
data manipulation language. The verbs in the data manipu
lation language are only restricted by the descriptive capa
bilities of the access method description language and the
algorithms which use that language. Thus, one could define,
for an inherently sequential access method, a "find direct"
verb. However, the semantics for such a verb in a sequential
access method might necessitate a linear search of the data
base or file.

Certain data manipulation lang-uage constructs, such as
"next" relative to a current position in a file, are easily
implementable for most access methods. However, its imple-

48 National Computer Conference, 1974

mentation may have very different specifications for different
structures on secondary storage. The definition of "next"
would be quite different for a sequentially organized file as
opposed to a list structured file. Thus, while the external
semantics of "next" are access method invariant, its imple
mentation may vary widely.

Thus, the data manipulation language is only access
method independent to the extent that one specifies not
only an access method in the access method description
language, but also an implementation for all desired data
manipulation commands. Precisely which data manipulation
commands should be specified for all access methods ",ill
not be discussed here, although, through example, certain
common data manipulation commands will be presented.

Limitations of the initial research and design effort

In order to limit the scope of the work, several assumptions
were made as to the desired level of generality. These limi
tations have to do primarily with the class of machines usable
with a single implementation of the generalized accessing
algorithms.

The primary interest here is in studying differing access
methods and not in the detailed input/output hardware of
computer systems. Therefore, it was decided that description
of the access methods would stop at the level above that of
the actual input/output instructions of a machine. This
restriction limits the usability of an implementation of the
generalized accessing algorithms to a given machine archi
tecture. This also implies that the generalized accessing
algorithms are responsible for, via "hard code," the trans
lation of access requests in the data manipulation/access
method description languages into actual I/O commands for
a particular machine.

While many aspects of I/O device architecture are de
scribed in the languages of the model, it is assumed that the
accessing algorithms know, in a pre-defined sense, how to
interpret such descriptions for a given machine architecture.
For example, one section of the access method description
language discusses the development of secondary storage
device addresses. However, the accessing algorithms would
be responsible for converting a data request to/from such
an address into actual hardware I/O commands. These
might include a seek request to a particular cylinder, followed
by a transfer request.

An obvious extension of this work would be to provide
languages for the description of the structure of the I/O
instructions of a machine. Further levels of description might
include generalized handling of I/O interrupts and error
conditions. While this area is being investigated, it will not
be considered further in this paper.

THE ACCESS METHOD DESCRIPTION LANGUAGE

Central to the concept of the generalized data access
method is that of high level languages for describing access
methods. The access method description language is itself

made up of several sub-languages. The two most important
ones, to be discussed here, are the device description language,
and the accessing language.

Since the accessing language is based upon primitives
defined in the device language, the device description lan
guage will be presented first.

The device description language

The device description language is based on an assumption
about the current nature of secondary storage devices.
Namely, that such devices can be described in hierarchical
terms, with each element of the hierarchy using only elements
of lower levels as its components.

For example, one possible hierarchical description of a
disk drive consists of storage cells at the lowest level, i.e.,
positions where bits or characters of data can be placed.
At higher levels, records can be viewed as being composed
of storage cells, tracks of records, cylinders of tracks, and
a disk volume as being composed of cylinders.

It should be noted that this decomposition of a secondary
storage device into hierarchical levels is not unique for a
particular device, but merely possible. For example, in the
above device description, tracks on a single disk surface
could be considered to make up the next higher level of the
hierarchy. These disk surfaces would then comprise a disk
volume.

Thus, the device description language must not contain
any assumptions as to the hierarchical breakdown of devices,
and must allow for any realistic description. As such, there
are no "pre-defined" names for components of devices. Any
semantics associated with a device component (such as
"record") are given by the user when the accessing of the
device is described in the accessing language. The accessing
language description is done in terms of the device com
ponents specified in the device description language.

Rather than present detailed syntactic and semantic de
scriptions of statements in the language, a functional descrip
tion of the language will be presented, followed by possible
examples of its use. The language is at a state of development
where detailed syntactic decisions have not been completely
specified. The examples, therefore, are meant to merely give
the flavor of the language.

Elements of the device description language

The two major functions of the device description language
are to define the aforementioned device hierarchy, and to
describe the scheme used in addressing the device.

As an example device, the IBM 2314 disk drive will be
used. 7 In order to minimize the complexity of the example,
many low level details associated with such a device will be
ignored. Included in this category are problems such as
damaged track demarcation and alternate track selection.
In a working system based on this model, problems like this
would necessarily have to be described and handled.

The device hierarchy is described from the "bottom up"
so as to allow for components of one level to be used in the
description of higher levels. Keywords in language are under
lined. The syntax here is merely illustrative, and should not
be viewed as a formal specification.

The first section of the language defines the device hier
archy, and gives attributes of each level of the hierarchy.

DEVICE IBM-2314 DESCRIPTION;
STORAGE CELL IS BYTE;

BYTE CONTAINS 8 BITS;
COMPONENT IS RECORD;

RECORD COMPONENTS ARE BYTE;
LENGTH OF RECORD IS MIN 1 BYTE

MAX 7294 BYTE;
COMPONENT IS TRACK;

TRACK COMPONENTS ARE RECORD;
LENGTH OF TRACK IS MIN 1 RECORD

MAX 71 RECORD AND MAX 7294 BYTE;
COMPONENT IS CYLINDER;

CYLINDER COMPONENTS ARE TRACK;
LENGTH OF CYLINDER IS 20 TRACK;

COMPONENT IS IBM-2314;
IBM-2314 COMPONENTS ARE

CYLINDER;
LENGTH OF IBM-2314 IS 200

CYLINDER;

Inthe above description, an IBM-2314 has been described
as containing a basic storage cell of an 8 bit byte. The ·words
BYTE, RECORD, TRACK, etc., have no special meaning
in the language, but were chosen to make the description
more readable. RECORD is defined a§ comprised of a mini
mum of 1 BYTE and a maximum of 7294 BYTE. TRACK
is composed of RECORD, subject to two length constraints,
namely a maximum of 71 RECORD and 7294 BYTE. This
dual constraint is needed since the unit RECORD has a
variable length, and therefore specifying only the number
of RECORD per TRACK is"not sufficient.

The remaining elements of the description should be
obvious from the above description. The primary purpose of
this information is to drive the device dependent accessor,
which is described in a later section.

In the second part of the device description language, the
addressing structure of the device is defined.

ADDRESS ENCODING IS DISK-ADDR;
WIDTH IS 40 BITS;
REPRESENTATION IS HEX;

ADDRESS FIELDS ARE CYLINDER-NUM,
TRACK-NUM, RECORD-NUM;

CYLINDER-NUM FIELD IS 16 BITS;
POSITION IN DISK-ADDR IS 0 THRU 15;
RANGE IS 0 THRU 199;
REPRESENTS CYLINDER WITHIN IBM-2314;

TRACK-NUM FIELD IS 16 BITS;
POSITION IN DISK-ADDR IS 16 THRU 31;
RANGE IS 0 THRU 19;
REPRESENTS TRACK WITHIN CYLINDER;

A Model for a Generalized Data Access Method 49

RECORD-NU!\1 FIELD IS 8 BITS;
POSITION IN DISK-ADDR IS 32 THRU 39;
RANGE IS 1 THRU 71;
REPRESENTS RECORD WITHIN TRACK;

Here a 40 bit disk address named DISK-ADDR is de
scribed. An address is divided into fields, and the structure
of each field, and what it represents, is specified. A permissible
range of values for each field is given in the RANGE state
ment. Where the particular field is located within the address,
is specified in the POSITION statement. The REPRESENTS
statement relates the address field to the device hierarchy.

The accessing language

It is envisioned that a single specification of a device
would be sufficient for any access method implemented on
that device. The above description of the IBM-2314 could
support many very different access methods for files on
such a device.

The accessing language, on the other hand, describes how
data on a device is to be accessed. This is done primarily by
defining accessing primitives, which would then be invoked
by a user to access the data. Once again, there are no pre
defined primitives. Any primitives which are needed must
be defined in the accessing language in terms of access paths
to a device.

Elemen ts of the accessing language

Once again, this language will be presented in terms of an
example. The example presented here borders on the trivial,
but hopefully will at least give a flavor of the language,
and how it is used to describe an accessing technique.

The access method presented here is for a sequential read
of an existing file on the previously defined IBM-2314. In

" this example only the most basic functions are presented in
order to minimize the complexity of the example.

ACCESS METHOD SEQUENTIAL-READ;
DEVICE IS IBM-2314;
STATUS INFORMATION IS CURRENT

ADDRESS;
FORMAT CURRENT-ADDRESS IS

DISK-ADDR;
SPECIAL CONDITIONS ARE END-OF

TRACK, END-OF -CYLINDER, END-OF
FILE;

CONDITION END-OF-CYLINDER;
RECOGNITION ADDRESS FIELD

TRACK-NUM IN CURRENT
ADDRESS GREATER THAN 19

ACTION SET ADDRESS FIELD
TRACK-NUM IN CURRENT
ADDRESS TO 0;
INCREMENT ADDRESS FIELD
CYLINDER-NUM IN CURRENT
ADDRESS BY 1;

50 National Computer Conference, 1974

CONDITION END-OF-TRACK;
RECOGNITION HARDWARE;
ACTION SET ADDRESS FIELD

RECORD-NUM IN CURRENT
ADDRESS TO 1;
INCREMENT ADDRESS FIELD
TRACK-NUM IN CURRENT
ADDRESS BY 1;

CONDITION END-OF-FILE;
RECOGNITION HARDWARE;
ACTION RETURN ENDFILE

STATUS;

In this first section of the language the format of certain
status information maintained by the accessing algorithms
is described. In this case status information named CUR
RENT-ADDRESS is being kept. The format of this status
information is the same as the previously defined DISK
ADDR.

The remainder of this section defines certain exceptional
conditions that can occur during the processing of the data.
The criteria for the recognition of the special condition are
specified, as well as the action that is to be taken when the
special condition occurs. In some cases the recognition of
the special condition is assumed to be performed by the
hardware, while in other cases the accessing algorithms
themselves must recognize the special conditions.

The final part of the accessing language defines the ac
cessing primitives, and the semantics associated with each.
Here only very simple semantics have been specified.

ACCESS PRIMITIVES ARE OPEN, READ,
BACKSPACE, SKIP;

ACCESS PRIl\rIITIVE OPEN;
PARAMETERS ARE FILE-ADDRESS;

FORMAT FILE-ADDRESS IS DISK
ADDR;

PROCEDURE SET CURRENT-ADDRESS
TO FILE-ADDRESS;

ACCESS PRIMITIVE READ;
PARAMETERS ARE BUFFER-ADDRESS;

FORMAT BUFFER-ADDRESS IS
PRIMARY MEMORY ADDRESS;

LOGICAL ACCESS UNIT IS RECORD;
PROCEDURE TRANSFER FROM

CURRENT-ADDRESS INTO BUFFER
ADDRESS;

INCREMENT ADDRESS FIELD
RECORD-NUM IN CURRENT
ADDRESS BY 1;

ACCESS PRIMITIVE BACKSPACE;
PROCEDURE D..t!.;CREMENT ADDRESS

FIELD RECORD-NUM IN CURRENT
ADDRESS BY 1;

ACCESS PRIMITIVE SKIP;
PROCEDURE INCREMENT ADDRESS

FIELD RECORD-NUM IN CURRENT
ADDRESS BY 1;

In this simple implementation of a sequential access
method on disk, a very basic OPEN function is specified.
Here it is assumed that the accessing program provides the
starting disk address for the file. In a more realistic imple
mentation, the name of a file would be provided, and the
specification for OPEN would cause a search of a table of
contents on the disk volume for the starting address of the
file. Needless to say, this would cause a great deal more
complexity in the specification of OPEN.

The only primitive here which actually causes the transfer
of information is READ. In the description of READ the
unit of information transferred between the accessing algo
rithms is named in the LOGICAL ACCESS UNIT phrase.
In this simple case it is assumed that a complete physical
disk RECORD is passed to the accessing program. In more
realistic descriptions, this simple correspondence between
physical units of transfer and logical transfer units would
obviously not hold. The procedure for mapping physical
transfer units to logical transfer units would also have to be
specified in this case.

The access primitive SKIP and BACKSPACE merely
update the status information CURRENT-ADDRESS.
Thus, on future invocations of READ the order in which
records are returned is altered.

GENERALIZED ACCESSING ALGORITHMS

In order to assure the generality of the data access method
being developed, the algorithms used in the method must be
invariant, regardless of the data to be accessed. In other
words, they must not depend on particular characteristics
of the data. Although the development of such totally data
independent, but practical, algorithms seems improbable,
several approaches can be taken toward that direction.

The approach taken here is to identify a set of primitive
operations of which algorithms used in various data access
methods are comprised. These operations are primitive in
the sense that the semantics of each operation must be
unambiguous and simple, and· parameters to direct each
operation must be limited in number and well defined. Then
by reducing the process of data accessing into a series of
these primitive operations, and by varying parameter values
for these operations, the algorithms which can be used for
accessing various classes of data are obtained. In the model,
these parameters are specified in the form of a high level
language as discussed in a previous section.

As mentioned previously, it is not foreseen that a single
set of algorithms will be sufficient to cover all cases of
stored-data. However, hopefully pursuit of this approach
will result in a limited number of sets of algorithms (or a
single set of algorithms with multiple entries, if preferred)
which cannot only be applied to any existing data access
methods, but also easily be extended to new data access
methods. Since the development of such algorithms is still
in its infancy, presented here are functional descriptions of
components of generalized accessing algorithms.

I

Compone'nts of gerteralized accessi'J'i{J algorithms

In discussing accessing algorithms, it is important to recog
nize two types of accessing units. One is a unit to which the
data base (or operating) system provides a means of ad
dressability. We term this a physical access unit. The other
is a unit of information which is subject to access requests
(i.e., a basic communication unit between the user and the
system). This we term a logical access unit. This dichotomy
is the underlying concept of the model.

As depicted in Figure 2, generalized accessing algorithms
consist of three components: a Controller, a Device De
pendent Accessor, and a Device Independent Accessor. The
functional descriptions of these components will not be par
ticularly novel in the sense that they can readily be seen in
existing specialized access methods. However, they are differ
ent from those in conventional access methods to the extent
that functions of each component are totally driven by the
explicit descriptions of access methods.

Controller

The Controller is the part of the system which directs the
entire operation of data accessing. Besides the normal func
tion of coordinating linkages between various components
of the system, the Controller has three additional functions
to carry out: parsing of access requests, selection of an access
path, and determination of access request fulfillment.

The Controller determines the validity of an access request
expressed in a data manipulation language. Legitimacy of
the request may include access security considerations. This

Structure

Mapping

Description 1',

I
I

I

fables '"

Access
Request

Controller

vice

Indepentient

Accessor

Device and

Access

Description

I

I
I

Device

Dependent

Accessor

Figure 2-Components of generalized accessing algorithms

A Model for a Generalized Data Access Method 51

process is performed by consulting structure mapping de
scription tables which are obtained from the accessing de
scription of the language. Once the validity of the access
request is established, the request is transformed into a more
convenient form for further processing. The complexity of
this process depends on the allowable types of requests in
the system.

Given the parsed form of the access request, the Controller
then selects an appropriate (logical) access path to fulfill
the request. It should be noted that there may exist more
than one access path which can be qualified to satisfy the
request. Therefore, the process of access path selection in
cludes the determination of all access paths qualified, fol
lowed by the selection of the "best" one among them.
This selection process is also driven by structure mapping
description tables.

When a logical access unit is identified by the Device
Independent Accessor, the Controller determines if it satisfies
the access request. If so, the control is returned to the user.
If not, the Controller requests the Device Independent
Accessor to provide the "next" logical access unit on the
access path selected. This request may, in turn, invoke the
Device Dependent Accessor.

Device dependent accessor

Stored-data is an organized collection of physical access
units. Its organization usually depends strongly upon the
characteristics of a device on which the data is located. It is
highly desirable that components of the accessing algorithms
function as independently of these salient characteristics of
devices and file organizations as possible. The function of
this component is to remove such device and organization
dependent characteristics from stored-data, so that the
Device Independent Accessor can function independent of a
particular device used and the addressing mechanism em
ployed in the stored-data.

By examining the way that the access path selected by the
Controller is encoded on the device, the Device Dependent
Accessor transmits a physical access unit from the secondary
storage into the main memory. This process is driven by a
set of tables, called device and access description tables,
whose contents are derived primarily from the device de
scription. These tables are rather independent of the tables
which drive the Device Independent Accessor. Thus, by
driving the two components of the model using a set of
independent tables, the model provides a very powerful
and flexible means of accessing the data. By simply changing
tables to be used by each component, the model permits the
user to access the data, with different access and mapping
strategies, which may reside on various storage devices.

Another function which must be carried out by this com
ponent is a problem resulting from the possible differe~ces
in elementary data representations between the system which
created the data and the system under which the algorithms
operate. This problem is a very common one when the

52 National Computer Conference, 1974

accessing of foreign data files is considered. These architec
tural differences can also be resolved in the same technical
approach (i.e. the description driven approach). However,
it is felt that inclusion of problems arising from architectural
differences is beyond the scope of our immediate research.

Device independent accessor

Given a physical access unit in a buffer, this component
performs two major functions. The first function is to extract
and identify a logical access unit from the physical access
unit. Here the term "extract" is used to mean to separate
one unit from another and the term "identify" to mean to
recognize the name of the access unit. It should be noted
that the order between the extraction and the identification
of a unit is not definite. For example, the unit may first be
extracted and then identified. On the other hand, the identifi
cation of the unit may be necessary to extract the unit.

The boundaries of physical access units mayor may not
correspond to the boundaries of logical access units within a
particular data base architecture. In other words, the re
lationships between these two types of access units are in
general m :n. Therefore, in order to extract a logical access
unit, multiple physical access units may be required. This
is accomplished by invoking the Device Dependent Accessor
repeatedly.

The second function is, given a logical access unit as a
result of the first function, to decompose it into its con
stituents. This decomposition process is carried out by the
use of storage templates constructed from structure and
mapping description tables. A storage template is a collection
of named elements which schematically represent a logical
access unit. One template is created for each type of logical
access unit. It should be noted that a complete storage
template for certain logical access units may not be con
structed solely from the information in structure and mapping
description tables. The construction of such a template may
have to be deferred until the decomposition process of the
access unit is initiated. In other words, some storage tem
plates may be constructed dynamically.

CONCLUSIONS

It has been impossible in this paper to discuss in detail many
of the really interesting questions one confronts when dis
cussing access methods. Out of necessary space limitations,
only the basic components of the model for generalized data
access have been presented.

The question of generalized data access is by no means a
solved one. The model presented here is intended as a research

tool and not a production model. In the current languages
the level of procedurality, particularly in describing access
primitives, is much higher than desired. A great deal of
emphasis in the design of the languages was placed on the
factoring of information common to multiple accessing meth
ods in common places, so that it would, not have to be
repeated. However, more work must be done in this area.

It is also felt that there are too many "pre-defined"
keywords in the languages, which limit the generality of the
model. Lower level descriptions of these current keywords
are needed.

However, the current model gives us an important base
to build upon. An implementation of the current model is
planned, and it is expected that this will give us greater
insight into additional problems. Even with the basic current
model we now have the ability to model many different
access methods in a common language. This alone has given
us valuable insight into the nature of access methods, as
well as having shown us weaknesses in the current model.

REFERENCES

1. Data Translation Project, Functional Design Requirements for a
Prototype Data Translator, Technical Report, Ann Arbor, The Uni
versity of Michigan, 1972.

2. --, Program Logic Manual far the University of Michigan Proto
type Data Translatar, Technical Report, Ann Arbor, The University
of Michigan, 1973.

3. Fry, J. P., R. L. Frank, E. A. Hershey III, "A Developmental
Model for Data Translation," Proceedings of the AC2I,f SIGFIDET
Conference on Data Description, Access and Control, November 1972.

4. IBM Corporation, OS/360 Data Management Services, form #GC26-
3746.

5. --,08/360 Data Management far 8ystems Programmers, form
#GC28-6550.

6. --, Infarmation Management System/360, version 2, General
Infarmation Manual, form #GH20-0765-4.

7. --,2314 Direct Access Storage Facility and 2844 Auxiliary Star
age Control, form #A26-3599.

8. Senko, M. E. et al., A Data Independent Architecture Modell: Four
Levels of Description from Logical Structure to Physical Search
Strategies, Technical Report RJ 982, San Jose: IBM, February 1972.

9. Severance, D. G., Some Generalized Modeling Structures for Use in
Design of File Organizations, Ph.D. Dissertation, The University of
Michigan, 1972.

10. Smith, D., An Approach to Data Description and Conversion, Ph.D.
Dissertation, The University of Pennsylvania, 1971.

11. Storage Structure Definition Language Task Group, Design Objec
tives for a Starage Structure Definition Language, 1970.

12. Stored Data Definition and Translation Task Group, "An Approach
to Stored Data Definition and Translation," Proceedings of the
ACM SIGFIDET Conference on Data Description, Access and Con
trol, November 1972.

13. Taylor, R. W., Generalized Data Base Management System Data
Structures and their Mapping to Physical Starage, Ph.D. Disserta
tion, The University of Michigan, 1971.

A data base management problem specification model

by GERARD T. CAPRARO

Rome Air Development Center
Griffiss AFB, New York

and
P. BRUCE BERRA

Syracuse Univers-ity
Syracuse, New York

INTRODUCTION

The data base management systems (DBMS) area has been
growing at an accelerating pace over the past few years.
There have been and are DBMS studies being conducted at
many different government, industrial and university es
tablishments. The work however, is primarily concerned
with the software and hardware problems of building DBMS
with unique capabilities. However, large scale research is
not being conducted in the area of determining the interface
between the DBMS and the data base problems they were
created to solve. Each data base problem is as unique as the
users of DBMS.

The data base problem must somehow be solved in the
space of DBMS. Defining the data base problem in such a
way that one can develop the solution in the DBMS space
is no easy task. Presently, the user cannot define the data
problem to the DBMS community in a language in which
both can communicate effectively. This communication prob
lem can result in a data base user obtaining DBMS that:
(a) cannot handle the data problem efficiently; (b) will not
handle the data problem efficiently in the future as the
user's needs change; or (c) is much more powerful than the
present and future needs require.

Some authors have addressed this problem. Dodd7 and
D'Imperi0 6 consider some of the basic problems. Dodd points
out that it was the user's needs that caused the existence of
different data organizations or structures in DBMS. D'Im
perio states that in order to take advantage of different data
organizations, the system designer must have a thorough
understanding of the data. Assuming that Dodd and D'Im
perio are correct, it can be concluded that, if data are going
to be placed efficiently in a computer, the data and their
usage should be thoroughly understood before a data struc
ture is chosen.

The philosophy of knowing the data and their usage
thoroughly before choosing a data structure is fine in concept
but in reality the people who are designing the system are
not necessarily the people who are going to use it. Benjaminl

looks at information system development from 1950 to the

53

present and the communications that existed between the
users and the designers of these systems. Between 1950 and
1964 typical information systems processed billing, payroll
and stockholder records in a job shop environment as single
functions. When the 3rd generation computer came on the
scene (1964-1968), the number of single function systems had
increased enormously and they were sharing parts of a now
larger data base. At the same time, there was an increase in
hardware and software capability which gave the system
designers the opportunity to coordinate the single function
systems into a more comprehensive system.

The important factor that Benjamin infers, but does not
state, is that betvveen 1950 to 1964, under a single function
system, the problem-solver or user couldn't convey his/her
total needs to the system designer or programmer such that
the problem could be implemented on the computer in an
efficient way. When these single functions were coordinated
into a comprehensive system, the communications between
the user and the programmer was still degraded. Benjamin
makes this inference when he claims that the users' jobs
relating to general decision and control were limited and that
strategic management systems jobs for planning and modeling
were deficient; " ... in that their data requi~ements were not
wholly consistent with that of the operational systems used
by the rest of the organization." When Benjamin gives
advice to system developers for "Mastering the Organization"
he states that: " ... the system developer must learn to
understand the organization. Having learned how to write
efficient code and how to integrate a number of small com
ponents into an effective and reliable system, he is free to
tackle systems that encompass functional areas of the organi
zation at different levels " Benjamin goes on to state
that one of the four things the system developer must do to
master the organization is: " ... to learn how to specify
hierarchically large systems. Rapid progress will depend in
part upon the development of specification languages that
will allow for the complex definitions required "

Other authors have expressed the need and impact of a
user specification language. Merten and Teichroew9 state in
their conclusion: " ... the design of problem statement lan-

54 National Computer Conference, 1974

guages and the design and construction of problem statement
analyzers are formidable research and development tasks.
In some sense the design task is similar to the design of
standard programming languages and the design and con
struction of compilers and other language processors. How
ever, the task appears more formidable when one considers
that these languages will be used by non-computer personnel
and are producing output which must be analyzed by these
people "

The creation of problem specification languages for com
puter-based information systems is being attempted today.
Teichroew1o provides a survey of these languages and defines
the specification for a "requirements statement language."

Therefore, the purpose of this paper is to present possible
answers to the following questions:

a. What responsibilities in the designing or choosing of
DBMS should be assigned to the data base user?

b. How can the user effectively interact with the DBMS
designers to ensure that the data problem is treated
properly once implemented on a digital computer?

c. How will the user and the system designer effectively
communicate with each other once (a) and (b) have
been determined?

A method by which this may be accomplished is to develop
a model based on the fundamental factors involved in
choosing or building DBMS for data base management
problem. These fundamental factors should include a state
ment of the data problem, the computer hardware that is to
be utilized for any particular data problem, and the computer
software available on the computer system. The model should
be such that the user's specification of the data problem call
be utilized by the system designer to determine whether or
not the data problem can be solved. There should be feedback
to the user from the system designer in the same language
in which the user specified the problem. This will enable the
user to see how the specification of the problem has been
changed due to system design problems and/or hardware or
software limitations that may occur in the solution of the
data problem.

The remainder of this paper presents a first attempt at a
conceptual model that satisfies the above requirements. Ad
ditional work has been performed in the partial development
of a user oriented problem specification language (PSL).3

DATA BASE MANAGEMENT SYSTEM PROBLEM
SPECIFICATION MODEL

... Ii ... purpose of this model, in the form of spaces and func
tions, is to try to provide a language for defining data base
management problems and by so doing to find a solution
based upon the problem definition. Even with the functions
underived the model provides a language to help define the
relationships of different work being performed in the data
base management field.

Essentially, the use of the term spaces is an attempt to
group entities in the data base management field so that

those entities can be evaluated as to where and how they
enhance the finding of solutions to data base management
problems. Along with spaces are functions which are derived
to describe the interrelations between the spaces. The group
ing of these spaces and functions will, hopefully, help in
describing the data base management system model and
provide a language criteria for discussing data base manage
ment system design and evaluation.

The Data Base Management System Problem Specification
Model (DBMPSM) can be described as shown in Figure l.

Let the input space, I, be made up of sets whose elements
are a subset of the attributes of the total data base. Each
set shall describe either a physical form in which data may
enter the data handling system or any data maintenance
which by being performed is equivalent to a physical form
of input data. Sets of the space I could be magnetic tapes
containing digital test data, personnel forms, questionnaires,
etc.

Let the output space, 0, be made up of all the questions
(or jobs) that a user may wish to ask of the data base plus
any maintenance that has to be performed on the data
periodically within the data handling system. Elements or
tasks contained in the space 0 can be defined as sets where
each set could be updated personnel files, calculating sta
tistics from stored data, performing queries on value limits
of particular attributes, etc. These sets shall contain the
attributes needed to perform the requirement defined by the
sets that make up the space O.

P & V are the functions that will develop a problem
specification language (PSL). YeO) is a function that de
scribes the requirements on the space PS due to the space O.
PCI) is a function that describes the requirementR on the
space PS due to the space I. The union of these two functions
will define the problem specification language.

The space problem specification, PS, is defined by the data
base and the user's requirements through the utilization of
the PSL.

The space PS will bridge the communications gap between
the user and the computer systems designer. It will provide
a specification of the data problem in a language that both
the user and computer software people can utilize to maximize
the probability of determining the proper solution to the
first data problem question of "does the user need to enter
his/her data onto a digital computer?" If the answer defined
by the interpretation of PS is no, then PS should be used to
help define what is needed. If the answer is yes, then the
functions Ql and ~ can be utilized to help determine the
logical file structures needed.

The logical file structure (LFS) space contains all current

Figure l-System problem specification model (DBMSPSM)

logical file structures available from the available data base
management system (ADBMS) space. Examples of these file
structures could be random files, random serial files, tree
file structures, chain file structures, etc.

The function Ql is defined as a function that will provide
the capability of defining the logical file structure Ql(PS)
specified by the problem specification. If ~(PS) is not avail
able within the space LFS, then one of two alternatives are
available.

(1) Ql(PS) can be used as the logical file structure and in
conjunction with the space PS a solution of the data
base management problem can be solved by building
a tailored solution space.

(2) The function ~ can be utilized. The function Q2
provides the capability of defining which logical file
structure in LFS defined by Ql(PS) and will also define
the changes to the space PS that have to be accepted
if the logical file structures in the space LFS are
accepted. This is vitally important to the user for
he/she can determine by the changes made to space
PS the impact that will occur because the specification
of the problem has been changed.

If, however, Ql(PS) does define a logical file or files con
tained within the space LFS, then a Data Base Management
System and/or computer physical storage structure can be
developed.

The space, ADBMS, contains all the Data Base Manage
ment Systems available to the user. For each DBMS in
ADBMS all of its pertinent factors are contained and de
scribed, i.e., physical data storage techniques, query lan
guage, special software and hardware capabilities, logical file
structures, etc.

The function Rl is defined as a function that has the
capability of defining the physical file storage structure or
structures R1(LFS) dictated by the logical file structures
contained in the space LFS or derived by Ql(PS). If R1(LFS)
is not contained in the space ADBMS, then one of two
alternatives are available.

(1) R1(LFS) can be used as the computer physical file
storage structure and in conjunction with the space
PS, a solution of the data base management problem
can be solved by a tailored solution space.

(2) The function R2 can be utilized. The function R2
will provide the capability of defining which physical
file storage structure(s) in ADBMS is closest defined
by R1(LFS) and will also define the changes to the
logical file structures in LFS that will have to be
accepted. This again, as stated for alternative (2) in
utilizing Q2(LFS), provides the user a feedback capa
bility through Q2(LFS) to evaluate the impact that
will occur because the specification of his/her problem
has been changed.

If, however, R1(LFS) does define a physical file storage
structure contained within the space AD BMS, then the
DBMS associated with this structure can be chosen. If,
however, there are more than one physical file storage struc-

A Data Base Management Problem Specification Model 55

tures defined by R1(LFS) and no DBMS in the space
ADBMS contains all of the physical file storage structures,
then the user is faced with the same two alternatives as
described above.

The function W maps into those elements of the output
space, 0, which can be provided for directly, because of the
DBMS chosen in ADBMS. Certain DBMS' have inherent
capabilities that can provide all or some of the needs that
are define<;l by the output space. These capabilities could be
such things as queries on files due to specific values or ranges
of values, file editing, report production capabilities, etc.

The function S is that function which in conjunction with
W(ADBMS) defines the output space, S(ADBMS)U
W(ADBMS) =0.

The standard software program space, SSP, is that space
containing software programs resident on the computer sys
tem chosen. If S(ADBMS)~SSP, then SSPU\V(ADB:MS) =
O. If, however, S(ADBMS) Q;SSP, then external software
routines must be written.

These external routines are defined by function T; where
T(SSP) =S(ADBMS) -[S(ADBMS) nSSP]. They can be
programs coded, for example, in a standard compiler lan
guage (i.e., FORTRAN IV, COBOL, etc.) in conjunction
with a special language of the DBMS (query language).

CONCLUSIONS

This research effort was undertaken to try to develop a
feasible model in which the user of a data base could ef
fectively interface with the design and/or choosing of a data
base management system. Over the past few years the data
user has been slowly taken out of the sequence of events
that lead to the solution of his/her data problem on a digital
computer. The conceptual model developed, DBMSPSM, is
a first attempt to put the data base user as the driving force
in finding a solution to his/her description of the problem.

To develop all of the functions and spaces that make up
the DBMSPSM appears to be a very large task. The first
portion that must be performed in this task is to develop a
problem specification language (PSL). This must be ac
complished first since it is the basis of the model and all
feedback to the user must be described in the PSL. Once
this PSL is completed it should be tested on an existing
data problem to determine its feasibility and ease of imple
mentation in trying to specify a data problem (derive the
problem specification (PS) space). If this proves successful
then the functions (Ql and ~) necessary to map the PS
space into the logical file, structure (LFS) space need to be
derived. This procedure of derivation and testing should
continue until the DBMSPSM is completed by having the
entire model implemented on a digital computer.

REFERENCES

1. Benjamin, R., CIA Generational Perspective of Information System
Development," Communications of the ACM, Vol. 15, No.7, July
1972, pp. 640-643.

56 National Computer Conference, 1974

2. Bloom, B., "Some Techniques & Tradeoffs Affecting Large Data
Base Retrieval Times," Proc. ACM 24th Nat. Conj.1969, pp. 83-95.

3. Capraro, G., A Data Management System Problem Specification
Model, RADC-TR-73-193, June 1973.

4. Chapin, N., "A Deeper Look at Data," Proc. 23rd ACM. NAT.
Conj. 1968, pp. 631-638.

5. Chapin, N., "Common File Organization Techniques Compared,"
FJCC, 1969, pp. 413-422.

6. D'Imperio, M., "Data Structures and their Representation in
Storage," Annual Review in A utomatic Programming, Vol. 5, pp. 1-75.

7. Dodd, G., "Elements of Data Management Systems," Computing
Surveys, ACM, June 1969, pp. 117-133.

8. Mealy, G., "Another Look at Data, FJCC," 1967, pp. 525-534.
9. Merten, A. and D. Teichroew, "The Impact of Problem Statement

on Evaluating and Improving Software Performance," FJCC, 1972,
pp.849-857.

10. Teichroew, D., "A Survey of Languages for Stating Requirements
for Computer-Based Information Systems," FJCC, 1972, pp. 1203-
1224.

Integrating data base management into operating systems-An
access method approach

by ALBERTO CEZAR DE SOUZA MOREIRA

The Light and Power Company
Sao Paulo, Brazil

and

CLAUDIO PINHEIRO and LUIZ FERNANDO D'ELIA

UNIVAC Brazil
Sao Paulo, Brazil

INTRODUCTION

It appears that the final word about Data Management and
Data Base Management has not yet been said. Different
authors stress different points in the rather sparse bibli
ography on the subject. Different program products and
packages are oriented toward completely distinct ap
proaches, diverging progressively from a standardization
rather than converging to it.

Therefore the authors felt inclined to attempt a small
contribution in this field by establishing their own approach
toward the problem of implementing a data base software
that behaves according to those concepts. The bases of the
adopted approach are: (a) to integrate closely the data base
management software with the operating system as an access
method, (b) to implement user interfaces that are similar to
the standard data management access methods, and (c) to
concentrate in flexible data structures and low core usage.

This paper intends to go beyond the usual problems of
data independence, transition from non-database methods,
standardization and others. It intends to present an under
structure over which to build the solutions for the afore
mentioned problems. It describes the authQrs' implementation
of the proposed approach and discusses some of the important
concepts involved. Data structures, retrieval logic and user
interface are examined and their relationships with the overall
approach is enlightened.

GENERAL APPROACH-AN ACCESS METHOD

The Data Management function in a computer system is
the interface between the user programs and those parts of
the operating system that deal more directly with the
Input/Output devices and their hardware.

Data lvianagement provides centralized services to thp

active users in the multiprogramming mix. It interchanges

57

user and files, performing housekeeping and maintenance
tasks and creating an adequate environment to file access
and query. It manages computer resources granting access
to Input/Output devices and sharing them between the
users and at the same time securing data against errors and
accidents.

The authors cannot think of Data Management as a
program package or product. It is an integrated part of the
operating system, interfacing with it at a very low level.
User programs use Data Management as a normal communi
cation path with the operating system, forwarding requests
and receiving services from the facilities implemented. To
implement those basic access facilities as a set of user pro
grams would not give any advantage over the integrated
approach. It would certainly add an extra level of system
complexity and overhead, for the interface between user
programs and files would be established at user program
level (which in turn would have to interface with the user
files through some basic access routines) rather than at very
basic physical Input/Output level.

A data base oriented Data Management System should
be no exception. From the software point of view a data base
is a set of user data files in which structural relationships
between the existing data elements have been implemented.
What is desired here is to have the capability of accessing
data fields, segments, records or other structures by name,
relieving user programmers from the physical aspects of this
usage. This is not different from the aims of traditional Data
Management; only the requirements placed on the flexibility
and power of the implemented data structures are much
more stressing.

Data must be accessed in multi-sequential, random and
hierarchical orders; programs must be as independent of
physical data layouts as possible; multiple users and multi-file
data bases must be accommodated. And all this must be
done in such a way that user programs are kept completely
unaware of the physical side of the hard\vare and software.

58 National Computer Conference, 1974

_1 ______ _

Purchase
Order

Purchase
Items

I
I
I _____ L __

Work
Parts Center

____________________ ~~~~~[~~-------------====--r-_____ 1____ _ ____ 1___ : __ L _________ _
Where used Inventory Manufacturing
---------- --------- Operation

Figure I-Hierarchical relationships

This is the approach that the authors have chosen to
implement DBAM. A Data Base Access Method-this is the
essence of its design. It aims to put data base resources at
user's hand, integrating him "\\rith the operating system at
the lowest possible level. The standard user interface allows
the user to communicate his needs to the operating system
through DBAM is an integrated part of the operating system,
presenting a common interface together with all other access
methods and preparing an easy building of the high level
language standard interfaces by simple and straightforward
compiler extensions.

Another important point considered by the authors was to
divorce data base management from data communications.
Handling remote terminals and concentrators, queuing and
dequeuing messages, must be the object of another access
method. Some interactions will exist in the sense that certain
storage techniques when handling telecommunications may
need interfaces between the Data Transmission Access
Method and one of the file management access methods
available, but these are just interrelations between the
various components of the operating system rather than user
programs exchanging data. From the standpoint of a user
who wants to implement an on-line applications program,
it is important that the operating system has the capability
of both dealing efficiently with telecommunications Input/
Output and allowing the implementation of a minimum
access time file structure oriented to the particular appli
cation. This does not imply necessarily a close integration
between the data communications and the file retrieval
capabilities, but a simultaneous integration of both the data
communications and the data management with the operating
system in such a way to permit the user to express his needs
in both fields.

The data base access method is therefore an operating
system component available to service his users in a shared
way. Its design must express a tendency toward excellency
and high service level; the usual requisites of Data Manage
ment functions must be met. Sequential and random retrieval,
associative and hierarchical structures, multilist and inverted
list processing, low core usage, fast response times and
efficient management of system resources must be comple
mented by management.-oriented features like easy transition,
data independence and data security.

This approach reflects the belief that the interface between
the operating system and a data management function can
be advantageously placed at the access method level. It
brings easy transition from non-database programs through
the common interface presented to the operating system by
the access method. It connotes a powerful centralized soft
ware that can be in the future the standard logical I/O
interface for the whole operating system together with its
compilers, service processors and utility routines.

DBAM was designed to operate in a wide range of com
puters and operating systems. It can be run with small
modifications in virtually any byte oriented machine, from.
very small to very large configurations. Users have available
a standard and general software able to work in a variety
of environments.

DATA STRUCTURES AND ADMINISTRATION

General concepts

An effective data management access method must be able
to handle a variety of data structures and organization
methods. Multiple hierarchical and associative relationships,
sequencing by multiple sort fields and flexible list manipu
lation schemes must be available.

Data elements

Three basic data elements are recognized by DBAM:
fields, segments and records. Fields are the smaller units of
data with a logical meaning. Segments are sets of fields
stored together as a whole and bearing a logical relationship.
Records are collections of hierarchically related segments.

A user program to control loading in distribution trans
formers may have, for example, two segments of data: the
transformer segment with transformer data and the con
sumer segments with all data of those consumers electrically
connected to that specific transformer. Individual data such
as transformer maximum load or consumer connected load
are some of the fields of our segments. A particular trans
former segment with its associated consumers is the trans
former record. Furthermore, we might have a feeder record
composed by a feeder segment and all segments related to
transformers connected to that feeder.

Hierarchical relationship8

The subordination of a segment to another is what is
basically understood as a Hierarchical relationship. The sub
ordinate segment is called "Parent," and the subordinated
is called "Child" or "son." A given parent can subordinate
many sons under the same specific relationship, or it can
subordinate several hierarchical relationships with many sons
each one. Also a son can be subordinated by several parents,
one for each hierarchical relationship of which that son takes
part. A dependent segment may for its turn subordinate

I

Integrating Data Base Management into Operating Systems-An Access Method Approach 59

several hierarchical relationships of its own, allowing a multi
level multi-parent multi-child tree of hierarchical relation
ships.

As an example, consider a sample manufacturing control
system. In Figure 1 it is shown the relationship between a
part and its manufacturing process by means of the hierarchi
cal relationship between a Parts segment and an Operation
segment. Also, an inventory segment is depicted as the
necessary subordination for an inventory control application
and a Where-used segment to help in the bill of materials
preparation. For a scheduling operation, work center seg
ments relate the manufacturing operations to the work centers
where they are performed. Also, for purchasing, purchase
order and purchase items segments are necessary. The
structure of Figure 1 is therefore satisfactory to a range of
different application programs.

Associative relationships

Many applications need that association between data
segments or records based on the equality of a certain field.
Furthermore, it may be necessary to access sequentially all
segments having some common feature or satisfying a set
of common criteria such as fixed field values, segment type,
keys and others. This kind of segment relationship is called
an Associative relationship.

It is possible to include a data segment simultaneously in
a number of associative relationships. The segment can also
participate of hierarchical relationships of its own.

As an example of simultaneous hierarchical and associative
relationships, consider the case of Figure 2.

In the electric billing application depicted, a customer has
up to four different segment types. The Electric Data,
Debits and Payments segments are hierarchically subordi
nated to the Customer Personal Data segment. This subordi
nation will allow the applications programs of the Billing
System to selectively process the customer records and to
worry only with data. However, there will be a need to
process customers according to certain particular character
istics such as type (commercial, industrial, residential), city
district, connected load range, etc. It is possible then to

-------- (7)
-------- (6)

-------- (5)
-------- (4)

-------- (3)
-------- (2)
Personal
Data (1) ---.----

I
I
I .----------------------t-------------------1

! ! I
~lectric
bata

Debits Payments

Personal Data: (1), (4) , (5) , (7) = residential customers
associative relationship

(1) , (2) , (3) , (7) = associative relationship
by district.

Figure 2-Simultaneous hierarchical and associative relationships

associate all Customer-Personal Data segments according to
those criteria, defining an associative relationship for each
valid common characteristic. Notice that by defining the
relationships at the segment level it is possible to associate
the customer data record as a whole, for all other data
segments are hierarchically subordinated to it.

Associative relationships have a number of optimizing
features available. Searches are always performed using the
shortest path available. Sequence fields are checked before
the search starts and proper location to begin retrieval is
found, saving many mass storage accesses. Special provisions
have been made for inverted list (that is, list length = 1)
search and processing.

Data base organization

The user data base is a set of files where data is stored in
a blocked direct access format. Block sizes are fixed and
specified by the user for each one of the data base files.
Access is done at the physical input/output level. Segments
are fit into the file blocks and packed together so that
different segments can be specified.

The addressing technique uses two different location modes.
It is possible to have both directly addressable and non
addressable segments. Independently of the characteristics
of the hierarchical relationships defined for the segment,
an addressable segment must have a key that goes through
a scrambling process called 'Randomizing' to generate a
calculated disc block address. Segments are then fit in that
block if space is available. If no room is available in that
block, a new trial is done based on user specifications. The
maximum number of trials before a no-room or no-find con
dition is generated is also a user choice.

For each defined relationship a double 4 byte pointer is
generated to point both to the next and to the previous
segment in the list. This technique allows extensive file up
date without need of file reorganization and also permits the
implementation of broken chain methods for list recon
struction.

It is also possible to increment the size of a file without
reorganizing the data base. Any new file extent, up to a
certain limit, will be recognized by the access method and
bring an automatic adjustment to the new situation.

Data base control

Data base control is done by using a 'Schema' file that
contains all pertinent information about data structures and
characteristics. Segment, record and field descriptions, as
sociative and hierarchical relationship control data, file de
scriptions, list headings and queries are stored. Program
Information Blocks, that interface user programs with the
data base, are also resident in the Schema file.

With the aid of file, data and relationship descriptions
DBAM access the data base to perform user writes and
reads. Retrieval logic is controlled by the stored queries.
Automatic search and retrieval operations are possible by

60 National Computer Conference, 1974

~~:~;~~ i~~;~tion r---- :::e~ ---1
, Blocks , t
, t I : ------,----- I I
I I I I
, I I I
I I I I
I I I I I _____ ~______ I _______ _

,------------ Relationships _____ J ,- Segments
-----li------ I --,-----

I I t
I I I
I I I
I I I
I I ------
: I Fields
I I :r----
I , I
I __ J __ l_JL

---------------------L------------------passwords

Figure 3-Hierarchical relationships in the schema file

the use of Program Information Blocks. These PIBs are
treated as 'registrations' of user programs in the data base.
They contain interface information, statistics and the data
base path the program sees, so that an automatic retrieval
operation following these relationships is possible.

The data in the Schema file is grouped in segments and
stored in the same format used to maintain the user data
base. Several hierarchical relationships are established be
tween these segments. They help the user to control and
audit his data base and his user programs. Data dictionaries,
cross-reference tistings involving programs, data and re
lationships, periodic structure audits and checkups, are
facilitated. Figure 3 contains the main hierarchical relation
ships implemented in the Schema file.

ACCESSING THE DATA BASE

Retrieval logic

The retrieval logic is built in such a way that the user
"sees" a straightforward structure of relationships connecting
his data, orienting him to follow those relationships just like
he follows the roads and streets that compose the way from
his house to the office.

The user sees a two-dimensional grid formed by the as
sociative and hierarchical relationships that "\vere established
at data base generation time. The data base is then a col
lection of segments linked by both associative and hier
archical dimensions.

Those dimensions are independent but not equivalent.
Associative relationships are treated as global entities, re
lating segments and records in an overall manner. The
associative capability is used to establish main paths within
the data base and allow generalization. The hierarchical
dimensions in a local entity, as a search or a sequential
retrieval will always depend on the existence of a parent that
restricts the operations to the local level.

Suppose (recall Figure 2) that we want to retrieve the
debits of all residential customers of a given city-district.

The relationship that ties up all Customer segments of

that district is an associative relationship. The tie between
a Customer segment and a Debits segment is a hierarchical
relationship.

When retrieving the debits, the user logic could be:

1. Global search on the associative relationship that ties
all customers of that district and retrieve the next
residential customer.

2. Local search on the hierarchical relationship that ties
the Customers to the Debits in order to pass to the
user the Debits segments.

3. Repeat steps 1 and 2 until list end.

Once the global search is started, the local search of item 2
does not disturb it. It is always possible to perform a search
in one of the dimensions independently of the other.

The user may interrupt a sequential search and retrieve
data randomly. He mayor may not return to the original
search. He may define a pre-established sequence of hier
archical relationships in a Program Information Block and
do an automatic search based on that sequence. He may also
do a retrieval based on segments rather than on relation
ships, and, in local searches, he may progress "bottom up"
retrieving hierarchical parents rather than hierarchical de
pendent segments.

The user always has a "current position" in the data base.
Also there will always be an active associative relationship
and a current active hierarchical path. The DBAM retrieval
module "remembers" its most recent hierarchical path and
also keeps track of all path interchanges. The active paths
represent "roads" he can choose at retrieval time and are
signaled by the interchanges DBAM can remember.

As an example let us consider the case of Figure 4. The
user might search all segments under the "a" associative
relationships until he finds An. At this point, An is the
current position and "a" is the active relationship.

User might then start a hierarchical search to find segment
B2 and then segment C. It is possible now to either go back
to An and restart the associative search (that is still active)
or retrieve segment E, or retrieve segment Dl backing up to
segment B 2• The path already travelled is remembered to
gether with all interchange points like An and B 2•

If an associative relationship was defined for segments
type D, the user could stop the hierarchical search and
proceed through this new associative path which would then
become active in place of the previous active relationship
"a"; also all previous hierarchical paths would be lost because
a new global search would be starting.

Qualification8

With qualifications the user can perform selective search
according to specified parameters. A qualification is a re
striction that then may be established in order to selectively
retrieve certain segments or record.

The qualifications provide also the means to pass key
values, relationship names and segment or record types to

I

Integrating Data Base Management into Operating Systems-An Access Method Approach 61

DBAM. Among the entities that may be used to qualify a
retrieval are:

a. a relationship name
b. a segment name
c. a record name
d. a Program Information Block name
e. a key value
f. a field value

Theoretically the user may have a request with no qualifi
cation. All items are either optional or defaulted.

Following are some sample qualifications.

a. To ask for a EMPLOYEE segment:
(*SEGMENT.EQ.EMPLOYEE)

b. To specify a key value:
(*KEY .EQ. 950032)

c. To limit a field VALUE to be less than 45:
(VALUE.LT.45)

d. To include a Program Information Block in the
qualification:

(*PIB.EQ.FT325VlO)

The qualification can be associated by logical AND, OR
or NAND (AND NOT) connectives. For example: the qual
ification

(*SEGMENT.EQ.EMPLOYEE).AND.(AGE.
LT.45).AND.(JOB.EQ.ENGINEER)

means that the user wants EMPLOYEE segments for em
ployees less than 45 years old who are engineers.

The OR connective is used to connect two different qualifi
cations and means that a list merge is to be done. The
qualification

(*SEGMENT.EQ.EMPLOYEE).AND. (AGE.
GT.60).AND.(JOB.EQ.DIRECTOR). OR.
(*SEGMENT.EQ.EMPLOYEE).AND.
(FATHER.EQ.PRESIDENT)

means that all segments that describe either directors older
than 60 or employees who are sons of the president will be
passed to the user.

A set of qualifications is called a QUERY. The user may
store queries in the Schema file and retrieve them at run
time. Therefore, the Schema also contains a "Query Library"
where queries are stored as segments in the common DBAM
format.

When handling a query, DBAM tries to make the better
use of the data base structure. If a global search is made
over an inverted list, list headings are merged or intersected.
If two or more associative relationships are intersected, the
search is made in the shorter path. If sequence data is
specified, the sequence fields in the list headings are searched
and the proper sublist is used as a starting point.

Writing

Writing on the data base is controlled by the Schema
Control data entered at Data Base Generation time. The

Associative relationship "a"

A ---- A -- A A n-2 n-l -- p ---- n+l ---- An+2---- An+3
I
I
I
I
I
I
I
I

.--
I I
I 1
I I
I 1
I I

Bl ----~4 ---- B3 ____ B4
1
!
1
1
1
1

1-----------------------1 1
1 I
I I
I I
1 I
I 1

Dl ____ D2 c

Figure 4-The DBAM retrieval logic

I
I

E

Schema contains descriptions of all relationships, sequence
fields and sequencing options applicable to user data.

USER INTERFACE

Introduction

The user interface with Data Base Access Method involves
a two-sided approach. Data Manipulation Language will be
used by application programmers and systems analysts. Data
Description Language will be a tool for a Data Base Ad
ministrator or other high level professional in the Operations
area.

Data description

A major point in data description is to make language con
text and concepts as close as possible to the real data struc
ture. It is easy to understand data structures as associations
of records and fields by means of relationships, but the intro
duction of new words, structures and abstract concepts
evolved from the computer science practice widens the gap
between systems analysts and Data Management.

A simple language is the best approach. Data Description
Language must be data and structure oriented. One record
for each data base entity, that's all that is needed. Cross
references, duplicate information or redundancies must be
avoided. The authors believe that adapting data description
to high level languages as COBOL or PL/I may make data
maintenance cumbersome and complicated due to the natural
inefficiency of the language context.

The approach used in DBAM is to have a command for
each file, data element, relationship, program or query stored

62 National Computer Conference, 1974

in the Schema file. Information is entered only once. No
double checking or pairing of commands is needed. No extra
training is needed but the general understanding of the
implemented structures and concepts.

Data manipulation

There are some major objectives to be achieved by the
design of an interface between a user and his Data Manage
ment software. First, a common interface in assembler lan
guage must be written so that all other software may com
municate with Data Management at a basic level. From this
level, all language processors may generate assembler lan
guage sequences to access Data Management from high level
language user verbs and specifications.

This approach is widely used in non-database Data Man
agement. It should be no different in data base oriented
Data Management. A user programmer must be able to
OPEN, CLOSE, GET and PUT just like in any other access
method. There are several advantages in using this approach,
like easy transition from non-database methods, fast pro
grammer and systems analyst training and simplicity of data
base manipulation.

As an example, let us consider the basic user interface in
OS. The user program must build a Data Base Control
Block for its data base which contains basic data base infor
mation and behaves just like a standard DCB. It is built
using most of the standard OS keywords as MACRF,
DSORG, DDNAME, EODAD, OPTCD and others. A job
control language DD statement may also contain DBCB
information.

An OPEN statement initializes processing, building up
linkages to the access method and its buffers. SETL state
ment initializes associative and hierarchical searches using
relationship names. GET and PUT are used to access user
data in the data base or insert new data. Also a LOCK

command may be used to update a data element, granting
exclusive access until the operation ends.

CONCLUSIONS

In the present paper the authors intended to defend a number
of points regarding Data Management and Data Bases
and present a real implementation of a Data Base Access
Method in which the concepts presented are implemented.

DBAM runs in 16K bytes under OS, demonstrating that
high effectiveness and low core usage can be simultaneously
attained. Also a wide range of data structures can be imple
mented, from hierarchical relationships to multilist and in
verted list associative links.

Data Base management can be interfaced with the oper
ating system at a very basic Input/Output level. It should
be an access method rather than a program package. Its
communication with the I/O devices should be done at
physical I/O level. The adoption of this philosophy brings
steady evolution from older systems by progressive and
simple change of the access methods as well as keeping the
original operating system philosophy as much as possible.

A Data Base Access Method can be a standard interface
for all the components of the operating system. The whole
non-removable mass storage can be thought as a data base
within which Source Programs, Load Modules, Work Areas,
Message Queues and other system entities are the active
segments. The logic of the operating system can be imple
mented as data relationships between the segments, saving a
lot of programming headaches. Operating efficiency and pro
gramming and systems analysis economies would be achieved
just like any commercial oriented data base applications
program. Core usage and running time would certainly
decrease.

Data Base Management and Operating Systems integra
tion may be the key for future developments in this area.

I

A prototype system for interactive data analysis

by GERALD LEVITT, DAVID H. STEWART and BEATRICE YORMARK

The Rand Corporation
Santa Monica, California

INTRODUCTION

The analysis of small and simple data collections is com
monly accomplished through the application of "canned"
statistical analysis programs. For larger more complex data
collections, however, such programs often do not satisfy a
researcher's needs. In these cases, the additional use of
specially developed computer programs may be necessary.
These programs frequently require modification and re
formatting of data to meet their input requirements. These
additional complexities are compounded when a researcher
attempts to investigate alternative hypotheses or pursue
hunches requiring further transformations or restructuring
of the original data collection. Often, this process involves
the services of a professional programmer making repeated
program modifications and computer runs.

To study these difficulties, a prototype computer system
called the Data Analysis Syst.em (DAB) was developed which
aids researchers in accessing their data and assisting them in
interactively applying a variety of standard analytic proce
dures in a unified and consistent manner. Through a com
prehensive graphical terminal, researchers are able to:
review data in tabular or graphical form, . subset and re
structure the data for hypothesis testing and formulation,
and apply many standard statistical tests.

The DAS, although similar to other systems addressing
a data analysis capability, differs from those systems in
one or two basic respects: (1) the availability of a natural
definitional language to manage and restructure data col
lections; and (2) the ability to easily and quickly form
graphical presentations of data both in their collected and
restructured forms. l --4

This paper presents both the basic design notions used
to develop the system and a functional description of the
facilities it provides.

DESIGN CONCEPTS

Data analysis concepts

The Data Analysis System (DAB) design goals have
drawn heavily upon Tukey's characterization of the data
analysis process. Five of these characteristics important in
the design of the DAS are discussed below.1i

63

1. Summarization

Summarization is viewed as the process of formal sta
tistical description. It consists of using statistical models to
test for hypothesized relationships. Applications of sum
marization techniques include the ability to use the residuals
of summarization processes as data. An example of this in
the DAS is the ability to display the results of a linear
regression and a plot of its residual against explanatory
variables.

2. Exposure

Tukey defines Exposure as the " ... effective laying open
of data to explore the unanticipated". This can be accom
plished by using standard statistical methods on the data
in a flexible way to elucidate new hypotheses and reveal
possibly unknown relationships. It is the ingredient that
has been missing in computer-assisted data analysis because
it requires a level of informality in the use of techniques
not normally considered within the domain of formal sta
tistics.

3. Iterative Nature

The data analysis process is characterized by the re
peated restructuring of data collections and multiple ap
plications of summarization and exposure techniques. This
process is intrinsically iterative-no step is clearly the last
before it is taken. Human judgment is needed at almost
every step. The analyst must be allowed to flexibly choose a
model for summarization and apply it to any set of data.
An important goal of DAB is to facilitate the interplay
between exposure and summarization.

4. Scaling of Data

One of the goals of data analysis is the search for sim
plicity in the description or explanations of relationships
between variables.

To permit the use of simpler analysis models there must
be a facility for easy transformation of variables.

5. Missing Data

Often data used in the analysis process suffer from missing
observations. Dealing with missing values, particularly in

64 National Computer Conference, 1974

multivariate forms of analysis, can be a problem. The pat
terns of missing observations often vary from variable to
variable. Data in. this form can result in a loss of predictive
strength due to the loss of numerous observations.

An important aspect of the DAS approach is to provide
a means of easily identifying,. manipulating and managing
missing observations.

Information language

One of the important goals of the DAS effort was to
produce a system that could be used naturally by an ana
lyst. In order to represent the system to these users and
to allow them to use it in a natural way, we formalized an
information language for data analysis. This information
language presents terms and constructs for dealing with
the data and analysis process. Several of the important
aspects of this information language are discussed below.

1. World View

The world view captured by the information language of
the DAS sees data bases and operations on them as func
tions of the analysis process rather than as an information
retrieval system providing file retrieval. The DAS language
therefore allmvs the user to define, label and indicate how
data groups are to be used in the analysis process without
requiring the user to either understand or deal with the
undfrIying files and data manipulation mechanisms.

2. Nature of the Data

A great deal of the data for analysis is collected and
stored in discretely identifiable units called cases. Cases may
be in part an artifice of the data collection process or in
part a predetermined structure specified by the analyst.

3. Attributes

The data of a case can be conceptually divided into differ
ent categories called attribute classes. The term varible is
often used to connote the same property as an attribute.
An attribute class is defined by its name and associated set
of values which may be: empty; consist of only one datum;
or consist of a large class of related data. For example, in
hospital data the attribute "patient name" would be asso
ciated with one datum, the attribute "patient temperatures"
with series of data and the attribute "patient age" null if that
datum was unobtainable. A particular case, in turn, is com
pletely defined by the enumeration of its contribution to
attribute class values.

4. Sets

Cases that are described by the same attribute classes
may be collected to form a group called a set. Each case in
a set is assigned a unique identifier used thereafter to refer
to the case or a particular attribute value of a case. Con
ceptually, a set may be thought of as a matrix whose rows

are labeled by case identifiers, and columns labeled by
attribute names. Sets play a very important role in the
process of data analysis. Many of the activities of data
analysis specify, construct and evaluate sets.

User interface

Of primary concern in the design and implementation of
the prototype system has been the interface between the
user and the system. It is of utmost importance that the
medium of communication be convenient and appropriate
to the data analysis context, resulting in users feeling as if
they were dealing directly with their problems.

Because the analysis environment requires facilities as
broad in scope as data management, statistical analysis
and graphing, the tools the analyst must use to carry out
these functions can become exceedingly complex and re
quire many steps or procedures to accomplish a single task.
It is with a respect for the power of graphic presentation
and its relationship to other analytic tasks that we have
placed a primary emphasis on user control of the system
through a graphic medium.

The methodology employed in creating the interface
utilizes a display tube with a sensitive surface at which the
user can point to invoke system responses. In addition to
graphs and diagrams, the objects displayed on the screen
include menus of functional options of the system, tutorials,
and requests by the system for action from the user.

A general theme throughout this communication is that
the user should be informed of what is expected of him,
whether or not he has control, and, what the system is
doing. Also incorporated in the user interface is an extensive
subsystem of tutorials used to further clarify the user
system status. Used in another mode, tutorials are presented
to explain the state of the system and the standard con
ventions of the hardware and data analysis.

The interface assists the user in selecting and using the
functions of the system. In turn, it elicits the specific func
tions requested and re-receives control of the system when
a particular function has terminated its activities. Since
functional modules can elicit modules subordinate to them,
another task of the physical user interface is context man
agement. By context management is meant performing the
housekeeping to determine how a function was entered and,
as a result, determine the alternatives and actions necessary
to return to a previous context, go to a new context, or
return to the initial context. An important task of the user
interface is to make this complexity transparent to the user.

.FUNCTIONAL CHARACTERISTICS

The initial display context

The DAS provides its users with two basic classes of
capabilities. The first class consists of operations which are
executed on sets; they include the creation of sets, the
deletion of sets and the display of set data and associated

I

data summary statistics (e.g., max., min., avg.). The sec
ond class consists of a variety of statistical methods which
can be applied to the data contained in sets; these include
the histogram, scattergram, plot, barchart, crosstabulations
(2-way) and stepwise linear regression.

These capabilities are presented to the user for their
selection as options in our initial display context. The
options are organized in two display menus as pictured
Figure 1. A third display menu provides the user with an
added set of options which when selected will generate
tutorial information about the system itself, its operation
and each of its set manipulation and analysis capabilities.

Normally, a user invokes the desired capability by touch
ing the appropriate option name in one of these menus;
when this happens the display context immediately be
comes that of the option selected. If the user first selects
OPTIOl'{ in the tutorial menu, hmvever, the context docs
not change. Instead, the user may then point to an item in
anyone of the other menus to display tutorial information
about it. The user may easily switch from the invoke mode
to tutorial mode and back again by touching the appro
priate sensitive areas.

This initial display context is presented when the user
first logs on to the DAS and when he returns to it from
some other context.

Selection of sets and attributes

All system analysis capabilities require the selection of a
set and one or more of its attributes before that capability
can be executed. The process involves two menus. The
first is a menu of set names. This menu is displayed auto
matically whenever it is needed. On selecting a set from
this menu (using the pointing device), a second menu con
taining the attributes of that set is then also displayed.

SIT OPERAT I ON S

caBATI lilT
OIllT,,"OY UT
SIT SUMMARY DI8PLAY
TABULAR DISPLAY

DA'U ANALYSIS OPTIONS

ANALYSIII

PLOT
HISTOGRAM
BAR CHART
CaOSSTABS
8TIP-IISI RIORISSION

YOU ARI NOI I N I NYOKI MODI
YOU MAY 81LICT ANY 0' THI ABOYI OPTION8

TUTORIALS

COMMUNICAJION 11TH THI DA'U ANALYSIS IIYSTIM IS YIA THI
DIIIPLAY POINTING DIYICI (LIGHT PaN OR STYLUS). USI YOUI
'OINTING DBVICI TO TOUCH THI NAMB (ON THI DISPLAY SUR
"ACII 0' THI OPTION YOUIUH TO INYOKI.
TO AID I" YOUI SlLICTIO" NOTI THI "OLLOWING OPTIONS
WHICH AP'IAR 11TH MOST DISPLAYS:

HIL' - 'ROYIOIII A DBSCRIPTION 0" YOUI CUIIINT STATUS
TUTORIAL - PROYIDBS A SUMMARY 0' THI OPTION SlLICTlD

to C!'r~!!! ~!)!)!!!O!t4!. !N!,Q!!~~'!!OM !!!'OR! !Tl!t'!'!!IIG. !OUCH
TH. -O'IRATIONS" & -SYSTIM8- OPTIO"S IN THI TUTORIAL
..... U AlOYI.

Figure 1

A Prototype System for Interactive Data Analysis 65

SET liAMES

S,,""TEllE
COPI ES
I' I lil'EGAI'
r;OTFII'N
I'ORMSORT

SA\\THlE

PLOT 01 SPLAY

ATTRI Bl'TE liA1'ES

ElAPTI!'1E

IlISPlAY PLOT l'SINU-'l"AX & "'l~ ATTKIBl"rE VAlU;:S

SELECT ",AX'" "'IN ATTRIBl TE VALl'ES

YOl' ",AY SElECT AI' ATTRIBrTE FOR THE AXIS IliOICATEO

YOU ",AY SElECT ONE OF THE ABOVE OPTIONS

Figure 2

The desired attribute can then be selected for the capability
about to be executed.

The actual disposition of the attribute once selected
depends on the context in \vhich the selection occurs. If it
is in a preplot context, for example, the attribute name
will flash along side the axis on which its data will be plot
ted. Figure 2 illustrates this selection process.

In Figure 2 the attribute NUMBRIOS of set SAWTELLE
was selected for plotting along the X AXIS. Kote that
both the set and attribute names selected are displayed at
the bottom of their respective menus. The small arrow at
the sides of each menu \"hen touched will cause a new set
of names to be displayed.

Loading the data analysis data base

Data are entered into the DAS through a batch compo
nent called the Data Base Loader. The main function of
this component is to transform the input data collection
into an output data file organized to facilitate interactive
data manipulation and display in the on-line mode. This
latter data file is referred to as the Data Analysis Data
Base (DADB).

In addition to forming the DADB, the loader also con
structs a dictionary defining set and attribute names,
identifies and transforms missing values to a unique form,
provides a facility for selecting random subsamples of cases,
and stores a description of the data collection for eventual
retrieval and display in the interactive mode. This added
information is provided to the Loader in the form of a
data definition directory.

Creation and description of sets

The set formation facility in the DAS provides a mecha
nism for naming and preserving data relationships in the
system. As the analysts use of the data becomes more and
more qualified, he requires a mechanism to express these
qualifications and name them. The set formation facility
also serves the purpose of allowing the analyst to delete
data items and cases from the body of data he is working
with to provide a simpler analysis or to concentrate on
specific variables. Set formation provides a method for
recombining data sets and attributes to produce aggre
gate sets.

66 National Computer Conference, 1974

Command Elllpr(lBBion Set gpecification E:r:pre88ion
I . I

I C S I I . I
REATE ET A FROM Sl' S2' S3"" SN

WI-:-H ATTRIBUTES:

1 """",. $p •• i" •• "" .. ' i •••

J
WHERE:

} Membership Specification E:r:pre88ion

Figure 3-8et formation language

1. Set Formation Process

Set formation is achieved by the use of a language. This
language, in turn, drives the data management system. The
set formation command, although having a superficial ap
pearance of a programming language, is a definitional
command. It describes the characteristics of the resulting
set.

In the present implementation of the Data Analysis Sys
tem the user types into the terminal the command form to
be executed. The system saves the command form for every
set created and permits easy retrieval for editing and re
execution as well as set description. In addition, during the
set creation process a set of basic summary statistics are
computed for every attribute in the set created. These are
also retrievable for review.

2. Syntax and Semantics of Set Creation Language

Every statement in the command language consists of
four expressions:

-Command expression
-Set specification expression
-Attribute specification expression
-Membership specification expression

The manner in which these expressions fit together in a
statement is represented in the paradigm in Figure 3.

Command Expressions

The command expression of the statement specifies that a
set is to be created. This includes a variety of forms, i.e~,

FORM SET, FORM, CREATE, CREATE SET. The
number of sets and their function in the statement is deter
mined by the command scope.

Set Specification Expressions

Figure 3 is an illustration of the form of the set formation
command. In the example, the "A" and "SI, S2, S3, ... Sn"
are sets in the set specification expressions. "A" is a char
acter string chosen by the user to be used as a name for the

set to be created. This name will be added in the dictionary
of set names. "SI, S2, S3, ... Sn" is a series of character
strings representing names of sets already created and
maintained by the system.

A ttribute Specification Expressions

Attribute specification is accomplished by functional
expressions involving attributes of the sets specified. The
attribute specification expression of the command, that is,
"A! = f(Sl, S2, Sa, ... Sn)" in Figure 3 defines a character
string "A!" which is to be the name of an attribute of the set
being created. It also specifies, from the source sets, which of
their attributes are to be used in forming the object attribute.

The source set attributes to be used can be manipulated
before being included in the new set. The mathematical
functions allowed for this operation are the standard set
available with FORTRAN compilers. In addition to these
mathematical functions Boolean sub expressions are per
mitted to define alternative functional forms for an attri
bute. In this manner alternative functional forms can be
used based upon the value set for specified attributes in
each case.

Membership Specification Expressions

The membership specification in the command applies
a restriction on membership. This specification limits mem
bership by filing, in the object set, only those cases whose
attribute values satisfy the Boolean expressions of mem
bership.

:Membership specification is accomplished by a Boolean
expression of attribute values of the members of the sets
specified. This expression follows a "WHERE" clause and
results in the command being executed only on those cases
of the specified sets where the conditions of the logical
expression are found to be true.

3. Formation of Subsets

One of the uses of the set formation language is the crea
tion of subsets. This is accomplished by the use of the
membership specification expression. Cases for the subset
are chosen on the basis of their attributes values satisfying
the Boolean expression. Those cases whose values do not
satisfy the expression are not included in the subset.

4. Formation of Sets by Union and Intersection

In addition to creating proper subsets the set formation
language can be used to define sets that are formed from
more than one parent set. This type of formation can· be
performed by either the union or intersection operation.
When each case (or observation) of data is included in the
master set (i.e., the DADB) at loading time a unique identifier
is assigned. This identifier is perpetuated throughout all
sets in which an observation may be defined as a member.

When the set specification expression contains more than
one set name for the source set, a union or intersection

I

specification is included. These processes are performed on
the identifier attributes in the source sets and are used to
reassemble data groupings in a building block fashion or to
locate those observations contained in sets of data repre
senting different characteristics.

5. Set Summary Display

As discussed earlier, when a set is created a group of
summary statistics are computed for each attribute. The
set summary display option permits the user to retrieve
these statistics as shown in Figure 4.

By changing set names the user can selectively recall
related attributes from other sets and easily compare the
statistics. Figure 4 shows a case where the user has called
up 2 attributes (CPUSCNDS, ELAPTIME) for 2 different
sets (SAWTELLE, FINNEGAN). In this case FINNEGAN
is a proper subset of SAWTELLE and the set summary
facility is being used to compare the two sets.

A nalysis of sets

The Data Analysis System allows the user flexibility in
analyzing and viewing his data and its interrelationships by
providing the following analytical packages:

• Two variable plots with curve fitting
• histograms
• barcharts
• cross tabulations
• stepwise regression

The following is a review of the above tools and their
associated features.

Two Variahle Plots

To obtain a two variable plot the user requests the plot
option and chooses the two attributes for the respective

SET"A!o'F
ATTSti".
::::::::>

"'1"I~r'"
"'AlCl""l'","
RA!'GE
MEAI'1
STAI'OEV
VARIANt
SA"'PSIZ
R~EAliSO
::::::::>

SET ""''''ES

S4'ATEllE
COPI,S
FISl"EGAN
I'OTFI1\N
?OOR"'SORT

SET DISPLAY

ATTRIBl'TE ~A"'ES

PRSTOPT~
CO?VOPTIi
SORTOPTN
CPt:SCSDS
HAPTIME

Ft APT'''''F

S4llT£llF" ~Al\TEHE SAIITFllE FII'''£G41' FINNEGAN
CPl'SCNOS SORTOPTN HAPTI"'E CPl"SCI'OS ElAPTIME

========== ========== ========== ========== ==========
0.00

283.00
283.00

25.49
82.U

3g;::~:
3448@2.43

t===::==:~

0,00 0.00
1.00 3519.00
1.00 3&111.00
0.03 &&1.30
0.18 P-14 .42
0.03 !e32!!5.:H

18.00 '111.00
2.00 12231138.00

========== ==========

Figure 4

0.30 18.00
263.00 34U .00
282.10 339@".00

42.0'1 112.18
n.n U8.21

101l'.21 133008.00
3\1.00 39.00

332114.n 48823@24.00
==:======= ======:===

A Prototype System for Interactive Data Analysis 67

70
,....

63 ,....
56 r- r

,....
'f9

F r- ,....
-R

.. 2 E
f-,-- -,....

Q
U 35 E f-

-
N - ,....
C 28 y r-,....

21

I ..

7

- llL o
15.00 2'+.8'+ 3 ... 68 '+'+.52 5'+.36 6'+.20 7'+.0'+ 83.88 93.72

AGEINOI
SET: T5017

..
"IN- 17.00 NO. OF INTERVALS- 25
"AX"- 96.00 INTERVAL SIZE'" 3.28
"EAN- '+9.1" CHI-SQUARE- 229.63
VARIANCE- 358.52 DEG. OF FREE.- 22
STD. DEv. - 18.513 NO. OF POUlTS- 905 ... ~ .. .

Figure 5-Histogram display

axes of the graph (as shown in Figure 1, 2). The system
automatically computes the grid using the minimum and
maximum values of the chosen attributes. When the com
puted scattergram is displayed, the user receives, in addition
to the graph, a set of statistics for each attribute. The sta
tistics displayed include: minimum data value, maximum
data value, sample size, mean, standard deviation, variance.

With the plot displayed, the user may rescale the grid
to focus attention on different sets of ranges. This option
is used, for example, when there are outliers or clustered
data values.

Also, after the plot appears on the screen the user may
choose to fit the data with a line. By choosing this option,
the system computes the best fit of the data in the form:

y=ax+b

The computed line is displayed along with values for a,
b, and the statistics indicating "goodness of fit" (i.e., corre
lation coefficient, r2).

Histogram

To compute and display the frequency distribution for
an attribute having numeric values, the user indicates this
to the system by choosing the histogram option and the
attribute for which the histogram is to be drawn. The histo
gram is computed by using the maximum and minimum
attribute values and the sample size. The computed histo
gram is displayed along with relevant statistics (see Figure
5).

When the frequency distribution has been displayed, the
user has the option of rescaling the grid (if, for example,
he det.ect.s an outlier) and redisplaying the histogram using
these new values. As in the plot option, the user may recom
plete and display the histogram as often as necessary to
achieve desired results.

68 National Computer Conference, 1974

Barchart

The barchart option allows the user to obtain a frequency
distribution display for an attribute having discrete numeric
or alphanumeric values. Along with the displayed barchart,
the values for relative and absolute frequency are displayed
similarly to the histogram. If the data is numeric, the follow
ing statistics are also displayed: minimum value, maximum
value, mean, number of observation, variance, standard devia
tion.

Crosstabs

The crosstab option of the DAB gives the user the ability
to display a 2-way crosstab. After indicating to the system
that he wants the crosstab display, he chooses the two at
tributes which are to be cross tabulated. At this point the
user has two options. He can let the system automatically
generate the crosstab by computing the row and column
values from the attribute data values or he can choose the
values for the rows and columns explicitly.

Along with displaying the absolute frequency count for
each cell, the user can indicate that he wishes the system
to compute and display one of the follo'wing relative fre
quency percentages:

• percent of rmv total
• percent of column total
• percent of total sample size

The crosstab is displayed along with rmv and column
totals, and relevant statistics for each attribute.

After the crosstab has been displayed, the user has the
option of changing the ruw amI/uf column values, choosing
a different relative frequency count to be displayed and
redisplaying the crosstab with these new values. As in the
other packages, new crosstabs may be computed and dis
played as often as the user desires.

Stepwise Regression

The stepwise regression option is entered when the user
indicates to the context manager to perform a regression
analysis. Upon entering the package, he chooses a dependent
variable and up to 29 independent variables tD be included
in the analysis. After the attributes have been chosen, the
user has the option of setting his own tolerance limits for
the regression (i.e., F-to-enter, F-to-remove, tolerance level
& maximum number of steps), or of letting the system use
its default values. The regression computation may proceed
in two different ways: (1) The user can direct the system to
perform the regression automatically letting the system
choose the variables to be entered or removed at each step
until the analysis is complete (i.e., one of the tolerance
limits has been reached) or; (2) He can explicitly choose
the variables to be entered or removed at each step, thus
allowing him to have control over the variables to be entered
or removed regardless of the tolerance levels.

This option is usually used when a definite modei is being
pursued.

At each step of the regression, or for the last step if the
first mode is chosen, the following information is displayed:

• step number
• variable entered/removed
• standard error of the estimate
• multiple r
• analysis of variance table
• list of variables in the regression equation
• list of variables not in regression equation

When the regression is completed, a summary table is
produced which summarizes the results of the regression
at each step.

Also, at any point during the regression analysis, the user
can view the following statistics are displayed for each
variable in the regression:

mean, standard deviation, correlation
with other variables, covariances with
other variables

After the summary table has been produced, the user can
display a tabular listing of the residuals and plot the resid
uals against any of the variables in the regression.

If the user discovers either at the end of the regression
or during the regression that he has not chosen the correct
variables, or that the tolerance limits should be changed,
he can stop the regression, change the relevant information
and restart the analysis. This can be done as often as is
necessary to test the hypothesis.

IMPLEMENTATION

Reliance upon existing software

It was our intent, from the outset of the Data Analysis
project, to capitalize upon as much existing software as
possible. We felt that by doing this we could direct our
efforts to those portions of the system which were unique
and had not been addressed before.

The following are several highlights of this approach:

• Implementation Language

The major part of the Data Analysis System was
written in standard FORTRAN IV. The decision was
made to use FORTRAN since most computer systems
support it and thus provided options for portability.

• DAS Language Processor

The command language developed for the Data Analy
sis System is translated using AP AREL6 (A Parse
Request Language). APAREL is used as a series of
commands in the standard PL/1 language. AP AREL
was chosen since it not only freed us from developing a

language parser of our own, but also avoided the de
velopment of a unique translator for the DAS language.

• Graphics Software

All of the graphics manipUlation and display was ac
complished using the Integrated Graphics System
(IGS)1 developed at The Rand Corporation. IGS is a
series of graphic routines callable from languages with
standard OS /360 linkage.

• Analysis P~kages

Whenever possible, the analysis packages provided by
the system were taken from standardized, widely used
packages and adapted to the interactive environment
of the Data Analysis System. For example, this was
done with the stepwise regression facility. For this we
used the stepwise regression package of the BIO::\IED8
Library (BMD02R).

Hardware and systems

The prototype system has been implemented at The
Rand Corporation on an IB:\1 360 model 65 computer
under OS/MVT. The total amount of storage needed to
run the system is 228K.

The hardware used for the graphical displays in the
prototype system is the Rand Video graphics System (VGS)9
and a pointing device. The VGS consists of an interactive
graphics console comprised of a cathode ray tube (CRT)
and a keyboard. The pointing device can be either a data
tablet or a light pen.

EXPERIENCE

Variety of users and responses

The Data Analysis system has been exposed to a variety
of data bases, researchers, and research methodologies.
These applications have included: the analysis of medical
research data, studies in computer performance analysis,
studies in the production of software and use in econometric
and management sciences.

The response of these users to the system has been diverse
which, in part, can be explained by the diversity of the
data analysis process itself, i.e. there does not seem to be a
single or predominant approach to analyzing a body of
data. Significant variance in response seems also linked to
both the analysts expectations from the data and the pre
conditioning of previous analysis experiences.

A Prototype System for Interactive Data Analysis 69

Two possible appeals of system

Some found the system most useful for data description
and general "getting acquainted" with the data before
applying in depth analysis techniques not supported by the
system. For these users, the histogram, barcharting and
plotting capabilities were used extensively to gather insights
before applying more robust tests to the data.

Others found the system more useful for searching for
unanticipated relationships in the data. These users found
the system useful in forming hypotheses about the data
and the phenomena under investigation. In some cases they
felt that the data description capabilities of the system
were better served by a batch processing system. These
users said they generally began their analysis by performing
data description on all variables routinely and were not
disposed to performing this activity in an interactive mode.
They felt this process was too routine for them to be inter
acting directly \"vith the computer.

ACKKOWLEDG::\1E~T

The authors \vould like to extend special thanks to Tom
·Wisniewski of RAXD who was an integral member of the
team that designed and implemented the Data Analysis
System. Thanks are also due Carol Johnson of RA~D who
programmed the cross tabulation module of the system.

REFEREXCES

1. Shure, G. H., TRACE-Time Shared Routines for Analysis, Classifi
cation and Evaluation, System Development Corporation, TM
2621/001/00, October 1966.

2. Miller, James R. III, DATANAL: An Interpretive Language for
On-Line Analysis of Empirical Data, MITRE Corporation MTR-
487, September 1967.

3. Hall, D. J., and G. H. Ball, "PROMENADE-An Interactive
Graphics Pattern-Recognition System," In Proceedings of IFPI
Congress, 1968, Edinburgh, Scotland.

4. Bowman, S., and R. A. Lickhalter, "Graphical Data Management
in a Time-Shared Environment," Proceedings SJCC, 1968, Thomp
son Press.

5. Tukey, J. W., and M. D. WiIk, "Data Analysis and Statistics:
An Expository Overview," Proceedings, Fall Joint Computer Con
ference, 1966, San Francisco, Spartan Books, Washington, D. C.

6. Balzer, R. M., and D. J. Farber, AP AREL--A Parse Request
Language, The Rand Corporation, RM-561l-1-ARPA, September,
1969.

7. Brown, G. D., and C. H. Bush, The Integrated Graphics System
for the IBM 2250, The Rand Corporation, RM-5531-ARPA, Oc
tober, 1968.

8. Dixon, W. J., Editor, BMD-Biomedical Computer Programs, Uni
versity of California Press.

9. Armerding, G. W., and T. O. Ellis, The Video Graphics Project,
The Rand Corporation, D-17788, September, 1968.

I

Quantification in a relational data system*

by NORTON R. GREENFELD

University of Southern California
Marina del Rey, California

The desire to express interrelationships between symbolic
objects has been with us for some time, along with exploration
of relationship systems which are operational in a computer.
These systems coalesced under the term relational data
systems (RDS); and a technology for dealing with this kind
of data evolved. Relational systems have been through
feasibility tests, experimental usage1 and should become
generally available to the computing community in the near
future. The advantages which account for the expanding use
of RDSs are a simple, formal definition which allows associ
ative processing, extreme flexibility in both structure and.
use, an ability to be efficiently implemented, and a notation
and conception which is not dependent upon any particular
physical data representation.

Earlier stages saw the use of relational systems in computer
graphics,2 natural language systems,3,4 general data manage
ment tasks, 1i,6 and artificial intelligence research. 7 ,8 Experi
ence with such systems has shown, however, that while the
technology is adequate for small problems, for practical work
it needs further development, especially in the area of
quantification over relational forms.

By quantification here we mean substitutional quantifi
cation, as opposed to other kinds such as referential or ob
jective quantification. These others involve general problems
of deduction, a topic much too large for this paper. The
limitation to quantification over describable entities leaves
us none of the philosophical problems, but only ones of
engineering. Substitutional quantification is still important:
it is our only means of summarizing, and searching across
large portions of a data base. Thus, "Is there some Nee
paper longer than 20 pages?" or "Which NCC papers discuss
data base problems?" are examples of simple queries with
quantifiers. A more complex example might be: "How many
NCC papers in this conference reference at least four NCe
papers which reference at most three other NCe papers?"
Methods for making queries like these efficient have been
investigated as part of the REL project and are incorporated
into the current REL English system. 9 This paper will

* This research was carried out as part of the REL Project, principal
investigators Bozena H. Dostert and Frederick B. Thompson, at the
California Institute of Technology. It is supported by Office of Naval
Research Contract NOOOl4-67-A-0094-0024, National Science Founda
tion Grant #GH-31573, Rome Air Development Center Contract
#F30602-72-C-0249.

71

discuss the nature of the problems and the types of solutions,
along with some implications for relational systems design.

RELATIONAL DATA SYSTEMS

The following brief overview presents a vocabulary of
relational systems. An RDS consists of a set of objects
(often called entities, items, atoms, etc.) and a set of relations.
Objects are primitive in the sense that they have no further
structure, but can only be distinguished from one another
and enter into interrelationships with each other. A relation
is a set of ordered tuples (with the same number of elements
in each). The degree of a relation R, written deg(R), is the
number of elements in each of its tuples. A relationship is
any single tuple in a relation, denoted by [R Al ... An],
where R is the relation name and Al through An form the
tuple which is contained in R. Mathematically, given sets SI,
... , Sn, an n-ary relation is a subset of SI X ... XSn. Si is
called the ith domain of the relation. Most RDSs single out
the relations of degree 1 and call them sets or classes, and
this convention will be followed here.

The primitive operations usually allowed in an RDS are:

1. creation and deletion of objects (or equivalently, the
acquiring of the name of a heretofore unused object
from a presumably infinite but fixed universe of
discourse) ;

2. creation and deletion of relations;
3. the addition or deletion of a given relationship to a

given relation;
4. a predicate which determines if a given relation con

tains a given relationship;
5. a retrieval function which, given a partially specified

relationship, finds all relationships which match. A
partially specified relationship means one in which
some subset of the components of that relationship
have been replaced by free variables.

Implementation questions in the past have dealt mainly
with problems of efficient representation and access algo
rithms. The earliest representations were the LISP property
list :10 each atom had associated with it a list of the form
(prop1 value1 prop2 value2 ... propn valuen). Semantically,
binary relations (prop) associate the atom with (value).

72 National Computer Conference, 1974

Operationally, given an atom and a "property," a linear
search was conducted to find the value. Furthermore, only
this particular access path is facilitated: to find the set of all
pairs associated by a given property requires an inordinate
amount of effort.

The need for symmetrical access in an efficient manner
was· first recognized by the LEAP originators. 8 This system
basically used hash-coding and redundant data storage to
achieve outstanding performance. The implementation saves
binary relations (roughly) by hash-coding any two of the
three elements involved (in a relationship) together to get
a location to store the third element. Thus, the data is
triply redundant and access by any two items is fast. Access
by any· single item was facilitated by further structure,
essentially a threaded list through the hashed items. Other
implementations of relational systems represent relations as
vectors of n-tuples, or matrices.4 ,12 This representation is
symmetrical, relatively simple and slow (by comparison)
for retrieval of single items, though fast for bulk retrieval
or update.

The relational systems mentioned above have all imple
mented substitutional quantification by means of explicit
generators. The meaning of the term is clear from the follow
ing algorithmic interpretation of the predicate calculus state
ment "For all x, P(x)":

1. generate first (next) object in the universe
2. if no more to generate, exit with value "true"
3. bind the variable x to the name of the generated object
4. evaluate P(x)
5. if value is "false," exit with value "false"
6. otherwise (value is "true"), continue at Step 1.

Thus the classic quantifiers, for-all and for-some, can be
interpreted as rather simple algorithmic forms. Note that
the interpretation of P in no way depends upon its being
used inside the scope of a quantifier, an important system
simplification. The diversity of desired quantifiers has re
quired other forms, and to describe their interpretation as
generators we will use LEAP as the prototypal example.

LEAP has items, sets, and triples. Items are atomic, and
objects are either items or numbers. Sets are unary relations,
distinguished in syntax and implementation. A triple is a
notation whose first element is the name of a binary relation
and whose second and third elements are the components
of that relation.

LEAP is embedded in an ALGOL-like language and uses
the following syntax for a triple: [A. 0 = V], signifying" Attri
bute of Object = Value." A retrieval can be requested by
replacing anyone or two elements of a triple by a variable
name in an appropriate LEAP statement.

LEAP has one construction for a quantified expression,
the (loop statement) whose syntax is

FOREACH (associative context) DO (statement>

The (associative context) is a conjunction of Boolean expres
sions and retrieval triples. The operation of this construct

can be described more easily in terms of a paraphrase:

FOREACH (binding list) SUCH THAT (associative
context> DO (statement>

where (binding list) contains those variables mentioned in
(associative context) that are not already bound to some
value. (This latter syntax is actually used in SAIL,ll a
descendant of LEAP.) The processing of this statement
entails considering each of the conjuncts in the (associative
context) in sequence, and using them both to filter values of
variables already found and to retrieve possible values of
other variables. The result of this process is a set of simul
taneous values for all the variables in (binding list), each of
which satisfy (associative context). The iterative execution
of (statement) then takes place, with (binding list> variables
being bound appropriately each time.

Note that in this LEAP operation, (associative context)
is stated in terms of the primitive relational retrieval request
of single relationships, and the system in fact implements the
combined request by translating to that level. Both this
imposed conceptual view and the implementation originate
problems, which will be discussed in the next section.

PROBLEMS OF SIZE

The implementation of relational structures described
above and the interpretation of quantifiers as generators have
proved adequate in the past, but new applications with new
requirements have revealed deficiencies. In most cases the
problems are ones of efficiency, though there are also some
conceptual implications.

The most immediate efficiency problem is one of size:
today's data bases dwarf yesterday's. This large size means
that a hierarchical memory environment is important, and
dramatically influences the relevant operational character
istics of algorithms. Since the larger memory stores are
slower and have more inertia than the smaller, primary
stores, an algorithm's reference pattern to memory influences
its elapsed time for execution. Particularly in the case of
huge amounts of data, a slow execution time may be deemed
equivalent to "impossible."

The LEAP hash-coded data structure was designed spe
cifically with these problems in mind. For any single request
to the data base, usually only one block of data need be
brought from secondary to primary memory. That is, the
algorithm references locations that are close to the desired
data. None of the other implementations are as efficient for
this purpose.

However, another important time for efficiency occurs
during a quantified search, when a great deal of the data base
must be checked. This is where the explicit generator method
may be ineffective. To take the simplest case, for example,
suppose we wish to find the image of a given class C, already
known, under a given binary relation R. The LEAP statement
would be

FOREACH x IN C AND [R.x = y] DO PUT y IN IMaGE.

I

Execution consists of generating the next member of the
set C and binding that value to x, then doing an associative
lookup on R and x, and for each value y found, adding it to
the class IMAGE. In this simple case the best that LEAP
can do is to reference some part of the relation R for each x
value. If the data about R all fits into main memory simul
taneously, then it will likely be brought in once and left
there. However, when the relation R contains more data than
will fit, a frequent occurrence, the reference pattern of this
generator algorithm becomes unbearable.

To make this clear, suppose the routine has available K
areas in main memory in which to place blocks of data, and
suppose the data about relation R occupies M*K blocks.
To find the value of R.x for a given, generated x, the system
determines which block of R contains the information, and
if that block is not already in main memory, brings it in.
Since hash coding algorithms work best with uniformly dis
tributed hashing functions, we can assume that any of the
M*K blocks is equally likely to be required. Thus there is a
probability of l-l/M that a block must be brought in from
the slow secondary memory for each value given x, that is,
each member of the class.

The implications of this statement become more apparent
when one considers that it is now easy to find data bases
with classes containing from 1,000 to 100,000 members, and
relations which are 10 to 100 times larger than available
main memory. In these circumstances the hash technique
will perform 1,000 to 100,000 input/output operations, while
other methods, described below, require from 100 to 1,000.

The argument can be made, of course, that future gener
ations of computers will have much larger primary memories
and so this particular problem will disappear. What is not
taken into account is that as our machine capabilities grow,
the problems we wish to tackle will grow proportionally or
even faster. In the case of memory size, larger capacity will
make small problems extremely easy, but data bases are
growing faster than our ability to manipulate them. The
techniques mentioned here and elsewhere, and the foreseeable
hardware developments, do not even allow us to deal effec
tively with the really immense data bases already available
today.

SIZE PROBLEM SOLUTION

The solution to the memory reference problem has been
rediscovered many times: group requests both spatially and
temporally. For special purposes one can arrange the physical
representation of the data and the accessing algorithms to
maintain a locality of reference. In an RDS this means
identification of those basic operations performed on relations
by quantifiers and implementation with algorithms that have
the appropriate characteristics. These operations become
new "primitives" to the system and thus force new con
ceptualizations of the environment which have impact beyond
the immediate reason for their introduction. Some of these
implications will be mentioned in succeeding sections.

A complete list of primitive operations for a relational

Quantification in a Relational Data System 73

system falls beyond the scope of this paper, but some ex
amples vvill convey the intent. Suppose Rand S are n-ary
and i-nary relations, respectively.

1. the permutation of R by k [k a permutation of the
integers 1 through nl is that relation T such that if
(R1, ... , Rn) is in R then (R(k1), ... , R(kn»
is in T.

2. the union of Rand S (both n-ary) is that relation T
which contains (T1, ... , Tn) if that relationship is
in either R or S.

3. the restriction of R by S is that relation T such that
if (RI, ... , Rn) is in Rand (R1, ... , Ri) is in S
(and i< =n), then (R1, ... , Rn) is in T.

These new operations subsume certain quantified state
ments, similar in effect to a Skolemization. The use of these
operators allows system recognition of particular quantifi
cational circumstances, and thus efficient handling. If, in
fact, most use of quantifiers can be buried within such
primitives, then extremely effective relational systems can
be built and utilized over a variety of domains.

To consider the problem of efficient implementation, we
use the restriction operator as a concrete example. In general,
the algorithm must find all relationships in R whose initial
components match some relationship in S. Because of the
statement of the operation, an obvious implementation sug
gests itself. If a relation is stored as a vector of tuples, the
classic technique of sort/merge works marvelously.

The analysis of input/output activity is enlightening.
Suppose that R is stored on Rb blocks of secondary memory
and contains Rr relationships. In most systems, the number
of relationships per block ranges from 100 to 1,000. Similarly,
S occupies Sb blocks and contains Sr members. Since we are
considering the case in which Rand S are very large compared
with available main memory, the hash-code technique must
input approximately Sr blocks of R (one for each element
of S). The dual algorithm will require Rr blocks of S.

A sort of R needs about 2Rb*log(Rb) blocks to be input
and output to a temporary· file, and so the entire process of
sorting Rand S, and then merging the two vvill require

2Rb*log(Rb) + 2Sb*log(Sb) + (Rb+Sb)

input/output operations. To compare these figures, assume
for the moment that Sb = Rb = nand Sr = Rr = Kn (with K
between 100 and 1,000). Then the sort/merge performs on
the order of n*log(n) operations, while the hash-code requires
Kn. Under these circumstances, assuming K at the minimum
of 100 and only 10 frames of main memory available for the
sort, the breakeven point between these two algorithms is
n = 10 i 24. For any smaller relations, sort/merge is better,
and for any larger ones the hash coding is again more effi
cient. Obviously even data bases of the near future will be
much smaller.

There is another algorithm which beats both of the
previously mentioned ones over a certain range of data base
sizes. Called the SUBSET algorithm, it also requires the
storage of a relation as a vector of tuples. Using the same

74 National Computer Conference, 1974

notation as before, suppose the algorithm can ascertain that
it has enough main memory available for K blocks of a
relation. It can divide the relation R into subrelations,
each of which occupies (K-2) blocks or less. The algorithm
then iterates over these subrelations, and for each, brings it
into main memory in its entirety. It uses one frame for
input of S (one block at a time), and the second free frame
for an output area. (There is a dual algorithm that sub
divides S.) This algorithm obviously displays more knowledge
and control of its environment, but in return for this com
plexity, the algorithm can be a factor of five or so better
than the sort/merge algorithm. This algorithm requires
Sb*ceil(Rb/K) (ceil means next-greatest-integer) input/out
put operations. This algorithm is of order n i 2 in I/O oper
ations (and CPU usage), and thus sort/merge is theoretically
better in both. However, experimental results with the REL
system prove that the SUBSET algorithm is the one to use
for relations just a few times larger than available main
memory. The REL data base manager actually computes
the expected resource drain from each of the above algorithms
and dynamically invokes the best one.

Notice that the physical representation of relations de
pends upon the algorithm used, and this in turn upon the
predominant operations applied. As seems to be the case
elsewhere, no general technique satisfies all requirements
and circumstances. A well-designed interface to an RDS,
however, with additional knowledge of the pecularities of the
situation, may enable the RDS itself to select the appropriate
representation.

OTHER KINDS OF GENERAL OPTIMIZATION

Once the door is opened on the processing of quantified
relational expressions, several general kinds of possible optimi
zations emerge. These have little relationship to the problem
of size discussed above.

The first, and somewhat obvious, optimization is - the
removal of constant expressions from quantified phrases.
This "do-loop optimization" is well-known by compiler
writers, and consists of moving expressions in a hierarchical
iterative structure outward as far as possible. Thus the
statement

FOREACH x IN setl DO
FOREACH y IN set2 DO

If sister of x = mother of y THEN PRINT
(x,y)i

should be translated to:

FOREACH x IN setl DO
BEGIN temp ~ sister of Xi

FOREACH y IN set2 DO

END;

IF temp = mother of y THEN PRINT
(x,y);

In the particular case of relational systems, the primitives
are small in number and have no side effects, and thus are

ideal candidates for this kind of iterative optimization. There
are basically two means for this. The first is a prepass over
the quantificational form which identifies constant expres
sions and moves them, creating temporary variables as
needed. The second method is akin to the operation of the
Vienna Definition Language. Here each expression, when
evaluated, replaces itself on the expression tree. Before every
iteration, those expressions dependent upon the iteration
variable get restored in the tree. Thus constants, relative to
that particular iterative block, get evaluated only once, the
first time through. This is the technique used by REL
English language system, since the semantic operations are
large and relatively few in number. With either method,
though, there are large potential savings of execution effort.

The second general optimization area deals with ordering.
This term covers several different problems and these espe
cially pinpoint the need for considering relations as real
entities with properties and primitive manipulatory oper
ations. As an example of one type, consider the question of
how to find the image of a class C under the composite re
lation RS. The system can either (1) find the image of C
under S, then the image of the result under R, or (2) it can
compute the composite relation RS and then directly find
the image of C. This type of problem can be termed a "linear
ordering" optimization. It is exactly here that the "explicit
generator" view of quantification tends to hide the problem.
The linear ordering optimizations deal with the associativity,
commutivity, and distributivity of high order relational
primitives. No research on linear ordering optimization has
yet emerged in the literature.

Another type of ordering problem is one of simultaneous
relational equations. In this case the system is asked to
retrieve some objects that satisfy multiple relationship con
straints. Thus, "find all x such that P(x)" and P(x) is a set
of relationships, possibly including some internal quantifi
cation. These constraints, in fact, are used to guide the
search. The problem concerns finding an optimum evaluation
order, or, if the system allows simultaneous execution
streams, finding the combination of parallelism and se
quentiality that is optimum. The problem complications are
that any particular atomic constraint can be used either
to retrieve items or to filter already-found items, and there
are differential cost functions of many parameters. A simple
example, again from LEAP, is that of finding the sons of Bill:

FOREACH father. x = Bill AND sex.x=male DO
PUT x IN sons

The order in which the clauses are processed may have a
marked effect on performance, since it is expected that there
will be many more males than children of Bill. But the
analysis is much more complex, depending in part upon the
asymmetries of access. Simultaneity optimizations are par
ticularly needed in the pattern matching programs contained
in modern artificial intelligence languages12 ("patterns" being
partially specified relationships). Some research on the prob
lem in the static, compile-time environment has been done,13
and the Automatic Programming project at the University

I

of Southern California's Information Sciences Institute14 is
currently investigating this area in the dynamic context.

CONCLUSION

This discussion of relational forms in quantificational situ
ations has shown that efficient processing is possible, but at
the cost of complexity. Each data representation and pro
cessing algorithm pair have a certain range of circumstances
where that pair is appropriate. Relational Data Systems,
then, can be built with one and only one such pair present,
but this means a restricted domain of applicability. For a
widely diverse domain, the system must be able to in
corporate a variety of forms. To prevent difficulties in the
use of such a collection, a stable, general interface is needed.
This relational language should be independent of the par
ticular representations chosen, and certainly should not
hinder the use of some class of representations. It is the con
tention of this paper that the simple paradigm of quantifiers
as explicit generators obstructs system recognition of some
important situations and programmer recognition of the
independent reality of relations.

The goal for future designers of Relational Data Systems
consists of both a general descriptive language for relation
ship structures, and a system that implements those struc
tures in appropriate ways, depending on the total environ
ment. In the near future, of course, configuration decisions
will be made by the programmer, but research into dynamic
system decision-making may enable the programmer to ignore
the problems of physical data representation, knowing that
this will be done efficiently, and concentrate instead on the
harder problems of logical structure.

Quantification in a Relational Data System 75

REFERENCES

1. Final Report AUER-1776-TR-1, Relational Data System Study,
Auerbach Corporation, Doc. #RADC-TR-70-180, July 1970.

2. Rovner, P. D., and J. A. Feldman, An AMBIT /G programming
language implementation, MIT Lincoln Laboratory, Lexington,
Mass., June 1968.

3. Thompson, F. B., P. C. Lockemann, B. H. Dosturt, and R. S.
Deverill, "REL: A Rapidly Extensible Language System," Proc.
24th National ACM Conference, August 1966, pp. 399-417.

4. Kellogg, C. H., "A Natural Language Compiler for On-Line Data
Management," FJCC 1968, pp. 473-492.

5. Levien, R. E., and M. E. Maron, "A Computer system for inference
execution and data retrieval," Comm. ACM 10, 11, November 1967,
pp. 715-721.

6. Codd, E. F., "A Relational Model of Data for Large Shared Data
Banks," Comm. of the ACM, Vol. 13, No.6, June 1970, pp. 377-387.

7. Green, C., "Application of Theorem-Proving to Problem Solving,"
Proc. International Joint Conference on Artificial Intelligence, D. E.
Walker and L. M. Norton, Eds., Washington, D.C., 7-9 May 1969.

8. Feldman, J.A., and P. D. Rovner, "An Algol-based associative
language," Comm. ACM 12, 8, August 1969, pp. 439-449.

9. Greenfeld, N. R., Computer System Support for Data Analysis,
REL Project Report #4, California Institute of Technology, Pasa
dena, California, March 1972.

10. McCarthy, J., et al., LISP 1.5 Programmer's Manual, MIT Press,
Cambridge, Mass., 1962.

11. VanLehn, K. A., SAl L User Manual, Stanford Artificial Intelligence
Laboratory Memo AIM-204, Palo Alto, California, July 1973.

12. Bobrow, D. G. and B. Raphael, New Programming Languages for
AI Research, Tutorial Lecture presented at the Third International
Joint Conference on. Artificial Intelligence, Stanford, California
August 1973.

13. Hilbing, F. J., The Analysis of Strategies for Paging a Large Associa
tive Data Structure, Ph.D. diss., Industrial Engineering, Stanford
U., Stanford, Calif., March 1969.

14. Balzer, R. M., et al., Domain-Independent Automatic Programming,
University of Southern California Information Sciences Institute
Report ISI/RR-73-14, Marina del Rey, California, November 1973.

I

A public health data system

by JOHN C. PECK and FRANCIS M. CROWDER

Clemson University
Clemson, South Carolina

In mid-December, 1972 Clemson University became
actively engaged in the technical development of a Public
Health Data System for the Appalachian II District Health
Department. Phase I of the implementation (ending June
30, 1973) has now been completed and has allowed both the
Health Department and Clemson to more accurately measure
development costs and benefits.

PUBLIC HEALTH PROBLEMS

Several factors which distinguish public health care from
-other clinic or hospital care are:

1. The size of the target population requires the necessity
for extremely large volumes of data.

2. The widespread geographical distribution of the
target population and public health service facilities
makes record access extremely difficult.

3. The mobility of the target population is relatively
high. A patient may require service in several facilities
which have no records or knowledge of health care
in other facilities.

4. Redundant data (name, address, sex, race, etc.) is
captured not only in facilities at remote geographical
locations but also within different programs within
the same facility. In addition, many immunizations,
lab tests and other services may be provided un
necessarily because of inadequate data access ar
rangements.

5. Standards for reporting of health care service are
nonexistent; and because of the large number of
health care providers who treat the patient, records
are many times incomplete or ambiguous.

6. Manual systems typically present health care in
formation in a source oriented sequence as opposed
to a problem oriented sequence. Lab records are all
stored together, immunizations together, prescribed
medications together, etc. The problem oriented
approach stores all information relating to each
specific problem together. The results of a lab test,
for example, must be interpreted in reference to the
medications which are being taken. By storing in
formation in the problem sequence, each patient
complaint can be followed from beginning to end by

77

any health care provider currently treating the
patient.

7. Time series analysis of health related data becomes
difficult with manual records. For example, a blood
pressure of 140/80 may not be abnormal for some
patients; however, if three months ago it was 120/60
then the physician may have ample reason for concern.

8. Investigation of trends in health care or disease
becomes extremely laborious if not impossible with
manual records.

9. Without a centralized data base drugs and/or physical
conditions which conflict are difficult to discover.
For example, many drugs should not be taken together
or perhaps not be taken by pregnant women. If
patients are being treated out of different facilities
with different sets of records, conflicts of this nature
may be difficult to determine.

10. Federal and state reporting requirements are becoming
more time consuming and, therefore, provide less
time for the health care professional to spend treating
patients.

AUTOMATED HEALTH CARE

With an automated data file and remote access to the
data, many of the problems inherent in manual records
can be overcome. In addition, information processing and
reporting procedures which were impossible to undertake
with manual systems become simplified.

A brief description of the major points of implementation
included in Phase I follows.

1. A master file consisting of patient related personal
and socioeconomic data as well as pointers linking
the patient to specific public health programs is
created and maintained from cathode ray terminals
(CRT's) located in each clinic. These terminals are
connected to the Clemson University IBM 370/155
computer via telephone lines and can access and mod
ify health related data under certain circumstances.
As data is entered into this file it is edit checked for
validity and flagged if incorrect or inconsistent so that
the CRT operator may make corrections L.Tmnediately.
Records for approximately 100,000 persons in a two

78 National Computer Conference, 1974

PATIENT NUMBER 417-68-0390-
SOC SEC NUMBER 417-68-0390-
PATIENT NAME SICK
MARITAL STATUS 1 MARRIED

BERTHA I R
SEX 1 MALE

DATE ENTERED 12/17173

DATE BIRTH 06/16/50
RACE 5 OTHER WH.

ADDRESS STALL HEIGHTS CITY CLEMSON CITY
COUNTY 39 STATE 39 ZIPCODE 29631 CENSUS TRACT 112.00

TELEPHONE 803-656-4233 EMPLOYED 2 NO EDUCATION 17

FAMILY INCOME AVAILABLE 00123 NUMBER CHILD-HSHLD 01

NAME HEAD HSHLD NONE SINCE THIS IS A TEST
LEGAL GUARDIAN RECORD
ADDRS GUARDIAN U R SICK

REFERRING SRCE 01 GREENVILLE COUNTY HEALTH DEPARTMENT
OTH AGY CONTACT 01 GVL CO HL DPT 02 SELF PROGRAMS ENROLLED

04 AM RED CROSS 01 IMMUN 02 FAit PL
04 LEAD SC 05 CHILD D

REIMBURSEMENT 01 MEDICARE 02 MEDICAID 06 CHILD~Y 07 MU
04 AFDC-SCREEN 05 PLEA-SCREEN 08 HOME HS 09 VD

10 TUBERC 12 CRIP CH

Figure I-Patient master

county area are now accessible online. Expansion to a
thirteen county area will be completed within the
next eighteen months. (See Figure 1.)

2. A cross reference file, based upon the spelling of the
last name, provides for quick and easy access to the
master file data. When a patient master record is
required the last name (and birthday, if known) is
entered into the computer with the CRT. The
computer then searches for all patient records whose
last name "sounds" approximately the same as the
name entered and displays them on the screen of the
CRT. If the birthday was entered then only those
patients with the sound-alike name and born on that
day are displayed. (See Figure 2.)

3. Lab data related to a specific patient can be displayed
in a time series format in which the last three lab
reports are displayed side by side. Previous lab
data can be displayed by backing up in the file using
a "B" command on the CRT. (See Figure 3.)

4. Patient history data can also be displayed for any
specific patient. This data provides a history not
only for the patient but also for ancestors and siblings
of the patient. (See Figure 4.)

5. Family planning regular checkup data is displayed
in a time series format similar to lab data. A backup
feature for checkups before the last three is also
available. (See Figure 5.)

6. Immunization data can be displayed in a format which
indicates the sequence number of each innoculation
in a series along with the date of the innoculation.
(See Figure 6.)

IjOO203?63 El.AINE H SHOOK 12125/46
24l2264'j 0 F:LJTH F SHECK 03/01/06
417680390 BERTHA I R SIC~; 06/16/50
800002208 JAMES F: SHOOK 03/09/63
6000022€"; t'!t:.L1SSA SHOO~; 11/03/67
800017561 SHANNEY l. SHOOK 10/29172
800044620 KEVIN SCHAACK 02/14/55
800057027 RICHAF:D R SHOO~; 06/09/66
li00059297 l.lNOA G SHOOK 01/01/01
80')O~·)63fJ(;:' DAVID SHOOK (~8/10/66
800066381 HEYWARD A SHOOK 10/03/68
80~)095001 SUSANA C SHOOK 0"7118168

Figure 2-C'fOSS reference display'

** ENTER B FOR EARLIER TESTS ** PAT _ SIC/< BU:THA IR **** LAB **** PAT. NO 4 17-68-0390-
-DATE 06/20/73 04/30173 12/01172 06/20/73 04/30173 12/01172
WBC 4J,1 10,3 URINE CAST WAXY HYAL WAXY
HCT 427- 447. 247. CRYST CA-OX UACID TRF-OS
HGB 148)(YEAST MANY RARE MANY
RBC 20 MIL 31 MIL BACT FEW RARE FEW
H(Y 001 AMOR RARE FEW RARE
MCH 003 MUCOUS FEW MANY FEW
MCHCi. 0067. TRICH MANY· FEW MANY
BLOOD-F-B 064 EPITH DRET1.BLD RENAL VAGINAL
BLOOD GRP FECAL OCC F-OS TRACE NEG

RII D+ RPR W kEC NONREC
!;"H TI"ff'lt STOOL O~f- HOOK WHIP
COOMBS G (CULT ISOL eERV NOT CERY
URINE SG 1_004 1.001 FTA REC BL

BLOOD SPOS MPOS 0 STS TITER VD 0064 VD 0036
BILIR MPOS lRAC.E lRACE RUBELLA 1ST 0128
KET TRACE SPOS MPOS TOXOPLAM 0256
Gl.ue Mf-OS TRACE SPOS HB ELECT AI 10
PROT SPOS MPOS 0 A2 26
PH
WBC
RBe

7 7 F 30
21-49 6-10 1-5 S 40

6-10 50-H10 6-

Figure 3-Laboratory display

7. A "write" function is provided which allows the CRT
operator to obtain a hard copy printout of any
display on the CRT. In addition, special mark sense
forms for the collection of additional immunization
data can be prepared by the computer.

8. A "help" function is provided which lists all commands
for the CRT operator in the event he cannot remember
how to interact with the system. (See Figure 7.)

9. A "send" function is provided so that the CRT
operator can communicate with the computer operator
on the Clemson campus about any special procedures
required on problems he might be experiencing.

10. Special data recovery programs have been written
to guarantee integrity of data in the event of a device
malfunction in which the data being collected online
is destroyed.

11. Special security functions ensure that unauthorized
personnel cannot access patient records. In addition,
several levels of security clearance are provided for
special data access functions. A predefined user
identification and password must be supplied before
the program can be initiated. Certain users can access
all patient data while other users can access only a
subset of the data. A clerk in the front office of the
Health Department, for example, can enter and
update patient records; however, he may not access
medical records for the patient.

41 It. '\ BERTHA I R ADMITTED 06/30173
IN EMERGENCY SICKlE ALWAYS Z 803-242-6160 REF 01
AGE ONSET 16 FRHI DURATION 05 FLOW LIGHT PAIN SLIGHT INT BLD NONE
GRAV 12 PARA o:~ AB 01 S 01 LIVING CHILD 07 IMM 06 SPON-A 0 IND-A I
f ~ I AL I NEONATAL I INFANT I PREM I LAST F-REG 06172
PREY CON FOAM F-RES CONT IUD PT CHOICE PILL WEL
PAST DI SEASE HI STORY (I =POSITIVE, 2=SLIGHT, 3=MODERATE, 4=SEVERE I
,-ALLERGIES OR ASTH ,-CARDIOVASCULAR 01 I-RENAL DISEASE i-VARICOSITIES
I-CONTRACEPTIVE COM I-PHLEBITIS I-CANCER OR TUMORS I-DRUG SENSITIVITY
I-URINARY STRESS
SURGlCAL .. TRAUMA HlS I DRY
APPFNDfCTOMY CERVICAL CONIZATION OVARIAN CYST MASTECTOMY
ECTOf-IC PREG. GALLBLADDER SURG. C-SECTION
f· AMIL Y HISTORY (1 =MOTHER, 2=FATHER, 3=PARENTS, 4=GRANDPARENTS, 5=SIBLINGS

6=PARENTS1.SIBLINGS, 7=OTHERS I
I-ALLERGY j -ANEMIA 2-CANCER 3-DIABETES
1 IIEART DISEASE 4-HYf"ERTENSION 3-KIDNEY TROUBLE 5-RHEUMATIC FEVER
,-DRUG SENSITIVE 6-0THER - SEE MRS
SIGNIF ICANT FINDINGS
EENT TEETH NODES BREAST
CARDIAC VARICOSITIES SKELETAL PELVIC
RECTAL

Figure 4-Family history display

I
I

PAr NAME BEF:THA I R SICK PAT NO 417-6iH:>390-
DATE 08/01173 06/20173 04/30/73 08/01173 06120/73 04/30173
BF' SID j 74/110 , 78/111 180/110 LMP 03128173 03/2!:l173 03/28173
HEIGHT 5-07 5-07 5-07 INTERVAL 30 30 30
WEIGHT 135 ,30 125 DURAT 05 05 05
BREAST TEND BIll BIll RIGHT AMT MOD MOD MOD

MASS F:IGHT F:IGHT RIGHT CRAMP R R R
Df.:AIN LEFT RIGHT F:IGHT SEV MOD MOD MOD

HEADACHE MILD MILD MILD FRE~ OCCAS OCCAS oeCAS

FREG FRE~ FIlE~ OCCAS DISCH HEAVY HEAVY HEAVY

DURAl 06 10 07 FRE~ FREe FREG FREEl
DIZZINESS MOD MOD MOD COLOR GREEN GREEN GREEN

FF:Ee FREe FREe oeCAS SYMPTOM IR IT IR 00 IR 00 IT
DURAT 03 04 02 N.M.BLEED SLIGHT SLIGHT SLIGHT

NAUS!.VOM. IRR IRR AM TIME M-C M-C M-C

FF:E9 DAIL Y FREe OCtAS FREG 03 03 03
DURAT 31 31 31 DURAT 2-3 2-3 2-3

EDEMA HANDS HANDS HANDS CONTRAC C LOOP (: LOOP C LOaF'
FREEl OCtAS FREG OCCAS AMT
MENS R UNR R RET/DATE 10/03173 08/01/73 06/20173

VARIC.EXT BIll RIGHT RIGHT CLINIC 0,0 010 010
SEV BOTH PAIN PAIN PROVIDER 999 999 999

Figure 5-Family planning display

Phase II is currently in various phases of implementation
and includes the following projects.

p

E

1. Scheduling subsystem to appoint patients to various
clinics or health care providers subject to various
constraints. Included in this subsystem is automatic
notification of pending and missed appointments
along with related reports for governmental and
accounting requirements.

2. Data base management graphics display subsystem.

100

A language allowing questions to be asked about
statistics related to the data base will be developed.
Answers to these questions will be answered in
graphical form on a graphics display terminal. A typ
ical question might be: "What percentage of the
women between the ages of 15 and 35 in the family
planning program over the last six years have also been
enrolled in the venereal disease program?" The answer
to the question might be a graph in the form:

1968 1969 1970 1971 1972 1973

3. Maternal Health subsystem.
4. Child Health subsystem.
5. Tuberculosis subsystem.
6. Veneral Disease subsystem.

IMMUNIZATION RECORD
PATIENT NAME BERTHA I R SICK PATIENT NO. 417-68-0390

POLIO 07107/6'j 'j
DPT 07/07/65 4
DT 08/09/73 4
SMALL pox 0'j/0'j/60 0
MEASLES 01/04/40 0
MUMPS 03/03/42 0
RUBELLA 02/02/41 0
PENICILLIN 08/08172 0
INFLUENZA 07/07/70 0

06/06/'j'j 'j 0'j/0'j/4'j 4 03/04/40 3 02/04/40 2
06/06/'j'j 4 0'j/0'j/4'j 4 03/04/40 3 02/04/40 2
08/01171 4
01/04/40 0

Figure 6-Immunization display

A Public Health Data System 79

COI"ii"iANDS:
B BACKUP IN FILE
C CHILD HEALTH DISPLAY
CH CHILD HEALTH HISTORY
D DELETE PREVIOUS MASTER RECORD DISPLAYED
E END SESSION
F FAMILY PLANNING DATA DISPLAY
FH FAMILY PLANNING HISTORY
H HELP RE~UEST
I IMMUNIZATION HISTORY
L LAB DATA DISPLAY
M MORE RECORDS DISPLAY RE~UEST
P PATIENT MASTER DISPLAY REQUEST
S SPECIAL IMMUNIZATION FORM
SE SEND MESSAGE TO OPERATOR
U UPDATE MASTER
W WRITE SCREEN INFORMATION ON PRINTER

Figure 7-Help display

APPROACHES TO IMPLEMENTATION

During the initial design phase of the Public Health Data
System, several assumptions concerning the ultimate
operating environment were made:

1. The program should be able to support an arbitrarily
large number of terminals. Thus, modules must be
designed to support re-entrant coding techniques.

2. Input/output logic should be confined to a central
module so that commercially available data base
management packages can be used if economically
advantageous.

3. Program organization should lend itself well to
conversion to a teleprocessing monitor system such
as CICS (IBM), INTERCOM (GTE), or TASK
MASTER (TURNKEY ASSOC.).

The development of the current operating package was
carried out through several phases on Clemson University's
IBM 370/155. The time sharing option (TSO) of IBM's
operating system (OS/MVT) was used in the first phase of
development for several reasons:

1. Program preparation and debugging was much easier
in an interactive environment.

2. The main storage requirement for a non-time-shared
implementation during program development would
have been prohibitively expensive.

3. Only one data communications system was under
development on the computer system so that costs
for package systems could not be shared.

As developments of additional system features. were
begun and as the number of terminals serviced by the system
increased, phase two of the technical development was
initiated. The objective of this phase was to modify the
system to run outside the time sharing region with a mixed

80 National Computer Conference, 1974

environment message control program. Several factors
prompted this change:

1. In the TSO environment each user had a separate
copy of the program and was swapped between
memory and disk storage as time was shared between
users. With a large number of time sharing users the
swap time became excessive and response time for
transactions unacceptably large.

2. When an input or output operation is started by a
time sharing program, no other time sharing program
may be serviced until that I/O operation has been
completed. Chaining through index structures and
overflow areas using IBM's index sequential access
method was locking out other time sharing users
for the duration of the I/O.

3. Even with the carefully designed overlay structure
implemented in the modular program, main memory
allocated to the time sharing region became in
sufficient.

In order to move away from the time sharing environment,
a driver program was written which provides the following
functions:

1. Data blocks for each terminal required for re-entrant
(multiple user) support must be maintained in
memory or disk storage. A paging routine, using a
least recently used algorithm, coordinates the swap
ping of data blocks between memory and disk storage.

2. Additional security provisions became available
since the driver program controls and coordinates
input and output to all terminals and users.

3. Special operation commands allow privileged users
to assume the role of a master station and control
the activity of other terminals and users.

The primary disadvantage of removing the system from
the time sharing region was that a considerable amount of
main storage must be dedicated for long periods of time
throughout the day. Changes in the file organizations and
access methods are now under way which will reduce the
operating system data management storage requirements.

FUTURE DEVELOPMENT

Future developments depend upon many factors-the
most important of which include continued acceptance by

medical personnel and adequate funding. Eventual plans
include the complete automation of the medical record to
be stored in a centralized data base with computer terminals
in all health care centers in a multiple county area. Records
will be cross indexed by both problem and source so as to
provide standardized and organized files which can be
quickly accessed by health care providers.

Consultants in the medical profession will provide direction
in the design of information displays and interpretation. This
procedure will greatly help overcome many of the acceptance
problems.

Additional computer hardware 'will eventually become
a necessity if the system is to become completely operational.
A central processor on the order of an IBM 370/145 will
be dedicated to the application. A backup processor must
be available to support the system in the event of a hardware
failure on the main system. The Clemson University com
puter would serve as the backup computer without signifi
cantly degrading performance for campus users. Production
will be restricted to the Health Department computer
while development and systems support work will be re
stricted to the Clemson University computer.

During January 1974 Clemson University will acquire
an IBM 370/158 and will run VS2. At that time all overlays
and paging currently provided by the PHDS control program
will be performed by the operating system. All ISAM
files will be converted to VSAM which will provide faster
access in the new environment.

A terminal monitor system capable of supporting multiple
applications will be installed. IBM's time sharing option
will still be used for program development but not for
production support.

Terminal independent input/output subroutines, which
make possible logical level programming for CRT's of
arbitrary screen size and special features, will be written.
Device dependent characteristics will be specified as constants
and used with table driven logic keyed to terminal identifica
tion or line number.

The relationship now enjoyed by Clemson University
and the Appalachian II Public Health Department will
hopefully continue to benefit Clemson by providing areas
for research in medical information systems and benefit
the public health in South Carolina by providing the
necessary technical expertise to successfully implement the
automated systems.

I

Automated patient record summaries for
health care auditing*

by ROBERT CHALICE, OLGA M. HARING, and RONALD HOCHSPRUNG

Northwestern University Medical School
Chicago, Illinois

Purpose and Objectives

At Northwestern University Medical Center, a computer
printed summary report showing a patient's current condi
tion appears to be especially useful in outpatient therapy. A
printed summary report lends itself to the objectives of:

1. Displaying a patient's current condition in an or
ganized, up-to-date, accurate, and legible form.

2. Auditing patient care in a uniform and consistent
manner by processing the machine readable summary
data.

With these objectives in mind, we are presently evaluating
the summary report form shown in Appendix A, ",ithin a
Cardiac-Pulmonary-Renal outpatient clinic at Northwestern
University Medical Center. The care received by 240
patients who have printed summaries will be compared to the
care received by a control group of 240 patients with
nonsummarized charts. 1 Prior to each patient visit an
up-to-date computer printed summary is inserted into
the summarized chart. The summary report is then avail
able as an aid to the physician who treats the patient.
The assumption is that a higher quality of information
will contribute to a higher quality of care. Preliminary
studies by Janda2 and MiddlekaufP support this conclusion.
Our current evaluation of the effects of the record summary on
patient care began in October of 1972 and will extend over a
three year period.

During the fall and winter quarters of 1969-70, the ac
ceptability and utility of the Record Summary System to
50 fourth-year medical students and 20 physicians were
evaluated.2 The students were given timed tests in which they
were required to retrieve specified information from both
summarized and nonsummarized charts of comparable
length. Students and physicians were given questionnaires on
specific points and also were urged to criticize the whole
program. The timed tests indicated that significant time sav
ing and increased accuracy were achieved through the sum
marized record. Physicians stated that the summary was
useful for patient care in its present form. They agreed

* This project is supported by Grant Number HSQ0674-02 from the
Department of Health, Education and Welfare.

81

without exception that the traditional record is frustrating
and urgently needs reorganization.

In a pilot study carried out by Middlekauff in 1971, an
attempt was made to determine not only the general feasi
bility and acceptability of the record summary but its effect
on the quality of care given in the CPR clinic. The details of
this study have been reported elsewhere.3 Briefly, he selected
80 patients at random and summarized the charts of 40 of
them. Each patient was assigned to one of ten attending
physicians or one of ten fourth-year medical students, so
that each of the 20 clinicians saw either four patients with a
record summary or four patients without such a summary,
for three months.

The quality of care was assessed in several ways. First, a
set of standards based on the literature and agreement among
Northwestern specialists was established for diagnostic and
follow-up care. Second, each patient was asked to fill out a
questionnaire containing eight questions after each of two
visits to the clinic. Questions concerned symptoms and the
patient's satisfaction with the care he received. Third, a
record was made of the time the patient spent in the clinic,
the number of suggestions made by the supervising physician
and the number actually followed, and the changes in physical
signs and results of laboratory tests between the first and
the second visit. It was found that a larger proportion of
standards were met for patients with summarized records
than for those with nonsummarized records. Positive changes
in physical signs and laboratory findings from the first to the
second visit were more frequent and negative changes less
frequent among patients with summarized records than
among those without summaries. Questionnaires showed no
difference in total satisfaction scores or in symptoms between
patients ",ith and without summarized records.

CONTENT OF THE PATIE~T SU:M~1ARY REPORT

Each summary report is computer printed and displays a
patient's current condition in terms of:

IDENTIFICATION DATA
LAST HOSPITAL ADMISSIOX
PROBLE)'1 LIST
VITAL SIGNS

82 National Computer Conference, 1974

CARDIAC-PULMONARY-RENAL DIAGNOSES
MEDICATIONS
DIETS AND OTHER THERAPY
PROCEDURES ORDERED
ROUTINE LAB TESTS
OTHER LAB TESTS
COMMENTS AND SUGGESTIONS

The Cardiac-Pulmonary-Renal diagnoses are individually
listed, since these pertain directly to the specialty of the
particular clinic under study. The nineteen routine labora
tory tests have also been specially selected as those tests
which should be regularly performed on a yearly basis for
patients attending this clinic.

Problem oriented reporting is used whenever possible
within the summary.4 The summary, as shown in appendix
A, contains a problem list, showing the status and disposition
of all the patient's problems whether active, inactive, or re
solved. Medications and diets are listed along 'with' a refer
ence to the problem for which they are prescribed. Pro
cedures ordered are also tied to particular problems.

Computer Processing

The summary reports are currently maintained, updated,
and printed by using a Control Data 6400 computer at
Northwestern University. Utilizing a computer provides us
with the following advantages:

1. Summary reports can be printed quickly on demand.
2. Frequent updates of summary data can be accom

plished quickly and easily.
3. The data base is available in a machine readable form

for high speed processing by other programs.

In addition to facilitating the maintenance of the data
base and the display of information from it, computer pro
grams can review the currency and consistency of patient
data. A machine readable data base containing a particular
patient's problem list, therapy, vital signs, medications and
other relevant data makes it possible to methodically and
meticulously check for anomalies in data, as well as responses
to therapy, drug interactions, or other conditions that might

Oct. 1972 Feb. 1973

Completely Abstract a New Summary 2 to 3 hr. 1 to 2 hr.
Keypunch and Print a New Summary 1% hr. 1 hr.

TOTAL TIME FOR NEW SUM- 3.5 to 4.5 hr. 2 to 3 hr.
MARY

Update Last Printed Summary 20 min. 10 min.
Keypunch Revisions and Print New 1 hr. % hr.

Summary

TOTAL TIME FOR UPDATED 1.33 hr. .66 hr.
SUMMARY

Figure l-Times required to produce and update summaries

warrant action. In addition, appropriate therapy can be sug
gested. Currently under consideration is a program to com
ment on the therapy given to hypertensive patients, accord
ing to accepted standards for treatment.

Today there is a demand by the government, 5 the medical
profession, and also the public, that quality in medical care
be assured. To do this it is essential that there be continual
assessment of suitable methods for defining, evaluating and
improving medical care.6 Provision of a machine readable data
base of patient summary information contributes to these
goals of continual assessment, and the assurance of quality
health care.

I nitial Systems Design

Our desire from the start of this project has been to produce
some objective statistical comparisons between the care re
ceived by summarized patients as opposed to the care re
ceived by nonsummarized patients. Because of this desire,
we chose to quickly implement an initial system for maintain
ing and printing patient summaries in order to allow for an
early comparison of care with the nonsummarized control
group. In the meantime, a more sophisticated online system
is under development, and will be discussed later. Because
of its ease of implementation, a batch, card oriented system
was chosen as the initial system for regular production of
summaries. At the present time, we produce summaries for
about 450 patients by using a batch oriented FORTRAN
program. The summary data for a particular patient are
presently maintained on an individual card deck for that
patient. Updates of the summary data are made by changing
the appropriate fields on the patient's data cards. Printed
summary reports are produced by the FORTRAN program
which reads and formats the summary data for output. The
system is simple, and does satisfy the first objective of dis
playing up-to-date, well organized summary reports on
patients.

Present Audit of Patient Care,

The second objective of uniformly auditing patient care is
accomplished by the batch oriented system in two ways.
Prior to each patient visit the patient's last printed summary
is updated by physicians and medical students who review the
patient's chart. They may, at their option, provide sugges
tions to be included in the summary. These suggestions are
then added to the last page of the summary for reference by
the physician who treats the patient at his next visit. An audit
of patient care by medically trained individuals is thus
provided. Presently, the chart is the source of all summary
data, although online collection of data in the clinic is being
considered.

A second audit of care is also performed by the summary
program as each patient's data is processed. Comments are
automatically generated which call attention to important

Automated Patient Record Summaries for Health Care Auditing 83

missing data, as well as important procedures which have not
been performed at desired regular time intervals. Among the
comments which can be generated are the following:

1. PATIENT IS DUE FOR A COMPLETE
YEARLY PHYSICAL EXAM. LAST PHYS-
ICAL WAS ___ _

2. PLEASE RECORD PATIENT'S BLOOD
PRESSURE AT EACH VISIT.

3. THE FOLLOWING PROBLEMS AND
THEIR STATUS NEED REVIEWING:

4. PLEASE REVIEW CARDIAC-PULMO
NARY DIAGNOSES ON PAGE 4.

5. PLEASE ENTER CARDIAC-PULMO-
NARY-RENAL DIAGNOSES ON PAGE 4.

6. PLEASE COMPLETE CARDIAC-PULMO
NARY-RENAL DIAGNOSES ON PAGE 4.

7. PLEASE FIND OUT IF THE PATIENT IS
STILL TAKING MEDICATIONS LISTED
ON PAGE 5.

8. PLEASE FIND OUT IF PATIENT IS
STILL MAINTAINING DIETS AND
OTHER THERAPY LISTED ON PAGE 5.

9. PLEASE ORDER: / routine test names /
10. PLEASE FIND OUT IF P ATIEKT HAS

ANY DRUG ALLERGIES OR IDIOSYN
CRASIES.

11. PLEASE SPECIFY PROBLKVrS FOR
WHICH EACH OF THE FOLLOWING
DRUGS IS PRESCRIBED.

Time
Interval

1 yr.

72 yr.

3 mos.

6 mos.

6 mos.
1 yr.

The time interval shown after some of the comments indi
cates that a comment should be generated when the date of
a particular procedure or review lapses beyond the time
indicated. Those of the above comments which are applicable
to a particular patient are automatically printed on the last
page of his summary, just after those comments that were
manually provided by physicians and medical students.

The comment "PLEASE ORDER:" by which routine
tests are suggested on a yearly basis deserves some special
consideration since those routine tests which should be
ordered must be listed by name. Furthermore, particular tests
which need to be ordered must be grouped when appropriate
and ordered as the multiple tests: SMA-6, SMA-14, and
SMA-18. A comparison of costs is nedeed in order to decide
when to order a particular multiple test instead of ordering a
few components individually. The following rules are used
by the computer program in suggesting that tests be ordered:

1. An SMA-6 includes electrolytes and is less expensive,
so an SMA-6 is always ordered in preference to order
ing electrolytes separately.

2. A full SMA-6 is always ordered in place of one or
more components' to be ordered individually because

the cost of the SMA-6 i~ the same as the cost of
ordering one component.

3. A full S~1A-14 is ordered in place of three or more
components to be ordered individually because the
cost of the full SMA-14 is the same as the cost of
ordering three components individually.

4. If ordering an SMA-14 is indicated by step 4. and
any electrolytes are to be ordered, then an SMA-18 is
ordered because it is less expensive than ordering an
SYIA-14 and electrolytes separately.

This kinds of cost consciousness is not generally attributed
to physicians, so the summary program is designed to suggest
that tests be ordered in a way that minimizes the cost to the
patient. It should be mentioned, though, that the summary
program does suggest that all nineteen routine tests be per
formed on a yearly basis, and therefore probably results in
more laboratory tests being ordered for summarized patients.

The present card oriented system does satisfy the desired
objectives and does illustrate the utility of a machine read
able data base of patient summary information. The card
oriented system is, however, unwieldy and is not very prac
tical for large numbers of patients. Cards deteriorate; single
fields on punched cards are difficult to update; and card
processing is extremely slow when compared to using higher
speed media such as magnetic tape, disk, or drum.

Future Online System

The advantages of maintaining a patient summary data
base using online, random access storage, such as disk or
drum, are numerous:

1. Data can be immediately updated or displayed online
by using terminals.

2. A query language can be used to perform selective
information retrieval.

3. Multiple programs with different purposes can make
use of the data base simultaneously.

4. Higher speed processing is possible over larger volumes
of data than could be processed by a card oriented
system. In particular, rapid auditing of large numbers
of patients is practical.

5. The data can be structured into tables, lists, chains,
and groups which more accurately reflect the inherent
relationships among data items.

6. Functions can be performed at a distance through the
use of modems and data communications devices.

With these types of advantages in mind, we are currently
developing an online data base management system referred
to as DMS/ll * using a Digital Equipment Corporation

*Presented at the Digital Equipment Corporation Users' Society Fall
Symposium, Nov. 29, 1973, San Francisco.

84 National Computer Conference, 1974

PDP/ll minicomputer with the following configuration:

Central Processor
16K Bytes of core memory

3 Disk drives with 2.4 million characters/drive
1 High speed paper tape reader/punch
2 CRT display terminals
1 Operators' consol
1 Line printer at 100 lines/minute

The above equipment configuration is purposely limited in
an attempt to illustrate that a minicomputer based, data
management system is capable of the kind of data manage
ment usually reserved for large scale machines. We are
interested in the minimal configuration that will provide an
online patient summary system. However, the DMS/ll
system under development is designed as a generalized data
management system which can be applied to data bases
other than the special purpose patient summary data base.
The recommendations of the CODASYL data base task
force are being followed to provide generalized file structures
and generalized access techniques. 7

PRESENT PERSO:N:NEL AND OPERATING COSTS

Timings of manual procedures were taken in October of
1972, just after the project began, as well as a few months
later in February of 1973. The personnel time involved in
producing a new summary or in updating an old one is shown
in Figure 1.

As can be seen, there was significant improvement between
the two dates on which timings were surveyed. Under our
present system the cost of personnel involved in producing a
completely new summary is about $9.00, while the cost of
producing an updated summary is about $3.00. The cost of
computer time involved is about 20¢ per summary report
printed, and is almost negligible in comparison to personnel
costs.

Admittedly, the present system is a compromise design,

quickly implemented to provide summary reports for evalua
tion purposes. Nonetheless, cost figures are provided to show
the kind of costs that can be expected in using a batch
oriented system to produce summary reports. We expect that
by using an online system, we will be able to reduce these
personnel costs by a factor of two. This estimate stems from
the fact that the cost of data entry (i.e. keypunching) will be
reduced by having the updater or abstracter enter data
directly into a CRT display terminal. It is true that the
online system requires a dedicated minicomputer, but it is
our hope that adhering to a minimal computer configuration
will keep the initial equipment costs within the financial
reach of most medical institutions. As the system is devel
oped, we hope that we will succeed in the objective of cost
effectiveness, so that the benefits of the system can be realized
practically.

REFERENCES

1. Haring, Olga M., "A Problem Oriented Record Summary for Use
in the Clinic, Chicago Medicine, Vol. 76, No. 24, December 1, 1973,
pp. 1003-1004.

2. Janda, Kathryn R, A Methodfcrr Determining the Content and Fcrrm
of a Physician Acceptable Medical Reccrrd, M.S. thesis, Northwestern
University, 1969.

3. Middlekauff, George W., Evaluation of a Summarized Reccrrd Sys
tem in an Out-patient Clinic, Ph.D. dissertation, Northwestern
University, 1972.

4. Weed, Lawrence L., Medical Reccrrds, Medical Education and
Patient Care, Cleveland, The Press of Case Western Reserve Uni
versity, 1969.

5. Sanazaro, Paul J., Richard L. Goldstein, James S. Roberts, David B.
Maglott, and James W. McAllister, "Research and development in
quality assurance: The experimental medical care review organiza
tion program," New England Journal of Medicine, Vol. 237, No. 22,
November 30, 1972, pp. 1125-1131.

6. Payne, Beverly C., and Thomas F. Lyons, Method of Evaluating and
Improving Personal Medical Care Quality: Episode of Illness Study,
Ann Arbor, University of Michigan School of Medicine, February
1972.

7. CODASYL Data Base Task Group Report, Association for Comput
ing Machinery, April 1971.

I

APPENDIX A

DOE, J
999999
NEXT VISIT TO

Automated Patient Record Summaries for Health Care Auditing 85

11-10-73

NUCRSS-5

CLINICAL RECORD SUMMARY
NUMBER 5

PAGE 1
CURRENT TO 11-06-73

PRINTED 02/27/74

PLEASE LOOK AT THE LAST PAGE AND CONSIDER THE COMMENTS
AND SUGGESTIONS. FEEL FREE TO CORRECT OR COMMENT ON THIS SUMMARY.

UPDATED:

REVIEWED:

KEYPUNCHED:

THANK YOU.

DR. OLGA M. HARING

TABLE OF CONTENTS

--------~--------

PRORLEM LIST: PAGE 3

VITAL SIGNS: PAGE 4

CARDIAC-PULMONARY-
RENAL DIAGNOSES: PAGE 4

TREATMENT: PAGE 5

ROUTINE LA~ TESTS: PAGE 6

OTHER LAH TESTS: PAGE 7

SUGGESTIUNS: PAGE A

86 National Computer Conference, 1974

DOE. J
999999

JOHN DOE.
37 YR. OLD bLACK

O~OO NOWHERE. U.S.A.

FIRST VISIT TO NUMC
LAST VISIT TO NUMC

LAST COMPLETE P.E.

DRUG ALLERGIES ANO
IDIOSYNCRASIES

HOSPITAL PMH

PATIENT IUE~TIFICATION

07-30-6B
08-02-73

04-13-73

-PRECLIN
OERM

LAST HOSPITAL ADMISSION

PAGE ?
CURRENT TU 11-06-73

soc. SEC. NO. 000-10-2000
MALE 6~ IN.
PHONE: XXO-OOOO

DATE ADMITTED 12-29-68 D,L\ TE DISCHARGED Ol-10-61j

DISChARGE DIAGNOSES

01. GANGLION LT. WRIST AND LT. FOOT
02. ESSENTIAL HYPERTENSION

DOE, J
999999

*****-***

PROBLEM
--.-.~~--

01. HYPERTENSION

02. ALCOHOLISM

03. LEUKODERMA

04. SPRAIN,
LT. ANKLE

05. DYSHIDROSIS,
LT. HAND

06. OBESITY, MILD

07. TINNITUS

08. HEADACHES

TEMPORARY PROBLEMS

PROBLEMS

VISITS

DATE
NOTED

07-30-68

05-07-69

07-30-68

08-30-71

U8-13-68

09-09-68

10-13-72

09-10-71

A. INFLAMMATORY 04-1~-73
SKIN CHANGES

Automated Patient Record Summaries for Health Care Auditing

I~ ALL ORGAN SYSTE~S
AND

TO MANAGING CLINICS

~"ANAGING LAST
CLINIC NOTED

-- .. ------
CPR 07-12-73

CPR 05-21-71

CPR 08-02-73

ORTHO

OERM 08-11-68

CPR 09-0Q-68

CPR 10-11-72

'JEURO lO-2S-73

DERM 08-02-73

PAGE 3
CURRENT TO 11-06-73

STATUS DISPOSITION
--.. --- -----------

ACTIVE RX ON P 5

ACTIVE RX ON P 5

RESOLVED

RX ON P 5

ACTIVE

ACTIVE RX ON P 5

RX ON P 5

ACTIVE R,x. ON P S

87

88 National Computer Conference, 1974

DOE, J
999999

PAGE 4
CURkENT TO 11-00-73

******** VITAL SIGNS AT RECENT VISITS ********

DATE CLINIC

04-13-73 CPR

01-19-73 CPR

1"-13-72 CPR

08-11-73 CPR

07-14-72 CPR

06-16-72 CPR

06-09-72 CPR

04-14-72 CPR

01-21-72 CPR

DOCTOR+STUOE~T WT AP-SUPINE
---------------- ------ .. --

174 130/92

LEVINE 176 140/110

wALKER 177 148/114 SIT

SMITH 175 140/118 SIT

tjROW\J 173 130/90

tjROWi\I 175 150/104 SIT

BROW\I 174 150/98

RRO~oJ \j 179 160/120

HUNTER 175 1S0110M

CARDIAC-P0LMONA~Y-RENAL CLINIC

PULSE-RAO kESP TEMP

98.8

76 16

98.6

92 16

68 18

60 16 97.6

72. 16

72 16

****-~***

FIRST VISIT TO CPR
LAST VISIT TO CPR

DOCTOR:

10-25-6~
O't-13-73

8ROw'J
CPR VISIT SCHEUULED FOR 11-10-13

STUDENT:

DIAGNOSES

HEART

HEART POTE\lTIAL HEART OISEASE

ETIOLOGY HYPERTENSION

ANATOMY

PHYSIOLOGY

FUNCTIONAL CLASSIFICATION
THERAPEUTIC CLASSIFICATION
CLASSIFICATION REVIEWED

CIRCULATION

LUNGS

KIDNEYS

HYPERTENSION, ESSE~TIAL

NORMAL

NORMAL

I

Automated Patient Record Summaries for Health Care Auditing 89

DOE, J PAGE 5

999999 CURRENT TO 11-06-73

******** '1EUICATIONS ********

fOR (jOSE RX RX LAST k;(

PROB DRUG AND SIZE SCHED BEGUN CLINIC REVIEWED TAKEN
------_ ... ----- ------ --------

1 HYDROCHLORO- 50 MG. QO 06-72 CPR 08-10-73
THIAZIDE

1 RESERPINE v.25 I"'iG. QD 04 72- CPR 08-10-73

1 HYDRALAZINE 125 MG. 00 10-72 CPR 08-10-73

1 KCL LIQUID 15 CC. tiIU 01-73 CPR ue-10-73

5 VALISONE 0.1 PCT. 08-hH DERM

7 MEPROBAMATE 400 MG. QHS 10-72 CPR

8 FIORINAL 1-2 Q4-6HR 01-72 NEURu 10-25-73

8 CAFERGOT wESLEY 0b-07-73

8 SAUSERT "2 MG 010 Ob-2f1 NF.:URU 10-('5-71

A PSORALEf\J 10 MG Qo 08-73 GERM lO-?5-73

A KENALOG CREAM .025 TIt) OS-73 OER"A 10-(>5-73

--- NO DIETS OR OTHER THEkAPY ---

******** PROCEDUkES ORDERED

fOR
PROS PROCEDURE

8 BUN

ENT CONSULT

DATE
CLI~IC ORDERED
------ -------
NEURO
NEURO

07-2f,-73
10-2S-73

REPUR1EO(YES-NO)

NO
NO

90 National Computer Conference, 1974

DOE. J PAGE 6

999999 CURRENT TO 11-06-73

******** t<()UTINE:: TESTS ********

LATEST PREVIOUS
TEST DATE RESULT DATE RESULT CHANGES

------- --.---- -----~--- ------ -------

1. CHEST X-RAY 04-06-73 ~OR~AL 07-12-71 NORMAL. NONE

2. ECG 07-12-71 \lORMAL 12-30-69 NORMAL NONE

3. URINE OA-28-73 :-.JORMAL 07-12-71 ABNORMAL 8ETTEk

BLOOD

4. RBC 07-23-73 14.8 06-28-73 4.16 NONE

5. HGB 06-28-73 J.4.8 04-06-73 IS.1 NONE

6. CELL PACK 07-23-73 45 0(,-;;>8-73 43 NONE

7. WBC 06-28-73 45(;0 OA-('8-73 5100 NOf...;E

8. DIFFERENTIAL 06-28-73 NORMAL

9. VORL 08-01-68 \JONREACTIVE

10. BUN 07-23-73 12 OA-28-73 12 NONE

11. URIC ACID 04-06-73 7.3 08-12-71 7.5 NONE

12. CREATININE 07-23-73 1.5 04-06-73 1.20 NONE

13. F8S 06-~8-73 101 04-1~-6q 100 NONE

14. 2 HR. PCS 10-25-68 :>2

15. CHOLESTEROL 04-06-73 225

16. SODIUM Oh-~8-73 * 137 04-06-73 134 WORSt:

17. POTASSIUM 06-28-73 3.8 04-06-73 3.ts NONE

18. CHLORIDES 06-28-13 109 04-06-73 10'+ NONE

19. CO2 06-28-73 26.8 04-06-73 21.5 NONE

I

Automated Patient Record Summaries for Health Care Auditing 91

DOE. J ~AGE 7
999999 CURRENT TO 11-06-73

******** OThER TESTS ********

TES1 LATEST PPEVIOUS
GROUP NAME DATE RESULT DATE Pt:.SULT CHANGES

---_ - ------ --- .. ---- ------ --.. ----

URINE/RENAL FUNCTION

24 HR. URINE 11-12-68 2.1 '4G.

VMA
URINE 10-13-66 NORMAL

ELECTROLYTES

BLOOD CHEMISTRY ONE

SGOT 04-06-73 '* 69 OA-12-71 28 WORSE
SGPT 08-12-71 ~8 ---
LDH 0'+-06-73 100 08-1~-71 47 NONE
ALt< • PHOSe 0'+-06-73 '* 95 03-09-71 9.4 WOkSE

GLUCOSE 04-06-73 95 ---
SERUM LIPID 04-06-73 ts35
CPK (;'+-Ob-73 167 ---
CALCIUM 04-00-73 9.8 ---

BLOOD CHEMISTRY TwO AND THREE

BILIRUBIN.TOT 0'+-06-73 0.4 ---
TOTAL pROTEIN 04-06-73 7.2 03-09-71 7. -f 1 NONE
ALBUMIN 04-06-73 4.3 03-04-71 S.02 NONE
GLOBULIN 03-09-71 2.04 09-13-68 3.11 NONE
GTT lC-25-68 NORMAL
BSP 10-13-66 NORMAL ---

SEROLOGY/IMMUNOLOGY

REITERS 08-01-6ts NONREACTIVE
LE PREP 01-15-69 NONREACTIVE 01-13-69 ~ONREACTIVENONE

RIGHT FOREARM 08-30-73 '* ABNOr<MAL
BIOPSY

MICROBIOLOGY/CYTOLOGY

URINE CULTUR£ 01-20-69 NEGATIVE

NUCLEAR MEDICINE STUDIES

RENOGRAM 10-13-66 NORMAL ---
BRAIN SCAN 06-21-73 NORMAL ---

92 National Computer Conference, 1974

DOE, J
999999

TEST
GROUP NAME

LATEST
DATE

RADIOLOGICAL PROCEDURES

LT. ANKLE
IVP
CERVICAL SPINE
SKULL
SKULL
ORBITS

MISCELLANEOUS

07-30-71
10-13-66
10-13-66
10-13-66
06-21-73
06-21-73

OTHER TESTS

RESULT

NORMAL
NORMAL
NORMAL
NORMAL
NORMAL
NORMAL

EEG 11-29-71 * ABNORMAL

DOE, J
999999

PREVIOUS
DATE

10-13-66

COMMENTS AND SUGGESTIONS

CONT~O PAGE 7
CURRENT TO 11-06-73

RESULT CHANGES

NORMAL NONE

PAGE 8
CURRENT TO 11-06-73

1. THE FOLLOWING PROBLEMS AND THEIR STATUS NEED REVIEWING:
01. HYPERTENSION
03. LEUKODERMA
06. 08ESITY, MILD
07. TINNITUS

A. INFLAMMATORY
SKIN CHANGES

2. PLEASE REVIEW CARDIAC PUL~ONARY RENAL DIAGNOSES ON PAGE 4.

3. PLEASE COMPLETE CARDIAC PULMONARY RENAL DIAGNOSES ON PAGE 4.

4. PLEASE FIND OUT IF PATIENT IS STILL TAKING MEDICATIONS LISTED ON PAGE s.
5. PLEASE OFtDER:

ECG

6. PLEASE FIND OUT IF PATIENT HAS ANY DRUG ALLERGIES OR IDIOSYNCRASIES.

I

An integrated health care information processing and retrieval
system

by KEVIN C. O'KANE and RICHARD J. HILDEBRANDT

The Pennsylvania State University
University Park, Pennsylvania

INTRODUCTION

In this paper we present the design and some initial experi
ences with a computerized medical records system (called
the CSAR System) currently in use in several departments
of the Milton S. Hershey Medical Center of The Pennsylvania
State University. The purpose of this work has been to
develop a high-speed efficient information system for the
storage, retrieval and dissemination of the total patient
medical record.

Initially, we were concerned primarily with the develop
ment of a system for epidemiological research. That is, a
system which could be used to isolate population cross
sections from extensive patient data bases at very high
speeds. For example, we wanted a system which could, in
a few minutes or less, identify from a population of a hundred
thousand or more those patients whose records indicated
fulfillment of criteria such as: " ... between ages 25 and 30
with three or more pregnancies, type AB blood and a family
history of cancer "

Coupled with the need for a research system, we sought
a design which could deliver an improved medical record into
the day-to-day process of health care delivery. That is, a
more legible, complete, accurate, accessible and standardized

Figure 1-Distributed network of medical information systems

93

medical record at equal or lower overall cost. The selected
system design would need to be capable of maintaining a
patient's total medical record, not just a recent portion of it.
The system would need to be able to flexibly access and
portray on command all and only that information deemed
relevant by the system's user. The design would need to be
very efficient and economical so as to be able to store at
reasonable cost historical data over a period of several years.

Furthermore, we wanted a system design which would
incorporate both the above in a modular scheme so as to
permit simultaneous but independent softwate development
on many aspects. This implied a design consisting of two
parts: First, a data base independent system nucleus which

Figure 2-Basic system cycle

94 National Computer Conference, 1974

HOSPITAL SERVICES RECORDS

NURSING RECORDS

OUTPATIENT RECORDS

EMERGENCY ROOM RECORDS

PHYSICAL EXAM RECORD

PHYSICAL EXAMINATION

VITAL SIGNS HEART

GENERAL CONDITION ABDOMEN

SKIN PELVIC

HEENT RECTAL I NECK EXTREMITIES

LYMPHATICS JOINTS

BREASTS POSTURE

CHEST NEUROLOGIC

Moster Pot lent Indell

Nome

Dote of Birth

Guarantor Nome

$oclol Security No

DIstrict Code

Potlent Number

Se.t Montol Status

Address

Phone Number

Dote First AdmISSion

Prlmory Reference Record

Nome

SoCial SKunty Number

Potlent Number

Sex,Roce, Mootol Status, Birth Dole

Address. Telephone Numbei' , Birth PLace

Guarantor

Eye Color I Educatlonol Level, Deollerify

Finonciol Support (Place of Employment)

Next of Kln,Referrmg (Personal PhysiCIan)

OccupatIOn. Rellqlon. Insurance

Blood Group, HypersensitIvities

Other Critical Indlcotors

list Previous AdmiSSions and Outpatlenl VISits

ER

TIME

I OATA

ADMINISTERED HB

NESTHESIA CODE~DATE TIME

t:::===::j! -,~, -"'-vIiEI
HOSPITAL SERVICES t====r/ I I LJ

'" Dota Structures Similar to that of AdmlSStOn Records

f Doto Structure Not Showr.

Dofe ,"-"Date oul ,OPe, 0109R0515, Aflendlnq PhYSIClon
'""f""'l N=='A"'NC""E:::A"'N;::'O 7AC=::C""OU~N:-;T:7:IN'::"1G

CENTRAL STORES
ADM RUldenl Physlclon I CENTRAL PROCESSING

Los' Complete History -Oofe PHARMACY

Lost Complete Physical· Date DIETARY

Laboratory Teats - Dote Most Recent PHYSICAL THERAPY
OCCUPATIONAL THERAPY

Figure 3-Structure of a medical record

would provide centralized input! output, file management,
information processing and information retrieval services for
other parts of the system. Second, applications interface
packages which would deal with data base and user de-

TABLE I-List of Active Keys

PROBLEM

. PAP •

useR

ABSCR

BLOOD TYPE

RPR •

RUBEL

2IlGL

EDC

HGB

MEDICATION

NAME

RH

HCT

NEXT APPOINTMENT

ACTIVE PROBLEM

THERAPY ••••

ICDA DIAGNOSIS

PAP SMEAR RESULTS

URINE S<::REEN RESULTS

ANTI-BODY SCREEN RESULTS

BLOOD TYPE

PROTEIN REACTION

RUBELLA TEST RESULTS

2-HOUR GLUCOSE RESULTS

ESTIMATED DATE OF CONFINEMENT

HEMOGT.OBIN TEST RESULTS

DRUGS BEING ADMINISTERED

PATIENT NAME

RH FACTOR

HEMATOCRIT TEST RESULTS

APPOINTMENT LIST

ACTIVE DIAGNOSIS

THERAPIES BEING ADMINISTERED

pendent aspects as printed output formats, update formats
and so forth. In such a scheme, each data base dependent
application could develop independently of the others within
a common environment of conventions and structures.

Another important design aspect is that of system expanda
bility. That is, whether the system is capable of integrated
growth without data base fragmentation. The design must
assume at the outset that as the population serviced by the
system grows, an upper limit to the capacity of anyone
computer implementation will be eventually achieved. At
this point the population must· be· divided among more than
one computer. As the number of such divisions grows, it
must nonetheless remain possible for a user at any system
to access data or perform searches at any other system or
set of systems conveniently. That is, the user at an inter
active terminal should not be aware of multiple machine
data base segmentation.

DISTRIBUTED NETWORK OF MEDICAL
INFORMATION SYSTEMS

In order to fulfill the third specification mentioned above,
that of expandability, a Distributed Network of Medical
Information Systems is proposed. This is outlined in Figure
1. It will consist of many local medical information systems

I

-

An Integrated Health Care Information Processing and Retrieval System 95

$CSAR - SYSTEM FILES OPEN.
$CSAR - CSAP 0.1 (OBSYS/TRSYSI
$CSAR - SUB-POOLS WILL BE ACCUMULATED.

1 $NO LIST; I*DON'T lIST PATIENT NUMBERS AFTER SELECT STATEMENTS*I

2 SELECT: IF: RH = NEG; I*NEGATIVE RH FACTOf<*1
SCSAR - SU~-POOLS SELECTED:
$CSAR - PATIENT NUMBERS SELECTED:

3 SAN OJ

~CSAR - SUB-POOLS WILL BE INTERSECTED.

4 SFL EeT: IF: BLOOD TYPE = 0;
$CSAR - SUB-POOLS SELECTED:
$CSAR - PATIENT NUMBERS SELECTED:

5 ~ANO;

$CSAR - SUB-POOLS WILL ~E INTERSECTED.

1
59

1
24

6 SELECT: IF: PRORLEM = Y06.**; I*PREGNANCY IeDA CODE*I
f, CS AR - SUB-POOL S SEL EC TED: 11
~CSAR - PATIENT NUMBERS SELECTED: 23

1 f,AND;

$CSAR - SUR-POOLS WILL Rf INTERSECTEO.

8 SELECT: IF: FOe = 13/11/**; I*CONFINEMENT IN NOV 13, ANY DAY*I
SCSAR - SUR-POOLS SELECTED: 23
$CSAR - PATIENT NUMBERS SELECTEO: 4

9 $SORT: EOC; I*ESTIMATEO DATE OF CONFINE~FNT*I

$CSAR - PATIENT NUMBERS SORTED.
$CSAR - PATIENT NUMBERS SELECTED:

10 DISPLAY: CENSUS;

NBk Sf X/MARl TAL

DAnIel"
00 __ FEMALE , '1ARRIED

JOANN F E 00_ FEMALE, "'A~RIED

SUZ ANNE " oa_ F E MALE, ... ARRIED

CA~OL 00_ FEMALE, MARR.IED

PHCNE

(717) 367-_

(717 t 533-_

(71n 213-_

Figure 4-SELECT statement examples

4

ATTND BT/RH WGT EDC

50_ 0 NEG 134 llta! H

50... J NEG 105 11/"/73

50..a 0 NEG 150 11/~/73

96 National Computer Conference, 1974

2 SELECT: IF: ATTF~DTNG= 5o,,; I*ATTENDING PHYSICIAN CODE*I
$CSAR - SUB-POOLS SELECTED: 1
'CSAR - PATIENT NUMBERS SELECTEO: 128

3 $ANO; '*"AND" NFXT P4TIENT NUMBER LIST WITH CURRENT LIST.I

'CSAR - SUB-POOLS WILL RE INTERSECTED.

4 SELECT: IF: PROBLEM = Y06.**; I*PREGNANCY ICDA COOE*I
$CSAR - SUR-POOLS SELECTED: 11
$CSAR - PATIFNT NU~RERS SELECTED: 125

5 $SET BASF; I*RETAIN THIS NUMREP*I
$CSAR - THE RASE IS: 1.250000E+02

6 $ANO; I*"ANO" N~XT PA1IFNT NUMBER LIST WITH CURRENT LIST*I

$CSAR - SUR-POOLS WILL RE INTERSECTFD.

1 SELECT: IF: PAP = :bt.cilc**************; I*ACCEPT ANY VALUE*I
$CSAR - SUB-PQOLS SELECTED: 25
\ C S A ~ - PAT lEN T N lJM R E R SSE LEe T F D : 8 3

8 0 I S P LAY: P F.R C F N TAG E; 1* PER C F N TAG E PRE G NAN T F G P. 5 0 _ \oj I T H PAP T EST S * I
'CSAR - CURRENT PA,TIENT NU~RER LIST IS 66.4't OF THE BASE.

9 $XOR; '*"FXCLUSIVf OR" NEXT PATIENT NU~BER LIST kITH CURRENT LIST*I

$CSAR - SUB-POOLS WILL HE EXCLUSIVE ORtfO.

10 SFLECT: IF: PRORLEM = Y06.**; I*PREGNANCV*I
SCSAR - SUB-ponLS SELECTED:
$CSAR - PATIENT NUMqERS SELECTEO:

11 $ANf); I*INTEPSECT PATIENT NUMBER POOlS*1

$CSAR - SUB-POOLS WILL BE INTERSECTED.

12 SELfCT: IF: ATTFNDING = 5~; I*PHYSICIAN COOE*I
$CSAR - SUB-POOLS SELECTED:
$CSAR - PATIE~T NU¥.BERS SELECTED:

11
214

i
42

13 OISPLAV: PERCENTAGE; I*PERCENTAGE PREGNANT FOR 50_ WITHOUT PAP TESTS*I
$CSAR - CURRENT PATIENT NUMBE~ LIST IS 33.6~ OF THE BASE.

Figure 5-SELECT statement examples

An Integrated Health Care Information Processing and Retrieval System 97

JANE.
PHONE: (717) 944-_
BIRTH: 12/10/_
PATIENT NUMBER: OO~
FEMALE, MARRIFO

ADDRESS:

REFERRED BY:

ATTENDING: 50004 BLOOD TYPE: A NEG
USUAL WEIGHT: 126 eoe: 173
NEXT APPOINTMENT: __ 1 __ 1 __ AT WITH

CURRENT PROBLEM LIST

PAGE 1

----------------~--
05/11113 RH INCOMPATIBILITY
05/11/73 HX OF HIGH RIRTHw~IGHT INFANT
OA/13/73 GESTATIONAL OIABfTFS

634.50
178.4H
250.AA
71Q.OH 08/11/73 HX FETAL D~ATH IN UTERO

rSAR SYSTEM TUMO~ REGISTRY WORKSHEET

T= ___ .<_F p=--- R= __ BP= ___ I __ _ WT= ___ LRS

PRIMARV SITE: ICOA CODE= ______ ; DESCRIPTION: _______________________ _

STAGE OF MALIGNANCY FOR PRIMARY SITE, THIS OBSERVATION:

1. IN SITU 5. CANCER PRESENT, STAGE UNKNOWN
2. LOCALIZED 6. NO EVIOENCF OF CANCER
3. R FG ION AL I Z EO
4. REMOTf METASTASIS

1. NOT KNOWN IF CANCER PRESENT
8. NON-~ALIGNANT TUMOR

REMOTE METASTASIS TO:

1. LUNG 5. CENTRAL NERVOUS SYSTEM
2. LIVER 6. PERITONEUM
3. BONE 7. INTFSTINAl TRACT
4. LYMPH NODES 8. OTHER

Figure 6-Tumor registry worksheet

connected centrally into regional control systems which
could themselves, in turn, be connected into state-wide or
larger networks. Each local facility will maintain its local
data base which may be interrogated locally. In addition to
this, however, each local facility can route requests to the
central facility for access to information not stored locally.
In turn, the central facility will poll, simultaneously, the
proper set local facilities with the forwarded request. Replies
will be collected and returned to the requesting station. The
central control point need not be much more than a mini
computer with a suitable amount of telecommunications
equipment and disk buffers for queueing of information.
Alternatively, the central control point could be a major
shared computer facility providing centralized facilities for
many small medical centers.

The great advantages of a design such as this are its
simplicity flexibility and modularity. Control systems are
easily designed. Flexibility and modularity is achieved across
the network in that each local system can differ totally
from each other system so long as it communicates its
requests and replies according to a standard network proto
col. This will permit a wide variety of local development to
take place simultaneously.

Furthermore, if the central control points are regional
shared resources, this design will permit smaller installations
to access and benefit from computational and program
library facilities which would· otherwise be unavailable. The
development of a distributed medical information network
will enable individual institutions to specialize in designated
areas of program development, library maintenance and so

98 National Computer Conference, 1974

JANE.
PHONE: (111) 944-....
A IRTH: 12/10'_
PATIENT NUMBER: 00
FEMALE, MARRIED

ADDRESS:

RFFERRED BY:

ATTENDING: 50004 BLOOD TYPE: A NEG
USUAL WElr;HT: 126 EOC: 173
NEXT APPOINTMENT: __ 1 __ 1 __ AT ____ WITH

CONDITION OF PATIENT AT THIS OBSERVATION:

CAPABLE OF NORMAL ACTIVITY:

1. ASYMPTOMATIC
2. SYt.1PTn~ATJC

UNABLE TO WDRK:

3. CAPABLE Of SElf-CARE
4. NOT C~PABlE OF SELF-CARE

SEVERLY DISABLED:

s. NOT TERMINAL
6. TERM INAL

DEAD:

1. AUTOPSIfD
8. NOT AUTOPSIED

DIAGNOSTIC PROCEDURES PEPFORMEO, THIS OBSERVATION

1. EXFOLIATIVE CYTOLOGY 4. X-RA Y
2. HEA.1ATOlOGY 5. AUTOPSY
3. HISTOLOGY 6. f1THER

SCHEDULED FOllOW-UP VISIT: __ , __ , __

NEW MEDICATIONS: cnOF DESCRIPTION

DISCONTINUED MEDICATIONS: CODE DESCRIPTION

NEW THER.APIES: leDA CODE DESCRIPTICN

DISCONTINUED THERAPIES: leOA COOE DESCRIPTION

Figure ~2

An Integrated Health Care Information Processing and Retrieval System 99

JANE.
PHONE: (717) 944-.... ADDRESS:
BIRTH: 12/10/_
PATIENT NUMRFR: 00 REFERRED BY:
FEMALE, MARRIED

ATTENDING: 50004 BLOOD TYPE: A NEG
USUAL WEIGHT: 126 Eoe: 0718/73
NEXT APPOINTMENT: __ 1_1 __ AT WITH

DISCONTINUED PROBLEMS: leDA CODE DESCRIPTION

leDA CODE DESCRIPTION

PROGRESS NOTES:

INITIALS EXAMINING PHYSICIAN: ______ _

Figure 6-3

forth. The benefits of these efforts could be shared by all.
Thus a medical facility in a small rural hospital could have
access to the same tools at the same cost as a large metro
politan hospital. In general, this cost should be lower than
it now is due to the elimination of duplication.

PROTOTYPE IMPLEMENTATION

At present, a prototype of a local medical information
system is being tested. The prototype is written in PL/I
and is being run on The Pennsylvania State University's
IBM 370/165 research computation facility at University
Park, Pennsylvania. The user population, at the Milton S.
Hershey Medical Center in Hershey, Pennsylvarua (103 miles
distant), interact with the system via a Remote Job Entry
system and a state-wide remote batch network. It is antici
pated that work will commence shortly to transfer those
portions of the system which are completed onto a small
computer located in Hershey. Research and development,
however, will still be carried out at University Park.

The basic system cycle is given in Figure 2. Figure 3 is an
overview of the computer structure of the medical. record.
For purposes of explanation, user requests are divided into
two ciasses: the "SELECT" statement and the !!DISPLA Y"
statement. Others, however, are available but not considered
here.

With the "SELECT" statement, the user specifies criteria
for a population cross-section search. For example:

SELECT: IF: RH=NEG AND PROBLEM=Y06.0;

This request seeks the identity of all those patients with a
negative RH factor who are pregnant (ICDA [1] Code). The
result of this request is a list of patient identification numbers
(hospital numbers) of those patients who fulfill the stated
criteria. An example is given of such a request in Figure 4.
The relational operators "> = ", "< =" and ".., =" may
also be used as can be seen in Figures 4 and 5. Asterisks are
used to indicate that any recorded value for the selected
field position will be acceptable. Table I gives a summary of
those keys which are currently active for selection.

Pools of patient identification numbers are normally
ordered by ascending value (default sort). This can be
changed by the "SORT" statement as is shown in Figure 4.
This is particularly useful when preparing patient charts for
clinic visits. By selecting those patients who are scheduled
for a given day, it is then possible to sort them by hour and
by physician thereby greatly reducing clerical effort.

Having settled upon a list of patient identification numbers
and having ordered them as desired, actual displays of data
from patient records can be requested .vith the "DISPLAY"
statement. Figures 6 and 7 give several examples of patient
data displays. At present, there are three applications pack-

100 National Computer Conference, 1974

___ J I\NF • PAGE 1
~HONE: (717) 944-....
R I R. T H: 12/1 0 I~
PATIENT NUMBER: 00
f:EMALE, MARR r ED
ATTENOJ~G: 50004 RlOOD TYPE: A NEG
USUAL WE IGHT: 126 FDC: 07,../73
NEXT APPOINTMENT: __ 1 __ 1 __ AT ____ WITH

CURRENT PROBLEM LIST

05/11/73 RH INCOMPATIBILITY
05/11/73 HX OF HIGH BIRTHWEIGHT INFANT
08/13/73 GFSTATIONAL DIABFTES
08/11/7~ HX FETAL DEATH IN UTERO

PRENATAL VISIT

BLOOD PRESSURE: ____ 1

ALBUMIN:

WEEK OF GESTATInN:

HEIGHT JF FUNDUS (C~): __ _

STATION OF PRESENTI~G PART:

NEW PR,)Bt EM S

1.

2.

DISCONTINUED PRnBLE\1S

1.

2.

NOTES:

LAB TESTS NEEDED:

634.50
718.4H
250.AA
179.0H

WEIGHT: __ _

EDEMA: ___ _

LOCATION OF FETAL HEART:

~ITH ULTRASOUND ONLY?

FETAL PCSITICN:

ESTIMATED FETAL WEIGHT:

NEW MEDICATIONS

1.

2.

DISCONTINUED ~EDICATIONS

1.

R.ETURN VISIT AT: _____ WITH: __ _

INITIl\LS:
Figure 7-Dbstetrics outpatient system example

I

An Integrated Health Care Information Processing and Retrieval System 101

JANE. PAGE 2
PHONE: (117t 944-_
RI~TH: 12/10/41
PATIENT NUMAER: 00 .. _
FE~AlE, MARRIED
ATTENDING: 50004 BLOOD TYPE: A NEG
USUAL WE IGHT: 126 EDC: 0718/73
~EXT APPOINTMENT: __ 1 __ 1 __ AT ____ WITH

PROGPESS NOTES

05/11/73.1

05/25/73.1

06/08/73.1

06/15/73.1
06/15/7~.2

06/22/73.1

06/2CJ173.1

07/13/1""J,.L

07 120/71. 1

01121173.1
01127113.2
01121173.3

08/03/73.1
08/03/73.2

08/.113.1
08/./73.?
08/./73.3
08/.,73.4

08/.,13.1

WEll. 2HR. BLOOD SUGAR= 122

WELL.

W FL '- •

HAS PREGNANCY GRANULOMA OF GUMS. RH TITER
TOOAY. ~IlL START ORAL CONTRACEPTICN 3 WKS PP.

WELL.

WELL.

HISTORY OF 9-10# INFANTS. CX CLOSEO, SOFT • .-

PELVIC=~"OVING ANTERIORLY, lC~,SOFT,10"EFF. _

HX OF McNST~UAl INTFRVALS UP Te 40 DAYS
COM ING OFF PILL S. C X LONG, POST, CLCSED. PT
& HUS8A"JD ACCEPT PRORLFf-4 WELL. .-

eX-LONG, 1C~. NOT RIPE. ~OT RIPE ENOUGH TO
INDUCE. INFANT 10N + NO\.l. ~

PT I~FORMEO OF PRORABlY DEMISE. TO CO~E IN
MONOAY~ iF FHT AUDIBLE WILL INDUCE. IF NOT,
WAIT ex RIPENING PR8RABlY. ex 2 eM OIL, 60' EFF
MEMBRANES STRIPPED. ...

DELIVFRFO S130GM MALE, APGAR 0,0.

Figure 7-2

ages in operation: (1) an Obstetrics Outpatient Clinic Sys
tem; (2) an Obstetrics Labor and Delivery Information
System and; (3) a Regional Tumor Registry System. Ex
amples of pre-printed work-sheets and displays for these are
given in Figures 6 and 7. Other systems, including a General
Outpatient Clinic System which will be similar to the Ob
stetrics version, are in preparation.

SYSTEM DESIGN

Details of the system file structure and design are given
in References 2 and 3. The overall design of the system con
sists of two parts. The first of these is a system nucleus which
is largely data independent except for certain driver tables.

102 National Computer Conference, 1974

JANE.
PHONE: (717) 944-----
BIRTH: 12/10/47
PATIENT NUMRER: 00 __

PAGE 3

cfMALE, MARRIED
ATTENDING: 50004
USUAL WEIGHT: 126
NEXT APPOINTMENT:

BLOOD TYPE: A NEG
Eoe: 07/ .. 113

__ 1_1 __ AT ____ wI TH

t-iEOICATIOI\JS

;~;;-----~;~~~~~-~~~;-~~~-~;~~~~--------~~~~--~;;~;~~---~~;----;;-~~~~;~~

05/11/73 FERROUS SULFATE 300MG
08/14/73 ORTHONOVUM 1/50
08/14/7~ C~LACE lOO~G

08/11/73 R HOGAM

26201 ITIO PO **1**1**
PO **1**1**

65206 1TIO PO **1**1**
82101 1M **1**1**

CURRENT P~OBlEM LIST

;~~~~~;~-;~-~~~~~~~~~~~~~~~-------------~;~~~~---------------------------
05/1111~ HX o~ HIGH BIRTHWFIGHT INFANT 718.4H
08/13/73 GESTATIONAL DIABETES 250.AA
08/11/73 HX FETAL D~ATH IN UTERO 179.0H

INACTIVE PRORL~M LIST

;;;~~~~;-;;~~~~~~~----------------------~~~~~~---------------------------
07/13113 LARGE BABY FOR DATES 777.41 08/11/73
08/10113 FETAL nEATH IN UTERO 779.98 g:~11113
08/11/73 SHOULDER f)YST'ICIA 656.88 11/73
08/11113 4' PERINEAL LACERATION 658.34 g:~~~~;~
--_.--------------------

THERAPY lIST

~;~~~~;;--~~~~~~--~~~~~~~~~~~-~;~~~~;~-----------------------------------
08/11/73 078.3(R~PAIR 4' LACERATION

Figure 7-3

The second part consists of data dependent applications
packages.

The system nucleus monitors and provides basic input/
output services. It reads the system command language and,
based upon entries in driver tables, constructs various popu
lation cross section keys ("SELECT" statement keys),
patient data description keys ("DISPLAY" statement keys)
and output report generation format tables. Nucleus routines

retrieve patient numbers (for "SELECT" statement keys)
and record addresses (for "DISPLAY" statement keys). The
basic file structure is that of a blocked key file. 3

The nucleus performs the logical operations (AND, OR,
XOR) upon pools of retrieved patient numbers. In the case
of record addresses (from "DISPLAY" statements), it re
trieves the records and passes them to the proper applications
package along with report format description tables.

I

An Integrated Health Care Information Processing and Retrieval System 103

During updates the nucleus monitors the optimal place
ment of patient records on bulk storage files. It automatically
repositions patient records in order to maintain the complete
record set for each patient on a single direct access disk
cylinder thereby greatly reducing device arm movement.
Other functions of the nucleus include sorting, timing and
statistics collection. A built-in PL/I sub-set interpretive
compiler permits dynamically entered user functions to
interact with retrieved data.

Typically, applications interface packages are concerned
",ith output print formats and updates. Routines vary in
size and complexity depending upon the nature of the appli
cation. Data entered into a patient record as a result of any
application package is available to any other package.

The system maintains four main files. These are: (1) a
control file; (2) a key file consisting of pages or blocks of
ordered keys; (3) a pool file containing sets (sub-pools) of
patient numbers and (4) a bulk-file containing actual data
records. Key-to-bulk file record address ("DISPLAY" re
requests) and key-to-patient number sub-pool ("SELECT"
requests) are performed in the block structured key file.
This works as follows:

At system initiation the control file is loaded. It lists the
high and low key values for each block in the key file. Within
each block keys are ordered from low to high. Associated
with each key is a 32-bit number which is either: (1) a
relative record address in the bulk-file or (2) the relative

___ JANF.. PAGF 4

PHONf: (111) 944-....
'HPTH: 12110/41
DATIENT NUMBER: 008llia
FFMALE. MARRIED
ATTFNOI"IG: 50004 BLOOD TYP[: A NEG
USUAL WUGHT: 126 FDC: 07/_113
~lfXT APPOINTMENT: __ 1 __ 1 __ AT

nATE TI"1E

01112173
07./23/13
08/10/13
08/13173
08/13/13
08113113
08113113
08/13113
08/13173
08113113
08/13113
08113/13
08113113
08113173
08113173
08/13173

DATE

01112173
02/27113
06/15173
08/10113
08113113

0100
0130
0800
0830
0900
1000
1200
0730
0800
0830·
0900
1000
1200

WI<

** **
**
**
**

WITH

STUDY

RPR
2HGL
FIBR
GLUC
GLue
GLUC
GLUC
GLue
GLUC
GLue
USr,
USG
USC;
USG
USG
USG

He T USCR

31.3 NFf.
**** ****
**** ****
39.5 ****
40.1 ****

RESULT

"~EG
122
793
126
116
243
214
254
163

69
NEG
NEG
NEG
NEG
r\EG
NEG

ARSCR

"FG
!\EG

---------------------~~=======~

Figure 7-4

_JANE" PAGE' 5
PHONE: (7171 944-_
RIR.TH: 12110/47
"ATIENT t-JljMBER: 00_
FP4ALE, r.4ARRIED
ATTENDING: 50004 RLOOD TVPf: A NEG
USUAL WEIGHT: 126 EDC: 01la173
t-JEXT APPOINTMENT: __ 1_1_ AT __ WITH __ _

*** ALooa PRESSURE' REyrND NCR~AL LI~ITS *~*

BLOOD PRE SSURE

--------------------------------- 130
.S

S S

• S S S S S S S S S •

D
D

.0
[)

• DOD non DOD 0 •
o D

--------------------------------- 60

MAXIMlj~ SYSTOLIC: 130 MAXIr.4U~ DIASTOLIC: 96
~INUMI~ SVSTnLIC: 104 MINIMU~ DIASTOLIC: 60

Figure 7-5

record address of a sub-pool of patient numbers in the pool
file. A positive value indicates the first case and a negative
value the second.

For retrieval, incoming keys are compared against the
block high and low keys. If the incoming key lies outside
the ranges of all, then nothing is retrieved. On the other
hand, if the key lies within the range of some block, it is
loaded (if not already resident). The block is searched in a
binary manner. A list is developed consisting of the numbers
(called registry numbers) associated with accepted keys.
These are passed on to other parts of the nucleus.

The advantage of this type of retrieval technique is its
speed and simplicity. Maximum time of search for an explicit
key is; with a resident control file, independent of the size
of the key file as bulk file. At worst case, the system must
load a new page. Non-explicit searches vary in time de
pending upon the number of keys selected.

Experience indicates that, after an initial period of time,
the rate at which new keys enter the system becomes linear
and rises at a rate far less than corresponding increases in
the size of the bulk file. This is also true of the pool file.
The key file, at this writing, is 5 percent of the bulk file and
pool file in size.

It is anticipated that the internal organization of blocks
in key file will be restructured in the near future to that of
m-way trees. This will reduce the amount of storage required.
Further, it should decrease the number of page swaps.

PERFORMANCE

Presently, after 10 months of operation, there are about
500 patient records resident on the system. With the intro-

104 National Computer Conference, 1974

__ .,. JANE. PAGE 6
PHONE: (711) 944-~
BIRTH: 12/10/47
PATIENT NUMBER: 00
FEMALE, MARRIED
ATTENDING: 50004 BLOOD TYPE: A NEG
USUAL WE IGHT: 126 Eoe: 011&113
NEXT APPOINTMENT: __ 1 __ 1 __ AT ____ WITH

DATE TIME WK BP EO WT AL FH FD PF ST Sl EXM

01/12113
02/09113
03/09/73
04/06/73
05/11/7.3
05125113
06/08/73
06/15113
06/22113
06/29173
07/06/73
07/13113
07/20/73
01121/73
08/03/73
08/10/73

:
:
:
:
:
:
:
:
:
:
:
:
:
:
:
:

14
18
22
26
31
34
36
37
38
38
40
41
42
43
44
45

1301 80
1101 70
1201 75
1101 10
1201 68
1041 68
1101 70
1101 64
11PI 60
1121 10
1121 70
1081 60
1081 70
1261 96
1201 90
1101 10

00
00
**
00
00
00
00
00
00
00
00
00
00
00
TR
00

127
131
133
141
148
150
152
152
153
154
154
156
156
158
160
158

**
00
00
TR
00
TR
00
00
TR
00
00
00
00
00
00
00

LMS **
LMS 17
RLQ 18
RLQ 18
RlQ 26
lLQ 27
LtQ 31
RLQ 31
LLC 30
LlC 32
RlQ 31
RLQ35
LlQ 42
LlC 34
RlQ 38
NHS 41

** **
**
** VT
VT
VT
VT
VT
VT
VT
VT
VT
VT
VT
VT

**
**
**
** FL
Fl
Fl
Fl
EN
Fl
OP
oP
Fl
FL
FL
Fl

**
** **
**
**
**
**
**
** **
**
** 44
**
** 45

VGS
HCG
DRH
ORH
DRH
ORH
DRH
DRH
ORH
ORH
DRH
ORH
WJM
ORH
DRH
ORH

-~ --.... --~--------.-.----.----------------------~---------.------~--.... ---
WK = WeEK OF GESTATION;
EO = EDEMA;
WT = MATERNAL WEIGHT;
Al = ALBUMIN;
FH = POSITION OF fETAL HEART;

SCSAR - END OF SUMMARY FOR:

FO = HEIGHT OF FUNOUS{CH);
PF = PRESENTATION OF FETUS;
ST = STATION;
SZ = FETAL SIZE(XIOO GMS);
EX~ = EXAMINER;

JANE.

Figure 7-6

duction of the recently completed Regional Tumor Registry
Information System package, this is expected to reach 5,000
in the next 12 months. At present, the cost per patient per
month is about $0.12 using an IBM 3330 Disk Storage
device (this includes cost of the pack and drive plus shared
costs of the controller and channel). The cost per patient
record printout varies with respect to the size of the record,
but is generally on the order of $0.05 to $0.15 for a moder
ately large record. Retrieval (HSELECT" statements) times
vary upon the amount of patient numbers retrieved and are

not significantly influenced by file size (this is characteristic
of block structured techniques). In general, between 500 and
750 patient numbers per second can be retrieved.

CONCLUSION

We believe that the present system design can be exploited
to handle the entire patient medical record economically.
Having completed work on the basic system nucleus, several

An Integrated Health Care Information Processing and Retrieval System 105

applications packages are under development. One such
project is in the area of billing and finance. By including an
additional flag in the field for each chargeable item or service,
the system can be used to produce an integrated patient
ac~ount statement. Another project is in the area of de
veloping an automatic constructor which will enable an
implementor to define new applications by means of a high
level system .definition language. Based on such a definition,
appropriate applications routines and driver tables will be
generated.

REFERENCES

1. Eighth Revision, International Classification of Disease Adapted for
Use in the United States, U. S. Department of Health, Education
and Welfare, Public Health Service Publication No. 1693.

2. O'Kane, K. C., The Design and Implementation of an Integrated
Medical Information System, Ph.D. Thesis, The Pennsylvania State
University, 1972.

3. O'Kane, K. C. and R. J. Hildebrandt, Operations Manual for the
CSAR System, Department of Computer Science, The Pennsylvania
State University, 1973.

I

Interface for rapid data transfer and evaluation

by PRADEEP SHAH,* RUDY HAIDLE and GEORGE CZERLINSKI

Northwestern University
Chicago, Illinois

INTRODUCTION

:Minicomputers are quite useful for the acquisition and reduc
tion of data from physical and biomedical research equip
ment. Minicomputers have become progressively less expen
sive and are now comparatively easily available for research
investigators. At that point, the problem arises to interface
minicomputers effectively to research equipment. This inter
facing task became recently somewhat facilitated by
specialized books and articles.1,2,3 Quite recently minicom
puters were utilized for multiple ion detection in combined
gas chromatography-mass spectrometry.4, 5 A computer cen
tered instrument for simultaneous measurements of absorp
tion and fluorescence was also described quite recently. 6

Finally, a computer system for the acquisition and analysis
of temperature jump data was described. 7 Although a Bioma
tion 802 transient recorder was used as fast analog-to-digital
converter by the latter authors, they utilized a Digital
Equipment Corporation PDP 11/20-8k and a teletypewriter
ASR-33 as equipment connected to the output of the Bioma
tion 802. In this paper we will describe the use of a Digital
Equipment Corporation PDP 8/e-8k minicomputer as active
prOCf'ssor between the Biomation 802 and a Hazeltine 2000
CRT terminal, which is also connected to a Hazeltine dual
tape cassette.

Before the use of the minicomputer, we had produced data
on paper tape in rather large quantities. The rolls of paper
tape were then transferred to a large computer via an over
night carrier. Unfortunately, the large volume of long rolls
of paper tape caused some operational problems at the main
computer center. Furthermore, ten minutes were required
for the production of paper tape with about 1,000 (8 bit)
points per experiment from the Biomation 802. For our
experiments, three minutes are required for thermal equil
ibration after a temperature jump and also for full attain
ment of a new equilibrium value after a pH jump. In other
words, our Biomation 802 transient recorder is utilized on
two types of chemical relaxation experiments: perturbation
with the temperature jump apparatus and with the con-

* Current address: Equipment and Software Systems, Bun:oughs
Corporation, Detroit, Michigan 48232.

107

centration jump apparatus (a pH-jump is a special case of a
concentration jump).

The current arrangement allows us to conduct our experi
ments about ten times faster than before. We fill tape
cassettes with data which are subsequently transferred
through communication lines onto a large computer for thor
ough statistical analysis. This paper will describe the layout
of the software and the details of the hardware configura
tion. No changes were made on the Biomation 802, allowing
us to use a teletypewriter and the previously employed inter
face (Dijiscan Model B203) as back-up for this computer
system. However, we have not needed to use the back-up
system since the minicomputer was first brought into opera
tion in June of 1973. The equipment is used rather extensively
in two research projects on the mechanism of action of
enzymes. 8,9

METHODS

The experimental arrangement centered around a Digital
Equipment Corporation PDP 8/e-8k minicomputer, inter
faced both to a Hazeltine 2000 CRT terminal with dual tape
cassette unit, and to a Biomation 802 transient recorder.
The latter is connected either to one of our temperature
jump instruments10 or to our pH-jump apparatus. 8 The de
tails are best described by several figures.

A schematic of the temperature jump apparatus with
detection of transmission changes is shown in Figure 1.
A similar instrument is also available for detection of fluo
rescent changes, containing a half reflecting mirror between
light source and cell (containing the chemical system). The
mirror transmits excitation light and reflects fluorescence,
emitted back from the cell. The temperature jump instru
ments are equipped with special AC-coupling circuits to
improve the detection of small changes behind large (fast)
transients.ll Three types of stopped flow instruments are
available with the slowest one in considerable use: This is a
pH-jump apparatus with detection of transmission changes
and a time resolution of about 0.1 seconds.

The layout of the equipment around the PDP 8/e mini
computer is shown in Figure 2 without a 10 times wide band

108 National Computer Conference, 1974

Push
button

--o-L-____ A

~JII

,
8e I Ls oP''''

-~l~=
~ * " ~~ ::. -=

L ", r'
F

IA7A ~

of I

Tektronix I

5498

___ Osci Iloscope

D

Ls closed

P

Figure I-Schematics of a temperature jump apparatus with detection
of transmission changes. The schematic shows abbreviated the current
overall configuration of the apparatus. When a push button is pressed,
a timing circuit is initiated, triggering first the oscilloscope deflection at
A. After one centimeter of progression of the oscilloscope beam, a
trigger pulse is generated at B, initiating the closing of the spark gap
switch G. After about 0.5 millimeter further propagation of the oscillo
scope beam, a trigger is generated at C, opening the grounding switch
S in the detection circuit. The grounding switch is closed again at time
D (or later). The extended grounding (from B to C) is used to prevent
any processes to be shown on the oscilloscope screen, which are faster
than the one currently under investigation and settings of the oscillo-

scope deflections, which are optimal for detection

amplifier, which is located in front of the Biomation 802
and amplifies the signal derived from the temperature jump
experiments. The data acquisition is controlled through inter
action with displays on a Hazeltine 2000 CRT terminal.
The controlling messages and the associated flow diagrams
are shmvn in Figures 3, 4 and 5. More subroutines are
actually used than shown in these three figures. A teletype
writer may also be connected and is essential for the initial
loading of the binary program from a paper tape. (We en
countered some problems in trying to use the Hazeltine
cassette as alternate storage space for the programs: the
problems are due to the fact that the interfacing Hazeltine
terminal behaves inconsistently with respect to non-dis
playable characters, when transmitted for recording onto the
cassette.)

The geometric layout of the various integrated circuits on
the interface board of the PDP 8/e are shown in Figure 6.
Enough space is left to add additional control functions. The
functional circuit diagram is distributed over Figures 7, 8
and 9, all of which are mounted on one DEC interface
board M1709. The remote control of the Biomation 802 is
not implemented yet. The instruction set of the interface is
as follows (where xx stands for 63, the device code for the
transient recorder) :

6xxO: Interrupt off.
Turns off the interrupt flip-flop, i.e., clears it. This stops
any interrupts due to data ready signals from the Biomation
802.

6xxl: Skip on flag.
The instruction following 6xxl will be skipped if the next
word from the Biomation 802 is available and such a signal
has already come from the Biomation 802 to the interface
board.

6xx2: Interrupt on.
Turns on the interrupt flip-flop, i.e., sets it to 1 and this way
enables the Biomation equipment to interrupt normal execu
tion of a program when next word is ready on the line.

1

l
serial

Biomation 802
transient recorder

8 bits A/ 0
conversion ma)t.

0.5 usee/ sample.

1000 samples

III

para lie I transfer of

250 bits/sec. under

progra m cont rol

PDP/e - 8k j
serial

1200 bits/sec

fu II duplex

110 bits/sec

ha I f duplex

Hazeltine 2000
CRT terminal

: i independent

: I serial

I I 300 bits / sec

I I half duplex
I~

dual CDC
tape 6400

cossette computer
un it

ASR 33 tele
ty pewritet

Figure 2--Qverall diagram of the computerized data acquisition system.
The output of the amplifier in Figure 1 is connected to an isolation am
plifier, producing also a ten times amplifip,ation for adaptation to the
input characteristics of the Biomation 802 transient recorder. A Tek
tronix 602 storage oscilloscope is connected to the Biomation 802 to
show the stored information. The transient recorder is directly connected
to a PDP 8/e minicomputer with control information normally appearing
on the Hazeltine 2000 CRT screen. Some minor editing is available
before the data are transferred from the core of the PDP 8/e onto the
Hazeltine tape cassette unit. From there, data are transferred onto the

disk of a large CDC 5400 via telephone lines I
I

6xx3: Available for future expansion.
6xx4: Load the control register.

This instruction will output the control bits which may do
one of the following:

(a) Effectively control execution of instruction 6xx5 (load)
(b) Effectively control execution of instruction 6xx6 (read)
(c) Start output from the Biomation 802. This will clear

flag and pin 7 of the Biomation 802 will be grounded.
(Ref: Biomation Manual-the user is required to
ground pin 7 to start data transfer.)

Accumulator is cleared at the end of the instruction.
6xx5: Load scales or control lines.

Depending upon bit setting of instruction 6xx4, lower 6-7
bits of the accumulator are loaded into either the "voltage
scale" buffer or "sweep time" buffer or "extra control lines"

(R, D, G, P, E)

PUT 802 IN SINGLE SWEEP MODES

PUT CASSETTE IN ONLINE -CQNT - CHAR. MODES

802

done
~---I transfer 1024

data buffer in core

Figure 3-Program Flow Chart of main program in the minicomputer
and of short subroutines. The actual text of the control information
from the minicomputer is directly shown. The five letters in the first
print statement stand for:

R = Record data in core onto dual tape cassette
D = Display data in core on the CRT terminal
G = Go to Get new data from Biomation 802
P = Punch data onto paper tape of tty
E = End the program.

Starting point is at the beginning of core of the minicomputer, address
0000. The main program starts at Octal 0200. The data buffer starts at
Octal 2000 and is Octal 2000 long. Location of the messages ioliows and

the program ends at Octal 4400

Interface for Rapid Data Transfer and Evaluation 109

PUT MODES

CARDS

OUTPUT (YES OR NO)

WHICH

done t-----< RETURN
"---r--'

~d~a~ta~~bu~f~f~e.!:.r...!i~n~co~r!eyl._*L..-_"_~:1 tape cassette II

Figure 4-Flow Chart of subroutine SETCNT, responding to branch D.
Sections of collected data may be presented on the screen without further

editing capability

buffer register. Accumulator is cleared at the end of the
instruction.

The "voltage scale" and "sweep time" buffers· drive cor
responding scale lines high only if "voltage scale" and "sweep
time" knobs are positioned "external" on the front panel of
the Biomation 802.

"Extra control lines" (6 of them) give open collector out
put which can be pulled up to + 15 volts (maximum current
of 20 rna). Their main use will be for "relay" controls.
(Note: When "sweep time" multiplier is neither xl nor x2
then it is x4. Similarly when "voltage scale" multiplier is
neither xl nor x2 then it is x5.)

6xx6: Read scales or control lines.
Depending upon instruction 6xx4 bit setting, "voltage scale",
"sweep time" or "control lines" are sensed and loaded into
the accumulator. If more than one "read" control is turned
on by 6xx4, the effect will be to "OR" the lines into the
accumulator.

Control lines are [compare sections 5.5 to 5.7 of Biomation
Manual] (i) Z Enhance (pin 6) goes to 1, when "sweep

110 National Computer Conference, 1974

0----

Display

~------l~ of buffer
on CRT

YES

~""-------+...-l Counfer

Data buffer
in core

Figure 5-Flow Chart of subroutine RECO, responding to branch R.
Before the data are transferred from the core into the tape cassette,
everything has to be set so that subsequent processing takes place
smoothly and the data are properly identified by the "header card", a
line of up to 80 columns. Also some controls for the cassette are included
in this program. The text as actually printed on the CRT screen is
explicitly listed in the print statements. The printing "Position after ... "
represents an abbreviation of the question: "How many files would you

like to skip forward?"

time" scale goes from A to B; (ii) External Sweep (pin 28)
equals 1 if front panel time switch is set to "External";
(iii) External voltage scale (pin 26) equals 1 if front panel
voltage scale knob is set to "External".

6xx7: Word command.
Read next word from Biomation into the accumulator, lower
eight bits. This instruction will clear the "flag" and then
the Biomation 802 will set it when next data is readyo If
the entire Biomation 802 buffer is to be transferred into the
PDP 8/e the following need to be done:

(i) Accumulator = 1; 6xx4, start output mode.
(ii) Execute 6xx7 1024 times to get 1024 points and store

them.
(iii) Accumulator = 0; 6xx4 to return Biomation 802 to

normal display mode. Note: Two ranges of time in

which one can transfer data from the Biomation 802
into the PDP 8/e exist: (a) less than 500 Ji.Sec per
word (b) greater than 2 msec per word.

If time taken to transfer data is not critical, range (b) is
recommended.

RESULTS

Over the last few months, data were acquired with the
described equipment on three different instruments, namely
the temperature jump apparatus with detection of trans
mission changes (electron transfer experiments on cyto
chrome c), the temperature jump apparatus with fluorescence
detection (binding of the fluorescing coenzyme NADH to
liver alcohol dehydrogenase in the presence of inhibitors),
and concentration jump experiments with detection of trans
mission changes at 633 millimicrons (detecting the various
protonic forms of ferricytochrome c).

After users became familiarized with the various parts
and their integrated action, they rapidly acquired mastery
of the equipment and could perform soon experiments faster
than before. Previously, the output of the Biomation 802
was transferred through an interface into a teletypewriter
paper tape punch. As the teletypewriter produces only ten
characters per second, ten minutes are required for the out
putting of the data. With this new equipment, data are
transferred out of the Biomation 802 and into the mini
computer within four seconds for a full set of 1024 "points".
Although the subsequent transfer into the Hazeltine cassette
unit takes a bit longer, a new experiment can in fact be
conducted every three minutes, adequate for thermal equil
ibration in the thermostatted temperature jump cells and
for almost all of the concentration jump experiments.

Although enough space is left on the PDP 8/e-8k, to write
programs for the evaluation of the data, only the program

~
34

380A
4pln

---'VIJv-
I K

-J<NI,-

IK

~
IK

IK

.IN.--#-® ~ Ik 3!..-
~F

,..---,
E17

_384A
14pfn

Figure 6-Layout of integrated circuits on the interface board of the
PDP 8/e; encircled numbers refer to Biomation 802 pins

~.
[

I

3

13

3

2

-;-

13

2
4
6
e
10
12

-::- +5

3 DVI

4 DUI

OSI

DRI

3 I BVl

6
E24

4 BUI

8 10 BS2

READ CONTROL

Interface for Rapid Data Transfer and Evaluation 111

.1r----D41

(OPEN COLLECTOR

OUTPUT IS FOR
FUTURE USE)

54

'It----O -=- + 5

12 5 16
53 2

52
3 E30

51 6

50 7

4
13

49~2

:~ H;E29
46~7

I

I
15

14
o LOAD SWEEP

10 I
LOAD

II o VOLTAGE

9
(

8
a READ SWEEP

16 I
o READ VOLTAGE

I I~--------
15 READ CONTROL

14 0
10 I
I" EXTRA CONTROLS

IIlv

'----q~ 9~
81~USED

25 5 E34 3 OF E3 FRO~~ ITS PRINTED CIRCUiT
6X~6 4 . { FIRST DISCONNECT PIN 3,6,9,11

29EI4 BOARD CONNECTION AND THEN

CONNECT TO E 34 PIN 3.

Figure 7-Control circuit diagram for the interface board of the PDP 8/e

10

LOAD VOLTS
30EII

115 2 7 XI

I~ 6 -.3
53 "ACII III E25 ",I X2 f':;\
~ ~:----\:.:;

1
52~12 !

:::: A~03 I 4 500ps8
51~13 I

30EI4 I
50 ~14 3, 5ms @

~ _____ ~ L-4~--------~i ~18~E_12 _____ ~

L-----.-.rrt~~'l ' f i 1 15 2 7
LOAD SWEEP ~'9 6 50ms ®

IOE27
49 ACO? II 5 500'lls 4~

48 !'\ ACO:; ! I "C'-f' r--..

~
12 4~4S'

47 ACOS 13 I _"-~~. "-.:/
3 ~-;;\ [QJ 14 ! '0

18EI2

Figure 8-Load and read circuit diagram for the interface board of the PDP 8/e

112 National Computer Conference, 1974

6XX2

6XX7

26

6XX6 25

6XX7 26

WORD

+5

Ik

31

32

70---0 18

120---0 17

36

37
CI

~
38

C2
39

- ACOO
56

ACOI 57

.--_---:.:A.;:.:CO:..::2_() 58

~59
55

~67
~66

~65
~64

~63

~62
~61
~60

3 EI8yo-'4'--. _____ CO_ ... _M_AN_D_~--__i.
68

Figure 9-Gating circuit diagram for the interface board of the PDP 8/e

described in Figures 2, 3 and 4 was implemented. We de
cided on a small software package for the PDP-8/e. as a
large library of data evaluation programs had pr'eviously
been developed and was available in FORTRAN on the
CDC 6400 of Northwestern University's Vogelback Com
puting Center. All programs are written for interactive pro
cessing, originally for use by teletypewriters. A program on
the disk of the CDC 6400 provides for transfer of data from
the Hazeltine dual tape cassette onto the disk of the CDC
6400 via ordinary communication Jines. The data are then
thoroughly evaluated in several stages, as schematically
shown in Figure 10. Further details on the evaluation of
data are presented in two Appendices. Appendix I describes
the sequence of computer programs for the evaluation of
data derived from pH-jump experiments (compare Refer
ence 8), in Appendix II a sequence of computer programs
is described for the evaluation of data from chemical relaxa
tion experiments on a full enzyme catalyzed reaction cycle
(compare Reference 9).

DISCUSSION

As was mentioned in the Introduction, an alternate com
puter based data acquisition and reduction system for chemi
cal relaxation experiments is available. In that case, con
siderable software was developed and is kept in 8k of core
of the minicomputer for further data reduction. This method

FLOW OF DATA PROCESSING (pH-jump experiments) :

1000 points per experiment ,
n ~ 50 data-pairs

t Y non-I inear least squares to T" ± 8 T" and .85 ± 8S)
'equilibrium and rate constants from T"-I vspH

equilibrium and photometric conversion constants

from .85 vs pH

Figure lo-Flow of Data Evaluation, as used in a concentration jump
apparatus (pH jump within about 0.1 seconds and subsequent changes
much slower). Although a floating point package was available, it was
not used be?ause of its size and as a subsequent program ("TRANSL",
see A~pendlCes) was already available on disk and operating on integer
data mput. The data, as produced by the Biomation 802, are stored in

numbers from 0 to 255

is quite feasible if punched paper tape is the only medium of
permanen.t storage of data. As we have higher speed equip
ment avaIlable, we prefer to keep our data initially on dual
tape cassettes, subsequently for on-line evaluation on disk
(of the CDC 6400 in Evanston) and matrices of primary
and secondary data on seven track IB~1 magnetic tape (at
high density). IBM punched cards of these data matrices
can also easily be produced. To facilitate identification of
individual data sets, every set contains a header- and a
trailer-card, containing system specific information. The
software is designed such that data sets are easily sorted out
and interpreted. .

Although the described equipment serves mainly for rapid
data acquisition, the operating program may be further
expanded, and still a considerable amount of central core is
avail~ble for programming. However,jt is doubtful that any
non-Imear least squares analyses could be conducted within
the PDP 8/e without the addition of a disk with support
system. A current disadvantage is the slow transfer rate of
the data into the large CDC 6400. An increase in the trans
mission rate to the CDC 6400 would be highly desirable.
Nevertheless, the current configuration is of considerable
advantage and should be ofi.nteresf to others, utiliZIng tran.:.
sient recording equipment. .

ACKNOWLEDGMENTS

The authors appreciate funding of the PDP 8/e minicom
puter by the National Sc~ence Foundation (GM-20823) and
or all associated work by the N ationai Institutes of Health
(AAOO282-02). They are also indebted to Drs. M. Wagner
and R. Zabinski for testing the usage of the equipment.

REFERENCES

1. Malmstedt and C. G. Enke, "Digital Electronics for Scientists,"
Benjamin, N.Y., 1969.

2. Enke, C. G., and R. E. Dessy, "Laboratory Computer Interfacing,"
Prelim. Edition, W. A. Benjamin, Inc., Menlo Park, Calif.

3. R. E. Dessy and J. A. Titus, "Computer Interfacing," Analyt. Chem.
45, 124A, 1973.

4. Holland, J. F., C. C. Sweeley, R. E. Thrush, R. E. Teets and M. A.
Bieber, "On-Line Computer Controlled Multiple Ion Detection in
Combined Gas Chromatography-Mass Spectrometry," Analyt.
Chem. 45, 308, 1973.

5. Watson, J. T., D. R. Pelster, B. J. Sweetman, J. C. Frolich and J. A.
Gates, "Display-Oriented Data-System for Multiple Ion Detection
with Gas-Chromatography-Mass Spectrometry in Quantifying Bio
medically Important Compounds," .A.nalyt. Chem. 45, 2071, 1973.

6. Holland, J. F., R. E. Teets, and A. Timnick, "A Unique Computer
Centered Instrument for Simultaneous Absorbance and Fluores
cence Measurements," Analyt. Chem. 45, 145, 1973.

7. Hilborn, D. A., L. W. Harrison and G. G. Hammes, "An On-Line
Computer System for the Acquisition and Analysis of Temperature
Jump Data," Computers and Biomedical Research 6, 216, 1973.

8. Czerlinski, G., and V. Bracokova, "Kinetics of the Interconv.ersions
among the Electron-Transfer-Linked Forms of Ferricytochrome c,"
Arch. Biochem. Biophys. 147, 707, 1971.

9. Czerlinski, G., and J. O. Erickson, "Chemical Relaxation Studies
on the Horse Liver Alcohol Dehydrogenase System," Enzyme Com
munications, I (in press).

10. Czerlinski, G., "Versatile Temperature Jump Apparatus for Follow
ing Chemical Relaxations," Rev. Sci. Instr. 33, 1184, 1962.

11. Czerlinski, G., "Timed Signal Grounding Switch for Observation of
Low Level Signals Following Large Transients," Rev. Sci. Instr. 39,
1730, 1968.

APPENDIX I

Sequence of Computer Programs for the Evaluation of
Data from the Cytochrome c-Sysiem

BI~2H is a program stored on the Digital Equipment
Corporation minicomputer PDP 8/e-8k and provides for
the transfer of data from the Biomation 802 transient re
corder to the Hazeltine dual tape cassette unit. Data sections
may be displayed on the Hazeltine 2000 cathode ray tube
and a heading to each set of data may be added from the
key board.

PRETRAN is a program stored on disc of the Control
Data Corporation 6400 computer in Evanston and called
to transfer data from the Hazeltine dual tape cassette unit
onto disc. Except for the control cards to obtain this pro
gram, all other systems operations are invisible to the user
and built into the program via executive calls. The user
only submits the name of the file, which he needs later on
for further evaluation. This program also contains a sub
routine to assist the user with difficulties, which he might
have in obtaining data from the various instruments.

TRANSL is a program stored on disc of the CDC 6400
computer and called to reduce the data matrix to a size
which can be easily handled by subsequent programs. As
at least five data points from the Biomation 802 transient
recorder are interdependent, due to the electronic rise time
of the analog input circuitry, a minimum of five points
ought to be averaged. Generally, ten to twenty points are
averaged initially and the number of points averaged gen
erally increases along the increasing data sequence at the

Interface for Rapid Data Transfer and Evaluation 113

option of the user. At this point, it is up to the user to dis
tribute the points of the new data matrix reasonably well
around the estimated relaxation time constants. If more
numbers are supplied from disc than can be placed into a
data matrix of fifty pairs. the remaining points are eliminated
(this may occur when comparatively fast relaxation processes
have been recorded on the Biomatlon 802; this should be
generally avoided.) The abscissa of the data pair is computed
from the time deflection and the number of data averaged.
The ordinate is the average value of the data used for aver
aging and an error is also computed from the deviation of
individual data points from the average.
DATA~Pn is a program to analyze the input data matrix

of not more than 50 pairs with a non-linear least squares
subroutine, utilizing the Marquardt! method. A constant
plus a sum of exponentials is generally assumed as under
lying equation. For n= 1, the data may be evaluated assum
ing up to three exponential terms. The program with n = 2
is an abbreviated one, assuming only one exponential term
and a constant. In most of our evaluations, we are able to
utilize this abbreviated program. The program produces
three parameters per data set together with a standard error
per parameter. The parameter in the exponent is equivalent
to an apparent rate constant (or better: the inverse of a
chemical relaxation time) while the remaining two parameters
correspond to signal amplitudes (or better: equilibrium signal
changes). As many data matrices are processed by this pro
gram, a new data matrix is produced, containing these
parameters as a function of analytical conditions.

CYTOC2 is a program to evaluate the factors in the ex
ponents from the previous program as a function of pH,
resulting in "true" rate parameters. This program utilizes
a non-linear least squares analysis program and offers a
variety of models for the interpretation of the data.

SEQUEN2 evaluates the signal amplitudes the (parameters
obtained from DATA~Pn) and according to models which
correspond to protonic dissociations of protein forms. For
pH jump experiments, no further evaluations are needed.
However, for chemical relaxation experiments the protein
concentration is varied initially at fixed pH. Another pro
gram (P~WERSE) is then used before the pH dependence
of the apparent parameters is evaluated by CYT~C2 and
SEQUEN2.
P~WERSE is a program utilizing a linear least squares

analysis of a data matrix and useful for a variety of inter
mediate calculations. Standard errors of the parameters are
also produced. Although the program allows for the utiliza·
tion of a power series2 as input function, we rarely find the
need to analyze our data beyond linear terms (original func
tions are frequently rearranged to give a linear expression).

REFERENCES

1. Marquardt, D. W., "An Algorithm for Least Squares Estimation of
Non-Linear Parameters," J. oj SIAM 2,431-441, 1963.

2. Golub in "Numerical Methods for Solving Linear Least Squares
Problems," Numerische Mathematik 7,206-216, 1965.

114 National Computer Conference, 1974

APPENDIX II

Sequence of Computer Programs for the Evaluation of
Data from Liver Alcohol Dehydrogenase Experiments

Operation of the first four programs (namely BI~I, PRE
TRAN, TRANSL and DATA~Pn) is identical to those,
described in Appendix 1. The algorithm of Marquardt! is
thus used in DATA~Pn. Output from DATA~Pn is picked
up by the following programs.

LADHn is a program specifically designed for liver alcohol
dehydrogenase, with various versions available. Currently
n = 2 is in use and n = 3 is in development. This program is
used to analyze only the exponential parameters as a func
tion of the analytical concentration of the components and
of pH. No inhibitor is present. Equilibrium concentrations
are computed from analytical concentrations with a specially
developed subroutine2 which solves the fourth order equation
effectively by numerical means. Such a high order equation
has to be solved, as the enzyme concentration is at least
equal to or la.rger than the smallest dissocation constant
and/or comparable with the analytical concentration of
other components.
P~WERSE is an auxiliary program used for least squares

analysis of data which can be described by a power series3

(eventually after rearrangement). Generally, the power series
is not extended beyond the linear term.

SEQUENn with n=3 or n=5, representing different ver
sions. This program was designed for the analysis of experi
ments with liver alcohol dehydrogenase in the presence of
imidazole. At this point, only the exponential factor is uti
lized in this program. A special subroutine4 was developed,
as in the absence of ethanol a cubic equation has to be solved
to compute the equilibrium concentrations from the analyti
cal concentrations. The subroutine computes these concen
trations numerically in an effective manner. A variety of
models are available to describe the experimental reciprocal
relaxation times in terms of individual rate constants.

REFERENCES

1. Marquardt, D. W., "An Algorithm for Least-Squares Estimation of
Non-Linear Parameters,"· J. of SIAM 2, 431-441, 1963.

2. Czerlinski, G. H., "Subroutine for Rapidly Converging Computa
tions of Equilibrium Concentrations for Dehydrogenase Systems,"
Compo Prog. Biomed. 1, 275-280, 1971.

3. Golub in "Numerical Methods for Solving Linear Least Squares
Problems," Numerische Mathematik 7, 206-216, 1965.

4. Czerlinski, G. H., and R. Kobbe, "Subroutine for the Computation
of Equilibrium Concentrations for the Elementary Biomolecular
Cycle," Progr. Biomed. 3, 87-92, 1973.

I

An alternate interface to computers for the physically
handicapped-the auto-monitoring
communication hoard

by GREGG C. VANDERHEIDEN, ANDREW M. YOLK, and C. DANIEL GEISLER

University of Wisconsin-Madison
Madison, Wisconsin

INTRODUCTION

For many individuals severe physical handicaps have com
pletely cut off most avenues of personal development and
employment. Their physical involvement bars them from
any constructive or creative activities requiring physical or
manipulative abilities. Moreover, their inability to speak,
write or efficiently operate even simple communication de
vices severely impairs their ability to develop and exercise
their mental capacities. This latter problem is basically an
output problem in which a normally functioning intellect is
trapped within a body having no effective means of com
municating or interacting 'with the environment. Fortunately
with today's technology, especially micro electronics and the
computer, new avenues are being opened for these individuals
which promise them not only a chance for a more effective
education and a more meaningful mode of self expression,
but also a means of self support through employment.

The major problem in trying to realize the full potential
of these individuals is in finding efficient means of communi
cation for them. Information output should consist of both
written communication and discrete commands with which
they can control certain elements or devices in their environ
ments. This paper will describe a new approach (The Auto
Monitoring Technique) and a new aid (The Auto-Com) which
help to solve this problem for many severely physically
handicapped people.

It will also describe how the computer can multiply the
speed and effectiveness of this communication, further in
creasing the potential of these individuals. Implications for
the education, employment, and overall enhancement of life
for the physically handicapped will be discussed.

THE AUTO-MONITORING TECHNIQUE

The first problem in applying the potential of the computer
to severely physically handicapped individuals involves pro
viding an interface which they can control efficiently. There
are basically three approaches that have been used to allow
them some measure of control: encoding techniques, scanning

115

techniques, and techniques employing a direct selection such
as a keyboard.

The encoding systems utilize one or more switches which
the person operates in a repetitive fashion to encode his out
put. The Morse code, for example, might be used in such an
encoding system. This approach works best with people
who have small but quick and well controlled movements
such as might be found in the breath control of a para- or
quadraplegic. For people with cerebral palsy and other afflic
tions which render them weak or limit their coordination,
these types of aids are very slow and often cannot be operated
without many mistakes.

The scanning systems are the most prevalent form of
communication aid available today.l-12 Unfortunately, few
of them are computer compatible in their present form. In
these devices, the alphabet is ~nerally arranged in a rec
tangular matrix approximately seven by seven. The device
steps an indicator or cursor across the columns until signalled
by the individual using the device. The cursor then moves
down the column until the individual signals the device
again. The letter thus selected is then printed out on a type
writer, strip printer, or other output device. To control the
scanning device, the person operates a single switch especially
designed to take advantage of some one movement over
which he has controL Because the scanning indicator must
pause at each letter long enough for the user to activate the
switch, this scanning process is very time consuming. This is
especially true if the person has sporadic movements or can
not make a discrete response quickly. This approach does
have the advantage that it can be used by almost any in
dividual no matter how severe his physical disability. How
ever, if the person can find some other means of control, it
should be explored because of the very slow speed of this
technique.

It was in trying to find an aid for those individuals whose
movements were too. sporadic or uncoordinated for the en
coding systems and yet not restricted enough to resort to
the scanning technique, that the auto-monitoring technique
was discovered. The problem at hand was that of developing
a corr...munication aid for those individuals who have some
gross pointing skills but who are unable to operate a key-

116 National Computer Conference, 1974

ACTIVATION AREA

MAGNETIC REED
SWITCH, CLOSED IN
THE PRESENCE OF
MAGNET

Figure I-Magnet (pointer) closes magnetic switch below surface when
ever the center of the magnet is within the activation area. Switch
closure is not acknowledged unless magnet remains within activation

area for a fixed period of time

board of any kind, even with special modifications. A scheme
whereby the user would directly select each output letter
was deemed most appropriate for these individuals because
of their ability to point and the inherent simplicity and speed
of a direct selection technique. The problem then was one of
finding a way to optimally utilize their limited pointing skills.

After many experiments, a solution was found to lie in
the combination of a matrix of proximity switches located
beneath a smooth surface and the use of a delayed activation
mechanism. Using this technique, the operator need not
push or pull any levers, buttons or switches. He need only
slide a pointer into the vicinity of a switch and hold it near
the switch for a short time (see Figure 1). In order for
the system to respond, the particular switch involved must
be closed continuously throughout the short, though ad
justable, period of time. ,If the switch is opened before that
period expires, the system resets, ignoring the switch closure.
This feature means that switches only momentarily activated
due to the passage of the pointer over them are ignored.
Only when the pointer is kept within the sensitive area of a
switch uninterruptedly for the set period of time, will the
automonitoring system acknowledge the switch closure.

Thus the switch matrix is sensitive to lack of motion
rather than to discrete motions as in normal switching
arrangements. Pointing briefly to other switch locations as
the user moves the pointer around over the surface will
cause no false triggering. N ur will mistakes occur due to
movements or momentary loss of control by the individual
while trying to point to a given switch. If the operator loses
control of his motion, the system just waits ((patiently"
until the operator regains his control. By adjusting the
activation area of these proximity switches to the proper
size, errors due to small tremors and inaccuracies of pointing
were also almost entirely eliminated.

It should be noted that this delayed-action proximity
switching technique was modeled after the same process
that a second person would use if he were to monitor a handi
capped person's movements in trying to point to various
letters painted on the surface of a board. Hence the term
auto-monitoring.

Using this technique, it is possible to locate a large number
of switches within an individual's range of motion without
causing any problems due to accidental triggering of switches
adjacent to the desired one. Moreover, because the proximity
switches are located beneath the surface of the board, the
operator need only slide the pointer around over the smooth
surface of the board, never having to pick his hand up or
support its weight in the air. The removal of the necessity to
suspend his hand above the switching array and the removal
. of the vertical dimension from the required movement pat
terns have greatly increased the hand control of the cerebral
palsied individuals worked ''lith. The combination of all of
these features has allowed even very severely cerebral palsied
children to use devices which utilize the auto-monitoring
technique.

THE AUTO-COM

The first application of the auto-monitoring technique is
in the Auto-:VIonotoring Communication Board (Auto-Com).
In the present model of the Auto-Com, the auto-monitoring
technique is realized with a matrix of 84 magnetic reed
switches mounted on 1% inch centers. Each s\\ritch is lo
cated directly underneath the center of a letter painted on
the surface of the board and can be activated by a magnet
anywhere within a % inch radius of this center (Figure 1).
Both visual and auditory feedback have been provided to
aid the person using the board.

The Auto-Com itself is completely contained within a
-18X24X 172 inch wooden case (Figure 2). It weighs about
872 pounds and is designed to mount directly onto the arms
of a wheelchair in the same manner as a lapboard would. In
fact, the Auto-Com has been designed so that it can be used
as a lapboard when not in use as a communication device.

In addition to the Auto-Com itself, there are two other
necessary components of the system-a magnet and an out
put device. The magnet is mounted on whatever object or
part of the body the child can best point with. In most cases
the magnet is mounted on a handpiece consisting of a clear
plexiglass base with a custom molded hand-grip (see Figure
3). The magnet, which functions as the pointer for the child,
is mounted well away from the hand-grip. This affords
maximum visibility of the letters as the child slides the mag
net over them. To facilitate the sliding motion, the bottom
of the handpiece is partially covered with felt. This hand
piece serves both to stabilize the operator's hand and to
smooth and damp his motions.

The principal output form of the Auto-Com at the present
time is an ordinary television set equipped with a com
mer<~ially available TV controller that allows the user to
print letters on the television screen. This particular output

I

An Alternate Interface to Computers for the Physically Handicapped 117

ORDINARY
TELEVISION

SET

TELETYPE (FOR
PERMANENT COpy)

-~CURSOR (MAGNET)

SC/V.9/NG
MATR/X

'l'/t?AGNET/C REED
.saW/reNE'S) ,

I

Figure 2-Exploded diagramatic view of the Auto-Com system showing major functional blocks

has been chosen because it provides good visibility, feedback,
portability, and correctability. The Auto-Com has also been
used '\\Ii.th other output devices: teletypewriters, special type
writers, and strip printers. Any output device using the
standard ASCII Code can be used with the Auto-Com; the
exact. output form of which is a 20 milliamp current loop
with the information in standard 1l0-BAUD ll-bit serial
format. Thus the Auto-Com can interface directly with any
computer accepting this standard serial input. Figure 3 shows
a photograph of the Auto-Com with two of its output devices.

Operation of the Auto-Com is simple and straightforward.
Even children can operate the Auto-Com with only minutes
of instruction. To print a letter the user simply grasps the
handpiece (a velcro strap arrangement is provided for in
dividuals who have no grasping abilities) and slides the mag
net over to the letter he wants printed. For those who cannot
use the handpiece, the magnet can be mounted on a ring,
headstick, shoe, or anywhere else that would be advantageous
for him.

This simplicity of operation, combined with the two
dimensional movement feature of the auto-monitoring tech-

nique, has proven so desirable that several centers have
indicated a desire to secure Auto-Coms to use with some of
their students who now can use specially modified type
writers. The reasons they cite for wanting an Auto-Com
despite its higher cost are ease of operation, reduction of mis
takes, and increased use time before fatigue.

Future developments

The present program for the Auto-Com is centered around
its development as a communication aid. A large emphasis
is being placed on making it as flexible as possible and in
creasing its utility in the educational setting. Toward these
ends, emphasis is being placed on the development of these
features:

Complete portability

A portable model of the Auto-COID; which runs on batteries
and contains its own miniature strip printer, has been de
signed. With this unit an individual will be able to move

118 National Computer Conference, 1974

Figure 3-Earlier model of Auto-Com with handpiece and two of its
output devices: a teletype terminal and a TV screen with Ann Arbor
TV controller. A newer model will also have a built-in strip printer for

output

freely about his school or home and always have his "voice"
with him. Attached to his chair and doubling as a lap board,
it will always be with him requiring no special set up for
each use.

In addition to the strip printer, this portable Auto-Com
contains a small FM transmitter which will enable it to
control the TV controller without hookup wires. A large
screen television set with TV controller could then be placed
nearby and controlled by the individual from anywhere in
the room. This feature is seen as particularly powerful in a
classroom setting where the student could move about freely
and participate in class discussions much like the other
students by using the TV screen printout as his voice. The
selection of either the strip printer or the serial ASCII
telemetry unit is controlled by the user. In this manner the
operator, when working in a computer environment, could
easily switch back and forth between the printer (for com
munication) and the telemetry unit (for communication with
a computer). He would also be able to talk to the computer
from any position in the room, thus lessening his mobility
problems.

Printed copy

Printed copy may be obtained at any time by simply
connecting the Auto-Com to a teletypewriter or modified
typewriter instead of the TV controller. However, this elim
inates the feedback and correctability features of the tele
vision set. To provide for both printed copy and correct
ability a transfer option is being developed which will
automatically transfer the contents of the television screen
to a printing device on command from the Auto-Com surface.

Price

Throughout the design, heavy emphasis has been placed
upon keeping the price of this aid to an absolute minimum ..
The rapid advance of integrated circuit technology has made

this type of aid possible and economically feasible. As the
technology increases, the cost will continue to decline. A
major component of the Auto-Com cost still lies in the out
put device. For this reason, a large portion of our research
effort has been directed toward securing or developing in
expensive output modes. If the Auto-Com were used in
conjunction with a computer system, where it would be used
mostly as an "alternate keyboard," the cost of the output
system would be eliminated and the price further reduced.

An Auto-Com system, then, can take two basic forms de
pending on its intended use. It can take the form of a com
plete system if it is going to be used as a communication aid,
or it can take the form of a simple keyboard if it is to be
used as an interface with a computer or other data processing
system.

When used as a communication aid, the final Auto-Com
system will consist of two parts, each designed to handle
different functions in communication.

(1) The portable Auto-Com. Highly mobile, this unit has a
miniature self-contained, strip printer for its output.
When used alone, it is designed primarily for conversa
tion. With the FM output, it can also control a
stationary output system.

(2) The stationary output system. These television and
output printer media provide the feedback and page
format most useful in educational settings and for
extended independent work. The system will be de
signed so that several individuals, each with his own
portable Auto-Com, could share a common printer
or CRT display.

When used as a keyboard for data entry, the Auto-Com
can take either the form of the full portable Auto-Com as
described above, or a simpler form of the Auto-Com having
no strip printer and deriving its power from the computer or
a separate power source.

The Auto-Com wordmaster

A natural next step in the evolution of the Auto-Com as
a communication aid is the addition of entire words to the
surface of the board. With this option, the operator could
then cause entire words, phrases, or sentences to be printed
out by pointing to a single square on the Auto-Com. This
would permit him to communicate in a word-by-word fashion
as in speech rather than having to spell everything out. For
computer use, commonly used words, phrases, or symbol sets
could be substituted for the words.

An attachment dubbed the "Wordmaster" has been de
veloped to do this. Now under initial evaluaLion, the 'Word
master/Auto-Com is expected to provide an increase in speed
of approximately 2-4 times over that of the original Auto
Com. Moreover, it will enable even more people, especially
children, to use the Auto-Com. The ability to spell will no
longer be a prerequisite for use of the Auto-Com. It also
opens up the possibility of using pictures on the surface of
the board to specify the output words. This technique may

An Alternate Interface to Computers for the Physically Handicapped 119

be used either to accelerate reading skills or to provide com
munication for those who are prereaders or who have reading
problems, but do possess adequate expressive skills.

THE USE OF COMPUTERS WITH THE AUTO-COM
AND OTHER COMMUNICATION AIDS

There are two basic ways in which the computer and com
munication aids can be combined to augment each other.
The first is an arrangement in which the communication aid
serves as an "alternate keyboard," allowing handicapped
individuals with no previous means of access to a computer
to benefit from the computer's capabilities. In the second
relationship, a computer is used to augment the communica
tion aid by increasing the speed, efficiency, and utility of the
aid.

As an alternate keyboard

When used as an alternate keyboard, the purpose of the
communication aid is to provide the user with an interface
that is specifically designed for his particular abilities. The
simplest form of communication aid which can accomplish
this purpose is the "guarded" keyboard. IBM makes spe
cial keyboard hand guards and armrests for most of their
typewriter models including their I/O typewriters. The Cere
bral Palsy Communication Group has also developed a special
keyboard guard for the Teletype Model 33 teleprinter. Using
this keyguard, a cerebral palsied student at the University
of Wisconsin-Madison has successfully completed the re
quirements for a B.A. Degree in Computer Sciences. For
programming, he operated the modified teletype terminal
from his dormitory room, using the time-sharing facilities of
the University's Univac 1108 computer. In this manner, he
was also able to overcome the transportation difficulties
associated with constant travel to and from the Computing
Center.

For individuals too severely handicapped to use any of
these guarded keyboards, the Auto-Com may provide a
solution. Because it has been designed to output in 110-
BAUD serial ASCII, the Auto-Com is directly compatible
with any computer which accepts input from a teletypewriter.
Although the scanning and encoding aids available today
are not directly compatible with computer inputs, they too
could be modified to permit them to be used as computer
interfaces for the handicapped. Thus, any person, no matter
how serious his physical handicap, or what form it takes,
can be outfitted with an aid which would allow him to readily
communicate with a computer.

The relative unimportance of speed in working with a
computer, either a dedicated mini-computer or a larger time
shared computer, opens up the possibility of computer
related jobs for the physically handicapped. The computer
does not get impatient and the user is unhurried-he is
able to work at his most comfortable and efficient rate. More
over, the computer also offers the handicapped person the
opportunity to remain at home while working. Phone lines
provide him with a direct link between his home and the

computer. Since mobility, and sometimes nursing care, are
major problems for the physically handicapped, the ability
to work directly from his home or from a rehabilitation
center, can make the difference between a person being
employable or not.

Access to computers also opens up to the physically handi
capped the whole world of individualized instruction. In
the education of the handicapped, where individualized in
struction is very often needed but rarely available, the com
puters can provide the educational programs these students
need at a pace in keeping with their physical abilities.

The power of the computer in individualized instruction is
well illustrated by the PLATO project at the University of
Illinois, Champaign-Urbana. This computer-based educa
tional system is designed to handle up to a thousand remote
terminals all communicating with a central computer. The
system has. educational programs ranging all the way from
pre-kindergarten through post-doctoral studies. The PLATO
terminal uses a standard computer keyboard as one of its
input forms. These keyboards could easily be replaced by
communication aids specifically designed for use by the
handicapped, thus allowing them access to the PLATO sys
tem. The Auto-Com, for example, can be interfaced with the
PLATO system by simply using a patch-cord.

To expand the function of a communication aid

When used in conjunction with a computer, the power of
a communication aid can be greatly expanded. With limited
ability to produce output signals, the handicapped person's
rate of communication can only be increased by increasing
the information sent by each of his commands. The use of
computers, with their immense information storage capabili
ties and flexible peripheral devices can greatly increase the
information transfer rate of the handicapped.

The Auto-Com with Wordmaster attachment, for example,
presents the user with a choice of the alphabet, numbers,
and a list of 191 words, a number limited largely by memory
storage and display considerations. Sixty-three of the words
have been predetermined and are stored in a permanent
memory. They are also printed on the board and are accessi
ble through an "upper case" arrangement. The other 128
words are chosen by the individual user and are written into
an interchangeable ROM unit. These latter words are printed
on interchangeable cards and can be selected in "third" and
"fourth case" modes. Using a computer, this vocabulary
could be greatly expanded and its display and selection
features considerably improved. A large enough wordset
could be established so that the user could converse easily
in a completely word-by-word fashion instead of having to
spell out most of his messages letter-by-Ietter. Even phrases
and whole sentences could easily be stored in the computer,
increasing the options of the user still further. At some point
the vocabulary size will get so large that it would take more
information to specify a specific entry than it would take to
spell it out. Work is now being done to identify that boundary
and to study ways of developing vocabularies that can be

120 National Computer Conference, 1974

made fully functional without reaching that point of in
efficiency.

The use of computers in the communication problem of
the handicapped need not be limited to maximizing output
information only. The text storage and editing capabilities
available in many present computer terminals could prove
of immense value to those physically handicapped who can
not otherwise easily review, correct, or modify their written
work. The written work of others could also be stored and
transmitted in digital form to the handicapped person in his
home or work area. It is not inconceivable that whole books,
magazines and other written information could be made
available to the physically handicapped in this form (both
for recreational and professional use). Answering the phone
(perhaps with computer generated speech), controlling a
room's ventilation and lighting, and providing a good measure
of self-care are all feasible today through computer controlled
devices.

It has been suggested by futurists that within a few
decades many workers in the U.S. will be able to perform
their jobs from their homes using communication technology
now being developed. The video-telphoene, two-way cable
TV, and computer technology all suggest more flexibility for
home-centered employment. The ability of handicapped in
dividuals to use these devices will enable them to take a
more useful and rewarding place in that future society.

In other applications, the computer could contain
algorithms for controlling machines with complex functions.
In this useage, the handicapped person would specify the
various operations he wanted performed and the computers
would execute the various steps necessary to perform them.
One command from the handicapped person could initiate
a string of individual commands from the computer, thus
increasing the effective speed and efficiency of the handi
capped person.

Thus the combination of the computer and communica
tion aids can provide the physically handicapped with many
opportunities not otherwise available to them. These oppor
tunities touch many areas: education, personal advancement,
employment, recreation, communication, and social inter
action. Furthermore, the cost of these systems should con
tinue to decline with the advance of technology and the
increase in the development of low cost electronic functional
modules. If the concept of home based employment via
tele-communication links proves economically and admin
istratively feasible, then the occupational opportunities for
the physically handicapped seem to be limited only by
the efficiency of the communication and interaction sys
tems that are available. As new and more efficient tech
niques for utilizing the intact abilities of the handicapped
are developed and interfaced with computer systems, the

effective capabilities of these individuals will continue to
increase allowing their mental capacities to be more and
more fully realized and utilized.

ACKNOWLEDGl\1ENTS

We would like to thank all those members of the Cerebral
Palsy Communication Group who have contributed to the
development of the Auto-Com/Wordmaster. In particular,
we would like to note the efforts of David F. Lamers, Warren
P. Brown, Gerald A. Raitzer, Robert J. Norton, David E.
Church, Deberah Harris, and Claudia L. Scheibel. The tech
nical counsel of Professor Leo Jedynak is also acknowledged.

We would also like to thank all those who have provided
the monetary support necessary to carry out this research,
especially the University of Wisconsin, the Madison Public
School System, the Robert J. Ritger Memorial Fund, the
Dane County Chapter of United Cerebral Palsy, the Bacon
Foundation, and most recently from the National Science
Foundation, who is presently funding our research efforts.

Many industrial concerns have also contributed to the
group in the form of information and the donation of prod
ucts. The most notable of these are Ann Arbor Terminals,
Ann Arbor, Michigan; Hamlin Inc., Lake Mills, Wisconsin;
Texas Instruments; Intel; Signetics; and Canon Inc.

REFERENCES

1. Stalder, E. K., Editor, "Patient Uses Ingenious Device As Means of
Communication," The NIH Record, Vol. XVI, No. 24, p. 1.

2. Excerpts irom Annual Report-0rthotic Research Unit, Ontario
Cripple Children's Centre, 350 Rumsey Road, Toronto, Ontario,
1972.

3. Sampson, D., "A Communication Device for Patients Unable to
Speak," Med. and Biol. Engrg., Vol. k, pp. 99-101.

4. Hume, B. C., General Manager, Centre Industries, Allambie Road,
Allambie Heights, New South Wales.

5. Hackler, N., North Electric. Galion, Ohio (Personal communica
tion).

6. King, G. (Editor), "Communication System for the Handicapped,"
Electromechanical Design, Vol. 17, No.1, p. 6.

7. Howard, W., Bush Electric, 1245 Folsom Street, San Francisco,
California 94103.

8. Jefcoat, R., P.O.S.M. Research Project, 63 Mandeville Road,
Aylesbury, Bucks.

9. Steele, J. D., Zambetie Electronics Ltd., 3, Avon Way, Shoeburyness,
Essex 5s39DZ.

10. Kafafian, H., CRI Second Report, Cybernetics Research Institute,
2233 Wisconsin Avenue NW, Washington, D.C. 20007 (Personal
conversation).

11. MEF A GmbH Bonn, 518 Eschweiler, Postfach 466, Germany.
12. Micheelsen, V. Wissing, Reva Aids, Solvgade 32, Copenhagen K,

Denmark.

A computing environment for the blind

by MORTEZA AMIR RAHIMI and JOHN B. EULENBERG

Michigan State University
East Lansing, Michigan

INTRODUCTION

Much of the early work on applying computer technology
to the development of sensory aids for the blind was de
voted to systems for transforming ink-print texts into a
Braille format.2, 6, 12 This continues to be an important use
of computers, but the disadvantages of Braille render it a
poor substitute for the modes of information access nor
mally available to people with normal sight. Braille is em
bossed on bulky paper. The surface area required for tactile
discrimination of the Braille dots add to the problem, since
this means that a Braille text takes up more space than a
corresponding ink-print text. Furthermore, the ability to
read Braille takes considerable time to acquire,and not all
visually handicapped persons can read Braille, due to con
comitant handicaps or because their visual impairment
came fairly late in life. Braille also has the disadvantage
that it is unreadable to almost all sighted persons; blind
persons cannot read what sighted persons can read, and
vice versa. ::\fany blind persons are excellent typists, so
they can indeed communicate in writing to the sighted, but
they have no way of proofreading their own typing.

All of these facts call for alternate channels of communica
tion for the blind. Nowhere is this more keenly felt than
among those blind persons who are involved in computers
and ,vho are sensitive to the great potential which computers
hold for information processing and for transforming one
mode of representation into another. A recent issue of the
Newsletter of the AC::\1: Special Interest Group on Com
puters and the Physically Handicapped [SIGCAPH NEWS
LETTER, N"umber 8, July 1, 1973] carried an article sum
marizing the responses of blind computer programmers to a
comprehensive questionnaire on their experiences and
special needs. Among the responses to the question "What
special tools or equipment, if any, would you like to see
developed?", were these: "faster means of reading than
braille", "a machine to read inkprint printouts from the
computer", "efficient method of verifying punch cards",
"card reader enabling me to make corrections myself",
"faster way of inserting cards in the card deck", "device to
show which columns I am punching", "auditory output or
input echo", and "random access books".

One means for meeting these demands is by adapting a
digitally controlled voice synthesizer to provide under-

121

standable computer output through the auditory channeJ.1,3,
4,5,7,8,10,11 This application of electronic voice synthesis has
been apparent to workers in the field of voice and speech
synthesis for a long time, especially in the form of systems
for going directly from ink-print to speech, incorporating
optical character readers.9 Unfortunately, the actual ma
chinery for delivering voice output has been large and
expensive, usually taking the form of one-of-a-kind
monstrosities in research laboratories. Even when made
commercially available, they required considerable sophis
tication in acoustic phonetics and electronics on the part
of the user. 4,5

One alternative to the speech synthesis approach is the
vocal response unit, which allows fast random access to
encoded audio recordings of actual human speech. A repe
toire of words and short utterances can be stored on a
computer memory, and a computer can rapidly assemble
concatenations of these speech units to form intelligible simu
lated spoken output. The principal disadvantages of this
method lie in the relatively large amounts of computer
power which must be devoted to storing and accessing the
speech data and in the substantial initial investment re
quired in making the vocal response unit available.

The recent advent of relatively inexpensive, -easily por
table, digitally controlled electronic voice synthesizers which
can convert signals representing phonetic transcription into
the corresponding acoustic signal has made practical the
development of voice-mode computer communication sta
tions which make only modest demands on the computer.!1
This means that the considerable information storage and
information manipulation capabilities of the computer can
be exploited by a blind user \\Tithout the intermediary of
Braille. Such functions as document preparation and text
editing, information retrieval, and interactive mathematical
calculation can now be implemented in an output format
\vhich does not involve the printed page. Of course, this use
of the auditory channel for computer output can also be
used by sighted users, and, in fact, this constitutes an
advantage over the use of Braille output, since it is a mode
of output which can be shared by both the blind and the
sighted at the same time.

In this paper, \ve ,vill describe our work in developing
just such a communications station. We will briefly describe
the hardware and software needed to implement the station,

122 National Computer Conference, 1974

Switch

CRT
Tendnal

Computer

A ,

Figure 1

VoiCe
Synthesizer

I I I \ \

and we will discuss the actual experimental use of our sys
tem by the blind. Finally, we will give our views on the
implications of our work for the development of new types
of computer languages designed to take advantage of the
auditory mode of output.

Hardware and software

The design of software and hardware was guided by the
following set of objectives:

• The cost of the terminal should be comparable to that
of ordinary CRT or teleprinter terminals.

• The terminal should use standard communications
equipment.

• The terminal should be usable with any timesharing
interactive system.

• The software involved should be implementable under
all standard operating systems, requiring no special
modification to the system.

Hardware

Figure 1 shows the hardware configuration. Is consists of a
voice synthesizer, a speaker, a standard terminal keyboard,

and support electronics. Communication with the com
puter is achieved normally at the rate of 300 Baud which
supports the speech rate of the synthesizer. This Baud
rate is not essential since the terminal does have a buffer
memory.

The phonetic images of words and sentences are built up
by concatenation of 8-bit symbols representing the phones
of English in the buffer memory. The string in the buffer is
sent to the synthesizer for pronunciation when a special
control character is received by the buffer mechanism. The
8-bit code consists of six bits representing the phone and
two bits representing one of four levels of intonation. Since
the communication takes place with 7 -bit ASCII characters,
the 4 lower bits of two consecutive ASCII characters are
actually used.

The terminal allows for echoing of the keys without access
to the computer.

Software

Two types of software are available. First, the software
designed specially· for voice output. This includes a text
editor, a Fortran interpreter, and a number of other pro
grams. In these programs the output messages are pho
netically encoded for direct transmission to the terminal.
The second type of software includes routines to convert
the output of any program to the desired phonetic form.
Using a lexicon as well as the rules of orthographic-to
phonetic correspondence, this conversion package will
change any numeric or English text to phonetic transcription.
Components of this package and their interconnection are
shown in Figure 2.

Figure 2

APPLICATIONS OF' THE EXPERIMENTAL
COMMUNICATIONS STATION

We have as yet had only a limited amount of experience
with actual use of our system by the visually handicapped.
F'or the most part, the response has been enthusiastic, and
we have received quite a few suggestions for additions and
improvements. The unfamiliarity of the "machine accent"
does pose a problem for first-time users, but we have found
that only a short period of time is required before the users
adapt their perception to the idiosyncracies of the synthe
sized speech. Our major applications thus far have been in
three areas:

(1) F'ortran Interpreter
We have adapted a locally designed F'ortran interpreter

to provide an interactive computer programming capability
with voice output. Statements, data, and error diagnostic
messages are all accessible through the synthesizer. The
interpreter is used in teaching F'ortran to blind students.

(2) Text Editor
An audio-output text-editing system has been developed

which allows a blind user to prepare various kinds of texts:
letter, reports, study notes, etc. The user can have the
computer read back to him any portion of a stored text
which he specifies. He can also delete, move, and insert
material. When he wishes, he can dispose a copy of a text
to the line printer to obtain an ink-print copy or record the
audio version of a text onto a tape.

(3) Computer-assisted Instruction (CAl)
Several experimental lessons in the elements of computer

science and linguistics have been written in the PLANIT
CAl language, with all the computer-generated messages
heard over the synthesizer. Students attending the Michi
gan School for the Blind, Lansing, have tried these lessons
out.

IMPLICATIONS F'OR NEW COMPUTER LANGUAGES

Probably the most fascinating aspect of our experience
in using this voice output system is the impetus which it
has given us to constructing a special computer language
for handling non-visually presented material.

In designing a computer communications system for the
blind, it is not enough merely to give the printed output
characters a voice. Rather, we must examine what elements
of computer output format are oriented specifically to the
visual channel of perception and which are not. And we
must turn our attention to ways of using the audio channel
so as to take advantage of its capacity for carrying infor
mation.

It is not unreasonable to say that most of our present-day
formatting conventions are oriented to the visual appearance
of the printed page. Columns of numbers present themselves
to the eye as units of form. Skipped lines and indentations
set units of text apart from one another. Given the poten
tials of spoken output, what kind of auditory formats can
we employ to create similar effects for arranging data?

A Computing Environment for the Blind 123

Pauses, intonational pitch contours, stress patterns, vowel
length and vowel quality are devices which human lan
guage uses to superimpose formal structures on sequences
of segmental phonemes. Just as a printer uses different type
faces to set off parts of a text without disturbing the actual
spelling of words, a voice output format system for a com
puter can range over several "dialect" styles to indicate
variations in the status of output data. Cantillation styles
or melodies can be designed to facilitate recognition of text
units.

The orthographic system used in everyday English writing
is an abstraction of certain features of speech, and the
amount of the speech signal which goes unrepresented by
our spelling is quite substantial. By and large, our spelling
does not take account of interspeaker differences in pro
nounciation, speech rate, emotional overtones, and various
other prosodic features. In reconstituting the acoustic signal
via a voice synthesizer, we have considerable choice in the
parameters which relate to this indeterminate portion.

It is important, too, to recognize that the very terms
voice synthesizer and speech synthesizer, when applied to a
specific device capable of delivering a finite repetoire of
sounds in unlimited permutations, are really too restrictive.
Just as an automobile is far more than a "horseless car
riage" and radio is far more that "wireless telegraphy",
the voice or speech synthesizer need not be seen only as a
device for simulating human speech. At this point, one can
only speculate on the kinds of new "languages" which may
grow from man's encounter with a machine that talks, but
it is clear that the speech synthesizer can be used as an
instrument for exploring alternate modes of encoding infor
mation: new symbol systems which share some of the char
acteristics of speech, but which are specifically suited to
the computer's powers and limitations, just as natural human
languages reflect in their structure the inherent mental and
physical powers and limitations of human beings.

One important benefit of this exploration of alternative
auditory symbol systems lies in the development of sensory
aids for the blind. At the time of Louis Braille, the blind
were taught to read by feeling the shapes of large letters
embossed on paper, if taught at all. Braille's brilliant achieve
ment consisted in taking man's natural sense of tactile
discrimination and developing out of it a symbol system
which bears little physical resemblance to the visually
oriented writing system. In so doing, he greatly . enhanced
the ability of the blind to communicate. In the same way,
we hope that the development of voice output systems for
computers "viII lead to fuller utilization of the blind persons
cognitive abilities.

REFERENCES

1. Chapman, W. D., "Prospectives in voice response from computers,"
Proc. Internatl., Con!. Commun., 1970.

2. Cleave, John P., "Braille Transcription", Mechanical Translaiion,
II: 3, December, 1955.

3. Cooper, F. S., J. H. Gaitenby, 1. G. Mattingly and N. Umeda,
"Reading aids for the blind: a special case of machine-to-man

124 National Computer Conference, 1974

communication", IEEE Trans. Audio and Electroacoustics, Vol.
AU-17, pp. 266-270, December 1969.

4. Flanagan, J. L., Speech Analysis, Synthesis, and Perception, New
York Academic Press, 1965.

5. Flanagan, J. L., C. H. Coker, L. R. Rabiner, R. W. Schafer and
N. Umeda, "Synthetic Voices for Computers". IEEE Spectrum,
Vol. 7, No. 10, pp. 22-45, October, 1970.

6. Gammill, Robert C., Braille Translation by Computer, Report No.
9211-1, Department of Mechanical Engineering, Massachusetts
Institute of Technology, Contract No. SAV-I-11-62, October,
1963.

7. Holmes, J. N., 1. G. Mattingly and J. N. Shearme, "Speech synthe
sis by rule", Language and Speech, Vol. 7, pt. 3, pp. 127-143, July
Sept., 1964.

8. Kelley, J. L., Jr., and L. J. Gerstman, "An artificial talker driven

from a phonetic input," J. Acoust. Soc. Am., Vol. 33, p. 835 (A)
1961.

9. Lee, F. F., "Reading Machine: from text to speech", IEEE Trans.
Audio and Electroacoustics, Vol. AU-17, pp. 275-282, December,
1969.

10. Nye, P. W., J. D. Hankins, T. Rand, 1. G. Mattingly and F. S.
Cooper, "A Plan for the Field Evaluation of an Automated Reading
System for the Blind," IEEE Transactions on Audio and Electro
acoustics, Vol. AU-21, pp. 265-268, June, 1973.

11. Rahimi, M. A. and J. Bryson Eulenberg, "A Computer Terminal
with Synthetic Speech Output," Behavioral Research Methods and
Instrumentation.

12. Schack, Ann S. and R. T. Mertz, assisted by Fred Brooks, Braille
Translation System for the IBM 704, Preliminary write-up, 1961,
International Business Machines Corporation.

A computer-based system of speech-training aids for the
deaf-A progress report*

by R. S. NICKERSON, D. N. KALIKOW, and K. N. STEVENS

Bolt Beranek and Newman, Inc.
Cambridge, Massachusetts

This paper is a progress report on an effort to develop a
computer-based system of speech-training aids for the deaf.
The project was begun with the assumption that an attempt
to design such a system would probably fail, and that a more
promising approach would be to attempt to evolve one
through use. Accordingly, a system incorporating some of
the capabilities that it was thought would be useful for
speech training was developed, and installed at the Clarke
School for the Deaf where it is now being used on an experi
mental. basis in a remedial speech-training program. The
expectation was that the capabilities of the system would be
modified and extended as attempts to use it provided insights
concerning what features it should have. To ensure that such
insights do in fact guide the system's evolution, developers
and users are engaged in a continuing dialogue concerning
the desirability and feasibility of specific modifications and
extensions, both in the training procedures that are used in
conjunction with the system and in the characteristics of the
system itself.

The general considerations that governed the initial de
velopment of the system were the following. Deaf students
receive only minimal acoustic information from the speech
of others and from their own vocalizations. The speech skills
they acquire are based on cues they receive from their residual
hearing and from visual observations of the gestures of
others. Often these skills are inadequate and incorrect, and
the students thus need special training in order to help them
to produce intelligible speech. As a part of this training, it is
customary for a teacher to produce speech-like patterns or
to describe the patterns to the child and for the student to
try to imitate these patterns. The student is encouraged by
the teacher if he produces the correct speech gesture. Three
problems arise in this kind of training situation: (1) the
relevant attributes of the speech sample produced by the
teacher often cannot be seen, felt, nor heard by the student;
(2) the student must rely on the teacher to indicate whether
or not his production is acceptable; and (3) the teacher must
make a subjective judgment as to the adequacy of the stu-

* This is an abbreviated version of a paper that has been submitted for
publication to American Anrwls of the Deaf.

125

dent's production. All three of these problems provide moti
vation for developing a set of displays for use in a speech
training situation.

The idea of using visual displays of speech parameters to
aid in speech training of the deaf is, of course, very old. In
recent years, numerous instruments have been developed to
produce a variety of different visual patterns. 1,2 Our system
incorporates within a single unit some of the kinds of dis
plays described previously by others (although usually in
modified form), as well as some new displays.

The system is built around a small digital computer, the
Digital Equipment Corporation PDP-8E. Speech information
is obtained from a miniature accelerometer attached by thin
double-stick tape either to the throat or the nose, and from
a headmounted voice microphone. The accelerometer (BBN
:Model 501), which is approximately .3 inches in height and
diameter, and weighs about 1.8 grams, is used to simplify
the extraction of certain 'parameters that are relatively diffi
cult to derive from a microphone output. When the
accelerometer is attached to the throat it gives a waveform
that has periodic peaks at the frequency of the glottal output
during voiced sounds. The output is fed to a pitch extractor
circuit that measures the time between positive-going zero
crossings of the waveform and reports the pitch periods to
the computer. When attached to the nose, the accelerometer
provides a signal that is a measure of the amount of acoustic
coupling to the nasal cavity through the velarpharyngeal
port. In this case, the output, which is 10-15 dB higher when
the velum is lowered-during nasalized sounds-than when
it is raised, is fed to a component that rectifies and low-pass
filters it, and sends the result on to the computer. The use
of the accelerometer for the acquisition of pitch and nasality
information is described more fully by Stevens, Kalikow,
and Willemain.3 The output of the voice microphone is fed
into a filter bank that reports to the computer the energy in
each of 19 frequency bands within the range 100-6560 Hz.
Data from the pitch extractor or nasality circuit (only one
of these components is operational at a given time in the
current system) and the filter bank are sampled by the com
puter 100 times per second, and used to generate a variety of
visual displays. Control inputs from the user are given to

126 National Computer Conference, 1974

the computer via a set of push-buttons and analog knobs.
For further details concerning the system, see Nickerson
and Stevens. 4. 5

Several different types of displays have been programmed.
One provides the child with a game-like situation in which
he can "shoot baskets" by performing certain vocal exercises.
Another represents certain speech parameters in terms of
changing features of a cartoon face. Still another provides
the capability of displaying individual speech parameters
(amplitude, voicing, fundamental frequency, nasality) either
singly or in various combinations as time functions. The
system continuously records, both digitally and on analog
tape, the most recent two seconds of speech. Most displays,
therefore, have freeze and replay capabilities. Some of the
programs permit the teacher to produce a target pattern on
the display which the child can then be asked to attempt to
match. They also incorporate the capability of moving pat
terns about on the display so as to facilitate visual comparison
of a representation of a student's utterance against a target
that he may be attempting to match. In addition, they pro
vide the means of showing, on request, the values of some of
the parameters that are displayed.

Our initial experience with the system has been encourag
ing; however, it seems clear that how effective any speech
training aids will prove to be in practice will be bounded
above by the specifics of the ways in which they are used.
As technical developments make it feasible to do increasingly
complex real time analyses of speech and to generate nearly
anything one wants by way of displays, it becomes more and
more apparent that pedagogical uncertainties impose the
real limits on what one can expect to accomplish with speech
training aids, no matter how technologically sopr..isticatcd
they may be.

A thought experiment demonstrates this point. Imagine a
machine that could perform in real time any type of analysis
of speech that one wished, and generate any display that
one might specify. The fact is that we do not really know
what analyses should be performed or what displays should
be developed. Moreover, even if we knew the answer to
these questions, it is not clear that enough is known about
.speech acquisition among the deaf to provide the basis for
the training procedures that would take full advantage of
such capabilities. What does seem clear to us is that the
flexibility of a computer-based system provides opportunities
for the type of exploration that is likely to be required to
make progress on these problems.

Finally, the sort of close collaboration between researchers
and teachers that we have attempted to maintain in this
project is essential, we believe, if efforts to evolve effective
traipjng aids are to ha'le a reasonable chance of success ..
This is not a new idea. Kopp6 expressed the need for a greater
interaction between teachers and researchers by suggesting
that the field would benefit "if we could make more teachers
researchers, and more researchers teachers." Other writers

have also advocated such interaction,7. 8 but few serious at
tempts to collaborate seem to have been made. The strategy
is a reasonable one, we feel, not only for the development of
this particular system but for that of any complex system
that is to involve a real time interaction between men and
computers on problems for which approaches are not highly
formalized and the solutions are not well understood. As
David9 has pointed out, the great versatility of the computer
represents both an opportunity and a challenge. The op
portunity is for creativity and innovation; the challenge is
to be discriminating and practical. A close coupling between
a system's developers and its users is perhaps the only way
to assure a balance between innovativeness and practicality
from which something both new and useful may emerge.

ACKNOWLEDGMENTS

Each of the following individuals has contributed significantly
to the design, implementation, and use of the system
described in this report: Robb Adams, Patricia Archam
bault, Arthur Boothroyd, Douglas Dodds, Ann Rollins,
Robert Storm, and Thomas Willemain.

This project was sponsored by the U.S. Office of Educa
tion Media Services and Captioned Films Branch of the
Bureau of Education for the Handicapped, under Contract
No. OEC-O-71-4670 (615). We are pleased to acknowledge
the encouragement and helpful suggestions of Lois Elliott,
who served as contract monitor during the initial stages of
the project.

REFERENCES

1. Levitt, H., "Speech processing aids for the deaf," IEEE Transac
tions on Audio and Electroacoustics, 1973, AU-21, pp. 269-273.

2. Pickett, J. M., "Recent research on speech-analyzing aids for the
deaf," IEEE Transactions on Audio and Electroacoustics, 1968,
AU-16, pp. 227-234.

3. Stevens, K. N., D. N. Kalikow and T. R. Willemain, "The Use of a
Miniature Accelerometer for Detecting Glottal Waveforms and
Nasality," Submitted to The Journal of Speech and Hearing Research,
1974, in press.

4. Nickerson, R. S. and K. N. Stevens, "An Experimental computer
based System of Speech Training Aids for the Deaf," in Proceedings,
Conference on Speech Communication and Processing, Newton, Mass.,
April 1972, pp. 238-241.

5. Nickerson, R. S. and K. N. Stevens, "Teaching Speech to the Deaf:
Can a Computer Help?" IEEE Transactions on Audio and Electro
acoustics, 1973, AU-21, pp. 445-455.

6. Kopp, G. A., "The Application of Recent Findings in the Field of
Speech Correction," The Volta Review, 1938, 40, pp. 638-640.

7. Borrild, K, "E"l{perience wit.h t.he Design and. Use of Technical Aid.s
for the Training of Deaf and Hard of Hearing Children," American
Annals of the Deaf, 1968, 113, pp. 168-177.

8. Denes, P. D., "Speech Science and the Deaf," The Volta Review,
1968, 70, pp. 603-607.

9. David, E. E., Jr., "Speech in the Computer Age," The Volta Review,
1962, 64, pp. 394-397.

Computer-assisted instruction in mathematics and language arts
for deaf students*

by PATRICK SUPPES and JOHN DEXTER FLETCHER

Stanford University
Stanford, California

INTRODUCTION

This paper summarizes a three-year project running from
July 1, 1970 to June 30, 1973, which was concerned with re
search and development in computer-assisted instruction
(CAl) for hearing-impaired or deaf students. CAl curricu
lums developed by the Institute for Mathematical Studies in
the Social Sciences (IMSSS) at Stanford University were
used by more than 1,000 deaf students during the 1970-71
school year and by more than 2,000 deaf students during
the 1971-72 and 1972-73 school years.

THE STANFORD CAl SYSTEM

The central processor for the Institute's computer system
is a Digital Equipment Corporation PDP-10. In addition
to 256K of core memory, short-term storage of programs
and student information was provided by sixteen 180,000,000-
bit disk modules; long-term storage of student response data
was provided by magnetic tape. Communication with remote
student terminals in participating schools was provided by
private telephone lines. High-speed data transmission (gen
erally 2400 or 4800 baud) and time-division multiplexing
were used to communicate with clusters of 16 or more student
terminals. Of the more than 180 terminals connected to the
Institute system in 1972-73, about 125 terminals could be
used simultaneously with no appreciable detriment to the
system's speed of response. Any curriculum could be run at
any time on any student terminal.

Figure 1 shows a map of the United States on which super
imposed lines indicate the network operating in 1972-73.
As can be seen, high-speed data transmission to Austin,
Texas and Washington, D.C. was used to distribute pro
grams in the southwest and on the east coast. Also shown is
a direct line to New Mexico, which supported a similar in
stallation at Isleta Pueblo, an Indian reservation approxi
mately 20 miles from Albuquerque, New Mexico.

The student terminals were Model 33 teletypewriters,
which communicated with the central computer system at a
rate of about 10 characters per second. In a typical school,

* This research was supported by Office of Education Grant OEG-
0-70-4797(607), OE Project No. 14-2280.

127

one room containing 8 to 15 student terminals was assigned
for CAL Ordinarily one person was chosen by the school as
the CAl terminal proctor; this same person was in charge
of the equipment and the supervision of students in the
terminal room.

When a student seated in front of a terminal presses the
start key, the program responds by typing

HI
PLEASE TYPE YOUR NUMBER AND NAME.

Each student receives a number, which he inputs together
with his first name. He uses the same number for an courses
and types a one-letter identifier as a prefix to indicate which
course he is requesting.

SUMMARY OF CAl CURRICULUMS

All CAl curriculums developed by the Institute were avail
able to students in the participating schools for the deaf.
The curriculums most relevant and most widely used were
mathematics strands, arithmetic word problem solving, and
a special language arts course developed solely for deaf
students. In addition, a basic English course (available from
Computer Curriculum Corporation), an algebra course, a
computer programming course in AID, a computer program
ming course in BASIC, and a deductive logic and algebra
course were used on various occasions by a number of stu
dents. A quantitative summary of usage for 1971-72 is shown
in Table 1.

We give here a brief description of the elementary mathe
matics curriculum and the language arts curriculum.

Elementary mathematics strands

The objectives of the curriculum were (a) to provide
supplementary individualized instruction in elementary
mathematics at a level of difficulty appropriate to each
student's level of achievement, (b) to allow acceleration in
any concept area in which a student demonstrates proficiency
and repeated drill in areas of deficiency, and (c) to provide
a daily profJe report of each student's progress through the
curriculum.

128 National Computer Conference, 1974

Local links
to Stanford:

Berkeley
Cu pertino - Son Jose
East Polo Alto
Los Altos
Son Carlos
Son Francisco

Austin
Beaumont 1 Tex.

'-:-"'A' ~\.../
Son nfoVaUSfan

Figure 1-IMSSS national network, 1972-73

A strand is a series of problems of the same operational
type (e.g., number concepts, addition, subtraction, fractions)
arranged sequentially in equivalence classes according to
their relative difficulty. The 14 strands in the program and
the grade levels spanned by each strand cover the core
elementary-school mathematics curriculum.

A student in the strands program works on fewer than 14
strands;· the actual number depends on his grade level and
performance. The strands approach provides a high degree
of individualization because each student's lesson is prepared
for him daily by the computer, the lessons are presented as
mixed drills at a level of difficulty in each strand determined
by the student's prior performance, and the student moves
up each strand at his own pace.

Details of the curriculum are given in Suppes, l Suppes,
Goldberg, Kanz, Searle, and Stauffer,2 and in Searle, Lorton,
and Suppes.3

Language arts

After carefully considering the language difficulties of
hearing-impaired students, we designed the language arts
curriculum to stress the structure of English, with particular
emphasis on the roles of syntax and inflection and on the
meaning of function words. An inductive rather than a de
ductive strategy was used. The course does not explicitly
state 'rules' of English usage, rat.her it presents items illus
trating aspects of standard English usage singly and in com
bination. Incidental learning of basic sentence patterns is

enhanced by presenting curriculum items in complete sen
tences. Fewer than one-tenth of the exercises present the
student with single words or isolated phrases. Incidental
learning is also enhanced by requiring many constructed
rather than multiple-choice responses.

There are four general course objectives. Students are to:

(1) Recognize specified grammatical categories;
(2) Recognize and supply various forms of given grammat

ical structures;
(3) Select appropriate grammatical units to complete a

specified structure; and
(4) Perform specified transformations on grammatical

structures.

The curriculum is divided into 218 lessons of 20-30 exer-

TABLE I-Institute CAl Curriculums Used by Participating Schools
for the Deaf, 1971-72

Curriculum

Elementary Mathematics (Strands)
Arithmetic Word Problem Solving
Language Arts
Algebra
Basic English
Computer Programming in AID
Computer Programming in BASIC
Logic and Algebra

Total Students 2279

Number of students

2146
107

1071
83

165
93

124
216

I

Computer-Assisted Instruction in Mathematics and Language Arts for Deaf Students 129

cises. Separate topics are presented in separate lessons and
often there is a sequence of lessons on a single topic. The
lessons are ordered to provide a cumulative basis of concepts
building upon one another. Several lessons review topics
presented in preceding lessons.

The course was described in detail by Fletcher and Beard,4

Fletcher, Jamison, Searle, and Smith,S and Fletcher and
Stauffer. 6

It should be emphasized that the network was primarily
developed to bring elementary mathematics and language
arts to deaf students. Use of the other courses was on an
optional and relatively infrequent basis in relation to the
total number of students, but the network was flexible
enough to provide additional work for students who wanted
it, ranging from a secondary-school course in English to
computer programming.

EVALUATION OF ACHIEVEMENT

During the course of the three years of the project a
number of detailed studies were undertaken to measure the
achievement of students using the CAl courses. We sum
marize here the two main studies dealing with achievement
in the elementary mathematics strands curriculum and in
the language arts curriculum.

Mathematics strands experiment

The purpose of the experiment was to measure the effect
of varying numbers of mathematics strands sessions on
arithmetic computation grade placement (GP) measured by
the strands curriculum and by an on-line, computer-ad
ministered version of the Stanford Achievement Test (SAT)
Arithmetic Computation subscale. This on-line version of
the SAT was called the Modified SAT or MSAT. Construc
tion and administration of the MSAT was detailed by Suppes,
Fletcher, Zanotti, Lorton, and Searle.7 Each student was
allowed to take only a specified number of mathematics
sessions at the terminal. All other sign-ons were spent work
ing language arts lessons.

Three hundred eighty-five students from among those who
were taking both CAl mathematics strands and CAl lan
guage arts, whose average GP on strands was between 2.4
and 5.9, and who had taken at least 15 mathematics strands
sessions, began the experiment. The students selected were
assigned at random to five experimental groups that differed
in the maximum number of mathematics strands sessions
they permitted during the experimental period of approxi
mately 70 school days. Treatment groups 1, 2, 3, 4, and 5
were assigned 10, 30, 70, 100, and 130' sessions, respectively.

Session limits were imposed on a calendar basis so that
students with low numbers of sessions received them dis
tributed throughout the experimental period. A participating
student had no control over whether he received a mathe
matics strands or language arts lesson. Whether he signed
on for mathematics strands or language arts a student was

given a mathematics strands lesson if he was eligible for one.
Otherwise, he received a language arts lesson.

Five models were tested to study the relationship between
the two independent variables of pretreatment scores and
the number of mathematics strands sessions on the one hand
and the dependent variable of posttreatment scores on the
other. We tested a linear regression model in the two de
pendent variables, a linear regression model with an inter
action term between the two independent variables, a multi
plicative Cobb-Douglas model of econometric type, a log
quadratic model in the two independent variables, and an
exponential model in the two independent variables. Detailed
results are not summarized here.

Parameters for the five models were generated twice, once
using mathematics strands average GP as pretreatment and
posttreatment achievement measures and once using MSAT
GP scores. The linear model with interaction accounted for
more of the variance in the dependent variable (posttreat
ment average GP) than did any of the other models, but
despite the inclusion of a term for the interaction of number
of sessions with pretreatment GP, it represented only a slight
improvement over the simple linear model. Assuming N i =

120 or slightly less than one session per 'day for a school
year and taking a2= .0123 from the linear model, we can
project T i 2- Til = 1.48. That is to say, if a student from this
population takes about one strands session per day for an
entire school year, we can expect his strands average GP to
increase by about a year and a half. Data presented later
show that strands average GP underestimated both GP
measured by paper-and-pencil administrations of the SAT
and GP measured by the MSAT. This improvement of 1.48
can be compared with an expected GP increase over a school
year of .3 to .4 in the SAT computation subtest for hearing
impaired students receiving ordinary instruction. 8

Among the models and parameters using MSAT GP as
pretreatment and posttreatment measures, the multiplica
tive model from econometrics that assumed weighted inter
action of number of sessions with pretreatment GP accounted
for more of the variance in the posttreatment measure than
did any other model, but, as with strands average GP, it
represented only a slight improvement over Model I, the
simple linear model. Again, assuming N i = 120 and taking
~= .0084 from the linear model, we can project T i2 - Til =

1.01. That is to say, if a student from this population takes
about one strands session per day for a school year of 120
net days, we can expect his ::.\ISAT GP to increase by about
one year. Roughly, we can expect an increase of .1 in MSAT
GP for every 12 sessions taken.

Suppes, Fletcher, Zanotti, Lorton, and Searle7 concluded
that the mathematics strands CAl curriculum can lead to
substantial increases in mathematics computation GP when
used by hearing-impaired students. The increases are suffi
cient to bring the students to GP gains expected of normal
hearing students. Moreover, these gains can be achieved by
students working intensely for only a few minutes a day in
a supplementary drill-and-practice program. The time spent
at a computer terminal by each student ranged from 6 to 10
minutes for each session.

130 National Computer Conference, 1974

In addition, Suppes, Fletcher, Zanotti, Lorton, and Searle7

concluded that a simple linear model of student achievement
gives a good account of the posttreatment distribution of GP
measured either by the MSAT or by the strands GP. The
investigation of other models, including models with inter
action terms, did not lead to any substantial improvement in
accounting for posttreatment GP variance. The results of
the analysis, including the application of the linear model,
indicate that greater numbers of CAl sessions are beneficial
for all students, across all levels of pretreatment achievement.

Language arts experiment

This experiment was analogous to the mathematics strands
experiment described by Suppes, Fletcher, Zanotti, Lorton,
and Searle.7 Each student was allowed to take only a specified
number of language arts sessions. All other sign-ons were
spent working mathematics strands sessions.

Two hundred thirty students from among those who were
taking both CAl mathematics strands and CAl language
arts in 1972-73 were selected for the experiment, and were
assigned at random to one of five experimental groups that
differed in the maximum number of 10-minute language arts
sessions they permitted. Students assigned to groups 1, 2, 3,
4, and 5 were permitted 20, 45, 70, 95, and 120 sessions,
respectively. The subjects were selected from students in the
California School for the Deaf, Berkeley, California; the
Oklahoma School for the Deaf, Sulphur, Oklahoma; and the
Texas School for the Deaf, Austin, Texas. Random assign
ment of these subjects to the five treatment groups was
stratified so that roughly the same number of students from
each school could be assigned to each of the treatment groups.
When the experiment began, 45 students were assigned to
group 1, 46 were assigned to group 2, 46 were assigned to
group 3, 47 were assigned to group 4, and 46 were assigned
to group 5. One-way, fixed-effects analysis of variance and
five models of student progress were used to investigate
student performance at the end of the 80-school-day experi
ment period. The five models of student progress investi
gated were the same as those used in the mathematics strands
experiment.

The assistance of teachers and proctors was sought to help
students achieve the number of language arts sessions they
were assigned. Teachers were urged not to give compensatory
off-line work to those students assigned to low numbers of
on-line sessions, and, in general, not to alter the classroom
work of any student because of his participation in the experi
ment.

Fletcher and Beard4 reported that complete data were ob
tained for 197 subjects. However, 46 of these subjects had
received 100 or more sessions in 1971-72 and these subjects
,vere removed from the experiment prior to any data analyses
which were then performed on the 151 remaining subjects.
In the analysis of variance there were 33, 27, 26, 33, and 32
subjects in treatment groups 1, 2, 3, 4, and 5, respectively.
Students in groups 1, 2, 3, 4, and 5 received an average of

22, 46, 69, 88, and 106 sessions, respectively. These averages
were lower than expected for groups 3, 4, and 5, but the
treatment groups appeared sufficiently distinct to proceed
with analysis of variance. The F -ratio for this analysis was
not statistically significant, indicating that the range of
sessions considered did not have a significant effect on post
test scores. The paper-and-pencillanguage arts test developed
by the project appeared to be reliable and fairly valid. The
correlation between pretest and posttest scores on the test
was .910 with an F-ratio for significance of regression be
yond p<.Ol, and the correlation between posttest scores
and number of lessons completed was .645 with an F-ratio
for significance of regression beyond p < .Ol.

Models I, II, III, IV, and V accounted for 83 percent,
83 percent, 66 percent, 83 percent, and 33 percent, respec
tively, of posttest score variance. The only model to which a
term that included a measure of sessions taken contributed
significantly was Model V. In all other models the only sig
nificant independent variable was the pretest score. An addi
tional model, Model VI, was investigated. This model was
of the form

E(T2) =ao+aITI+azN +aaL,

where T2 refers to posttest score,

TI refers to pretest score,
N refers to number of sessions taken,
L refers to number of lessons completed,

and ao, aI, a2, and a3 are parameters of the model. Model VI
accounted for 85 percent of the variance in posttest scores.
Both sessions and lessons, in addition to pretest scores, con
tributed significantly (p < .01) to the model. However, the
regression coefficient in Model VI for number of sessions
taken was negative, indicating an inverse relationship be
tween number of sessions taken and posttest scores when
number of lessons completed was taken into account.

Fletcher and Beard4 concluded that the course is of sig
nificant value to students whose ratio of lessons completed
to sessions taken is high but of much less value to students
whose ratio of lessons completed to sessions taken is low.
The relationship between sessions taken and posttest scores
was concluded to be more complex than anticipated.

Language arts item analysis

Fletcher and Beard4 reported several results from their
item analysis of the language arts curriculum that are not
widely noted in the literature on deafness.

First, the "directions" lessons were far easier than antic
ipated, given the general impression among deaf educators
that deaf students experience difficulty in following direc
tions. Some reasons for this result may be that the directions
in these lessons and in the curriculum were easier to follow
than those given in classroom instruction, that the directions
given in the language arts CAl were more clearly communi
cated to students than the directions given in classroom

Computer-Assisted Instruction in Mathematics and Language Arts for Deaf Students 131

instruction, and that deaf students have less difficulty follow
ing directions than generally supposed. More research is
required to decide among these alternatives.

Second, although pronouns were generally far easier than
anticipated, items on possessive pronouns were extremely
difficult for the students. Specifically, possessive pr6nouns
that differ in number (his boxes, their box) and/or gender
(his sister, her husband) from the nouns they modify were
seldom completed correctly.

Third, copulas joining subjects with predicate comple
ments that differ in number from their subjects were very
difficult for the students. Copulas for items such' as the
following:

The house (is, are) blue and white.
The girls (seem, seems) lonely.

were seldom completed correctly.
Fourth, the students had very little trouble with contrac

tions with the exception of "I'm," which was far more
difficult than anticipated.

CONCLUSIONS

We began this project with the conviction that we had a
powerful instructional tool at our disposal. Our aims were
to demonstrate that CAl could be used to advantage by
deaf students, that it could support serious research in deaf
education, and that a favorable argument could be made for
the economics of CAL Behind these aims was the general
intent of initiating large-scale use of CAl in schools for the
deaf. To some extent we successfully met each of these aims.

It seems reasonable to conclude that CAl can be used
successfully by deaf students. We did not set out to apply
CAl to all of deaf education; we attempted only what we
could do well. The curriculums concentrated on the skill
subjects of mathematics and language arts, and, within these
subjects, we emphasized aspects that were most amenable
to computer presentation. Under these constraints we
achieved favorable results. Certainly, the gains in mathemat
ics computation ability that were two to three times greater
than those expected from classroom instruction and the
precision with which GP increase could be predicted as a
function of CAl sessions are notable.

We also concluded that CAl provides a substantial founda
tion for research on the problems and processes of deaf
education. The range of research undertaken by this project
barely represents the diversity of inquiry that can be sup
ported by CAL The unobtrusive and precise control over
experimental conditions made possible by computer presenta
tions, as well as the accuracy and speed of computer arith-

metic and data retrieval, permits a wide spectrum of experi
mental possibilities that we have only begun to explore.

The major drawback of CAl, however, is its cost. Com
puters require a sizable commitment of funds, both for
acquiring capital equipment and for maintaining operations.
Fortunately, the steady increase in the quality of available
CAl is matched by a steady decrease in its costs. In the mid-
1960's, when CAl first became available, it cost about $40
per student contact hour. Currently, CAl offered by th(>
IMSSS system costs $1.50-$2.50 per student contact hour,
depending on communication expenses. For the immediate
future we can expect continued decreases in the costs and
continued increases in the quality of CAL

The proof of this project is in its impact on deaf education.
Specifically, the willingness of the participating schools to
support CAl from their own funding sources is the ultimate
test of the project's impact. To date 13, of the 15 schools
that participated in this project have committed funds to
continue their CAl activity in 1973-74. The two remaining
schools have not decided what CAl implementation alterna
tive to adopt. Two schools that received no CAl from this
project will be added to those supporting CAl in one network
that directly resulted from this project. We expect the growth
of CAl in schools for the deaf to continue.

REFERENCES

1. Suppes, P., "Computer-assisted Instruction for Deaf Students,"
American Annals of the Deaf, 1971, 116, pp. 500-508.

2. Suppes, P., A. Goldberg, G. Kanz, B. Searle and C. Stauffer,
Teacher's Handbook for CAl Courses, Tech. Rep. No. 178, Stanford,
California, Institute for Mathematical Studies in the Social Sciences,
Stanford University, 1971.

3. Searle, B. W., P. Lorton, Jr. and P. Suppes, Structural Variables Af
fecting CAl Performance on Arithmetic Word Problems of Disad
vantaged and Deaf Students, Tech. Rep. No. 213, Stanford, Cali
fornia, Institute for Mathematical Studies in the Social Sciences,
Stanford University, 1973.

4. Fletcher, J. D., and M. H. Beard, Computer-assisted Instruction in
Language Arts for Hearing-impaired Students, Tech. Rep. No. 215,
Stanford, California, Institute for Mathematical Studies in the
Social Sciences, Stanford University, 1973.

5. Fletcher, J. D., D. T. Jamison, B. W. Searle and R. L. Smith,
Computer-assisted Instruction for the Deaf at Stanford University,
USOE Annual Rept., Stanford, California, Institute for Mathe
matical Studies in the Social Sciences, Stanford University, 1973.

6. Fletcher, J. D., and C. M. Stauffer, "Learning Language by Com
puter," The Volta Review, 1973,75, pp. 302-311.

7. Suppes, P., J. D. Fletcher, M. Zanotti, P. V. Lorton and B. W.
Searle, Evaluation of Computer-assisted Instruction in Elementary
Mathematics for Hearing-impaired Students, Tech. Rep. No. 200,
Stanford, California, Institute for Mathematical Studies in the
Social Sciences, Stanford University, 1973.

8. Gentile, A., and S. Di Francesca, Academic Achievement Test Per
formance of Hearing-impaired Students, Series D, No.1, Washing
ton, D.C., Office of Demographic Studies, 1969.

Integrated voice/data compression. and multiplexing using
• • • * assocIatIve processIng

by LEON D. WALD

Honeywell S y.stems and Research Division
Minneapolis, Minnesota

INTRODUCTION

The Associative Communications Multiplexer (ACM) con
cept is based upon the Associative Processor (AP). For the
purposes of the following discussion, an AP will be defined
as an ensemble of processing Elements (PEs), each capable
of storing information, comparing that information with an
internal or externally applied comparand argument, and
performing arithmetic operations between the various internal
and external operands. The same operation-store, compare,
or process-may be executed on the differing local data,
simultaneously in all or any subset of processing elements.
A single control unit, with internal program memory, sup
plies instructions in parallel to all PEs to control their
operations.

Associative processing can be effectively applied wherever
a set of common operations must be performed on many
pairs of operands. Numerous instances of this requirement
may be found in the area of voice and data communications.
The Associative Communications Multiplexer has been de
signed to apply _ these techniques in three functional- areas,
which are described below.

Digitization and loading of multichannel input data

Since an associative processor can execute calculations
simultaneously for all elements, data I/O often must also
be parallel to retain the speed advantage. In the ACM, this
capability is utilized to simultaneously sample and digitize
all analog input channels. At the same time, digital channels
are also sampled.

Simultaneous compression and concentration of multiple
channels

The ACM also applies associative processing to compres
sion and concentration of multichannel data. A number of
parallel algorithms may be used to compute figures of merit

* This work was supported in part by the Rome Air Development
Center, Contract No. F30603-71-C-0350.

133

for all channels which represent relative significance of the
data at a particular sample time. The calculation tends to
yield high figures of merit for active channels and much
lower values for those, including digital channels, in the
pause mode.

Parallel selection of most-significant data

The parallel search capability of the AC:\1 is used to
select the most significant data for transmission each cycle.
Figures of merit for all channels are compared by priority
group and those with highest priority and activity are trans
mitted, up to the channel capacity. Thus, dynamic asyn
chronous multiplexing is achieved wherein the compression
and quality of analog channels are automatically adjusted
to account for changes in overall system activity, while
keeping the high speed channel loaded to capacity and
without necessitating buffering or delay.

ORGANIZATION OF THE ACM

The ACM is comprised of three subsystems as indicated
in Figure 1. The I/O subsystem performs the interface
functions, sampling, digitizing, and buffering. This unit also
reconstructs the analog signals after transmission, and re
synchronizes digital channels. The Associative Processor
(AP) executes the compression algorithm, and transfers the
most significant samples to the output buffers, from which
they are transmitted via the high speed digital data link.
The control unit provides overall system synchronization
and control and features stored programs, both at the basic
operation (microinstruction) and algorithm (main program)
levels, for maximum flexibility.

The architecture is a highly modular ensemble of nearly
identical computing elements. Although several versions of
the I/O circuitry are necessary to interface the various
analog and digital sources, each Processing Element (PE) is
identical to all others and is comprised of at least one byte
of Associative Memory (AM), a few registers, an adder, and
a number of Random -A~cess' Memory (RAM) bytes.

Two detailed organizations have been considered for the

134 National Computer Conference, 1974

VOICE
AND

lOW SPEED
DIGITAL

LINES

INPUTI ASSOCIATIVE
OUTPUT PROCESS ING

UN ITS FLEMENTS

CODE:

AM ~ ASSOC IATIVE MEMORY
AI) ~ AR ITHMETIC UN IT
R REGISTERS
RAM ~ RANDUM ACCESS MEMORY

HIGH SPEED
TRANSMISSION
LINE

HIGH SPEED
TRANSMISSION
LINE

Figure I-Associative communications multiplexer block diagram

PEs. The least complex combines a fully parallel AM with
bit slice arithmetic and access to the RAM, and would be
adequate only for the simplest compression techniques. The
second PE architecture permits data transfer and arith.1TIetic
to be parallel by 8-bit bytes and is thus much faster.

The parallel PE organization is shown in Figure 2. The
associative memory is not shown explicitly, since the adder/
subtractor performs the associative comparison function re
quired for this application. Essentially, the RAM is made to
look associative. Compared to a conventional A~f, the adder
offers the advantage that inequality (such as greater than)
searches can be accomplished as rapidly as equality searches.
To maximize this advantage, the global data buss has been
given direct access to the adder.

The RAM, which is addressed from the control unit using
the RAM Address Register (RAAR), would typically store
32 8-bit bytes. The data from both registers, from the
Input/Output Processor (lOP), and from the global data
lines can be stored in memory by using the adder output
bus. This implementation allows the locations 'within memory
to be treated as registers, permitting operations that take a
word from memory, add or subtract a word from a register
or the input lines, and put the result back in the same
memory location.

Local operands are placed in the two general registers,
TRR1 and TRR2. The latter has a built-in shift capability.
The tag register, 4 bits in length, permits storage of infor
mation such as connect status and search response history.
The Element Activity (EA) flip-flop state may be modified
under control of these tags.

A number of simple logic blocks (LI, L2, and L3) aid in
control of the element. These function to indicate zero,
limit, and overflow conditions, aid in shifting and rounding,
and control the activity commands.

The ACM system, and particularly the PEs, when built,
will make extensive use of medium and large scale inte-

gration. The ACM is organized so that channels may be
added or deleted simply by modifying appropriately the
numbers of each type of chip in the AP. Changes in pro
gramming or control unit hardware will not be required.

ACM OPERATION

Operation of the ACM may be clarified through consider
ation of the six basic steps in sequence as they are performed
each cycle. First, in the Measurement step, input signals are
sampled. Next, these samples are converted to digital form
and stored in buffers in the Conversion step. During the third
step, Input, the samples are transferred in parallel to the
AP. Redundancy and pauses are removed in the fourth step,
Compression. Output, the fifth step, involves selection and
readout of the most significant data. Finally, in the Recon
struction step, analog waveforms are reproduced from the
transmitted data and digital data streams are retransmitted
into the low speed lines at appropriate data rates.

Since the Compression and Output functions are so basic
to the ACM concept, these will be discussed in greater
detail. Operation of a typical compression algorithm is illus
trated in Figure 3, which shows several digitized samples for
a single analog channel. This Zero Order Predictor (ZOP)
algorithm begins with a transmitted point. A horizontal
prediction line through this point and a horizontal corridor
of width 28, symmetric to the point, are constructed. The
values chosen for 8 for each of the channels will determine
relative speech quality levels. If a common value is used for
all channels, then choice of this parameter is arbitrary.

As each succeeding point is received by the AP, the
corridor boundaries are adjusted (reducing the corridor
width) so that the upper and lower limits are respectively
no more than 8 above or below the point. The sequence is
continued, even if the corridor width becomes negative, until

GLOBAL
DATA
BUS

PARALLEL [
TRANSFER
TO/FROM
lOP

+--+--+---4

CONNECT STATUS --I---+---~
VECTOR INPUT

- - _llRAA~ GLOBAL

. I ~~~RESS

I I
, I I

I
I
I
I
I

I
i
I
I
I
I
I

- ___ J

Figure 2-Byte-organized processing element

)
/

T

Integrated Voice/Data Compression and Multiplexing Using Associative Processing 135

1

a transmission for that channel occurs. The process is dupli
cated for all other channels in the system.

The prediction lines essentially represent the output of
the digital-to-analog conversion process at the remote ACM
receiver assuming no transmission errors. The final recon
structed waveform (the approximation to the original input)
is thus a filtered and smoothed version of the solid line· shown
in Figure 3.

It should be emphasized that nothing in the figure or the
compression algorithm should be taken as a sufficient con
dition for transmission. Transmission may not occur even
for negative corridor ",idth or points outside the corridor,
but depends entirely on activity relative to that of the other
channels. For example, with referince to the figure, the
following conditions where transmission occurred are illus
trated:

• Point a-The sample is ·within a positive corridor.
• Point b-The sample is outside a positive corridor.
• Point d-The sample is outside a negative corridor.

At point c transmission did not occur, in spite of the fact
that the corridor is negative and the point is relatively far
from the prediction line.

This compression corridor, which decreases monotonically
with time, is a measure of channel activity and may be used
as an inverse figure of merit. In the ACM, the output or
data selection algorithm compares all such widths by priority
class during each cycle. In this way, data are transmitted
from as many active channels in the top priority category
down to a prescribed significance level as high speed output
channel capacity will allow. The process is repeated suc
cessively for the lower priority classes as long as channel
capacity remains. The result is a dynamic asynchronous
analogi digital multiplexing technique which conserves trans
mission capacity by sending only the most significant infor
mation (i.e., channels exhibiting the greatest data change
since the previous transmission).

A description of typical algorithm execution within the
AP will serve to illustrate some of the ways in which associ
ative and parallel processing can be used in compression

__ :'JR BOUNDARY

f1-- l d 0
& L .r~ 0 i 0 -- I..~ --:- /CORRIDOR BOUNDARY

~ 0 0 :"1_ 0 £

PREDICTION LINE

V(tl l r.Q--- -a 0 c ~ c r~-
_--I 0 1

o I r
-----. L~o-I-

I
I

00 1

____ .r-'

t-

• TRANSMITTED SAMPLE
o UNTRANSMITTED SAMPLE

Figure 3-Zero order predictor compression algorithm

Figure 4-Associative communications multiplexer simulation

and multiplexing. For the AP, a processing cycle begins
when the latest data samples are loaded into the RAMs in
the corresponding PEs. To compress using ZOP, the sample
in each PE is first subtracted from the current predicted
value to determine whether it is above or below the pre
diction line. Then, the difference between the sample and
the appropriate corridor boundary is compared with 0, and
the boundary is modified if necessary. Completing the com
pression operation, the corridor width is formed as the differ
ence of the boundaries.

Each of these operations is executed in parallel over as
many PEs as required. Where a branch occurs in the algo
rithm, each PE determines the status of the appropriate
condition and sets a tag accordingly. The control unit then
issues a command setting the Element Activity (EA) flip
flops in the PEs conditioned by the tags, followed by a
sequence of instructions corresponding to one of the branches.
Thus, only the PEs required to execute the branch become
active, and respond, in parallel, to the instructions. Later,
the alternate branches are handled in an analogous manner.

Execution of the data selection routine is similar but is
dominated by the use of the AP's associative search capa
bilities rather than by parallel arithmetic operations. All
PEs are first asked to compare their channel priority codes to
the code corresponding to top priority which is presented on
the global data bus. PEs indicating a match are enabled, in

136 National Computer Conference, 1974

PO I NT -TO-POINT

2--·

256

BRANCHING (LOCAL DISTRIBUTION TO MULTIPLE PIPES)

A I

CENTRAL

AM

#256

A
BUFFER

B
BUFFER

A TRAFFIC + B TRAFFI~ MAX T2 TRAFFIC -FIXED OR DYNAM!C
ALLOCATION

Figure 5-Network configurations

A

B

n +

256

sequence, for transfer of the data samples, via the global
bus, to the high speed transmission buffer. The next lower
priority code is then presented and the process is repeated.
Within some priority classes, searches are also made for PEs
characterized by corridor width below a specified threshold.
This permits transmission ordered by channel activity levels
but avoids the necessity for relatively slow minimum searches.
When the transmission buffer is full, indicating that high
speed channel capacity has been reached, data selection is
terminated.

To measure the applicability of these and other compres
sion and selection algorithms to actual voice data, a computer
simulation has been written. This program, illustrated in
block diagram in Figure 4, is written in FORTRAN and
runs on an XDS 9300. It accepts 6 channels of digitized
voice from magnetic tape as input, duplicates the ACM
compression, noise suppression and output selection func
tions, and generates a 6-channel digital voice output tape.
Since the input may be structured to be more active (with
respect to pauses) than actual t\Vo=\'tv'-a)r telephone speech,
ACl\1 systems of up to 24 channels may be simulated. For

example, if the six inputs include normal pauses between
words and sentences but no time for the speakers to listen,
then the system is processing twice the information normally
characteristic of six channels, and is equivalent to a 12-
channel system.

The simulator processes the voice data by examining, in
sequence, the six sample values in each sampling period.
Compression parameters such as corridor width are then
computed for each channel. The current sample is also com
pared with recent history for that channel, and if outside
prescribed limits, is designated "wild." Channels for which
samples are not wild are ordered by corridor width. They are
then successively tagged for transmission, beginning with the
minimum width and proceeding until the assumed channel
capacity has been reached. Those samples "transmitted" are
transferred unchanged to the output tape. Samples for the
remaining channels are calculated, as in the receiver ACM,
in accordance with the reconstruction algorithm.

The ACM simulator has been used to measure the applica
bility of a number of compression and selection algorithms to
speech. Among these are the Zero Order Predictor (ZOP)
described earlier, the First Order Predictor (FOP) which
uses sloping prediction lines and corridors, and combinations
of the two algorithms. For these tests, actual speech segments
for a variety of speakers and sentences were converted to

SAME PHYS ICAL ROUTE

#1

#46

FOR SLOTS J
1116 - #30, ___ .1

#31 - #46

ACM

SITE B

SLOTS 1 - 15 SLOTS 16 - 30 SLOTS 31 - 46

Figure 6-A multi-point network

)

Integrated Voice/Data Compression and Multiplexing Using Associative Processing 137

8000 12-bit samples per second. Input channel timing was
structured for several average activity levels and channel
capacity was varied.

In general, test results were good, and support the validity
of the ACM concept. Simple ZOP was found to yield the
highest voice quality. Distortion and noise were found to be
almost indistinguishable at a compression ratio of 4, ac
ceptable at 8, and fairly severe at 12, the highest ratio used.
Word and speaker recognition remained high even at maxi
mum compression.

Although these speech processing experiments were by no
means exhaustive or completely rigorous, they did lead to a
number of interesting insights. For example, the superiority
of a zero order algorithm over a first order one demonstrates
that the theoretical ability of a piecewise linear approxi
mation to more nearly fit the speech waveform does not
result in higher quality. In fact, the studies showed that
FOP tended to overshoot and hunt at waveform peaks and
in regions of inactivity. This results in distortion, noise,
and waste of channel capacity as extra points are transmitted
to correct the errors. The latter produce additional distortion
since other channels are hindered in their attempts to trans
mit at the most opportune times.

Detailed study of the way these algorithms operate upon
actual voice has suggested some directions for improvement.
A form of extrema detection algorithm, the Peak-Valley
Interpolator (PVI) has been developed specifically for the
ACM. Theoretically, PVI should result in higher compression
by a factor of 2-3 and simultaneously in improved speech
quality. Since it was not tested during this program, however,
these conclusions remain to be validated.

ACM APPLICATIONS

The general applications area for the ACM can be defined
as that where many channels of voice or a combination of
voice and data must be transmitted efficiently over a costly
high speed link. The ACM can fit into many communication
system configurations.

The simplest ACM application is to the point-to-point
system (Figure 5). Two remotely located ACM's are linked,
and a one-to-one correspondence exists between channels of
the one and those of the other. A given low speed channel on
one end always corresponds to the same low speed channel
on the other end. Switching between these channels can be
added very simply (as an Associative Processor function)
for a slightly more complex system.

A simple 2-branch network is also shown in Figure 5. On
the basis of a destination address stored in the associative
memory of the central ACM, each channel is directed through
one of the output buffers and one high speed line to the
appropriate remote ACM. Although a fixed channel allo
cation is sho'wn, a dynamic one could be used as well.

Multipoint or loop applications are also possible, where
several ACM's are intercoll...llected as shoVr"TI in FigUTe 6.
Available time slots on the high speed line could be assigned

dynamically on the basis of the relative activity at the various
multiplexers. The technique sho~"Il assigns permanently a
fraction of these slots to each remote ACM with remaining
slots up for contention. Each ACM would attempt to use
these contention time slots to transmit all its channels down
to a prescribed activity level.

The ACM is capable of handling a variety of input types
in almost any combination. These types include:

• Voice (analog or predigitized)
• Digital Data (real-time or non-real-time)

- Terminal-to-terminal
- Terminal-to-computer
-Computer-to-computer
-Telemetry

• Analog data
-Sensing and process control.

Included in this list are data for most of the commonly
used information transfer applications, such as record mes
sage traffic, time-sharing systems, data gathering and com
puter load sharing.

Within the digital data category, both synchronous .and
asynchronous data can be handled. Low speed asynchronous
data (to 600 bps) can be processed simply (but inefficiently)
by treating the waveform as a compressible analog signal.
This approach permits considerable flexibility for dialup
voice/data terminals. Low to medium speed asynchronous
data (to 2400 bps) can also be synchronized and buffered
by character, automatically stripping off start and stop
characters and deleting pauses. Information is thus accumu
lated at its normal (low) rate, transmitted in single character
bursts at the ACM high speed output rate, and retransmitted
by the remote ACM at the original data rate.

ACM treatment of synchronous data can be quite similar,
in that the data can be buffered, concentrated, and trans
mitted at the high rate. However, since basic synchronous
data rates are usually quite high (above 2400 bps) and the
number of this type of channel will be quite low in a normal
ACM application, it may not be worth the extra hardware
to concentrate. Channels with data at rates below the maxi
mum ACM input rate (64K bps) will of course be inter
leaved, achieving significant transmission efficiency.

CONCLUSIONS

The concept and design for the Associative Communications
Multiplexer have been described, and applications to many
areas of voice/data communications have been shown. The
system is designed to allow economical transmission of voice
and data in cases where cost of the transmission facility is
dominant. Examples of such situations include satellite
links, submarine cables, and certain long distance land lines.

A simulation of the ACM has been described which demon
strated many of the system's characteristics in processing
speech. Listening tests, using actual voice inputs, confirmed
that eightfold speech compression is possible and consistent

138 National Computer Conference, 1974

with reasonable quality. These conclusions, and the effects
of digital data, channel errors and many other factors are
under more detailed investigation at the present time.

The ACM embodies a novel approach to the problems of
compression and multiplexing since it combines digital and
voice data in a single facility, and offers flexibility due to the
system's modularity and programmability. Degradation due
to overload is graceful and recovery is automatic and rapid.
The system should ultimately be low cost, compact and
reliable since its digital, modular architecture is ideally suited
for large scale integration.

BIBLIOGRAPHY

1. Johnson, M. D., and D. C. Gunderson, "An Associative Data Ac
quisition System," Proceedings of the 1970 International Telemetry
Conference, April 1970.

2. Wald, L. D., "An Associative Memory Using Large-Scale Integra
tion'," NAECON '70 Record, May 1970, pp. 277-281.

3. Wald, L. D., "An Associative Processor for Voice/Data Communi
cations," Proceedings of the 197~ Sagamore Computer Conference,
August 1972, pp. 135-144.

4. Hanlon, A. G., "Content Addressable and Associative Memory
Systems-A Survey," IEEE Transactions on Electronic Computers,
August 1966, pp. 509-521.

5. Stump, J. W., and L. W. Gardenhire, "Digital Voice Compression
Study," Final Report Contract DCA100-67-C-0018, Radiation In
corporated Systems Division, October 1967.

6. Canover, M. F., "Investigation of Data Compression Techniques,"
Final Report Contract N AS9-10876, TRW Systems Group, 15
September 1971.

7. Ristenbatt, M. P. and D. R. Rothschild, "Asynchronous Time
Multiplexing," IEEE Transactions on Communications Technology,
June 1968, pp. 349-357.

8. VanBlerkom, R., G. R. Schwarz, and R. J. Ward, "An Adaptive
Composite Data Compression Algorithm with Reduced Computa
tion Requirements," IEEE National Telemetering Conference Proc.,
1968.

J ,

Speech as a man-computer communication channel

by REIN TURN

The Rand Corporation
Santa Monica, California

INTRODUCTION

Many computer applications require continuous interaction
between men and computers. Typically, men communicate to
computers data and programs, requests for processing and
information retrieval, and other information required for the
performance of computer-aided tasks. In turn, computers
communicate to men the results of processing operations, the
requested information, and any other messages they are
programmed to produce.

The principal means for man-computer communication are
manual, visual, and audio channels. The manual channel
includes all mechanically operated input devices. The visual
channel consists of printouts, displays and signals for visual
sensing by man and electro-optical sensing by computers.
The audio channels are the computer equipment and systems
for recognizing spoken utterances, as well as the equipment
for producing spoken output.

The choice of man-computer communication channels
depends on numerous operational, human, and economic
factors. Among these are the ease of use of the channel in the
context of the man-computer tasks, the nature of the inter
action language, the ability to maintain desired interaction
rates, and the effects of the operational environment. The
processing and storage requirements of the communication
channel, and its cost-benefit advantages or disadvantages
over competing channels, are important economic factors. An
ideal channel is easy and natural to use, compatible with the
total system, provides operational advantages and is
cost-effective.

Most of the present man-computer communication chan
nels are manual for man-to-computer communication and
visual for computer-to-man communication. Their character
istics and design factors have been thoroughly analyzed and
are widely available. l

The use of the speech channel is still in its infancy.
However, the first generation speech synthesis equipment is
becoming commercially available2 and the current research in
computer recognition of ~peech3.4 is likely to make speech

* Any views expressed in this paper are those of the author. They should
not be interpreted as reflecting the views of The Rand Corporation or
the official opinion or policy of any· of its governmental or private re
search sponsors.

139

communication between man and computer technically and
economically feasible in a few years. Limited capability
isolated-word recognition systems are already being tested
for simple control applications. 5 Several continuous speech
understanding and recognition systems are being developed
in the research laboratories.

Speech has the potential for becoming a versatile man
computer communication medium. This paper discusses its
attractive features, problem areas, and application criteria
for this purpose. A description of specific implementations of
speech recognition systems, however, is beyond the scope of
this paper.

SPEECH CHARACTERISTICS

It is a natural activity for a person to mentally encode his
observations, ideas, and requests into a naturallanguage-one
that he uses in his daily communications with other persons
and express these in spoken form. Natural languages have
evolved over long periods of time and, characteristically,
permit great flexibility in expression and enormous variety in
shades of meaning. That is, the mapping of mental images
into natural language statements is a many-to-one process.

The expression 'of a given natural language statement in
speech is another many-to-one transformation-the generated
acoustic signals differ from speaker to speaker as functions of
their voice tract physiology, age, sex, dialect, physical
condition and emotional state.

The receiver of a spoken utterance must resolve the
inherent uncertainties on the basis of context and his
accumulated experience and knowledge. He uses his mental
"model" of the speaker, the circumstances associated with the
communication, and his "world model." Various non-verbal
signals by the receiver also enter the understanding process.
Sometimes the uncertainty cannot be resolved at all and
further clarifying communications with the speaker are
necessary.

The use of natural language utterances for speech communi
cation with computers is beset with the difficulties outlined
above. Since it is not practical to provide the computer with
all the contextual information required to resolve the
ambiguities, some restricted form of the language must be
used. For example, the vocabulary may be limited to a few

140 National Computer Conference, 1974

hundred words that are used with unique meanings, and
rigid syntactical rules may be imposed. Further constraints
may be placed on the speakers (e.g., it may be required that
isolated-word speech, rather than continuous speech, be
used). Despite the loss in expressional power and flexibility
that such restrictions entail, there are situations where speech
is attractive for man-computer communication.

The following sections discuss the intrinsic characteristics
and the associated attractive features and problem areas of
speech input to computers. A part of this discussion is based
on material which has previously appeared in literature.6 ,8

Message generation and encoding

The constant use of speech has made humans very skillful
in communicating with others through this channel-speech
can be produced effortlessly, spontaneously, at a high rate,
and under almost all environmental conditions. Hence, the
first characteristic of speech:

1. Speech is man's natural and primary communication
channel.

The associated attractive features from the point of view of
man-computer communication are:

• The use of speech is familiar and convenient when the
interaction language is similar to the speaker's native
tongue and is easy to pronounce.

• Speech is highly suitable and the preferred channel for
spontaneously generated utterances.

• Speech is potentially the highest rate versatile communi
cation channel for computer input.

• Using speech for man-computer communication may
permit the "participation" of a computer in human
discussions and teleconferences.

The speech input channel loses some of its attractiveness as
the language departs more and more from natural language
(e.g., when words are artificial and difficult to pronounce and
when abbreviations, special characters, and punctuation
marks are used). Some applications are not at all suitable for
speech input, such as entering graphic data. Clearly it is more
natural to trace out a curve on a graphic input tablet than to
read the coordinates.

The potential speed advantage of spoken input is illus
trated in Table 1. However, it must be borne in mind that a
high data rate is not necessarily a high information rate.

The possibility of simultaneous communication with both
men and machines has interesting implications. For example,
a computer and its data base may become an active partici
pant in a conference.

Interaction with other channels

The next speech characteristic pertains to its interaction
with the other channels available for man-computer com-

munication:

2. The speech channel is independent of the visual channel
or human voluntary motor activities (other than those
required for speech production).

The only muscles required for speech production are those
that operate the vocal cavity, tongue, jaw and lips, and that
control breathing. Other muscles and other bodily activities
interfere only insofar as they affect breathing or require
conflicting mental activities. Hence, an attractive feature is:

• Communication using speech can take place simulta
neously with other visual or manual tasks, when the
speaker is moving around, and in total darkness.

This is a very important feature of the speech channel. In
numerous situations communication with the computer is not
the only task. A standard example is piloting an aircraft
while attempting to interact with the onboard computer.

Speech propagation

Speech propagates in the atmosphere in the form of pressure
waves. These are reflected from and around objects. They can
be easily changed into electrical form. The related speech
characteristic is:

3. Speech propagation is omnidirectional. No free line of
sight is required.

This leads to the following attractive feature:

• For speech input, the speaker can be in an arbitrary
orientation relative to the microphone, at a considerable
distance, or behind a barrier.

l\Iicrophones with various "fields-of-view" and sensitivities
can be constructed and a computer input console would need
not be user-centered, but could be "stretched out" to allow
optimal placement of various input-output devices and
displays. The user can walk around while entering informa-

TABLE I-Representative Data Rates for Man-computer
Communication

Data rate
Communication mode (words/sec.) Remarks

Oral reading9

Random words 2.1-2.8 Selected from 5000 word dic-
tionary

Random words 3.0-3.8 Selected from 2500 most
familiar monosyllable words

Spontaneous speaking9 2.0-3.6
HandwritingS .3- .4
HandprintingS .2- .5
TypinglO 1.6-2.5 Skilled
TypinglO .2- .4 Inexperienced
Stenotypell 3.3-5 Chord typewriter
Touch-tone telephoneS 1. 2-1. 5
Thumb-wheep!.! 1.8 digits/sec. Sequence of 10 digits
Rotary dialingU 1.5 digits/sec. Sequence of]0 digits

tion through the speech input devices. The number and type
of receivers may also vary:

• The speech target audience can vary freely from many
(using loudspeakers) to a few (using earphones), in both
cases low cost equipment can be used. This feature is
important for security and privacy.

The easy conversion into electrical form leads to another
attractive feature which has the potential of converting a
conventional telephone instrument into a computer terminal:

• Speech communication with computers is compatible
with exis_ting voice communication networks and sys
tems. This allows remote input from locations where no
special computer-related equipment is available.

Among the problems associated with these characteristics
is the interference of speech communications both by
ambient acoustic noise and the electrical· noise in the voice
communication system. Another problem area is the transi
tory nature of speech-no hard copy is produced of speech
input. A tape recording can be made but is inconvenient
to use.

Speaker characteristics

The acoustic characteristics of speech signals depend on the
structure of the speaker's vocal tract and its dynamics.
Infections and other pathological conditions in the vocal tract
also affect the speech quality. Articulation and timing are
influenced by fatigue. Unusual emotional conditions can
change the normal speech characteristics, such as the pitch
and speaking rate. Hence the characteristic:

4. Speech contains a great deal of information about the
speaker.

This characteristic leads to two attractive features and two
problem areas in the application of speech for man-computer
interaction:

• The use of speech allows checking the speaker's identity
for access control purposes.

• The use of speech has the potential for monitoring the
physical and emotional state of the user.

To implement speaker identification capability, carefully
chosen speech samples can be analyzed and a set of parameters
computed and stored. To authenticate a person's identity the
person speaks a predetermined sentence which is also
analyzed and the extracted parameters are compared with the
stored ones. Considerable research is in progress on this
topic.13 An ability to monitor the operator's physical or
emotional state14 is important in man-computer tasks where
the operator's actions, or inactions, may have drastic
consequences, such as in air traffic control applications.

The problem areas associated with these features have to do
with the complications in the desigu of speech recognition
systems caused by speaker-to-speaker variability, and the

Speech as a Man-Computer Communication Channel 141

variability in voice characteristics of a given speaker. It may
be necessary to train the system to recognize each individual
speaker's voice characteristics and to store such information
in the system. Affected are the required amounts of storage
and processing.

Environmental influences

Speech generation and propagation are both affected by
the environmental conditions. Some of these, such as
temperature, humidity, or insufficient working space, affect
the speech generation only indirectly (e.g., by accelerating the
onset of fatigue and emotional conditions); others have more
direct effects. The associated speech characteristic is:

5. Speech production is affected by mechanical forces on the
speaker and composition of the atmosphere.

Experiments have shown that both vibration and accelera
tion affect speech intelligibility.16 Changes in the atmosphere,
such as the presence of helium in submarine systems, also
affect speech by changing the pitch and intelligibility.l6
However, weightlessness does not appear to have any effects.

Any ambient acoustic noise· in the environment will
interfere with the speech signal. This condition may be quite
acute in systems containing equipment in operation (aircraft
engines, teletype terminals) or other speakers. Among the
techniques available for alleviating the noise interference
prob~m are noise-cancelling microphones, special signal
processing techniques, and the use of specially selected,
high-intelligibility vocabularies. 17 ,19

Speech in computer-to-man communication

Unlike the use of speech for computer input, automatic
synthesis of spoken messages by computers is now practical.
This is indicated by a recent survey of the state of the art in
voice response systems3 and by the number of firms actively
engaged in marketing these systems. 2

The attractive features of the use of speech for computer
to-man communication include the following:

• Speech is a natural way for humans to receive communi
cations from others. It is compatible with the use of
speech as a computer input channel.

• Several spoken messages can be received and compre
hended simultaneously.

• Spoken messages can be received \vithout interrupting
the use of the manual or visual channels, in motion, or in
total darkness.

• In receiving spoken output from the computer, the
operator can be in an arbitrary orientation relative to the
computer, some distance from the computer, or behind
a barrier.

• Any number of listeners can receive the spoken message
from the computer simultaneously.

• Speech reception by humans is not appreciably affected

142 National Computer Conference, 1974

by weightlessness, vibration, or mechanical forces on the
listener.

There are also some problem areas. For example, the rate
of receiving spoken messages is much slower than through the
visual channel. The transient nature of speech requires that it
be recorded on a tape if hard copy is required, but in this form
it is not readily scannable by the human operator.

The ambient acoustic noise interferes with the reception
and comprehension of spoken messages from the computer
when they are broadcast or sent over a telephone instrument.
However, the human auditory system is rather remarkable in
its ability to select out and concentrate on a specific message
and ignore others (this is the so-called "cocktail party"
effect).

IMPLEMENTATION OF SPEECH INTERFACE

The design of an effective yet economical man-computer
interface is a complex process that must take into account the
nature of the tasks to be performed; the human roles,
capabilities, and shortcomings in performing these tasks; the
task performance environment; and the capabilities of the
interface equipment. The task characteristics and the human
roles determine whether a speech interface is suitable. The
associated system design and performance requirements
determine whether a speech interface will be technologically
and economically feasible.

Design criteria

The principal roles of a human operator in a man-computer
system are: decision maker, problem solver, controller,
monitor, retriever or inquirer, and sensor or transducer. The
most demanding of these is the human role as decision maker
in real-time command-control systems where his performance
is especially affected by the criticality of the consequences of
the decisions, the diversity of the decisions to be made, and
their dynamics.

The following considerations influence the design of a
man-computer interface.

• Nature, time characteristics and variability of the tasks.
• Intensity level of the task performance and the operator's

response requirement.
• Input and output loading of the operator.
• Operator's and system's physical state during task

performance. Operator's physical safety and other stress
conditions.

• Operator's level of isolation when performing the task.
• Environmental conditions.
• Training and skill level of the operator.

Based on these and the discussion of speech characteristics
in the previous section the suitability of a speech interface for
performing a given set of man-computer tasks can be
evaluated.

The speech understanding and recognition systems used to
implement a speech interface are characterized by a series of
design features which reflect the acoustic and linguistic
processing aspects of these systems. These design features
have been discussed for continuous speech understanding
systems in detail by Newell, et al. 8 Included are the following:

• Vocabulary size and syntactical structure.
• Number of speakers, their dialects and speaking habits.
• User training and system tuning; the degree of speaker

independence.
• Ambient noise environment and the transducer char

acteristics.
• Requirements for and availability of contextual "world

model."
• Recognition error rate.
• Response time.

These establish the requirements for the system hardware-
the special-purpose acoustic signal processing equipment and
the general-purpose digital computer for pattern matching
and linguistic processing. Tradeoffs can be performed between
the various sets of the characteristics, especially between
those involving the interface capabilities (vocabulary, syntax,
speaker independence), performance (error rate, response
time), and equipment (processing power, storage capacity,
cost).

State of the art and potential applications

As mentioned previously, isolated-word speech' recognition
systems are already being offered on the market and are being
tested. Typically, these systems can be trained to recognize
utterances employing small vocabularies and highly restrictive
syntax. The pause between words must be greater than .2
seconds.

The implementation of continuous speech recognition and
understanding systems is much more difficult. One of the
problems is the absence of word boundary indications in the
acoustic signals and the dependence of the signal representing
a word on the predecessor and successor words. This problem
makes the use of linguistic and semantic information a
necessity. The variability of individual speaking and articula
tion habits further complicates the recognition tests. Table II
shows the recognition accuracy that has been achieved by
various experimental and prototype speech recognition
systems. 3

There are a number of man-computer application areas,
mainly in the "user's hands busy" category, where a speech
interface for computer input-output could provide sigpificant
performance improvement. Among these are:

• Computer-aided fault diagnosis and isolation; computer
aided instruction; medical diagnosis; performance of
scientific experiments.

• Data input in taking inventory, making observations, or
tracking moving targets.

TABLE II-Speech Interface Perfonnance Data

Capability Correct
recognition

Researcher Vocabulary Speakers percentage

Vicens (1969) 54 isolated 98-100
54 isolated 10 79

560 isolated 1 91

Yilmaz (1971) 16 isolated 10 99

Hill (1969) 16 isolated 12 unknown 78

Medress (1972) 100 isolated 5 94

Glenn (1971) 10 isolated digits many >99
Doddington (1973) 10 continuous digits many >99
Tappert & Dixon 250 continuous several 75

(1971)

• Monitoring computer-controlled processes.
• Controlling teleoperator systems and robots.

Other application areas are computer data base management,
information retrieval, and computer-aided programming. The
ultimate application. is the perennial inventors' dream-the
speech-operated typewriter for unconstrained language. It is
not likely that such a device can be realized in the next
decade, or even this century. Restricted versions, however,
are likely to be implemented.

CONCLUDING REMARKS

The use of speech as a man-computer interface offers several
attractive features over the conventional manual and visual
channels. The most important among these are the inde
pendence of speech from the manual and visual channels
which permits performing other tasks while communicating
with the computer; the omnidirectional nature of the speech
propagation, which permits the operator to use a computer
while in motion or remote from the transducers; the ability to
communicate simultaneously with men and computers; and
the potential for using a telephone instrument as a complete
computer terminal.

Despite the attractive characteristics of speech described in
this paper, its use in a particular man-computer task makes
sense only when its use is natural for performing the task and
compatible with the environment. Hence the nature of the
interaction involved must bp thoroughly analyzed before
committing to the use of a speech interface. However,
together with other modes of man-computer communication,
the speech-based interfaces can help an operator to concen
trate on the tasks he is performing rather than on operating
the interface equipment.

Speech as a Man-Computer Communication Channel 143

ACKNOWLEDGl\1ENTS

The author would like to thank his colleagues at The Rand
Corporation, Alan S. Hoffman, Robert C. Gammill, Gabriel F.
Groner and Thomas F. Lippiatt for their helpful suggestions.

REFERENCES

1. Meadow, C. T., Man-machine Communication, John Wiley & Sons,
New York, 1970.

2. Hornsby, T. G., Jr., "Voice Response Systems," Modern Data,
November 1972, pp. 46-50.

3. Hill, D. R., "An Abbreviated Guide to Planning Speech Interaction
with Machines; the state of the art," Intern. J. of Man-Machine
Studies, Vol. 4, 1972, pp. 383-410.

4. Walker, D. E., "Automated Language Processing," in C. A. Cuadra
(Ed.) Annual review of information science and technology, American
Society for Information Science, Washington, D.C., 1973.

5. "Spoken Words Drive a Computer," Business Week, December 2,
1972.

6. Lea, W. A., "Establishing the Value of Voice Communication with
Computers," IEEE Transactions on Audio and Electroacoustics,
Vol. AU-16, No.2, June 1968, pp. 184-197.

7. Hill, D. R., "Man-machine Interaction Using Speech," in Advances
in computers, Vol. 11, Academic Press, New York, 1971, pp. 127-163.

8. Newell, A. et aI., Speech Understanding Systems, North-Holland
Publishing Co., Amsterdam, 1973.

9. Pierce, J. R., and J. E. Karlin, "Reading Rates and the Information
Rate of the Human Channel," Bell System Technical Journal, Vol.
36, 1957, pp. 497-516.

10. Hershman, R. L.,. and W. A. Hillix, "Data Processing in Typing:
Typing Rates as a Function of Kind of Material and Amount
Exposed," Human Factors, October 1965, pp. 483-492.

11. Seibel, R., "Data Entry Through Chord, Parallel Devices," Human
Factors, April 1964, pp. 189-192.

12. Deininger, R. L., "Rotary Dial and Thumbwheel Devices for
Manual Entry of Sequential Data," IEEE Transactions on Human
Factors In Electronics, September 1967, pp. 227-230.

13. Su, L., On Speaker Identification, Technical Report TR-EE 72-4,
Purdue University, Lafayette, Indiana, January 1972.

14. Williams, C. E., and L. R. Simmering, "Emotions and Speech:
Some Acoustical Correlates," The Journal of Acoustical Society of
America, Vol. 52, No.4, 1972, pp. 1238-1250.

15. Glenn, J. W., R. N. Gordon and G. Moschetti, Voice Initiated
Cockpit Control and Integration (VICCI) System Test for Environ
mental Factors, Scope Electronics, Inc., Reston, Virginia, 20 April
1971.

16. Nixon, C. W., et aI., "Study of Man During a 56-day Exposure to
an Oxygen-Helium Atmosphere at 258 mm. Hg. Total Pressure:
XVI. Communications," Aerospace Medicine, Vol. 40, No.2,.
February 1969, pp. 113-123.

17. Neely, R. B., and D. R. Reddy, "Speech Recognition in the Presence
of Noise," Working papers in speech recognition, I., Department of
Computer Science, Carnegie-Mellon University, Pittsburgh, Penn
sylvania, April 21, 1972.

18. Drucker, H., "Speech Processing in High Ambient Noise Environ
ment," IEEE Transactions on Audio and Electroacoustics, Vol. AU-
16, June 1968, pp. 165-168.

19. Webster, J. C., and C. R. Allen, Speech Intelligibility in Naval
Aircraft Radios, Technical Report NELCjTR 1830, Naval Elec
tronics Laboratory Center, San Diego, CaJif., 2 August 1972.

Verifiahle secure operating system software*

by GERALD J. POPEK and CHARLES s. KLINE

University of California
Los Angeles, California

INTRODUCTION

While the'desire for reliable security in multiuser computer
systems has grown significantly, the computing community's
knowledge of how to provide the requisite protection is still
inadequate. Security is a "weak link" phenomenon; one
link whose condition is unsatisfactory is the operating system
software. It has often been pointed out that currently "no
protection system implementation of any major multiuser
computer system is known to have withstood serious attempts
at circumvention by determined and skilled users."l The
community is replete with apocryphal claims of secure sys
tems that inevitably have failed.

Out of these difficulties and concerns has grown a good
deal of activity. One part of the community has addressed
the questions of how a system ought to be modularized,
what its primitive elements ought to be, and what logical
structure would be most useful. The useful concepts of
capabilities and domains2 have come from that activity.
The Multics and Hydra systems are current examples of
ongoing complex software systems in which serious attempts
have been made to carefully design and structure the soft
ware with respect to protection considerations.3,4

Despite the value of these concepts and empirical labora
tories, our knowledge concerning the reliability of protection
systems is disturbingly inadequate. Currently, it is not pos
sible to provide a meaningful guarantee that a system actu
ally provides the controlled protection which the design
claims. It is not possible to state with assurance that clever
users will be unable to circumvent the controls, and thereby
gain access to information, operations, or other resources
which the design intended to prohibit.

What is required is a system which can do more than
resist attacks by penetration teams. One would greatly prefer
software which in a real sense has been proven correct with
respect to certain precisely stated security predicates. Such
a result would provide software protection of high quality,
and help relieve fears that some feature or flaw had been
overlooked.

At UCLA, a multiuser computer system is being con-

* This research was supported by the Advanced Research Projects
Agency of the Department of Defense under contract number DAHC-
15-73-C-0368.

145

structed in which it is expected that verification of the security
properties of the software will be successfully performed.
That is, meaningful and demonstrable operating system security
is within our grasp. While the system is not yet complete,
work has progressed far enough that the viability and quality
of the resulting system and proofs seem assured. In the
following, we discuss concepts which have contributed to the
system's design, as well as issues that arose during that
design process. It is expected that the approaches described
here have more general applicability.

Note that this work only concerns the protection enforce
ment mechanisms of the operating system software. Properly
functioning, essentially error free hardware is assumed. The
problem of authentication, that is, reliable identification of
the user who presents himself to the system, also is not
considered, except that a suitable environment is provided
in which an authentication procedure could easily operate.

In addition, the· flavor of protection toward which this
work is initially directed is fairly simple. Mechanisms to
support mutually suspicious subsystems, memoryless pro
cedure calls, inference, or control of statistical access are not
explicitly considered. Nevertheless, the insights provided by
the goals of isolation and limited sharing apply to the more
complex needs.

We now discuss a number of thoughts found relevant to
the design of secure operating system software.

DEFINITIONS OF SECURITY

Before continuing to discuss the general facets of the
UCLA design philosophy, it will help to explain a distinction
we make between security and viability. We believe oper
ating system security involves a set of essentially negative
constraints. One desires to verify that certain actions cannot
occur. For example, it \\>ill not be possible for the process
associated with user x to have loaded with it a segment as
sociated with user y. It will not be possible for users of class
x to access files of class y.

One can coherently argue that such a point of view is
incomplete; the null system satisfies negative constraints
vacuously. What is required, the argument might continue,
is inclusion of the idea of viable productivity-that the
system actually supports useful activity. For example, if a

146 National Computer Conference, 1974

user could cause the process scheduler not to run any pro
cesses, would this not be a security flaw? This point is well
taken. Certainly productivity is of importance since it em
bodies the primary reason for the existence of the system.

Nevertheless, we argue that a meaningful distinction can
be made between the prevention of undesired actions and
the need for productive activity. To have verified the negative
constraints is a useful and nontrivial step, and those con
straints certainly contribute to the overall viability of the
operating system.

These negative constraints express the security policy. For
each user, we can translate these negative constraints into
a list of which security objects this user should and should
not be able to access and with what access types. Security
objects are the physical and logical parts of a computer
system that need to be controlled, protected, or whose status
needs to be guaranteed. An incomplete list of examples in
cludes terminals, communication lines, processes, and files.

Security policy may be expressed in terms of accessible sets.
For user A, accessible[t,A] is the set which defines what
objects this user is to be allowed to access at time t. All
other accesses are to be prohibited. Each entry in the set is
an object, access type pair.

For each active object D (device or CPU), we define
access[t,D] as the set of accesses (object, access type pairs)
that object D makes at time t. We also define owner[t,D] as
the user on whose behalf the device is performing accesses
at time t. For example, the QPU always acts for some given
process. Then protection is enforced if ¥t VD access[t,D] is a
subset of accessible[t,owner[t,D]] We say that a system is
secure if

(1) accessible sets describe the desired security policy
and

(2) protection is enforced.

The preceding is a simple conception of security. N everthe
less, it can yield meaningful protection and a comfortable
user environment as we demonstrate below. Such questions
as whether user A can steal user B's files are, for example,
directly handled by this model. Note that point one above
contains aspects which will not be mathematically verifiable,
since what is involved is a mapping to precise specifications
from the intuitive notions which express _ user desires. One
can check internal consistency of the resulting specifications,
however.

THE CONCEPT OF AN OPERATING SYSTEM
SECURITY KERNEL

The value of segregating operating systems code into more
or less disjoint layers has been clear for some time. One
interesting question that presents itself concerns what the
lowest level of the operating system ought to contain. De
signs focussed around message handling, process primitives,
and others have been suggested. Recent efforts concerning
the "nucleus" of the operating system are illustrated by
Brinch Hansen5 and Wulf.4 There is still considerable debate

over this question, and its importance is not likely to decrease
as systems grow more complex and additional layers, such
as more sophisticated data management code, are added.

It is our contention that the very lowest system level,
the subnucleus, ought to contain the security relevant por
tions of operating systems primitives, and nothing else.
The subnucleus that contains this isolated code we call the
security kernel of the operating system. Note that such a
design differs widely from current practices, as illustrated
by OS/360 in which that code is strewn throughout the
operating system.

It has been pointed out many times that security is a
crucial, basic quality of today's complex systems. The value
of carefully designed modularity in the structure of operating
system code is also clearly recognized. These two thoughts
conjoin; enforcement of the intended modularity by security
controls is of great aid in developing and understanding the
system software. It is easier to obtain reliable enforcement
of modularity if the proper functioning of those mechanisms
which provide that enforcement does not depend at all on
other code. That is, modularity enforcement code should
depend on as few and as simple modules as possible. If
security is basic to a system, then the code which provides
security should also be basic, with few dependencies, hence
at the lowest levels of an operating system.

It is exceedingly difficult to understand the interactions of
security relevant software when the code and the implications
of the design decisions which produced .that code are dis
tributed throughout the operating system. The difficulties
arising from this distribution are illustrated by the large
number of known security flaws which involve the interaction
of a number of characteristics of an operating system df'~"ign
and implementation. As one simple example, in a number of
systems, the code which checks a security condition and the
code which takes the action guarded by that check are
separated by some distance in the execution sequence. It is
possible under certain conditions, an interrupt perhaps, for
the user to change the parameters examined by the check
before the action occurs. Such flaws usually depend on the
availability of parameters to user code and the interrupti
bility of the check-action pair. 6 As the subleties of these
interactions are seen, the near hopeless quality of poorly
planned and distributed security relevant code becomes more
and more clear.

The isolation and centralization of security relevant code
provides more than merely a better basis for understanding
that code, important as that understanding is. By isolating
that code at the heart of a system, running on the bare
hardware, its correct functioning does not depend on the
proper behavior of other modules of operating system soft
ware. This fact provides several advantages. Outer layers of
the software may be written and modified without need to
reevaluate the security of the entire system. Maintenance is
then eased. In addition, the resulting security kernel as a
relatively small, isolated, independent set of programs is
susceptible to a formal verification of its correctness with
respect to security. The importance of this property is diffi
cult to over-emphasize.

A note of caution is important here, however. It has been
suggested that once the behavior of the security kernel has
been verified, the security of the entire operating system
software has been guaranteed. Such a statement is not
necessarily true. If one's concept of the kernel includes only
security primitives, then it is quite conceivable that those
primitives could be inappropriately applied at an outer level,
allowing relatively subtle interactions of operating system
features that lead to security flaws.

As an example, in the bulk input of a well-known time
sharing system, I/O is handled by a separate process. A
card deck, along with the desired file name and the target
directory, is effectively given to the I/O process which loads
the deck into a file and places an entry in the target directory.
To do this, the I/O process has powerful access privileges.
By this means, anyone may place an arbitrarily named file
in any directory.

When a user executes a system command, his directory is
searched before the public directory for that command name
to obtain the code to execute. The interaction of this search
order with the power of the I/O process results in security
failure. To exercise this flaw, one merely prepares a program
that performs an arbitrary action, and has it loaded into
the directory of a highly privileged user. If the program
is given a common command name (like SYSTAT or DI
RECTORY, for example) then that arbitrary program will
be inadvertently executed, with the capabilities of the
privileged user, when he types the command. With care, no
one will even know the error occurred. To indicate the
subtlety of such flaws, it should be noted that if the search
order used by the monitor were reversed, that is, if system
directories were searched before user directories, this par
ticular flaw would vanish.

In the UCLA work, this class of problems has been ex
amined closely, and solutions to it are suggested below in
the sections on virtual machines and verification. As a result,
we are convinced that the kernel concept can yield certified
security if it is carefully employed.

Another effective argument in favor of the security kernel
approach results from the fact that it has been possible to
separate security relevant code from the rest of the operating
system software and centralize that code. While the verifi
cation of the UCLA system was not complete when this
paper was written, the kernel isolation design had been
finished for some time.

Exactly what capabilities belong in the kernel is perhaps
best explained by detailed examples, but several general
remarks can be made. First, the distinction of WUlf4 between
mechanism and policy is useful. For example, while the
policy contained in the scheduling process can and should
be excluded from the kernel, the code which serves as the
mechanism to load a process must be part of the kernel.
Otherwise, parts of several processes could be loaded to
gether (for example, the general accumulators from process
i and the memory management registers of process j).

Second, the kernel can be allowed to make calls to outer
layers of the system as long as the proper behavior of the
kernel does not depend on those outer calls. For example, the

Verifiable Secure Operating System Software 147

scheduler may be called by the kernel to determine which
process to run next. What reply the kernel receives is irrele
vant to protection questions. The hierarchical structure is
necessary for proof dependencies only, not flow of control or
other behavior. This ability to allow certain outward calls is
one means by which nonprcitection issues can be largely
excluded from the kernel code. Of course, as noted by W ulf, 4

when the kernel calls the scheduler is itself a scheduling de
cision; thus this and other questions have not been completely
excluded.

VIRTUAL MACHINES AND SECURITY

The concepts of virtual machine designs, in the sense of
CP-67 or VM370, have grown in popularity and importance
recently. One can view the virtual machine monitor (also
called a control program, or hypervisor) as providing some
basic functions of the traditional operating system, such as
separation of processes, device scheduling and processor allo
cation. It does not enrich the process environment by pro
viding user services. Instead, the environment produced,
called a virtual machine, is essentially logically identical
to the bare machine. For discussions of the value of virtual
machines to operating systems design and program trans
ferability as well as construction details, see References 7,
8 and 9.

Virtual machine designs have significant advantages in
multiuser computer security systems, however, apart from
the values mentioned above. One of these advantages accrues
from a practical question-the amount of work required to
produce a secure multiuser system. Earlier, the desirability
of a security kernel was discussed. The presence of kernel
code, however, changes the environment that any program
sees when it is run. Operations such as changing relocation
register values and direct execution of I/O may not be per
formed, and attempts to do so either will be impossible
(when relevant areas are excluded from an address space,
for example) or will abort. One is thus faced with either
designing or modifying all programs to run properly "With
the kernel, or providing layers of code over the kernel in order
to construct a more suitable program interface. The latter
option could imply the building of an entire operating system.

Instead, one might layer over the kernel a skeletal virtual
machine monitor (VMM). Such a task is simpler than that
of building an operating system. The VMM contains no
user services, and its code is devoted in large part simply to
simulating those portions of the bare machine which have
been usurped by the presence of the VMM itself. An ele
mentary scheduler is of course necessary, and careful at
tention must be paid to I/O. Nevertheless, a VMM is still
much simpler than an operating system, as might be illus
trated by the relative sizes of CP-67 and OS/360. The UCLA
PDP-ll/45 contains certain hardware modifications to re
duce the amount of supporting code for the VMM in the
kernel. See the appendix for details.

Typically, user services on a virtual machine system are
obtained by running a standard operating system in one of

148 National Computer Conference, 1974

the virtual machine environments. Thus, construction of a
VMM is a relatively simple and cheap way to obtain a clean
interface for programs, and the amount of effort required to
demonstrate the utility of the kernel is decreased.

Such an approach involves protecting and controlling entire
virtual machines. Hence two users running under an oper
ating system in a single virtual machine are accorded no
protection from one another by the security kernel, although
they are protected from other virtual machines. The obvious
solution to this problem is to run each user with his own
operating system in a separate virtual machine, using execute
only sharing of common operating system code to maintain
efficiency.

A second advantage of a virtual machine approach how
ever is more intrinsic, but also accrues in part from its
simplicity. Earlier, it was demonstrated with the example
of bulk I/O that, depending on one's conception of the
kernel, it was potentially possible for higher levels of software
to· misuse kernel primitives in a fashion that could lead to
a security flaw. This problem is diminished if the higher
levels of software are simpler.

Inter-segment linking, access control over spooling pro
cesses, and many other operating system features are absent
in a virtual machine monitor. The complexity of the "pro
tection semantics" associated with aspects of operating
systems such as those mentioned above, as well as the
necessary supporting code, can easily lead to security errors.
By contrast, a virtual machine system projects a very simple
environment from the point of view of security. Sharing
may be provided by very simple methods while still main
taining the richness of an individual user's environment.

This relative simplicity makes it practical to demonstrate
that there do not exist interactions of the sort mentioned
earlier which cause security flaws. Essentially, there are
many fewer features to interact.

COMMUNICATION CHANNELS

Another relevant view of security deals with the control
of communication. For example, a system for which a user
with one clearance could not pass certain data to a user
",-jth a lower clearance no matter how hard both try would
be of value to the military. This problem essentially is one
of showing that there does not exist a communication path
between two processes. Up to this point, we have been con
sidering a fairly specific definition of security, albeit one
that can involve fairly subtle interactions of code. However,
as pointed out by Lampson,10 there are a number of con
ceptual channels of flow of information in a shared system.
First, there is the obvious one that most people speak of in
the context of security, the explicit passing of files and other
units of information, reading another user's work space, and
the like.

But there are others, often involving the passing of re
sources-assigning and deassigning devices, or making service
demands on the system that other users can sense. Exactly
what channels exist, what their respective potential band-

widths are, and what mechanisms and costs are needed to
seal them are all questions that need to be resolved in order
to decide how these communications channels should be
handled.

Of these channels, we first distinguish between those which
depend on timing considerations, and those which do not.
A timing dependent case is demonstrated by process A
sensing the CPU load of the system caused by process B.
In the context of a virtual machine system, one way these
channels may be blocked, at least in so far as the running
programs are concerned, is by properly simulating the passage
of virtual time to VMs, and not providing a real time measure.

Timing independent channels also exist, however. Con
sider the following case. Let PI and P2 be separate processes
who are not to communicate. The devices Dl and D2 are
discs controlled by a common scheduler S. Requests for
I/O may be considered as messages from PI and P2 to S,
and completions as messages from S to PI and P2. Notice
that in this example, both PI and P2 are using both devices.

In keeping with the kernel design philosophy, it is desired
that S be kept out of the kernel. How then are PI and P2
prevented from communicating via the scheduler S? Both
send S information, and both receive information from S.
Are we forced to prove assertions about S? If our system
already existed, its design were as above and we were at
tempting to secure it in retrospect, without major redesign,
the answer is likely to be yes.

Instead, let the kernel do all the moving of information,
and treat the messages as being contained in "locked boxes."
A scheduler may read (but not change) such a locked box.
Label messages from PI and P2 with their destination, Dl
or D2. The return messages from devices are similarly
labelled from either DI or D2. The scheduler now merely
queues requests and hence cannot change message contents.

SOURCES, SINKS, AND THE MORSE CODE
PROBLEM

The above design does not completely block interprocess
communication, for a "Morse Code" mechanism still remains.
That is, both PI and P2 can pass S two types of tokens that
S can distinguish: DI type and D2 type. Hence S can receive
an arbitrary binary encoded communication from each of the
two processes. Furthermore, S can send a nearly arbitrary
message back to each process by ordering the return of
completions (nearly arbitrary only because he may run out
of tokens of one or the other type or both) . We have been
had by a malevolent scheduler. Skeptics should remember
that binary codes are the charwomen of contemporary
comput.ing.

This problem however is not intrinsic to security systems
nor an inherent defect in the kernel concept, but rather
merely one of inappropriate design. Split the device scheduler
S into two schedulers, SI arid S2, one for each device. Now
each scheduler, if we continue to operate in "locked box"
mode, deals in only one variety of token, and hence there is
no binary communication channel.

The preceding is a rather attractive solution. The sched
ulers SI and S2 need not be proven at all, and they may
have full access to information necessary for scheduling.
Little compromise with respect to performance has been
made. The two schedulers may even share common code,
as long as their writable storage is separated. The task of
providing proven security has been eased, with the only
important cost having been careful design.

The above solution is valid because SI and S2 are purely
information sinks. While they receive message contents, there
is no way for them to broadcast, so long as only one request
per process per scheduler may be pending at any time.
They only request that the kernel return devlce status to
the processes.

More generally, the solution is effective because the flow
of information with respect to SI and S2 is one way. In this
case, the two are sinks. It would have been equally sufficient
with respect to security if they had been pure sources. Of
course in this case that would not provide the desired func
tionality. The principle here that does generalize usefully is
that one can reduce the security problem significantly by
first isolating as much as possible, often in ways that are not
immediately apparent. This principle has been applied to
the UCLA kernel a number of times, the device schedulers
and virtual machine simulators being two examples.

At this point one might argue that these subtle channels
are in certain respects irrelevant because they seem to require
the active, coordinated cooperation of all the parties involved
in the communication. If two users wish to communicate,
let them; isn't that the strength of multiuser systems any
way? However, in the disc scheduling example raised earlier,
even without process PI's cooperation, it would have been
possible for P2 to learn about PI's I/O characteristics. More
important, security may be compromised by incorrect high
level design. Errors in outer modules, such as the scheduler,
are exploitable. Careful proof procedures should discover
these cases.

VERIFICATION

It is important to realize that even if no security verifi
cation were actually performed, the design philosophy de
scribed here and the discipline imposed by the intent to
verify, together, have already increased the reliability of the
security aspects of the system. Nevertheless, there is more
which can profitably be done; verification is an attainable
goal.

Program verification tools are not yet in a well developed
state. The largest program that is known to the authors to
have been verified to date contains somewhat more than two
thousand instructions; small compared to most operating
systems.ll Hence, it is necessary to severely limit the size of
the program about which one wishes to prove certain prop
erties. The UCLA kernel is approximately 500 lines of high
level code. We are in the process of verifying that code and
expect to be able to complete this task with a reasonable
amount of effort.

Verifiable Secure Operating System Software 149

It is important to realize that program verification is not
the whole of operating system security, although it is a very
important part. Verification establishes the consistency of a
program with a separate, essentially static statement of
what that program is, or is not, to do. In order to apply
verification, one first needs explicit definitions of security,
and those definitions must be translated, currently by hand,
into predicates that may be handled by mathematical means.
Second, one is faced not by a large flowchart, but rather by
a number of kernel primitives, which potentially may be
invoked in any order. In addition to verifying certain prop
erties of the primitives themselves, it is necessary to demon
strate that there is no order of invocation of primitives that
would result in a security violation. If the primitives are
thought of as composing an action space, then one needs to
demonstrate that there does not exist a path through that
space, the result of which would make one of the security
predicates not true.

There are a number of strategies which can make this
proof process easier. After carefully categorizing every inde
pendently addressible object and action to make the model
complete, naming techniques can be employed to segment
the proof task. If we can demonstrate that objects only
have a user's name associated with them if they are members
of his accessible set, then we can show protection enforcement
by showing he can only access objects with his name.

As a second proof strategy, certain required predicates
may be included as run time checks. For example, in a
military system, one might wish to guarantee that a user
with secret clearance is not able to access a top-secret file.
One way to guarantee that constraint is to embed a run-time
check in the (only) I/O routine.

All of these considerations help to make the verification
task possible although far from easy. They also support the
undesirability of ex post facto verification.

THE UCLA-VM SYSTEM

Let us gjve some examples of the previous remarks from
the UCLA-VM system. A sketch of the structure of the
UCLA virtual machine system is shown in Figure 1, with
the VMM broken into its attendant parts. The objects in
the system have been specifically defined and are homo
geneously treated and viewed by the kernel. That is, the
kernel has no knowledge of the internal structure of any
security objects with the exception of the protection data.
This data is the basis for security decisions, and plays a role
analogous to the contents of the Lampson-Graham-Denning
protection matrix.12 It is packaged into security objects so
that access to the data may be controlled. Thus, control is
obtained over the way protection decisions are changed. The
blindness of the kernel to other objects' internal structure
simplifies matters, but it implies that only actions among
objects are monitored; no intra-object control is provided.
As a result, activity within a virtual machine is not controlled
by the kernel. Two users running in a single virtual machine
are accorded no protection from one another by the kernel.

150 National Computer Conference, 1974

Figure I-Virtual machine design

In order to be protected, they must each run in a separat.e
virtual machine.

The modularity shown in the figure is needed for security.
Each VM has an associated simulator. This code performs
the task of simulating the virtual machine environment.
However, these simulators are not proven correct. Thus to
assure security of each user's data, each simulator must be
logically separate with no shared writable storage. For
similar reasons, and to avoid Morse code problems (as dis
cussed earlier), the CPU scheduler and all shared device
schedulers must be logically separate.

However, to be of practical utility, some sharing among
virtual machines is necessary. For example, one virtual ma
chine contains the only ARPA network13 interface software,
and it is highly desirable that the network be available to
other virtual machines. Hence, a shared read/write segment
facility between two virtual machines is included. The simu
lators for two virtual machines may share such a segment if
so indicated by the protection data. Pseudo device interfaces
to the shared segments are also provided so that standard
operating systems may communicate with one another with
out other special facilities.

Thus, the design which is being verified supports only
limited sharing, via shared read/write segments and pseudo
devices. As a result, the system is rather simple and the
semantics of security fairly straightforward. This simplicity
has been a substantial aid to the system's development. In
addition, shared execute-only segments are also supported,
so that multiple users running in multiple virtual machines
but executing under separate incarnations of the same oper
ating system can use the same code.

In Figure 1, portions of the system's structure are high
lighted. It is these portions upon which the security of the
system depends. The kernel or course is included, but two
modules outside of the kernel are too. The initiator and
updater perform authentication as part of their primary
functions. A user first presents himself through a terminal
to the initiator, who eventually passes him to a virtual
machine.

The updater's task concerns the changl_ng of protection
data. It is only through this port that access to the data is

potentially possible. This procedure is necessary since the
state of the protection data must be guaranteed in order for
the rest of the mechanisms discussed here to be meaningful.
One needs a reliable channel to the kernel which does not
pass through unverified VM -simulator and operating system
code in order to inspect and change that data with confidence.

The UCLA-VM System is useful for practical work besides
being a testbed for the development of techniques for con
structing secure operating system software. The PDP-11/45
serves as an· entry way to the ARPANET, replacing older
equipment. The network interface software is provided by
ANTS (ARPA Network Terminal System), which expects a
bare machine on which to run. In addition, it will now be
possible for the processing power of the 11/45 to be available
for network measurements14 as well as local computing, not
allowed by ANTS. The virtual machine monitor provides
the ability to concurrently run a number of applications,
each of which logically expects a bare machine, and also
yields a good environment for instructional purposes, es
pecially for "hands on" operating systems experience.

COSTS OF SECURITY

The costs of providing multiuser computer security are
incurred in at least several ways: construction, user con
venience, and performance. Let us consider each of these in
the concext of a UCLA-like system.

The cost of construction of the verified kernel with simple,
understood semantic layers above it (the VMM), is certainly
reasonable. The project will have consumed a small number
of man years of high quality effort and no unusual equipment.
A significant amount of this work would not be required if
the task were repeated for another machine, and much of it
is a basis for extensions.

In terms of convenience, while the system is not yet
operational, it is clear from other systems that a virtual
machine environment is a comfortable one for many users.
The simple sharing mechanisms provide a necessary basis for
network communication and inter-machine interaction.

With regard to performance, a definite answer will not be
available until operational tests are made. Nevertheless, a
number o{ remarks can be made. A definite upper bound on
the performance cost of security can be obtained by com
paring the performance of a procedure under the virtual
machine monitor with its performance on the bare machine.
Of course, that bound will also include the overhead of the
virtualization process as well as limitations imposed by
security.

It has been suggested that the cost of security in general
may be expensive. This expense will result from overhead
imposed by the necessity to follow procedures which, without
security considerations, could have been obviated. Indeed,
we have found places in which the procedures to perform a
desired task are considerably more lengthy than they would
normally be, I/O to a shared device being a case in point.

Nevertheless, we expect our security degradation bound
will demonstrate that the fears of inefficiency are incorrect.

We will also estimate what portion of the observed overhead
is due to virtualization costs. Hence, we confidently expect
to demonstrate that a simple, but useful form of verified
multiuser security may be obtained at a quite acceptable
cost.

CONCLUSIONS

This work has been intended to demonstrate several points.
First, and perhaps most important, it is practicable to have
verified software security in multiuser computing systems.
Second, the approaches of kernel design, virtual machine
monitors, and mathematical verification of the properties of
software contribute usefully to the task of providing verifiable
security.

Nevertheless, a great deal remains to be done. It has been
and continues to be a taxing effort to obtain this high level
of software security for any given system, in part because
our tools and concepts are still unrefined. These facts are
encouraging, for they suggest that considerable progress can
be expected.

Furthermore, the system described here provides only
limited sharing, and does not, for example, address the
problems of mutually suspicious subsystems or memoryless
ness at all. It has been argued that multiprogramming of
resources, rather than information, is still the predominant
activity, at least among the security conscious segment of
the computing community. Although this segment would be
satisfied by a virtual machine approach, there remain vital
activities for which reliable control of sharing is crucial, and
those activities are not expected to decrease in the future.

APPENDIX

The security kernel and virtual machine monitor are being
constructed for a DEC PDP-ll/45 that is being attached to
the ARPANET at UCLA. The PDP-ll/45 has a three state
architecture which naturally lends itself to the needs of the
kernel, VMM, and user environments. However, the Unibus
I/O structure of this machine does not lend itself conve
niently to virtualization, since nearly every instruction is po
tentially an I/O instruction and most be simulatable, unlike
the limited set that normally accompanies machines with
more conventional I/O processors.

However, much more important than this inconvenience
with respect to I/O is the fact that the standard PDP-ll/45
cannot be virtualized at all. In Reference 8, it is stated that
hardware must have certain characteristics in order for a
VMM to be constructible. Briefly, instructions that affect
control of the processor, or whose behavior are disturbed by
the presence of the VMM, are termed sensitive instructions.
All sensitive instructions must be privileged in order that
they may trap to the VMM to have their effect simulated.
In the standard PDP-ll/45, there are nine instructions for
which trapping is necessary but which are not privileged.
This fact makes the machine impossible to virtualize.

Verifiable Secure Operating System Software 151

In addition, one would like trapping of instructions to be
a function of the mode in which attempted execution of the
instruction occurred. The reason such behavior is desirable
is a result of the following considerations. It will be natural
to run the kernel in the most privileged mode, the virtual
machine monitor in the next most privileged mode, and the
virtual machines in least privileged mode. One then prefers
that instructions which trap in a virtual machine be re
flected by the hardware to the VMM, while it may be
necessary that the same instruction executed by the VMM
trap to the kernel. Such mode dependent trapping has been
suggested before.l5

In the case of recursive virtualization, in CP-67 for in
stance, this behavior is simulated by the software. The
hardware traps all instructions to privileged mode, and soft
ware reflects some of them out. Here, however, there is an
additional motivation. The existence of mode dependent
trapping makes it unnecessary to have the reflection software
in the kernel. It needn't exist at all. As emphasized in the
body of this paper, the need to exclude non-security code
from the kernel is almost as important as including all the
relevant code. The DEC/UCLA hardware modification pack
age also includes other features for efficiency and/or con
venience.

REFERENCES

1. Schell, R, Private communication, USAF /ESD L. G. Hanscom
Field, September 1972.

2. Lampson, B. W., "Dynamic Protection Structures," Proceedings of
FJCC, 1969.

3. Saltzer, J., "Protection and Control of Information Sharing in
Multics," ACM/SIGOPS Symposium 00 Operating System Prin
ciples, Yorktown Heights, October 1973.

4. Wulf, W., HYDRA: The Kernel of a Multiprocessor Operating Sys
tem, Carnegie-Mellon University, 1973.

5. Brinch Hansen, P., "The Nucleus of a Multiprogramming Sys
tem," CACM, April 1970.

6. Bisbey, R, Private Communication, USC/Information Sciences
Institute, June 1973.

7. Buzen, J. P. and U. Gagliaridi, "The Evolution of Virtual Machine
Architecture," AFIPS Cooference Proceedings, Volume 42.

8. Popek, G. J. and R Goldberg, "Formal Requirements for Virtualiz
able Third Generation Architectures," Communications of the ACM,
Vol. 17, No.7, July 1974.

9. [IBM CP-67] IBM Corporation, Control Program-67/Cambridge
Mooitor System, IBM Type III release No. 360D-05.2.005, IBM
Program Information Department, Hawthorne, New York.

10. Lampson, B. W., "Dynamic Protection Structures," AFIPS Coo
ference Proceedings, Volume 35.

11. Ragland, Larry C., A Verified Program Verifier, Ph.D. Thesis,
University of Texas, Austin, 1973.

12. Graham, G. S. and P. J. Denning, "Protection-Principles and
Practice," AFIPS Cooference Proceedings, Volume 40.

13. Roberts, L. G. and B. D. Wessler, "Computer Network Develop
ment to Achieve Resource Sharing," AFIPS Cooference Proceed
ings, Volume 36.

14. Kleinrock, L. and W. E. Naylor, On Measured Behavior of the
ARPA Network, to be published.

15. Goldberg, R. P., "Architecture of Virtual Machines," AFIPS
Cooference Proceedings, Volume 42.

An interactive software engineering tool for memory management
and user program evaluation*

by WOLFGANG W. MILLBRANDT and JUAN RODRIGUEZ-ROSELL

Brown University
Providence, Rhode Island

INTRODUCTION

As the. use of virtual memory ?ecomes more and more
accepted, the problem of effectIve storage management
becomes more and more important. To date most efforts
to optimize the use of memory have been directed at devising
memory management strategies at the operating system
level that minimize the number of page faults. For example,
Comeaul has shown that the loading sequence of subroutines
can have a considerable effect on paging activity. Hence
page-fault-optimizing loaders, linkage editors and compilers
have been proposed. Although the concepts of "locality"
and "working set" have been known for some time (c.f.
Denning!) , little effort has been made to provide the pro
grammer with suitable tools for making his programs
"more local". This seems to stem from the fact that, short
of notions of "modular coding", little is known about what
sorts of programming habits actually result in local code.
Consequently, most optimization techniques used to date
have assumed that user programs were an unmodifiable
input to the operating system.

Techniques for increasing locality of user programs
and thereby reducing the paging overhead in a virtual
memory environment have been investigated by Comeau, 1

Hatfield7 and Ferrari. 5 The methods presented involve the
automatic restructuring of program modules into relocatable
segments to increase the likelihood that page references
that are close in time will also be close in space. In the
Hatfield study the use of online displays to determine
optimal segment sizes and view the effects of program
reordering was found to be exceedingly helpful, but use of
their system as an everyday programmer feedback and user
program monitoring tool was never fully exploited.

The Brown University Display for Working Set References
(affectionately known as BUDWSR) was primarily de
veloped as a user-oriented tool to fill the need for user
feedback systems· by enabling the programmer to inter
actively monitor the memory referencing behavior of his

* This work is sponsored in part by the National Science Foundation,
grant GJ-28401X, the Office of Naval Research, contract NOOOl4-67-A-
0191-0023, and the Brown University Division of Applied Mathematics.

153

modules. It was hoped that the programmer would be able
to get a "feeling" of what it means to write localized code,
and hence be able to modify his programming techniques
in order to reduce, or at least have more control over, the
memory resources required by his program. Although
BUDWSR has not been in existence long enough for us to
evaluate its effectiveness as a programmer training or
feedback tool, we have already been able to establish some
simple guidelines that allow the programmer to measure
and hence increase the memory utilization of his programs.
These guidelines could be used as a basis for establishing
engineering standards for program evaluation. Furthermore,
BUDWSR has proven itself to be an extremely powerful
systems programmer tool that greatly facilitates the manual
repackaging of modules in order to increase memory
utilization.

SYSTEM ORGANIZATION

The system (c.f. Figure 1) essentially consists of a System/
360 machine language interpreter and a satellite display
processor. The user runs his program in much the same way
as he would in a normal CP /CMS2 environment except that
the interpreter counts the references made to memory pages
(the page size is user defined) and periodically transfers
its tables to the satellite computer. The interpreter runs in
a 512K byte virtual machine and simulates a 256K CMS
environment for the user's program; the data gathered
thus reflects only the activity of the user's program and is
not dependent on the virtual machine's external environ
ment. Since the System/360 instruction set is highly
formatted, the basic data gathering facilities of the inter
preter are fairly simple* and represent an acceptable cost

* Most RR format instructions can be executed directly via the System/
360's execute instruction, while most RX, RS, and SI format instruc
tions can simply be executed after computation of the base displace
ment address. Optionally, BUDWSR will not perform complete inter
rupt processing, e.g., interpretation stops when an interrupt is generated
by the instruction stream, and resumes when control is returned from
the interrupt handler. Since many of the eMS nucleus pages are in
shared care, references to the nucleus code should not result in any
significant paging overhead to the user.

154 National Computer Conference, 1974

CONSOLE I

Figure 1

(roughly 50 times the cost of the original program) for
gathering memory utilization statistics.

The basic display (c.f. Figure 2a) produced by the satellite
consists of page addresses plotted against time (measured
in number of instructions). For each page address and time
interval the system plots a small vertical spike whose height
indicates how often that page was referenced during that
time interval. At the start of the trace the user may define
an arbitrary page size (from 8 bytes to 128K bytes) and time
interval (from 1 to 65,535 instructions). Furthermore, he
may ask the satellite to perform a non-destructive com
pression of the reference data, e.g., the user may ask the
interpreter to gather statistics for 128 byte pages, and then
view the results for 128, 256, ... , or 128K byte pages. This
allows him to view the programs behavior both on a global
level (using for example a 4K byte page size) and to selec
tively "zoom-in" on any local peculiarities. To aid the
programmer in identifying and restructuring inefficient
modules, a cumulative reference count for each page, and

.. ---------

module names and entry points (obtained from the eMS
loader tables) are also displayed.

The satellite part of the system also uses the page reference
data to produce a graph of the working set size versus
time (c.f. Figure 2b). Thus the user not only has available
which specific memory pages were referenced but also a
summary of the total memory used during a time interval.
The working set size is computed in bytes for the user
specified page size and also for the System/360-67 page
size (4K). With a small page size (typically 128 bytes) the
difference in the working set sizes indicates the amount
of wasted space in the System/360-67 working set. Cur
rently, we have measured only working set sizes and re
entry rates for an individual process. In reality, the amount
of memory allocated to a process is a function of the
paging algorithm and the load of the system. (Some data on
system page fault and re-entry rates can be found in
Rodriguez-Rosell and Dupuy. 9) We have not copcerned
ourselves with simulations to determine page fault rates
as a function of memory size or the operating system's
memory management policy. In general the amount of real
memory available to the user is beyond his control; however,
by using BUDWSR, the programmer can improve the
locality of his programs while developing them, conceivably
even changing to algorithms or data structures that might
prove less noxious to the system. In return, he hopes that
if his process uses memory efficiently the operating system
will allow his process to execute rapidly.

The use of the satellite processorlO came about quite
naturally in that we approached program monitoring as two

lWA. CEr -----~ -.c ::: ~~WM~:;~::~~:·~·~~u~u~u~~~::::~= ---" --... = -M;':W't'~~Y':W·""~""':W·"";'W;;;·"';;YN.;;;·I.:WWiM1"~'N~tI.
__ 1" '''/ "ft ' .. 'U\»Jt -- ~
_ W'~\!. -..... -. ~ - __ .;_::./1 1'*"" .",U'.\.'I.-.·\N
__ ... \oJ'

~ ~" ~
Ilea. _
Ilea. _ - --~ ~ 11- 11- _ 11- ~ .. ::~~ = - Ji ,m;;:.
.,.. - .INN... __ JNww.

__ aft, " u" V,l' ... "U W,\.U"W,y'" ~ ,
_ N"""",,' ... "' ,"' ... _ , ,.., •• \',., "'''M':.*,,,,'N.''W.W.v.v.v.
-- - J· .. "'WIIlNIIINNIt'.W;'II ... • NNII IJII II ,II II II II i(III N.\
.... A II .. Mtf:JJJJIJ. .. • .. IIIINJ .. ~\ '1.::: .. I:NlI:.VJJ:II .. III:It\.I-I .. 11111.V.VlMVllM.,'/O"
.... A..AJNII.\'1 .. t.·llh,#IINJI:n: ... • .. I.· .. :A'III lt ' .. * 4,lIM¥N.¥A·.\·I .. WA· .. ,.Y/I.W/.· •• \ II .. A~ ______ A_ li_ .It.-,." - ... 111_"'"
II~.\.. ----~ ~"" _____ AA ---

Figure 2a

..uI'
-=ao= ---..-----laC! --= ..,. .1. ... --~ .115 -..at! .., -_117 -~ ..a _. -iliS:IIF

.... "'" ...
-.e _m
~
-:D~ ---'D -

An Interactive Software Engineering Tool for Memory Management and User Program Evaluation 155

separate tasks, data gathering and analysis. We also wished
to be able to monitor the output of the tracing program while
it was running, rather than wait for off-line hard copy output
of the execution record of the monitored program. Thus the
satellite performs the multiple tasks of communication
with the System/360 interpreter, updating the disk-resident
master file containing the page references, and updating the
display itself as new data are transfered by the interpreter
or when the user "scrolls"* through, or locally alters the
page size for the memory display. The use of the satellite
to process the trace data makes the system extremely
flexible. Thus whenever we wish to determine whether or
not a specific memory utilization parameter is meaningful,
it is a simple matter to add code to the satellite program
in order to calculate and display the parameter.

Another effect of using a satellite processor rather than a
process running on the virtual machine itself is the fact that
the interpretation and display data handling proceed in
parallel in "real time." The interpreter runs unmolested by
user interrupts for larger page sizes or different display lists.
Thus it is possible to view a trace of a system, repackage it,
and/or retrace it with different parameters all in the span
of a few minutes. For monitoring an interactive system, **
we can view a trace at the same time we are specifying
commands to that system in order to quickly isolate and
reduce the memory requirements for inefficient command
modules. Since the trace data are immediately available
after each time interval, it is also unnecessary to correlate
the data from an entire run (such as would be given by an
off-line plot) to the specific command or sequence of com
mands that generated the data. It is of course also possible
to view previously taken trace data in a stand-alone mode of
the satellite.

PARAMETERS FOR EVALUATION FOR PROGRAM
MEMORY UTILIZATION

To date the system has demonstrated its usefulness
through several practical applications. Many of the facts
noticed about program behavior could of course have been
predicted by use of common sense, and the reader may thus
find some of the results rather unstartling. However, the
fact that most of the observed traits are found in a large
class of programs indicates that common sense rules (such
as presented in the next section) are not used or even fully
understood. It is hoped that by providing effective systems
measurement tools and developing memory utilization
standards, programmers will be made aware of their bad
techniques (and also their good ones). Furthermore it has
been found that a display is quite effective in pointing out
some of the parameters that may be used to define standards

* In general, the information to be displayed is larger than the available
display area (e.g., the CRT display can effectively represent 50 4K
byte pages, but not 800 256-byte pages).
** For example, some of this paper was edited under a text editor being
monitored (see below).

--------------------I_-
lSI(
~
I8IIC -
~
I1IIC -
I1IIC -------I!!IIK -
!SIC --I44K --~-ItIIC -
a.c -
I8IIC -
a.c -
lise -
lla< -
~-

~---I8IIC - I
::,~ , 1

::IV\ t'-") ~r"'\~ ~1 ~ '~ ::: I 'I, I b' I' \ ~ ~ /1 ~I I
::1 v: I I III II ~II ": ,~ 1
--I I: : 1:1 :: :~~ n I' I: ;:t i I I: II II 1 ... / " I ii' / _ ",,, _'Yo, II~I" '/
__ I. II, 11'1' 'I.J 1,IIi'I~' I

::l' U~ ~::: f::f:~:4:Ll ~: := ",'.' '.. :::
UIC - I
!a< ' :

Figure 2b

for efficient memory utilization. The fo]mving parameters
have-been found to be particularly useful:

Working set size-the number of pages that are referenced
during a time interval, times the page size (hence the working
set size is expressed in total number of bytes that are de
manded by the program). In general, when we refer to a
programs working set size, we are referring to its mean size
over all the intervals.

Memory utilization-ratio of memory used based on the
user specified page size as compared to the total amount of
memory allocated based on the 4K page size of the System/
360-67. With a small user page size (typically 128 bytes)
this ratio approaches the percentage of the total allocated
memory actually used by the program. It should be noted
that although working set sizes vary significantly from
program to program, the memory utilization factor con
sistently ranged between the rather low values of 30 to
50 percent for most of the programs observed. Generally
programs having the higher utilization factor had been
optimized with respect to instruction stream execution,
with most of the remaining inefficiencies a result of poor
data referencing characteristics.

Working set entry rate-this parameter indicates the
amount of the current working set that was not present in
the previous working set. It is useful to separate this param
eter into two components. The first, which we will attribute
to locality unstability, is a significant change in the size of
the working set from one time interval to the next. The
working set size will temporarily increase as a program
moves from one locality to another and pages from both
localities remain in the working set (see, for example, the

156 National Computer Conference, 1974

trace of the FORTRAN F Compiler in Figures 2a and b).
Consistently unstable working sets are indicative of poor
process behavior.

The second component of the working set entry rate, we
will attribute to page replacement rate. It is a measure of
the change in the membership of the working set as a result
of single pages entering or leaving the working set. Thus
programs with a nearly constant working set size may still
have a non-zero re-entry rate due to page replacement within
the working set. This component of the re-entry rate was
found to be meaningful only for programs with large (> 40K)
working sets. Program references to infrequently used data
areas or error routines seem to result in a small set of "fringe"
pages that wander in and out of an otherwise stable working
set. Little if any page replacement was observed for programs
with small working sets.

It should be noted that individual parameters are quite
sensitive to the time interval used in collecting the data.
Thus it is quite possible to use a small time interval to arti
ficially reduce the size of the working set. This is however
offset by the fact that if a program is using memory in
efficiently, reducing the time interval will correspondingly
increase the re-entry rate of new pages into the working
set. Conversely, although a long time interval will increase
the size of the working set, it will also decrease the re-entry
rate. The time dependencies of the parameters can be used
quite advantageously in the process of packaging system
modules. Thus we can first choose a long time interval and
package to reduce the total size of the working set as much
as possible. We can then use a small time interval to re
package the heavily used routines found by the first pack
aging into a stable working set configuration. After the
initial packaging iterations it is still possible to fine tune a
user system by appropriate time interval selection. Thus
if we are optimizing an interactive text editor we might
select a time interval that spans a single editing function;
if we are optimizing a CPU bound applications program we
might choose a time interval that corresponds to the op
erating system's time slice, etc.

SOME CASE STUDIES

FRESS-A file retrieval and editing system

FRESS6 is a sophisticated interactive text handling system.
It has run in a 120K MVT partition (using dynamic loading),
but in the CP-67 environment it was found more convenient
to relinquish the memory management to the virtual paging
system. Even though FRESS is a highly modular system, and
entirely code in assembly language, it was designed and
implemented "rithout paging load criteria in mind. Thus it
was not too surprising that the FRESS users were typically
the first to be impacted at times when Brown's 67 neared
saturation.

The following observations of the unpackaged (e.g., as
loaded by the eMS loader) version generally accounted for

this behavior:

• The working set size was rather large, roughly 128K
(with a 4K page size and a time interval of 5,000
instructions) .

• The working set was extremely unstable, i.e., the working
set size would vary from 60 to 128K between any two
user activated functions.

• And finally, the amount of the CP-67 working set
actually used during anyone time interval was typically
around 30 percent.

Fortunately it was possible to remedy most of the above
characteristics by simply reloading the system. Thus after
noting which modules were frequently in use, and which
were not, * and hand specifying the module loading order,
the following results were obtained:

• The working set size dropped to 80K (a reduction of
30 percent)

• The working set size became more stable, generally
changing by less than 16K for the common editing
functions.

• The page utilization figure increased to 50 percent.

Even with the increased memory utilization achieved by a
repackaging of the FRESS system, further reductions of
another 20K in the size of the working set still seem possible
by breaking up some of the larger modules and alignment
of some data areas on 4K page boundaries (some guidelines
to enhance the "packageability" of programs are presented
in the next section).

The CSS editor

The CSS editor3 is a line oriented text editor that is pro
vided as a user service on the NCSS time sharing service.
Since NCSS's Duplex 67 must frequently support many
users the following statistics should not be too surprising:

• The working set size was a small 12K±4K (with a 4K
page size).

• The working set was very stable due to the fact that
most of the commonly used functions had been loaded
onto the first CMS user memory page.

• The memory utilization fluctuated from 30 to 50 percent
depending on the user function. The lower memory
utilization figures were usually due to editing functions
that generated data. references across the 4K page
boundaries. Since many fixed length line data files
cont.ain about 40 percent blanks, one ,-rondel's how
much the utilization factor would increase if some data
compression were built into the editor.

* In particular some modules, such as the command language interpreter,
are executed for every command; some, such as the various editing func
tions are seldom invoked at the same time, but do share some common
subroutines, etc.

An Interactive Software Engineering Tool for Memory Management and User Program Evaluation 157

SCRIPT AND NSCRIPT

SCRIPT and NSCRIPT are text formatting programs
that can be used in conjunction with the CMS or CSS text
editors. NSCRIPT is an MIT version of SCRIPT that
supports some more advanced features such as footnote
placement and user macros. For purposes of comparison
we monitored both programs while they processed the
same input file (obviously none of the extra features provided
by NSCRIPT were included in the file). We let the user draw
his o",n conclusions from a comparison of the following
data:

• The SCRIPT working set size was 8K.
• The working set was stable.
• Memory utilization ranged from 50 to 70 percent.

• The NSCRIPT working set size was 24K.
• The working set was stable.
• Memory utilization ranged from 30 to 50 percent.

FORTRAN F Compiler

The Figures 2a and b are representative of any particular
Fortran compilation, e.g., changing the source program to
be compiled may change the duration of each phase but
will not significantly change the characteristics of the two
graphs (here we are assuming that no exceptional conditions
such as error messages occur). The page size for Figure 2a
i"l 2K bytes (for a more detailed description of the figures see
the first part of this paper). The plots in Figure 2b are
working set size with a 4K page size (top line), working set
size with a 128 byte page size (center line), and entry rate
for 4K pages (bottom line). The time interval for both
figures is 10,000 instructions.

Some CPU simulation programs

One of the earlier demonstrations of our system was for
some representatives of a systems measurement group at
the Mitre Corporation who brought two of their programs
for observation on our system. The first was a Fortran
program which had been analyzed as to the number and
kinds of source statements it contained. The second program
(also written in Fortran) accepted the analysis data as input
and simulated the "resource usage" behavior of the first
program. We were to observe the behavior of both programs
to see how good a job the simulator program was doing.
Although the CPU load of the two programs could have
been considered to be equivalent, we observed with
BUDWSR that their memory utilization patterns were in
no way related to each other. This might serve as a reminder
that program behavior is still poorly understood, and that a
good deal of empirical data gathering might still be in
order.

SOME PRACTICAL GUIDELINES TO INCREASE
MEMORY UTILIZATION

Many of the suggestions in this section can also be found
in Morrison.8 We have presented here those situations that
have been observed to have the greatest potential for
reducing the memory requirement of a program. Most of
these observations are applicable only to the instruction
stream of the monitored program, and not to the data
references. Weare currently experimenting with monitoring
only data referencing (read and/or write) patterns in order
to be able to understand some of the finer details of memory
management. It should also be noted that a good systems
programming tool, such as BUDWSR, is an invaluable
addition to the commonly used guidelines.

• System modules should be as small as possible since
this greatly facilitates global repackaging.

• A module should execute as much of its code as possible
when it is called. Hence special cases and error condi
tions should be diagnosed inline, but handled by calls
to separate modules.

• Large initialization sections should be handled as calls
to separately created modules if necessary. This has
the effect of compacting the more frequently used code
and also allows the programmer to group together the
various initialization sequences. The most common
case of inefficient memory usage found by our observa
tions was the first 128 to 512 bytes of initialization code
in a module, that were executed only at entry to the
system.

• Quite frequently the packaging of subroutine libraries
used by higher level languages was not done with virtual
memory in mind. Thus the system programmer should
be especially cautious of some unnecessary overhead
brought about by inappropriate loading of run time
routines. For example the following PL/I statements
generate a 16K to 24K working set in our CMS en
vironment (note that this figure does not include the
pages used by the CMS I/O handler!):

TEST: PROC OPTIONS(MAIN);
DCL I BIN FIXED;
DO 1=1 TO 10;

PUT LIST (I);
END;
END TEST;

• Careful consideration should be given to user manage
ment of his data structures, i.e., it is often preferable
to allocate a few large chunks of memory, rather than
many small ones, so that data references may be or
ganized in an efficient manner. The same holds true
for data organization using the Fortran COMMON
statement.

• Heavily used routines and frequently referenced control
blocks or I/O buffers should be allocated in an order

158 National Computer Conference, 1974

such that they do not cross page boundaries un
necessarily.

• Software implemented stacks for a subroutine's save
area and local variables may be of considerable use in
efficiently organizing data references.

• Error message text and error message handlers should
be grouped separately from normal flow of control.
Frequently used "prompt" messages should of course
be kept separate from the error message modules.

• The use of literal pools at the end of large programs
(or more typically at the bottom of the first 4K of a
program) should be avoided. Better yet, literal data
should be treated as part of the instruction stream and
placed as soon as possible after its use.

CONCLUSIONS AND FUTURE WORK

It is clear from our experience that the use of on-line displays
and satellite processors as measurement tools is far more
flexible than use of batch-oriented measurement systems.
Satellites will be increasingly used to monitor and assist
both the operating system and user software. From an
operating system point of view, it is expected that monitoring
processors will be attached to large mainframe CPU'Sll as
an integral part of the operating system (as is done with the
CDC STAR-lOO). Thus we hope that as the larger systems
become more complex, data gathering facilities (such as
page reference counts and general paging activity) will be
implemented in the microcode of the mainframe CPU and
be directly available to the satellite for processing, thus
bypassing the need for system measurement via interpreters,
simulators and the like. Just as today, the mainframe
relinquishes I/O operations to the channel, future main
frames may pass on user behavior data (by means of control
store) to a satellite that will compute new working set size
parameters, while the mainframe processes another user.
Furthermore, this arrangement makes the behavior of the
mainframe system insensitive to the data analysis com
plexity, as well as allowing modification of the data analysis
by a reprogramming of the satellite.

From a user software point of view, it is expected that
some standards (for CPU and memory utilization) will be

established for programs in production use. Thus the fact
that by a simple repackaging it is frequently possible to
increase the memory utilization by 20 to 30 percent may
indicate that quantitative rules such as "use 50 percent or
more of the memory allocated," could be established. These
rules, however, will be of little use if we do not provide
adequate measurement tools, such as BUDWSR, that allow
the user to monitor his programs.

In view of the recent technological developments, it is
very possible that future computer systems will have very
large random access memories, possibly of the order of 50
megabytes. A new dimension is then added to the evaluation
problem, for then the determining factor will be data locality,
rather than program execution locality. Programs will
fit entirely in memory, but the larger data base oriented
systems of the future will certainly need techniques to
increase the data locality at all levels in the data base
hierarchy. Engineering tools are necessary to evaluate and
control solutions to user requirements.

REFERENCES

1. Comeau, L. W., "A Study of user program optimization in a Paging
System," ACM Symposium on Operating System Principles, Gatling
burg, Tennessee, October 1967.

2. CPjCMS User's Guide, Form GH20-0859-2, IBM Corp. Technical
Publications Dept.

3. CSS SCRIPT Reference Manual, National CSS, Inc., 460 Summer
St., Stamford, Conn. 06901.

4. Denning, P. J., "Virtual Memory," Computing Surveys, Vol. 2, No.
3, September 1970.

5. Ferrari, D., "The Method of Critical Working Sets for the Auto
matic Improvement of Program Locality," to be published.

6. FRESS User's Guide, Text Systems Inc., 106 Highland Ave.,
Barrington, R.I.

7. Hatfield, D. J., and J. Gerald, "Program Restructuring for Virtual
Memory," IBM Systems Journal, Vol. 10, No.3, 1971.

8. Morrison, J. E., "User Program Performance in Virtual Storage
Systems," IBM Systems Journal, Vol. 12, No.3, 1973.

9. Rodriguez-Rosell and J. Dupuy, "The Evaluation of a Time Sharing
Page Demand System," Spring Joint Computer Conference, 1972.

10. Stabler, G. M., and Andries van Dam, "Intelligent Satellites for
Interactive Graphics," NCC, 1973.

11. Withington, F. G., Trends in Computer Technology in the F~tture

-Is Centralization Inevitable?, A.D. Little, Inc. 1973.

Development and implementation of a medical/management
information system at the Harvard Community Health Plan

by NORMA JUSTICE, G. OCTO BARNETT, ROBERT LURIE and WILLIAM CASS

Massachusetts General Hospital and Harvard Commu.nity Health Plan
Boston, Massachusetts

The Harvard Community Health Plan (HCHP) is a multi
clinic prepaid group practice currently serving 37,000 greater
Boston subscribers. The original clinic in Kenmore Square,
Boston opened in October, 1969. A second clinic opened in
Cambridge in July, 1973, in order to meet a projected sub
scriber population of 75,000 by.1977.

DESIGN GOALS

Since the founding of HCHP, representatives of the Lab
oratory of Computer Science (LCS) at Massachusetts Gen
eral Hospital and the Harvard Plan have participated in a
joint effort to design and implement an optimal computer
based medical records system.

The objectives th_ey accepted were those of any traditional
medical record system:

1. to provide a mechanism for the recording, storage, and
retrieval of information necessary for patient care;

2. to meet the administrative needs of health care man
agement.

Over the last fifty years, medical practice has changed from
the single family physician to the concept of a team of medi
cal care specialists, working in a co-ordinated fashion. Be
cause of the multiple physician/patient relationships this
implies, the medical record has come to occupy a key role
in care delivery. This is particularly true in a prepaid group
practice where there is strong emphasis on health mainte
nance and continuity of care, and where medical services are
rendered by a number of specialized health care professionals.
Similarly, the need for accurate and timely information col
lection and analysis are essential for the health plan manage
ment to determine eligibility and to assess patterns of care
being delivered.

Measured against the needs of both the providers and the
administrators, the classical paper-based medical record is
often grossly deficient, cumbersome, and expensive to main
tain and control. The over-all objectives of the project are
to develop a computer-based system that can serve both

159

primary patient care and administrative needs, be less ex
pensive both in terms of provider time and medical record
room costs, and provide a base for expansion to eventually
support all the information processing needs of the HCHP.

The particular advantages a computer-based system offers
include the following:

1. An accurate, up-to-date, and readily accessible regis
tration and patient identification system is main
tained. The membership file is the source of admin
istrative data which provides health center manage
ment with statistical and billing information for
successful management and planning.

2. The medical record information is not stored in a
single physical document which is available at only
one geographical location at any single point in time;
instead, the information is stored in a dynamic in
formation base which can be instantaneously up
dated and displayed from many different locations
simultaneously.

3. The computer system can be used to organize the
medical information by any of a number of different
rules or algorithms. The information can be sum
marized to correspond to the particular problems of
the patient or the particular needs of a specialty in
sharp contrast to the strict chronological organization
of the classical paper-based system.

4. The computer system assists in the primary care
process by collecting existing data which should be
brought to the provider's attention, e.g., reports of
all abnormal laboratory test results, identification of
patients receiving certain medications which should
be discontinued, and identification of patients 'with
certain characteristics warranting special considera
tion.

5. The computer-based system facilitates the HCHP
commitment to an active program of quality assur
ance by monitoring particular case activities as to
conformance to pre-defined standards of patient care.
When deviations from the specified standards occur,
the computer system can flag this information, and
bring it to the attention of the provider.

160 National Computer Conference, 1974

6. The importance of supporting services such as labora
tory test reporting, patient scheduling activity, and
claims processing is recognized in this unified system
since data need be collected and entered only once to
be available for all functions.

7. The availability of a comprehensive, accessible data
base is an essential factor to facilitating research into
the delivery problems of ambulatory care, the promise
of which was one of the essential motivating factors
which originally led to the establishment of the HCHP.

8. The management, filing, assembling, and distribution
of paper medical records can be a costly procedure,
since it is labor-intensive, and since above a certain
level even marginal improvements reflect significant
cost increments. The expectation is that the computer
based system will prove to be a less expensive method
of collecting, storing and retrieving this information.

In summary, the computer-based medical record system
developed at HCHP satisfies the dual goals of providing both
the data necessary to keeping valid, timely, and readily
accessible information needed for routine and emergency
patient care in an ambulatory practice, and the data neces
sary for management and supervision of a health care de
livery system. It must be emphasized, however, that the
computer-based system is a developmental activity. The
essence of the system is not just its technological challenge,
but its radically different approach to the combination of
data recording and retrieval patterns by its users.

EVOLUTION

It should be understood that the HCHP M/MIS is not
the result of a recent one-time project. Rather it is an evolu
tionary development effort that is dedicated to a continuing
improvement in health care services through the use of
computerized medical records.

This record system has evolved in phases, with the latest
enhancements reflecting the fourth phase. Each step has
allowed the realization of additional record system objectives
while maintaining established system reliability and while
simultaneously, the feasibility of the next evolutionary step
was being explored.

The first phase, which began in 1969, was in essence a
duplicate system using both a paper-based medical record
and a computer-based information system. Originally, this
redundancy was required because the reliability and pro
vider acceptance of a computer-based system had yet to be
demonstrated.

Initially only data entry was on-line, being executed from
Teletype terminals in the medical records room. All retrieval
of computer-based records was in batch mode. Although it
obviously had far to go to be ideal, the first phase did allow
the achievement of several record system objectives. A struc
tured, organized, legible medical record was instituted as
the basis for peer review activities. In addition, it was firmly

established that a computerized medical record was accept
able to physicians and nurses at the HCHP.

Significant difficulties, however, were encountered in main
taining the duplicate system. Whereas data collection pro
cedures for the computer system worked well, the paper
based system never kept up-to-date the assembling and filing
of the profusion of patient transactions. Neither could the
paper record be delivered in time for non-scheduled visits or
telephone encounters. The paper record was often incom
plete, particularly regarding care activities in the recent
year. When complete, it was too frequently unavailable to
the provider. In addition, it became obvious that the manual
collating, filing, and assembling of information necessary to
the maintenance of· an up-to-date record was one of the
most expensive activities of the record system.

In 1972, a second phase of development introduced
Cathode Ray Tubes into the clinical areas for the first time,
thus allowing a physician or nurse to directly recall a sum
mary subset of a patient's medical record from the com
puter's files. 1 In 1973 a phase was introduced allowing pro
viders to search through all encounter reports (a record of
the patient's visit) and to flow chart (chronologically list)
diagnoses, test results, and vital signs. This offered providers
the opportunity of directly accessing a patient's complete
computer medical record when the paper record was un
available or incomplete.

A vital benefit of phases one through three was to prove
that it was possible to realize a high degree of real-time
system reliability and that the HCHP providers could work
successfully with a computer-based system. With this en
couragement, a fourth phase was begun-a system designed
to maximize the use of computer-stored information and to
minimize the use of the paper-based document. The most
significant enhancement was the approval to greatly expand
the medical content of the computer-based information sys
tem by including the physician's dictated comments and use
the computer data bank as the primary storage repository
for medical records information.

MEDICAL SYSTEM

The fourth and latest phase of development will be imple
mented in February, 1974. Basically this phase includes the
addition of dictation provisions and new expanded encounter
forms. The primary objective of the new medical system
is that the relevant medical information be available to the
provider at or before patient arrival (encounter).

This information will be made available to the provider
in two different formats: (a) aR computer-generated reports
when there is several hours notice as in the case of scheduled
visit, or (b) on the CRT for all telephone consultations, walk
in visits or when additional information is desired to supple
ment computer-generated reports.

Patients cause an encounter report to be added to the
medieal record by a visit or a telephone consultation with a
provider or other health center professional. In each case,

Development and Implementation of a Medical/Management Information System 161

DOE. J
999999
NEXT VISIT TO 11-10-73

PAGE 1
CURRENT TO 11-06-73

PRINTED 11/20/73

NUCRSS-5

CLINICAL RECORD SUMMARY
NUMBER 5

PLEASE LOOK AT THE LAST PAGE AND CONSIDER THE COMMENTS
AND SUGGESTIONS. FEEL FREE TO CORRECT OR COMMENT ON THIS SUMMARY.

UPDATED:

REVIEWED:

KEYPUNCHED :

DOE. J.
999999

JOHN ODE.
31 YR. OLD BLACK

0000 NOWHERE, U.S.A.

THANK YOU.

DR. OLGA M. HARING

TABLE OF CONTENTS

PROBLEM LIST: PAGE 3

VITAL SIGNS: PAGE 4

CAROl AC-PULMONARY-
RENAL DIAGNOSES: PAGE 4

TREATMENT 1 PAGE 5

ROUTINE LAB TESTS 1 PAGE 6

OTHER LAB TESTS: PAGE 7

SUGGES TI ONS : PAGE B

PAGE 2
CURRENT TO 11-06-13

PATIENT IDENTIFICATION

SOC. SEC. NO. 000-10-2000
MALE 69 IN.
PHONE: XXO-OOOO

FIRST VISIT TO NUMC 07-30-68 -PRECLIN
LAST VISIT TO NUMC 08-02-73 - DERM

LAST COMPLETE p.E.

DRUG ALLERGIES AND
IDIOSYNCRASIES

04-13-13

LAST HOSPITAL ADMISSION

HOSPITAL PMH

DATE ADM ITTED 12-29-68 DATE 0 I SCHARGED

DISCHARGE DIAGNOSES

01. GANGLION LT. WR 1 S1 AND LT. FOOT
02. ESSENTIAL HYPERTENSION

Figure 1

01-10-69

DOE. J
999999

PAGE 3
CURRENT TO 11-06-13

PROBLEMS IN ALL ORGAN SYSTEMS
AND

VISITs TO MANAGING CLINICS

MANAGING LAST
PROBLEM

DATE
NOTED CLINIC NOTED STATUS DISPOSITION

01. HYPERTENSION 07-30-68 CPR 07-12-73 ACTIVE RX ON P 5

02. ALCOHOLISM 05-07-69 CPR 05-21-71

03. LEUKODERMA 07-30-68 CPR 08-02-13 ACTIVE RX ON P 5

04. SPRAIN, 08-30-71 ORTHO RESOLVED ---
LT. ANKLE

05. DYSHIDROSIS, 08-13-68 DERM 08-13-68 RX ON P 5
LT. HAND

06. OBESITY, MILD 09-09-68 CPR 09-09-68 ACTIVE

07. TINNITUS 10-13-72 CPR 10-13-72 ACTIVE RX ON P 5

08. HEADACHEs 09-10-71 ~EURO 10-25-73 RX ON P 5

TEMPORARY PR08LEMS

A. INFLAMMATORY 04-19-73 DERM 08-02-73 ACTIVE RX ON P 5
SK IN CHANGES

DOE. J.
999999

PAGE 4
CURRENT TO 11-06-73

VITAL SIGNS AT RECENT VISITS

DATE CLINIC DOCTOR'STUDENT WT BP-SUPINE PULSE-RAD RESP TEMP --------------
04-13-73 CPR BROWN 174 130/92 98.4

01-19-73 CPR LEVINE 176 140/110 98.8

10-13-12 CPR WALKER 117 148/114 SIT 76 16 9804

08-11-73 CPR SMITH 115 140/118 SIT 98.6

01-14-12 CPR BROWN 113 130/90 92 16 98.6

'6-16-12 CPR BROWN 115 150/104 SIT 68 18 98.0

06-09-12 CPR BROWN 114 150/98 60 16 97.8

04-14-12 CPR BROWN 119 160/120 12 16 98.0

'1-21-12 CPR HUNTER 115 150/108 72 16 98.6

CARDIAC-PULM6NARY-RENAL CLINIC

FIRST VISIT TO CPR
LAST VISIT TO CPR

DOCTOR 1

10-25-68
04-13-13

BROWN
CPR VISIT SCHEDULED FOR ll-lO-13

STUDENT!

HEART

HEART

EllOLOGY

~ATOMY

PHYSIOLOGY

DIAGNOSES

POTENTIAL HEART DISEASE

HYPERTENSION

F.UNCT.lONAL. CLASS In CA TI ON
THERAPEUllC CLASSIFICATION
CLASSIf"ICATION REVIEWED

CIRCULATION

LUNGS

KIDNEYS

HYPERTENSION. ESSENTIAL

NORMAL

NORMAL

Figure 1 (continued)

162 National Computer Conference, 1974

DOE. J
999999 .

FOR
PROB DRUG AND SIZE

HYDROCHLORO-
THIAZIDE

RESERPINE

HYDRALAZINE

KCL LIQUID

VALISONE

MEpROBAMATE

f'IORINAL

CAFERGOT

8 SAUSERT,

A PSORALEN

A KENALOG CREAM

PAGE 5
CURRENT TO 11-06-73

MEDICATIONS

50 MG.

DOSE
SCHED

QD

0.25 MG. QD

125 MG. QD

R)I
BEGUN

06-72

R)I LAST R)I
CLINIC REVIEWED TAKEN

CPR 08-10-73 ---

04-72 CPR 08-10-73 ---

08-10-73 ---10-72 CPR

15 CC. BID 01-73 CPR 08-10-73 ---

0.1 PCT. 08-68 DERM

400 MG. QHS 10-72 CPR

1-2 Q4-6t1R 01-72 NEURO 10-25-73 --

WESLEY 06-07-73

2 MG

10 MG

.02S

810

QD

TID

06-28

08-73

05-73

NEURO

DERM

DERM

10-25-73

1O-l5-73

10-25-73 ---

--- NO DIETS OR OTHER THERAPY ---

PROCEDURES ORDERED
FOR DAfE
PROB PROCEDURE CLINIC ORDERED REPORTED I YES-NO)

BUN
ENT CONSULT

OOE. J.
999999

TEST

1. CHEST x-RAY

2. ECG

LATEST
DATE

NEURO 07-26-73
NEURO 10-25-7;1

RoUTINE TESTS

RESULT

NORMAL

NORMAL

PREVIOUS
DATE

07-12-71

12-30-69

PAGE 6
CURRENT TO 11-06-73

RESULT

NORMAL

NORMAL

........
CHANGES

3. URINE

04-06-73

07-12-71

06-28-73 NORMAL 07-12-71 ABNORMAL

NONE

NONE

BETTER

BLOOD

4. RBC

5. HGB

6. CELL PACK

7. WBC

07-23-73

06-28-73

07-l3-73

06-l8-73

14.8

14.8

4S

06-28-73

04-06-73

06-28-73

06-28-73

.8. DIFFERENTIAL 06-l8-73

4500

NORMAL

9. VORL

10. BUN

ll. URIC ACID

Il. CREATININE

13. FBS

14. l HR. PCS

08-01-68

07-23-73

04-06-73

07-l3-73

06-l8-73

10-l5-68

"IONREACTIVE

12 06-28-73

08-12-71

04-06-73

04-18-69

15. CHOLESTEROL 04-06-73

1.5

101

52

225

16. SODIUM

11. POTASSIUM

18. CHLORIDES

19. C02

06-l8-73 .. 137

06-28-73 3.8

06-28-73 109

06-l8-73 26.8

04-06-73

04-06-73

04-06-73

04-06-73

Figure 1 (continued)

4.76

15.1

43

5100

12

7.5

1.20

100

134

3.8

104

27.5

NONE

NONE

NONE

NONE

NONE

NONE

NONE

NONE

WORSE

NONE

NONE

NONE

new information is captured by the provider on an encounter
form which has now been expanded to allow more self
encoding and to include biographic information. Each en
counter is maintained as a separate entry in the medical

DOE. J,
999999

OTHER TESTS

TEST LATEST
GROUP NAME DATE RESULT

--=f 2~-~R. URINE 11-12-68 2.1 "'G.
VMA

URINE 10-13-66 NORMAL
ELECTROL VTES

BLOOD CHEMISTRY ONE

SGOT
SGPT
LDH
ALK. PHOSe
GLUCOSE
SERUM LIPID
CPK
CALCIUM

0"-06-73 to 69
08-12-11 28
0"-06-73 100
0"-06-73 to 9S
0<t-06-73 95
04-06-73 835
0"-06-73 167
04-06-73 9.8

BLOOD CHEMISTRY TIilO AND THREE

BILIRUBIN. TOT
TOTAL PROTEIN
ALBUMIN
GLOBULIN
GTT
BSP

0 .. -06-73
04-06-73
04-06-73
03-09-11
10-25-68
10-13-66

0.4
7.2
4.3
2.69
NORMAL
NoRMAL

PAGE 7
CURRENT TO 11-06-73

PREV IOUS
DATE RESULT

08-12-71 2&

08-12-71 47
03-09-71 9.4

03-09-71
03-09-71
09-13-68

7.11
5.02
3.11

CHANGES

WORSE

NONE
IIIORSE

NONE
NONE
NONE

SEROLOGY IIMMUNOLOGY

REITERS 08-01-68 NONREACTIVE ---
LE PREp 01-15-69 NONREACTIVE 01-13-69 NONREACTIVENONE

MICROBIOLOGY ICYTOLOGV

URINE CULTURE 01-20-69 NEGATIVE

NUCLEAR MEDICINE STUDIES

RENOGRAM
BRAIN SCAN

10-13-66 NORMAL
06-21-73 NORMAL

RADIOLOGICAL PROCEDURES

LT. ANKLE 07-30-11
IVP 10-13-66
CERVICAL SPINE 10-13-66
SKULL 10-13-66
SKULL 06-21-73
ORBITS 06-21-73

OOE. J,
999999

TEST
GROUP NAME

LATEST
DATE

RADIOLOGICAL PROCEDURES

NORMAL
NoRMAL
NORMAL
NORMAL
NORMAL
NORMAL

OTHER TESTS

RESULT

RIGHT FOREARM 08-30-73" ABNORMAL
BIOPSY

MISCELLANEOUS

DOE. J-
999999

EEG 11-29-71 to ABNORMAL

10-13-66 NORMAL NONE

PRf:vlOUS

CONTtlO PAGE -7
CURRENT TO" 11-'--73

DATE RESULT CHAf'!6ES
;;,..;.:---

PAGE 8
CURRENT TO 11-06-73

COMMENTS AND SUGGESTIONS

1. THE FOLLOIilING PROBLEMS AND THEIK STATUS NEED REVIEIilING:
06. OBESITV. MILD
07. TINNITuS

2. PLEASE REVIEw CARDIAC PUL"IONARV RENAL DIAGNOSES ON PAGE 4.

3. PLEASE COMPLETE CARDIAC PULMONARY RENAL DIAGNOSES ON PAGE 4.

". PLEASE f'IND OUT IF PATIENT IS STILL TAKING MEDICATIONS LISTED ON PAGE 5.

5. PLEASE ORDER:
ECG

6. PLEASE fHlO OUT IF PAlIENi MAS AN-' DRiJG ALLERGltS OR IDIOSVNCRASIES.

Figure 1 (continued)

record. All data, including dictation, from any encounter is
available upon request either on hard copy or as a CRT
display.

Information such as laboratory test results, X-ray findings,

Development and Implementation of a Medical/Management Information System 163

EFF 3/70
GRP 000

PRIMARY MD
PRIMARY RN

STATUS REPORT (1/18/74)

G. PLOTKIN #88-08-08-T
J. O'REILLY PUBLIC, JANE O.

10 ALBANY RD., LINCOLN, MASS. 02100

34 YRS MARRIED 2 CH CAUCASIAN LEGAL AIDE

ENJOYS TENNIS, SKIING, EXTENSIVE EUROPEAN TRAVEL WITH LAWYER/HUSBAND.
CHILDREN IN SCHOOL, HAS BECOME PART TIME LAW STUDENT AT BU. 1/1S/74

MAJOR PROBLEMS
A030 DRUG ALLERGY-PENICILLIN 3/24/70 - 2 - 1/S/73 (SMITH)
B120 DIABETES MELLITUS 3/24/70 - 16 - 1/S/74 (O'REILLY) liD

MINOR PROBLEMS
K230 HEMORRHOIDS 6/2S/72 - 3 - 9/S/73 (PLOTKIN)

PAIN, NO BLEEDING
G270 UPPER RESPIRATORY INFECTION #T 8/8/73 (O'REILLY)

PRESUMPTIVE & RULE OUT
0241 P POLYNEUROPATHY, DIABETIC 1/8/73 - 3 - 9/S/73 (PLOTKIN) IIC

INACTIVE PROBLEMS
G160 HAYFEVER 6/24/71 - 8 - 8/17/72 (PLOTKIN)
N090 sip FRACTURE: HUMERUS 19S7
5100 sjp APPENDECTOMY 1952

HOSPITALIZATIONS
K99':l ABDOMINAL PAIN (PBB) 9/20/73 (PLOTKIN)
B120 DIABETES MELLITUS (BIH) 1/29/73 (PLOTKIN)

CURRENT THERAPY
1122 INSULIN NPH USO, 6SU. Q.D., 3 MOS., S/14/70 - 9 - 9/10/73 Hc
H166 PREPARATION H ·PRN 11/1/72 - 4 - 9/15/73

THERAPY HISTORY
1121 TOLBUTAMIDE SOO MG. B.1.D. 3/24/70 - 2 - 4/16/70

TEST RESULTS
A126 HEMATOCRIT 43.2 (1/S/74) (6) Hc
Al28 HEMAGLOBIN 13.2 (1/S/74) (6)
A147 wac 8.9 (1/S/74) (6)
F46S CHOLESTEROL 200 (9/S/73) (1)
E31S GLUCOSE 134 (1/S/74) (17)
R033 CHEST WNL (8/24/73) (2)

CONSULTATIONS & REFERRALS
SOCIAL SERVICE 1/lS/74 (O'REILLY)

Figure 1 (continued)

SINCE

and ECG results are, of course, recorded on separate forms
designed to code the appropriate results.

The status report (Figure 1) is a summary of the patient's
medical history and can be viewed as both a brief summary of
important administrative and medical data which can be
scanned in seconds and as a table of contents to the patient's
complete medical record. Nine categories of information are
contained in this important document:

1. Registration information
2. Primary provider
3. Social and demographic data
4. Diagnoses and problems list
5. Hospitalizations
6. Current therapy
7. Therapy history
8. Test results
9. Consultations and referrals.

This group of computer-generated reports provided before
a patient visit will include all information deemed relevant
by each specialty group. For example, in internal medicine,
it will be comprised of the status report, the last encounter
report to the primary provider, all intervening encounter
reports, the last encounter report for each major problem,
and a laboratory test summary. The service-level design
goal is that for over 90 percent of the typical patient care

visits, the computer reports generated and delivered prior
to an encounter will be sufficient. If further information is
needed, the CRT may be used to access all previously re
corded medical information stored in the computer.

As a better understanding of the particular needs of each
specialty group and of partiCUlar medical problems is reached
through the use of the system and feedback from its users,
other standard computer-generated reports will be created.
For example, flowchart presentations-the chronological list
ing of the diagnoses, tests, or therapies related to a specific
problem of a specific patient-will be provided routinely for
pediatric visits (e.g., height and weight growth charts) and
for prenatal visits. In process of development is a flowchart
presentation for the routine management of the patient with
hypertension.

No medical records system is adequate that has not pro
vided for prompt updating of patient records. To be effective
and establish credibility with the user, the record must be
current and comprehensive in addition to being accurate.
A control system has been developed by the HCHP man
agement that ensures that an encounter form has been input
within established time limits.

MANAGEMENT SYSTEM

In addition to medical information the patient file contains
administrative data which provides health center manage
ment with statistical and billing information vital to success
ful management and planning. Enrollment in the Plan creates
the demographic and registration portion of the patient's
file. This nucleus, combined with the information entered
from each medical encounter, establishes the basis for the
management information system.

A variety of administrative and management functions
are necessary and available. Mailing labels are generated to
send medical history questionnaires and health center in
formation to subscribers. Forms are produced which are used
for the generation of membership identification cards. Mem
bership information becomes the control system for capitation
billing as well as fee-for-service billing of non-members.

Hospitalizations and outside referrals are noted by the
provider on the encounter form, input to the computer, and
made available on inquiry to verify patient insurance claims.

Using the population as the denominator, utilization and
membership statistical reports are available. For example,
certain reports can provide data organized by age, sex,
geographic location, medical specialties involved or any com
bination thereof.

Cost/Membership ratios allow management emphasis on
specific cost centers. Facility utilization can be assessed
via patient encounter statistics. Management, thus informed,
can better plan for future requirements including "what-if"
projections related to potential numbers of future member-
_1...: __
i:jll.ll'~'

Special studies allow personalized attention. A simple ex-

164 National Computer Conference, 1974

ample is the production of mailings notifying members satis
fying certain medical criteria of their need for flu shots.

These are some of the features which provide the HCHP
management with the information services necessary to effici
ent, effective operations, controls, and planning.

QUALITY ASSURANCE-A FUTURE OBJECTIVE

The primary objective of the medical record system
described in considerable detail in the preceding pages is to
ensure that readily accessible, legible and accurate informa
tion is available for each and every patient seeking medical
services at the Harvard Community Health Plan. An im
portant by-product of this endeavor will be the potential of
the system as a tool for monitoring the general quality of the
services that are delivered.

As you are aware, the profession has entered an era in
which it will not be enough to practice good medical care
it is now expected to demonstrate in rather precise ways that
this is the case. The federal authorities have already enacted
legislation designed to ensure that the services which they
fund, such as Medicare and Medicaid, are of acceptable
quality. It is therefore safe to predict that in the near future
Blue Cross/Blue Shield and commercial insurance carriers
will do likewise. Moreover, consumer groups, which are be
coming organized at the Harvard Community Health Plan,
will be making similar demands.

It is anticipated that, when properly used, reliable and
comprehensive data available in the computer will enable
almost complete obviation of the laborious process of in
dividual manual medical record review when appraising the
quality of care in various clinical situations.

Furthermore, numerous aspects of utilization, such as
prescribing patterns, the keeping of appointments, over and
under-utilization, membership turnover, the use of hospital
facilities and many other matters will be available in a form
more accurate, more comprehensive, and more accessible
than was previously the case.

It seems probable that in the near future, the whole process
of quality assurance, including peer review and utilization,
will, with the help of the new record system, become part
of the ongoing information system at the Harvard Com
munity Health Plan.

TECHNICAL CONSIDERATIONS

A universal characteristic of information systems is that
objectives and procedures will change with time. In part
these changes are related to inadequacies in the initial plan
ning stages. In a large sense, however, they are related to the
inherent effect of a successful introduction of computer
technology into a new field. It is the hallmark of such a systern

that the users modify their initial attitudes, raise their ex
pectations and make increasing demands on information
handling services. This general characteristic, alld others
unique to medical records systems, should prompt the sys
tems designer to implement in a high level language. 2 Certain
specific characteristics of this language system should also be
considered:

1. It should be procedural, one which can be easily
modularized.

2. It should have powerful string processing capabilities.
Much of the information in a medical system is textual
in nature; names, clinical results, free text dictation.

3. It must be able to search and manipulate data quickly
and easily. I/O should be flexible, allowing for experi
mentation in formatting and terminal selection.

4. It must have the capability for the development and
maintenance of a large data base. A data manage
ment system for patient care requires a relatively
complex data base for several reasons:

(a) The data can assume a variety of types and
formats.

(b) The data items are dynamic in size; fixed di
mensioning of data or data fields is unacceptable.

(c) The file must be organized for rapid easy access
of specific sections, e.g., one is often interested
in a particular encounter or laboratory value
rather than in a whole patient file.

The designers of the Harvard M/MIS feel that the
MUMPS system meets or exceeds all these requirements.
:MUMPS (IUassachusetts General Hospital Utility Multi
programming System)3 is a compact time-sharing system
implemented at the Laboratory of Computer Science on
Digital Equipment Corporation PDP-9's and PDP-15's. The
interpreted MUMPS language includes extensive capabilities
for string processing, terminal I/O and manipulation of a
dynamic, hierarchical data base. For the project described
here, if one also includes criteria of cost and availability,
there is effectively no competition.

CONCLUSION

The joint Laboratory of Computer Science/Harvard Com
munity Health Plan Medical/Management Information Sys
tem venture represents a successful advancement in the use
of one technology to enhance the effectiveness of another.
Project experience indicates that, properly served, the goals
of administration and the medical profession are not di
vergent but concurrently support quality health care. Care
ful consideration of the users needs succeeded in dispelling
skepticism and has paid magnificent dividends in the user
satisfaction realized since implementation.

Finally, credit must be given to a strong HCHP manage
ment commitment to the development of M/MIS. It took

Development and Implementation of a Medical/Management Information System 165

this commitment and a generous ration of faith to overcome
the obstacles, setbacks and frustrations of this long develop
ment and hold firmly to the goals they envisioned. The in
vestment has been high, but it is our conviction that both
the system presently in existence and the potential of the
system yet to be realized justify this development. All of
us envision the day when the paper medical record will be
only a limited archival storage and an instantly retrievable
computer medical record will be the operational mainstay of
the medical profession.

REFERENCES

1. Grossman, J. H., G. O. Barnett, T. D. Koepsell, H. R. Nesson,
J. L. Dorsey and R. R. Phillips, "An Automated Medical Record
System," J.A.M.A., Vol. 224, No. 12, pp. 1616-1621, 1973.

2. Barnett, G. 0., "The Modular Hospital Information System,"
Computers in Biomedical Research, Fourth Volume, edited by Bruce
Waxman, Ph.D. and Ralph W. Stacey, Academic Press, in press.

3. Greenes, R. A., A. N. Pappalardo, C. W. Marble and G. O. Barnett,
"Design and Implementation of a Clinical Data Management
System," Computers in Biomedical Res., 2, pp. 469-485, 1969.

A status report on the TICCIT project

by C. VICTOR BUNDERSON

Brigham Young University
Provo, Utah

In September of this year, two TICCIT systems installed
at Phoenix College and the Alexandria Campus of Northern
Virginia Community College will be operating with students
in mathematics and English courses. This will begin the first
phase of a two-year study involving the evaluation, improve
ment, and the demonstration of the concepts of learner
controlled courseware administered by a low-cost computer
controlled television system.

The TICCIT system, unlike other CAl systems produced
by manufacturers or engineering-oriented laboratories, is
designed around a set of educational goals and instructional
principles. Goals for institutions, including low cost, reduced
time to complete material, and increased enrollment, in
fluenced the design of TICCIT. The goals also include
content goals related to the mathematics and English content
programmed for the system. Perhaps the most innovative
goals are those for students, which include mastery, efficiency,
improved learning strategies, improved attitudes of approach
rather than avoidance, and responsibility. Other goals relate
to creation of some new roles of teachers and other educators
who will be involved with this complex system. For computer
assisted instruction to survive in existing educational
institutions, it must serve the needs of teachers, as well as the
needs of students.

167

Developmental versions of the TIC CIT system have been
in operation at Brigham Young University for more than a
year. During the last few months, software became available
so that editing, debugging, and student tests could be
accomplished on the system. Preliminary generalizations
from the authoring process, student tests and from other
experiences using this evolving system are the subjects of
this paper.

The presentation was organized around the goals described
above. First of all, the hardware and software were briefly
described and their relationship to the institutional goals
were delineated. Second, experiences with the system as an
innovation in courseware authoring, inputting, debugging,
and evaluating student data were discussed. While it was
still too early to discuss data from student tests, which had
barely begun as this conference coilvened, an informal
description of students' early reaction to a learner control
command language was given.

One result of the TICCIT project has been to develop an
implementation plan describing, among other things, the
proposed new roles of teachers in the new system. Progress
toward the definition of teachers' roles in this system was
briefly described.

What classroom role should the PLATO 'computer system play?

by ROBERT B. DAVIS

University of Illinois
Urbana, Illinois

Inserting computers into the ecology of an elementary
school classroom involves a combination of promise and
uncertainty that parallels similar technological innovations in
other areas, whether heart pacers, artificial kidneys, tran
quilizers, atomic power plants, transportation, food produc
tion or virtually any other area one can think of. In each
instance we lack a complete description of the original ecology,
and we cannot be, a priori, fully aware of new possibilities.

This note explores a small part of this territory in the case
of the PLATO computer system, as used in relation to
elementary school mathematics and reading. Our purpose is
to emphasize the large range of possible roles that computers
might play, probably with varying degrees of effectiveness.
Because of the many possibilities it should become clear that
the question "Can PLATO teach?" is improperly phrased,
and should be replaced by the question "What useful roles
can PLATO play in the classroom?"

THE PLATO SYSTEM

From a student's point of view, the PLATO computer
system is a terminal with a screen somewhat like a television
set, plus a keyboard somewhat like a typewriter. In fact, the
screen is a plasma panel, consisting of a quarter of a million
tiny, independently controlled points of light, in the form of
minute bubbles of neon gas. Because the plasma panel uses
digital data, it is absolutely free from distortion of the kind
that limits the usefulness of CRT's. The information rate
into each terminal precludes showing "movies" a la TV, but a
considerable amount of animation is possible-a train can run
across the screen, for example, or a bird could fly across.
A touch panel allows the computer to kno"\tTI where a child
touches the panel, if he does. A random access audio unit
allows the computer to "talk" to students with good quality
reproduction of the human voice, or of other sounds. Slides
can be sho"TI on the screen, via rear-view projection.

In fact, although students are ordinarily unaware of it,
these terminals are connected to a time-shared computer
(CDC 6000 series). The screen can be thought of as the page
of a book on which the computer can write or draw, the child
can write or draw, and modest animation is possible, plus
pictures from the rear-view projection of slides. The use of a
large time-shared computer means that many programs or

169

"lessons" are simultaneously available (the "Library of
Congress" effect), together with a considerable amount of
computing power. The computer keeps records on the
performance of each student during his or her previous
sessions with the terminal.

THE "NATIONAL DEMONSTRATION" OF PLATO

Obviously, the PLATO computer system is a powerful and
flexible tool that should be capable of playing many useful
roles in the classroom. To begin to test these possibilities, an
official "demonstration" is under way, costing approximately
8 million dollars. During the academic years September
1974-June 1975 and September 1975-June 1976 PLATO
will be in operation with a reading program in kindergarten
and grade one, and a mathematics program in grades 4, 5,
and 6, with 100 terminals in elementary schools in Champaign
and Urbana, Illinois. The results will be observed and
described by Educational Testing Service, of Princeton,
New Jersey.

The goal of this demonstration is to identify one or more
useful roles that PLATO can play in elementary school
classrooms.

CHILDREN'S MATHEMATICAL THOUGHT

As one part of the job of getting ready for this demonstra
tion, the PLATO courseware group has been studying the
mathematical thinking of children who are in grades 5, 6, and
7 in an individualized paper-and-pencil school mathematics
program that does NOT use computers.l This has given us a
direct view of how these children solve and discuss various
mathematical problems, from which we can infer a great deal
about the way they think about mathematics. From this, and
from direct observation of the school program, we can infer
what transactions are taking place in the classroom, and how
the cumulative experience with these transactions is effecting
the child's thinking.

One typical result is the following: the school program
presents the child with a pamphlet showing an illustrative
example, followed by problems of the same type for the child
to work out. When completed, this pamphlet is turned in,
corrected, and returned to the student with an indication of

170 National Computer Conference, 1974

which problems were solved correctly, and which are wrong.
Among the transactions that do not occur are: students
talking about their work to adults or to other students,
experience in physical uses of mathematics (as in making an
accurate scale drawing of the school playground), and student
diagnostic analysis to decide how to attack a problem (since
problem sets are homogeneous).

A fifth-grade girl in the program, asked to add

. 3 + .4 =

wrote

.3 + .4 = .7 .

Asked to add

3. + 4.

she wrote

3. + 4. = 7.

but, asked to add

.3 + 4.

she wrote

. 3 + 4. = .7.

How large is .7.? Is it bigger than 6, or smaller than I? She did
not know. The symbol .7. was of course meaningless to her,
but this did not trouble her; many of the notations of
mathematics were meaningless to her, and she had learned to
accept that situation gracefully. To her, those little periods
were something to be copied as one who does not speak
French might copy accent marks in copying a French
sentence.

This example is typical of students in this school program,
and in toto such examples seem to support the assessment that
math in this program was presented essentially as a matter of
meaningless symbols, and learned as meaningless symbols.

THE ECOLOGY OF THE CLASSROOM

Assuming that what a child learns is influenced by the
transactions in the classroom it becomes important to study
these transactions. We are thus asking: "What can we learn
about the ecology of the classroom BEFORE we allow
computers to intrude there?"

As a suggestion of the variety of things that go on, we offer
the following imcomplete list.

What do teachers do?
They arrange for a child to have a new experience (by

taking the child to a zoo, or by showing a film, or by
handing the child a thermometer, etc.)

They encourage the child to talk about that experience.
They orchestrate, if they do not compose, the curriculum

(and some teachers compose it).
They explain something new by reference to things that

are more familiar.

They arrange for student A to help student B.
They review things the child has done, and encourage

him to reinterpret his experiences.
They demonstrate how to do something.
They suggest things to get a child started on a new line

of thought.
They supervise.
They observe a student, and offer constructive criticism.
They show appreciation for student work or student

discoveries .
They provide drill (as with flash cards for addition facts).
They lead a child to recognize some of the consequences

of his thinking, a kind of elementary school adaptation
of reductio ad absurdam.

They assign tasks.
They set goals.
They administer tests or other diagnostic procedures.
They help establish values and priorities.
They listen when a child needs an adult to talk to.
By their physical presence, they reassure.
They give a child the sense that someone cares about

him, remembers who he is, recognizes him, and remem
bers what he did yesterday.

They set expectations .
They answer questions.
By their own behavior, they set an example (for instance,

some children believe at first that in order to read you
must know the story from memory beforehand, and
they "read" this way, until it suddenly dawns on them
that the adults are doing something different-namely,
decoding the written symbols).

They guide a student performance.
They dole out helpful hints.
They influence the social reward system (but they

cannot usually control it to the point of total denial of
peer-group inputs).

But-a child is not alone in the room with the teacher.
Other children play a major role. If, for example, a child
hears other children recite, he may develop his ability to
listen critically for weak spots in the other child's argument,
or to identify hints that he can use himself. He will be subject
to "social facilitation," acquiring goals from high-status
children who have those goals. If he wishes to enter an
argument, he may get practice in developing alternative
conceptualizations, much as an attorney finds a way to
construe a case. He is surely aware of how other children
appraise his performance.

Perhaps the most important step a student takes is to
accept a social contract to allow others to influence what he
does and even how he thinks. The different extent to which
two students do this may be the major difference between
them.

Another important thing that students do is to work out
their own rational explanation of what seems to be happening,
in the form of explanatory rules or goals.

Students also, and to varying degrees, explore, discover,
practice, make original creations, learn to take pride in their

What Classroom Role Should the Plato Computer System Play 171

work, learn to organize their time, learn different ways to
deal with different people or different situations, learn to
resolve internal conflicts, and so on. Students may (not often
enough) study problems in order to work out their own line
of attack. They develop heuristic analysis strategies. They
learn to have confidence in some things, and not to have
confidence in others.

Typically, in mathematics, teachers do NOT explain a task
clearly, but instead carry it out, and leave students the job
of inferring the goal from observing and imitating the
activity. A few teachers reverse this, and make sure the
children have a clear understanding of the task, after which
the teacher leaves it up to the child to devise a method of
carrying out the task (this is one variant of "discovery"
teaching).

Other things happen: teachers teach some things badly;
some important items are left out altogether; teachers
themselves learn a great deal in their o~-n classrooms, about
children in general, about specific individual children, and
about the curriculum subjects (for example, from textbooks,
reference books, etc.). Outside of the classroom, teachers
learn from in-service courses and from independent study.

WHAT PLATO IS TRYING TO DO

Which of the items on our list-or on the much longer lists
that can be made-should PLATO attempt to address?
Which are logical, or "natural," tasks for PLATO? We can
get some guidance from past PLATO experience: for example,
it does not seem natural for PLATO to try to answer questions.
Most questions are badly stated, and often very specific to
that setting. Although PLATO offers CAl lessons on
PLATO authoring in the TUTOR language, most novice
programmers seek human question answerers, and their
questions are often as specific as "Why is my program doing
this (with a demonstration)?" Children's questions tend to be
even more obscurely stated, and even more situation
specific. When one really has a question, usually part of the
difficulty is that one is unable to state it clearly.

Can PLATO show a student the consequences of his own
thinking, in a reductio ad absurdam fashion? We have one
modest start in this direction, in a lesson on average velocity,
authored by Bruce Sherwood, and designed for university
students: if a student gives a wrong formula for average
velocity-say, vrvi-PLATO states a simple word problem
("A car accelerates uniformly from 40 mph to 60 mph. What
is its average speed during this acceleration?"). Students
nearly always answer this correctly (50 mph). Then PLATO
responds: "But your formula VrVI gives 20 mph."

Can this technique be extended into elementary school?
Possibly, but the misconceptions of elementary school
children are considerably deeper and more elusive, and one
would need a very clear presentation of the contradiction
before one could convince them. (At present we are not
attempting this.)

For the present 5th grade mathematics courseware, we are
recognizing four aspects of mathematical knowledge, and

explicitly pursuing three of them. The four are:

(i) knowing meanings (usually in concrete terms) of the
various symbols, operations, concepts, etc.

(ii) skill in symbol manipulation
(iii) competence in using heuristic problem-analysis strate

gies
(iv) having appropriate attitudes and expectations.

We deal with the fourth, above, only implicitly; the first
three we tackle explicitly.

Some of the methods used can be suggested by a few
examples:

Example 1. "Darts and balloons." A vertical number line
appears on the screen, with 0 and 1 indicated. The line can be
interpreted as a wall, to which (using random numbers)
PLATO attaches five balloons. If a student types ~ (or 0.5,
or 7,i + 7,i, and so on), a dart flies across the screen and
thuds into the wall one-half of the way from 0 to 1. If it hits
a balloon, the balloon bursts.

The simplest goal of this learning experience is to guarantee
that children have a reasonable notion of the size of any
common fraction. But more is possible; children transform
this into many different lessons. One girl typed -g., not near
any balloon; but, with the distance from 0 to -g. available to
her as a unit, she measured this off with her fingers, and
found ~ for n = 2, 3, and 4. If she found a balloon, she burst it.
If any remained, she tried ~; and so on.

One adult studied the tolerance-how close to the mid-line
of a balloon must you hit in order to burst the balloon?

This should serve to remind us that learning experiences
are complex things, not easily described, and not identifiable
by brief statements of simple objectives.

Example 2. The Game "WEST." This is, in effect, a board
game. The game board, and three spinners, appear on the
PLATO screen. By pressing a key, the student "spins" the
spinners, thus obtaining integer values for NI, N2, and Ns.

Under simple rules (e.g., no operation sign used more than
once), the player forms an expression (such as NI X (N2 +
N s)), and-provided he states the value of this expression
correctly-he moves forward by this amount.

The evident explicit goal here is to provide a large amount
of painless practice in arithmetic; but notice that there are
also other goals: for example, to get students started thinking
about the maximum value of such expressions.

Example 3. Names for Today's Date. In pursuing some of
the possibilities for letting students create, letting them be
pround of their work, letting them share and compete with
one another, a lesson has been designed that says: "Today's
date is November 7 (or whatever it is). What names can you
make up for today's date?" The student now enters whatever
names he chooses, such as

2 X 3~

(rnd(1I"2» - (9)+112

Mter he has entered as many names as he wishes, he

172 National Computer Conference, 1974

presses the "NEXT" key, and PLATO displays the complete
list of all names entered thusfar, including his own, with the
names of the students who entered them. He now-having
looked at the work of the other students-may enter still
more names if he wishes.

Example 4. Programming PLATO. This lesson sequence
also deals with allowing children to create within mathe
matics, much as they would in art or poetry-specifically,
they can create original computer programs. The program
ming language is pictorial, and is developed by touching
pictures on the PLATO screen. Sub-routines can be created,
named, and used by name as instructions in future programs.
A typical program might put trees in various locations,
outline a street, then have a boy cross the street just in front
of a car that drives down the street.

This is an experimental venture, the value of which may
not be known for some time.

Example 5. The definition of fractions. What is interesting
in this sequence is the underlying teaching strategy: the
sequence begins with something children know very well
indeed-whether a chocolate bar has been shared fairly, or
not, among two, three, or four children. So the action is
familiar; but while this familiar action is being carried on, it is
being discussed in the language of fractions-thus, the first
introduction of this language is by use, not definition. After
some use, a new level is reached: operating on a "meta" level,
PLATO and the student cycle back through what they have
just done, but this time, instead of doing it, they analyze it.

Example 6. Interterminal Games. Two or more terminals
can be interconnected (by the courseware) so that children
can play games against live opponents, in real time.

Summary

Obviously, PLATO can attempt to address a fairly
sizable range of typical classroom activities. Courseware is
now being created to pursue a scattering of these. Presumably
other classroom transactions would not be natural (or feasible)
on PLATO. For the National Demonstration, we hope to
show that there are some classroom tasks which we have
correctly identified as appropriate and feasible via PLATO.
On a few of our nominees we may fail to achieve success,
either because the task is unsuitable, or else because we have
not created appropriate courseware or appropriate conditions
of use.

THE SESSION SELECTOR

On PLATO, one has great freedom in deciding whether
choices are to be made by the children, or by the teacher, or by
PLATO itself. "When the choice is made by PLATO, the
Session Selector program does it.

Good lessons, like good concerts and good chess games,
have a beginning, a middle, and an end. The Session Selector
plans PLATO lessons this way, choosing first the main
course, which will appear to the student in the middle slot.
This choice is the most carefully made, and utilizes the records
of the individual student, plus the curriculum tree. After the
choice for Slot II has been made, appropriate review or
introductory material is chosen for Slot I; some appropriate
games or other favorites of the children are then made
available for Slot III. Although PLATO plans in the order II,
I, III, the student of course encounters the slots in their usual
order: the lesson begins with the Slot I selection, then goes on
to Slot II, and ends ",-.jth the Slot III games.

INTERACTIONS BETWEEN USE AND
HARDWARE/SOFTWARE

It is probably obvious that the way PLATO is used in
schools shapes the demands on the hardware and. system
software, and is in turn shaped by the capabilities of the
hardware and the software. We cite one example: the
allocations of extended core storage (ecs) on PLATO
originally assumed that, on the average, twenty students
were using the same lesson at the same time. A few years ago
this might have been feasible-schools commonly had "a math
period," "a reading period," and so on. It was not unusual for
the teacher to say: "All right, children, now let's everyone
turn to page 43 in our readers." Today, in the schools we are
working with,this would be unusual. They have moved
toward the "integrated day" approach; time is no longer
subdivided, but space is-there is no "reading period," but
there is a "reading corner," and there's always somebody over
there reading. To accommodate to such schools, it has been
necessary to rearrange memory allocation on PLATO, so
that, on the average, it is necessary for four students to be
using the same lesson. Since, when fully developed, PLATO
may be serving 2,000 students at the same time, the 4-to-l
average may not impose too severe a restriction.

THE SHORT TERM VALUE OF PLATO

There are long-term hopes that PLATO may be an effective
economy option, highly cost-effective because it makes the
classroom more capital intensive and less labor intensive, and
that the use of PLATO may significantly improve the quality
of education. Both of these hopes may be realized, but
probably not immediately. For the Rhort term; PLA1'O is at
a developmental stage, where the task confronting us is to see
which classroom transactions we can handle well via PLATO,
and to acquire the means of doing so.

But even in the short run, PLATO has considerable value
as a research tool: as more classroom jobs are assigned to
PLATO, we gain a far greater degree of control over what is
going on in the classroom, which allows us to get far better

What Classroom Role Should the Plato Computer System Play 173

data on the importance of different kinds of transactions. The
will-o'-the-wisp elusiveness, subtlety, and complexity of
traditional classrooms never allowed us, for example, to study
the effect of omitting much or all of the usual arithmetic drill,
inserting instead games such as WEST that provide less
controlled experience with arithmetical operations. In the
traditional open classroom, as Featherstone2 points out, one
often found that every child had learned to read, but you
could not identify when, where, or how this had taken place.
PLATO should give us a far greater ability to pinpoint the
contributions made by the various kinds of activities and
transactions, which in turn allows one to plan the future role
of PLATO on the basis of a more secure rational theory.

BIBLIOGRAPHY

1. Erlwanger, S. H., "Benny's Conception of Rules and Answers in
IPI Mathematics," Journal of Children's Mathematical Behavior,
Vol. 1, No.2, Autumn, 1973, pp. 7-26.

2. Featherstone, J., Schools Where Children Learn, Liveright, NYC,
1971.

3. Davis, R.,· "Observing Children's Mathematical Behavior as a
Foundation for Curriculum Planning," Journal of Children's
Mathematical Behavior, Vol. 1, No.1, winter, 1971-72, pp. 7-59.

4. Hammond, A. L., "Computer-Assisted Instruction: Two Major
Demonstrations," Science, Vol. 176, June 9, 1972, pp. 1110-1112.

5. Bitzer, D. L., B. A. Sherwood and P. Tenczar, Computer-Based Sci
ence Education, CERL Report X-37, May, 1973, University of Il
linois, Urbana, Illinois.

Computer assisted instruction comes of age in a public school
system

by WILLIAM M. RICHARDSON

Montgomery County Public Schools
Rockville, Maryland

INTRODUCTION

During the late 1960's a number of public schools began
experimenting with the development and use of computer
assisted and computer-managed instruction. Funding for
these public school projects. was provided primarily by
Title III of the Elementary and Secondary Education Act of
1965, or other sources of federal funds. Due to the reduced
availability of federal funding, few new public school CAl
projects have been initiated since 1970. It is, however, very
encouraging to analyze the results of the few active public
schools CAl projects.

The paper will provide evidence that CAI/CMI can
produce increased achievement when properly integrated into
the instructional process. In deference to some of the early
concerns with the application of computer technology, it will
be shown that the computer can in fact provide greater
individual and personalized instruction to students. Although
computer-assisted and computer-managed instruction are not
today cost-affordable when applied to all students within a
school system, it will be shown how the use of CAl can be
cost-justifiable for selected student target populations. In
addition, public school systems have shown that they can
effectively work with computer technology as both users and
developers. The concluding premise of the paper is that the
public education sector is rapidly approaching the time when
it can effectively utilize widespread CAl as a direct aid to
the instructional program.

BACKGROUND

The MCPS Title III CAl Project go~.ls were the demonstra
tion of the feasibility of computer-assisted instruction as an
instructional medium and the assessment of its role in the
K-12 public school setting. The project currently utilizes 31
time-shared computer terminals cable connected to the
IBM 1500 instructional system. The project fulfilled its
stated objectives by (1) developing, using, and evaluating
over 40 modular instructional CAl and CMI packages, (2)
providing the Montgomery County Public School System
with a cadre of 70 individuals capable of developing and using
CAl instruction, (3) providing an orientation to CAl to

175

approximately 5,000 school administrators, supervisors, and
teachers, and (4) making recommendations to MCPS con
cerning the future implementation of CAL

Program design teams composed of project staff and
classroom teachers developed approximately 40 modular
instructional packages, most of which are in the mathematics
and science areas. The instructional design for each program,
including objectives, entering behaviors, hierarchy, and
strategy has been completely documented in the Project
Reflect Title III Final Report, June 30, 1972.

Federal funding for the project ended in June 1971. Since
that date, MCPS has supported a staff of 12.5, maintenance
on the computer and all additional expenses of the program.
The manufacturer is providing the computer system lease free
for instructional purposes.

RESULTS

Experiences over the six-year period have shown that
learning and teaching philosophies could be altered, and that
individualization with computer support is logistically feasi
ble. When school faculties are provided ,vith valid CAI/CMI
materials related to student needs, teachers are able to
integrate new technology into the regular instructional
process. In this connection, experience has shown that
teachers need time and training to effectively utilize these
materials. In addition, it was found that selected teachers
have the talents and interests to develop effective indi
vidualized CAl modules.

Year-long research studies on achievement, class size, and
teacher-student interaction were completed in June 1972.

Results of these studies showed that:

1. Fifty-eight matched pairs of sixth-grade students with
one-half hour weekly CAl experience as part of their
regular arithmetic made significantly greater mean
gains in achievement (t = 2.08, df = 114, p<.05);

2. High school students in two computer-managed geom
etry classes, which averaged over 33 students, showed
no significant differences in mean gain scores than
students in three traditional classes 'ltith an average
of 23 students (t = 1.23, df = 81, n.s.); and

176 National Computer Conference, 1974

3. Secondary mathematics students enrolled in three
classes with CAl and CMI support received signifi
cantly more individual attention from their teachers
than students in three traditional classes (F = 38.78,
df = i, P <.01).

In addition, a mini-study with a few special education
students was conducted in one secondary school. Ten students
from this school participated in a four-month study to
determine if they could benefit from the use of the arithmetic
materials prepared for the regular school population. Results
of this study, in which the analysis of data was prepared as
though the average I.Q. were normal, showed significantly
greater gains in achievement than could be expected in the
time period allotted (t = 2.71, df = 9, p < .05).

Evidence collected by the CAl Program and substantiated
by other CAl installations showed that the hardware system
and terminal components used for instruction must function
in a reliable manner and that the response time for students
must not exceed three (3) seconds.

IMPLICATIONS

It would appear that with minimal use at the elementary
school level, students can be expected to increase their
proficiency in basic arithmetic skills. Four terminals per
school can provide 300 students a half hour CAl session each
week and result in significant achievement gains.

When computer support for diagnosis and prescription is
provided, students can receive significantly more individual
attention from their teachers. In secondary schools utilizing
the computer for management in geometry, class size may be
increased with no loss in achievement.

Students in special education present a different kind of
problem and require special consideration. However, it may
be that computer-assisted instruction serves as a means by
which the less able student can effectively organize his
mathematical thinking. Every student who was pretested and
posttested in this study showed a gain in arithmetic scores.

THE YEARS AHEAD

The CAl Program has acquired strong evidence that
computers can have an important role in the instructional
process. Although it is anticipated that CAl will be economi
cally feasible for wide-spread utilization within 3-5 years, it
must be understood that with the existing IBM 1500 CAl
system or the proposed IBM 370 system' that CAl is not
currently economically feasible for all students. Therefore,
the use of this technology should be limited to instruction for
those students for whom the significant achievement gains
justify the expenditure of extra dollars. To be specific, it is
recommended that CAl be provided to those students who
are achieving below grade level, to special education students,
to those situations where increased class sizes can help
displace hardware costs, or for computer education courses
and problems solving which requires computer support.

Based upon the experiences of the last six years, results of
evaluation studies and cost analysis, two major CAl Program
thrusts are anticipated for the 1974-75 school year, elementary
arithmetic and secondary mathematics.

ELEMENTARY ARITHMETIC

Validated CAl arithmetic packages will be provided to
students achieving one or more years below grade level in 13
elementary schools. This will provide approximately 4,000
students with 30 minutes per week of CAl diagnosis and drill
in operations with whole numbers, fractions, and percents.

The CAl arithmetic materials will be provided to under
achieving students based upon the following predictions:

1. That the achievement of at least 90 percent of the
underachieving students using the CAl programs will
be at or above grade level in arithmetic within two
years. This means that a child entering the fourth
grade one or two grade levels behind, will enter the
sixth grade at or above grade level in arithmetic
skills. The total two-year cost per student will be $216.
This amount will provide the student with CAl for a
one-half hour period for each week for two years at a
cost of $6 per hour which covers computer, staff,
communications, and all other program costs.

As computer equipment and instructional terminal
costs are projected to decrease dramatically within the
next five years, the cost for improved arithmetic
achievement should be reduced from $216 to $72 or
less per student for a similar two-year period by 1978.

2. That arithmetic achievement for students in special
education will be substantially increased above ex
pectancy. It is predicted that 80 percent of these
students will achieve an increase in arithmetic skills of
one grade level per school year. The cost for this
achievement is $108 per student per year, which will
provide one-half hour per week of CAL By 1978, it is
projected that similar results can be obtained for
special education students for $36 per year.

The above projections are supported by evaluation data
collected at the CAl Program. The 1971-72 sixth~grade study
showed significantly greater achievement through CAl than
by traditional instruction. A retention study conducted in the
fall showed that these significant gains were maintained. In
addition, using the Iowa Test of Basic Skills arithmetic scores
given in October 1972, showed the CAl students with a mean
grade score of 7.52, and the control students with a mean
grade of 7.02. A 1972-73 fourt.h-grade study showed that
CAl students made an average gain of 7.7 months in four
months as compared with the control students mean gains of
4.5 months. An examination of the low halves showed the
CAl group making a mean gain of 5.74 in raw score as
compared with the control with a mean gain of 2.68 in raw
score. All of the above CAl students received CAl 30 minutes
per week.

Computer Assisted Instruction Comes of Age in a Public School System 177

During the past three school years, students from a special
education high school have used the CAl arithmetic pro
grams at Einstein High School. The average gain for these
students during the 1971-72 school year was 7.6 months after
40-50 minutes of CAl use per week during a four-month
period. During the 1972-73 school year, these students made
a mean gain of one year in arithmetic achievement using CAl
for an average of only 17.8 hours. National studies which
have been conducted with mentally retarded adolescents
show that achievement in the basic skills is difficult to
maintain and increased achievement is rare. Special education
students whose basic skills are improved will be able to
perform simple clerical tasks and therefore increase the
possibilities of their securing gainful employment.

SECONDARY MATHEMATICS

One computer-managed (CMI) and ten computer-assisted
(CAl) instruction packages will be provided to 7 senior high
schools beginning in September 1974. The two objectives for
this action are:

1. To provide greater individualization and personaliza
tion with equal or greater achievement at potentially
lower cost. Classes with computer management support
may have 40 percent more students than classes
without this technology; and

2. To increase achievement for students who are
underachieving.

Computer support to the secondary mathematics program
is based upon the following predictions:

-That computer-managed geometry classes can be indi-

vidualized. Class size can be increased by 40 percent and
each student will receive significantly more individual
attention from his teachers than in traditional classes.
Students will achieve as well or better than in traditional
classes with average or underachieving students achieving
above expectancy. Increasing the number of students in
six classes will offset $7200 of the $18,000 program costs
per school.

-With two nationally known computer hardware developers
predicting a cost of 60¢-80¢ per terminal hour by 1978,
the $18,000 terminal cost will be between $3600 and $4800
per year against a saving of $9000 in teachers fa~aries
(assuming a conservative 5 percent per year salary
increase). This would represent a net savings of between
$700 and $900 per section of geometry per year.

CAl Program data supports the above statements on
individual attention and overall achievement. A doctoral
study by a MCPS administrator provided the information
relative to average students in CAl classes achieving above
expectancy.

SUMMARY

As in MCPS, other school systems that are active in CAl are
moving forward and will be providing CAl exposure to
greater and greater numbers of students. This trend marks a
significant departure from the CAl activities of the last few
years, and will provide expanded knowledge on the implemen
tation planning necessary to achieve widespread effective
utilization of CAL The author feels that school use of CAl
may, at least, be moving into the next phase of the implemen
tation cycle.

Experimental data on page replacement algorithm

by N. A. OLIVER

General M otars Research Labarataries
Warren, Michigan

INTRODUCTION

Although paged VM (Virtual Memory) systems are being
implemented more and more, their full capabilities have not
yet been realized. Early research in this field pointed to
possible inefficiencies in their implementation.1-3 Subsequent
studies, however, led to the conclusion that paged VM
systems could provide a productive means to run large
programs on small main memory, if proper techniques are
employed.4-7 One of the most influential of these is the
choice of an efficient page replacement algorithm (RA) to
minimize page traffic between the different levels of memory.

This paper compares the performance of two RAs about
which little system performance measurement data is avail
able. They are: the Global Least Recently Used (LRU) and
the Local LRU with fixed and equal size main memory
buffer allotted to each task. The number of page faults
caused during execution of programs under each RA is used
as an inverse criterion for its effectiveness.

These studies were conducted at the General Motors Re
search Laboratories (GMR) on the CDC STAR-IB* Virtual
Memory computerS (core size = 65K of 64 bit words; aux
iliary /main memory access time ratio of 50000) with the
Multi-Console-Time-Sharing (MCTS) operating system. 9

PAGE REPLACEMENT ALGORITHMS

A basic problem in paged VM systems is deciding which
page should be removed from main memory when an ad
ditional page of information is needed. Obviously, it should
be a page with the least likelihood of being needed in the
near future. Therefore a simple criterion for the "goodness"
of a page RA is the minimization of page traffic between the
main and auxiliary memories which is measured by the
number of faults that occur during program execution.

One of the most popular page replacement strategies is
LRU (Least Recently Used) strategy. The following RAs are
based on it:

1. Global LR U RA: The replaced page is the one that
has not been referenced for the longest period of real

"' STAR-IB is a microprogrammed prototype version of the STAR-IOO
CDC computer.

179

time, regardless of the task to which it belongs. This
RA, which is a varying partitions RA by default, is
heavily considered in literature.5,10,l1 Comparison re
sults with various RAs obtained via simulation tech
niques and interpretive execution1,12,13 are available.
However, few if any (non-simulation) system mea
surements have been conducted. Existing (and fully
developed) VM operating systems utilizing variations
of this RA known to the author are: CP /67,14,15
Multics,14,16 MTS,14 VSF7 and VS2.1S

2. Local LRU ",ith fixed main memory paging buffer
per task RA: The least recently used selection is
made from pages belonging to the task which gener
ated the page fault. Some treatmentl,4,10,13,19,20 and
measurements of this RA were found in literature.
However, only one operating system (besides the
interim version of MCTS) implements a remote vari
ation of this RA. It is the original IBM version of
TSS.14,21

3. Local LRU with varying (working set)5 partitions
RA (WSRA): The replaced page is the least recently
used page which does not belong to a working set of
any task. Extensive literature is available.4,5,6,7,l1,13,19,
20,22,23,24,25 Two true implementations (Burroughs
B670026 and CP /67 at IRIA France26) and one ap
proximation (the current version of TSS27) of this
RA are known with limited measurement results.

Due to the implementation difficulties of the WSRA, only
limited (special-case) measurements were taken of it.

THE TESTING ENVIRONMENT

System characteristics

Page-table: The STAR computer page-table2S provides an
address translation mechanism for all memory references. It
points to pages of main memory in use and provides the
mapping between the virtual address and the physical lo
cation of a page. The page-table ordering is hardware main
tained; its entries (one for each page) are LRU ordered.
Thus, the most recently accessed pages migrate to the top
of the table while the least recently used move to the bottom.
(The difference in address translation time between top and

180 National Computer Conference, 1974

TABLE I-Results of Identical-tasks Test

Number of
Customer tasks tested terminals

Malus compilation of 185 source lines
2
3
4
.5
6

Malus compilation of 450 source lines 1
2
3

OPL compilation of 160 source lines 1
2
3

OPL compilation of 575 source lines 1
2

INV matrix inversion 2ooX200 1
2
3

LIST _ CA T sorting routine
2
3

P ANICD dump formatting routine 1
2
3
4

bottom entries of the page table, due to longer search time,
is insignificant relative to the other system time parameters.)

Level of multiprogramming: The MCTS operating system
can be multiprogrammed up to a level corresponding to the
maximum number of terminals supported by the system,
which is seven.

Scheduling: A round robin scheduling scheme among the
multiprogrammed tasks is employed. Tasks which are in
page or other I/O wait state are skipped. 'When a task's
time-slice expires that task is replaced by a task waiting for
service and which is also chosen in a round robin fashion.
If none is waiting the task with expired time-slice is allowed
to continue. (In this study the level of multiprogramming is
always equal to the number of running tasks and thus the
time-slice parameter is not utilized.)

Paging space: It includes a maximum of 92 pages. Each
page contains 512 64-bit words. On the interim MCTS
system, this space is equally divided among the multi
programmed tasks.

Paging mechanisms

In the interim version of ~1:CTS, each task has a private
page-table. Depending on the paging space, each multi
programmed task is allotted a fixed number of pages. The
Local LRU RA is used for page replacement.

For comparison purposes, MCTS was reprogrammed with
the Global LRU RA. Only the paging mechanism was
changed. No other system parameters such as multipro
gramming, scheduling, paging space, etc., were modified.

Global LRU Local LRU Local/Global Extreme paging
(#P.F.) (#P.F.) LRU buffer

88 88 1.000
245 488 1.991 23-68
627 2241 3.574

3765 4674 1.241
6049 7863 1.299
9348 13901 1.487

119 119 1.000
428 4078 9.528 18-73

10474 11943 1.140
86 86 1.000

133 242 1.819 30-61
446 751 1.683
143 143 1.000
382 917 2.400 24-67
103 103 1.000

15524 15548 1.001 45-46
15628 15688 1.001

104 104 1.000
116 120 1.034 43-48
125 190 1.520
448 448 1.000
461 477 1.035 44-47
490 498 1.016
520 519 0.998

The modifications for the Global LRU involved the use
of a single page-table for all the customer tasks. All available
pages in main memory were put into a general pool. When a
page fault occurred, the Global LRU page which was the
last entry in the hardwar~managed single page-table, was
replaced. No sharing of pages was allowed.

TESTING TECHNIQUES

In an effort to choose typical and diverse applications,
these GMR developed customer tasks were tested:

Malus-A compiler for PL/I-like language designed to
generate object code for the STAR computer. Two compila
tions, one of 185 and the other of 450 source lines were
measured.

OPL-A compiler for computer graphics language. Again,
two compilations, one of 160 and the other of 575 source
lines were examined.

INV-A matrix inversion routine. Measurements were
taken for inversion of a 200X200 order matrix.

LIST_CAT-A sorting routine. For this study a list of
700 names was /Surted in several different orders.

PANICD-A compute-bound routine designed to format
MCTS core dumps for printing. It formatted about 50000
words for these tests.

The tests were performed by running identical and non
identical tasks simultaneously from a varying number of
terminals. Each set of tests was executed twice; once with
the Global LRU system and then repeated with the Local

LRU system. The total paging space was held constant in
each case for both systems.

RESULTS

Identical-tasks test

Table I displays the average number of page faults per
task (# P.F.) generated by identical multiprogrammed tasks
which are running simultaneously on each of the two paging
systems for varying number of terminals. Also included are
ratio values representing the relative performance of the
Local LRU in relation to the Global LRU. (The "extrem~
paging buffer" column will be explained later.)

While experimenting with the Global LRU system, it was
observed that the number of pages used by each of the
simultaneously running tasks varied considerably during exe
cution. On the other hand the number of pages used by
each task with the Local LRU system remained constant
(by design). For example, in the two terminal Malus compi
lation of 450 source lines (Table I), which displays the most
extreme difference, the Local LRU system divided the avail
able 91 pages between the two tasks giving one 45 and the
other 46 pages. With the Global LRU, on the other hand,
tasks competed \vith each other for pages in main memory
and the number of pages which each "owned" as a function
of the elapsed execution time is displayed in Figure 1.

AB these two identical tasks were started at the same
instant, one would tend to think that they would split the
core pages evenly among them and each would occupy close
to half of memory at any given time (as in the Local LRU
case). But as can be seen from Figure 1 this did not happen.
These tasks dynamically changed the number of pages which
they occupied with significant fluctuation.

One explanation might be that while executing, most
programs change their locality5 characteristics and conse
quently their working set size changes. If tasks are allowed
to compete for pages, they tend to accumulate as many
working set pages as they can in order to run effectively.
For this purpose they use pages obtained from other tasks
which at that moment (due to the negligible difference in
starting time) are executing at other stages of the same
program at which they usually have different locality prop
erties and possibly require, or are forced to occupy, a smaller
working set of pages.

In addition, it was observed that even though the above
two tasks, started virtually at the same time, one task
finished executing well ahead of the other. This can be
clearly observed in Figure 1. At the start of execution Task
#1 had 51 pages while Task #2 had only 40. Afterwards in
most cases Task #2 had more pages. At point A Task #2
completed its execution and its pages started migrating to
Task #1. At point B all of main memory belonged to Task
#1. Due to this page migration from one task to the other
and vice versa, Task #2 ran better up to point A and thus
Task #1 was able to run efficiently from point B to com
pletion.

Experimental Data on Page Replacement Algorithm 181

N = Numher of pag"s used by task .1.
(Number of pages used by task t2 = 91 - If)

01~~TTrM~~~~rM~~~~~~~Trnn~
I: 1'1 1111 ': 111 111 ;: I:: 11111111,111111'::1

9') : I : : I : : : : : I : : : : : I I I I I I : I I (I I : I I I I : II I I I ,I
, 1111111111,11111111111 I1I1 1111111

111'1 'II I I I IIII 1111 ,
I I I I 11 TASK 12 I 'I I I' I I' I', , I I I

70 ': I , I I I I I : ' : 1 : ' I : : I : I' I II I II , I I II I' If: I I
" II,:: : : 1'1' l: '1,1,,: III ' II ,1'111 11 ' ,II
I, , III I III : I I'~'II: 11,1 1\ : 11,1: I1III : t I

~5 'Ill'll' III II I I " I I' " 111(11 I' I' '1'1 11
~II'IIIII III f I ,11 11 11'11 I,

4S - ~I"!(T: Iii ~ .. '+rt-tp~l+t
40 It: I ~II" r1 II IIJ : II, , I I

'I'J II t I 111 ,1 1 ',I t I1I11

25
ll, ~ 1'1,1

11 ~~'
10

TASK t 1

TIll 1
50 100 150 200 250-

Elapsed execution time (sec.)

Figure I-Variation in the number of pages "owned" by each of two
tasks while executing under the Global LRU policy

The elapsed execution time with the Global LRU system
was considerably shorter for high Local/Global ratios. But
whenever the ratio was close to one, this time was virtually
equal. As an example, in the case displayed in Figure 1 the
compilation under the Global LRU system lasted only 231
seconds while under the Local LR U system the same com
pilation took 746 seconds.

The compilation cases generated considerably more page
faults under the Local LRU RA. But the difference in number
of page-faults generated is less severe for LIST_CAT, and
there is almost no difference in the INV and PANICD cases.
This could be explained by the different working set char
acteristics of these programs. The Malus and OPL compilers
change their working set sizes dynamically at a high rate
while the rest of the tasks tend to have a fixed size or slowly
changing working sets of pages. An indication of the rate of
change of the working set size, in each case, for a multi
programming level of two, can be obtained from the "ex
treme paging buffer" column in Table I. The figures in this
column represent the number of pages each of the two tasks
"owned" during the most extreme situation for that run
with the Global LRU RA. As the extreme buffer difference
gets larger, so does the performance ratio which is displayed
in the adjacent column of Table I.

N on-identical-tasks test

At this point we felt that although the Local LRU showed,
in some cases, poor performance when running the same
tasks one against the other, it might still be a useful tool to

182 National Computer Conference, 1974

TABLE II- Results of Non-identical-tasks Test

Global LRU Local LRU Local/Global
Customer tasks tested (#P.F.) (#P.F.) LRU

Malus compilation of 450 1075 7239 6.734
source lines

OPL compilation of 575 1017 4271 4.200
source lines

INV matrix inversion 200X 1221 4822 3.949
200

PANICD dump formatting 519 557 1.073
routine

prevent a complete system degradation in cases where some
of the running tasks are in a thrashing state while others are
not. We thought that by having a separate page table and
a fixed number of pages for each task, the thrashing task
would only degrade itself without affecting the rest of the
system.

To test this situation, a four non-identical task mixture
displayed in Table II was simultaneously run from four
terminals. This experiment was designed so that all the
tasks except P ANICD would thrash with both the Global
and Local LRU systems. Under the Local LRU every task
"owned" one fourth of core while under the Global LRU
all tasks compete for pages. Thus P ANICD which does not
thrash when running with one-fourth of core should have
benefited from the "protection" provided to its paging
buffer under the Local LRU algorithm whereas under the
Global LRU the thrashing tasks could affect its performance
by "taking away" its essential pages because they are in
high need for pages.

But as can be seen in Table II, the number of page-faults
which P ANICD generated was not affected at all by the
thrashing tasks.

The explanation to these unexpected results might be that
tasks which are running effectively (PANICD), reference
frequently (and thus "protect") their slow changing working
set of pages. On the other hand the thrashing task needs
many pages, each page for a short interval, and does not
reference the same pages too often. Thus the pages of the
thrashing task are, in most cases, the least recently used
pages which migrate to the bottom of the page-table and
are consequently overwritten. The thrashing task is only
slightly affected by this process since chances are that it will
need many other pages before requiring the pages which were
just lost.

Working set replacement algorithm measurements

As we did not implement this RA which implies use of
varying partitions with varying working-set sizes, we decided
to test at least a special case of it, which is running a task
with a fixed working set size in a fixed size partition.

PANICD has a small and fixed size workhl.g set of pages.

(It contains the procedure pages, one input and one output
data pages.) This fact explains the similar performance of
the Local and Global LRU for PANICD as shown in Tables
I and II. The slight difference in the number of page faults
is attributed to the execution of some system programs
known as "command language" before and after the actual
execution of PANICD. These programs require large and
rapidly changing working set sizes and thus contribute to
the fewer number of page faults for the Global LRU in
most cases.

In order to get relative performance measurements of the
WSRA versus the Global LRU we decided to eliminate the
effect of the "command language" by initiating the measure
ments only after all the multiprogrammed P ANICD tasks
have started their actual execution and terminate the data
collection just before the first PANICD task branches back
to the "command language." Thus a fixed size working set
was required by each P ANICD task at any time.

Since the WSRA requires that each multiprogrammed
task have at least its working set of pages in main memory at
all times, a Local LRU level of multiprogramming which
provides a partition larger then the working set size ",-ill
actually satisfy the WSRA requirements. The results for
running identical PANICD tasks from a different number
of terminals (corresponding to different levels of multi
programming) are presented in Table III.

The column "dump units processed per second" presents
the total number of dump-pages formatted by all the
P ANICD tasks, divided by the elapsed time required to run
all the tasks at each multiprogramming level. Thus this
column represents the real throughput of the entire system.
The other column "number of page faults per dump unit
processed" shows the total number of page faults generated
by all tasks, divided by the total of all the dump-pages
formatted.

The throughput of the system increases with the level of
multiprogramming, for both systems, up to the level of three
and four while the number of page faults per unit dump
remains low. Beyond the level of four both systems are
thrashing and the throughput consequently deteriorates.
Thus under the WSRA policy we would have run the system

TABLE III-System Throughput and Page Fault Frequency for
Increasing Levels of Multiprogramming

Number of Global LRU Local LRU (WSRA)
terminals

(multiprog. Dump units #PF/dump Dump units #PF/dump
level) proc./sec. units proc. proc./sec. units proc.

0.37 4.21 0.37 4.21
2 0.42 4.22 0.42 4.22
3 0.46 4.23 0.46 4.23
4 0.46 4.24 0.46 4.23
5 0.42 7.55 0.42 7.82
6 0.39 11.90 0.40 10.19
7 0.29 20.30 0.31 21.10

at a multiprogramming level not higher than four. But for
levels one through four the Global and Local LRU, which in
this case is identical to the WSRA, perform virtually the
same.

Above the level of four the Local LRU (WSRA) does
show better performance and that is probably due to the
fact that with the Global LRU system a task which is waiting
the longest on the scheduler queue and is the next one to run
its pages become the least recently used ones and are over
written. As this happens only after reaching a thrashing
level of multiprogramming, a Global LRU RA can be useful
only if the system can detect when overloading occurs.
Such a performance monitor (based, for example, on the
page-faulting level of the entire system) could be used to
reduce the multiprogramming level whenever thrashing oc
curs to prevent performance degradation.

CONCLUSIONS

The results of this study strongly indicate that artificially
restricting the main memory space which a task may utilize
in a paged VM system results in an increased page traffic
between the different levels of memory and consequently in
considerable loss of efficiency. Tasks, especially if they re
quire rapidly changing working set sizes, should be allowed
to compete freely for the space which each may occupy at
any given time.

The Global LRU RA performed better than the Local
LRU RA with fixed partitions and matched the performance
of the Local LRU with varying partitions (WSRA), for a
non-thrashing situation, in this study. The following Global
LRU virtues should be noted:

1. It is a simple varying partitions RA in which the
partition size is controlled by the RA itself and not
by the operating system.

2. It is highly unlikely that thrashing tasks can "over
take" main memory and thus "hurt" the performance
of non-thrashing tasks. This is due to the fact that
non-thrashing tasks reference frequently and thus
"protect" their essential pages from becoming the
LR U ones. On the other hand the thrashing task
needs many pages, each for a short interval, and
does not reference the same pages too often. Thus the
pages of the thrashing task are, in most cases, the
LRU ones and are consequently overwritten.

3. Critics of the Global LRU strategy (including the
author7) claim that with the Global LRU RA, the
task which is idle for the longest time while waiting
on the scheduler queue, and which is the next to run
is most likely to find its pages missing. Evidence of
this has been found in these studies. But it turns out
that the space could be utilized more effectively by
the current running task than it would have been if
these pages had been reserved without utilization for
the delayed task.

Experimental Data on Page Replacement Algorithm 183

4. In addition to the performance advantage (reduction
of execution time and number of page faults), the
Global LRU with the single page-table is easier to
manage and requires less operating system space than
the Local LRU with multi-page-tables and fixed paging
buffer system.

The Global LRU algorithm is especially useful for simple
round robin scheduled operating systems. For more sophisti~
cated systems, however, the multi-page-table approach might
be useful due to requirements other than efficiency, such as:
priority scheduling, etc. But since no artificial restrictions
should be imposed on main memory space it seems that the
working-set-partitions RA's such as the WSRA5 and PFF13
might well be the only class of paging strategies able to
perform effectively utilizing multi-page-tables. However, the
WSRA will require a "smart" mechanism to determine the
follmving: (A) The size of the task's working set at anv
given time. (B) When a task is in a working set expansio~
phase and needs more pages, which of the other multipro
grammed tasks will be the one to lose pages. (C) What
action should be taken when there are a few available pages
in core but not enough to start a new task. In the Global
LRU case no information about (A) is needed; the decision
about (B) is trivial; as for (C) the new task is started and
it "fights" to build its working set from pages which are
probably non-useful to other tasks.

The WSRA has a clear advantage over the Global LRU;
It prevents system overloading. Thus if the Global LRU is
to be used, a special system performance monitor could be
used to reduce the level of multiprogramming whenever over
loading occurs.

ACKNOWLEDGMENT

I wish to thank G. G. Dodd for his support of this study and
advice on organizing the paper. Also I am grateful to R. R.
Brown, J. W. Boyse, M. Cianciolo and the rest of the MCTS
personnel for their cooperation. Last but not least I wish to
thank P. J. Denning and W. W. Chu for their constructive
criticism of this paper.

REFERENCES

1. Coffman, E. G. and L. C. Varian, "Further Experimental Data on
the Behavior of Programs in a Paging Environment," Comm. ACM,
11, July 1968, 471-474.

2. Fine, G. H., C. W. Jackson and P. V. McIsaac, "Dynamic Program
Behavior under Paging," Proc. 21st Nat. Conf. ACM, ACM Pub.
P-66, 1966, pp. 223-228.

3. Kuehner, C. J. and B. Randell, "Demand Paging in Prospective,"
Proc. AFIPS 1968 Fall Joint Compo Conf., Vol. 33, pp. 1011-1018.

4. Denning, P. J., "Virtual Memory," Computing Surveys, Vol. 2,
No.3, Sept. 1970, pp. 153-189.

5. Denning, P. J., "The working-set model for program behavior,"
Comm. ACM., Vol. 11, May 1968, pp. 323-333.

6. Chu, W. W., N. Oliver, and H. Opderbeck, "Measurement Data
on the Working Set Replacement Algorithm and Their Applica-

184 National Computer Conference, 1974

tions," Proc. Brooklyn Polytechnic Institute Symposium on Com
puter-Communications Networks and Teletraphic, Vol. 22, Apr. 1972.

7. Oliver, N., Optimization of Virtual Paged Memories, Master thesis,
Univ. of Calif. Los Angeles, 1971.

8. Holland, S. A., and C. L. Purcel, "The CDC STAR-1oo a large
scale network oriented computer system," IEEE Proc. of the
International Computer Society Conference, Boston, Mass., Sep. 22-24,
1971.

9. Brown, R. R., J. L. Elshoff, and M. R. Ward, et al., Collection of
MCTS Papers, to be published, G. M. Res. Labs., Warren, Mich.
1974.

10. Belady, L. A., "A Study of Replacement Algorithms for a Virtual
storage Computer," IBM Syst. J., Vol. 5 No.2, 1966, pp. 78-101.

11. Denning, P. J., "Thrashing: Its Causes and Prevention," Proc.
AFIPS 1968 Fall Joint Compo Conf., Vol. 33, pp. 915-922.

12. Thorington, J. M., J. D. Irvin, "An Adaptive Replacement Al
gorithm for Paged-memory Computer Systems," IEEE Trans.
Vol. c-21, Oct. 1972, pp. 1053-1061.

13. Chu, W. W. and H. Opderbeck, "The Page Fault Frequency Re
placement Algorithm," Proc. AFIPS 1972 FJCC, Vol. 41, pp. 597-
609.

14. Alexander, M. T., Time Sharing Supervisor Program, Univ. of
Mich. Computing Center, May 1969.

15. Bayels, R. A., et al., Control Program-67/CamJJridge Monitor System
(CP-67/CMS), Program Number 360D 05.2.005, Cambridge, Mass.,
1968.

16. Organick, E. I., A Guide to Multics for Sub-System Writers, Project
MAC, 1969.

17. IBM OS/Virtual Storage 1 Features Supplement, No. GC20-1752-0.
18. IBM OS/Virtual Storage 2 Features Supplement, No. GC20-1753-0.
19. Coffman, E. G. and T. A. Ryan, "A Study of Storage Partitioning

Using a Mathematical Model of Locality," Comm. ACM 15, March
1972, pp. 185-190.

20. Oden, P. H. and G. S. Shedler, A Model of Memory Contention in a
Paging Machine, IBM Res. Tech. Rep. RC3056, IBM Yorktown
Heights, N. Y., Sept. 1970.

21. IBM System/360 Time Sharing Operating System Program Logic
Manual, File No. S360-36 GY28-2oo9-2, New York 1970.

22. Denning, P. J. and S. C. Schwartz, "Properties of the Working
Set Model," ACM, 15, March 1972, pp. 191-198.

23. DeMeis, W. M. and N. Weizer, "Measurement Data Analysis of a
Demand Paging Time Sharing System," ACM Proc. 1969, pp. 201-
216.

24. Openheimer, G. and N. Weizer, "Resource Management for a
Medium Scale Time-sharing System," Comm. ACM, Vol. 11, May,
1968, pp. 313-322.

25. Spirn, J. R. and P. J. Denning, "Experiments with Program Local
ity," Proc. AFIPS 1972 FJCC, Vol. 41, pp. 611-621.

26. Private communication with P. J. Denning.
27. Doherty, W. J., "Scheduling TSS/360 for Responsiveness," Proc.

AFIPS 1970 FJCC, Vol. 37, AFIPS Press, Montvale, N. J., pp.
97-112.

28. Curtis, R. L., "Management of High Speed Memory in the STAR-
100 Computer," IEEE Proc. of the International Computer Society
Conference, Boston, Mass., Sep. 22-24, 1971.

Some programming techniques for processing multi-dimensional
matrices in a paging environment

by JAMES L. ELSHOFF

General Motors Research Laboratories
Warren, Michigan

INTRODUCTION

Although virtual memory systems are supposed to free the
programmer from space management problems, the systems
do not always succeed. Ip. fact, programmers find that by
ignoring the fact that real core is limited, the cost of executing
their programs sometimes makes them unusable, not to
mention some of the detrimental effects the program has on
the throughput of the overall system. This problem seems to
be especially prevalent when large matrices of data are
involved. The data are usually referenced in a cyclical pattern
and when the entire matrix will not fit in core, the number of
page faults encountered during execution is maximized.. The
focus of this paper is to analyze programming techniques
which will reduce the number of page faults in matrix opera
tions and thereby improve program performance.

Program behavior in a paging environment has been
studied1,2,3,4 from several points of view. Specifically, Brawn,
Gustavson, and MankinS have concerned themselves with
processing vectors in a paging environment. Moler and
Dubrulle6 ,7 have looked at two separate matrix operations
with respect to execution in a virtual memory environment.
Several storage schemes and related operations for matrices
were analyzed with respect to paging systems by McKellar
and Coffman.8 Also, Guertin9 presented some programming
examples to improve program behavior in a demand paging
system.

The work presented in this paper was done on the premise
that a programmer must be aware of how his program will
reference the data during execution. The programmer 'will
not be completely free of space management considerations
in the design of his algorithms. The material presented deals
with the mathematically simple problems of matrix addition,
transposition, and multiplication. The methods of problem
analysis and the programming guidelines are intended to
give the working programmer new tools for doing a better
job. .

THE WORKING ENVIRONMENT

Although the material presented in this paper is directly
extendable to matrices with more than two dimensions, the

185

matrices used in the examples will all be two-dimensional for
the sake of simplicity. The indices will refer to the row and
column of the matrix from left to right. An M X N matrix A
will have M rows numbered 1 through M and N columns
numbered 1 through N. All matrices will be assumed to be
stored rowwise. A 2X2 array A will have its elements mapped
into linear virtual memory space in the order A(1,1), A(1,2),
A(2,1), A(2,2). The order of the subscripts within the sub
script list may be reversed throughout this paper for column
,vise storage.

The paging algorithm executed by the operating system
will be the least recently used LRU algorithm.2 This
algorithm was chosen because most operating systems
available either use this algorithm or an approximation to it.
Also, the experimental results shown in the latter sections of
the report were generated on a computer with LRU hard
ware. Note that this algorithm is used as a basis for the
derivation of formulas and is not essential to the premises
upon which this paper is founded.

The total number of page faults processed during a com
plete matrix operation will be used as a measure of the
program performance. The CPU time required to perform
the matrix operation will be considered to be constant.
Implementation of some of the programming techniques
described herein may increase program execution time due to
additional loop controls, but this is considered to be negligible
because the additional CPU time is measured in microseconds
while the time to process a page fault is measured in tens of
milliseconds.

The examples used are coded using PLjI DO statements
for conciseness and readability. Except for matrix mapping
functions, the programs being considered are really language
independent. FORTRAN programmers may have to use IF
loops instead of DO loops since they cannot specify negative
increments on their DO statements. Furthermore, the
programs shown are not written to minimize CPU time.
Overlaying each two-dimensional matrix with a vector is an
obvious method of reducing CPU time.

Table I lists some of the symbols and their respective
meanings which are used throughout this paper. The notation
raJ will be used to signify the smallest integer greater than or
equal to a and Laj will signify the largest integer less than
or equal to a.

186 National Computer Conference, 1974

In order to facilitate analysis, the first element of an array
will be stored as the first word in a page. The matrix dimen
sions will satisfy the inequalities N :S;S<N2. That is, at least
one row of the matrix will fit in a page but not the whole
matrix. The programming techniques hold when S < N but
the formulas derived will not. In order to make the problem
of interest, k < LPi is also assumed. Furthermore, the
executing code and the temporary variables are resident in
real memory.

THREE PROGRAMMING TECHNIQUES

In this section three programming rules will be described
which can be applied to multi-dimensional array operations
in order to improve program performance. The circumstances
under which each may be applied and the benefits that may
be expected are presented.

Ordering nested loops

Let A be an l\1XN matrix and B be an N element vector.
Write a program so that each element of B contains the sum
of all of the elements in the corresponding column of A.
b i = Li aji. Each element of B is initialized to zero.

An obvious solution to this problem is to write a loop which
will sum each column. Then enclose the loop in a second loop
which will traverse all the columns.

DO COL = 1 TO N BY 1; /* Traverse each column */
DO ROW = 1 TO M BY 1;

/* Sum a column */
B(COL) = B(COL) + A(ROW,COL);

END;
END;

Now consider the reference pattern on matrix A, A (1,1) ,
A(2,1), A(3,1), ... ,which causes each page spanned by
matrix A to be referenced on each pass through the outer
loop. By interchanging the DO statements the elements in
matrix A will be referenced in the order in which they are
stored. Thus, all of the elements in a single page will be
processed while the page is in core. Furthermore, each page is
only required to be in core once.

DO ROW = 1 TO M BY 1; /* Traverse each row */
DaCOL = 1 TONBY1;

/* Add all row elements */
B(COL) = B(COL) + A (ROW, COL) ;

END;
END;

The minimum number of page faults F min = PA +PB, since
each page of both matrices must be brought into core at least
once. For any number of real memory pages k, where
2:S;k<Fmin, the first program will have F=NpA+PB page
faults while the second program will have F = F min page
faults. Certainly the first program is related to N2 in this case
because of the LRU paging algorithm that is assumed. But

TABLE I-Definitions of Symbols

Symbol Meaning

A,B,C
F
L,M,N
PA

Name of a matrix
Number of page faults
Dimension of a matrix
N umber of pages spanned by matrix A

k
rA

Number of pages of real (core) memory available for data
Number of rows of matrix A in one page

S Page size in words (matrix elements)
N umber of rows processed per pass through loop indexed

by i

even considering an optimum paging algorithm, the number
of page faults F= (k-l) +N(PA -k+2), where PB= 1, page
faults is the best that can be done. Thus, even when k=PA,
an optimum paging algorithm cannot get F = F min in the case
of the first program.

Rule 1. Nest loops so that the innermost loop defines the
subscript with the minimum distance between
elements when all other subscripts are held con
stant.

Rule 1 is a further generalization of a rule published by
Guertin. 9 The rule may be applied iteratively to determine
the second from innermost loop once the innermost loop is
fixed, etc. The rule applies to most cases where nested loops
are encountered and should always be considered by the
programmer. In order to apply the rule, the programmer
must understand the storage mapping algorithm of the
language being used as well as the problem being solved.

Guertin discusses many variations and applications of
Rule 1. One of the variations is paraphrased here as an
example. Consider the following program which is like the
first except that no initialization of the vector B is assumed.

DO COL = 1 TONBY1;
B(COL) = 0; /* Initialize B */
DO ROW = 1 TO N BY 1;

B(COL) = B(COL) + A(ROW,COL);
END;

END;

If the nested loops are interchanged, the program will no
longer execute properly. But B can be initialized to zero in a
separate loop at only a small additional cost. Better yet,
initialize B with the first row of A and regain the additional
loop time by eliminating M additions.

DO COL = 1 TO N BY 1;
B(COL) = A(l,COL); /* Initialize B */

END;
DOROW = 2TOMBY1;

DO COL = 1 TONBYl;
B(COL) = B(COL) + A (RO"W,COL) ;

END;
END;

Some Programming Techniques for Processing Multi-Dimensional Matrices in a Paging Environment 187

Processing multiple rows

Let A and B be NXN matrices and write a program to
transpose B into A, aij = b ji.

DO ROW = 1 TO N BY 1;
DO COL = 1 TO N BY 1;

A(ROW,COL) = B(COL,ROW) ;
END;

END;

Rule 1 cannot be applied to this problem. Either A or B
will have each of its pages referenced for each pass through
the outer loop.

The number of page faults encountered in performing this
transpose operation is F=PA+NpB in the working environ
ment that has been described. Obviously the product N PB
causes the number of page faults to be :high. N is the number
of rows in the A matrix. If A has more than one rO\v in a page,
why not process all of the rows at one time? Let the rows in
one page rA be represented by the variable RPP and the
following program results.

DO ROWS = 1 TO N BY RPP;
/* Page of rows */

MAX ROW = MAX (ROWS + RPP-1,N);
DO COL = 1 TO N BY 1;
DO ROW = ROWS TO MAXROW BY 1;

END;
END;

/ * Each ro\v in the page * /
A(ROW,COL) = B(COL,ROW);

END;

The number of page faults is reduced to F=PA +1~/rA lpB
by processing multiple rows. For a small rA, PA and PB are
very large and the reduction is significant. For a larger rA,
the IN/ra l factor is much smaller and the reduction is still
significant.

A reasonable question to ask is why not process 2rA rows
during each pass through the outer loop. In this problem the
number of page faults would be halved. But what if k = 2?
Then the second factor is halved but the first factor becomes
2iN/rA lpA and the expected gain becomes a loss. Processing
multiple rows reduces the page faults as long as all of the rows
being processed remain in real memory. Consider that letting
RPP = N in the above example is tantamount to inverting
the DO statements in the original program.

Rule 2. Process all the elements in a page which vary with
respect to the subscript causing maximum paging
while that page is in core and the other subscripts
are held constant.

Rule 2 generally applies to those problems for which Rule 1
cannot minimize the page faults. Such problems can be
characterized in several ways. (1) The same index may be
used in different subscript positions within the loop. (2) A
single element is referenced more than one time during the
course of execution. (3) An extensive calculation is per-

formed "ithin the loop 'which results in insufficient real
memory pages even after applying Rule l.

There is no reason why Rule 2 cannot be applied to more
than one index. McKellar and Coffman8 describe a matrix
storage scheme which lends itself to matrix operations which
apply Rule 2 to every subscript. For the storage scheme con
sidered within this paper, Rule 2 has less effect on subscripts
toward the right in the subscript lists since there are fewer
elements per page which vary only in the right-hand sub
scripts.

A.lterna#ng matn:x traversal direction

Consider the transpose problem used in the last section.
The total number of page faults F = PA + NpB was reduced by
attacking the factor N, the number of rows in the A matrix.
Another approach is to reduce the factor PB, the number of
pages spanned by the B matrix. Since B is too large to fit in
real memory, and since the algorithm references B in a cyclic
manner, each page of B is removed from real memory be
tween references. Thus, PB can be effectively reduced by
referencing an arbitrary page more than once while the page
is in real memory. The cyclic reference pattern is broken in
order to accomplish this end.

COLSTART = 1;
COLEND = N;
COLDIFF = 1;
DO ROW = 1 TO N BY 1;

DO COL = COLSTART TO COLEND BY
COLDIFF;

A(ROW,COL) = B(COL,ROW);
END;
TEMP = COLSTART;
COLSTART = COLEND;
COLEND = TEMP;
COLDIFF = -COLDIFF;

END;

The new program references the B matrix by going down
the first column, B(l,l), B(2,1), ... , B(N,l), and up the
second column, B(N,2), B(N-l,2), ... , B(1,2). The pro
gram continues to alternate the direction of column traversal
until the matrix operation is complete. Since the pages
referenced near the end of one column traversal are the same
as those referenced at the beginning of the following column
traversal, a number of page faults may be eliminated. With
the LRU paging algorithm that has been assumed, F =

PA+PB+(N -1)(PB-k+1). Thus, for each of N -1 column
traversals the number of page faults that can be eliminated
is the number of real memory pages available for the B
matrix.

Rule 3. Let the increment of a faster varying subscript
alternate its sign each time a more slowly varying
subscript changes; when the more slowly varying
subscript appears to the right of the faster varying
subscript.

188 National Computer Conference, 1974

Rule 3, like Rule 2, should be applied after Rule 1. Rule 3 is
based on a paging algorithm which keeps the most recently
referenced pages in real memory. Although few paging sys
tems have a true LRU paging algorithm, most systems do
approximate the LRU algorithm. Consequently, benefits may
not always be as great as indicated here, but results will be
significant. Rule 3 produces positive results when applied to
all subscripts except the leftmost. Rule 3 will not generally
apply to the outermost loop of a set of nested loops.

Summary of rules

Three rules have been given which may be used in order to
decrease the total number of page faults encountered while
performing matrix operations. Each rule attacks the problem
from a different point of view and requires different knowl
edge on behalf of the programmer. Rule 1 eliminates page
faults by aligning the reference pattern for the matrix ele
ments with the storage mapping function; the programmer
must know the storage mapping function. Rule 2 uses the
programmer's knowledge of page size in the computer system
in order to break a large problem into a series of smaller
problems which generate fewer page faults. Finally, Rule 3
assumes a paging algorithm which approximates an LR U
algorithm in order to reduce the number of page faults;
consequently, the programmer must learn something about
the paging strategy in the system.

THE TRANSPOSE OPERATION

An in-place matrix transpose operation is now analyzed
\vith respect to the progranllning rules just given. The
standard algorithm appearing in print

DO ROW = 1 TO N -1 BY 1;
DO COL = ROWTONBYl;

TEMP = A(ROW,COL) ;
A(ROW,COL) = A(COL,ROW) ;
A(COL,ROW) = TEMP;

END;
END;

will cause PA page faults in processing the first row. For each
additional row in the first page, PA -1 page faults will be
incurred assuming the first page remains in core. When all
processing has been completed on the first page, the rows on
the second page will cause page faults on the remaining pages
of the matrix in a similar manner. Finally, a point is reached
where the remaining portion of the matrix will fit in real
memory. The total number of page faults is given by

F=PA+(rA-l) (PA-l)+(PA-l)

+ (rA -2) (PA -2) + ... + (k-l).

Applying the algebra pertaining to arithmetic progressions,
the summation reduces to

Two formulas were developed for analysis of the in-place
transpose algorithm when multiple rows were processed each
time through the outer loop. The first formula applies to the
case where rA>q, all of the rows fit within one page.

The second formula is derived from the case where the
multiple rows being processed span an integral number of
pages, ar = q, where a is a positive integer.

This formula also assumes that all of the multiple rows
being processed will remain in real memory, a < k.

The number of page faults is given by

when the matrix operation alternates the direction of loop
traversal in order to reuse the matrix pages in real memory.
All pages are assumed to be full in this case.

Finally, both the multiple row rule and the alternating
direction rule can be applied in the same program. This
combination results in the number of page faults being
reduced to

where a is a positive integer such that ar= q and a<k.
Figure 1 shows the number of page faults generated by

each program as a function of real memory size. A matrix
which spans 20 pages, PA = 20, is assumed. The number of
rows processed at one time is equal to the number of rows in a
single page, in this case r A = 5 and a = 1. As larger matrices
are considered, the curves maintain their relative position
but the spread between them becomes greater.

Programs were written which applied the programming
rules in the manner described in order to validate the ex
pected results. A 101 X 101 matrix was transposed in place.
A 512 word page contained 5 rows plus 7 elements. The
matrix spanned 20 pages less 39 words. Five rows were pro
cessed at a time when the multiple row rule was used. An
LRU paging algorithm was applied by the operating system.
These tests were run on a dedicated machine with no inter-

TABLE II -Summary of Transpose Operation Data

Paging Expected Measured Measured
Buffer Page Page

Algorithm Size (k) Faults Faults Expected

Standard 15 445 450 1.011
Multiple Rows 14 119 148 1.243
Alternating Direction 15 131 144 1.099
Combination 15 35 64 1.828

Some Programming Techniques for Processing Multi-Dimensional Matrices in a Paging Environment 189

1000

900

800

700 Standard

Page
600

Faults

500

400 \
300

200

100

Pages of Real Memory

Figure I-Comparison of transposition algorithms for a matrix spanning
twenty pages

ference. The parameters, which did not fall within the con
straints under which the formulas were derived, were (1)
the last page spanned by the matrix was not full and (2) a
page did not exactly contain an integral number of rows.
Table II summarizes the results from these runs.

Additional statements had to be added to the standard
program when the programming rules were applied. Table III
shows the additional CPU time required by the new programs
and also the ·less total CPU time, memory, and channel
resources that are needed.

An arbitrary thrashing level was indicated by a super
imposed line on Figure 1. The line represents approximately
one page fault each 10 milliseconds in its present location.
This line is of special interest since the distance between the
line and a curve above the line is directly proportional to the
length of time the program will thrash. The duration of such

TABLE III-Transpose Operation Resource Utilization

Problem System Total Elapsed I/O
Algorithm CPU CPU CPU Time Time

Standard .819 9.900 10.719 77.5 66.8
Multiple Rows .985 3.256 4.241 26.2 22.0
Alternating Direction .917 3.168 4.085 25.5 21.3
Combination 1.110 1.408 2.518 11.0 8.5

All times are in seconds.

300

200

Page

Faults

100

o I I
2 3

I
10

Rows

I
15

I
20

I
25

Figure 2-Error in the multiple row transpose operation

detrimental effects is shown in Table III. The duration would
be even worse if this program were a customer in a time
sharing system where the program would be regularly
removed from real memory. Thus, the 35 percent increase
in CPU time for the transpose operation shown in Table III
is negligible when compared to the overall reduction of 76
percent in total CPU time and 86 percent in elapsed time.

Another experiment was performed with the transpose
operation. The purpose was to determine the validity of the
formula for the multiple row transpose operation since the
rrA-ql/q factor and the rPA-kl/a factor introduce error
when the result of the division is not an integer. Figure 2
shows the error introduced. The error for the formula with
the r PA - k l/a factor is nearly constant and is attributable to

~ 1

~ 3

~STARTROW

~L.ASTROW

~, , ,

1 3 ~ 4 2

"'

'" 4 ~
2 ~ 1-ENIlROW

Figure 3-Transpose reference pattern using combination of rules

190 National Computer Conference, 1974

the fact that a page does not contain a integral number of
rows. No attempt will be made to apply this result to other
multiple row formulas; however, please note that error bounds
are easily calculated on each of these formulas if such a
comparison is desired.

A program which will perform an in-place transpose with
both the multiple row rule and the alternating direction rule
applied is shown as Example 1. Although the program may
seem complicated initially, it really is easily understood.
Figure 3 shows the manner in which the array is referenced
with respect to the outer loop. All of the elements in the
areas shovvn with a 1 are interchanged during the first pass
through the DO WHILE loop. The second pass interchanges
the elements in the areas marked with a 2. The operation
continues until the elements in the areas marked L are inter
changed. The variable names from the program shown in
Figure 3 relate to the first pass through the DO WHILE
loop.

START ROW = 1;
ENDROW = N;
DIFF = 1;
DO WHILE «STARTROW-ENDROW)*DIFF < 0);

IF DIFF > 0/* DETERMINE LAST ROW FOR
THIS LOOP */

THEN LASTROW = MIN (STARTROW +
RPP * DIFF,ENDROW) - DIFF;

ELSE LASTROW = MAX {STARTROW +
RPP * DIFF,ENDROW) - DIFF;

DO COL = STARTROW + DIFF TO LASTROW
BYDIFF;

IF DIFF > 0/* DO NOT CROSS
DIAGONAL */

THEN TLASTROW MIN (COL-DIFF,
MAXROW);

ELSE TLASTROW MAX (COL-DIFF,
MAXROW);

DO ROW = STARTROW TO TLASTROW
BYDIFF;

TEMP = A(ROW,COL) ;
A(ROW,COL) = A(COL,ROW) ;
A(COL,ROW) = TEMP;

END;
END;
TEMP = STARTROW; /* ALTER DIREC-

TION */
STARTROW = ENDROW;
ENDROW = TEMP + RPP * DIFF;
DIFF = -DIFF;

END;

Example I-In Place Transpose Processing Multiple Rows
and Alternating Directions

MATRIX MULTIPLICATION

In order to further investigate the programming rules
given earlier, consider a simple program for performing

matrix multiplication. Let A, B, and C be LXM, MXN, and
LXN matrices, respectively. A program which computes
C=A*B is shown.

DOROW = 1 TOLBYl;
DO COL = 1 TO N BY 1;

C(ROW,COL) = 0;
DO INNER = 1 TOMBY 1;

C(ROW,COL) C(ROW,COL) +
A(ROW,INNER) * B(INNER,COL) ;

END;
END;

END;

Whenever this standard matrix multiply program is
executed, at least one page of both matrix A and matrix C
and all of matrix B must be resident in core in order to get
reasonable performance; otherwise, each page of B is going
to cause LN page faults. In fact, for any amount of real
memory pages k, where pB+2>k>3, the number of page
faults encountered by the above program is given by

F=PA+LNpB+Pc.

According to rowwise storage scheme that has been as
sumed, the DO statements with the ROWand COL indices
are in the proper order. The B matrix is referenced in column
"\Vise fashion while the A and C matrices are referenced in a
rowwise fashion. If the two DO statements in question are
interchanged, the number of page faults increases to

F=MpA+LNpB+Mpc.

By the reordering rule the DO statements with the COL
and INNER indices should be interchanged if possible. The
index COL never appears in any subscript position but the
rightmost; therefore, the DO statement controlling the COL
index should be innermost. Furthermore, the INNER and
COL indices are only used together when the B matrix is
referenced, and INNER is to the left of COL in that case.
The number of page faults is reduced to

F=PA+LpB+PC

TABLE IV-Matrix Multiply Page Fault Formulas

Rule! Rule 2 Rule 3 Page Fault (F)

X
rLl

pA+-NpB+PC
q

X PA+k-2+LN(PB-k+2)+pc

rT'
X X PA+~PB+PC

q

X X PA+k-2+L(PB-k+2)+pc

X X
rLl

PA+k-a-c+ - N(PB-k+a+c)+pc
q

n,
X X X PA+k-a-c+ ~ (PB-k+a+c)+pc

q

Some Programming Techniques for Processing Multi-Dimensional Matrices in a Paging Environment 191

by interchanging the DO statements and adding an appro
priate loop to initialize the C matrix.

The DO statements controlling the ROWand INNER
indices should not be interchanged since ROW is always in
the leftmost position. Calculating the number of expected
page faults verifies this fact, since interchanging the DO
statements results in more page faults.

F=MpA+LMpB+Pc

The multiple row rule and alternating direction rule may
also be applied to the matrix multiplication operation. Table
IV shows the formulas for the number of page faults expected
when different combinations of the rules are applied. The
variables a and c represent the number of pages required to
hold q rows of the A and C matrices respectively, where q is
the number of rows being processed during each pass through
the outermost loop. All of the formulas only hold for the
condition a+c<k; that is, all the rows of A and C being
processed during one outer loop traversal remain in real
memory.

Each of these formulas has been evaluated for a matrix
multiplication. Each matrix is assumed to be 101 X 101,
L=M=N=101, spanning 20 pages, PA=PB=Pc=20. The
multiple row algorithms will process five rows at a time, q = 5
and a = c = 1. The amount of real memory varies. The results
are displayed on the semi-logarithmic graph in Figure 4. For
matrix multiplication the number of page faults can be
reduced from over 200,000 to near 100 by application of the
programming techniques described.

The matrix multiplication algorithms were programmed

Page

Faults

300,000]

100,000

50,000

10,000

5,000

1,000

500

400

300

200

Columnwise Reference

Standard Algori tbm

Reordering Loops

Multiple Rows and Reordering wops

10 12 14 16 18 20

Pages of Real Memory

Figure 4-Comparison of matrix multiplication algorithms for matrices
spanning twenty pages

and executed. The environment was like that described for
the transpose operation in Section IV. Tables V and VI show
the measurements made. For those algorithms generating
more than 2500 page faults, partial runs were completed
and the results extrapolated.

Table VI illustrates several significant points about the
application of the programming rules to matrix multiplica
tion. The increase in problem CPU time is about the same for
each rule or combination of rules. The elapsed time to com
plete the specified matrix multiply was reduced from 5.4
hours to 4.2 minutes by applying the rules. The programmer
should consider all three rules. Mter applying the reordering
rule, the programmer could be satisfied with a 99.9 percent
decrease in page faults in exchange for a 12.7 percent increase
in problem CPU time. By continuing with the other two
rules, the problem CPU time is increased an additional 0.2
percent while the page faults are reduced by another 88.4
percent.

The matrix multiplication program which resulted when all
three rules were applied to the standard program and then
used to generate the data shown in Tables V and VI is shown
as Example 2.

INSTART = 1;
INEND = M;
INDIFF = 1;
DO BASEROW = 1 TO L BY RPP;

LASTROW = MAX(BASEROW + RRP-1, L) ;
DO ROW = BASEROW TO LASTROW BY 1;

DO COL = 1 TO N BY 1;
C(ROW,COL) = 0;

END;
END;
DO INNER = INSTART TO INEND BY

INDIFF;
DO ROW = BASEROW TO LASTROW

BY 1;
DO COL = 1 TO N BY 1;

C(ROW,COL) = C(ROW,COL) +
A(ROW,INNER) * B(INNER,
COL);

END;
END;

END;
TEMP = INSTART;
INSTART = INEND;
INEND = TEMP;
INDIFF = -INDIFF;

END;

Example 2-Matrix Multiplication With All Rules Applied

REMARKS ON APPLICABILITY AND SUMMARY

In this paper the problem of performing matrix operations on
large matrices is bebg considered from the point of view of
the application programmer. The motivation is to reduce the
number of page faults encountered while performing the

192 National Computer Conference, 1974

TABLE V-Summary of Matrix Multiplication Data

Rule Measured
Expected Measured

2 3 Page Faults Page Faults Expected

204060 204266 1.001

X 2060 2098 1.018

X 42460 42629 1.003

X 71460 71986 1.007

X X 460 499 1.084

X X 760 873 1.148

X X 14900 16306 1.094

X X X 210 314 1.495

matrix operation in order to improve the performance of the
application program. Three rules have been given which may
be applied by the application programmer to a source pro
gram in order to reduce the number of page faults. (1) ~ est
loops so that matrix elements are referenced in the same order
as they are stored. (2) Process all the rows in one page while
the page is in real memory. (3) Alternate the direction of
traversing a matrix to reuse pages not purged from real
memory.

When virtual memory was first introduced, one of its
major advantages was said to be that of allowing the pro
grammer to work in a real memory environment without
concern about overlays. Shortly thereafter, material began to
appear discussing the locality and compactness of a program.
Some papers actually discussed program design in terms of
the average number of real memory pages an operating
system would allocate to the application. Clearly, the freedom
of the programmer is abridged when space considerations
must be made.

Applying the rules described in this paper does not really
diminish the freedom of the programmer but does allow the
programmer to get better performance from the application
program by using additional knowledge. The programmer
may use knowledge of (1) the matrix mapping function of the
language, (2) the word size and page size of the machine,
(3) the paging algorithm, or (4) some combination of these
items in order to reduce the number of page faults generated
by the program.

The data presented show that using the rules will not only
improve the performance of the application but may also
greatly lessen the demands on the resources of the system.
For a slight increase in problem CPU time, reductions can be
realized in total CPU time, elapsed time or real memory
costs, and channel time. Yet, when both a FORTRAN
library and a PL/I library on a paging system were checked,
the standard matrix transpose operation and the standard
matrix multiplication operation used as examples in this
paper were programme.n.lO,ll Several other matrix operations

TABLE VI-Matrix Multiply Resource Utilization

X

X

X

X

Rule

2

X

X

X

X

U nits are seconds.

Problem
3 CPU

197.3

222.3

221.7

X 224.5

222.6

X 222.7

X 229.6

X 222.7

System Total Elapsed
CPU CPU Time

4493.9 4691.2 19460

46.2 268.5 420

937.8 1159.6 4242

1583.7 1808.2 7013

11.0 233.6 269

19.2 241.9 305

358.7 588.3 1767

6.9 229.6 252

1/0
Time

14768.4

151. 7

3082.1

5204.6

36.1

63.1

1178.9

22.7

that were checked could have been easily improved in an
obvious manner. In addition to program libraries, individuals
concerned with program performance should be aware of the
code executed when a program refers to all of the elements of
matrix by a simple reference to the matrix by name. PL/I
has several of these matrix operations defined. Also, several
languages allO\v the notation A(I, *) to refer to all of the
elements in row I of matrix A. Program performance may be
improved by explicitly writing the loop controls to access all
of the elements in the row.

In an early part of this paper, the class of problems was
restricted to those in \rhich at least one row of a matrix
could be contained in a page. That restriction ,ras for the
purpose of deriving formulas only. The programming tech
niques apply to matrices of any size. In fact, the programming
rules may be 'applied to the problem of folding in processing
large matrices in a non-paging environment.

The importance of applying a rule so that the number of
page faults depends on the amount of real memory available
should not be overlooked. For example, only the alternating
direction rule introduced this dependency into the matrix
multiplication operation. All of the matrix multiplication
algorithms not employing alternating directions would have
performed the same in three pages of real memory as in any
larger number of pages until the point at \vhich all of the data
would fit in real memory. On the other hand, those algorithms,
which depend on the amount of real memory available, had
better performance for each page of real memory allocated
to them.

BIBLIOGRAPHY

1. Sayre, D., Is Automatic "Folding" of Programs Efficient Enough to
Displace Manual?," CACM 12, 12 (December 1969), pp. 656-660.

2. Denning, P. J., "The Working Set Model for Program Behavior,"
CACJl, May 19G8, pp. 323-333.

Some Programming Techniques for Processing Multi-Dimensional Matrices in a Paging Environment 193

3. Belady, L. A., "A Study of Replacement Algorithms for a Virtual
Storage Computer," IBM Syst. J. 5, 2, 1966.

4. Coffman, E. G. and L. C. Varian, "Further Experimental Data on
the Behavior of Programs in a Paging Environment," CACM 11,7
July 1968, pp. 471-474.

5. Brawn, B. S., F. G. Gustavson, and E. S. Mankin, "Sorting in a
Paging Environment," CACM 13,8, August 1970, pp. 483-494.

6. Moler, C. B., "Matrix Computations with Fortran and Paging,"
CACM 15, 4, April 1972, pp. 268-270.

7. Dubrulle, A. A., "Solution of the Complete Symmetric Eigenprob
lem in a Virtual Memory Environment," IBM J. Res. Dev. 16, 6,
November 1972, pp. 612-615.

8. McKellar, A. C. and E. G. Coffman, "Organizing Matrices and
Matrix Operations for Paged Memory Systems," CACM 12, 3
March 1969, pp. 153-165.

9. Guertin, R. L., "Programming in a Paging Environment, Data
mation, February 1972, pp. 48-55.

10. -- Systemj360 Scientific Subroutine Package, Version III, Pro
grammer's Manual, IBM Edition GH20-0205-4, August 1970,
White Plains, New York.

11. -- Systemj360 Scientific Subroutine Package (PLjI), Program
Description and Operations Manual, IBM Edition H20-0586-0,
January 1968, White Plains, New York.

The double paging anomaly

by ROBERT P. GOLDBERG
Harvard University
Cambridge, Massachusetts

and

Honeywell Information Systems
Waltham, Massachusetts

and

ROBERT HASSINGER
Liberty Mutual Insurance Company
Hopkinton, Massachusetts

INTRODUCTION

Belady's paging anomalyl has illustrated that certain page
replacement algorithms can cause more page faults as the
size of memory increases. Mattson2 has shown that there
exists a class of algorithms called stack algorithms (such as
LRU least recently used) which cannot cause more page
faults as memory size increases. In this paper, we investigate
the dynamics of double-paging, i.e., running a paged oper
ating system, e.g., IBM's OS/VS2,3 under a paged virtual
machine monitor, e.g., VM/370.4 In particular, we show that
an increase in the size of the memory of the virtual machine
without a corresponding increase in its real memory size
can lead to a significant increase in the amount of paging,
even for the LRU algorithm.

DOUBLE PAGING

Virtual machine systems4-8 provide the environment in
which double paging phenomena can occur. * The core of
a virtual machine system is the virtual machine monitor or
VMM. The VMM has certain similarities to conventional
operating systems in that it supports a user interface or
"extended machine" on which user programs can be run.
However, the extended machine supported by a VMM is the
full functional counterpart of an existing computer, and
may be the same computer that the VMM is itself running
on. Since the VMM can support programs which utilize the
full functionality of a computer system, the VMM can
support complete operating systems in the same way that
operating systems support user programs. It is thus possible
to run two incompatible operating systems on a single com
puter at the same time, or to run one operating system in

* In this paper we use the term "double paging" to refer only to these
phenomena. It does not refer to any other popular uses of this term.

195

production mode while system programmers are simultane
ously modifying another active copy of that same operating
system.

Figure 1 uses IBM's VM/370 to illustrate the organization
of a virtual machine svstem. The VM/370 Control Program
(the VMM) is shown, running on a bare System/370 and
supporting two virtual machines, VMl and VM2. Since the
virtual machines are identically equivalent to complete
System/370 computer systems, any of the System/370 oper
ating systems, such as OS/VS2 can be run on virtual machine
VMl. OS/VS2, in turn, supports an "OS/VS2 Extended
Machine" on which a user program is being run.

While paging is not an essential requirement for a virtual
machine system,5,7,9 the two facilities form a very powerful
combination together. In particular, with paging, it becomes
possible for the memory of the virtual machine(s) created
to be larger than the real memorv. This facility has been
used very effectively by CP-67 and VM/370 to run various
operating systems and applications which require a very
large memory.4,lO,1l

If the VMM supports a virtual machine which includes
paging, then it is possible to run any paged operating system
(including the VMM) on this virtual machine. In this case,
we define:

• Level 2 memory-virtual memory of virtual machine
• Level 1 memory-memory of virtual machine
• Level 0 memory-memory of real machine, i.e., real

memory.

The Level 2 memory is mapped via paging into Levell
memory. The Level 1 memory is mapped, in turn, into
Level 0 memory. * Under these circumstances. we have
double paging.

Conventional computer systems do not provide direct

* The term level is used here informally rather than in the strict sense as
defined in Goldberg.6,7

196 National Computer Conference, 1974

EXTENDED
MACHINE

USER
NOeIWI

Figure I-VM/370 virtual machlne organization illustrating double
paging

hardvi'are support for double paging. Thus, in systems such
as VM/370, software must be used to simulate the double
paging mechanism. When a process is to be activated in
Level 2 memory, its page mappings from Level 2 to Levell
and from Level 1 to Level 0 must be combined to yield a
single composed mapping directly from Level 2 to Level O.
Goldberg7 ,12 and Parmeleell discuss the mechanisms for soft
ware support of double paging in conventional computer
systems and Goldberg6 ,7 discusses proposed computer archi
tectures, called virtualizable architectures which typically pro
vide direct hardware support for efficient double paging
mechanisms. In this paper we shall not examine mechanisms.
Rather we shall be concerned only with policies, i.e., the
page replacement algorithms, and see how thev are affected
by double paging.

Figure 1 illustrates two examples of double paging which
can arise in the operation of VM/370. VM/370 uses paging
to create the (illusion of) memory for virtual machines VM1
and VM2. OS/VS2 which is running on VM1, in turn, uses
paging to create a large address space (virtual storage) ex
tended machine for its user programs. On VM2, another
copy of VM/370 is running, producing a second level of
virtual machines. In the figure, the second level virtual
machine is running CMS, an operating system which does
not utilize the paging mechanism. Thus, both user programs
shown in the figure will be affected by double paging.

Every paged system requires a backing store to preserve
each page's contents when the page is not in the real or
virtual memory. In Figure 1, the backing store shown at
Level 0 holds pages of Levell (VM1 or VM2) which are

not resident in Level 0 memory. The two Levell backing
stores, in turn, hold pages of the Level 2 memory which are
not resident in Levell memory.

The illustration of Figure 1 does occur in real world
situations. As paging becomes more common in "target"
machines, double paging will become more common in en
capsulated systems. Examples of encapsulated systems in
clude both the virtual machine systems (as illustrated above)
for identical host and virtual machines, and integrated
emuiatorsI3 for dissimilar (paged) machines. An example of
the latter might be running the PDP-lO TENEX System
under an integrated emulator under OS/VS2*.

Other environments where double paging can be ex
pected are in the newly proposed complex virtualizable
architectures. 6,7 ,14 Related considerations arise in the manage
ment of multi-level (three or more) memory systems. I5

DYNAMICS OF DOUBLE PAGING

We will examine the effect of choice of page replacement
algorithms and sizes of memory upon the' dynamics of double
paging. We restrict our attention to demand algorithms
operating in fixed memory spaces. Thus we will study one
virtual machine at a time and ignore other effects introduced
by resource multiplexing among VMs. Furthermore, when
we examine the paging behavior of a reference string, we
examine the behavior of the original string. We ignore any
effective "rewriting" (or renaming) of the string which might
occur.

Thus:
(1) We ignore "interference" to the reference string caused

by any VMM traps and simulation.
(2) We assume that pages are treated homogeneously by

algorithms, i.e., pages are not "locked."
(3) We assume page replacement algorithms and tables

are not themselves in virtual memories. We assume
they are external to the system or in hardware.

Loosening these ground rules makes the analysis more com
plex and might become the basis for future studies.

Furthermore, we make the following assumptions:

(1) Memory sizes in number of page frames are called
no, nI, n2.

(2) no, n2 with n2 2:: no will be known and fixed.
(3) We can set ni but once set it will be fixed.
(4) The same algorithm is used for level 2 ~ 1 and

level 1 ~ 0 paging.
(5) A demand page replacement algorithm is used awl

all free pages will be utilized, i.e., ni 2:: no, n2 2:: nl.
(6) We count total page faults and ignore the fact that

different backing store devices might be used at each
level.

With the above assumptions and terminology we can

* This is merely a hypothetical example.

identify four distinct operating regions. They are illustrated
in Figure 2.

(a) no=nl =n2
This case arises if no = n2. Then by assumption 5

(above) nl must equal no and n2. In this case, after
the initial pages are brought into each memory no
additional paging occurs.

(b) no=nl<n2
This case arises if no < n2 and we choose to set

nl = no. In this case, after the initial pages are brought
into level 0 memory there is only paging for level2~ 1.

(c) no<rtt =n2
This case arises if no < n2 and we choose to set

nl = n2. In this case, after the initial pages are brought
into level 1 memory there is only paging for level1~O.

Cd) nO<nl<n2
This case arises if no < n2 - 1 and we choose some

intermediate value for nl. Paging activity occurs for
level 2~ 1 and level 1 ~O.

Case (a) is trivial and uninteresting. Mter start up, cases
(b) and (c) exhibit identical behavior to a one level paging
system. However, these cases remain of interest for compari
son with the double paging case (d).

LRU ALGORITHM APPLIED TO DOUBLE PAGI~G

As noted above, stack algorithms such as LRU (least
recently used) have a number of desirable properties. Among

D-DU NO PAGING

no

LEVEL 2 - I PAGI NG

LEVEL 1-0 PAGING

LEVEL 2-1 AND
LEVEL 1-0 PAGING

Figure 2-Dynamics of double paging

The Double Paging Anomaly 197

1 Z 3 Z 4 12 52 1 4 1 5 Reference String
LRU1 .. 2 pages Faults 4 Faults
n = 2

2.> 2 412 -' 2
0

J 1 4 1 5 Stack
nl = 5

1 2 3 2142 52 1 4 1

I ... *1 .. Fau! ts

LRU 1 2 3 2 412 5 2 1 4 lS Stack 4 Faults
3 pages

1 2 3 214 2 5 2 1 4 1 n
0

3

nl = 5 11 313 4 4 5 2 2 4

1

LRU .I Fal:l ts
4 pages

324125 n = 4 1 2 21 4 1 5 0

32142 n
l

= 5 l2 52 1 4 1 Stack 2 Faults

1 1 3134452 24

III 33455 2

Figure 3--8ingle level LRU: Increase in memory size cannot increase
number of faults

these is the stack property that any increase in memory size
cannot cause an increase in the number of page faults. 2

In Figure 3, we illustrate the stack property by applying
the LRU algorithm to a reference string which is run in a
(conventional single paging) memory with three different
sizes. The figure indicates page faults with an asterisk (*),
and shows the stack contents at each point in time. In
order to provide a uniform basis of comparison for all
examples, faults are counted only after the largest stack has
been filled.

The largest stack size is 4 and this stack "\-vill be filled after
reference string elements 12324 have been run. We delimit
this starting point with a dashed vertical line. and in Figures
3-6 count only those asterisks which fall to the right of the
dashed vertical line. When the reference string consisting of
five distinct page names (nl = 5) is run in a t\yO page memory
(no=2), four faults occur. When memory is increased to
three pages (no=3), four faults still occur. When memory is
increased to four pages (no=4), the number of faults drops
to two.

In double paging, we must specify the reference string
(same as above), the replacement algorithm (LRU), and the
memory sizes (to be indicated below). Figures 4-6 apply
LRU algorithms at both levels to the same reference string.
We fix the reference string memory n2 = 5 and the real
memory no = 2. Then, we count the number of faults as the
virtual machine memory nl is varied.

Figure 4-6 are similar to the single level paging case of
Figure 3. The reference string, stack values, faults, and
beginning of count (dashed vertical line) are shown. However,
in these figures, the TOTAL faults are given by the sum of
level 2~ 1 faults and level 1 ~O faults.

In Figure 4, reference string memory n2 = 5, virtual machine
memory nl = 2, and real memory no = 2. After start-up we
count 4 Level 2~ 1 faults and 0 Level 1 ~O faults for a total
of 4 faults. This is double paging case (b).

Figure 5 illustrates the anomaious doubie paging behavior
which can arise in case (d). We keep the same real memory
size no=2, and the same reference string memory n2=5.

198 National Computer Conference, 1974

Level 2 Ref. String

Levell Virtual Space
LRU
2 pages

12324125214 I 5

i
1

'Ie 'Ie 'It 'Ie I :II: 'Ie 'Ie A 4 Level 2 -+ 1 Faults

123241252 I 4 I 5

I 2 3 214 2 5 2 I 4 I

Leve 1 0 Rea 1 Spac e
LRU

o Level I _ 0 Faul ts

2 pages 12324125214 I 5

I 2 3 2 ~ 4 2 5 2 I 4 I

TOTAL 4 Faul ts

nl = 2

nZ = 5

Figure 4-Double paging with LRU: Case (b)

However, we increase the size of the virtual machine's
memory nl = 3. As can be seen, the paging behavior becomes
significantly worse. There are still 4 Level 2~ 1 faults but
now there are also 4 Level 1 ~O faults for a total of 8 faults.
Thus, the number of faults has doubled. Figure 5 details
how this increase has occurred. The small circles in Figure 5
indicate those pages in Levell which cause an extra induced
fault in Level O. The arrows point from the Levell pages to
the extra Level 0 pages which are needed. Finally, the large
circles in Level 0 indicate page renaming operations, i.e.
what used to be page 1 is now page 4. For the LRU algorithm,
each Level 2~1 fault causes an extra Level l~O fault to
occur also.

In Figure 6, we further increase virtual machine memory
size nl = 4, keeping reference string memory n2 = 5 and real
memory no=2. There are still 4 Levell~O faults but the
number of Level 2~1 faults has dropped to 2. Thus, the
page fault total has decreased to 6.

We can summarize the results of this example as:

For a given reference string in a double paging system, an
increase in the size of the memory of the virtual machine

Level 2 Ref. String
1

123241 25

1

2 I 4 15

Levell Virtual Space 'II: * "" 'Ie I 4 Level Z -+ 1 Faults
LRU
3 pages I 2 3 2 14 2 5 2 I 4 I 5

Leve 1 0 Rea 1 Space
LRU
2 pa.£!'es

Level 1 ~ 0 Faults

TOTAL B Faults

Figure 5-Double paging with LRU: Case (d)

Level 2

Level I

Level 0

Ref. String

Vi rtual Space
LRU
4 pages

Real Space
LRU
2 pages

no = 2

n l = 4

n2 = 5

123 Z 412 5 2 I 4 I 5

... .1 2 Level 2 ~ I Faults

I 2 3 2 412 52 1415

123214 25 2141 I
1 1 313 44 5224

I(i) 3m 4552

... .1 4 *J 4 Level l~ 0 Faults

1232412020415

1232
1

4 Z 2 5 2 2 1 41
I
1

TOTAL 6 Faults

Figure 6-Double paging with LRU: Case (d)

without a corresponding increase in its real memory size
can lead to a significant increase in the number of page
faults, even for the LRU algorithm.

THE ANOMALY EXPLAINED

The double paging anomaly occurs when n2>no+1, no and
n2 are fixed and we have nl =no (Case (b». We increase
nl = no + 1 (Case (d)) and the amount of paging increases
significantly.

The anomaly can be explained for the LRU algorithm by
an inspection of the reference stacks of Figure 5. The level 1
stack contains three entries whereas the Level 0 stack con
tains only two entries. When a page is at the bottom of the
level 1 stack and is a candidate for next removal, it already
has fallen out of the level 0 stack and has been swapped.
Thus, in order to swap an entry from the level 1 stack, it
must first be swapped into the level 0 stack. * Since LRU
algorithms are operating at both levels, the level 0 removal
algorithm will make exactly the worst choice each time.

t
2f

TOTAL FAULTS
CASE ee)

..
n

l

Figure 7-Page fault dependence on nl for LRU algorithm

* When an entry is "swapped" int.o a stack, it-s corresponding page is
swapped into memory.

Thus, it will always have to swap in the page which it most
recently swapped out.

For the LRU algorithm, worst performance occurs for
Case (d) with nl=no+1. As nl increases, the number of page
faults continues to decrease (the stack property) until nl = n2
and we have Case (c). While the actual performance depends
upon the reference string· and memory sizes, the trend can
be seen in Figure 7. The figure is drawn as a continuous curve
even though it is really a series of steps.

Surprising results hold not only for the LRU algorithm
but for other double paging replacement algorithms as well.
For example, with the same reference string used above,
the FIFO (first in first out) algorithm also doubles from
5 to 10 the number of page faults in going from nl = 2 to
nl=3. On the other hand, with the very unlikely MRU
(most recently used) algorithm, the number of page faults
remains constant as nl is varied between nl = 2 and nl = 5.

VM/370 avoids some of the difficulties explored in this
paper through the use of certain specialized algorithms which
allow locking (dedicated) pages in main memory. While this
procedure may decrease susceptibility to the double paging
anomaly, it reduces resources available to other users and
might adversely affect global performance. In any case, we
have shown that in double paging situations great care must
be exercised.

As noted above, virtual machine recursion5 •7 implies the
ability to run a VMM under a VMM under a VMM
It is known that in order to test VM/370 software before
System/370 hardware was available, IBM ran specially
modified versions of CP-67 several levels deep. In the new
complex virtualizable architectures mechanisms are provided
for supporting arbitrarily deep recursion. In these systems,
the double paging problem generalizes to the m-Ievel paging
problem.

CONCLUSION

Progress in understanding complex phenomena is often made
through the discovery and explanation of anomalous behavior
which arises in apparently simple situations. In this paper
we have examined one aspect of the resource allocation

The Double Paging Anomaly 199

problem in a large computer system. We have observed that
when rational locally optimal algorithms are combined to
gether, distinctly suboptimal global behavior can sometimes
result.

REFERENCES

1. Belady, V. A., "A Study of Replacement Algorithms for a Virtual
Storage Computer," IBM Systems Journal, Vol. 5, No.2, 1966.

2. Mattson, R. L., J. Gecsei, D. R. Slutz and 1. L. Traiger, "Evaluation
Techniques for Storage Hierarchies," IBM Systems Journal, Vol. 9,
No.2, 1970.

3. IBM, Introduction w OSI VS2 Release 2, IBM Corporation Publica
tion No. GC28-0061.

4. IBM Virtual Machine Facilityl37o-Planning Guide, IBM Cor
poration, Publication No. GC20-1801-O, 1972.

5. Buzen, J. P., U. O. Gagliardi, "The Evolution of Virtual Machine
Architecture," Proceedings AFIPS National Computer Conference,
1973.

6. Goldberg, R. P., "Architecture of Virtual Machines," Proceedings
AFIPS National Computer Conference, 1973.

7. Goldberg, R. P., Architectural Principles for Virtual Computer Sys
tems, Ph.D. Thesis, Division of Engineering and Applied Physics,
Harvard University, Cambridge, Massachusetts, 1972.

8. Goldberg, R. P. (ed.), Proceedings ACM SIGARCH-SIGOPS
Workshop on Virtual Computer Systems, Cambridge, Massachusetts,
1973.

9. Goldberg, R. P., "Virtual Machines: Semantics and Examples,"
Proceedings IEEE Computer Society Conference, Boston, Massachu
setts, 1971.

10. Meyer, R. A. and L. H. Seawright, "A Virtual Machine Time
Sharing System," IBM Systems Journal, Vol. 9, No.3, 1970.

11. Parmelee, R. P., T. 1. Peterson, C. C. Tillman and D. J. Hatfield,
"Virtual Storage and Virtual Machine Concepts," IBM Systems
Journal, Vol. 11, No.2, 1972.

12. Goldberg, R. P., Virtual Machine Systems, MIT Lincoln Labora
tory Report No. MS-2687, (also 28L-0036), Lexington Massachu
setts, 1969.

13. Mallach, E. G., "Emulation-A Survey", Honeywell Computer
Journal, Vol. 6, No.4, 1973.

14. Lauer, H. C. and D. Wyeth, "A Recursive Virtual Machine Archi
tecture," Proceedings ACM SIGARCH-SIGOPS Workshop on
Virtual Computer Systems, Cambridge, Massachusetts, 1973.

15. Scheffler, L. J., "Optimal Folding of a Paging Drum in a Three
Level Memory System," Proceedings of ACM SIGOPS Fourth
Symposium on Operating Systems Principles, Yorktown Heights,
New York, 1973.

Effective planning for and justification of the extension of data
processing in hospitals

by RICHARD B. FREIBRUK

Compucare, Inc.
Chicago, Illinois

Starting with the basic premise that: There is a significant
role for data processing as a viable tool to assist in patient
care and administrative management of hospitals, then we
can dispense with the assumption that it should no longer
be necessary to convince administrators of the need for
computerization in hospitals. This premise seems to be sub
stantiated by the significant increase in the application of
computer technology over the last several years as docu
mented by a 1972 American Hospital Association Survey
that indicated that of 552 hospitals sampled, 81 percent had
one or more in-house computers and an additional 5 percent
used out-of-house computer services.

By virtue of today's socia-economic environment and con
tinuing advancements in medicine it is a given fact that
hospitals are becoming more complex and are offering more
services. The management of a more complex and diverse
institution offering a broader range of services becomes much
more difficult. To compound the complexity problem, there
continues to be a shortage of qualified professional personnel
and those qualified professionals now in the field are being
used heavily in clerical tasks. All of these trends make the
hospital a very difficult institution to manage.

In addition to the pressures on the industry caused by
complexity, there have also been a number of clearly visible
trends related to attempts to solve this problem through the
use of data processing technology. Within the last year there
have been many clearly recognizable trends.

• A greater number of vendors with installed systems.
• A number of new vendors entering the field.
• A number of established vendors leaving the field.
o Heightened interest and understanding of integrated

clinical data processing concepts by administrators.
• Pressures for internal cost reduction and quality of

care justifications caused by Phase III, Phase IV,
C.O.L.C., P.S.R.O.'s, etc.

• The need for new management information to insure
C.O.L.C. "guideline" compliance.

• Continued growth of professional societies in the Health
Care Data Processing area, i.e., HISSG (Hospital Infor
mation Systems Sharing Group), Society for Computer

201

Medicine, HMSS (Hospital Management Systems So
ciety).

• AHA Interest: Advisory Panels
Numerous Institutes

• The recognition by administrators that Data Processing
is an expensive resource that must be managed as such.

• The growing recognition of the need to justify programs
of computerization before investments are made with
the corresponding subsequent requirement of "tracking"
the performance of that investment once made.

• The recognition by administrators that the use of Data
Processing in hospitals has been costly with marginal
return, if any, from the computer investment.

Currently, computers in most hospitals are employed in
financial applications, such as patient billing, payroll and
accounts receivable. The pressures of increased workloads
and insurance company and other agency reporting require
ments make the automation of these functions often necessary
and certainly useful. However, this rarely yields an ap
propriate return on a data processing investment, except
occasionally in terms of improved cash flow through the
more efficient control and more rapid collection of accounts
receivable.

The real benefit of automation lies in its use in the handling
of information in the clinical departments. The large quantity
of information pertaining to the care of the patient which is
processed in these areas provides excellent justification for
properly executed programs of extended automation. Certain
clinical departments lend themselves more readily to auto
mation because of their high volume of data and their
high cost of operation, typically represented by personnel
costs, i.e., Laboratory, Radiology, Central Supply, Pharmacy,
Dietary. Nursing, representing approximately 40 percent-50
percent of a hospital's budget, becomes an excellent source for
systems improvement opportunities through the reduction of
clerically intensive tasks performed as a result of a physi
cian's order for a clinical service.

A relatively small number of hospitals have proceeded
with programs of extended automation beyond the Business
Office. These systems typically have involved one or more

202 National Computer Conference, 1974

NURSING UNIT

RADIOLOGY

SUPPORT SERVICES
- DIETARt'
- TPJIffimRTATIOO

PHARMACY

BUSINESS OFFICE

TOTAL

LOWER G.1. SERIES
(FOR TOMORROW)

STEPS IXXltINTS
INrfrmIDIT lLES

II 12 7

18 6 5

5 4 1
8 2 1

12 4 3

9 4 2

82 32 19

Figure 1

of the following features:

• The collection of the doctor's order at the source (the
nursing unit).

• The transmission of that order to the interested service
department (Lab, X-Ray, Pharmacy, etc.).

• The processing of the information (patient charge post
ing, Pharmacy inventory update, Lab test result).

• The retrieval of the information (transmission and dis
play at the source for use in the care of the patient).

• The ultimate storage of the information as a component
of the patient's medical record.

The experience of hospitals in the past, which have ven
tured beyond the Business Office, has indicated that many
seemingly viable automation programs have not produced the
results at the costs anticipated for them. Difficulties have
been encountered in these programs primarily for the fol
lowing reasons:

• The selected approach to automation has required large
front-end investments in anticipation of future benefits
(cost reduction, better quality of care, etc.). This high
risk approach, accompanied by the failure to achieve the
desired benefits, has resulted in a waste of resources and
tremendous dissatisfaction on the part of the hospitals
involved.

• The selected approach to automation did not fit the
hospital's or the vendor's ability to achieve. When
programs were undertaken, well thought out plans for
implementation were not developed, and activities were
not carefully monitored-as a result, the benefits were
not realized.

Although benefits, as a rule have not been achieved, a
well planned program can indeed:

Reduce Costs
Increase Revenue
Enhance Quality of Care (Through Better Accuracy and

Timeliness)
Free Professional Personnel from Clerical Tasks

and
Reduce Systems Complexity and Opportunities for Error

This may appear as an impossible set of goals but when the
complexity of information processing within a hospital is
better understood, the goal is more achievable.

Illustrative of this point is the ordering of a lower G.!.
series procedure. This is a common procedure which typically
affects a number of areas in the hospital. At one hospital
which we have examined in depth, we found that the manual
system they were using to communicate information required
82 steps, 32 separate documents and resulted in the filing of
19 documents (Figure 1). The Nursing Unit was involved in
both sides of the procedure, Radiology, of course, took the
pictures, Dietary was involved in a special diet for the
patient, Transportation was involved to bring the patient
to Radiology and back to the Nursing Unit, Pharmacy was
involved in providing certain preparatory drugs, the Business
Office, of course, was involved in the billing. Through a
proposed automation technique at this particular hospital,
the steps involved were reduced from 82 to 23, the documents
involved from 32 to 5 and the documents filed from 19 to 2

LOWER G . I . SERIES
(FOR TOMORROW)

SlEPS r:ccl1'B~TS
UIDTt:8'J:Hif

F LES

NURSING UN I T +8 +1 +/

RADIOLOGY -lfr7 -&3 71

SUPPORT SERVICES
- DIETA.~ -5-0 +0 +-0
- 1FANSfDRTATION -&9 =2--0 +0

PHARMACY ft-S' -tt-/ 70

BUSINESS OFFICE -9-0 40 -+0

TOTAL -8?:-Z3 .:;t:.S ~2.

Figure 2

Effective Planning for and Justification of the Extension of Data Processing in Hospitals 203

(Figure 2). By decreasing the number of steps, cost reduction
could be obtained and the quality of care of that particular
hospital could be enhanced.

One of the major factors impacting "quality" of care is
"opportunity" for error (Figure 3). It follows that the more
tasks that must take place, the more opportunity for error.
By reducing the tasks that take place manually, the oppor
tunity for error is correspondingly reduced. It has been our
experience that those innovations which reduce costs in a
hospital are the same things that enhance the quality of care.

As a result of internal and external pressures and obvious
opportunities for improving hospital operations, many hos
pitals have approved large programs for the extended use of
the computer. Most hospitals have not, however, achieved
the expected benefits intuitively projected for these programs.
In actuality, automation has increased costs, had little affect
on patient care, increased the complexity of managing the
hospital and increased the management burden. Why is this
true? The prime causes of lack of complete success in com
puter effort results from a number of factors:

There has been an oversimplification of the problem
coupled with a general lack of recognition that you can't
change overnight. You must change in a pre-planned careful
fashion and the "Management of Change" requires skills
above and beyond those that might be currently available
within the Hospital Organization. Too frequently, hospitals
have acted intuitively in this matter. They feel that the
computer will be beneficial but they do not define the
benefits and the plan to realize those benefits. Instead they
typically move ahead without clear justification or clear
computer program objectives. When the computer program
does not achieve what administration expected, they are, of
course, unhappy. This might be characterized as a function
of inadequate planning.

Hospital computer programs being considered today typi
cally require large front-end investments and thus auto
matically become high risk programs particularly when
measured in terms of achieved benefits. The large commit
ment necessary at the front end ",ill lock a hospital into a
program from which there is no turning back. Thus with
inadequate planning, the program becomes a very high risk
affair.

Another factor is the over excessive influence by vendors
and suppliers in the decision making process. Vendors, by
their nature, tend to oversell and encourage large commit
ments. Unless the hospital grabs hold of the problem and
adequately defines its needs in a preplanned way, it risks
too much vendor control and influence of the program.

The proliferation of vendors in the field causes still another
difficulty. Each vendor has his own approach, plan and
product and makes a number of claims which are appealing
while attempting to establish his difference. Because of the
large number of vendors, it is extremely difficult to evaluate
capabilities and make an intelligent choice of a program.

In examining some of the general characteristics of hos
pitals cOI1....sidering extending data processing into so called
"HIS/MIS" programs, we find that they are typically larger
and therefore more complicated hospitals who can potentially

OPPORTUNITIES FOR ERROR

Common
Pieces Number Number Opportunities

of of of for
Information Documents Transcriptions Error

Nursing Unit 15 375

Pharmacy 72

Business Office 10 40

TOTAL (87

Figure 3

gain a greater benefit from computerization and have certain
characteristics in common:

• These hospitals almost universally are concerned about
the problem of using the computer more extensively
and rank the computer problem high amongst those
that need to be solved in the next several years.

• They are very acutely aware of previous failures and
are very concerned about making a major commitment
in light of the less than successful results of the industry.

• They are presently spending a lot of money on com
puters.

• These hospitals are generally spending between two and
four dollars per patient day currently, and are using
the computer primarily in the Business Office, with
varying degrees of effectiveness.

The thing that they all have in common is that they
recognize the need for even further expenditures and are
presently trying to decide upon their next step while con
sidering questions like:

• Should we use the computer outside the Business Office
or shouldn't we?

• Should we consider a shared service vendor instead of
our in-house computer?

• Should we make a full-fledged commitment to a "total"
HIS/MIS?

• Should we buy a package?
• Should we develop our own?
• What application first? Why?
• How much will each application cost? Why?
• How estimated?
• What are the varying costs, benefits and risks of the

different next steps?
• What effect do regulatory and community agencies have?

The problem is very complicated. There are a number of
conflicting pressures which have resulted in an ambivalent
attitude and a lack of decisiveness toward the extended use
of computers in hospitals. On the one hand, the adminis
trator knows that he will have to use the computer more
extensively but on the other hand, he is unhappy at the
prospect of greater expenditures in an area whose performance

204 National Computer Conference, 1974

has been mixed, at best. The problem is more of what to do
rather than what not to do.

In addition to the difficulty caused by these factors there
is a general lack of recognition of the requirements necessary
for managing an automation effort. There is a tendency to
use inadequate control methods and to inaccurately define
the goals of the program. This has led to underestimates of
costs, and overestimates of benefits. If there is anything
that makes management unhappy, it's underestimates of
costs and overestimates of benefits. This has been followed
by a communication gap between management and computer
technologists. There has generally been too much emphasis
on technology and too little emphasis on establishing:

• Proper program management
• Proper program objectives
• Proper program planning
• Proper system design
• Proper project control and tracking

It is in this area that hospital management falls down.
The technology required to make "hospital information

systems" work has been available for several years and has
been appropriately used in a number of industries. The com
plexity of the hospital, however, makes it more difficult to
use computers in that environment than in most other en
vironments. This is not a technical problem. This is a manage
ment problem and should be treated from that perspective.

In approaching this problem there are a number of ques
tions which must be asked and answered before a satisfactory
solution can be achieved.

• What should be done first?
• What should be done second?
• What should be done third?
• Which applications are feasible?
• Which applications are justifiable?
• In what order should you prioritize your program?
• How much should be spent? Over what period of time?
• How will such expenditures be justified?
• Who should I expend with?
• Over what length of time can the ultimate system be

reasonably installed? Is it six months, one year, ten
years, fifteen years?

• How can I be reasonably certain of the accuracy of my
plan?

• What are the checkpoints which tell me I'm succeeding
and should proceed-or failing-and should stop and
re-evaluate?

All of these questions must be carefully addressed before
undertaking implementation of a program. A proper approach
to the extended use of computers in hospitals must include
the use of sound business justification and planning tech
niques preliminary to the start of implementation of the
program.

Compucare, through its experience with many hospital
automation projects, has developed techniques which support
hORnit.R1R in t.hPRP rliffif'lllt rlpf'i<1ionR !'I.nrl whif'h tpnrl t.n !1rp!'I.thr '-'''-'J:"'_ --- .. --, _Jo.. ... -'-' ""'''''', _ - ., _, ... _- 0'",_ }

reduce the risk of their actions. Utilizing the minimum
criteria of:

• Reduction to cost
• Increase to revenue and
• Enhancement to patient care

as key indicators against which to proceed. The approach
we have developed and apply generally follows this guideline:

1. Assess the present computer program to determine
the effectiveness and benefits of the current Data
Processing budget.

2. As a result of the assessment a plan of action should
be developed to improve the existing program in the
short range considering:

-Computer capacity-over/under
-Projects to "kill"
-Staff and development techniques
- Available budget dollars

3. The definition of the benefits of automation by system
in terms of the potential for:

-Reduced costs
-Increased revenue
-Improved patient care

4. An assessment of the risks of automation including:

-Development and operating costs
-Vendor performance capability
-Change to hospital policies and procedures

5. The ranking and prioritizing of identified projects of
value

6. A determination of an affordable level of expenditure
considering:

-Available dollars
-Contention for resources
-Regulatory pressures
-Value of the opportunities/benefits to be achieved

7. The screening of the commercial availability of system
packages to meet the hospital's opportunities/benefits
and to:

-Develop requests for proposal as required
--Firm up cost data
-Integrate projects

8. Selection of the most appropriate approach based on
the criteria of:

-Early return on investment
-Funding future development costs through the

achievement of cost savings, as quickly as possible
-Low risk

9. The definition of the techniques by which progress
('!'In hp mp!'I.Rllrprl to hpln !'I.RRllrp t.hp !'I(>hipvpmpnt. of
---- .-- -- ------- -- -- - - - ----.r;- --- -- - .--- - ------ • ~ ••• ---- --

Effective Planning for and Justification of the Extension of Data Processing in Hospitals 205

the benefits by:

-Setting measurement benchmarks for each approved
project

-Establishing benefit realization plans
-Establishing a project reporting system

The result of strict adherence to the described approach

should be the development of plans that would keep costs
and benefits of new systems in parallel as much as possible,
while additionally insuring early return on investment and
the opportunity to modify the plan without losing the
economies identified. It is this kind of sound business analysis
that identifies the attendant risks while clearly measuring
achievement that is going to make certain hospitals success
ful in their data processing programs.

A resource allocation and planning system for the development
and operation of health care delivery systems

by BERNARD W. BISE

Peat, Marwick, MitcheU & Company
Washington, D.C.

INTRODUCTION

Hardly a week passes when one does not hear or read about
the crisis in American health care. To the consumer and the
health and medical care provider, there is a growing recogni
tion of the inadequacies inherent in the distribution, delivery
and financing of this Nation's health care. The majority of
Americans today rely on the independent physician for medi
cal care, consulting an array of specialists for specific prob
lems and utilizing the hospital as the predominant facility in
which to receive treatment. :\1edical care is purchased pri
marily on a fee-for-service basis when acquired by an in
dividual.

Our present fragmented system-or better, non-system
of medical care has evolved such that only the acutely ill
patient may enter into the medical care system and then
only if he has the health insurance or personal finances to
cover the cost of his care. Insurance notwithstanding, the
person whose illness requires extended hospitalization and/or
treatment by sophisticated procedures and technology will
almost certainly experience long-term financial indebtedness,
if not bankruptcy. Individuals who believe themselves ill
and/or those who wish to remain healthy will find access to
the system difficult if not impossible.

That a comprehensive health and medical care program
for all Americans can be financed and delivered through
existing mechanisms is not the issue. The addition of re
sources-manpower, facilities, and money-to the present
medical care environment will not alleviate the crisis. The
system must be reorganized and restructured to meet the
various levels of health and medical care needs of the Ameri
can public.

During the past few years and probably for the first time
in modern history, there has been an attempt-by private
industry, consumer groups, and the Federal government
to reverse the trend of increasingly costly conventional medi
cal care. Generally, the innovative delivery systems emerging
allow the health care planner to examine carefully the real
and perceived needs of the health care consumer. These
alternative systems apply resources at appropriate levels, so

207

as to be fully responsive to needs of both the consumer and
the provider.

Many of these new alternative health care delivery or
ganizations have entered the planning stage of development
and a few have become operational. Regardless of the differ
ences in their organizational structure, health and medical
care benefits program, and provider relationships, certain
common characteristics among these organizations have
emerged. The most prominent stems from the underlying con
cept that financing care and delivering care are interrelated
activities which are best served when coordinated within
the same organization. Health care planners are becoming
involved in a new business in which questions extend beyond
medical practice. The planning and effective management of
health care delivery require the application of a broad range
of business skills and tools-marketing, production, finance
to supplement the delivery of medical care. Recent experi
ence has shown that, indeed, a failure to devote adequate
attention to the financial implications of program decisions
has resulted in either total financial failure or significant
reduction in the operational scope of the delivery system.

As is true for most new business enterprises, the new de
livery systems have experienced great uncertainty in attempt
ing to make realistic operating projections. There is scant
historical data on which to forecast either potential enroll
ment or operating cost parameters. The health care planner
must be able to examine the financial implications of alterna
tive decisions made during strategic planning. Faced with
such uncertainties, PMM&Co. has developed a computerized
analytical system-Resource Allocation and Planning System
for the Development and Operation of Health Care Delivery
Systems (RAAP)-which may assist the health care planner
in projecting potential operating outcomes, resulting from
management decisions on potential target beneficiary pop
ulations, health and medical care resource utilization, require
ments, allocation, and cost. The final output of this system
is a pro forma cash flow statement which estimates the
future financial condition of the delivery system, resulting
from the service demand, resource utilization, and allocation
proposed by the health care planner.

208 National Computer Conference, 1974

Exhibit I -RAAP system framework

RAAP SYSTEM DESCRIPTION

The Resource Allocation and Planning System (RAAP)
is a computer-assisted analytical system used by the health
care planner to forecast or project operating results under a
variety of operational assumptions and to reforecast as
operating experience grows. Heretofore, developing projec
tions of this kind was a long and painstaking effort; conse
quently, many organizations failed to examin~ all mea~ngful
alternatives because of the tedious computatIOns reqUIred.

The focal point of the RAAP system is a discreet timestep
computer model. A "model" may generally be defined as the
body of information gathered about a system for the pur~ose
of studying the system. Since the purpose of the study .IS to
determine the nature of the information gleaned, there IS no
unique system model. . .

The task of deriving a system model may be dIVIded
broadly into two subtasks: (a) establishing the model struc
ture and (b) supplying the data. Establishing the structure
determines the limits of the system and identifies the vari
ables attributes and activities of the system. The data pro
vide ~he attribu~es' values and defines the relationships. in
volved in the activities.

PMM&Co. believes that both short- and long-range viabil
ity of a health care delivery system is dependent on manage
ment's comprehension of the relationship between utilization
forecast and financial planning. The majority of financial and
operational decision-making must be based on the delivery

system utilization forecast. PMM&Co. further believes that
resource requirements and the allocation of those resources
to provide the health and medical care services and benefits
is in large measure a dynamic process. The proj ection of
maximum health and medical care program utilization and
the application of resources necessary to meet that demand
during the initial period of operations is likely to lead to sig
nificant negative cash flows which the delivery system might
find difficult to overcome in subsequent years. We believe
that resource requirements and allocation should be sched
uled, based upon projected incremental monthly controlled
utilization. This is not to say that there may not be a re
quirement for initial capital outlay for program start-up.
However, dynamic resource utilization based upon
incremental monthly projected resource utilization demands
will aid in the establishment of a financially viable program
during the initial phases of operation.

The RAAP system is structured around this concept. Ex
hibit I illustrates the logic flow of the model framework.
Resource utilization and allocation, as well as operating ex
penses and revenue, are estimated based upon expected
program utilization by the potential beneficiary population.
To develop the pro forma cash flow projection the system
requires quantitative data on the size of the target population
and expected health and medical care program use-rates by
the beneficiary population. The combination of population
size and use rates determines probable resource requirements
and allocation and the resultant cash flow.

One of the primary values of RAAP is its rapid examination
of alternative strategies which need to be considered during
the initial planning periods. Most factors used in the system
can be readily modified to meet differing assumptions, and
the impact of these assumptions can easily be computed.
'Vhen the health care planner has developed a formalized
operational and organizational structure, the RAAP system
will project likely operating results against which the planner
can measure the delivery system actual performance. The
system is an effective management planning tool and also
permits the delivery system to analyze systematically alter
native decisions and evaluate operational experience.

The RAAP system operates in a "time-sharing" mode, a
concept which allows one computer to process several user
applications simultaneously, resulting in lower in~i'2dual
cost. The RAAP system has been designed such that It can
be used directly from the health care planner's office merely
by using a portable computer terminal and a common office
telephone. The operating mode of RAAP is "conversational"
in the sense that specific assumptions which the planner may
wish to vary (i.e., salary rates, hospital per diem rates,
program utilization rates, etc.) are entered each time the
program is run pennittillg rapid comparison of alternative
assumptions and corresponding financial and operational
implications.

Some of the potential analyses that may be made by RAAP
are:

• initial estimation of operating results;
• analysis or the impact of varying premium rates;

A Resource Allocation and Planning System for the Development and Operation of Health Care Delivery Systems 209

• analysis of the impact of varying beneficiary population
size or market penetration;

• analysis of the impact of rising hospital costs or changing
hospital utilization;

• analysis of the impact of alternative service delivery
structure;

• analysis of the effect of including a dental care program;
and,

• analysis of the impact on manpower requirements and
costs of program structure.

One of the major values of the system is its capability to
highlight the costs associated with gradual staff increases
proportionate to service demand, as opposed to the hiring of
a fixed "start-up" staff. WOhen used in conjunction with
other management information, the system can evaluate the
impact of current trends and their effect on staffing and costs.

Effective use of the RAAP system requires the health care
planner to develop a set of operating assumptions which are
used as inputs to the system. The information used to de
velop these operating assumptions usually emanates from
preliminary studies of the potential beneficiary popUlation
and available health and medical resources. In general terms,
the types of information required to formulate system as
sumptions are:

• demography of potential beneficiary population;
• expected level and rate of program utilization;
• nature, scope and potential benefits package;
• expected health and medical resources use rates;
• expected levels of compensation to health and medical

care providers; and,
• expected organizational and operational structure.

Based on the input assumptions outlined above, the RAAP
system produces 15 output reports. The user has the option
of choosing the number and order of printing of these reports
in accordance with his particular needs. The reports are as
follows:

• projected monthly market penetration;
• projected family mix of beneficiary population;
• projected health and medical care program utilization;
• projected space requirements;
• projected manpower requirement, allocation and cost

by programs of care;
• projected management and administrative manpower

requirements and cost;
• projected long-term debt service obligation; and
• projected pro forma cash flow statement.

Perhaps one of the more important benefits of the RAAP
system is its requirement for an initial set of formal input
information. The input information ",ill require the planner
to make certain decisions relating to the delivery system's
organization and operation. Obviously, this is a most difficult
task and requires much research, data collection, and analy
sis. The RAAP system provides a formal approach to such
an effort. Having established the initial data bases of in
formation, the RAAP system allows the planner to study

the impact of alternative decisions in terms of resources
and cost. The projected cash flow analysis alone is not a
sufficient budgeting tool, but it does require the development
of resources and cost data that are key elements and form
a basis for a system that can be used to control program
cost.

RAAP SYSTEM PLANNING APPLICATION

PMM&Co. realizes that the design and implementation of
a comprehensive health care delivery system necessitates
decision-making in many areas, such as organizational struc
ture, legal and tax status, benefits package design, staffing,
and marketing. Our experience suggests that unfortunately
the financial implications of decisions made in these areas
appear to have been ignored, unrecognized, or improperly
emphasized, ultimately resulting in relatively substantial
losses. Entrepreneurs have learned to prevent financial catas
trophies by basing operational decisions on sound business
judgments. Health planners now need to adapt and apply
their concepts of prevention to the body fiscal (management)
as well as the body physical (subscriber) for ensuring the
solvency of the former permits continued service to the latter.

The RAAP system is applicable in the planning of, and
projecting the likely operating results of, many types of
health care delivery systems. Systems such as:

• ambulatory care centers;
• group practices;
• hospital ambulatory care departments;
• medical foundations; and,
• health maintenance organizations

to name a few, might use the RAAP system to assist the
health care planner in the development of programmatically
and financially sound delivery systems.

During the previous two years, Peat, Marwick, Mitchell &
Co. (PMM&Co.) has been assisting HMOs in developing
operationally sound and financially viable programs of health
and medical care delivery. A maj or portion of our assistance
has been projecting potential operating revenues and costs.

It is the Health Maintenance Organization (HMO) which
appears to hold the greatest promise of providing the required
elements of a new and responsive health care delivery system.
The HMO concept envisions an organized and well-managed
system providing a comprehensive package of health and
medical care programs and services which shift from a
disease/hospital-care orientation to a prevention and ambula
tory care approach. This concept implies an obligation to
render family-oriented health and medical care with an
emphasis on continuity of care from preventive through
rehabilitative services, on patient education and counseling,
on ambulatory diagnosis and treatment, and on legitimate
and expeditious referrals to appropriate specialists. The
HMO's fundamental economic distinction is its method of
payment-revenues based upon coverage of the voluntarily
enrolled population served rather than reimbursement of
fees to providers for services to consumers.

210 National Computer Conference, 1974

-~--------~~========~ -....
"'" -- ,..,

~UDTliGO
"""""" '4ClO

,GOO ...
'" 4ClO ...
~~~~+=~~~~~~~~~~~~~~~ 

Exhibit II-Projected enrollment growth curve 

The following pages present a sample application of the 
RAAP system to a hypothetical HMO. The sample applica
tion will illustrate the development of the required input 
data elements necessary to compute the likely resource re
quirement and cost, and the projected pro forma cash flow 
statement. For the purposes of this example the necessary 
research, data collection, and analysis of the target popula
tion has been completed. Adjusted to the findings and con
clusions, benefits package and price structure have been 
developed. The HMO planner also has developed an alterna
tive organizational and operational structure. The planner 
now wishes to assess the financial viability of his program. 

Lacking any actual operational data for the proposed 
HMO, the planner must develop a set of operational assump
tions which are used to project the likely HMO operating 
results. The assumptions pertain to: 

• the HMO's enrollment level and growth rate; 
• the HMO's resources utilization rate; and, 
• the HMO's resources capacity and cost. 

In each of these three areas the following assumptions were 
made. 

Enrollment Level and Growth Rate 

• Experience of newly-formed HMOs suggests that a pene
tration of 10 percent of the potential target beneficiary 
population during the first year is not unrealistic. Ac
cordingly, the planner assumes a 10 percent penetration 
of the employees of the major employer in the identified 
target area. Accordingly, an enrollment population of 
employed family contracts, distributed as 20 percent 
single-member families, 20 percent two-member families, 
and 60 percent three-or-more member families with an 
average family size of 3.5 people/family are assumed. 

• An operational start-up date of September 1974, with 
a two-year experimental operational period. 

• An initial enrollment population of 10 percent of the 
expect.ed total enrollment is projected with grmvth at a 
rate based on a cumulative normal distribution growth, 
which allows for: (a) a slow build-up phase, first three 
months; (b) an exponential growth phase, next seven 
months; and (c) a leveling-off phase, the last two months 
of the first year, with a steady state population after 
one year of operation. (Exhibit II) 

Resource Utilization Rates 

• Resource utilization (i.e., manpower, money, facilities 
and equipment) are directly determined by enrollment 
population on a month-to-month basis, without anticipa
tory staffing. . 

• An average ambulatory care use-rate of 8.7 ambulatory 
care visits per person per year (based on an average of 
Kaiser-Portland Health Plan and OEO data reported 
in Medical Care, 10: 187-200, May-June 1972), with 4.2 
visits/person/year for general health and medical care 
programs, 2.0 visits/person/year for mental health pro
grams and 2.5 visits/person/year for dental health pro
grams. 

• A hospital use rate in patient day per 1000 enrollees 
based upon HMO's estimate of expected use, and at a 
cost represented by the average daily billed charges of 
the hospital. 

• Prescription drugs provided at an average rate of four 
(4) prescriptions per member per year at an average 
cost to the plan of $3.00 per prescription. 

Resource Capacity and Cost 

• Professional manpower requirements for ambulatory and 
in-hospital care programs under a "team approach" 
will be met by one or more "physician teams": (a) 
composed of one full-time equivalent (FTE) physician 
and 1.5 FTE paraprofessionals (physician's assistant or 
nurse practitioner); (b) servicing 35 patients per day 

ell wT NAIIE? 
ENROLLf.lENT TAGLE NAllE?TESn 

BENEF IT PACKAGE COtIPONENTS 
lIED I CAL SUPPLEllENTAL-YES-111 

DENTAL CARE-YES-1?O 

AlIBUlATORY TEAIIS-YES-111 

PERCErn 1,2,3+ PERSON F AlII LIES ?J.Q,1.Q,.Jl..Q. 

3+ PERSON FAlII LI ES, AVG. NO./FAlII LY-?,hl. 

CAPITAl.rON RATE FOR 1,2,3+ PERSON FAIIILlES?1.!.a.i.2,.ll:.1.9,~ 

AVG. AlmUAL PATI ENTS DAYS/1000?lQ.Q. 

HOSPITAL PER DiEII?llO.OO 

IIHAT I S TARGET ElmOLUIENT?..l.!t.2.Q.. 

\'/IiAT IS STARTI NG ENROLUIENT?lll 

\lIlAT IS PLArmEO PERIOD STARTING Il0NTIl ANO YEAR?09,74 

\IIIAT IS PLMNEO PERlon WOIN!; 110NTIl AIm YEAn?08,75 

REQUIRED REPORTS?1 
?2 
?3 
?4 
?5 
?10 
?11 
?12 
?13 
?99 

Exhibit III-Projected resource requirements and cost-lO percent 
market penetration 



A Resource Allocation and Planning System for the Development and Operation of Health Care Delivery Systems 211 

TARGET ENROLLrlEI;T flY 110lHii 
1·10 YR TARGET ItJCREI1F.tH I-PF.R. 2-PF.P.. 3+PEr.. 

10 74 851. l1l. 110 170 510 
11 ]I, 962. 111. 1~2 1G2 577 
12 74 1140. 178. 227 227 683 

1 75 1495. 355. 298 298 896 
2 75 2105. 61l. 421 421 1263 
3 75 2938. 832. 587 587 17G 2 
4 75 3770. 832. 754 754 2262 
5 75 4603. 833. 92O 920 2701 
G 75 5435. 833. 1087 108/ 3261 
7 7" 6201. 766. 121,0 1240 3720 
8 75 6845. 644. 1369 13G~ 4107 
9 75 7400. 5~5. 1480 1430 4440 

EtmOLLt:EllT OY TYPE OF FAil I LY 
IIO YR ENROLLt:EllT **************TYPE OF FAl1ll Y************** I ~lr:m [ 

COIHRACTS I-PEIlSON 2-PER50IJ 3- PER501J TOTAL OOLLAR" 
10 74 851. 170. 340. 1787. 2298. 44230. 
11 71, 962. 192. 385. 2020. 2597. 49939. 
12 71, 1140. 228. 456. 2393. 3077 • 59230. 

1 75 14~ 5. 299. 59 a. 3139. 4036. 77u91. 
2 75 2105. 42l. 842. 442l. 5624. 109 1,2l. 
3 75 2938. 583. 1175. 61G9. 7932. 152589. 
4 75 3770. 754. 1508. 7918. 10180. 195958. 
5 75 4603. 921. 1841. 966G. 12428. 239220. 
6 75 5435. 1087. 2174. 11414. 14675. 2824~1,. 
7 75 6201. 1240. 2480. 13023. IG 743. 32230l. 
8 75 6845. 1369. 2738. 14375. 181,82. 3557G2. 
9 75 7400. 1480. 2960. 15540. 19980. 384608. 

Exhibit IV-Project HMO subscriber enrollment 

(8-hour session); (c) compensated on the basis of $45,000 
per year per FTE physician and $18,000 per year per 
FTE paraprofessional, including all fringe benefits and 
all in-hospital care services; and (d) available to trust 
participants on a 16-hour per day basis (8:00 a.m. to 
12:00 midnight, or 2 sessions per day). 

• Professional manpower requirements for ambulatory and 
in-hospital consultation/referral care programs will be 
met by approximately 0.20 FTE physicians/1ooo par-

PROJECTEO UTlll7.ATIDrJ OF liF.AI.TIl f, I1EfllCAL RF.SOIIRr.ES 
flO YR rt 'PERSOUS *********AIHHJlATOnV CARE VI ~ I T!;**'*.·.*** IIn:;PI TAL v I: IT:' 

D ElmOlLEfl GEtJERAL I1F.IITAL fln~TAL TnTAL 11'1 PT [l~Y:, 
10 71, 11 2298. 804. 383. O. llP.7. 131,. 

D 40. 19. O. Sq. I,. 
11 74 11 2597. 909. 433. O. 1342. 152. 

D 45. 22. O. 07. 5. 
12 71, 11 3077. 1077. 513. n. 15QO. 17Q. 

D 54. 2G. O. 7Q. r,. 
1 75 II 4030. 1413. 673. n. 20e5. 235. 

D 71. 34. O. 104. 8. 
2 75 11 5684. 1990. 947. O. 2937. 332. 

D 99. 47. O. 1',7. 11. 
3 75 II 7932. 277G. 1322. O. 409:;. 4(,3. 

D 139. 66. O. 205. 15. 
4 75 11 10180. 3563. 1697. O. 521,0. 594. 

n 178. 85. O. 263. 1~. 
5 75 II 1241.R. 4350. 2071. O. 6421. 725. 

D 217. 104. O. 321. 24. 
G 75 11 14G75. 5136. 241,(j. O. 75~2. 85G. 

o 257. 122. O. 379. 28. 
7 75 I; 16743. 58GO. 7.791. O. 3li51. 377. 

o 293. 140. O. 433. 32. 
8 75 11 18482. 64r,9. 3080. O. 9549. 1018. 

D 323. 154. O. 477. 35. 
9 75 r: lq~ao. G9n3. 3330. O. 10323. llr.G. 

D 350. 167. O. SIb. 3?. 

AIIIIULATlJltY CII!:F. FAC I l I TY SPACF. RF.QIJI PoElinn 
1 $Q. FT./ENP.OLLF.F.- 19(1~0. 

1.5 SQ. FT./F.tIROLLEE- 29970. 

PROJECTEn llAtIPOIIER REQUIRE/1EIITS FOR AI'ntllATORY CARE 

110 YR AV V 15/ TS HAllS 
REQ'D 
1.7 
1.9 
2.3 
3.0 
4.2 
5.9 
7.5 
9.2 

••• •••• FIILL TillE Enlll VAL EilTS""'" 

10 71, 
11 ]I, 

12 74 
175 
275 
3 75 
475 
5 75 
G 75 
775 
275 
975 

PER DAY 
59.4 
67.1 
79.5 

104.3 
146.8 
204.9 
263.0 
321.0 
379.1 
432.5 
477.4 
516.2 

10.8 
12.4 
13.G 
14.7 

PHYSICIA!lS NURSES PArAPROF TOTAL 
1.7 2.3 2.5 6.5 
1. 9 2.6 2. n 7.4 
2.3 3.1 3.4 8.7 
3.0 4.0 4.5 11.5 
4.2 5.7 6.3 1G.2 
5.9 7.9 8.8 22.5 
7.5 10.1 11.3 2~.9 
9.2 12.4 13.8 35.3 

10.8 14.0 16.2 41.7 
12.4 16.7 18.5 47.6 
13.6 18.4 20.5 52.5 
14.7 19.9 22.1 56.8 

11I11JPO\iER 
EST erST 

11ql,9. 
13503. 
16C02. 
20939. 
29561. 
41251. 
52g 40. 
54r. 29. 
7G 311. 
87073. 
9G113. 

1039 or,. 

Exhibit V-~llbulatorf health and medical care program utilization 
projections 

PROJECTED REFERRALS 

flO YR I PERSONS FTE - 110. COST -OF 
ENROLLED REFERRALS REFERRAL$ 10 74 2298. 0.5 1532. 

11 74 2597. 0.5 1732. 12 74 3077. 0.6 2051. 1 75 4036. 0.8 2691. 
2 75 5684. 1.1 3790. 
3 75 7932. 1.6 5288. 4 75 10180. 2.0 6787. 
5 75 12428. 2.5 8285. 
6 75 14675. 2.9 9784. 
7 75 16743. 3.3 11102. 
8 75 18482. 3.7 12321. 
9 75 19980. 4.0 13320. 

PROJECTED HOSPITAL CARE 

flO YR I PERSONS HOSPITAL HOSPITAL 
ENROLLED DAYS COHS 

10 74 2298. 134.0 147411. 
11 74 2597. 151. 5 16667. 
12 711 3077. 179.5 1974 11. 

1 75 4036. 235.4 25897. 
2 75 5684. 331.fi 36 /174. 
3 75 7932. 46'2.7 50897. 
4 75 10180. 593.8 65320. 
5 75 12428. 724.9 79744. 
G 75 111675. 856.1 Q4167. 
7 75 16743. 976.7 1071136. 
8 75 18482. 1078.1 118590. 
9 75 19980. 1165.5 128205. 

PROJECTED rMNAGEflF.1JT rc ADI1I NI 5TRATI VE EXPEtJSE 

110 YR # PERSONS 11MIPOIJER 11mlTfcA0I111J 
ENROllEO REQ'O-FTE C05TS 

10 74 2298. 6.4 5750. 
11 74 2597. 7.3 6500. 
12 74 3077. 8.6 7700. 

1 75 4036. 11.3 10100. 
2 75 5684. 15.9 111225. 
3 75 7932. 22.2 19850. 
4 75 10180. 28.5 25/174. 
5 75 12428. 34.8 31099. 
6 75 14675. 41.1 3672 11. 
7 75 16743. 46.9 41899. 
8 75 181182. 51. 7 46249. 
9 75 19980. 55.9 49999. 

Exhibit VI 

ticipants, compensated on the basis of $50,000 per year 
per FTE physicians including all fringe benefits, roughly 
distributed as follows: 

Otolaryngology 0.04 FTE 
Dermatology 0.03 FTE 
Ophthalmology 0.03 FTE 
Radiology 0.03 FTE 
Orthopaedics 0.02 FTE 
Clinical Pathology 0.02 FTE 
Neurology /N eurosurgery 0.01 FTE 
Anaesthesiology 0.01 FTE 
Special Surgery 0.01 FTE 

• Professional Manpower Requirements for program man-
agement and administrative services will be met by 
supplementing 2.8 person/1ooo private sector partici-



212 National Computer Conference, 1974 

PROJECTEO REVENUES & EXPENSE 

PROJECTEO REVENUES 

SOURCE QTR 12 74 QTR 3 75 QTR 6 75 QTR 9 75 TOTAL 
SUBSCRIPTIONS 153458. 339801. 717678. 1062671. 2273608. 

CONTRIBUTIOUS 
OTIIER 

TOTAL REVENUE 153458. 339801. 717678. lOG 2671. 2273608. 

PROJECTEO EXPENSES 

AMBULATORY CARE. 41458. 91801. 193388. 287092. 614240. 
DENTAL CARE O. O. O. O. O. 
UOSPITAL CARE 51154. 1131.119. 239231. 354230. 757884. 
REFERRAL CARE 5315. 11768. 24855. 36803. 7874l. 
PHARI1ACY 12197. 27008. 57043. 84463. 180711. 
IIGHT.&AOIIIU. 19950. 44174. 93298. 138147. 2!'l5SG9. 
G & A COST 6643. 11.710. 3H69. 46004. 984 2(j. 
F AC I L I TI ES Fe r·1A I r~T. 
DEBT SERVI CE 4604. 10194. 21530. 31880. 6:1208. 
EXCESS LIAB. IUS. 9208. 20388. 430r. 1. 63760. 1%416. 
TOTAL EXPENSES 150528. 333313. 703975. 1042380. 22301%. 

PROJECTED CASI! FLml 

NET CASH FLm: 2930. GilliS. 13703. 20290. 43412. 

STEADY STATE PHASE 

PIWJECTEn REVErllJES & EXPEUSF. 

PROJECTEO REVEtHJES 

SOUHCE QTH 12 75 QTR 3 76 QTR 11 76 QTn 9 76 TOTAL 
SUBSCRIPTIOUS 1153823. 11531123. 1153823. 1153823. 4615291. 

CONTRIBUTIONS 
OTHER 

TOTAL REVENUE 1153823. 1153823. 1153823. 1153823. 4615291. 

PROJECTED EXPENSES 

Al1BULATORY CARE 311713. 3U7la. 311718. 311713. 1246871. 
DENTAL CARE O. O. O. O. O. 
IfOSPITAL CARE 384fi15. 381.r.15. 3846-15. 334615. 1533460. 
REFEHRAL CARE 39960. 399(iO. 31')%0. 39960. 159840. 
PlfARr1ACY .. 91108. 91703. 9170~. 91708 • 3()fjR33. 
I1GIiT. &AOfll rJ. 149997. 149997. 149~19 7. 14~!l9 7. 599938. 
G & A COST 49950. 49950. 499 SO. 49950. 1!'l9800. 
F AC I L I TI ES & t1A I In 0 

DEBT SERVICE 34615. 34615. 34615. 34615. 1311459. 
EXCESS LIAR. INS. 69229. 69229. 69229. 69229. 276917. 
TOTAL EXPEr~SES 1131792. 1131792. 1131792. 1131792. 4527168. 

PROJECTEO CASH FLmJ 

NET CASH FLmJ 22031. 22031. 22031. 2203l. 88123. 

Exhibit VII-Projected pro fonna clUlh flow initial build-up year 



A Resource Allocation and Planning System for the Development and Operation of Health Care Delivery Systems 213 

pants, compensated on the basis of 13 percent of program 
revenues. 

• An annual general and administrative (G&A) rate of 
approximately $10,000 per 100 participants per year to, 
cover such items as equipment rental, utilities, main
tenance, insurance, supplies, travel, etc. 

• A debt service rate of 3.0 percent of program costs to 
cover initial capital outlay costs. 

• Purchase of excess liability insurance to absorb losses 
in excess of 125-150 percent of income at a cost of 4 per
cent of income. 

• An actuarially determined monthly capitation structure 
of $18.62, $44.99 and $65.42 for one-person, two-person 
and three-plus person families, respectively. 

The allocation of resources required to meet the anticipated 
health and medical care program utilization by the projected 
enrollment for the recommended delivery system are pre
sented in Exhibits III through VII. 

For the HMO, the major input assumptions are presented 
in Exhibit III. These assumptions include the family mix 
and size; capitation rate; average anticipated hospital use 
rate and charges; projected enrollment target; and the enroll
ment level to be achieved prior to the HMO going opera
tional. 

Exhibit IV illustrates monthly and cumulative enrollment 
targets based on the overall growth target pattern set by 
the user, and the number of individuals covered by the 
HMO based on the monthly enrollment targets and the per
centages of two, three, or more person families. The report 
also shows monthly income based on the capitation rates 
provided by the user. 

Exhibit V illustrates the projected ambulatory health and 
medical care program utilization by the enrolled population. 
The number of expected monthly and daily visits for general 
health and medical episodic care and mental health care are 
presented. The projected monthly hospital patient-days are 
also presented, together with the average daily census. The 
projected ambulatory care space requirements are also pre
sented. The projected manpower requirements by category 
are presented. with their cost. 

Exhibit VI projects the number of full-time equivalent 
physicians required for specialist referrals and the correspond
ing projected costs; the estimated in-patient hospital days 
and the associated per diem rate costs; and the projected 
manpower requirements for management and administra
tion of the HMO and their associated costs (as a percentage 
of revenues). 

The results in Exhibits III through VI represent projected 
operating results for the initial build-up year. The resource 
requirements for each month of the steady, stable period 
would be the data presented in the twelfth month of the 
build-up year. 

Pro Forma Cash Flow Projections 

Having developed needed resource requirements and their 
costs, there remains then, finally and most importantly, the 

PRO,JECTEf) REVENUES'" EXPENSE 

PROJECTEn REVENUES 

SOIlRt:E ClTR 12 74 ClTP 3 75 ClTR fi 75 ClTR 9 75 TOTAL 
SUOS CR I PTI ONS 153458. 33'l1l0l. 717678. 10fi2fi 71- 2? 736{'S. 

COtlTR I flUTI ONS 
OTHF.R 

TOTAL REVENIJE 153458. 33'lIlO1. 7171i78. 1062671. 2273608. 

PROJECTEO EXPENSES 

Al-lfllJl.ATORY CARE 41458. 91l!01. 
nErlTAL CARE 

193888. 287092. 611124/). 
c. O. O. f'. O. 

HOSPI TAL CME 52981. 1173111. 211 777/j. 3f)fiR82. 7R4~5l. 
REFERRAL CARE 5315. 11768. 2/j855. 36'lC3. 78711l. 
PIIARI·iACY li!l9 7. 271)08. 570113. 841163. 180711. 
r·lmlT. &AnN IN. 1.9950. /j41711. 93298. 13S147. 295569. 
r, ... A t:OST 6643. 14710. 
FACILITIES ... r·IAINT. 

31069. 46COII. q 8426. 

nmT SERVICE 11604. 10194. 215311. 31880. 68208. 
EXCESS LIAB. I tiS. 9208. 20388. 43061- 63760. 136411). 
TOTAL EXPENSES 152355. 337358. 712519. 105503l. 2257263. 

PF:O ,J E CTEn CAS H F LOH 

NET CASH FLOW 1103. 2443. 5159. 7639. 

Exhibit VIn -Revised pro forma cash flow 

question of assessing the financial viability of the HMO's 
operation as developed by the planner. The net results of 
the revenue and expense projections computed in the pre
ceding pages are displayed in a single pro forma cash flow 
statement, Exhibit VII. The computations of cash flow (in
come less expenses) is a simple and straightforward process. 
Net cash flow is computed monthly over the planning period 
and is displayed quarterly for the planning period. This 
report shows projected subscription revenues and blank lines 
for other income. It also shows cost projections by program 
B:rea-ambulatory care (team or nominal), dental care (op
tional to the user), referrals, hospital care and management 
and administration. 

The net positive cash flow generated by the hypothetical 
HMO suggests that the alternative delivery structure pro
posed by the planner is a financially viable option. Because 
any forecast is subject to uncertainties, projections sum
marized for the HMO are not represented as specific results 
which will be obtained, but rather as operating results which 
can reasonably be expected under the assumed conditions. 

The RAAP system as presented in this document cannot 
guarantee the long- or short-term success of an HMO. -How
ever, the system provides the HMO planner with a formal 
procedure to assist the planner in understanding the rela
tionship that exists among the proposed program of health 
and medical care benefits, utilization patterns, resource re
quirement, and costs. In addition, when the planner has 
formally established the HMO's organizational and opera
tional structure and entered operations, the RAAP system 
provides a baseline against which actual operational results 
can be measured. 

RAAP SYSTEM PERFORMANCE APPLICATION 

When the health care planner ha..c;; formallv established 
the delivery system's organizational and operati~nal structure 
and management has commenced operations, the delivery 

163115. 



214 National Computer Conference, 1974 

system's actual performance must be continuously monitored. 
A delivery system's ultimate success or failure is determined 
by its actual performance. Therefore, it is essential that 
health care planners develop effective performance monitor
ing and evaluation criteria/mechanisms. 

The RAAP system has direct application in health care 
delivery system performance evaluation. The operational 
projections produced by RAAP for the finalized delivery 
system structure represent an expected performance bench
mark data base against which actual performance may be 
measured. Provided all the operational and utilization as
sumptions used by RAAP hold true, the delivery system's 
actual performance must meet or better those projected by 
RAAP if the operation is to remain financially viable. If 
actual performance falls below that projected, corrective 
measures must be instituted. During the replanning process, 
RAAP is used to assess the impact of the contemplated 
operational changes. The revised operational projections now 
serve as the new benchmark against which to measure actual 
performance. It should be emphasized that RAAP is not a 

management reporting system but works in conjunction with 
it. 

As an example of the performance or management applica
tion of RAAP, let us return to the hypothetical HMO pre
sented in the previous section. The HMO's monthly financial 
reports show hospital cost exceeding the projected expenses. 
The RAAP system projected hospital costs based upon a 
use rate of 700 patient days per 1000 enrollees at a fixed 
cost of $110.00 per day. The HMO's program utilization 
monitoring system reveals that actual hospital utilization is 
750 patient days per 1000 enrollees. Hospital utilization re
view along with enrollment studies reveal that the increased 
hospital use rate is not excessive. H~t[O management must 
now determine if the HMO's fixed revenue from monthly 
subscriber payments will be sufficient to cover the cost of 
increased hospital use rates. Exhibit VIII presents a new 
pro forma cash flow based upon the revised hospital use rate. 
The revised cash flow suggests that even with a decrease in 
net cash flow of $27,000, H:\10 revenues are still sufficient to 
cover expenses. 

I 



Medical data processing in the United States 

by MARION J. BALL* 

Temple University Health Sciences Center 
Philadelphia, Pennsylvania 

In the past few years, there has been a sharp rise in the 
demand for health care services of all types by a larger and 
increasingly more well-informed public. At the same time, 
the cost of delivering high quality care is becoming formidable 
for hospital and patient alike. The introduction of the 
computer and information management techniques is con
sidered by many informed health professionals and knowl
edgeable leaders in the medical computer field to be a solution 
to some of the major health management problems we are 
confronted with today. 

Such systems should not be expected to magically solve 
all health care delivery problems; computerized systems 
can, however, alleviate much of the congestion in the medical 
communications network. It has been stated that the lack 
of an effective means of communication between health 
care professionals is one of the most serious drawbacks to 
improved patient care today. 

Increased use of medical computerization upgrades this 
communication. Additionally, it assists the physician to 
carry out duties which he does not like involving documenta
tion and clerical functions. It effects a reduction in personnel 
workload by taking over much of this paper work. 

Computerization also reduces errors. It is imperative to 
good health care that the possibility of error be minimized. 
To ensure accuracy in the transmission and storage of data 
for subsequent use, a computerized medical information 
system can establish consistent standards and continuously 
monitor all transactions. All entries that require verification 
can be immediately printed at the entry terminal and 
verified by the user, thereby providing positive confirmation 
of the data. A printed record of the transaction is then 
available for future reference. 

The computerized medical information system also 
promotes an important organization and accessability of 
valuable medical information. The physician can have 
direct access to all stored information through the use of 
remotely located terminals. A timely patient summary 
report provides accurate and convenient information sup
porting on-going medical care as well as enabling the im
plementation of a more exact system of capturing charges 
and giving provider credits. Of course, legibility is most 
certainly a positive benefit as well. 

* This paper appeared in the journal "Hospital Financial l\fanage
rnent," January 1974, Vol. 28, NO.1, pp. 10-30. 

215 

This type of system also improves physician communica
tion with the community medical facility through incorpora
tion of a so-called hospital information system. Through 
this system, an improvement of overall hospital organization 
and procedures is effected. Control is obtained by supplying 
the staff with concise information concerning events as they 
are occurring. The system can, therefore, serve as a tool 
in making day-to-day as well as long-range operating 
decisions. A major advantage of computerization is in the 
improvement effected by the systematic organization of 
medical functions and patient information in an accessable 
data bank. An information system establishes specialized 
files containing data on various functional activities and 
on patients. This data is distributed throughout the system 
for appropriate uses. The data base is constantly being 
updated during daily operation. 

It is important to keep in mind that the principal ad
vantages derived by physicians and patients from the 
installation of a computer system in the hospital occur 
after the physician has initially seen the patient. These 
include services subsequently executed after examination. 
Advantages affecting patient care include more rapid and 
accurate means of ordering tests and medication and of 
reporting, filing, and retrieving test results. While a computer 
system may not immediately reduce the time required to 
perform a specific test, the ordering and notification system 
will be speeded up. 

There appears to be some confusion as to just what 
constitutes the medical information system. When used 
correctly, the term implies fully computerized management 
information as well as aspects of patient care. Although a 
comprehensive total system does not presently exist, the 
beginning of an ultimate system is being explored. In order 
to produce this type of system, an integrated flow of data 
processing will be necessary to cover: 

1. the collection of source data 
2. the transmission of information via· terminals and 

other communication links to a central computer 
3. the establishment of a large, immediate-access data 

bank 
4. the development of computerized management in

formation to be used for decision making 
5, the unification of the physician and his staff with an 

on-line, real-time computer complex 



216 National Computer Conference, 1974 

An all-inclusive system will facilitate communications 
between the activities of the various areas involved. To 
achieve acceptance of this system, the entire approach to 
our current methodology must get a face lifting. It is ap
propriate at this time to quote Machiavelli in reference to 
attempting this feat. 

"It must be remembered that there is nothing 
more difficult to plan, more doubtful of success, 
nor more dangerous to manage, than the creation 
of a new system, for the initiator has the enmity 
of all who would profit by the preservation of the 
old institutions and merely lukewarm defenders 
in those who would gain by the new ones." 

Before beginning to consider the field of Computer 
Medicine which involves the study of the various computer 
assisted medic~l applications making up the potential 
community medical information system, one needs a frame 
of reference within which to consider the current status of 
its development. The following diagram offers such a 
taxonomy. 

CLINICAL DATA PROCESSING 

RADIOLOGY NURSING MEDICAL PHARMACY 
STATION RECORDS 

ADMINISTRATIVE DATA PROCESSING 

CENSUS DATA ADMISSION BILLING ACCOUNTS PAYROLL ACCOUNTS 
COLLECTION RECEIVABLE PAYABLE 

Some of the applications mentioned in the diagram are 
discussed below. * 

1. Admissions and Bed Control: Prepare current census 
report. Monthly periodic statistical reports. Bed 
status and accounting. Generation of lists of current 
patient locations and condition for use by physicians, 
clergy, telephone operators, etc. Message transmission 
to and from other pertinent areas (admissions, 
nursing, etc.). Assistance in patient admission in
terview. (For a small hospital-too costly.) 

2. Billing and Accounts Receivable: More than 1 000 
hospitals have one form or another of data proces~ing. 
The biggest problem is capturing the charge informa
tion and entering the charge against the right patient. 
Most use batch processing. General ledger and 
bUdgeting usually are computerized after billing, 
accounts receivable, payroll/personnel, and accounts 
payable. These are most useful to management and 
planning. 

* National Center for Health Services Research and Development: 
Comprehensive Hospiial Compuier Applicaiions Program. Vol. 1. A Guide 
to Automation for Hospital Administration. Rockville, Md .. 1972. 

3. Payroll/Personnel: This can be considered by the 
100-300 bed hospital. These vary in sophistication, 
i.e., FICA and federal income tax deductions, to 
more complex problems with bonds, insurance 
savings, etc. The more sophisticated the more the 
cost; you get what you pay for. 

4. Accounts Payable: This is a very early and justifiable 
computer application. Again, as in the foregoing 
areas, the repetitive nature of the task and the use of 
the same data to produce numerous reports makes this 
function a natural for the computer. As a result, it 
is usually automated early along with patient billing, 
accounts receivable, and payroll. 

5. Purchasing: This is justified if combined effort is 
made with pharmacy, food service, maintenance, and 
central purchasing. If each is considered alone, it is 
not C?st ~ustified. Because of a lack of cooperation, 
coordmatlOn, and control in most institutions, this 
area is not one of the first to computerize. 

6. Inventory Control: This can reduce the physical 
inventory if combined with a computerized purchasing 
system. 

7. Maintenance/Engineering Department: Programs that 
can be considered in this area area: (1) preventive 
maintenance scheduling, (2) work order request 
control and costing, and (3) personnel scheduling. 
These programs can be undertaken on a variety of 
systems and have no bearing on the type of HIS or 
computer facility your hospital has. 

S. Laboratory Medicine: All subfunctions relating to the 
discipline of Pathology including clinical pathology, 
gross and microscopic specimen analysis (also cy
tology), and forensic pathology. Not only are the 
commonly automated areas of hematology and 
serum chemistry included but also urinalysis, histo
pathology, and microbiology, It also encompasses 
quality control, trend analysis, laboratory instrument 
monitoring, and all aspects of specimen control 
including intradepartmental file management tech
niques when applicable. Laboratory is quite success
ful; has small dedicated facilities. No reduction in 
cost but smaller increase of cost as rate of growth 
increases. Charges generated and reported on lab 
system which helps the business office. A lab doing 
over 300,000 tests a year should consider a lab 
system. 

9. Scheduling: All subfunctions involved with the 
heavily transaction-oriented aspects of patient care 
concerned with bringing together certain resources 
(men, money, material), various facilities (including 
admissions and discharge functions) and patients 
in a logical manner most appropriat~ to completing 
the diagnostic work-up. Scheduling of inpatient and 
outpatient appointments is a part of this function. 

10. ~dministrative Management: Within the hospital, this 
mcludes all subfunctions involved with cost ac
counting, patient accmmtlTIO' h",rl ~'IT~11~ hl11tn harl ..... --.... ... v ...... .Lb' ............. - .......................... .....,.L ....... 'J, U\...;l\A. 

usage, medical staffing, medical material, budgeting, 



programming (including preventive maintenance) and 
facility usage and planning. For the doctor's office, 
it also includes all management functions including 
the filling out of third party payment forms and 
patient billing. It also includes areas of health planning 
and the development of models. 

11. Pharmacy: This must be considered in conjunction 
with other systems such as in-house accounting or 
shared hospital accounting for cost justification. 
The systems currently available do pricing, charging, 
inventory control, formulary listing, purchase order 
preparation, and other administrative type applica
tions. All subfunctions relating to therapeutic agents 
and their usage. These include drug inventory 
control, prescription formulation, maintenance of a 
formulary, and appropriate aspects of clinical phar
macology such as usual dosage, orders checks and 
reminders (inpatient), contra-indications, and hy
persensitivity reactions. In addition, appropriate 
aspects of clinical toxicology and acid-base (fluid) 
therapy are included as subfunctions. 

12. Radiologic Diagnosis and Therapy: Work is being 
done in administrative applications, radiological 
information systems, and radiographic diagnostic 
systems. All subfunctions relating to Diagnostic 
Radiology including the conversion of requests into 
facility and technician schedules, patient preparation 
notices and reminders systems for reporting on 
individual roentgenograms, and maintenance of a 
film file locator. In addition, all subfunctions relating 
to therapeutic radiology are included such as the 
calculation of isodose curves, patient treatment 
schedules, and tabulation and maintenance of the 
results of treatment (Tumor Registries). 

13. M ultitesting and Health Screening: This is contro
versial and dependent on the decision of the profes
sional staff. All subfunctions relating to history taking 
and physical examination separate from and included 
within areas making up multiphasic health screening 
functions. It also includes all outpatient methods of 
acquiring the basic data base on the patient alone 
or in conjunction with a physician's assistant. 

14. Nursing Services: All subfunctions related to the 
scheduling and prompting of direct nursing care func
tions including shift-change summary reports on the 
patient's course and condition. In addition, a sum
mary of all doctors' orders on demand and any addi
tional nursing administrative functions not covered 
specifically in other areas is included. Computeriza
tion of the nurse's reporting (notes) system itself 
is also included. This is useful for visiting nurses 
as well as those based on the doctor's office or hospital. 

15. Patient Support: All subfunctions involved with 
patient comfort including adjuncts to nursing care. 
I t includes request processing, delivery of service, and 
inventory control in usually hospital based areas 
such as inhalation therapy, occupational therapy, 
and physical therapy as well as the central supply. 

Medical Data Processing in the united States 217 

It also includes the facility Food Service incorporating 
some or all of menu planning, nutritional accounting, 
and control of all foodstuffs through procurement, 
inventory, stockroom issue, food production, and 
daily cost accounting. 

16. Patient Monitoring: All subfunctions involved with 
the integration and presentation of large amounts of 
physiometric data by sophisticated instrumentation 
frequently interfaced directly with the computer. 
Such efforts include those usually found in intensive 
care units (general, cardiac, burn), surgical recovery 
rooms, delivery rooms, and emergency rooms. 

17. J.l;Iedical Records: This is costly and difficult-not 
really a consideration for a 100-300 bed hospital. If 
20 or more records per day are retrieved, strong 
consideration should be given to computerizing 
diagnostic and operative indices. This function refers 
primarily to advanced record management functions 
including prospective and retrospective statistical 
analysis. It is based on the patient record file system 
which is an intrinsic development of all the various 
functional areas themselves. It includes medical file 
folder inventory control procedures as well as in
dividual reporting (summary) procedures. It also 
includes coding functions often associated with such 
documents, statistical compiler development, and 
other systems for on-going correlation of useful 
medical information based on such parameters as 
diagnoses, therapy, and tracking the clinical progress 
of disease (i.e., Epidemiology). Doctors' consultative 
reports (including summaries, operative reports, and 
correspondence) are also included under this category. 

18. Electrocardiography (EKG): Here there is a possible 
cost reduction which the hospital administrator can 
investigate. When the computer is used correctly, 
the cardiologist can increase his work capacity at 
times tenfold by the use of computers. When one of 
the 27 EKG regional facilities is used, the average 
cost is three to four dollars per EKG, which includes 
the ERG equipment, terminals, communications, and 
computer time. 

19. Electroencephalography (EEG): No general accep
tance. It is hoped that when a new theory of statistical 
probability is acceptable, better than 75 to 80 percent 
accuracy will be available using computer interpre
tation, on abnormal versus normal readings leaving 
only 20 to 25 percent to be interpreted by the phy
SICian. 

20. Respiratory Therapy: In most cases, part of an overall 
HIS and not a dedicated therapy system. Programs 
deal with the administrative function, physiological 
monitoring, and multiphasic screening, i.e., collecting 
and evaluating spirometry data, blood gas analyses, 
and some diagnostic programs. These programs are 
found in both time-shared systems and dedicated 
minicomputers, hO'.vever, not in small community 
hospitals. 

21. Physiological Monitoring: These systems are comprised 



218 National Computer Conference, 1974 

of on-line instruments and patient monitoring equip
ment with warning signals should the conditions 
exceed pre-defined set bounds. Careful record of the 
patient's progress is kept. Monitoring is seen in 
intensive care units, coronary care units, operating 
rooms, delivery rooms, surgical recovery rooms, 
nursery areas, pulmonary care units, and catheteriza
tion laboratories. 

22. Food Service: Food service personnel and menu 
planning computerization. Dietician and cooking 
staff is largely manual, although new equipment has 
made automation more efficient and cut costs. 
Computer Assisted Menu Planning (CAMP) is a 
package to plan a series of varied menus with pre
determined nutritional requirements at minimal costs. 
This then leads to the planning for purchase of raw 
food, and control over inventory. Disadvantage is 
that initiating CAMP is very expensive and can 
offset the benefits gained. In most installations, one 
year of the dietician's time was required to set up the 
system. 

23. Diagnostic Support: All subfunctions in direct support 
of the physician's diagnostic work-up. This includes 
request processing, delivery of service, recording 
results (sometimes automatically), allocation of re
sources for such elements as electrocardiography, 
pulmonary functions, and nuclear medicine, and 
computer-assisted diagnostic consultation. 

24. Medical Library: All subfunctions involved with 
bibliographic referencing, the maintenance and up
dating of computer displays on important parameters, 
and other appropriate medical library functions. 

Hospital communication systems have been devised to 
tic many of the above functions together. A brief description 
of each of the most popular approaches is discussed below: 

1. The Nursing Station Approach, one of the most widely 
represented views, maintains that activity at the 
Nursing Station is most directly related to patient 
care. 

2. The Medical Record Approach can serve as a total, 
uniform, fiscal, historical, and medical data base. A 
standardized system of recordkeeping must be 
instituted in order to computerize effectively. 

3. The Fiscal Approach to computerized Hospital 
Information Systems is to establish a data base at 
the admitting office. 

4. The Multiphasic Screening Approach is based on the 
theory that taking a patient through an extensive 
series of pertinent examinations before he is admitted 
to the hospital makes it possible to establish a data 
base for subsequent use. 

5. The Research-Oriented Approach is the least repre
sented, and hopefully, in the future, the medical 
industry will devote additional efforts in this area. 
Here the emphasis is on Epidemiological information 
rather than on current hospitalization data. 

6. The Modular Approach is becoming more and more 
popular due to the emphasis on dedicated turn-key 
systems such as in the laboratory, pharmacy, business 
office, etc. The concept here is to establish a well
planned linkage to a central depository out of which 
the communication system evolves and grows. 

7. Distributive Systems Approach centers around the de
velopment of a network of integrated stand-alone 
systems which interact. 

Several computer companies have entered into the field 
of computer based health care systems; some of the major 
ones are discussed below and on the following pages. 

BURROUGHS/MEDI-DATA, INC. 

Functions: Clinical Laboratory, Patient Support, Diag
nostic Support, Medical Records, Scheduling, Pharmacy, 
Administration and Management. 

Burroughs Corporation offers Medi-Data Hospital In
formation System in support of a stand-alone system (com
plete) for a single hospital or a group as a service from the 
Charlotte Data Center, Charlotte, North Carolina. 

Medi-Data, Inc., has developed a hospital information 
system in which the nursing station is the nucleus of activity. 
The system provides information processing and message
switching capabilities in the follo'wing three areas: (1) patient 
care, (2) administrative accounting, and (3) research and 
statistics. On-line data terminals, consisting of a CRT 
unit, keyboard, and card reader, can be connected to the 
central computer by means of leased telephone lines or 
hard wired as appropriate, i.e., can be hospital's own system 
or remote. Duke University, North Carolina, has just 
installed this system. 

The Burroughs/Medi-Data system now automates many 
hospital routines including: (1) complete census, pre
admissions, admissions; (2) transmitting doctors' requests 
and communications to the appropriate ancillary depart
ments; (3) nurses' clerical-service functions; (4) hourly 
departmental scheduling, e.g., operating room, X-ray, 
hospital maintenance and housekeeping, etc.; (5) trans
mitting test results and/or diagnoses to the proper location; 
(6) recording and updating data on the patient's medical 
record; (7) floor stock resupply; and (8) all fiscally-oriented 
procedures. 

Action is initiated via the physician's hand-written orders. 
The ward secretary, located at the terminal, then enters 
through the keyboard all patient-related information, 
This data is displayed on the CRT screen, and a hard-copy 
is also produced for verification. Upon its confirmation, the 
data is sent to the central processing unit for permanent 
storage. The central processing unit generates all care and 
medication schedules for each nursing station, pharmacy, 
laboratory, department, etc. 

Test results from ancillary departments are entered 
directly into the computer, and they are automatically 
printed out at ~orresponding nursing stations to be included 
in the patient's chart. All entries arc validated by the 



computer to confirm the contents by patient number and 
by doctor's identification number. Laboratory results are 
summarized daily (on new activity) and printed in descending 
date order by patient by procedure for the chart. 

Outpatients can be entered into the system through an 
outpatient registration system similar to that of inpatients. 
Medical orders can be entered in the same manner as in
patients' data. Requisitions are then generated to applicable 
departments, and charges are posted. Results may be sent 
to the requesting clinic or department. Outpatients may 
stay on the system for a predetermined period of time or as 
scheduled for repeat visits. 

Burroughs hardware and support has facilitated Nledi
Data (non profit) Hospital Information System. At present, 
Burroughs themselves are entering the hospital information 
systems field on their own corporate level with different 
terminals (plasma terminals) and a somewhat different 
approach than taken by Medi-Data. Such a system can be 
seen at Wesley Hospital in Wichita, Kansas. 

CONTROL DATA CORPORATION 

Functions: Clinical Laboratory, Patient Support, Diag
nostic Support, Scheduling, Medical Records, Patient 
Monitoring, Pharmacy, Administrative Management. 

Control Data Corporation's concept of an integrated 
medical information system is to coordinate all health 
related activities-patient care, administration, education, 
and research-via the MEDICOM System. MEDICOM, 
now in the design state, is a communication and patient-file 
management system which will form the basis for the in
tegrated system. St. Louis University Hospital in Missouri 
is involved in this project. 

In a typical system, it is planned that the computer will 
process selected patient data which are entered on-line from 
remote terminals. The central processing unit will store the 
data on active mass storage devices while the patient is in 
the hospital. Patient files will be organized into active and 
passive files. The active files will hold all the information 
available on a patient when he is receiving health services. 
When the patient is released from the hospital, the active 
file will be summarized, added to the passive file, and re
leased to an inactive storage portion of the system. 

Reports and requests to the computer center may be 
entered by conversion to card input, page readers, or directly 
through on-line entry/display terminals. CDC has developed 
and utilized the MEDISCOPE system to handle all hospital 
communications. 

MEDISCOPE is a data acquisition and information 
retrieval system that is based on the CDC 1700 computer 
with optional links to the CDC 3000 and/or 6000/7000 
computers. The specially designed CRT terminal is called 
the "Digiscribe" and includes 20 transport strips on the 
entry / display screen. By touching one of the 20 strips, the 
user can manipulate pre-programmed subject matter and/or 
enter unprogrammed material via the attached keyboard. 

To assure patient privacy and security, the mode of 

Medical Data Processing in the United States 219 

identification for entry into the system is a combination 
code consisting of a number, color, and animal (e.g., 6, 
green, fox) to be keyed in at the terminal. 

Currently, the dedicated systems pertaining to medical 
computer applications that are offered by CDC include: 
(1) MEDLAB, an intensive-care system; (2) CARDIO
TEST, and EKG system; and (3) CLINLAB, a clinical 
laboratory management and automation system. Several 
of these applications can be seen at Latter Day Saints 
Hospital in Salt Lake City, Utah. The MEDISHARP 
business system includes the SHARP (Shared Hospital 
Administrative Report Processing) system. 

Although all of the above systems have the capability 
of being stand-alone systems, when they are combined 
with MEDICOM, they will form Control Data's concept of 
an integrated medical information system. However, no 
such complete system is in operation at this time. 

DIVERSIFIED NUMERIC APPLICATIONS 

Planned Functions: Clinical Laboratory, Patient Support, 
Medical Records, Scheduling, Pharmacy, Radiologic Diag
nosis and Therapy, Administrative Management. 

Diversified Numeric Applications is developing HOS
PITROL, a computer controlled data handling and com
munications system which will consist of centrally located 
computers (MED/16s). HOSPITROL is being designed 
specifically to utilize multiple computers for effectiveness 
and reliability; the computer was designed to be used in 
multiple computer configurations through the use of parti
tioned, shared core memory. 

For example, in a typical 400 bed hospital, DXA's 
HOSPITROL system will employ three MED/16 processors 
in a minimum configuration (software is designed to obtain 
maximum utilization from this redundancy), four processors 
if total clinical laboratory automation (UKI-LAB) is in
cluded, or possibly five processors if complete accounting 
0apability is desired. Six types of communication consoles 
will be combined in various ways to provide the appropriate 
terminal(s) at every ancillary department. Each of the units 
is described below: (1) Plasma/600 is a CRT unit for nursing 
station communications. The unit includes an alphanumeric 
keyboard for names and variable data, an "action" keyboard 
for initiation of various functions, and selection buttons for 
medical order information. The console also contains a 
badge reader for positive identification of the user. Plasmal 
610 and Plasma/620, modified versions of the Plasma/600, 
can be used in the departments of pharmacy and radiology, 
respectively. (2) Plasma/500 is a keyboard/display console 
with less display area than the Plasma/600. This console 
is designed for use in those ancillary areas where high-speed 
display and keyboard entry are essential, e.g., surgery, the 
delivery room, laboratories, etc. (3) Video/400 is a large 
CRT display console developed for use in admissions, the 
business office, medical records, information desk, and 
administrative departments. The unit contains a simplified 
keyboard for functions similar to that of a typewriter and 



220 National Computer Conference, 1974 

also includes administrative function control keys. (4) 
Format/300 is a hard-copy printer that contains a specially 
forma ted keyboard for the individualized input require
ments of each department it serves. The printer provides a 
continuous audit trail of all transactions, prints reports, etc. 
The Format/300 can be used in dietary, central supply, 
radiology, etc. (5) Labeler/200 is a printer designed specifi
cally for printing labels which can be used in pharmacy, 
laboratory, etc. (6) Reporter/100, a printer designed for 
location in the emergency room, business office, nursing 
station, etc., will provide all hard-copy printout. 

In addition to ordering, storage, routing, and checking 
data, HOSPITROL is being designed to provide patient 
treatment schedules; patient/departmental supplies ordering; 
patient charge handling; pre-admission and admission 
functions; access to medical records, billing data, and 
statistical data; etc. The prototype is being installed at 
North Memorial Hospital, Minneapolis. 

EXECUTIVE DATA SYSTEMS, INC. 

Functions: Clinical Laboratory, Scheduling, Nursing 
Services, Pharmacy, Administrative .:\:ianagement. 

Hospital computer systems offered include both on-line 
and off-line types and cover the hospital areas of financial! 
administrative management systems, clinical systems, and 
systems' coordination. Among the system concepts followed 
are modularity and flexibility. Equipment used at the 
hospital varies depending upon the systems employed and 
the size of facilities. Some EDS hospital clients have no 
in-house computer equipment, while others have one or 
more pieces of computing equipment such as keyboards 
and keyboard-printers, card readers, magnetic tape units, 
line printers, cathode ray tubes, minicomputers, and even 
large-scale computers. 

Of the operational systems, accounts payable, payroll, 
personnel, and physical plant are available ",1.thout the 
hospital needing any in-house equipment. Hospitals choose 
from a range of in-house equipment including nursing 
station and departmental terminals when utilizing the 
other operational systems. 

Basically, each hospital designates the applications which 
it wishes to use and how it wants to use them. Master 
files and specific system-design requirements are then 
defined, and the applications made operational. Typical 
processing units with related peripherals include: Burroughs 
3500, BMR 6135, IB~1 370/145, and IBM 1800. Auxiliary 
units include Burroughs N and Mohawk 2501. Terminals 
include IBM 1050, IBM 1092, Burroughs N, and mini
computers with eRTs (Datapoint 22oos). This hardware 
is used for a shared fiscal as well as a H.I.S. at St. Barnabus 
Hospital in Livingston, New Jersey. 

System options which a hospital can follow are to choose 
to computerize payroll ",1.th no in-house equipment per
forming financial! administrative functions through the use 
of a shared computer network with in-hospital terminals 

or mini-computers or to include clinical subsystems with one 
or more in-hospital computers and multiple terminals located 
throughout the hospital. 

The medical message-switching occurs through data entries 
at the terminals located at various areas in the hospital. 
Security codes allow for appropriate data entries and in
formation retrievals. After editing, the data are processed 
according to their types and needs with message forwarding, 
file updating, and system interfacing occurring as ap
propriate. Currently, the departments operationally affected 
include admissions, business office, pharmacy, nursing, and 
laboratory. 

HONEYWELL, INC. 

Functions: Clinical Laboratory, Scheduling, Patient Mon
itoring, Pharmacy, Radiologic Diagnosis and Therapy, Ad
ministrative Management. 

A typical intra-hospital message-switching system can 
consist of a Honeywell H-1015 with 131K of core memory, 
three disks, two tapes, a printer, a 35 G.E. Terminent, 
300 R.O. terminals, and five Bunker Ramo CRTs with 
keyboards. It runs in 65K foreground of an operation system. 
This is implemented at Parkview Hospital in Ft. Wayne, 
Indiana. 

The receive-only printers are located at the nursing 
stations, ancillary departments, admissions, P.B.X., kitchen, 
central supply, and pharmacy. One CRT is located in ad
missions, and the other four are situated in the data center. 
Patients are admitted on-line, and the ward, P.B.X., and 
other appropriate departments receive messages giving the 
patient's room, bed number, and physician's name. Ad
missions can query the system at any time for available 
bed census. 

Nurses, doctors, emergency room, operating room, and 
other departments access the system by dialing "3" on a 
telephone. A CRT operator in the data center answers and 
is given the patient's name. The name is keyed into the 
CRT which displays the patient's name, account number, 
ward, room and bed number, and physician's name. This 
information is verbally verified with the caller. Services 
are ordered verbally, and CRT operators key in service 
codes. The service codes will bring up the service description 
so that the operator can verify the service ordered. When 
all orders are completed for each patient, the messages are 
released to the departments, and an audit message is printed 
at the nursing station for inclusion in the patient's chart. 
Where an order would involve several departments, for 
example, a G.1. series, all departments (i.e., X-ray, kitchen, 
pharmacy) would receive orders pertaining to it from the 
single transaction code for a G.1. series. 

Upon a patient's discharge, finance, P.B.X., and house
keeping are notified from the single discharge code. House
keeping dials "3" when bed and room are ready for oc
cupancy. This notifies admissions of bed and room avail
l'lhl1lhr 
-~'.--J • 

I 



Presently, all transactions are spooled from a disk each 
night to the patient account system. It is planned to do 
patient accounting on-line. The system can produce a 
census on demand. 

INTERNATIONAL BUSINESS ~tlACHINES CORP. 

Functions: Clinical Laboratory, Patient Support, Diag
nostic Support, Medical Records, Scheduling, Patient 
Monitoring, Pharmacy, Radiologic Diagnosis and Therapy, 
Administrative Management. 

IBM Corporation's concept of an integrated medical 
information system utilizes the System/360 or System/370 
processor(s) to form the foundation for: (1) a communication 
system that centrally controls the flow of source data to 
ancillary locations t.hroughout the hospital; (2) a central 
information system that electronically receives, transmits, 
and stores data for immediate access; and (3) a real-time 
system that processes and provides data in a desirable 
format. 
IB~'s medical systems are designed to assist many 

different service areas in the hospital. These include: nursing 
stations, admissions, pharmacy, clinical laboratories, X-ray, 
dietary, electrodiagnostics, operating room, central supply, 
medical records, business office, etc. 

Doctors' requests for patient treatment, laboratory 
analysis, laboratory results, and other information are 
entered at terminals located at nursing stations and ancillary 
departments or by calling a central terminal pool. This 
information is stored in the central files of the computer, 
which uses random access disk storage for rapid reporting 
and large capacity. The data obtained from the central 
processing unit provides the basis for the preparation and 
printout of schedules, patient data, messages, and reports. 
This system can be seen at Layola and Little Company 
of Mary Hospitals in Chicago and at Monmouth Hospital 
in New Jersey. 

Basic terminal configuration includes combinations of 
2260 CRTs and 1050/1092s. The 1092 terminal is composed 
of an entry keyboard and printer connected to the central 
processing unit via communication links. It uses plastic 
overlays placed over the 16 columns of keys to identify 
the data being entered. 

Each patient can be identified by the depression of a 
single key in the first four columns. This key is assigned to 
the patient upon his admission, and the patient's name is 
written on the overlay by the nurse. This patient overlay 
remains on the keyboard for all entries. The remaining 12 
columns are used for entering specific orders for requests 
and are identified by a larger overlay. The terminals auto
matically sense the specific overlay being used, thus identi
fying the type of entry into the system. Groups of these 12 
column overlays are kept at each terminal. In addition, 
the CRT terminal device, the IBM 3270, may be used in 
combination with the above-mentioned terminals. It includes 
a light-pen and badge reader. 

Medical Data Processing in the United States 221 

~lcDONNELL DOUGLAS AUTOMATION CO:MPA!\"'Y 

Functions: Clinical Laboratory, Diagnostic Support, 
Scheduling, Pharmacy, Radiologic Diagnosis and Therapy, 
Administrative Management. 

The McDonnell Douglas Hospital Patient Care (HPC) 
System is an on-line, real-time system designed to service 
the ordering, results reporting, and basic scheduling needs 
of the hospital. Originally installed in October, 1969, the 
HPC System currently services three hospitals located 
remotely to the data center, utilizing the shared computer 
concept. Original application areas installed were admissions, 
clinical laboratory, radiology, and nursing (ordering and 
patient information retrieval). Since the original installations, 
pharmacy and laboratory instrumentation modules have 
been installed and are currently operational. 

The system is designed for ordering to be done from the 
nursing station with the clerical people on the station having 
the primary responsibility for order entry. Should the day 
arrive when physician order entry is required, the net,vork, 
as currently installed, will require only a change in the input 
device to accomplish this. Utilizing cathode ray tubes as 
the ancillary entry devices, results reporting from laboratory 
and radiology are operational. Laboratory tests being done 
on SMA 12/60 and 6/60 are automatically retrieved through 
an on-line System 7 in one of the hospitals. 

Currently, all ancillary departments and admitting use 
CRTs for entry devices with a push button keyboard at 
each nursing station. Development is presently underway 
to incorporate advanced terminals at the nursing stations. 
This system can be seen at St. Francis Hospital in Peoria, 
Illinois. 

MEDELCO 

Functions: Scheduling, Clinical Laboratory, Patient Sup
port, Pharmacy, Radiologic Diagnosis and Therapy, Ad
ministrative Management. 

The Medelco Total Hospital Information System 
(T*H*I*S) handles patient, room, and bed information on a 
real-time basis in addition to message-switching and storing 
financial transactions; it transmits orders and requests to 
and from nursing stations, automatically updates changes, 
updates inventory records by department, prints medication 
requests at the pharmacy terminal in label form, and handles 
all radiology, special diets, housekeeping, laboratory, and 
outpatient requests. Terminals can also be used as time 
clocks to collect payroll information. Terminals, consisting 
of a file of edge-punched cards; an optical card reader for 
input of data into the system; and a teleprinter for hard-copy 
output are located at each nursing station and every an
cillary department. 

Pre-punched cards for each order, service, or product 
available in the hospital are in the card files as are cards 
for patients. Since the central processing unit is a hard-·wi.red 
machine with only a small amount of computing capability, 



222 National Computer Conference, 1974 

these cards form the software. Desired cards are selected 
from the file to initiate a request. These cards are dropped 
through the card reader, and the combined data from the 
two cards is stored in the central processor and then trans
mitted to the appropriate department. The data is also 
printed out at the originating nursing station providing an 
accuracy check and a printed entry for the patient's chart. 
Other "stand-alone" computers such as on-line laboratory 
equipment, etc., can interface into the system. 

The patient card is typed and punched when the patient 
is admitted into the hospital. This card goes with the patient 
to the nursing station and replaces the embossed identifica
tion plate. The order information cards are prepared by 
the manufacturer when the system is installed. They are 
kept at the nursing station in numbered pages in a visible 
file in open-book form. Pages are color-coded by department 
and alphabetized within the department. Each card is also 
numbered to correspond with its slot on the "page." This 
system can be seen at Deaconess Hospital in St. Louis, 
Missouri. 
MEDAC*-Medical Electronic Data Acquisition and Con
trol System designed and marketed by Metric Systems 
Corporation. 

Functions: Patient Registration, Physician and Religion 
Lists, Bed Control, Housekeeping List, Census, Requisition 
Handling, Pricing, Timekeeping, Payment on Accounts, 
Current Charges, Inventory Control Information, Depart
ment Activity. 

MEDAC allows for automatic input to the computer. 
This system is built according to the following distinct 
processing activities: (1) servicing of remote on-line terminals 
sending requisitions/messages to the system in a real-time 
mode; (2) communication with the central 'work station in 
a real-time mode and processing of basic system functions 
such as new admissions, bed status, and current charges; 
(3) execution of batch-mode programs such as census, daily 
charge activities, and department activity lists. 

The system is designed in a manner that will allow expan
sion of the system functions without making change necessary 
to the basic functions. The following systems are independent 
subsystems, therefore, any combination of the functions 
may be included in the desired configuration: (1) bed control; 
(2) admitting and census; (3) printed requisitions delivered 
electronically; (4) automatic, uniform. pricing; (5) computer 
input; (6) inventory control information; (7) timekeeping 
by work center; and (8) pharmacy package. This is the 
foundation of a modular approach. 

Other features of the system are: automatic security check 
on all entries; instant validation of all entries; automatic 
message routing of all "Need-to-Know" locations; catalogues 
and prints lab requisitions by unit and type test; automatic 
generation of secondary messages such as "Hold Tray"; 
procedure and service summaries available by department; 
all transactions recorded on magnetic tape; allows plastic 
card or keyboard input at terminals; and all messages 
reflect date, time, and employee identification. This system 

* Purchased by B-D Spear on November 1, 1973. 

is currently operational at Central Kansas Medical Center 
in Great Bend, Kansas. 

REACH** (VITAL) 

Functions: Blood Bank, Central Supply, Clinical Labora
tory, Dietary, EKG, EEG, Scheduling, :Medical Records, 
On-line Admissions, Pharmacy, Radiology, General Business 
Office Functions, and Overall On-Line Data Collection 
Storage and Retrieval. ' 

The REACH System (Real Time Electronic Access 
Communications for Hospitals) is a clinically-oriented 
medical information system. The CRT display terminals 
~nd as~ociated printers are located at the nursing stations, 
In ancIllary departments, and in the business areas. This 
affords hospital personnel the capability of acquiring both 
fiscal and medical information on a patient. 

At the same time that the doctor or nurse enters a service 
request for laboratory work, X-ray, etc., a charge is auto
matically made on the fiscal record of the patient's bill 
and is recorded on the patient's medical record. In addition, 
as a by-product of ordering through the system, inventories 
are updated, and volume and statistical reports are auto
matically maintained for each department. Laboratory tests 
can be both ordered and scheduled from the nursing stations 
in order to make optimum use of the staff and facilities. 
Upon discharge of the patient, the medical record is stored 
on magnetic tape or hard-copy, and a complete bill is created 
for the patient. 

The CRT display terminal includes 20 select buttons 
adjacent to the screen to indicate selection of data and an 
attached keyboard. These three sections-select buttuIl::; 
CRT, and keyboard-comprise the input unit. Output i~ 
created by these same three sections plus a hard-copy 
printer. 

The system identifies the user by a machine-readable 
badge, the size of a credit card, which is inserted into a slot 
on the upper right-hand side of the terminal. Upon insertion 
of the coded badge, the program will make available only 
the information which that particular badge entitles its 
holder to see. 

The REACH System utilizes two NDC (National Data 
Communications), 1695 central processing units located in 
the hospital. The system offers the hospital service and 
back-up by using one processor on-line and one off-line in a 
batch processing mode. 

National Data Communications, Inc., offers an off-line 
system called Fiscal Management Information System 
(FMIS) at a low cost in addition to the above complete 
syst.em, 

There are two real-time, front-end systems. The first 
is the Source Data Communications & Retrieval System 
(SDC&R) which can be implemented by application. An 
example is ADT (Admissions, Discharge, and Transfer). 

** On October 1, 1973 Honeyweil took over REACH, such that N DC's 
software will be licensed to the purchasing hospital. I 

~ 



This can front-end any present off-line the Hospital may 
have because all data is brought off on tape in ASCII. 

At such time as the hospital wishes, it can add the Patient 
Medical Information System (PMIS). The REACH System 
can be seen at Deaconess Hospital in Evansville, Indiana. 

SANDERS ASSOCIATES, INC. 

Functions: Scheduling, Clinical Laboratory, Patient Sup
port, Pharmacy, Radiologic Diagnosis and Therapy, Ad
ministrative Management. 

Sanders Associates has developed the CLINI-CALL 
System, a computer-controlled, high-speed data system. It 
can extend to any area of the hospital-admissions, wards, 
surgery, pharmacy, dietary, laboratories, accounting, ad
missions, etc. In addition to storing; retrieving~ sorting, and 
checking data, the system is designed to provide patient 
medical histories, current medical records, statistical sum
maries, and legal records. It will schedule medical tests, 
maintain inventories of beds, and maintain the current 
status of meal orders, accounting/billing records, etc. 

All data entries and requests are made from data terminals 
located at strategic points throughout the hospital. The data 
terminal used consists of five modular units: (1) display 
unit, (2) data printer, (3) Photopen sensor, (4) keyboard, 
and (5) card reader. 

The CRT unit includes an electronic Photopen device 
which is the size of a fountain pen. It is used as a pointer to 
select data and/or "action words" from the display screen. 
The operator at the terminal touches the indexed items he 
wishes to see on the base of the display screen with the 
Photopen unit. When the action word "execute" is activated 
by the pen, the index is immediately replaced with newly 
selected information. This information can then be studied, 
updated, modified, or erased by using the pen or a touch 
command at the terminal keyboard. The keyboard may also 
be used to enter new patient data and/or instructions in 
the central processing unit, call up selected stored records, 
and request special communications with other terminals 
in the system. The hard-copy printer produces paper records 
and labels on command from the central processing unit. 

Personnel wishing to access the system are identified by 
inserting a small identification card in the card reader at 
the terminal. The reader determines the level of a user's 
authority and unlocks the· system for his use. The system 
is also programmed to withhold specific data items from 
individuals who do not have specific authorization on their 
identification cards. 

The central processor is the focal point of the CLINI
CALL System through which all data inputs, requests, and 
communications from the terminals must pass. System 
operating software is FOPS (File Oriented Programming 
System) ; it is designed by Sanders and allows for the writing 
of application programs in logical English Statements. This 
system can be seen at Kaiser San Francisco Hospital in 
San Francisco, California. 

Medical Data Processing in the United States 223 

SEARLE :MEDIDATA, INC. 

Functions: Clinical Laboratory, Diagnostic Support, 
Scheduling, Patient Support, l\1:edical Records, Multitesting 
and Health Screening, Pharmacy, Administrative Manage
ment. 

The Searle Medidata Network 320 Hospital Information 
System is a modularly-expandable communications and 
applications computer system. It is designed to route orders, 
collect charges and other financial information, and return 
results directly to a nursing station. It is expandable through 
additional modules to meet specific applications: Lab 320 
in the clinical laboratory, Pharmacy 320 in the pharmacy, 
and Financial 320 for financial data processing. 

The heart of the system is a unique "Touch-Terminal." 
The terminal presents 320 patient order choices at one time 
to the operator on a single overlay sheet. A few such overlay 
sheets can hold all the orders for a particular station. An 
order is entered by touching the phrase (or phrases) describ
ing the order on the "Touch-TerminaL" The computer 
prints the order immediately at every "need-to-know" 
terminal including a confirming printout at the originating 
station. The printer operates at 30 characters per second. 

A completely backed-up computer configuration is used 
with two identical computer systems installed at each site. 
All data are retained on two separate disks and are further 
logged on a magnetic tape for a third level of data security. 

In addition to the "Touch-Terminal," other terminals 
may be attached to the system. Cathode ray tubes are used 
to input textual and extensive numeric data in the admitting 
office and the financial areas. A receive-only version of the 
"Touch-Terminal" is available for installation in areas 
where it is not necessary to enter orders; maintenance, 
housekeeping and dietary are typical sites. A low cost 
"Check-In" terminal is available for locations requiring only 
the capability for an employee to check-in or out for time
keeping purposes. 

The availability of a back-up computer makes it feasible 
to implement some systems without adding an additional 
computer. For example, the back-up computer can run 
Multitest 320 (Automated MUltiphasic Health Testing) 
during the day, and a complete package of financial programs 
(Financial 320) can be run at night. 

The Network 320 system can also be shared among several 
hospitals. In order to add a hospital to an existing group, 
terminals and a controller are added to the hospital, and a 
set of look-up tables are prepared to meet the hospital's 
specific requirements. This system is being installed at 
Baptist Memorial Hospital in Jacksonville, Florida. 

SPECTRA MEDICAL SYSTEMS 

Functions: Scheduling, Clinical Laboratory, Patient Sup
port, Diagnostic Support, Medical Records, Pharmacy, 
l\.dministra tive l\1anagemen t. 

The Spectra-2000 System is an on-line, real-time data 



224 National Computer Conference, 1974 

system which utilizes a dedicated computer and a large 
hospital patient data base. The facility is centrally located 
in the hospital and can be simultaneously accessed from any 
of the remote terminal stations in key areas of the hospital. 
Examples of these key areas include patient care areas, 
pharmacy, various laboratories, and administrative locations. 
Terminals located at remote stations include a multicolor 
video display for data entry and display, a light-pen and 
keyboard for data entry, and a printer for hard-copy output. 

The system processes the following types of data: (1) 
admission information, (2) medical orders, (3) test results 
and narrative reports, (4) nurse-generated orders and 
comments, and (5) captured charges for services performed. 
Information is processed for patients from the time of 
pre-admission or admission through two days after discharge. 

The information processing impacts patient care and 
hospital operations in the following ways: (1) medical orders 
are incorporated into reports on patient status showing 
active orders, test results, medications given, and results/ 
reports outstanding; (2) requisitions are transmitted to the 
laboratory, pharmacy, diet kitchen, and other ancillary 
services; (3) scheduling capability is provided for medication 
administration and performance of laboratory tests; (4) 
various reports are produced to facilitate hospital operations, 
e.g., laboratory work sheets, specimen pick-up lists, specimen 
and medication labels, scheduled admissions list, beds 
available list, census and activity reports, etc.; and (5) 
control is provided for pharmacy inventory, automatic 
refill of medication orders, time-out of non-renewed medical 
orders, and clinical lab patient-specimen test result integrity. 

The system may be accessed through entry of an ap
propriate identification code. The code is a unique six
character password, and only a valid password gains access 
to the system. 

Entry of the physician's password causes the system to 
display his list of patients. The physician selects the desired 
patient by pointing the light-pen to the appropriate name and 
depressing the button on the shaft of the light-pen. Using the 
same technique, the physician then may review active orders 
or enter new medical orders for that patient by simply 
pointing the light-pen at key phrases and data that are 
assembled to create the orders. Only in exceptional situations 
will the physician use the keyboard. However, other users, 
such as the medical secretary, will use the keyboard primarily 
as the input device. At present, this system is being installed 
at Mary's Help Hospital, Daly City, California. 

TECHNICON MEDICAL INFORMATION 
SYSTEMS CORP. 

Functions: Scheduling, Clinical Laboratory, Patient Sup
port, Medical Records, Pharmacy, Administrative Manage
ment. 

Technicon (formerly Lockheed Information Systems) has 
developed 111S-1, a regional medical information system in 
which the nursing station is the center of activity. Using 

special I/O terminals at each nursing station, physicians 
and nurses initiate the data base. 

Admission data are entered to MIS-l through the Video 
Matrix Terminal (VMT), thus initiating the collection and 
processing of data. Once a patient's file is created, the data 

• entered are available for automatic compiling and rapid 
retrieval by the physicians, nursing staff, and other author
ized personnel. 

Physicians enter orders and review the patient's chart 
directly through the VMT at the nursing station or by 
telephone to the nursing station. Orders are transmitted 
automatically to the appropriate departments creating a 
printout of requisitions and instructions in all ancillary areas. 
Orders are also easily recalled through the VMT for review 
by nurses and the physicians. 

The VMT display terminal consists of three basic parts: 
the display screen, a light-sensing pen, and a keyboard. 
The user can enter, extract, or manipulate information 
primarily by using the light-pen and secondarily by using 
the keyboard. 

While Technicon's business office system can function 
independently of MIS-I, it is designed to be an integral 
part of the total system. Upon entry of patient information, 
a computer record file is established for the purpose of ac
cumulating billable transactions. This data is obtained 
directly from the original record of information by a hospital 
staff member. 

Users can gain access to MIS-l by entering a valid identifi
cation number through the keyboard. MIS-l allows access 
to stored information only in accordance with the pre
determined rules applying to each type of user. 

Technicon recommends the use of a regional data proc
essing center where several hospitals can utilize the IBM 
370/145 central processing unit. The Technicon central 
processor stores all patient data, processes inputs, directs 
all VMT terminal and printer operators, and prepares 
reports for the various hospitals using the MIS-l system. 
EI Camino Hospital in Mt. View, California, has installed 
this system. 

OTHER SYSTEMS AVAILABLE 

There are many other companies either entering into or 
already committed to marketing hospital or medical in
formation systems. Several companies have been marketing 
dedicated systems in various areas of the hospital, e.g., 
laboratory admitting, radiology, EKG analysis, pharmacy, 
etc.; and, having been successful in these specific areas, some 
companies are planning to integrate dedicated systems 
through a message-switching system; to creating a unified, 
centralized hospital information system. Companies falling 
into this category include Digital Equipment Corporation, 
Medical Data Systems Corporation, General Electric's Medi
net Systems, and Biometric Computer Service, Inc. (BCSI). 

Companies involved in various phases of hospital infor
mation systems not discussed above are ITT, Medical Scien
tific International, Univac, Medical Information Technology 



(l\tIEDITECH), Shared Medical Systems, Medlab, Inc., 
Automated Systems Corp., Datacore, Inc., Medilogic Corp., 
National Cash Register and Standard Register. Many con
sulting organizations are entering into this field and will be 
making additional contributions in the years to come. 

SUMMARY 

In order to employ advanced communication's concepts 
in the various areas discussed in this presentation, the scope 
and nature of each task must be carefully defined. Choice 
and implementation of a computer system must be preceded 
by a thorough analysis of the present manual operation. 
The administrator and his colleagues must familiarize 
themselves with basic data processing principles. Without 
sufficient knowledge of how a computer system works, they 
are poorly equipped to compare available alternatives. 

Medical Data Processing in the United States 225 

Other important considerations include realistic cost 
assessments and the quality of the hospital's in-house 
educational program. The dedication of the medical staff 
and the cooperation of the administration are essential. 

ACKNOWLEDGMENTS 

I would like to thank Dr. Michael Jenkin, Mr. James 
Petters, Mr. Gary Hammon, Dr. Stanley Jacobs, and the 
various vendors discussed for their help in preparing this 
paper; I would also like to thank Susan Bertolette for her 
editorial assistance. Further material of interest can be found 
by reading How to Select A Computerized Hospital Information 
System by Marion J. Ball (S. Karger, Basel, Switzerland, 
1973). 



, 
I 



Why industry won't hire your graduates 

by GARY B. SHELLY 

Anaheim, California 

Vocational or career oriented education as used in this 
paper is defined as that type of education, at less than a 
baccalaurete degree, that is aimed at preparing an individual 
for employment in industry in a specific occupational area. 
The remarks included in this paper are directed at instruc
tors, administrators, and other educators concerned with 
this area of data processing education, whether it is in the 
high school, the vocational school (public or private), the 
community college, and, in some instances, the universities. 
During the past year, while serving as an educational con
sultant in computer education, I have had the opportunity 
to contact over 400 schools throughout the United States 
and Canada with career oriented programs in data process
ing and frequently the comment was heard "·What can be 
done to improve our program to make our students em
ployable?" "Why won't industry hire our graduates?" 

The basic answer to this question is that students in many 
data processing educational programs are not trained well 
enough in data processing and computer programming 
skills to enable them to be hired in industry at the conclu
sion of their schooling. It is perhaps helpful to explore the 
history of this phase of education in order to illustrate some 
trends of thinking and practice which have developed in 
data processing career education. 

Vocational or career oriented data processing education 
had its earliest beginnings in approximat.ely 1958 when 
community colleges began offering two year programs in 
data processing with emphasis upon the operation and 
control panel wiring of punched card or unit record equip
ment including the key punch, sorter, accounting machine, 
collator, reproducing punch, interpreter, and calculator. 

In the early 1960's, as industry changed from punched 
card unit record data processing, to card oriented computer 
systems, schools attempted to implement vocational training 
in computer programming by utilizing the IBM 1620 com
puter system in their instructional programs. Although 
there were some practical reasons for utilizing the 1620 
computer, such as the educational contribution which was 
made available by IBM and the fact that a FORTRAN 
compiler was available so that the computer could be used 
for mathematical programming, the training in computer 
programming on the 1620 computer did little to meet the 
needs of industry because the primary business machine 

227 

used in this period of time was the IBM 1401 and its related 
family of computers. The training in computer program
ming in 1620 machine language certainly failed to stimulate 
industry's interest in public education and contributed little 
in meeting industry's needs for 1401 programmers with a 
knowledge of SPS, autocoder, tape processing, or IOCS. 
Thus, education failed to accept or even recognize the need 
and responsibility to provide the type of programmer per
sonnel needed by business in this critical age of expansion 
·within our industry. Industry could not turn to public 
education at that time to truly meet its need for trained 
personnel. 

Later, in 1964, with the announcement of the third gen
eration of computer equipment, there was an almost frantic 
search in industry for programmers knowledgeable in As
sembler Language, in COBOL, in RPG, in something called 
job control and operating systems, and in multiprogram
ming, yet we find many schools as late as 1969 and 1970, 
and perhaps even now, teaching control panel wiring, 1920 
computer programming, or perhaps programming using the 
IBM 1130 computer. 

It should be quite evident from these trends in data 
processing education that proper up-to-date training has 
not been available from the beginning. If teachers and 
schools, in 1964, had the insight, knowledge and ability to 
react to the immediate needs of industry, and were turning 
out knowledgeable assembler language programmers with 
an adequate understanding of job control, or knowledgeable 
COBOL programmers, I feel confident that the service to 
the industry would have been invaluable and, in fact, 
saved industry thousands of dollars in training costs. Educa
tional institutions must react rapidly in order to provide a 
viable means of career education in data processing. 

Educators cite many problems-budget restrictions pre
venting installation of modern computer systems, no one 
is available to teach such subjects, etc. I can only reply 
that if education wants to serve industry, and if industry 
is going to hire graduates from these programs, then educa
tion must be able to meet the personnel needs of industry 
by teaching "state of the art" material. Anything less is 
doing a disservice to the taxpayers who are supporting an 
obsolete program and perhaps even more important, is 
wasting a tremendous amount of human resources by doing 



228 National Computer Conference, 1974 

an injustice to the students who receive training in these 
obsolete areas. Today, career or vocational programs should 
be teaching the techniques and methods of programming in 

__ a virtual storage environment, programming for data com
munications applications, teaching data base concepts and 
methods of structured programming for business applica
tions. How many schools are teaching these subjects now? 
The answer is very fe,,,, and if this does not change, then 
career educational programs are going to continue to fail 
industry by not providing the types of personnel which are 
required to be immediately productive on the job \vithout 
additional industry training. 

Certainly one of the arguments which education will use 
to justify the fact that their curriculum is not up-to-date is 
that the personnel are not available to teach the required 
subjects. Although I know of no research documenting the 
background of teachers in vocational data. processing, my 
own acquaintance in the field of education tends to indicate 
that most teachers teaching data processing are former 
business education teachers who often have had a few 
college courses in data processing or computer programming. 
l\10st of these teachers have had little or no industrial back
ground or experience either as computer operators, pro
grammers, or systems analysts. A recent study by a major 
publishing company indicated in high schools the majority 
of teachers teaching data processing had been teaching one to 
five years. The next highest percentage had been teaching less 
than one year. The point that teachers are not available 
to teach required subjects seems to be a realistic appraisal 
of data processing teaching profession. The only response 
that I can give to this is that if our educational institutions 
""i.ll not recognize the need for constant upgrading of the 
faculty in this rapidly changing era of technology, and 
will not provide time for the instructors to upgrade them
selves and to upgrade the curriculum by developing new 
courses, then there is very little chance that education 
will be able to train students for the needs of industry. 
Those in education must inquire as to what can be done 
in terms of curriculum development and teaching training 
and must provide the solution. 

According to a ~ational Science Foundation report, 
approximately 1700 institutions of higher education are now 
spending 500 million dollars annually for computer facilities 
and their operation. As a member of industry it is difficult 
for me to understand why a significant portion of these 
funds cannot be directed to the upgrading of teachers and 
curriculum, and even implementing curriculum when re
quired, to meet the needs of the business data processing 
industry. Unfortunately, there appears to be a critical lack 
of leadership in career oriented data processing education 
on a national level. In attending computer conferences and 
reading data processing periodicals, I am constantly amazed 
at the millions of dollars of private and federal money which 
is being spent on computer-assisted instruction, terminals 
so that students can learn BASIC to solve problems in 
their business classes, and funding from the National Science 
Foundation to study the utilization of thA computer in a 
variety of disciplines. The following are merely a sample of 

some of the fundings in computer activities which have been 
granted from the U.S. Office of Education.* -

Development and Evaluation of Computer 
Assisted Instruction For Instrumental 
Music $48 ,460.00 

Development of a Computer Based 
Laboratory Program For Library 
Science Students $104,480.00 

Teaching Mathematics Through the 
Use of a Time Shared Computer $185,421.00 

Obviously, teachers in mathematics and other disciplines 
have expressed their need for funding to further their com
puter-oriented programs; however in the area of career 
education in business data processing, I have yet to see any 
national leadership emerge which has actively pursued, 
over a period of time, funding to develop curriculums, train 
teachers, communicate with industry, and perform other 
functions which are absolutely critical if career oriented 
data processing education is to fulfill its purpose. If voca
tional data processing educators are not wjHing to put forth 
the effort to attract the attention of those organizations 
which can be of assistance in these necessary areas, then I 
see little hope of vocational data processing ever reaching 
the point where it will fulfill the needs of industry. 

This leads, then, to what really is required by industry. 
Although I cannot purport to be a spokesman for all of 
the business data processing industry, my experience as a 
business applications and systems programmer, a systems 
analyst, and a consultant for a software firm has given me 
some insights into the requisites of a student who will be 
successful as an employee in the data processing department 
of a company as an operator, a programmer, or systems 
analyst. Perhaps, the most obvious shortcoming of students 
coming from a career or vocationally oriented program is 
their lack of any in-depth knowledge of data processing, 
particularly as related to computer programming. 

In speaking with many instructors and in reviewing the 
catalogs of schools which claim to train programmers for 
programming positions, the most common curriculum con
tains some type of introductory course with perhaps FOR
TRAN programming, a course in RPG, a course in COBOL, 
a course in Assembler Language, perhaps something in 
PL/1, finished off with a course in systems analysis and 
design where the major emphasis in on interviewing tech
niques, feasibility studies, and the management aspects of 
the systems study. In fact, one of the earlier studies relative 
to career education for third generation computers recom
mended that both COBOL and PL/1 be taught in a single 
semester course. 

Unfortunately, then what industry too often finds when 
interviewing a student as a prospective employee is that he 
knows some FORTRAN, some COBOL, some Assembler 
Language and some PL/1 but does not have enough knowl-

* U. S. Office of Education Support of Computer Activities, January 
1969 D. s. IJepartment of Hea.lth, Education, and "T61fare, Office of 
Education. 



edge of any programming language to perform the duties 
required of a programmer trainee, such as maintaining pro
grams, or writing relatively simple file processing programs. 
He cannot write a typical sequential file update program 
or create and process a realistic direct-access or indexed 
sequential file as utilized in industry. He does not have the 
ability to debug a COBOL or Assembler Language program 
with any kind of expertise by effectively reading the com
puter listing and related core dump. He has not been trained 
in the use of utility programs or manufacturer supplied 
Sort;::\lerge programs. Thus, when asked to prepare a job 
stream for a simple sort, the student is unable to do so 
simply because he has not been schooled in these basic 
fundamentals required of a productive programmer. 

In discussing this problem with instructors, various ex
planations are heard for this lack of in-depth study. For 
example, one instructor remarked to me that "We don't 
teach any programming involving magnetic tape processing 
because we don't have the equipment ... but we talk about 
it a lot." Another comment received was "Oh, if you can 
program for card input you can learn to program for tape 
and disk applications on the job." This attitude is one of 
the reasons education has failed-our educational institu
tions specializing in data processing should provide the 
student v,1.th in-depth training in a computer programming 
language which is widely used in industry within the area 
of the school, if the school is to meet the requirements of 
industry. 

Other instructors have commented "We don't have time 
for in-depth training." Associated "with this problem is the 
fact that students are often taught a great deal of subject 
matter that is not useful to them in attaining employment 
in the data processing profession. The prime example of 
this is the teaching of FORTRAN programming for voca
tional or career oriented students. Apparently, FORTRAN 
was taught in the early 1960's because it was the only high 
level compiler available on the widely used IBM 1260 com
puter and because it was one of the well-known languages. 
It is ridiculous, however, for career oriented business data 
processing educators to continue to teach FORTRAN 
because FORTRAN is not commonly used as a business 
applications programming language. The attempted justi
fications of various institutions such as it is an easy language 
to learn, or as indicated in one survey, all of the other schools 
are teaching it so we should also, is totally without founda
tion. FORTRAX should not be taught in a limited program 
which is designed for career or vocationally oriented students. 

It is also apparent from examining curriculums and 
speaking with instructors that they are not aware or are 
not responsive to the critical needs of industry. Somehow 
the term computer programmer has become the magic word 
in career oriented data processing programs in both private 
and public institutions. There has been little attention given 
to training in areas where there is a critical need v,,1.thin 
industry-in training for computer operations, documenta
tion, tape librarians, control clerks and key punch operators. 

Why Industry Won't Hire Your Graduates 229 

According to a recent AFIPS survey, there are approxi
mately 210,000 individuals employed as programmers, 
200,000 persons employed as computer operators and 440,000 
individuals employed as keypunch operators-these people 
all require training! 

Many of the data processing instructors \\1.th whom I 
have spoken have acknowledged that only a small 'per
centage of students entering career oriented data processing 
programs have the aptitude, intelligence, drive or motiva
tion to succeed in industry as professional programmers. 
Many will agree, however, that most students could suc
cessfully operate a computer or become valuable employees 
in some capacity within the data processing department. 
Thus, it seems ironic that schools in their desire to serve 
industry have failed to realistically appraise the require
ments of industry as related to the types of students which 
are entering their programs and the employment oppor
tunities that are available to them. Certainly there is nothing 
disgraceful about a school training a computer operator 
who \\1.11 earn a salary of $800.00 to $1,000.00 per month or 
a keypunch operator lvho will earn $500.00 to $600.00 per 
month. Yet there are few schools which are offering any 
training in computer operations and very few good, compre
hensive courses in the area of keypunch training. These 
people are needed in industry. W"hy aren't they being trained 
in career oriented data processing schools! 

Today, in industry, hundreds of thousands of dollar~ 

are being spent on in-house training. In many installations; 
this amounts to buying video-tape courses or P.I. courses 
from one of the many vendors who have come into existence 
within the past few years. It seems a disgrace to an industry 
which is striving to be professional that it must turn to 
video-tape courses costing $2,000.00 or more as a primary 
source of education. Yet, industry has no alternative. In 
addition to the "standard" courses in data processing 
available in video-tape form, one leading vendor in this 
area has teaching material and courses in Virtual Storage 
(VS) Concepts, VS Facilities, VS Job Control, VS Modular 
Programming, VS Utility Programs, VSAM, VSI Debug
ging, VS2 Debugging, Designing a Teleprocessing System, 
and other up-to-date subjects. There are few, if any, schools 
on any level that have similar courses available now to meet 
the immediate needs of industry. 

The data processing industry has turned to in-house 
training, P.I. Courses and video-tape courses as a method 
of education because the schools which claim to teach data 
processing for vocationally oriented programs have not 
come close to supplying industry with quality students 
skil~ed in the knowledge and use of programming languages 
and data processing techniques who can become contributing 
employees when hired. Until this takes place, I am afraid 
that the only answer which industry can give to the question 
of "Why won't industry hire our graduates?" is "Because 
through career and vocationally oriented programs in our 
schools students have not been adequately trained to meet 
the needs of industry." 





How the data processing industry has failed education 

by THOMAS J. CASHMAN 

Lcmg Beach City College 
Long Beach, California 

Many attribute the greatness of the United States as an 
industrial nation to the system of private and public educa
tion which has evolved in our country. Those of us in edu
cation like to point with pride to the fact that our system 
of education is designed to provide each individual in our 
society with the opportunity to make maximum use of his 
abilities and to actively pursue the career of his choice 
whether on the semi-skilled, technical, or professional level. 

It is indeed unfortunate that the business data processing 
industry has historically failed to recognize that formalized 
education can contribute to the success of their own opera
tions 'within the data processing department, and, because 
of the importance of the data processing function 'within 
most organizations, the success of the company itself. When 
I speak of formalized education, I am speaking, not of manu
facturer's training courses, P.I. courses, video tape courses 
or other types of multi-media courses offered as a part of 
in-house training, but formal educational programs of 
instruction in the form of well defined curriculums taught 
at our colleges and universities throughout the nation. 

Almost each day one can read of the criticisms of the data 
processing departments of typical companies such as "Com
puters unproductive 48 percent of the time" or "Management 
becomes disenchanted with the computer," etc. Studies 
then point out that the failure of the computer installation 
is that top management did not get involved and similar 
excuses and explanations, but one seldom reads that the 
failure of computer installations is directly attributable to 
the lack of education at the programmer, systems analyst 
and data processing management level. When is the business 
data processing industry going to recognize that education, 
or the lack of education is severely handicapping the in
dustry from progressing to the status which it deserves 
within the structure of the business organization? 

Prior to 1971 a great deal of education \vithin the com
puter industry took place at manufacturer training schools 
where an employee of a typical company could take a three 
to five day course in programming in a given language in 
which the instruction set was explained, and would then 
return to his company to program and perhaps even design 
a system! In recent years, in spite of the increased com
plexity of computer systems there has been an even greater 
deterioration of this vital function of education. In my O~TI 
experience I have been acquainted with individuals who 

231 

have completed a P.I. course in a programming language 
and have then been turned "loose" with no other super
vision to reprogram existing applications. I have known 
other entire installations that have received their program
ming education via a video tape course and then set about 
to program their company's applications with their newly 
discovered skill in a new programming language. Certainly, 
if we can learn to program by means of a P.I. course, or by 
means of a video tape course of a few hours in length, and 
can indeed do an effective job, then programmers must be 
vastly overpaid! 

At the other extreme we have the companies that insist 
that individuals entering the data processing profession, 
particularly as programmers, have a bachelor's degree. It 
makes no' difference what area, but the person must have a 
bachelor's degree. I am sure that many of you are acquainted 
with the data processing manager that openly boasts of 
the fact that the newly hired programmer with the bachelor's 
degree in music is one of the best programmers on the staff 
-that is, after that individual had completed the company's 
six month training program and spent another year on the 
job. I am constantly amazed that the business data pro
cessing industry does not apparently recognize the tre
mendous direct cost associated with in-house training, and 
does not recognize that the business data processing industry 
should be able to recruit individuals trained in data pro
cessing at our colleges and universities rather than seeking 
individuals with majors in music or math but who have an 
aptitude for computer programming. 

When discussing the extensive in-house training in data 
processing with training directors of several large corpora
tions and those in management positions in data processing 
common replies have included, "but data processing is 
different than other areas-the field moves too rapidly", or 
"people must go through our training program to learn 
our system", etc .. When an inquiry is made as to whether 
they give P.I. courses or video tape courses in basic areas 
to their newly hired accountants, or electronic technicians, 
or their engineers, or chemists, the answer is almost uni
versally "No, we hire these people from our colleges." 

As one analyzes the fact that public education trains per
sonnel successfully in many areas and disciplines why has 
education not been successful in meeting the needs of the 
business data processing industry as evidenced by the 



232 National Computer Conference, 1974 

extensive in-house training in all phases of data processing? 
Although industry may chide those in education for not 
offering the courses that are needed, an equal responsibility 
must rest \vith industry for their lack of interest in formal 
education offered through our colleges. In the past fifteen 
years there has been virtually no leadership from the data 
processing industry through its related professional asso
ciations relative to curriculum development in career edu
cation in such areas as business applications programming, 
data processing management, etc. 

In the meantime our colleges and universities continue 
to train computer scientists who can write compilers, but 
who are not making a substantial contribution to the day
to-day needs of the vast business data processing community 
that so desperately needs the programmer that can write 
an efficient COBOL program that will assist in getting the 
payroll out on time. 

Certainly, the efforts of A.C.M. in the development and 
recommendation of a curriculum in information analysis 
and systems design is to be commended; however, "The 
program is intended for the education of individuals who 
will develop complex informations systems for organiza
tions."* What about the training for business application 
programmers? According to a recent AFIPS report there 
were some 210,000 programmers employed in 1970 ",i.th a 
projected average need of 23,000 additional programmers 
per year through 1980. Are these individuals to be trained 
via P. 1. courses? 

The business data processing community has failed "edu
cation" in several areas: (1) Industry has failed to define 
on a national level what it wants in trained personnel. 
·What are the requirements for a programmer? Industry 
blindly says "Programmer wanted, degree in any area 
required," others say "Programmer wanted, some coUf'ge 
desirable-must score high on aptitude test". Industry says 
Heoders are out", yet current research tends to indicate 
that programming teams with a chief programmer, a diag
nostic specialist and a coder utilizing structured programming 
techniques is extremely effective. Certainly if education is 
to train for industry there must be some guidelines set as 
to the requirements for the positions for which the training 
is to occur. (2) The field of education as related to business 
data processing has on a career education level, had little 
support from our professional associations relative to cur
riculum development. If industry wants business applica
tion programmers to have a baccalaureate degree why have 
not our major professional associations actively sought to 
develop, recommend and implement four year degree pro
grams in business application programming. If a four year 
degree is not required why have our professional associa
tions not stated this fact. If the educational requirements 
of the profession are not known why have not our profess
ional associations undertaken research to determine the 
amount of education required to be successful within the 

* Computing Newsletter, April 1972, Center for Cybernetics Systems, 
Colorado Springs, Colorado. 

industry. Historically, professional associations composed 
of a membership with a common bond of specialized knowl
edge have always been concerned about the education of 
its membership. Yet, little has been done within the business 
data processing industry to define the body of knowledge 
required to be successful within the profession. 

Other professions such as law and medicine exercise great 
influence and control over the subjects taught in private 
schools and colleges related to their profession; however, 
business data processing seems uninterested or perhaps 
un",i.lling to let or even encourage our colleges and universi
ties to enter this area of instruction. In an informal con
versation with the director of education of one of the large 
professional associations related to data processing -l1n 
inquiry was made as to why there was not a greater interest 
in developing and recommending a program of training for 
its members and taking further steps to encourage colleges 
to implement the program of studies ",i.thin their curricu
lum. The reply was "This is a controversial area." Cer
tainly, if industry cannot define the educational require
ments for its members or cannot define what individuals 
entering the profession must know then it is extremely 
difficult, if not impossible, for educational institutions to 
offer an effective program of instruction. 

Many working within the data processing profession 
including programmers, systems analysts, and data pro
cessing managers like to consider themselves "professionals." 
One of the commonly applied standards to determine if a 
field is a "profession" is that a "profession requires a high 
degree of academic training". How does this definition 
apply to the current status of training ",i.trun the industry? 
A to a recent speech by the president of one of our leading 
professional associations the point was made that an effort 
was being conducted to assist the membership in reaching 
top corporate management. The effort of the association to 
assist its membership to reach the loity levels of corporate 
management was to supply a video tape course on manage
ment to be shown at local meetings! It is almost unbelievable 
that this is the solution espoused by a leading professional 
association to prepare those needing education in manage
ment for top management positions. Is this association 
unaware or unable to recognize that top management posi
tions in most corporations require a high degree of academic 
preparation, normally as evidenced by a baccalaureate degree 
or higher? Has. it not occurred to this association that 
perhaps a recommendation of a college level curriculum in 
data processing management might not be a more realistic 
approach to reaching the levels to which it aspires for its 
membership? Again, I mention this instance only to re
emphasize the fact that the business data processing in
dustry seems unaware of the function that public education 
through our colleges can perform in preparing individuals 
for employment within their profession. 

As previously pointed out other professions exercise great 
control and direction over instructional programs at all 
levels related to their profession. Recently, the health/ 
medical technologies fieid has undergone dramatic changes 



under the direction and guidance of related professional 
associations. There are now available in some states one 
year programs for licensed vocational nurses (LVX), two 
year programs for registered nurses (RK) and four year 
programs for registered nurses for those desiging to move 
into supervisory positions. Certainly these developments 
did not come about at a single school or by a single in
dividual attempting to define the needs of the medical/ 
health field but were brought about by the recommendations 
of professional medical societies. Why won't the professional 
data processing associations support education by defining 
a curriculum for colleges at several levels and exercising 
influence and pressure on our schools to provide the type 
of education needed so that the industry can elevate itself 
to a truly professional level? 

I t is interesting to review the development of commonly 
recognized professions and relate these developments to 
business data processing. Some of the steps leading to pro
fessional status have been defined as follows: 

1. There is a body of specialized knowledge which 
becomes apparent and leads to the formation of a 
"professional" society or association bringing to
gether those with common interests. 

2. There is a sharing of knowledge of the members of 
the association. At this stage learning frequently 
consists of sharing of experiences, problems, and 
techniques. Apprenticeship type training and on-the
job training is provided for new entrants into the field. 

How the Data Processing Industry Has Failed Education 233 

3. The profession begins to recognize the need for more 
formalized training or education and seeks to define 
and recommend a program of training for those 
desiring to enter the profession. 

4. As the body of knowledge related to the profession 
becomes more complex and theoretical, the responsi
bility for education is placed in the hands of the 
universities where the information can be widely 
disseminated and research relative to the field under
taken. 

5. Licensure and certification of members is likely to 
occur especially where public interest or public 
service is involved. 

6. The final step in the evolution of professions com
monly consists of an interest by the profession in 
ethical problems of society and social responsibility 
as related to the profession. 

As one reviews the current status of those in business 
data processing it becomes apparent that the industry is 
still in the "apprenticeship" stage in the evolution of the 
profession with a sharing of knowledge and in-house and 
on-the-job type training common in most installations. 
Isn't it about time that the business data processing indus
try, through our professional associations, began that im
portant step toward professionalization by defining a body 
of knowledge that should be taught at all levels of education 
so that formal education can contribute to the success and 
growth of this dynamic profession. 





A springboard for data processing education in Oklahoma 

by DENISE A. PIERCE 

State Department of Vocational and Technical Education 
Oklahoma 

Certainly the problems expressed in the preceding presen
tations have not been foreign to Oklahoma. Oklahoma has 
realized the vast need for a mam-3.ge between education 
and industry, particularly in the area of data processing 
where no traditional curriculum patterns exist and where 
there are no established career paths for data processing 
instructors to follow. Oklahoma had an additional need, 
however, the cooperation between the various State agencies 
in using a "system approach" to improve education, and 
more specifically data processing education. The existing 
bureaucratic machinery allowed a certain degree of amalga
mation, but the gap had not been totally closed. This paper 
will seek to outline the framework of the cooperation between 
the State agencies, to discuss the state-wide teleprocessing 
system, to comment on the more usual types of involvements 
in data processing education, and close by discussing what 
Oklahoma is using as a springboard for accomplishing 
projects and meeting expressed needs. 

As to the existing operating framework, one could view 
this as a triangle with many various lines of cooperation 
between the three points denoting the three separate entities: 
the State Department of Education, the State Board of 
Regents of Higher Education, and the State Department 
of Vocational and Technical Education. One example of 
joint cooperation is the shared ownership and operations 
of the centrally located CPU. The State Department of 
Education and the State Department of Vocational and 
Technical Education participate in this venture which is 
the hub of our state-wide teleprocessing educational system. 
Schools electing to subscribe to the system range from 
secondary institutions to the four-year colleges, thus the 
supervision of programs comes through different State 
agencies. With the distribution of responsibility of program 
supervision, there was need for additional cooperative effort. 
Such a need was met by funding a position to coordinate 
vocational education at the higher education level, and an 
individual was selected by and is officed with the State 
Board of Regents for Higher Education. As a State, as 
needs have arisen, attempts have been made to reach solu
tions. Each of these State agencies have certain and varied 
responsibilities and limitations when it comes to data pro
cessing education, but basicaliy there is a framework ·within 
which progress is taking place. 

235 

The state-wide teleprocessing system previously men
tioned has been in existence since 1966. It has been featured 
in various articles, the most recent in the January, 1971, 
issue of the American Vocatiorml J ourrml. Administratively 
speaking the system has undergone the various growing 
pains of an EDP shop-hardware changes, turnover of 
personnel, numerous operating system modifications, and 
lastly a location change to a specifically designed area for 
the entire data center staff in a new State capital office 
building. Although both the State Department of Education 
and the State Department of Vocational and Technical 
Education have quite extensive administrative applications 
for which they use the UNIVAC 70/35, educational program 
use has always received top scheduling priority. Another 
recent improvement in the system was the conversion of 
TDOS to a DOS operating system. Several enhancements 
were incorporated that were not previously available to 
students. Now a student can receive a complete core-dump 
at a satellite center,· can accomplish either tape or disk 
sorts, and set up the JCL for his specific job, as well as 
other features. 

The state-wide teleprocessing system is not the only hard
ware available to institutions for data processing education. 
There are schools throughout the State on all levels that 
have their own computer systems. Some of these are Norman 
High School with a System/3; Tulsa Junior College with a 
360/50; Oklahoma State University with a 360/65 (the 
largest central computing facility of any educational institu
tion in Oklahoma); Oscar Rose Junior College with an 
IBM 1130; and Central State University with a 360/40 
and two PDP 11/45's. 

With all these various systems available, wouldn't it be 
reasonable to expect much activity? Certainly! In looking 
across the State, one will see scientifically-oriented pro
grams, business-oriented programs, and an established data 
processing teacher education program. But is the activity 
well organized, and is Oklahoma really meeting the specific 
needs of industry for well-trained and updating of those 
instructors already out in the teaching profession. How 
does one obtain that additional training and expertise of 
the rapidly changing profession when he spends most of 
his time in the classroom or preparing a lecture to enter 
that classroom? Is there perhaps another avenue not yet 



236 National Computer Conference, 1974 

discovered that could assist the three State agencies in 
working together in the midst of the intricate network of 
responsibilities? 

Before addressing oneself to these and other specific 
concerns and discussing the springboard that Oklahoma is 
using, please allow a brief rundown of some of the usual 
aspects of data processing education. On both secondary 
and collegiate levels, the student organizations are a part of 
making that final employable product. FBLA (Future 
Business Leaders of America) and PBL (Phi Beta Lambda) 
provide a very meaningful and rewarding experience to 
students who desire to "get involved". The state winner in 
the FBLA data processing contest also won first place at 
the National Leadership Conference in Washington, D.C. 
last June. This young man was a high school senior and 
was enrolled in the data processing program at the Okla
homa City Area Vocational-Technical Center. Today he is 
employed in a local EDP shop and advancing very rapidly. 
When it comes to youth organizations and activities, Okla
homa has enjoyed an excellent romance with industry. 
Many businessmen serve as contest judges and ask to 
return for future events. Others may participate in Job 
Fairs, in which students are interviewed, some companies 
offer jobs, thus some students leave the State Leadership 
Conferences not only with contest awards, but also a job. 
Some companies desire to participate in other ways, such as 
presenting contest winners with savings bond certificates. 

Another unusual aspect of data processing education in 
Oklahoma is that State level personnel are called upon to 
wear many different hats. Certainly this is true of the Data 
Center coordinator, the Data Processing Teacher Educator, 
and the Consultant for Secondary Programs. These three 
individuals speak to many civic and industrial groups, to 
high school classes of all kinds, and even prepare special 
seminar classes on various aspects of data processing for 
many different groups. These special seminars may be for 
top-level management, for a group of secretarial instructors, 
or for a special training session at Tinker Air Force Base 
near Oklahoma City. In addition, these persons work 
closely together in providing input concerning data pro
cessing education for the state-wide VIEW (Vital Informa
tion for Education and Work) system developed and dis
seminated by the State Department of Vocational and 
Technical Education. It would not be uncommon to find 
one of these persons substitute teaching (without pay) for 
an instructor who desires to attend a special seminar out-of
state. This instructor will in turn share the special seminar 
content with others via the springboard. This type of semi
nar, as well as one-week seminars are carefully planned and 
successfully implemented by these three individuals. The 
most recent of the week-long seminars was conducted in 
August, 1973. Authors and publishers from California and. 
N ew York were guest lecturers. These persons, assisted by 
Oklahoma instructors, conducted the seminar, and presenta
tions ranged from Techniques of Teaching Basic Data 
Processing Concepts to those on Techniques of Teaching 
Concepts of Ivlultiprogramming, and Techniques of Teach-

ing Concepts of Teleprocessing. These seminars alone, of 
course, cannot meet the total need of assisting those cur
rently teaching data processing in keeping abreast of the 
state of the art and of industrial needs. 

Returning now to concerns previously mentioned, other 
concerns have now been added to the list. What about a 
state-wide advisory· committee from industry, and what 
about reducing program costs? Is there some method for 
obtaining some standardization of the educational product, 
the student, at the various levels of education? Wouldn't 
it be a change for education to say to industry, or more 
specifically for a student to enter the job market proclaim
ing to be an entry-level COBOL programmer and for in
dustry to be informed specifically what criteria this student 
has met because of this student's participation in a com
petency-level testing program supported by the various 
institutions? Dreams? Perhaps. However, as long as it is 
said, "It can't be done!" it won't be done. There just may 
come a point in time when powers that be agree that there 
is a possibility for accomplishment; if so, then there is hope 
for progress. 

This positive "system approach" has prevailed in the 
minds of many State level persons and in the minds of 
business data processing teachers in the State, and because 
of this and other reasons, a group of individuals are taking 
a stand. Statistics reveal that over 80 percent of the jobs 
available in the data processing arena are in the business
oriented environment. Also, there are existing vehicles to 
serve computer scientists and further their educational 
aspirations and endeavors. The National Science Founda
tion has funded proposals to assist the advancement of 
data processing in this area, and yet what about the busi
ness data processing programs and instructors? Oklahoma 
looked to other states and even to national organizations 
for some answers and assistance and found that generally 
the problem is the same. Business data processing education 
needed a boost. After much thought and careful considera
tion five individuals decided to create a springboard for 
Oklahoma. Objectives were expressed to be: (1) the con
tinual advancement of the professional development of 
the business data processing instructors at all levels of 
education, (2) the continual improvement of business data 
processing programs at all levels of education, and (3) the 
continual promotion of business data processing. The 
finished product is 9alled the Society for the Advancement 
of Business Data Processing Education. Does it meet the 
needs and objectives? Absolutely. 

This product, still in its embryonic stage, is allowing the 
instructors from all levels of education to meet and work 
t.ogether; and enthusiasm and momentum continue to in
crease as many special projects are planned and completed. 
For the first time in the history of Oklahoma, a two-day 
seminar, specifically for business data processing instruc
tors, was planned and well attended at the annual State 
teachers' meeting. This organization has voiced its support 
and desired involvement in developing competency-level 
tests for various areas of business data processing education. 



A Springboard for Data Processing Education in Oklahoma 237 

Another special committee is in the process of designing an 
information system that will hopefully produce just about 
any answer one might want concerning the status of busi
ness data processing education in the State of Oklahoma. 
Teachers are sharing; they are involved; they want quality 
education program, and in all three areas value greatly the 
input and assistance from industry. The constitution of 
this newly formed group calls-for state-level advisory com
mittees, and Oklahoma is choosing such persons from 
industry. 

Another involvement of organization members is that of 
writing proposals to secure special funding for a project to 
establish career paths for business data processing teachers, 
and to conduct a future two-week seminar. The group is 

considering supporting an attempt to establish some na
tional curriculum standards for business data processing 
education at the various levels. With the close working 
relationship between all levels of education and the use of 
the springboard, these and other projects will become reality. 

"Quality !" Yes, that coupled with the attitude that 
nothing is impossible, unless one believes it is impossible, 
is the cry that rises from this industrious group. They 
desire the involvement of industry; they want to know how 
they can best train workers to meet the employment de
mands. With the English flair of Professor Higgins, who 
often remarked similarly about his Dear Eliza, one may 
find this group of Okies cocking their heads aside, smiling, 
and declaring, "By George, we think we've got it!" 





Career education in business data processing teacher education 

by JOE M. KINZER, JR. 

Central State University 
Edmond, Oklahoma 

The career path for teachers of business data processing 
has virtually been non-existent in the State of Oklahoma. 
Higher education institutions, however, have offered some 
coursework in data processing since 1958. ::V[ost of these 
courses were designed for scientific applications oriented 
toward the physicist and engineer. 

Business data processing programs at the secondary, post
secondary and adult levels began in the fall of 1966 with one 
of the first statewide systems in the nation. At that time, 
prospective teachers could not be attracted from industry 
and special courses were designed to prepare teachers for 
these programs. These special courses were offered for two 
consecutive summers in 1966 and 1967. They included the 
m:~' 'um technical skill areas necessary to begin a two year 
01 ~~~u ~usiness data processing curriculum. 

Institutions offering teacher education failed to respond 
to the need for additional training and development of these 
teachers beyond the two original special courses. As a result, 
business data processing teachers in Oklahoma have been 
left entirely on their own for professional development. What 
has happened is that some of the teachers have taken more 
advanced courses in an attempt to keep themselves updated 
as the technology changes and some have done very little. 
If the level of expertise of the teacher has any effect on 
curriculum or on effectiveness in preparing people for career 
paths in the areas of business data processing, then the 
career development of the data processing teacher must be 
a high priority item by institutions of higher education, 
representatives of industry, professional organizations, and 
other interested societies. 

Approximately two years ago, Central State University 
began an undergraduate program to train business data 
processing teachers. As in other states such as California, 
Colorado, New Hampshire, North Carolina and others, the 
program is offered through the School of Business as an 
option of Business Education. This arrangement seems to be 
working quite well. Courses such as Accounting, Economics, 
Statistics, Communication Skills and other related skill areas 
are taught by the School of Business while the technical 
coursework such as Programming Languages, Operating 
Systems, Systems Development and Design, and others are 
taught by the Department of Computer Science. The pro
fessional education skills that relate to the process of effective 
teaching are taught by the School of Education. Currently, 

239 

plans are being formulated for a graduate program for 
business data processing teachers. 

The area of in-service education, however, is a very high 
priority within the computer science education department. 
Oklahoma is fortunate to have a person at the State Depart
ment of Vocational and Technical Education level as a con
sultant in the professional development of the data processing 
teacher. The relationship between the State Department 
and the teacher education institution is excellent and allows 
for better planning, greater continuity, and added dimensions 
in in-service programs. 

In summary the data processing teacher education pro
gram in Oklahoma is concentrating on three main areas of 
concern. The first of these is the preservice program for 
prospective teachers mentioned previously. The program is 
geared to provide the prospective teacher with the technical, 
related and professional skills necessary to be successful in 
the classroom. 

The second area of concern lies in in-service education. 
At this time, there are no certification standards specifically 
for business data processing teachers. In order to keep the 
teacher in the classroom updated on technological changes 
and advancements within the industry, seminars and con
ferences are being used. Hardware manufacturer representa
tives, textbook authors, and other specialists are recruited 
as instructors and college credit for completion is granted, 
through the institution. While these seminars should be 
continued, an organized graduate training program for busi
ness data processing teachers is needed urgently. 

The third area of concern also falls in in-service education 
but is structured for the secondary Business Education 
teacher. Many of these teachers are aware that a minimum 
unit of instruction (10-30 hours) should be introduced to all 
secondary business education students. The problem, how
ever, is that in most cases the teacher has had little or no 
training in this area. Institutes and seminars are also being 
employed in an attempt to bridge this gap. 

In talking with educators in other states and by reading 
some of the available literature, it appears that problems 
confronting the professional teachers of Business Data 
Processing are similar in many areas of the country. For 
example, should the profession demand any type of standards 
for the new teachers? Should these standards include in
dustrial experience, mathematics, accounting, communi-



240 National Computer Conference, 1974 

cation skills, and others? If so, what would be the minimum 
standards acceptable? Do we offer a forum such as a national 
organization for data processing teachers to express ideas 
and seek answers to their problems in the classroom? How 
can industry help in this effort? The list can go on and 
on. 

Oklahoma is attempting to deal with some of these prob
lems, but it appears that a much larger effort is needed. 
Guidelines for career education paths for teachers as well as 
for students must be defined if we are going to achieve an 
acceptable level of success in providing industry with a 
quality product. 



Computer control of component insertion 

by D. R. lVIAGILL and R. D. MEMIS 

IBM Corporation 
Endicott, New York 

INTRODUCTION 

IBM has successfully utilized computers to improve, monitor, 
.and control actual production processes for many years and, 
as a result, has accumulated a large store of experience con
cerning their use as a manufacturing tool. 

This paper describes the use of an IBM System/7 to 
control up to eight component insertion machines: Loose 
Dual Inline Package CD IP) machines and/or Variable Center 
Distance (VCD) machines. The application was developed 
and is operational on eight machines at the IBM manu
facturing facility in Endicott, New York, and is now being 
implemented at other IBM facilities. 

The DIP and VCD machines are similar in operation from 
the control standpoint of the System/7. The machines are 
multiplexed through a common interface. 

The System/7 computer controls the following machine 
functions: 

1. X, Y, Z table positioning 
2. Transportation of the component through the insertion 

mechanism 
3. Console lights 
4. Sensing of console pushbuttons 
5. Sensing and signaling of abnormal conditions on the 

machine 
6. Program control of the repair of boards with missing 

components 
7. Operator-initiated data modification 
8. Component selection and control of variable center 

distances and insertion depths for individual com
ponents 

9. Data acquisition and control (from the host system) 

The component insertion machines provide a means for 
automatic insertion of integrated circuits. From "stick" or 
belt carriers, components are selected and inserted into 
circuit boards according to a pattern program resident in the 
System/7 computer memory. A machine consists of (1) con
trol panel, (2) servo-controlled X, Y, Z axes, (3) component 
dispensL'1g and insertion system; and (4) component cut and 
clinch unit. 

241 

INTRODUCTION TO MACHINE CONTROL 

There are several ways to control machines; including: 

• Wired controllers 
• Programmable controllers 
• Numerical control (N/C) 
• Computer numerical control (CNC) 
• Direct numerical control (DNC) 

Each has advantages and disadvantages when evaluating for 
specific applications, and it is up to the user to determine 
what is best for his use. 

Wired controllers have fixed logic and are reasonably 
priced with relatively low-cost components, but are not too 
flexible. Programmable controllers offer more flexibility, 
usually a slightly higher cost, but basically have limited 
logic and retain a sequential mode of operation. Numerical 
control is more expensive, quite flexible, and very repetitive, 
but has little overlap operation capability and has no se1£
correcting logic unless adaptive control is added. Computer 
numerical control offers more flexibility, faster debugging, 
and an ability to make logical changes from sensors, but 
costs more and is normally regarded as a standalone operation. 
Direct numerical control is very flexible, has facility for 
fast setup, debug, and turnaround, can expand to a high 
level of sensor control, and usually requires control of multiple 
devices to justify the cost, but offers the greatest oppor
tunities for shop floor systems control. 

Two types of computer control can be considered: open 
loop and closed loop. An open loop system has no means 
for comparing the output ",ith the input for control purposes. 
The closed loop system has a return signal from the machine 
to the computer for comparative purposes. 

The application of System/7 control of component in
sertion machines described in this paper is an example of 
closed loop, direct numerical control. The System/7 provides 
the signals to actuate the component insertion machines 
from preprogrammed stored programs, and also accepts feed
back data that is used to provide responses according to the 
logic stored in the processor. 

Both open loop and closed loop computer controls are 
used in such varied applications as mining, drilling, grinding, 



242 National Computer Conference, 1974 

drafting, stamping, winding, assembling, testin~,. sorting, 
flame cutting, spraying, and in still others. DIgItal ~nd 
analog signal processing by the System/7 affords a wIde 
range of servo control and behind-the-tape reader (BTR) 
retrofit possibilities. 

GENERAL SYSTEM DESIGN 

System specifications and software 

The System/7 communicates with another IBM computer 
and uses the larger host to prepare and load programs, and 
to receive processed sensor-based data. In such integrated 
systems, one or more System/7 s and othe~ processor~ function 
as a single system, distributing and mterchangmg data, 
routines, and jobs to make the most efficient use of eac? 
system's resources and abilities. A Sensor Base Control Umt 
(an RPQ device) between the host and the Syst~m/7 pro
vides high-speed communication in such a multIprocessor 
environment. 

The System/7 has four distinct components: processor 
module input/output module, enclosure, and operator sta
tion. The processor module is a 5010 with 16K word~ of 
memory (16-bit word size). The input/output module IS a 
5012 multifunction module having two digital output groups 
and two digital input groups with process interrupt capability. 
The enclosure is C03. The operator station is the 5028. 

Although a processor smaller than 16K words of memory 
could have been used to control the machines, a decision 
was made to store up to 50 part numbers in the central 
processing unit. The allocation of 10K words was made for 
programs including MSP /7 (Modular System Programs/7) 
and 6K ;ords for free space for NC data (approximately 50 
part programs). (See the section entitled "Data Manage
ment".) 

MSP /7 was used to program the System/7 and all oper
ations structured around it. MSP /7 exploits the speed and 
responsiveness of System/7. When a high-priority inter~upt 
occurs MSP /7 routes the signal directly to the reqUIred 
routin~. Programmed interrupts on the same priority level 
are queued and handled on a first-in, first-out basis. 

MSP /7 also schedules those tasks which must be c~rried 
out at a specific time or periodically. MSP /7 allows mter
action between the operator and his application. The MSP /7 
library includes several groups of macros: 

• Instruction macros to define the instruction set 
• Specification macros to define the system configuration 

h t '" t·" • System macros to manage t e sys em s execu lve 
resources 

• Access macros to handle input/output fa,ci1it,ie~ 
• Interconnected facility macros to support multisystem 

communications 

In this application of System/7 control of component 
insertion machines, MSP /7 was used for: 

• Sched uling 
Timing of 10-millisecond cycle service 

Executive programs and routines 
Program timeouts 

• Input/output control 
• Process interrupts 
• Error processing 
• Operator requests 

Servo control by the System/7 

The VCD and DIP machines are controlled and monitored 
by the System/7, which is also used to close the servo loop 
for three axes. The physical characteristics of each axis are 
different, but the basic functions performed by the System/7 
are the same. 

The main difference is a servo data table used for each axis. 
The servo data table is determined by the table speed, 
elasticity of the system, positioning accuracy, required mass 
and inertia considerations, deceleration rate, etc. Having the 
servo data table within the System/7 program, it is very 
easy to alter the servo data table to attain acceptable results 
in the machine table. 

The basic functions performed by the System/7 to control 
the machine table movement of each axis are to monitor 
the feedback counter, update the machine table's present 
location, calculate the delta movement required, and output 
the appropriate speed to the motors. 

The feedback counter, used in this application, is reset 
each time that it is read, resulting in a displacement of the 
machine table from the previous reading. The feedback 
counter also desigIlates whether displacement is positive or 
negative. The new present location is a summation of the 
previous present location and the feedback counter. The 
error factor, or ..1, is determined by subtracting the new 
present location from the end location. The ..1 can be positive 
or negative, based on the direction of travel. To find the 
required velocity to be outputted, to compensate for the ..1, 
the servo data table is utilized. By means of a table lookup 
or by direct algorithm, the velocity can be determined and 
outputted. 

System/7 is now controlling eight machines, each with 
three axes of motion, giving a total of 24 servos to be moni
tored and controlled. The scan rate/axis is determined by 
first considering counter size versus table speed, assuring 
that the counter will not overflow. The second consideration 
is the reduction of machine table overrun, which results in 
oscillation. For this application, with machine table speeds 
of 10 in./sec. and 50 in./sec., machine table overrun was the 
most critical. The scan rate is easily tested and modified by 
having this control in the System/7. The scan rate is now 
10 milliseconds. 

Within this 10 milliseconds time span, all 24 axes have to 
be serviced. This allows about 400 microseconds per axis. 
However there are other machine control processes that 
must be ~ontroned. These steal from the 400 microseconds. 
Since the axes have to be continuously monitored to maintain 
the positioning accuracy desired, the processing t.ime is a 
major consideration. The System/7, with a 400 nanosecond I 

I 



cycle time, provides a good base to reduce processing time. 
The programming scheme is critical to the processing time 
required to service the axes. The most time-consuming 
process is the servo data table lookup. 

For example, if the servo data table consists of 100 incre
mental speeds based on 100 different error factors, then a 
sequential search would require 50 executions of a search 
loop on the average, with the worst case being 100 executions 
of the search loop at the start of a long move. If a binary 
search is used, the average search loop is executed seven 
times. A better search procedure, especially applicable to 
servo systems, is a recursive sequential search. This search 
technique retains a pointer to the servo data table, based on 
a match of the Ll. When the Ll changes, the pointer is used 
as the starting point for sequential searching, and the pointer 
is updated when a new match is found. This method requires 
at most three searches before a successful match is made. 
The pointer is constantly changing as the table nears its 
end location and the Ll gets smaller. 

In some cases an algorithm can be used to find the dis
placement in the servo table based on the error factor. This 
usually provides the least amount of processing and is being 
used in this application. 

Besides the flexibility, already discussed, in designing the 
servo control, another major advantage of using System/7 
to close the servo loop is the control of machine table limits. 
Based on the Ll, an operation can be initiated prior to the 
machine table being 'within its specified dead band. In this 
application, the insertion sequence is initiated when the 
machine table comes within a certain limit of the desired 
end location. The limits are established by weighing the 
mechanical delays associated with the insertion sequence 
against the time required to position the machine table. 
This greatly reduces the overall cycle time of each operation. 

System control 

The System/7 architecture provides program execution at 
four priority levels. This capability provides an effective 
tool for doing processing that would normally be required 
on a more sophisticated system. Routines which are per
forming rudimentary functions can be interrupted by rou
tines required for direct process control, without any ad
ditional programming required. On this application the main 
uses of the priority levels are as follows: 

Level D-Basic timer interrupts 
D.l. process interrupts 

Levell-Machine control routines 
Level 2-Executive routine and other scheduled routines 
Level 3-Initialization routines 

Data management routines 
Operator communication routines 
Data conversion routines 

The machine control functions use the basic timer to 
transfer control to the Executive routine every 10 milli-

Computer Control of Component Insertion 243 

seconds. The Executive routine executes at Level 2, passing 
control to the routines required to service each machine. 
The machine control routines execute in short bursts, at 
Levell. Each routine has a series of tasks to perform, and 
usually needs to stay in a "loop" waiting for a machine 
operation to complete before going on with the next set of 
tasks. Each routine sets up the next routine to be executed 
for the machine it is now controlling. The next routine to be 
executed is determined by the successful or unsuccessful 
completion of an operation, by the machine type being con
trolled, or by operator action at the time. The next routine 
to be called is established prior to control being passed ba~k 
to the Executive routine. If the machine control that is now 
being executed is specified as the next routine to be executed, 
for the same machine, then a software loop is achieved. 

There are about 25 different control routines, some ap
plicable to both VCD and DIP machines, and some unique 
to . just one type of machine. At anyone execution of the 
Executive routine, only one or two of the machine control 
routines will be executed per machine. It is possible to have 
all machines requiring the same routine or each requiring 
different routines. 

Machine control 

Using the System/7 to control the individual mechanical 
operations on the VCD and DIP machines provides increased 
flexibility and reduction of cycle time. In several instances, 
the sequence and timing of operations were modified during 
machine debug. The ability to alter machine operations is 
still being utilized, because of recommendations by manu
facturing, maintenance, and engineering. 

The reduction of cycle time on a machine is largely due to 
overlapped operations. The cycle for a DIP machine is one 
insertion of a component. This includes moving the part from 
the part station to the transfer mechanism, transferring the 
part to the insertion mechanism, positioning the X-Y table 
to the next insertion position, and performing the insert-cut
clinch operations. To achieve maximum overlap, the DIP 
machine was broken down into four segments. Each of these 
segments operates as a single unique machine which inter
faces with another segment at ~ome stage of its operation. 

The four segments are: 

1. Shuttle 
2. Transfer 
3. Insertion mechanism 
4. X-Y table 

The functions of the shuttle are: 

1. Move the shuttle to the appropriate part station. 
2. Load a DIP into the shuttle. 
3. Move the shuttle to the unload position. 
4. Unload a DIP into the transfer. 



244 National Computer Conference, 1974 

The functions of the transfer are: 

1. Move the DIP onto the vacuum block. 
2. Reset the transfer to its home position. 

The functions of the insertion mechanism are: 

1. Move the DIP to the insertion mechanism. 
2. Insert the DIP into the board. 
3. Activate the cut-clinch mechanism. 
4. Reset the insertion mechanism and cut-clinch mecha

nism. 

The functions of the X-Y table are: 

1. Position the table to the X coordinate of the next 
insertion. 

2. Position the table to the Y coordinate of the next 
insertion. 

Considering the machine in segments enables the DIP to 
be moved to staging areas. This staging allows each segment 
to operate with the least amount of time delay due to DIP 
movement. The staging areas are at the points of execution, 
at each machine segment, where there is a dependency on 
another segment. At anyone moment, the DIP can be 
staged (1) in the shuttle at the unload position, (2) in the 
transfer, (3) on the vacuum block, and (4) in the insertion 
mechanism. There is only one link from each machine seg
ment to another which causes dependency of operation. The 
shuttle can operate through all its functions until the DIP 
has to be loaded into the transfer .. At this point, the transfer 
has to be checked to see if it is at its "home" position and 
clear of DIP modules. The transfer activates as soon as it 
gets an indication that a DIP is in the transfer and the 
vacuum block is free of DIP modules. The insertion mecha
nism is put through its functions upon getting an indication 
that the DIP module is on the vacuum block. A check is 
made that the X-Y table is in position before the component 
is inserted. The X-Y table will not move until the insertion 
mechanism is "home." 

Data management 

The System/7 handles the data management for the VCD 
and DIP machines. Each machine has a workboard holder 
with one or more mounting positions for circuit cards. Tool 
number data maintained in the System/7 controls the po
sitioning of the table for each of these mounting positions. 
Part number data, maintained in the computer, controls 
the positioning for insertion of components on each circuit 
card. In this application, each of the machines can require 
different tool and part numbers. 

The System/7 can use four methods to acquire this data. 
Two of them are data links to host systems, and two are 
used in a standalone configuration. The first of the host 
data methods is the Asynchronous Communication Control 
Attachment (ACCA). \Vith this attacrllllent the System/7 
simulates the performance and characteristics of the IBM 

2740 Communication Terminal Model 1 with the record 
feature. Therefore, System/360, System/370, and the 1800 
teleprocessing equipment may be used as a host system. 

The other host method is the Sensor Based Control Adapter 
(SBCA). This provides communication with a System/360 
or System/370. Both methods require MSP /7 programming 
support in the System/7. The SBCA method is used at this 
installation. 

In the standalone configuration, the System/7 can receive 
information from either paper tape or System/7 disk. The 
tape reader on the IBM 5028 Operator Station reads paper 
tape input. The IBM 5022 Disk Storage Module acquisitions 
data which is stored on the disk. As in the host methods, 
these two methods require MSP /7 programming support in 
the System/7. 

No matter which method is used to obtain tool or part 
number data, the method of handling it in the System/7 is 
the same. The System/7 stores data in the portion of storage 
unused by the control program (free space). Two directories 
use the first part of free space, one for tool numbers and one 
for part numbers. These are of a fixed length and contain 
directory blocks of a fixed size. When the user assembles the 
program, he specifies the number of directory blocks. This 
application uses 15 tool directory blocks and 50 part number 
directory blocks. The tool number and part number do not 
have a fixed-size lookup key. There is a maximum length 
for the keys; ten characters for tool number and 26 characters 
for part number. The keys are searched and accessed based 
on the number of characters typed by the operator. For 
example, if the part number is loaded with a key of 8521603, 
the operator can access this in the System/7 by just typing 
85216. This method provides the flexibility required to satisfy 
installation of this application in several IBM locations. 

The data size for both the tool and the part numbers is 
variable. The program dynamically partitions free space. 
As the program reads tool or part number data, it allocates 
a partition according to the size of the data. 

The part number directory has several fields. These indi
cate the size of the allocated partition, the lookup key, 
where in storage the partition begins, and whether any of 
the machines are currently using the part number. 

If the program allocates all free space or uses all of the 
directory blocks, the System/7 initiates automatic overlaying 
of data the next time the operator requests another part 
number. The automatic fill-in function loops through the 
directory until it finds a partition that is large enough for 
the new data and is not being used by any of the VCD or 
DIP machines connected to the System/7. It will then overlay 
the key in the directory and the data in the partition in free 
space. 

Tool numbers do not use the automatic overlaying func
tion. Therefore, if the tool number directory is full, or if the 
user requests a part number that is too large for any of the 
partitions, the user must clear the free space by requesting a 
clearing function on the IBM 5028. This function resets 
free space and both directories to an empty status. The 
user then reenters any data that the VCD or DIP machines 
are using and reassigns it to the machines. 



·When the operator assigns data to a particular VCD or 
DIP machine, the program verifies that the part number 
data is the correct type for that machine. This prevents 
DIP data being assigned to a VCD machine or vice versa. 
There is also a check made that the tool data assigned to the 
machine is compatible with the new part number requested. 

The program allows alteration of DIP data. If a part 
station on the DIP machine malfunctions, the operator can 
request the program to skip that part station. This request 
alters the data until the operator assigns a new part number 
to that machine. At this time, the program restores the data 
to its original status. There is also a need to alter data while 
the insertion process is active. This is used to mark particular 
positions for automatic repair, based on operator action. 
The positions that are marked for repair are restored to their 
initial condition after the repair is processed. 

I nput/ output processing 

The machine control routines need to print messages, 
request data, or perform a chain of operations with multiple 
routings. The requirements to perform continuous machine 
control do not allow the control routines to handle the I/O 
operations. In assessing the functions required to do I/O 
processing, a mini-"communication network" control system 
was created. This control system handles a variety of de
vices, including the operator station, disk module, Asyn
chronous Communications Control Attachment (ACCA), and 
Sensor-Based Control Adapter (SBCA). The transactions, 
which occur randomly, are queued to allow for peak activity 
and differences in operating speeds for different I/O oper
ations. 

The system is comprised of a message table, destination 
table, return table, pool of buffers, and small interface 
routines that are device-dependent. The system is structured 

Computer Control of Component Insertion 245 

on the basic premise that MSP/7 macros will be used for 
queuing, dequeuing, processing I/O, and passing control 
from one routine to another. The interface routines create 
the standard I/O parameter list (IOLT) for MSP/7 and 
perform the required data conversion and reformatting. 

When the machine control routines are assembled, a series 
of macros are used to create and structure the tables. The 
message· table is established with each message translated 
to ASCII, appended with message lengths and indicators 
for additional information. The destination table lists each 
interface routine entry point with the associated interrupt 
level and control word to be used. This list is device-de
pendent and is cross-referenced by the single access macro 
used in the control routines. The return table is a list of 
return addresses to be used after I/O completion, indicated 
by MSP /7 routines. 

The pool of buffers is actually a series of reserved storage 
locations chained together. These buffers are used to contain 
the standard IOLT for MSP/7, routing information, and 
the message itself. The size and number of buffers are indi
cated at assembly time. Each transaction processed will 
queue one of these buffers and create the necessary IOLT 
within the reserved area. 

At execution time, the machine control routines and 
optional operator routines initiate I/O operations by the 
use of a single access macro, named @I/O. By coding the 
parameters in different ways, the tables are used to efficiently 
generate a code that establishes the message routing, message 
address, return points, and additional identifications. All 
I/O requests pass through a common I/O routine which 
allocates a buffer from the pool, forms the standard IOLT 
for MSP /7, and passes control to the interface routine. 
Upon I/O completion, the MSP /7 routine returns control to 
the interface routine, which determines if any further message 
routing is required. If not, the buffer is returned to the pool. 





Display techniques for interactive text manipulation 

by CHARLES H. IRBY 

Stanford Research Institute 
Menlo Park, California 

INTRODUCTION 

The Augmentation Research Center (ARC) at the Stanford 
Research Institute (SRI), has been developing for several 
years a computer-based on-line system called NLS. NLS is 
part of ARC's research on enhancing the intellectual effec
tiveness of people.3, 5,6,7,10,12,13,15 Central to the develop-
ments to date is high1y interactive text manipulation using 
chiefly display terminals. 16, 17, 18 The NLS system supports a 
range of display terminals (from expensive text/graphics 
displays to inexpensive Alpha Numeric displaysl,2) and 
typewriter terminals. The NLS program runs as a subsys
tem within a TENEX time-sharing system on a DEC 
PDP-lO computer.9 

NLS is a program of about one hundred thousand instruc
tions and about eight programmers are involved in its 
continued development and maintenance. Since the pro
gram has been and will be under development for several 
years, considerab1e attention is given to the employment of 
good software engineering practices. 

NLS provides a general purpose interface to any of a 
large number of specialized capabilities that the user may 
draw upon during his work. Certain capabilities, such as 
text manipulation and communication with others, are 
important to almost any type of intellectual work, and, 
thus, they have received a large amount of our development 
resources. NLS provides the user with a consistent and 
coherent command language interface while allowing him 
to access diverse capabilities. The system is used intensely 
in the day-to-day work of about fifty people, some of whom 
access the system through the ARPA NETWORK.ll,14 
These people are writers, managers, engineers, analysts, and 
programmers. 

In addition to very flexible text editing and viewing, 
KLS provides the user ,vith facilities for communication, 
publication-quality formatting control, numerical calcula
tion, specialized user-supplied editing and viewing, and 
programming support (such as a built in debugging system 
and direct access to several compilers). 

For a more complete description of NLS and its applica
tions, the reader should consult References 3 and 5. 

Figure 1 describes the basic structure of the NIB applica
tion program. This paper is primarily concerned with the 

247 

capabilities that the Display Terminal Interface provides 
to the rest of the application program. 

Based on the command language grammar and the user's 
input, the command language interpreter invokes various 
manipulators to modify data structures and, if appropriate, 
formatters to map these data structures into specified 
rectangular portions (called "windows") of the display 
screen for the user to see. User input in Figure 1 represents 
character input, coordinate input, and selection input 
(based on coordinate input). 

A manipulator is that set of routines that manipulates 
data structures of a certain type, say type "A". An example 
might be the data structures used to represent a hierarchical 
structure that is applied to the textual information contained 
in the user's files. Some of the data structures are contained 
in the user's files; others are used to maintain user or sys
tem state information and characteristics. Such a manipula
tor might be applied to any of several instances of type A 
data structures or might always be applied to a specific 
instance. 

A formatter consists of those routines that map a data 
structure of a certain type into a rectangular "window", 
say "a", on the display screen. Such a formatter might 
invoke subformatters to handle subparts of the data struc
ture, and it might be applied to a particular instance or 
to any of several instances of such a data structure. A 
formatter might be applied to a specific window or applied 
to any of several windows. 

In order to minimize the number of changes that wiU 
have to be made to the screen, a formatter may compare 
what is currently shown in the window to what is desired. 
To facilitate this, a formatter maintains a data structure to 
reflect the current contents of the window. Alternatively, 
the formatter may simply clear the window and format the 
new data into it. The size of the window (the number of 
characters wide and lines high) is available to a formatter 
from the Display Terminal Interface. 

The Display Terminal Interface is that set of routines 
that provides the application program ''''ith primitive opera
tions for the manipulation of and interaction with a con
ceptual display terminal. This interface allows the application 
program to support physical displays with quite differ
ent characteristics. The protocol between the terminal and 



248 National Computer Conference, 1974 

Figure l-Basic structure of NLS 

the Display 'rerminal Interface may vary with the terminal 
type. 

Figure 2 illustrates the window organization of a typical 
NLS display screen. Figure 3 shmvs an actual screen orga
nized in this way. Figures 4 through 8 show other organiza
tions on various physical display terminals. 

In developing the graphics portion of the system, we 
wished to make use of the fairly well-known notions of 
"structured" display images and "virtual" display terminals 
in order 

(1) To support a wider range of terminals without major 
changes to the application program. 

I VIEW CONTROL I I 
~ :;;~~~l ~O~::D_~~:~ ~:.o--"~:::~ :':~:~ 

TYPEWRITER SIMULATION WINDOW I 
-----------------------------~ 

TYPE IN FEEDBACK WINDOW (Overlaps Windows Below) 

-----------------------------

FILE WINDOW 1 

FILE WINDOW 2 

Figure 2-A typical NLS display screen subdivided into windows-8ee 
Figure 3 

I 

Figure 3-Photograph of NLS display which corresponds to Figure 2. 
Typewriter simulation window and type in feedback window are empty. 
The display terminal is a Delta Data 5200 with a Line Processor.1,2 

Note highlighted text in upper file window, operands selected by the 
user for the Transpose Word command. Text may be moved from one 

file to another by selecting operands in separate file windows 

(2) To minimize the amount of information to which a 
particular formatter must have access in order to 
modify a certain portion (window) of the display, 

By "structured" display images, we mean display images 
subdivided into a structure (usually hierarchical or sequen-

Figure 4-Photograph of IMLAC PDS-l NLS display terminal with one 
file window 



Figure 5-Photograph of IMLAC PDS-l NLS display terminal with 
two columnar file windows with two different files being displayed 

tial) , such that the parts of the structure can be modified 
(such as delete<;l, moved, or replaced) independently from 
the rest of the display image. By "virtual" display terminal 
we mean a display terminal manipulated by an application 
program so that conceptual display properties can be mapped 
by interface routines into appropriate commands for the 
physical display being supported. 

However, in attempting to apply these techniques to text 
display and manipulation, we discovered that there are 

,,... J ..... to Suoo .. __ 
I 

,.-Ali'-" I.,,, 

Some features of NLs-oor ...nlch IIdd to the normel ocr 
1unct Ions 

Breekpolnts mey be set by typln9 In II loost Ion or by 
buggIng It on the screen In spilt screen mode. 

HDDr knowledge of constructIons In the LlO languag. 
and the pr09r6ln envIronment of NLS permIt; 
examInatIon of the contents of vllrlablu. flelde 
wIthIn records. strIngs and the frame; wIthIn the 
oel I r.turn .teck JIIOre ee811y then In the I'EN[X-CDr. 

Au • .,. mey oomplle proo.IL ..... end .... pl.o •• xl.tlna 
pr-oo.IL ..... by them In the runnln9 .y.tllll. r1'l1. I. 
ue.ful for cheoklng out bu9 fIx •• end for 
ouatomlzlng the .yetem to -th. u • .,.·. n •• de. 

Figure 6-Photograph of local display terminal screen with one file 
window showing documentation for debugging program 

Display Techniques for Interactive Text Manipulation 249 

Figure 7-Photograph of display screen with one file window and one 
typewriter window (lower portion of screen). User may interact with 

NLS on upper portion of screen or with debugger on lower portion 

some underlying differences between pictorial graphics, on 
lvhich these techniques work quite well, and textual graphics. 
These differences forced us to develop a slightly different 
conceptual model for text displays. This paper reports what 
we now know about the differences and the conceptual 
model lve have developed. 

SO~'IE FUXDA~IEXTAL DIFFEREXCES BETWEEX 
TEXTUAL AND PICTORIAL GRAPHICS 

Although pictorial and textual graphics are similar in 
most respects, there are some problems unique to textual 
graphics 

(1) On most displays, only characters of certain sizes 
and spacing are acceptable to the human user (or 
can be displayed at all). 

,.-101/"" 11,,. 

..... II ... I_N ...... 1.1' 
t 

uu .... ~ ,srAf'1 ................. 
1.15 • .It 25.'" .In LUI 11."4 

.ZI " .. , .• n .1" n.nl 

.15 I.Ht .... .n, n.'" 

.n II. ZII .• n ,.u. " .. ,. 

.It 11 .• n .1" '.111 If.'" 
Z." II.'U .... 1.111 II.'" 

f 
.11 ... 1 .. ,. . .,1 ...... 
• 11 ..... .11f . ,., ...... 

•• 71 , ..... , •.• n 

Figure 8-Photograph of local display screen showing use of numerical 
calculation features with a transaction history window on left and user's 

file on right 



250 National Computer Conference, 1974 

(2) Often, characters can only be displayed at certain 
coordinate positions with a predetermined spacing 
between characters. Thus, mapping a virtual coordi
nate system onto a physical screen may be difficult. 
Most displays with fixed-spaced character fonts can 
be thought of in terms of a character-grid coordinate 
system, which is not necessarily the same as its 

. pictorial coordinate system. 
(3) In general, text cannot be scaled, rotated, or trans

lated by arbitrary amounts (as can most pictorial 
images). 

(4) In order to control text formatting, the application 
program must know the character-grid coordinate 
system(s) of the physical display. 

In order to do its job effectively (from the user's stand
point), the application program must be able to determine 
the usable character sizes and fonts and their associated 
character-grid coordinate systems for the physical display 
it is supporting. 

These fundamental differences forced us to develop the 
conceptual model discussed in the following section. 

A CONCEPTUAL ~10DEL FOR TEXT DISPLAYS 

Our requirements for a conceptual model of a text display 
are as follows: 

(1) Characteristics of the physical display should be 
isolated or parametric. A range of physical displays 
must be supported with minimal impact to the 
application program. We have found the "isolation 
of knowledge" to be an essential software engineering 
principle to effect long term reliability, flexibility, 
and maintainability of a large software system. 

(2) Separate parts of the application program must be 
able to manipulate independently the text on portions 
of the screen. 

(3) The user must be able to "select" text on the screen 
by means of some type of "pointing" device. By a 
pointing device, we mean a device that is capable of 
transmitting coordinate data to the application pro
gram (e.g., mouse,17 stylus and tablet, joy stick) in 
response to some user action, such as depressing a 
button or a key. The pointing device should be 
coupled to the display in such a way that it gives the 
user some indication (e.g., the visual indication pro
vided by tracking the device with across-hair) of 
what he is likely to select if he makes a selection. 
When the user wishes to select some text on the 
screen, he moves the pointing device so that it (or 
its displayed tracking spot) is near the desired text 
and takes the appropriate action to cause the coordi
nates to be transmitted. The application program 
should then determine which text is nearest the 
coordinateS that \Vere input and show the uSer what 

it found (e.g., by highlighting the selected text as in 
Figure 4). This must be done in such a way that the 
user can "back up" (say, by depressing some other 

. button) and retry the selection. 
(4) The ability of two or more users to "share screens" 

must be provided. We find great value in the ability 
of two or more people who are geographically distant 
to run NLS using display terminals through the 
ARPA Network and share screens. By this we mean 
both see the same image on their screens and both 
can control the application program that manipulates 
the image. The situation is analogous to several 
people standing together at a blackboard, where all 
can see what each writes. This sharing is greatly 
facilitated, of course, by a telephone connection. By 
this means, distributed people can work together 
on such things as reports, designs, papers, proposals, 
and computer programs. Video projectors also allow 
distributed meetings. 

(5) If the application program needs to use the same 
portions of the screen for different purposes, it is 
very convenient for the application program to be 
able to suppress the display of part of the image and 
later to be able to restore it to sight. This is useful 
since most display screens are quite small, in terms 
of the number of readable characters they will sup
port, and portions must often be used for several 
purposes. For example, the same portion of the 
Rcreen might be uRed for the display of information 
from the user's files and for the display of status 
messages or the feedback of user i~put. The sup
pression capability allows the application program 
to overlap windows and use the physical screen 
space to best advantage without having to dedicate 
portions of the screen to infrequently used purposes. 

Figure 7 shm\Ts a situation ,\There the display of a 
file text window has been suppressed in order for the 
user to interact with a debugging program in that 
portion of the screen. Figure 7 also shows feedback of 
user input (the text "this is a test") in a sequential 
window that extends to the bottom of the screen. As 
the user types more text, lines will be suppressed in the 
file text windows as need to avoid superpositioning. 

(6) The application program must be able to draw the 
user's attention to some text on the screen (e.g., 
make it blink or increase its intensity-see Figure 3). 

(7) Because of the typewriter-like interaction modes of 
most modern time-sharing systems, typewriter simu
lation should be possible on a portion of the screen 
when running the application program in display 
interaction mode (for system broadcast, error, or 
warning messages from the time-sharing system). 
We have found this to be very valuable to the user. This 
portion of the screen must, in general, be dedicated 
to this purpose because of the asynchronous nature 
of these messages. In Figure 7, the debugging pro
gram is interacting 'with the user through typewriter-



simulation on the bottom portion of the screen. The 
text on the upper portion of the screen is unaffected 
by the scrolling (simulating the behavior of Carriage 
Return and Line Feed) which takes place during 
typewriter simulation on the lower portion. 

In order to meet these requirements, we have developed 
a conceptual model of a display terminal. The reader is 
referred to Figure 1, to the appendix of this paper, and to 
other referenced material (especially References 2 and 19) 
for additional details. The primary characteristics of the 
conceptual model are as follows. 

Windows and Strings 

The display screen is divisible into rectangular, possibly 
overlapping "windo.vs". 'VindO\vs may be invisible or 
visible, random or sequentiaL Sequential windows behave 
like typewriter simulations (text is scrolled though them). 
Random windows contain character strings which can be 
manipulated (moved, replaced, deleted) independently. 
Individual strings mayor may not be selectable. Text in 
selectable character strings may be selected by the user via 
his pointing device as operands to application program 
commands. The terminal initially has only one sequential 
window that covers the whole screen and is called the 
"default typewriter" window. 

The application program is expected to allocate windows 
for various types of information display to the user. Some 
of these windows are for the purpose of command specifica
tion feedback to the user and others are for the display of 
information contained in the user's files. 

Basic terminal modes 

The terminal can be in one of two basic modes: (1) "type
writer" mode and (2) "display" mode. In "typewriter" 
mode, all display windows except the default typewriter 
window are invisible, the default typewriter window is 
visible, and coordinate input is disabled; the terminal acts 
like an alpha-numeric display simulating a typewriter 
terminal. In display mode, the default typewriter window 
is invisible and coordinate input is enabled; the application 
program controls which windows are visible. 

Pointing device interaction 

It is assumed that in addition to character input, the 
terminal also transmits coordinate information along with 
at least certain characters. In formatting character strings 
that are selectable by the user (usually representing text 
from the user's files), the formatters construct a data struc
ture associating each character string ",ith the data element 
that it represents. When the user subsequently selects a 
character on the screen, the coordinates that were input are 
mapped by the display terminal interface, using mapping 

Display Techniques for Interactive Text Manipulation 251 

data that it maintains, into a window-identifier, string
identifier, and character count. This character and/ or 
neighboring characters may then be "highlighted" on the 
screen for the user's benefit. The window-identifier, string
identifier and character count are converted by the applica
tion program, using the data structure just discussed, into 
data element identifiers appropriate for its use. 

Sequential windows 

We assume a situation where the user has only one termi
nal that must behave like a typewriter terminal at times and 
like a true two-dimensional display terminal at other times. 
Thus, sequential typewriter windows are very important. 
Any text that is received by the display that is not in the 
context of a display command is "scrolled" through the 
current typewriter window. The effect of characters like 
Carriage-Return and Line-Feed are simulated. We expect 
that, when an application program is initialized, it allocates 
a small sequential window somewhere on the screen and 
makes it the typewriter window. Thus, any error messages, 
system broadcast messages, terminal "linking" ,9 and so 
forth, can be seen by the user while using the terminal in 
display mode. 

Device specific parameters 

When the Display Terminal Interface (see Figure 1) is 
initialized by the application program, it determines (via 
monitor calls or interaction with an "intelligent" terminal) 
enough about the display characteristics to manipulate the 
physical display. It returns to the application program the 
character-grid coordinate systems for the available charac
ter sizes of the terminaL The rest of the application program 
is then parameterized, on the basis of these values. 

To make all of this work, we must make certain assump
tions about the display (and any associated processing 
capability it might logically possess). 

It is mandatory that: 

(1) we can treat the screen like a large character grid 
and write characters at arbitrary positions on the 
grid (providing that we do not write past. the edge 
of the screen), 

(2) there is some way of mapping our conceptual display 
primitives, described in the Appendix of this paper, 
into the primitive operations of the physical display, 

(3) there is some way of writing text in a mode such 
that it stands out from the rest (e.g. blink, reverse 
video, underline), 

(4) there is some way of highlighting existing text on 
the screen in such a way that when the highlighting 
is removed, the original text will look just as it did 
before it was highlighted (This may be the same as 
(3) above), and 

(5) there is a coordinate input device such that the cur-



252 National Computer Conference, 1974 

rent coordinates will be input with at least certain 
characters and such that it can be tracked on the 
screen. 

It is desirable but not mandatory that: 

(1) there is some way of accomplishing the typewriter 
window capability (although this is not a must, the 
capability is certainly useful to the user), 

(2) various (fixed spaced) fonts and character sizes are 
available for the terminal (we plan to extend the 
model to include proportionally spaced fonts in the 
future), and 

(3) the (intelligent) display terminal is capable of re
sponding to an interrogation command from the 
Display Terminal Interface. This capability is op
tional, since the user can supply the information 
instead. However, this latter approach is not very 
desirable or reliable. 

Our operating system makes assumptions about the type 
of terminal that one is using. If these assumptions are 
incorrect (for example, if one has a display rather than a 
typewriter terminal), then the user must communicate this 
to the operating system via a command. If the terminal is 
intelligent and can respond to an interrogation, the user 
simply specifies this, and when the Display Terminal Inter
face is initialized, it sends the terminal an interrogation 
command, to which the terminal responds with its charac
teristics. Otherwise, the user must supply any needed in
formation about the display terminal or its characteristics 
must be assumed by the application program. 

THE ~fOUSE A~D KEYSET AS I::\fPORTANT AIDS 
TO DISPLAY INTERACTIOX IX TEXT EDITING 

Although they are very simple devices, we have found 
that the mouse and keyset, combined with a standard 
typewriter-like keyboard, form a very balanced and useful 
set of input devices for two-dimensional text manipula
tion.4• 8.16,17,18 The mouse is used for pointing and for special 
function input; the keyset and keyboard are used for char
acter input. The mouse is a small device that has two per
pendicularly mounted potentiometers, to which are attached 
wheels that roll and slide in proportion to the direction of 
movement, and three buttons. It is an easy "pointing" 
device to use and causes the user little or no fatigue. It can 
be used on almost any fiat surface, usually a desk top. 

The keyset consists of five long keys, similar in shape to 
white piano keys. The user depresses several keys in unison 
to input a character. When the thirty-onf~ pORRible combi
nations are combined with shift buttons on the mouse, the 
user is able to completely duplicate the standard keyboard, 
while keeping one hand on the mouse, ready to point to 
operands for commands typed in from the keyset. When 
more than a few characters are to be input, the user removes 
his hands from the mouse and key set and uses the type
writer-like keyboard. 

The three buttons on the mouse, if depressed and released 
without intervening characters from the keyset, have addi
tional functions, the more interesting of the seven being: 

To select some text on the screen or give final confirma
tion to begin the execution of a command, 

To back-up command specification, to allow the user to 
redo whatever he just did (e.g. select something else on the 
screen or retype his last character), 

To abort the current command specification and return 
the· User to the beginning of command specification, and 

To allow the user to modify the parameters which control 
how his information is presented to him. He may do this in 
the middle of specifying a command.3 

For a more extensive discussion of these devices, the 
reader's attention is directed to References 2 and 4. 

ACKNOWLEDG::\IEXTS 

The author wishes to express his gratitude to other members 
of the ARC staff for their help in the development and 
implementation of the conceptual model discussed in this 
paper. In particular, he would like to thank Ken Victor for 
his help, criticism, much implementation work, and for 
maintaining the official documentation for the D'1LAC 
protocol. 19 In addition, the author would like to thank 
Don (Smokey) Wallace for implementation help, Don 
Andre\vs for his \vork on the Line-Processor,2 and L. Peter 
Deutsch, of XEROX Palo Alto Research Center, for helping 
to develop the protocol for supporting I::\ILAC PDS-1 
display terminals and for writing an IMLAC program to 
implement it. 

The work reported here was and is currently being sup
ported primarily by The Advanced Research Projects 
Agency CARP A) of the Department of Defense, and also 
by the Rome Air Development Center of the Air Force and 
the Office of Naval Research. 

REFERENCES 

1. Hardy, M. E., "Micro Processor Technology in the Design of Ter
minal Systems;" under Preparation for the Proceedings of the IEEE 
COMPCON, 1974, SRI-ARC Catalog Item 20185. 

2. Andrews, D. I., "Line Processor: A Device for Amplification of 
Display Terminal Capabilities for Text Manipulation," prepared 
for the Proceedings of the National Computer Conference, May 1974, 
SRI-ARC Catalog Item 20184. 

3. Engelbart, D. C., R. W. Watson and J. C. Norton, "The Augmented 
Knowledge Workshop," AFIPS Proceedings National Computer 
Conference, June 1973, 38 p., SRI-ARC Catalog Item 14724. 

4. Engelbart, D. C., "Design Considerations for Knowledge Workshop 
Terminals," AFIPS Proceedings National Computer Conference, 
June 1973, 38 p., SRI-ARC Catalog Item 14851. 

5, Engelbart, D. C., SRI-ARC Summary for IPT Contractor Meeting, 
San Diego, 8-10 January 1973, Stanford Research Institute, Aug
mentation Research Center, Menlo Park, California, 7 January 
1973. 8 p., SRI-ARC Catalog Item 13,1'>37. 

6. Engelbart! D. C., Coordinated Information Services for a Discipline~ 
or Mission-Oriented Community, Stanford Research Institute, Aug-



mentation Research Center, Menlo Park, Califorma, paper given 
at Second Annual Computer Communications Conference, San 
Jose, California, 24 January 1973, 12 December 1972, preprint, 
13 p., SRI-ARC Catalog Item 12445. 

7. Augmentation Research Center Staff, Online Team Environment: 
Network Information Center and Computer Augmented Team Inter
action, Stanford Research Institute, Augmentation Research Cen
ter, Menlo Park, California, RADC-TR-72-232, 8 June 1972, 266 p., 
SRI-ARC Catalog Item 13041. 

8. Savoie, Robert, Summary of Results of Five-Finger Keyset Training 
Experiment, Project 8457-21, Stanford Research Institute, Bio
engineering Group, Menlo Park, California, 29 March 1972, 4 p., 
SRI-ARC Catalog Item 11101. 

9. Bobrow, D. G., J. D. Burchfiel, D. L. Murphy and R. S. Tomlinson, 
"TENEX, A Paged Time Sharing System for the PDP-1O," 
presented at ACM Symposium on Operating Systems Principles, 
18-20 October 1971, Bolt Beranek and Newman Inc., 15 August 
1971, SRI-ARC Catalog Item 7736. 

10. Engelbart, D. C., Network Information Center and Computer-Aug
mented Team Interaction, Interim Technical Report, Stanford Re
search Institute, Augmentation Research Center, Menlo Park, 
California, RADC-TR-71-175, AD 737 131, July 1971, 104 p., 
SRI-ARC Catalog Item 8277. 

11. Roberts, L. G. and B. D. Wessler, The ARPA Network, Advanced 
Research Projects Agency, Information Processing Techniques, 
Washington, D. C., May 1971, SRI-ARC Catalog Item 7750. 

12. Engelbart, D. C., Experimental Development of a Small Computer
Augmented Information System, Annual Report, 15 April 1970, 
15 April 1971, Stanford Research Institute, Augmentation Re
search Center, Menlo Park, California, 15 April 1971, 8 p., SRI
ARC Catalog Item 8616. 

13. Engelbart, D. C. and Staff of ARC, Advanced Intellect-Augmentation 
Techniques, Final Report, Stanford Research Institute, Augmenta
tion Research Center, Menlo Park, California, CR-1827, July 1970, 
212 p., SRI-ARC Catalog Item 5140. 

14. Engelbart, D. C., "Intellectual Implications of Multi-Access Com
puter Networks," paper presented at Interdisciplinary Conference 
on Multi-Access Computer Networks, Austin, Texas, April 1970, 
Preprint, 12 p., SRI-ARC Catalog Item 5255. 

15. Engelbart, D. C. and W. K English, "A Research Center for Aug
menting Human Intellect," AFIPS Conference Proceedings, Vol. 33, 
1968, 15 p., SRI-ARC Catalog Item 3954. 

16. Engelbart, D. C., W. K English and J. F. Rulifson, Development of a 
Multidisplay, Time-Shared Computer Facility and Computer-Aug
mented Management-System Research, Stanford Research Institute, 
Augmentation Research Center, Menlo Park, California, AD 843 
577, April 1968, 180 p., SRI-ARC Catalog Item 9697. 

17. English, W. K, D. C. Engelbart and M. A. Berman, "Display
Selection Techniques for Text Manipulation," in IEEE Transac
tions on Human Factors in Electronics, Vol. HFE-8, No.1, March 
1967, p. 5-15, SRI-ARC Catalog Item 9694. 

18. English, W. K, D. C. Engelbart and Bonnie Huddart, Computer 
Aided Display Control, Final Report, Stanford Research Institute, 
Augmentation Research Center, Menlo Park, California, CR-
66111, N66-30204, July 1965, 104 p., SRI-ARC Catalog Item 9692. 

19. Staff of ARC, IMLAC User's Guide, Stanford Research Institute, 
Augmentation Research Center, unpublished, available upon re
quest. 

APPENDIX-PRIMITIVES OF THE CONCEPTUAL 
MODEL OF A TEXT DISPLAY 

The primitive operations that the Display Terminal 
Interface provides to the application program are listed 
here. 

Display Techniques for Interactive Text Manipulation 253 

For window :Manipulation: 
WINDOW-ID ~ ALLOCATE-WINDOW (Xl, Yl, X2, Y2, 

CHARACTER-SIZE, FONT, TYPE) 
Function: Allocates a rectangular window of the specified 

type (random or sequential) and position. Establishes 
default character size and font for the window. 

Arguments: 
Xl, Yl: screen coordinates of upper left corner of 

window. 
X2, Y2: screen coordinates of lower right corner of 

window. 
CHARACTER-SIZE: default character size for this 

window. 
FONT: default font for this window. 
TYPE: sequential or random 

Returns: 
WINDOW-ID: unique identifier for this window 

(to be used in subsequent commands). 
DEALLOCATE-WINDOW (WINDOW-ID) 

Function: Deallocates the specified window. 
CLEAR-WINDOW (WINDOW-I D) 

Function: Deletes contents of window and removes image 
from the screen. 

INVISIBLE-WINDOW (WINDOW-ID) 
Function: Makes the contents of the window invisible 

(no image on the screen). 
VISIBLE-WINDOW (WINDOW-I D) 

Function: :Makes the contents of the 'windovv visible 
(image appears on the screen). 

TYPEWRITER-WINDOW (WINDOW-ID) 
Function: Makes the specified (sequential) window the 

typewriter window. All "unescorted" characters (not 
within a display command) will be scrolled through 
this window. These characters can also be scrolled 
through the default typewriter window so that the 
user can see them when the terminal is returned to 
typewriter mode. 

For Character String Manipulation: 
STRING-ID ~ WRITE-STRING (WINDOW-ID, X, Y, 

CHARACTER-SIZE, FONT, HIGHLIGHT, SE
LECT ABLE, CHARACTERS) 

Function: write the specified string in the window, with 
the specified properties at the specified position. 

Arguments: 
WINDOW-ID: unique identifier for a window. 
X, Y: window coordinates of the first character of 

the string. 
CHARACTER-SIZE: Use specified character size for 

this string or use window default. 
FONT: Use specified font for this string or use window 

default. 
HIGHLIGHT: If specified, highlight this string (make 

it stand out to user). 
SELECTABLE: If specified, characters in this string 

may be selected by the user via the SELECT -CHAR-
A 0'T'lJ'D ~_;~:.j.; __ _ 

.n.V.L .L:.i.LL l'.Lllllllil VI:;. 

CHARACTERS: the characters to be displayed. 



254 National Computer Conference, 1974 

Returns: 
STRING-ID: unique identifier for the string within 

this window. 
REPLACE-STRING (WINDOW-ID, STRING-ID, X, Y, 

CHARACTER-SIZE, FONT HIGHLIGHT, SE
LECTABLE, CHARACTERS) 

Function: Replaces the specified string in the specified 
window by the characters specified. If the X, Y coordi
nates are not specified, the current position is used. 
FONT and CHARACTER-SIZE may be defaulted to 
the old values for the string or to the window defaults. 
If HIGHLIGHT is specified, the string is made to 
stand out from normal text on the screen. 

MOVE-STRING (WINDOW-ID, STRING-ID, X, Y, 
CHARACTER-SIZE, FONT, HIGHLIGHT, SE
LECTABLE) 

Function: :\10ve the specified string to the specified posi
tion within the window. 

DELETE-STRING (WINDOW-ID, STRING-ID) 
Function: Delete the specified string from the specified 

window. 
INVISIBLE-STRING (WINDOW-ID, STRING-ID) 

Function: lVlake the specified string invisible to the user 
(no image on the screen). 

VISIBLE-STRING (WINDOW-ID, STRING-ID) 
Function: :Ylake the specified string visible to the user 

(image on the screen). 
CLEAR-STRING (WINDOW-ID, STRIND-ID) 

Function: Same as REPLACE-STRING with null string. 
For Sequential Window Manipulation: 

APPEND-TEXT (WINDOW-ID, CHARACTERS) 
Function: Append the specified characters to the specified 

sequential window. Carriage Return and Line Feed 
characters are simulated within primitive and are 
automatically inserted to avoid characters exceeding 
the right edge of the \vindow. 

For Highlighting Characters: 
MARK-CHARACTERS (WINDOW-ID, Xl, X2, Y) 

Function: Highlight the characters from position Xl, Y 
to X2,Y in the specified window, such that the mark 
can be removed with REMOVE-MARK and the 
original characters will be unchanged. It is desirable, 
but not mandatory, for the user to be able to read 
characters that are marked by this primitive. 

REMOVE-MARK 0 
Function: Remove the last mark put on the screen with 

MARK-CHARACTERS. 
CLEAR-MARKS 0 

Function: Remove all marks put on the screen with 
MARK-CHARACTERS. 

For Cursor Manipulation: 
SET-CURSOR (CHARACTERS) 

Function: If possible for this display terminal, set the 
primary cursor (the one that tracks the user's pointing 
device) to the specified characters. 

PLOT-SECONDARY-CURSOR (X,Y, CHARACTERS) 
Function: Plot a secondary cursor at screen position X,Y 

using the characters specified if possible. This must 
be done in such a way that the original text on the 
screen is not destroyed. This primitive is used in screen 
sharing. 

For User Input: 
CHARACTER *- READ-CHARACTER 0 

Function: Read the next character input from the termi
nal. 

(X,Y) *- READ-CURSOR-COORDINATES 0 
Function: Read the next (screen) coordinates iuput from 

the terminal. 
SEND-COORDS-WITH-CHARACTERS 0 

Function: Begin sending cursor (screen) coordinates with 
(at least certain control) characters. 

DONT-SEND-COORDS-WITH-CHARACTERS 0 
Function: Stop sending cursor coordinates with any 

characters. 
TIME-INTERV AL-COORD-INPUT (TIME

INTERVAL) 
Function: Begin reporting cursor coordinates periodically 

(when they have changed), independent of user actions, 
for use in screen sharing. 

For User Selection of Text on the Screen 
(WINDOW-ID, STRING-ID, CHARACTER-COUNT, 

X', Y') *- SELECT-CHARACTER (X,Y) 
Function: Given the screen coordinates X,Y, find the 

nearest selectable character on the screen. 
Returns: 

WINDOW-ID: The unique identifier for the window 
containing the string that contained the selected 
character. 

STRIXG-ID: The unique identifier for the string 
containing the selected character. 

CHARACTER-COUNT: The index into the string 
identified by STRING-ID of the character that was 
selected. 

X', Y': The \vindow coordinates of the selected char
acter. 

WINDOW-ID *- SELECT-WINDOW (X,Y) 
Function: Given the coordinates X, Y, return an identifier 

for the nearest window containing selectable character 
strings. Such windows should not overlap. 

For Batch Processing Display Commands: 
PROCESS-COMMANDS (DISPLA Y-COM:\-IANDS-

LIST, WINDOW-ID) 
Function: Given a list of display commands (like those 

described above), perform the operations all at once 
on the display in a manner appropriate to the actual 
display. 

For Error Messages: 
OUTPUT-ERROR-STRING (CHARACTERS) 

Function: Output the error message in a manner appro
priate to the display. 

For Determining Display Characteristics: 
PARAMETERS *- INTERROGATE-DISPLAY 0 

Function: Determine the usable character sizes, fonts, 
and character-grid coordinate systems for the display. 



The "normal" character size and font are also indi
cated. Execution of this primitive also initializes the 
Display Terminal Interface routines to work with the 
actual display. 

For Basic Mode Switching: 
TYPEWRITER-MODE 0 

Function: Put the terminal in typewriter mode. Make all 
windows invisible except for the default typewriter 
window and disable coordinate input. 

DISPLAY-MODE 0 
Function: Restore terminal to display mode. Make 

Display Techniques for Interactive Text Manipulation 255 

default typewriter window invisible, make any windows 
that were visible prior to the last TYPEWRITER
MODE command visible again, and enable coordinate 
input. 

For Resetting the Terminal to Its Initial State: 
RESET 0 

Function: Reset the display terminal to its initial state, 
simulating a typewriter-like terminal with no windows 
allocated and not sending coordinates with any char
acters. 





Line processor-A device for amplification of display terminal 
capabilities for text manipulation 

by DONALD 1. ANDREWS 

Stanford Research In..~titute 
Menlo Park, California 

INTRODUCTION 

The Line Processor is a microcomputer-based device that was 
developed at Stanford Research Institute's Augmentation 
Research Center (ARC). It was designed to make it possible 
to use inexpensive alphanumeric video display terminals with 
ARC's sophisticated interactive information manipulation 
system, NLS.l 

NLS is a software system that runs in a timesharing en
vironment and is accessed via enhanced display terminals we 
call workstations, in many cases through a computer net
work. 

The Line Processor concept involves placing a processor in 
the transmission line between the main computer and the 
display terminal. This enables us to expand the capabilities 
-of the alphanumeric display terminal so that it will meet the 
requirements of an NLS workstation terminal. The contribu
tions of the Line Processor concept for the most part address 
the needs of the software system NLS and are as follows: 

The microcomputer implements a "virtual two dimensional 
alphanumeric terminal." Primarily, the virtual terminal al
lows device independent manipulation of displayed text. The 
microprocessor "maps" the virtual terminal commands from 
the main computer into actual commands for the particular 
display attached to it. 

The "virtual terminal" was designed to mate ,,,ith the 
interactive text manipulation techniques developed at ARC 
especially for NLS. Understanding these techniques is most 
useful in understanding the Line Processor operation.2 

Attached directly to the Line Processor is a pointing device 
that allows the user to point to any character on the screen. 
This is achieved without any modifications to the standard 
alphanumeric video display terminal. 

The Line Processor also implements a "scrolling window" 
feature. This makes the terminal usable as both a two
dimensional applications display terminal and a teletype
writer terminal simultaneously, without scrambling of text. 
The "scrolling window" concept is extremely important in an 
application such as ours where the display terminal is used 
for both purposes simultaneously. 

Communication to and from the main computer consists of 
7 -bit ASCII characters over bit-serial transmission lines or 
computer networks. 

257 

In developing the Line Processor, we have established what 
we feel is the minimum set of display terminal capabilities 
that enable two-dimensional interactive text manipulation. 
These requirements are discussed in detail. 

Before explaining the Line Processor characteristics and 
operation, we will briefly describe the NLS software system 
and the XLS workstation environment. 

NLS AND THE WORKSTATION ENVIROXMEKT 

NLS is a highly interactive system that joins many capa
bilities. It supports structured text files, very flexible editing, 
techniques for viewing and studying, arbitrary word process
ing and document production, and aids to applications and 
system programming. (For a general description of ARC's 
goals and efforts see Reference 1 which sites related papers.) 

The system can be operated from a range of terminal types: 
from typewriter terminals to high speed graphics displays. 
Our main effort has been to develop a carefully human engi
neered display oriented system. The display version of the 
system introduces the user to the ,,,orId of two-dimensional 
computer interaction, which is much more natural than the 
one-dimensional mode forced upon typewriter device users.2 

The NLS program runs as a subsystem of a TENEX time
sharing system on ARC's Digital Equipment Corporation 
PDP-lO. The PDP-lO is connected to the ARPA network 
and many of our users gain access via that network.3,4 

NLS users employ two special input devices continuously: 
a mouse and a five-finger keyset. We use the term "work
station" to mean a display with standard keyboard and these 
devices, arranged on a special table in a convenient manner 
for effective working. (See Figure 1.) 

The two unusual workstation input devices, the mouse and 
keyset, are commercially available separately, but are offered 
as standard options on only a few products. (Mice and key
sets can be purchased from Imlac, Cybernex and Computer 
Displays.) 

The five-finger keyset has five long keys as shown in Figure 
2. The user rests his fingers lightly on the keys and strikes 
chords to input characters. The typical user learns enough 
bi..'lary codes in a couple of hours to do useful work. 

The user can point to characters on the screen by rolling 



258 National Computer Conference, 1974 

Figure 1-NLS workstation with line processor 

the mouse on any flat surface. Potentiometers are connected 
to the orthogonal wheels on the mouse, and they provide 
analogue signals that are translated into digital X and Y 
position coordinates by a hvo channel A to D convertor. 
(See Figure 3.) 

The user can operate three buttons on the mouse to con
firm commands, abort commands, provide a case shift for 
the keyset and perform other programmable functions. The 
workstation has no other special function keys or buttons. 

With the right hand on the mouse, and the left hand on the 
keyset, the user can edit, change his view and perform other 
control operations rapidly and easily. He does not remove his 
hands from the mouse and keyset, except to type large 
amounts of text. The mouse and keyset are further described 
in References 5 and 6. 

The final element of the workstation environment is the 
user. It is intended that the user does the majority of his 
day-to-day work via NLS and the workstation. The user 
becomes increasingly proficient at using the system and the 
human enginpPrlng aspects of the workstation become very 
important. 

GOALS AND PROBLEMS 

For several years, we have been wanting to make NLS 
available to remote users on inexpensive dIsplay terminals. 
The primary problem has been lack of commercial availability 
of adequate displays. At ARC, we have a custom-built dis
play system that meets our needs, but is not available to 
others. 7 

To be an adequate NLS workstation, a display terminal 
must meet several general requirements such as· screen size 
and character set. These will be discussed later. 

In addition, we require that the terminals have a mouse or 
comparable pointing device. 

Also we prefer to use terminals that are commercially 
available and maintained nationwide. 

Remote operation over high speed phone lines and com
puter networks such as the ARPA Network is absolutely 
necessary. 

Further, they should be available in single quantities, and 
operate as a time-sharing system typewriter terminal as well 
as an NLS workstation. 



Line Processor-A Device for Amplification of Display Terminal Capabilities for Text Manipulation 259 

Very few displays on the market meet our requirements. 
At this time, the only commercially available product with 
mouse and keyset that meets our requirements is a mini
computer-based display terminal, the IMLAC PDS-1. It 
makes a satisfactory NLS workstation, but appropriately 
configured it costs about $18,000. We would like to see work
stations available for about $5,000. 

Many low-cost, alphanumeric video display terminals on 
the market today are attractive and almost meet our needs. 
Unfortunately, many are designed as replacements for type
writer terminals, IB.M 2265's, or other existing terminals. 
From our point of view, the designers of these terminals took 
an unnecessarily limited view of their possible applications. 

Even those alphanumeric video terminals that meet our 
general requirements are not suitable for NLS use since they 
lack provisions for adequate graphical pointing devices
and it is generally very expensive or impossible to interface 
devices such as a mouse to existing products. 

In addition, we would like our users to have a choice of 
terminals to use as workstations. But there is no industry 
standard for the terminal function codes, such as delete line. 
What is worse, there is no genera] standard as to how some of 
the functions are carried out on the screen. Hence we have to 
write and maintain a software driver for each different type of 
terminal we support. We already support a number of dif
ferent hardcopy terminals, and we would prefer not to ag
gravate the problem if possible. In our development, we re
write, modify and extend large parts of our software· system 
continually and increasing the volume and complexity of the 
software naturally increases our development and mainte
nance expense. 

SOLUTION 

To solve the problems mentioned above, we built a special 
purpose I/O device based on a four-bit microcomputer, which 
we call a Line Processor. 

The combination of a Line Processor and an adequate 
video display terminal results in an effective NLS worksta
tion. 

The Line Processor connects to the display terminal's 
RS232 bit-serial interface. No modifications are required of 
the display terminal. (See Figure 4.) 

The mouse and keyset connect directly to the Line Pro
cessor. All special purpose hardware for these connections is 
neatly localized within the Line Processor. 

Another standard RS232 full-duplex interface connects the 
Line Processor and the main computer. Communications 
over these lines consists of 7 -bit ASCII characters. ASCII 
control characters are avoided to the extent that transmission 
over the ARPA Network involves a simple TTY-type con
nection. 

The microcomputer implements the "virtual NLS termi
nal." It maps the terminal-independent Display ManipUla
tion Protocol LTlto the specific terrri.."'lal functions for the 
particular terminal being used. All composite terminals 
(display terminal plus Line Processor) are logically the same 

Figure 2-Mouse 

at the point of main computer connection, and as a result, 
only one software driver is required. 

The microcomputer can be programmed to ·work with any 
alphanumeric display that meets certain requirements 
described below. 

The microcomputer program does not require any software 
maintenance expense, since it is treated as a hardware device 
when the development is completed. On the other hand, the 
microcomputer program could be changed without altering 
the Line Processor hardware, if that proved to be useful. 

REJECTED SOLUTIONS 

We considered several alternative solutions to the problems 
mentioned above. Here are the other alternatives that we 
investigated: 

1. Have a special workstation terminal built by a repu
table manufacturer. In 1972, we sent out a request to 
several manufacturers for a proposal to modify their 
standard terminal to meet our requirements. There 
was virtually no interest in serving our needs, and all 
indications were that special workstation terminals 
would be very expensive. The manufacturers either 
were not interested in modifying their standard prod
ucts or would not address themselves to what they 
viewed as a relatively small market. 

We expect that in the future video terminals will 
have the necessary I/O capabilities and be micro
computer controlled so that adaptation to applications 
such as ours would be relatively easy. 

2. lVfodify an existing alphanumeric terminai ourselves. 
There are several disadvantages to this approach. 
Having the modifications made on a production basis 



260 National Computer Conference, 1974 

Figure 3-Keyset 

and convincing the manufacturer to maintain modified 
terminals are big obstacles. Also, once the terminal is 
obsolete or no longer manufactured for any reason, we 
are faced with our original problems again. 

3. Use of a programmable terminal that offers the neces
sary I/O capabilities. This is exactly what we did by 
programming the IMLAC PDS-1, but we feel that it 
results in a workstation that is too expensive. Other 
programmable terminals that met our general require
ments exist in the same general price range as the 
PDS-1; one of our primary objectives was to reduce 
the price per terminal. But the price of suitable pro
grammable terminals may drop enough in the next 
few years that this will be an attractive solution. 

4. Build. very simple hardware device to interface the 
mouse and keyset to a communications line. The Line 
Processor performs several functions that need not be 
performed at the terminal site. For example, mouse 
tracking, TTY-simulation and display manipulation 

protocol implementation could be performed in the 
main computer. The device proposed here would 
simply transmit keyset chords and mouse position 
changes to the main computer. 

There are two serious problems with this solution. 
Tracking the mouse by the main computer, when 
connected by a computer network, would be unfeasible 
because of network delay times. Also, the terminal 
would not have the "scrolling window" feature. 

This is a reasonable idea but, compared to the Line 
Processor, the device would increase significantly the 
compute load on the main computer, and iL would 
increase the amount of transmission over the terminal
computer connection. Furthermore, it would require 
more software in the main computer. In a large and 
fixed system where terminals were not connected by 
networks, this may be an advisable approach, but we 
felt that it was unsuitable for our configuration. Our 
software system is continually evolving, our main 



Line Processor-A Device for Amplification of Display Terminal Capabilities for Text Manipulation 261 

computer is overloaded and we have many of the 
terminals connected via computer networks. 

In considering each of these alternatives, we were concerned 
with the cost of the development, but primarily we were con
cerned with the quality of the resulting NLS workstation and 
the end cost to the consumer. Providing a means of access to 
NLS for remote users is one of many R&D goals at ARC. 
Hence the cost of development of the Line Processor was 
borne by ARC and its sponsors, and did not have to be passed 
on to the consumer. 

LINE PROCESSOR FUNCTIONS 

There are several important functions that the micro
computer performs to make the combination of display and 
Line Processor an effective workstation. 

1. Protocol Implementation-There are several protocols in
volved. They are identified in Figure 4. 

The Display Manipulation protocol is exactly the 
same for every Line Processor workstation and is sent 
by the applications program to the Line Processor to 
change the display image. It does not affect the dis
play terminal directly, but is translated by the micro
computer into the Terminal Function protocol. 

The Display Manipulation protocol is designed to 
work with any alphanumeric ferminal with cursor 
control and line editing functions such as delete line 
and insert line. 

The Line Processor talks to the display terminal in 
the Terminal Function protocol. This is defined by 
the terminal manufacturer and usually consists of 
ASCII control codes, or sequences of control codes, 
interspersed with ASCII text to be written on the 
display screen. 

The Line Processor workstation serves as both a 
timesharing system typewriter terminal and a two
dimensional applications system display output 
terminal. Hence, there are potentially two streams of 
output going from the main computer to the Line 
Processor on the same communication line: the Dis
play Manipulation protocol, and any teletypewriter 
terminal output that the timesharing system or 
applications programs send. The teletypewriter output 
would be generated if the user were using the terminal 
as a typewriter terminal, or if the user received an 
error message or some type of system-wide message. 
These two streams of output are separated by the 
Line processor, and TTY-type output is displayed in a 
TTY-simulation area. This means that the teletype
writer output is not scrambled in with the display 
output, but it is scrolled-teletypewriter fashion-in a 
small portion of the screen. The applications program 
has controi over the size and iocation of the TTY
simulation area. (The TTY-simulation and window 
concepts are described in reference 2.) 

Terminal Function 

DISPLAY - Protocol 
LINE 

TERMINAL PROCESSOR 
ASCII 

Characters 

I I 
I 

I I I I 
Keyset 

Display 
Manipulation 

-- Protocol 

Input 
Protocol 

J-... 
'----

Mouse 

To Main 
Computer 
Complex 

SA-l868-4 

Figure 4-Display terminal, line processor and main computer 
connections 

2. Keyset and Mouse Button Transmission (Input Protocol) 

Information from the input devices (keyboard, 
mouse and keyset) are incorporated into an Input 
protocol by the Line Processor and sent to the main 
computer. The protocol is quite simple. Control 

. characters and mouse button changes are sent as 
short strings of characters that include the mouse 
tracking spot location (line and character position). 
Characters from the display's keyboard are sent in 
unescorted fashion, that is, each single ASCII char
acter is sent. 

Input from the display terminal's keyboard simply 
comes into the Line Processor from the full-duplex: 
display connection. This consists of ASCII characters 
that the user has typed on the keyboard. Local editing 
from the keyboard and batch transmission features 
within the terminal, if present, are not used for NLS 
applications. 

There are three buttons on the mouse. A change of 
button positions sends in one character to the main 
computer, which indicates the new three-button 
status. The applications program knows the state of 
the mouse buttons and can interpret any subsequent 
input accordingly. This in effect allows eight different 
interpretations of keyset and keyboard input.2 

The five-finger keyset input is interpreted as 
"chords". The normal condition is all-keys-up, and 
the end of a stroke is indicated by all-keys-up. Any 
keys that were depressed during the stroke are 
"OR'ed" together to comprise the chord, which elimi
nates the problem of striking keys in unison. Thus, a 
keyset input stroke is a non-zero, five-bit integer. It is 
converted to an input character in the Line Processor, 
and sent on to the main computer in unescorted 
fashion. 

The five-finger keyset and mouse buttons are gated 
directly into the microcomputer. These signals are not 
"clean" and may be "bouncing" for a few milli
seconds after a button is pushed. The switches are 
sampled at a rate at which the bouncing can be de
tected, and the final reading is not taken until the 
switches are stable. 



262 National Computer Conference, 1974 

3. Mouse Tracking 

The Line Processor reads the mouse position from 
the A to D convertor and "tracks" its movements on 
the screen with the standard display cursor imple
mented within the video terminal. This is done by 
periodically reading the mouse position and, if it has 
changed, sending a position-cursor command (a part 
of the Terminal Function protocol) to the display. 

The tracking allows the user to point to any charac
ter on the screen at any time, yet the main computer 
is only informed of the mouse position when the user 
strikes an appropriate key or button. 

The mouse moves in a smooth continuous manner, 
but the tracking spot (cursor) moves from one 
character position to the next in discrete jumps. The 
tracking will appear jumpy rather than smooth if 
the baud rate between the Line Processor and the 
display is not high enough. Exactly what the baud 
rate has to be depends on how many characters must 
be sent for the position cursor function. We have found 
that 2400 baud is a minimum baud rate with the 
standard four-character sequence for cursor position
ing found on most alphanumeric terminals. 

4. Display Control 

The Line Processor maintains control of the display 
because it is the only device sending characters to 
the display terminal. The applications program in the 
main computer manipulates the display only by way 
of the Display Manipulation protocol. 

The mouse tracking and the TTY-simulation feature 
mean that the microcomputer must have a fair 
amount of software logic to keep track of the display 
termLl1al's cursor position and know where to move it 
when neCf',ssary. 

TERMINAL REQUIREMENTS 

A display terminal must meet several requirements to form 
an effective workstation with a Line Processor. Theserequire
ments are due to either system or user considerations: 

1. System Considerations 

It must be possible to perform several kinds of 
display functions by way of the terminal's RS232 
connection. That iSJ the Terminal Function protocol 
must be adequate and operable under computer 
control. We will discuss the actual functions that 
are required. 

One of the key functions is positioning the cursor. 
For the mouse tracking to be satisfactory, it must be 
a very quick process (within one millisecond), and 
the cursor must not be displayed in any extraneous 
positions on the screen while being moved to the 

destination. The cursor must be addressed by the 
character and line number of the screen position. 

The appearance of the cursor must be suitable for 
tracking. A blinking underline cursor is not very 
satisfactory since it is not always visible. Some dis
plays implement the cursor by reversing the video in 
the entire dot matrix of the character in question. The 
resulting reverse video rectangle that moves around 
the screen is satisfactory for tracking. 

It is necessary to have a high speed connection 
between the Line Processor and the display, as men
tioned before. We feel that 2400 baud is satisfactory; 
we prefer 9600 baud because it makes a more effective 
workstation. 

The bulk of the display manipulations are done via 
delete line and insert line functions. These manipula
tions usually involve positioning the cursor and then 
issuing the command. 

Nearly alJ terminals have a clear screen function, 
and we require it. 

We expect carriage return and line feed to work on 
the display just as they work on a standard teletype
writer device. That is, carriage return moves the cursor 
to the left margin and line feed moves it to the next 
line without changing the character position on the 
line. Although a single "next line" code is often useful, 
we do not feel it is reasonable for a manufacturer to 
omit either of these two fundamental functions. 

When a user selects a character on the screen by 
pointing to it with the mouse tracking spot and push
ing a button, the applications program usually re
sponds by "marking" that character for confirmation. 
The "marking" feature is very important to the inter
action process and it has givf'n us a bit of trouble in 
transforming an alphanumeric display into an effective 
workstation. We will describe the problem in some 
detail. 

The "marking" is done by altering the appearance 
of the character without obliterating it. If the user 
selected the wrong character he will abort (or "back 
out of") that selection and select another. The NLS 
program responds by removing the first mark and 
putting up another. Hence, it must be possible to 
"mark" and "unmark" characters on the screen with
out altering the text in any other way and \vithout re
writing the character. On displays where single charac
ters can be made to blink, reverse in video, or change 
in some other way, marking will be implemented using 
that feature. 

But very few displays have the capability of 
"marking" a character without using up a character 
position on each side of the character, which is un
satisfactory for our purposes. We have had success by 
showing the "mark" by "flashing" the cursor at the 
marked character position at a rate of about three 
times a second; the cursor is returned to the tracking 
spot between flashes. This is satisfactory if the display
Line Processor connection is of high enough baud 



Line Processor-A Device for Amplification of Display Terminal Capabilities for Text Manipulation 263 

rate (4800 or 9600 baud) and the cursor positioning 
within the display is fast and does not result in ex
traneous flashes on the screen. 

Clearly, the former type of "marking" is preferred 
because the latter scheme results in a flashing tracking 
spot and becomes confusing when there are several 
"marks" on the screen. Probably the most desirable 
type of "marking" feature would be to make the 
character blink at about 3 cps. 

Occasionally, it is desirable to write a string on the 
display with a special appearance, to get the user's 
attention. We call this "standout mode." Most dis
plays have some kind of standout feature such as 
blinking, underline, high intensity or reverse video
we require some kind of standout mode. This differs 
from marking: in marking an existing character on the 
screen is altered without rewriting, and in standout 
mode new text is written on the screen. 

Of course, all these functions take some finite time 
for the display to carry out. We would like to see all 
functions performed as fast as possible. In particular, 
we expect that all functions except delete line and 
clear screen will be performed in one millisecond or 
less. We expect delete line and clear screen to be done 
in about 5 to 7 milliseconds. We set an upper bound of 
120 milliseconds for any function execution time. 

2. User Considerations 

We consider 24 lines by 64 characters a minimum 
adequate screen size; however, 27 lines by 80 char
acters is much more useful. The most desirable would 
be a full text page of 66 lines by 80 characters. No 
matter what the screen size, we expect the terminal to 
have enough memory capacity to nearly fill the screen 
with text. 

The terminal must display the full ASCII character 
set, including upper and lower case letters. 

The keyboard should be a standard typewriter 
style keyboard with the full ASCII character set, 
including control characters. Some form of key roll
over feature and a comfortable feel are very important. 

The display output should be readable, easy to look 
at and flicker free. Our applications are geared toward 
comfortable day-long use in an office. The terminal 
should be absolutely quiet and a pleasant thing to 
work with in all respects. 

HARDWARE DESCRIPTION 

The organization of the Line Processor is outlined in Figure 
5. The Line Processor is discussed from a hardware stand
point in Reference 8. 

The heart of the device is an Intel 4004 CPU, which is a 
four-bit parallel microcomputer in a single MOS integrated 
circuit chip. The program resides in up to six Intel 1702A 
programmable ROM (PROM) chips. Each PROM contains 
256 8-bit bytes. These PROM chips are mounted in sockets 
and can be removed, erased and rewritten in a few minutes. 

Figure 5-Microcomputer and I/O configuration 

To Main 
Com ....... 

The read/write memory consists of 320 four-bit bytes 
packaged in four Intel 4002 RAM chips. These Intel chips 
are part of Intel's MCS-4 Micro Computer Set, and are easily 
connected. Both the RAM and PROM chips have I/O ports 
that are addressed like memory, hut they are accessed with 
different CPU instructions. 

The input devices are multiplexed into one input port. A 
four-bit address on another port selects the particular four 
bits of input to be read. The output devices (two serial trans
mitters) are loaded via two ports and controlled via another 
port. 

The general configuration is such that Intel 4001 RO:M 
chips can be substituted for the PROM chips, if the produc
tion quantity warrants the initial cost of cutting the ROM 
masks. 

The total cost of all parts is about $1200 per unit in single 
quantities. We intend to find a firm that will manufacture 
Line Processors and provide nation-wide maintenance. A 
firm is currently making them for us on a limited basis for 
$1800 each. 

CONCLUSIONS 

The Line Processor approach can effectively upgrade a 
peripheral device and amplify its capabilities with no actual 
modifications to the device itself. At the same time, it can 
optimize the interface between the device and the main com
puter complex, with respect to both hardware and software. 

In our application of NLS workstation development, the 
concept has been beneficia1. The alphanumeric terminal needs 
no modification, and the main computer does not need to 
know the true nature of the workstation. In other applica
tions, new peripherals could conceivably be interfaced to 
existing software without modifications to either. 

A Line Processor coupled with a satisfactory alphanumeric 
video display terminal results in an NLS workstation that is 
as effective as a high speed general CRT workstation, except 
for one respect: the inability to arbitrarily move text on the 
screen without rmuiting it. But, inteiiigent display manipu
lation algorithms reduce this problem to the point that users 
hardly realize that it exists.2 



264 National Computer Conference, 1974 

Other applications for the Line Processor concept are ap
pearing. A microcomputer-based device is being developed at 
the University of California, Santa Barbara, to make a 
PLATO IV terminal appear to be a general purpose ASCII 
terminal for ARPA Network Use. At ARC, we are consider
ing using a simplified Line Processor to make a line printer 
with a difficult interface appear to be a serial ASCII device, 
to avoid purchasing an expensive controller. 

A prototype Line Processor coupled to a Delta Data 5200 
display terminal has been in operation at ARC and over the 
ARPA Network since September 1973. The microprogram is 
1024 8-bit bytes long and operates with the main computer 
connection set from 300 to 2400 baud. More recent versions 
operate at 4800 baud with either a Delta 5200 terminal or a 
Hazeltine H2000 terminaL 

Weare currently expanding the microprogram to provide 
more services to the user. For example, we are providing a 
hard copy output connection to the Line Processor to allow 
the user to obtain a printout at the same time he uses the 
workstation for unrelated matters. 

We expect the microcomputer equipment to become 
cheaper and faster. These developments will allow the Line 
Processor and similar devices to have more capabilities. It 
appears that such devices, if properly designed, could tend 
to reduce software problems and expenses. 

A growing trend, brought about by computer networks and 
interconnections of various kinds. is to divide workloads and 
define appropriate interfaces. With this method, the comput
ing takes place over several processors, hopefully each best 
suited to its workload. We have accomplished that with the 
Line Processor. We are in the infancy of a "distributed com
puting" era in which microcomputer devices such as the Line 
Processor win clearly have a growing role. 

ACKNOWLEDGMENTS 

The development of the Line Processor has been a team effort 
by several members of ARC. The hardware design and proto
type construction were done by ~fartin Hardy and Rodney 
Bondurant. Charles Irby and Kenneth Victor programmed 
NLS to use Line Processor workstations and modified our 
TENEX for the Input protocol. The design of the display 
manipulation protocol and the micro-programming were done 
by the author. Dr. Richard Watson oversaw the effort and 
was a primary source of useful criticisms during the writing 
of this paper. We all owe many thanks to Delta Data Sys
tems for extended use of a Delta .:")200 video display. demon
strator during development of the Line Processor. 

The work reported here is currently supported primarily by 
the .LA~dvanced Research Projects .L\.genc~r of the Department 
of Defense, and also by the Rome Air Development Center 
of the Air Force and by the Office of Naval Research. 

REFERENCES 

1. Engelhl\:rt; D, c., R W, WH.t.son and J, C, Nort.on, "The Aug
mented Knowledge Workshop," AFIPS Proceedings, National 
Computer Conference, June 1973, (SRI Catalog Item 14724). 

2. Irby, C. H., "Display Techniques for Interactive Text Manipula
tion," Proceedings of the National Computer Conference, May 1974, 
(SRI-ARC Catalog Item 20183). 

3. Roberts, L. G. and B. D. Wessler, The ARPA Network, Advanced 
Research Projects Agency, Information Processing Techniques, 
Washington D. C., May 1971, (SRI-ARC Catalog Item 7750). 

4. Bobrow, D. G., et al., "TENEX, A Paged Time Sharing System 
for the PDP-IO," presented at ACM Symposium on Operating 
Systems Principles, 18-20 October, 1971, Bolt Beranek and Newman 
Inc., 15 August 1971, (SRI-ARC Catalog Item 7736). 

5. English, W. K., D. C. Engelbart and M. A. Berman, "Display
Selection Techniques for Text Manipulation," IEEE Transactions 
on Human Factors in Electronics, Vol. HFE-8, Number 1, pp. 5-15 
March 1967, (SRI-ARC Catalog Item 9694). 

6. Engelbart, D. C., "Design Considerations for Knowledge Workshop 
Terminals," AFIPS Proceedings, National Computer Conference, 
June 1973, (SRI-ARC Catalog Item 14851). 

7. Engelbart, D. C. and W. K. English, "A Research Center for Aug
menting Human Intellect," AFIPS Conference Proceedings, Vol. 33, 
1968, (SRI-ARC Catalog Item 3954) 

8. Hardy, M. E., "Micro Processor Technology in the Design of 
Terminal Systems," Proceedings of the IEEE COMPCON, 1974, 
(SRI-ARC Catalog Item 20185). 

APPENDIX: LINE PROCESSOR PROTOCOL AND 
OPERATIO~ 

The Display Manipulation protocol calls for the trans
mission of unescorted characters and short command strings. 
Command strings begin with an escape character: we use 34 
octaL Characters within the command strings are seven bit 
ASCII printable characters. Sending printable characters, 
where possible, rather than control characters makes debug
ging and troubleshooting much less painfuL 

The Line Processor operates in one of hvo modes. One 
mode simulates a teletypewriter. The other is the normal 
display mode that allows NLS display manipulation. 

The mode is specified by mode set commands from the 
main computer. The Line Processor responds to the "enter 
display mode" command (also called the interrogate com
mand) by sending a string in protocol format that informs 
the main computer of the display screen size, length of time 
it takes to delete a line and the baud rate; the last two param
eters are important for timing considerations. 

To make the displays function correctly, it is necessary to 
send the proper number of "padding" or null characters 
while the display performs involved functions. like delete 
line and clear screen. 

The microcomputer is programmed to send the padding 
characters, but it has limited buffer space and must receive 
pads from the main computer as well. It would be fine to have 
the main computer refrain from sending anything in most 
applications, but our users will frequently be connected by 
way of a computer network. In such an environment, the 
only way to ensure the proper timing is to send the appro
priate number of padding characters. 

The number of padding characters that need to be sent 
depends on the length of time it takes the display to perform 
the function and the baud rate going into the Line Processor. 
So, we have installed a baud rate switch on the Line Pro
cessor that can be read by the microcomputer. 



Line Processor-A Device for Amplification of Display Terminal Capabilities for Text Manipulation 265 

Hence, when responding to the "enter display mode" 
command, the microcomputer includes the baud rate setting 
along with the other terminal parameters. From the baud 
rate and the delete time parameter, the applications program 
can compute the number of pads to be sent. 
Display Manipulation Protocol Primitives 

POSITION CURSOR (X, Y) 
This command positions the cursor to the designated 
spot and stops the mouse tracking process. Any subse
quent unescorted characters are written on the display 
starting at the cursor position. 

RESUME TRACKING 
This command is used after positioning the cursor and 
writing a string, to start the mouse tracking process 
again. Note: A string is written by sending: POSITION 
CURSOR; (the string); RESUME TRACKING. 

DELETE LI~E 
The line at which the cursor has been positioned, IS 

deleted. 
INSERT LINE 

A new line is inserted after the line on which the cursor 
was positioned. 

CLEAR SCREEN 
The entire screen is cleared. 

BEGIN STANDOUT MODE 
All text written on the screen subsequent to this com
mand will be in "standout mode." 

EXD STANDOUT MODE 
This returns the text writing mode to normal. 

RESET 
This command resets the line processor to normal mode 
and clears the screen. 

WRITE A STRING OF BLANKS (1'\ = number of blanks) 
I t is useful to be able to clear a short area of the screen 
with this command. 

PUSH BUG SELECTION (X, Y) 
The coordinates for the bug selection mark are pushed 
on a stack, and the indicated character is marked. 

POP BUG SELECTION 
The top entry on the bug selection stack is removed and 
the mark at the corresponding screen position is re
moved. 

SPECIFY TTY-SIMULATION WINDOW (Yl, Y2) 
Yl and Y2 specify the top and bottom line for the scroll
ing ,vindow. Any subsequent TTY-type output will be 
scrolled in this window. 

ENTER DISPLAY MODE (INTERROGATE) 
ENTER NORMAL MODE 





The GRAFIX I image processing system 

by ARNOLD K. GRIFFITH 

Information International Inc. 
Los Angeles, California 

INTRODUCTION 

The GRAFIX I system was developed in the late 1960's 
as a fast flexible systcm for processing and analyzing filmed 
images, particularly of material "vhich is essentially binary 
(black and white), such as printed text, line drawings, certain 
biomedical images, fingerprints, etc. It incorporates a large 
scale general purpose time shared computer to provide the 
facilities for the efficient development of algorithms necessary 
to perform various image processing and analysis tasks. In 
addition it contains a fast, high resolution flying-spot film 
scanner and a powerful and rather general slave processor 
(the binary image processor, or BIP) which provide data 
collection and manipulation facilities adequate to perform 
image processing and analysis tasks at commercially practical 
speeds. So far it has been successfully employed in a com
mercial environment to the reading of printcd multifont text 
in complex page formats, and to the reading of Cyrillic, 
Greek and even handprinted text. At present we are consider
ing future applications beyond the area of optical character 
recognition, particularly the analysis of engineering drawings, 
as well as the automatic analysis and classification of finger
prints, the analysis of biomedical images such as chromo
somes, the analysis of x-ray images, and the analysis of 
satellite imagery data, among others. 

THE GRAFIX I SYSTEM 

The main processor in the GRAFIX I is a large, third 
generation computer with 144,000 words of 36-bit two micro
second memory. It operates under a standard time sharing 
monitor and incorporates the usual range of text editors, 
file handlers, assemblers and compilers. Most of the de
velopmental programming is carried out in TRIP, our own 
interactive on-line compiler language. In addition to the 
standard peripherals such as magnetic tape drives, "Micro
tape" drives, disk drive and a high speed line printer, the 
hardware includes a sonic data tablet for the input of graphi
cal information, a number of teletypes, and five terminals 
with full keyboards and CRT's which display both images 
and characters. 

The fiying spot scanner reads rectangular rasters of density 
values from filmed images at a rate of up to 500 points per 

267 

millisecond. The number and spacing of points in both axes, 
the position and orientation of the scan raster, the dwell 
time of each point, and the spot size are all under program 
control. Points on an image are specified in a 15-bit per-axis 
coordinate system which allows a very precise angular and 
incremental control of the position of the raster scan relative 
to the image. The scanner has extremely high positional 
linearity and repeatability, and resolves about 6000 points 
across the CRT face. Density values are measured on a 
range of 0 to 2.5 (100 percent to 0.5 percent transmission) 
on a logarithmic scale of 512 values. 

The slave processor, the Binary Image Processor (BIP), 
performs a ",ride variety of processes and measurements on 
images at core memory limited speeds. It will be described 
in detail in the next section. 

THE BINARY IMAGE PROCESSOR 

The GRAFIX I system is designed principally to operate 
on "binary images," that is, images which are essentially 
black or white, such as engineering drawings, printed pages, 
fingerprints or waveform photographs; or images such as 
bubble, chamber, cell, or chromosome photographs, which for 
many purposes may be reduced to black and white images 
without significant loss of information. These images are 
represented in the GRAFIX I system as arrays of zero- and 
one-bits in the 36 bit words of the system's main memory. 
They are manipulated by a special high speed slave processor, 
the binary image processor (BIP), which has direct access 
to any part of the main computer memory. 

Before discussing the capabilities of the BIP in detail, I 
shall present a simple paradigm of what is meant by binary 
image processing in the present sense: Consider a set of n 
sequential 36-bit words of core memory and let the bits of 
the ith word be indexed by j from 1 to 36, so that the value 
of the jth bit of the ith word is represented by ai,i. These 
values form a matrix I ai,i I i = 1 ... n; j = 1 ... 36 of ones 
and zeroes. Consider two such matrices I ai,j I and I bi,j I, 
and consider the matrix I Ci,j I where: 

for some function F. Clearly this forms a binary image with 



268 National Computer Conference, 1974 

the same dimensions as those represented by I ai.i I and 
I bi •i I, provided of course that some ad hoc value is assigned 
to such values as b-l,-l, etc. Considered as a transformation 
or combination of images, the production of this third image 
from the first two is local in the sense that the value of some 
point in the result image is dependent only on the corre
sponding point in the first image and the "local neighbor
hood" (of radius 1) of the point in the second image. Now 
if this transformation were purely local in the sense of a 
point in the result image being a function only of the values 
of the image at the corresponding points (i.e. if Ci.i= 
F(ai.h bi •i », then it would be quite uninteresting, since 
actually there would be only sixteen possible functions corre
sponding to "or-ing," "and-ing," negating the first image 
irrespective of the second, etc. However, the inclusion of 
neighborhood bits of the second image as arguments to a 
possible image processing function allows a total of 21024 

possible functions 1 
The BIP is in most respects more general than the para

digm just described. It has addressing features which allow 
either image to occupy only a predetermined subset of 
contiguous bits within an image; and it is relatively easily 
programmed to allow the image height to be greater than 
36 bits. The major respect in which the BIP is not as general 
as the paradigm discussed is in that there are only 33 bits 
in the control field specifying the function, and hence only 
233 possible functions. The set of functions is by no means an 
arbitrary subset of all possible functions. It was in fact 
chosen on the basis of a rather extensive theory and practical 
considerations worked out by Grayl-3 and others, for the 
purpose of providing a rich variety of functions, as 'will be 
seen later in this section. 

A second major area of BIP function not mentioned by the 
paradigm is that of global measurements. In the process of 
generating a result image the BIP can compute the area, i.e., 
number of ones; together ",ith the number of configurations 
of subsets of the result image of the form Ci.h Ci+1.h Ci,i+l, 

Ci+l.i+l (i.e., subsquares of the result image) in which all 
four bits are one, in which three bits are one, in which non
diagonal pairs of bits are one, and in which only one bit is a 
one. From these values and others, again according to the 
theory worked out by Gray, the Euler number (number of 
objects minus the number of holes), the approximate line 
width, as well as a number of other global features, such as 
average slant of lines, may be calculated. A final global 
measurement of this sort is the area of the "exclusive-or" of 
two images, i.e., the area in which they are not alike, which 
is a measure of similarity. A single pass over a pair of images 
not only computes this area of dissimilarity but also simul
taneously computes eight similar values corresponding to 
one of the images being displaced relative to the other by 
one unit in each of eight possible directions. 

An additional feature of the BIP is a limited capability 
to work with arrays of integral values, not just one or zero. 
The two images to be processed consist of six bit bytes, 
packed six per word, and would produce a. binary image 
with ones ,vhere one of the corresponding pair of v"'alues 
exceeds the other, and zeroes else\vhere. If one image is an 

array of constant values, then this process amounts to 
thresholding the other image at that value. Having one 
image of smoothly varying value allows position dependent 
thresholding. 

The purpose of the BIP is to serve as a special purpose 
slave processor to perform inner loop tasks in image processing 
operations at high speeds (40 MHz), leaving system control, 
decision making tasks, etc., to the general purpose computer 
operating the system. The BIP operates at speeds of up to 
1000 times that possible on a standard high speed computer. 
Its use of modern integrated circuits and pipeline con
struction allows it to run at speeds of 25 nanoseconds per 
image point. A process operating on an array image of 36 
bits high runs at memory limited speeds even in a one micro
second memory. The speed of complex processes is pro
portional to the area of the image and to the number of 
passes required to perform it. 

MAN COMPUTER SYMBIOSIS IN THE READING 
OF COMPLEX PRINTED PAGES 

Recently the GRAFIX I has been employed to perform 
a number of major commercial text conversion (OCR) tasks. 
It has been our experience that "real-world" text conversion 
does not amount simply to the character by character or 
word by word recognition of printed text. Rather it has in
cluded the necessity of recognizing certain typographical 
features of the pages such as the location of text relative to 
illustrations or the structure of text within tables. In addition 
such tasks often require that the recognized text be broken 
into fields according to content and sometimes suitably 
formatted in instances when the converted text is subse
quently manipulated by an information retrieval system, or 
output and reformatted by a computer typesetting device. 
Generally it is beyond the state of the art in artificial intelli
gence to perform all of these tasks automatically. 

We have structured our text conversion systems to perform 
the various format recognition, character recognition and 
output formatting tasks as automatically as possible. These 
text processing systems, however, are programmed to be 
"aware" of their own limitations, and to ask for human 
help when unable to cope with the complexities of the data 
with which they are presented. We have found this technique 
of "man computer symbiosis" to be an extremely powerful 
one, providing as it does an efficient division of labor between 
man and computer. 

Conversion by GRAFIX I of technical manuals affords a 
good illustration of a text conversion process in which 
typographical features of the text must be taken into account. 
Figure 1 illustrates a typical page which the system con
verted, in its entirety, in a recent procurement benchmark 
test. Information critical to successful reading of the page 
included the location of the heading and page numbers at 
the top and bottom left, the locations of the various rules 
of the table at the top of the page, the locations of the tab 
stops in the three passages of tabulated materiai in the 
running text columns, and the locations of the portions of 



The GRAFIX I Image Processing System 269 

Section XI NAVAIR 10-10AG-21 
Paragraphs 11-8 to 11-9 

TABLE XIII. VERTICAL GYRO TROUBLESHOOTING (Cont) 

Step Trouble Probable Cause Remedy 

8 Rundown time is Defective gyro motor Check motor windings and circuit 
Less Than Mini- leads. Replace defective motor or 
mum Value. repair wiring. 

Incorrect end play in motor Check and adjust end play. 
shaft 

Unbalanced flywheel Check balance oi wheel and rotor as-
sembly; balance flywheel. 

Damaged motor shaft bearings Check bearings; replace motor. 

AC Meter 
Selector 

PRECESSION MODE 
SELECTOR: 

"PITCH" 

"ROLL" 

NU 
ND 

RWU 
RWO 

AC 
Meter 

12.6 
12.6 

12.6 
12.6 

d. Return the following test switches to the positions 
indicated: 

Switch 

AC METER SELECTOR 

MODE SELECTOR 

PRECESSION MODE SELECTOR 

DC METER SELECTOR 

Position 

115V ADJ. 

AUTO 

OFF 

PITCH GYRO 
OUTPUT 

11-8. PITCH OUTPUT TEST. To check the pitch 
output voltage of the gyro for the nose up and nose 
down attitudes, proceed as follows: 

a. Set the DC METER SELECTOR switch to "PITCH" 
position. 

b. Rotate the gyro mounting plate until the oscillator 
connector of the gyro faces due north .. 

c. Adjust angular setting dial until the dc meter in
dicates null voltage (minimum). The gyro mounting 
plate must not be out of level by more than 30 min
utes. 

d. Utilizing the platform angle adjusting Qlock and 
a11gular setting dial, displace t.lte g'Jro to lite mdicated 
attitudes, and check voltage outputs, as follows: 

DC Voltmeter Tolerance 
(volts dc) 

Platform Angular 
Displacement Minimum Maximum 

Null output N/A 100 mv 

30 minutes 2.0 4.5 

1 degree 4.0 9.0 

2 degrees 8.0 18.0 

3 degrees 12.0 27.0 

5 degrees 12.0 35.0 

e. Rotate gyro mounting plate until the oscillator 
connector of the gyro faces in a south direction. 

f. Repeat steps c. and d. 

g. Setting the gyro in an NU or RWD direction shall 
. indicate a positive output voltage. Setting the gyro in 
an ND or RWU direction shall indicate a negative out
put voltage. 

h. Re-null the gyro after each set of voltage output 
readings. 

i. Changing the gyro angle settings from NU to NO 
or from RWU to RWO is accomplished by rotatiilg the 
gyro 180 degrees. 

11-9. ROLL OUTPUT TEST. To check the output 
voltage of the gyro for the right wing up and rightwing 
down attitudes, proceed as follows: 

a. Set DC METER SELECTOR switch to "ROLL" 
position. 

b. Rotate gyro mounting plate until the oscillator 
connector of the gyro faces in a west direction. 

c. Repeat procedure outii.l1ed in. paragraph 11-8
7 

steps c. and d. 

Figure 1 



270 National Computer Conference, 1974 

the running text columns consisting of "pure" text. The 
information was entered by a human operator using a data 
tablet, together ·with a program specifically designed to enter 
such data. 

A second example of human-computer symbiosis is the 
"reject processing" procedure employed in all our optical 
character recognition applications. The character recognition 
system is so programmed that it either decides upon the 
identity of an individual character, or decides that it is unable 
to recognize it. In the latter case, the image of the character 
is stored within the output stream of recognized text. Im
mediately after a batch of pages has been processed by the 
recognition procedure it may be run through a second off-line 
program in which each unidentified ("rejected") image is 
displayed on a CRT screen, together with the line of recog
nized text characters containing it, for a human operator to 
identify by typing the appropriate character at the keyboard. 
The human recognition is performed both on the basis of 
the appearance of the character image and on the basis of 
the textual context. Typically such reject processing can be 
performed by an operator with a few days' training at a rate 
of 3000 characters per hour. 

An example of man-computer symbiosis involving the 
formatting and fielding of text after reading is provided by 
our conversion of a large number of U.S. patents into a form 
suitable for interrogation by an information retrieval system. 
Patents consist of up to 35 different types of items, including 
patent number, date, assignee, summary, claims, etc. Each 
had to be separated and identified and in many instances 
specially formatted. This was accomplished by an interactive 
heuristic program operated by a human seated at a display 
console. Each item was automatically searched for on the 
basis of keywords and phrases which were not totally reliable 
due to the wide variations in structure and phrasing of the 
component parts, and the presence or absence of particular 
parts within an individual patent. After an attempt was 
made to find a particular item, the item, together with a 
large portion of the surrounding text was displayed on the 
screen with pointers around the item in question. At this 
point the operator could simply indicate approval by typing 
a control character, or could reposition the pointers in case 
the finding heuristics had failed. 

The exploitation of the technique of man-computer symbi
osis is a direct consequence of our use of a full sized computer 
with time sharing and extensive system software. The de
velopment of the last application, for example, took only 
three man months of programming. Besides facilitating the 
development of these procedures, the full scale system was 
necessary for their post-development implementation. 

HEURISTICS 

It should not be inferred from the previous section that 
the only way "intelligent" behavior is manifested by the 
various GRAFIX IOCR programs is by receiving the 
appropriate instructions from a human operator. On the 

contrary, many of the various OCR sub-processes operate 
autonomously, performing quite intricate analyses with no 
provision whatever for human interaction and prompting. 
These procedures are carried out by elaborate heuristic pro
grams developed by the staff which are constantly undergoing 
further development and refinement. The use of extensive 
heuristic software was a conscious part of the original design 
of GRAFIX I; and the rapid design and development of 
such programs is made possible by the use of a time shared 
computer with extensive software support. 

An example of our use of heuristic procedures is the hand
printed character recognizer currently under development 
by the present author. Most handprinted character recog
nition procedures currently described in the literature4- 7 tend 
to be more "algorithmic" than heuristic: Typically a set of 
numerical "features" or some sort of formal description is 
derived from a character image by an analysis which performs 
a large amount of calculation independently of the nature of 
the character image. This feature vector, or formal descrip
tion, is then given to a decision algorithm which decides on 
the identity of the character (or possibly rejects it as unrecog
nizable) by means of a linear decision procedure or a feature 
vector table lookup process, or a formal linguistic analysis 
in the case of a formal description. Such procedures often 
have the disadvantage, when applied to data as variable as 
handprinted characters, to occasionally yield wildly unpre
dictable results. In addition, attempts to modify such 
algorithms to perform better in certain respects often lead 
to a decrease in performance in other respects. (This, and 
other arguments are particularly applicable to the linear 
decision or "perceptron" technique, see Minsky and Papert.8) 
Although a number of systems organized along these lines 
have produced respectable results, the present system, in an 
attempt to circumvent some of these difficulties, has been 
designed and organized along purely heuristic lines. In par
ticular it is composed of a large number of simple, carefully 
designed, and well-understood sub-tests. These are arranged 
into a hierarchy in such a fashion that tests at various levels 
are usually only performed when relevant or "necessary," 
and so that the whole structure may be quite simply and 
selectively modified to improve in a particular respect without 
impairing its performance in other respects. On one sample 
of about 13,000 mixed alphanumeric characters (26 letters 
and 10 numerals), printed by untrained clerks, it achieved 
a reject rate (unable to recognize) of around 4 percent, 
and a substitution rate (misidentification) of around 0.3 
percent.9 

Numerous other examples of heuristic procedures are em
bodied in the GRAFIX I machine printed text reading 
system. Two examples discussed in the previous section, 
although involving human interaction, include quite elaborate 
heuristics to perform those portions of their respective tasks 
that are performed independently of the human operator. 
The procedure employed in the technical manual conversion 
process to read text in tabular form, after receiving infor
mation from a human operator as to the location of the rules 
in the table; must re-find these rules more exactly on the 



filmed image, and employs a rather elaborate line and 
character finding procedure to properly read the material 
within each ruled box. In the case of the fielding and for
matting of patents, a number of heuristics are used to 
tentatively locate each item in the converted patent text 
before the human operator is consulted. In most cases the 
heuristics produced a correct result; and the operator's only 
task was to indicate correctness. A number of other procedures 
from the basic OCR system, such as "page finding," "line 
finding" and character finding similarly rely heavily on 
heuristics. Some of these procedures will be discussed in the 
next section in connection with the concept of heterarchical 
organization. 

HETERARCHY AND HIERARCHY 

The OCR system currently implemented on the GRAFIX I 
system is principally hierarchical in structure. The first step 
in processing a frame of text consists of finding the outline 
of the page image on the film. The text on a page is considered 
to be composed of a number of "fields" consisting of one or 
a number of lines of text, a title, an entry in a piece of tabu
lated material, etc. Information about the fields of a par
ticular page is supplied from a data file of "descriptors" 
entered either manually or with a data tablet. Each field 
is read line by line and each line is read character by char
acter. Each line is first found, then read; and within a line 
each character is first found and then read. 

The procedure just described is a prototypical hierarchy, 
where each step of the processing depends on the accuracy of 
decisions of the previous step. For example once a field is 
found, it is assumed that the finding procedure is correct, 
and the success or the failure of the finding and reading of 
the individual lines is dependent on the accuracy of the field 
finding data; No attempt is currently made to re-find the 
field if attempts to find the constituent lines within it meet 
with failure. 

Recent research in the analysis of complex scenes (e.g., 
[10,11]) has explored a more general approach than strictly 
hierarchical organization in dealing with real world or com
plex images. Clearly it is an essential limitation for infor
mation pass from level to level in one direction only, as for 
example in the case of scene analysis, from local edge de
tection to edge line and contour detection, to detection of 
simple forms, to detection and recognition of complex objects. 
In the case of optical character recognition of text on elabo
rately structured pages, this limitation might take the form, 
as previously mentioned, of making a "one-shot" decision 
as to the location of a field of text and then forcing the line 
and character finder to accept this 'without complaint, 'with
out letting a failure in line finding pass back to the field 
finder, if necessary, to force a re-find of the field. Some of 
these limitations are circumvented by a more general ap
proach to program organization, termed "heterarchical," 
which allows a two way interaction between levels to occur. 
In effect the program interacts 'with the data at hand instead 

The GRAFIX I Image Processing System 271 

of just analyzing it step by step to higher levels of abstraction 
or in greater levels of detail. 

Heterarchical program organization has been employed to 
advantage in a number of sub-pro_cesses of the present 
GRAFIX IOCR system: 

(1) The image of a line of text is scanned from left to right 
in a series of "segments" of about seven characters 
in length. Given the proper location of the first seg
ment of a line, the approximate locations of subsequent 
segments for that line may be inferred using infor
mation as to the orientation of the page and the 
orientation of other lines of text on the page. However 
lines of text are sometimes not exactly straight nor 
are they always oriented exactly parallel to each other. 
Furthermore, in the case of the first line on a page, 
the only information is the orientation of the borders 
of the page, which is a poor predictor of the orientation 
of the lines of text on it. Consequently it is generally 
impossible to scan a line of text segment by segment 
using only global orientation information and the 
correct location of the left end without risking cutting 
off the tops or bottoms of characters within certain 
segments. Our approach to this problem is as follows: 
In the course of recognizing the characters from a 
particular segment, the positions of the baselines of 
these characters relative to the bottom of the segment 
are computed for each character recognized. The base
line is a function not of, e.g., the bottom of the char
acter image, but is computed after recognition on the 
basis of a fiducial line within the character (often at 
the bottom, but not always) whose location is de
pendent on the identity of the character. The differ
ence between some predetermined constant and this 
baseline-to-segment-bottom distance is then fed back 
to the scanner and used to define the exact vertical 
location of the next scan segment. 

(2) The process of reducing a gray level image as obtained 
from the scanner into a binary image to present to 
the recognition procedure is accomplished by thresh
olding the gray level image at some clip level. Because 
of blurring and other effects, the appearance of the 
resulting binary image, and hence the recognizability 
of the characters it contains, is affected by this clip 
level. Due to variabilities of the image resulting from 
such factors as variations in the reflectance of the 
ink and paper of the original document, it is in general 
impossible to choose a single threshold which ,vill be 
appropriate for an entire page image. Our approach 
has been to initially threshold a new image at the same 
threshold which was successful for the preceding seg
ment. In the course of subsequent analysis, the ap
parent linewidth of the characters in the segment is 
calculated. If the width is outside certain tolerances, 
no further recognition analysis is performed on the 
binary image of the segment. Instead the information 
regarding the degree to which linewidth is outside 



272 National Computer Conference, 1974 

tolerances is fed back to the thresholding procedure, 
and the gray level image of the segment is re-thresh
olded accordingly. This procedure may be repeated 
several times. 

(3) In certain instances a line of text may be entirely un
recognizable due to being in an unexpected font, or 
being systematically degraded along its entire length. 
Such situations are generally impossible to predict a 
priori; but when they are encountered it would be a 
waste of effort to apply the recognition process to 
every character in the line. This is especially the case 
because with unrecognizable material, the recognition 
procedure has "tried everything" before it gives up 
and may expend ten times as much effort on a rejected 
character as on a recognized one. To overcome this 
problem the GRAFIX IOCR system has a provision 
whereby if a certain number of rejects is encountered 
in a line, the line is re-read using a different set of 
character masks, or is abandoned if no other sets of 
masks remain to be tried. To see how this procedure 
may be considered to be heterarchically organized, 
consider the task of the recognition of all the char
acters in a particular line of text. The restart of this 
task with a new "font," or the abandonment of the 
task if all fonts have been tried, is essentially a higher 
level decision based on information (the failure of the 
lower level process of recognition) being passed up 
to it, which in turn affects other lower level processes 
(the further recognition of characters ",;thin the line). 

FUTURE DIRECTIONS 

The G RAFIX I was conceived as an image processing 
system of considerable versatility. Its application to date 
principally as an optical character recognition (OCR) device 
has been prompted by the commercial promise of this area. 
Having realized a substantial portion of the potential of the 
GRAFIX I system in OCR, we are considering further appli
cations, particularly in the areas of the processing of es
sentially binary images. An area in which we hope to become 
involved in the near future is the intelligent reading of 
engineering drawings and technical diagrams. Recent work 
of the present author10-12 and others at MIT13.14 as well as 
at Stanford,15 SRI and the University of Edinburgh in the 
analysis of scenes consisting of prismatic solids, appear to be 
adaptable to the problem of efficiently extracting the com
ponent lines from these drawings so as to represent them in 
a reasonably compact and up datable form. Other possible 
areas include: biomedical image processing such as cell count
ing, chrornoRornA a.nl'{,]ys1Sj etc.; high volume metallurgical 

image processing such as fibre measurement, inclusion counts, 
grain size, etc. ; automatic inspection of x-ray photographs and 
photographs of manufactured parts for defect analysis; the 
analysis of fingerprints; and others. 

ACKNOWLEDGMENTS 

The author is particularly indebted to Stephen Gray for aid 
in the preparation of this paper. In addition the following, 
among others, have significantly contributed to the design 
and implementation of the GRAFIX I: Russell Ham, Dick 
Martin, Dan Forsyth, and Ed Fredkin. 

REFERENCES 

1. Gray, S. B., Technical Description of The GRAFIX I Image Pro
cessing System, Document 90340, Information International Inc., 
Los Angeles, Calif. 1971. 

2. Gray, S. B., "Local Properties of Binary Images in Two Dimen
sions," IEEE Transactions on Computers, May 1971. 

3. Gray, S. B., The Binary Image Processor and its Applications, 
Document 90365, Information International Inc., Los Angeles, 
Calif., January 1972. 

4. Rholand, W. S., P. J. TragIia, and P. J. Hurley, "The Design of an 
OCR System for Reading Handwritten Numerals," Proceedings of 
the Fall Joint Computer Conference, 1968. 

5. Casky, D. L., and C. L. Coates, Machine Recognition of Handprinted 
Characters, Technical Report 126, Information System Research 
Laboratory, Electronics Research Center, The University of Texas, 
Austin, May 1972. 

6. Munson, J. H., "Experiments in the Recognition of Hand Printed 
Text: Part I-Character Recognition," Proceedings of the Fall Joint 
Computer Conference, 1968. 

7. Katsuragi, S., H. Genchi, K. Mori, and S. Watanabe, "Recognition 
of Handwritten Numerals Using Decision Graph," Proceedings of 
the First International Joint Conference on Artificial Intelligence, 
May 1969. 

8. Minsky, M. L. and S. Papert, Perceptrons, MIT Press 1968. 
9. Griffith, A. K., Preliminary Results of the Handprint Recognition 

Verifier's Performance on RecenUy Acquired Data, Information 
International Technical Memo 197, November 1973. 

10. Griffith, A. K, "Edge detection in Simple Scenes using a Priori 
Information," IEEE Computer Transactions, April 1973. 

11. Griffith, A. K, Computer Recognition of Prismatic Solids, M.LT. 
Project MAC Technical Report MAC-TR-73, August 1970. 

12. Griffith, A. K, "Mathematical Models for Automatic Line Detec
t.ion," JACM January 1973. 

13. Guzman, A., "Decomposition of a Visual Scene Into Three-Dimen
sional Bodies," Proceedings of the Fall Joint Computer Conference, 
1968. 

14. Minsky, M. and S. Papert, Progress Report 1968-1969, M.I.T. 
Project MAC Artificial Intelligence Memo 200, M.LT., Cambridge
Mass., 1970. 

15. Feldman, J. A., et al., "The Stanford Hand-Eye Project," Pro
ceedings of the First International Joint Conference on Artificial 
Intelligence, l\1ay 1!)69. 



Hardware j software design considerations for high speed jlow cost 
interactive graphic communication systems 

by THOMAS L. BOARDMAN, JR. 

University of Michigan 
Ann Arbor, Michigan 

A BIT OF HISTORY 

Graphics has been among the most exciting areas of the 
computer business since its dramatic appearance in the early 
1960's (Sketchpadl ). There have been many significant appli
cations throughout NASA and the aerospace industries, some 
large companies, and even some sponsored university projects. 
These have, however, utilized high cost graphic equipment, 
connected directly to large scale (CDC 6000 or IBM 
360/50+) mainframes often on a dedicated basis. The 
terminal and mainframe costs precluded general use in small 
companies or universities. 

In 1969, several terminal manufacturers made available 
CRT displays suitable for text and vector graphics for under 
$10,000. This marked the beginning of "poor man's" graphics. 
But these displays were originally designed and utilized as 
"fancy" teletypes. They were connected to mainframes at 
teletype (TTY) speeds and forced to use escape character 
switches allowing the TTY characters to represent both text 
and vector information. Mainframe hardware and software 
were designed around the inherently low speed, character 
(or at best line) at a time operation of teletype terminals. 
The system changes necessary to adequately support high 
speed, image-oriented terminals were understandably resisted. 

The timesharing system developers and suppliers justified 
this resistance, arguing that use of low cost graphic terminals 
would not really be effective until high speed communication 
(10 to 100 times teletype speeds) was possible. This, they 
further contended, was not feasible due to the high modem 
and phone communication costs. They therefore refused to 
support graphic terminals on any useful scale. Now, however, 
AT&T's recent decisions2 to offer more complete communi
cations services along with reduced modem costs brought 
on by the general circuit component trends, are making higher 
speed communication economically feasible. The time has 
come to provide timesharing systems which can support this 
high speed, graphics-oriented communication. 

INTRODUCTION 

The design considerations involved in connecting many low 
eost terminals to a single mainframe at speeds suitable for 

273 

interactive graphics are discussed in this paper.* There are 
several overriding design constraints. ** First, the dollar in
vestment in interface and multiplexing hardware should not 
exceed ten percent of the terminal costs. Second, the full 
range of graphics devices (incremental and electrostatic 
plotters, storage tube terminals, refresh terminals, sophisti
cated image processing systems, ... ) must be supported 
allowing high volume batch through highly interactive 
graphic use of the mainframe. Finally, and perhaps most 
important, the communication system must interface to 
existing operating systems with a minimum of mainframe 
software modification and minimum central processor (CPU) 
overhead. These constraints require a data concentrator 
minicomputer between the terminals and the mainframe. 

The major components of the data concentrator system 
are indicated in Figure 1. Component designs are detailed 
in the sections which follow. It must be emphasized that this 
paper deals with a communication system, NOT a time
sharing system. It discusses a means of transferring infor
mation at sufficient speed, with low enough cost and CPU 
overhead, to allow graphic terminals to communicate ef
fectively with an existing timesharing system. 

HOW FAST? 

The first sections of this paper contend that interactive 
graphics is not practical at teletype speeds (110 to 3 00 baud). 
A reasonable question follows: how fast is fast enough? The 
wide variety of graphics equipment, and applications, which 
a communication system must support makes this seem a 

* This paper is based on doctoral research conducted at Purdue U ni
versity between January, 1971 and August, 1973. It resulted in a func
tioning system which allows thirty high speed terminals (storage tube 
graphics, refresh type graphics, alphanumeric CRT, remote batch sta
tions, and remote computing systems) to communicate efficiently with a 
CDC 6500. Credit is due members of the Purdue L niversity Computing 
Center staff, particularly John Steele, Jim Roberts, and Ross Garmoe, 
and Dick Garrett of Mechanical Engineering at Purdue for their con
tributions to the design objectives and details of this communication 
system. 
** A more detailed rational for these constraints, as well as specific de
tails of the communication system components outlined herein, is in
cluded in the doctoral thesis which resulted from this work.4 



274 National Computer Conference, 1974 

REMOTE TERMINALS DATA CONCENTRATOR MINICOMPUTER 

REFRESH 

CRT'S 

STORAGE 

CRT'S 

REMOTE 

NETWORKS 

PRINTER

PLOTTERS 

BATCH 

STATIONS 

~ 9600-50K BAUD W COMMUNICATION 

Figure I-Data concentrator system components 

MAINFRAME CPU 

difficult question. Consideration of each major equipment
application combination yields a surprisingly consistent 
answer. 

Graphic images for output to storage-type terminals must 
naturally be produced and transmitted in an uncompressed 
form suitable for the vector generating circuits. Pictures 
such as labeled axes with a family of curves, perspective or 
orthographic parts layouts, or loading diagrams must be 
drawn in less than one second. If this drawing time is greater, 
the terminal user gets involved with the drawing process and 
loses track of the drawing's meaning and its place in his 
interactive design process.3 Such images require between 600 
and 1000 characters or a speed of up to 10,000 baud. (Baud 
is used as a synonym of bits per second in this paper although 
this is not technically correct for all communication schemes.) 

Real time motion, for applications in which it is handled 
by the mainframe, also requires high speed communication. 
Dynamic CPU output should allO\v five to ten inch per 
second, relatively smooth motion requiring 10,000 to 50,000 
baud depending on image complexity. In addition, the 10,000 
baud speed is necessary for tracking input devices such as 
joysticks, tablets, and optical scanners. 

Another requirement for usable interactive graphic systems 
is real time data acquisition capability. Multi-channel, ten 
bit resolution conversion systems also require from 10,000 
to 50,000 baud depending on sample rate. Finally this 10K 
to 50K rate is supported by the need to load programs into 
minicomputer-complimented terminals from mainframe disks 
and cross assemblers and compilers. At these speeds, typical 
programs can be loaded is less than five seconds. 

INTERFACE TO THE CPU 

The connection between the central processor and data 
concentrator is the most critical in the communication sys
tem. The design of this connection must meet t"\v'O severe 
constraints. First, it must support data rates of up to 150,000 
(thirty terminals at 5000 cps) characters per second with 
minimum CPU overhead. Second, it must do that consistent 
with the input/output structure of the operating system to 
minimize modifications to that system. 

The 150K data rate requires an entirely new approach to 
the CPU communication problem. Teletype timesharing 

systems generally support thirty-two to 128 terminals at 
ten to thirty characters per second generating less than three 
percent of this 150K rate. Such low speed systems can afford 
to interrupt the CPU on a character at a time basis or an 
interrupt per character time (time division multiplexing) 
basis, or a line at a time basis. Increasing the number of 
interrupts by a factor of forty with any of those schemes 
virtually swamps the CPU. 

It has been shown4 that more than eighty percent of CPU 
interrupt service time goes to suspending the in-execution 
program (storing the registers, rolling the program to disk 
rolling the interrupt processor in, ... ) and less than twent; 
percent to the actual data transfer. This suggests buffering 
transfers between the data concentrator and the mainframe 
into hundreds or perhaps thousands of character records 
before interrupting the CPU to transfer them. 

Usually the most efficient system code in large scale 
computers is that which communicates with disk units. 
This is because disk communication is at the heart of the 
operating system operation and program execution. For this 
reason, the data concentrator should simulate a disk unit 
for each terminal connected to it. This disk simulator ap
proach not only guarantees that all system and user code 
will be able to communicate with terminals with little or 
no system modification, but also insures that communication 
will be very efficient. The buffering requirement developed 
abov~ is automatically met since disk transfers are by 
phYSIcal sector (between 320 and 1024 bytes for different 
mainframes) . 

If the data concentrator is to exactly simulate a disk unit 
for each terminal device, the concentrator must naturally be 
connected to a mainframe channel. Data rates between one 
half and one million bytes per second, which are character
istic of these channels, require concentrator controller hard
ware (not software) be used to simulate the disk controllers. 
This hardware must also have direct memory access (DMA) 
t~ the data conce~trator in order to accommodate those very 
hIgh data rates wIthout swamping the minicomputer's CPU. 
Design of such controllers is a feasible but difficult task. In 
addition, the design is unique for each specific mainframe. 
~ut it is a well. s~ecified design problem since it must exactly 
SImulate an eXIstmg piece of hardware, the disk controller. 

The advantages of connecting directly to a mainframe 
channel are significant. First, this allows the kilobyte data 
rates necessary for driving dozens of 1000 to 5000 character 
per second (10,000 to 50,030 baud) graphics terminal devices. 
Second, the buffering into disk sector units decreases the 
CPU interrupt rate to less than required to drive an equiva
lent number of ten or thirty character per second terminals. 
Third, since mainframe disk controller specifications are 
constant for a given machine, any version of an operating 
system or any user program which can communicate with 
the disk units can communicate with the terminals. Summa
rizing, th~ disk si:nulator approach provides adequate speed 
for graphICS deVIces while reducing CPU communications 
overhe.ad and isolating the communications system from 
operatmg and programming syst~m modifications and up
dates. 



Hardware/Softvmre Design Considerations for High Speed/Low Cost Interactive Graphic Communication Systems 275 

INTERFACES TO THE TERMINALS 

Using a data concentrator minicomputer to make high 
speed graphics terminals look like disk units is nearly opti
mum from the mainframe CPU's point of view. The concen
trator's cost can easily be justified in terms of reduced CPU 
overhead. (A suitable minicomputer is twenty to fifty times 
less expensive than a mainframe). It does, however, represent 
a significant investment in terms of purchase cost, pro
gramming, and maintenance liability, and must therefore 
be justified in terms of the number of terminals it can 
support. 

The data concentrator can probably be justified if it costs 
less than ten percent of the value of all the terminals which 
it supports. Experience indicates that cost is between $40,000 
and $75,000 for the minicomputer, mainframe channel inter
face, and terminal channel hardware. As a result, the con
centrator must support between thirty and fifty low cost 
($5,000 to $40,000) terminals. This is within current com
puter capabilities although care must be taken to balance 
the hardware- and software-performed functions to insure 
neither the minicomputer's processor, channel, nor memory 
time are swamped. 

There are three major functions which must be performed 
by the terminal interface hardware. First, of course, it must 
transfer individual characters between data concentrator 
memory and the terminals. Since these are assumed to be 
remote terminals, transfer includes parallel to serial conver
sion meeting either synchronous or asynchronous communi
cation specifications. Second, since terminal data will likely 
be ANSClI, characters must be converted to the mainframe's 
character set. In addition, line termination specifications of 
the mainframe must be met so that data is formatted exactly 
as on a real disk unit. Finally, transmission error detection 
and correction must be handled to insure reliable, long 
distance, high speed communication. 

A critical requirement of the terminal interface hardware 
design is that all serialization specifications be variable under 
program control. These include character frame size (5 to 
8 bits) transmission speed (110 to 50,000 baud), number of 
stop bits (lor 2), parity type (even, odd, or none), and 
synchronous or asynchronous communication type. This 
allows any type of graphics device to be connected to the 
data Jines, and varied dynamically during system operation, 
with its specification information determined and docu
mented by the software. 

In order for the concentrator processor to be able to 
handle the very high terminal data rates, each channel must 
have direct memory access (DMA). The thirty to fifty 
independent DMA ports and their necessary memory ac
cessing, multiplexing, and control hardware make the termi
nal controller a very complex unit. It is, however, feasible 
to build into a suitably configured minicomputer for roughly 
$5000 to $10,000.5 

DMA for characters going out to the terminals is a straight
forward operation. A block of characters (perhaps a text 
line) is converted from the disk sector buffer into a temporary 
buffer area. Its initial address and a character count are 

passed to the channel, the characters are copied one by one 
to the terminal, and the processor is interrupted when the 
transfer is complete. For characters coming into the concen
trator, however, the transfer is not count but end-character 
controlled. If the processor must look at each character for 
the terminator(s), the value of DMA is lost. Therefore, each 
channel must contain special character detect hardware 
which interrupts the processor when any of at least three 
different characters or sequences of the three are found. 

The choice of three special characters is arbitrary but 
represents a minimum since the equivalents of RUBOUT, 
CARRIAGE RETURN, and INTERRUPT must be de
tectable for normal text input operations. Naturally, the 
character values should be variable under program control 
for each channel independently to insure maximum flexi
bility in terminals which can be supported. Allowing se
quences of these three instead of anyone simplifies meeting 
synchronous terminal specifications. 

In addition to data transfer, the hardware must be designed 
to perform table-lookup character conversion and error de
tection in a one-step operation. Again, the requirement that 
these be done \vith hardware comes from the lack of processor 
time required to process characters on an individual basis 
with software. General experience with serial phone line 
communication indicates that error rates are low enough 
(one error in 105) to eliminate the need for automatic error 
correction schemes. Simple character parity, exclusive-OR 
block, and cyclic redundancy check block error detection 
can be used to trigger retransmission of bad blocks. These 
schemes should be optionally selectable per channel 'with 
the conversion hardware checking or producing the validation 
information. 

A final note about terminal interface hardware is appropri
ate. For terminals located more than several miles from the 
data concentrator, modems are required with their associated 
disproportionately high (though decreasing) costs. For termi
nals inside this several mile radius, modems are not necessary. 
Line drivers can be built for less than $5 ° worth of hardware 
which operate on standard twisted pair wire at speeds up to 
50,000 baud with very low error rates. Where appropriate, 
these line drivers can significantly reduce the per terminal 
costs associated with line interfacing. 

DATA CONCENTRATOR SYSTEM SOFTWARE 

As described in the preceding sections, data transfer is 
handled in blocks by the hardware controllers. The block 
size for transfers \\"i.th the mainframe is determined by its 
disk sector size. Data within these sector blocks must be 
formatted to meet disk unit's line termination, end of record, 
and end of file specifications. The terminal block size should 
be variable by terminal channel to be most convenient for 
the devices connected to the concentrator. For standard 
alphanumeric communication, a block should contain one 
text line (i.e. terminated by a carriage return). For binary 
communication, a range of power-of-two sizes (32, 64, 128, 
256) is generally most convenient for buffer allocation 
schemes. 



276 National Computer Conference, 1974 

TO 

REMOTE 

TERMINALS : DIRECT 

CONNECTION 

TO CPU 

CHANNEL 

Figure 2-Data concentrator internal component relationships 

The basic software communication task, therefore, involves 
accepting a block of data from one controller, validating and 
reformatting it into another block, and requesting another 
controller to transfer the new block to the next machine. 
This type of software can operate in either of two very 
different ways. Either way, the software operation is diVided 
into tasks which are initiated by the completion of one 
hardware function (i.e. a block of data has been read into 
memory) and terminated by the initiation of the next hard
ware function (i.e. convert and validate the data block). 
The difference lies in whether the tasks have queues of 
terminal numbers which are waiting for that task or whether 
the terminals have queues of tasks. The latter has proven 
superior as it facilitates priority schemes for resource allo
cation during heavy loading for the higher data rate 
terminals. 

Each physical terminal device (represented as a logical 
disk unit to the mainframe) must have associated with it a 
terminal control block (TCB) in the concentrator. This 
memory area (thirty-two sixteen bit words is likely adequate) 
contains the terminal dependent information such as special 
character codes and character conversion table address, and 
internal pointers into the disk sector blocks. 

In addition to these TCB's, each communication line must 
have a similar site control block (SCB). This SCB contains 
the channel dependent information such as serialization 
specifications, error detection scheme, and pointers to the 
data blocks. 

The mapping between terminal and site control blocks 
need not be in one-to-one correspondence. Many terminals 
(TCB's) may be multiplexed to a single line (SCB) via 
software, eliminating expensive multiplexing hardware while 
permitting maximum utilization of communication lines. 
Figure 2 shows the relationship between TCB's, SCB's, data 
blocks and the hardware controllers. 

The dedication of two words in each control block provides 
an optimum means of queueing. The interrupt code, triggered 
by the completion uf each hardware fUllctiuIl (which separate 
software tasks as described above) , need only store the 
address of the next task processor in one of these words. 
The processor monitor loop continually scans these queue 
words for each TCB and SCB. Upon finding one non-zero 
(indicating a request), the monitor loads the control block's 
initial address into a designated register and branches to the 

task processor. The processor, using the control block infor
mation as the parameters to a pseudo finite state machine, 
executes the task, perhaps modifies the control block, zeroes 
the requesting queue word, initiates the next hardware 
operation, and returns to the monitor loop. This scheme 
permits processor time for each terminal to be monitored 
and allows individual terminals or lines to be given priority. 
It also allows task processors to be added with virtually no 
modification to existing code. 

GRAPHICS SUPPORT SYSTEM 

The intent of the hardware controllers and software com
munication system is, of course, to support graphic terminals. 
Establishing a very high speed data path to each terminal 
with minimum mainframe CPU overhead is essential but 
not sufficient. To economically support large numbers of 
graphics devices, the CPU must be freed not only of com
munication overhead, but also of real-time graphic image 
manipulation. This can be done by moving image processing 
tasks into the minicomputers which accompany refresh-type 
terminals or into the data concentrator for storage-type 
terminals. 

In order for programs to use processing capabilities other 
than of the mainframe CPU, the data concentrator must 
provide a communication path for passing subroutine calling 
parameters. This allows programs to be written as if for one 
machine but compiled into both the mainframe and the 
minicomputer. Naturally this is most effective if a single 
higher level language (i.e. FORTRAN) can be used requiring 
compilers for the minicomputer terminals, the concentrator, 
and the CPU. 

Intermachine program execution is not essential, of course, 
but a minimum set of dynamic image manipulation capa
bilities should be handled outside the mainframe CPU. These 
include translation, rotation, and scaling of two dimensional 
images, the ability to read the location of any input device 
connected to the terminal, and dynamic display of a tracking 
cross or cursor which follows each input device. All should 
be initiated with a minimum set of control characters from 
the mainframe or from within the minicomputer. 

Image manipulation tasks fit conveniently into the data 
concentrator queueing system described above. The alter 
and track operations can be independently coded tasks 
running reentrantly with the terminal control blocks pro
viding storage for the current display parameters. A copy of 
the unaltered display image, as generated by the mainframe, 
must therefore be maintained in the concentrator. In this 
way, an interrupt from the mainframe or terminal causes the 
display parameters to be updated in the TeB and a task 
queued to apply their new values to the original image 
representation, transmitting the modified picture to the 
terminal as hardware move/draw commands. 

The memory necessary for storing image representation 
for storage terminals demand a general discussion of data 
~on~entra.tor memory requirements. Experience indicatcs4 



Hardware/Software Design Considerations for High Speed/Low Cost Interactive Graphic Communication Systems 277 

that operating system task processors (including image 
processors), control blocks, and interrupt code require about 
10,000 (16 bit) words. Communication buffer space is more 
difficult to estimate. Naturally, the larger the buffer size, 
the fewer CPU transfer interrupts (more disk sectors copied 
per interrupt), and the lower the CPU overhead. For high 
speed communication (10,000 to 50,000 baud), however, 
buffers are used for short periods of time allowing them to 
be timeshared very effectively and reducing the advantages 
of high core per terminal ratios. Again, experience indicates 
indicates that 24K to 32K is adequate for thirty to forty 
terminals. This leaves at least 20K (16 bit addressing usually 
permits 64K memories), for image representation. This is 
adequate for five to ten terminals although it increases the 
per terminal cost significantly. 

The data concentrator task queueing structure facilitates 
one final terminal support option. Analog hardware is avail
able (or can be built) at reasonable cost to perform three 
dimensional graphic image modification at significantly 
greater than real-time speeds. This suggests that such hard
ware be included in the data concentrator and thgreby time
shared among several graphics terminals. Three dimensional 
manipulation tasks which have access to this hardware can 
easily be included in the software library operating in a 
reentrant mode on the TCB's just as do the two dimensional 
processors as discussed above. Thus, with a minimum hard
ware investment, low cost display terminals can have full 
three dimensional capabilities without burdening the main
frame CPU. 

NETWORK POSSIBILITIES 

Extensive attention has been directed over the past several 
years to computer networks. The concepts involved in net
working are certainly worthy of consideration: economies of 
scale, load distribution, backup, variation... in services, etc. 
Three major factors have, however, slowed the proliferation 
of computer networks. The first of these, and probably the 
most complex, comprises the political and economic problems 
involved in depending on or accepting responsibility for 
remote usage of very expensive mainframes. 6 The second 
factor involves availability and reliability of communication 
lines of sufficient speed to facilitate network communication. 
AT&T expects to offer 50,000 baud "Data Under Voice" 
service on a dial up basis to major cities beginning in late 
1974, thus providing an apparently workable solution to this 
second problem. The third factor involves the inconsistencies 
between mainframes such as file formats, character sets, 
word lengths, compiler conventions, etc. 

The data concentrator system discussed above provides a 
solution to the third factor, as shown in Figure 3. Each line 
from a distant network computer can be treated as any other 
multiplexed input, controlled by a site control block. Termi
nals requiring service of the local mainframe look exactly 
like local tenninals tt11'ough the linkage of that net<.vork SCB 
to several terminal control blocks. Character set, file format, 

Figure 3-Network use of the data concentrator 

and word length problems can easily be resolved by concen
trator tasks using information about the remote mainframe 
contained in each TCB. In addition, local terminals can use 
the remote computer via tasks which link local SCB's to the 
multiplexed, network SCB. 

The use of a data concentrator as a means of connecting 
local terminals to either a local mainframe CPU or to remote 
networks provides automatic backup capabilities. This is 
unlike many network schemes which depend on local CPU 
terminal interface hardware and therefore deny network 
access when the local CPU is down. 

A reasonable improvement to the concentrator system 
involves hardware which allows the concentrator to com
municate directly with local mainframe disk units. This is a 
straightforward addition. The concentrator channel must 
already contain disk simulation hardware (as discussed 
above), simplifying the physical connection. Since this direct 
disk connection is used only when the mainframe CPU is 
down, the software interlock problems normally encountered 
is dual access are eliminated. This permits, however, a 
terminal user to use a remote network computer with full 
access to his files while his own CPU is do-wn. 

CONCLUSIONS 

This paper describes the considerations involved in the design 
of communication systems that permit economical high speed 
terminal use of large scale computers. The major require
ments: minimum mainframe system modification and CPU 
overhead, 10,000 to 50,000 baud data rates for each terminal, 
flexible interface specifications, graphic image manipulation 
outside the mainframe CPU, and networking capability de
mand use of a data concentrator minicomputer. The hard
ware and software components of this concentrator are 
outlined as they pertain to the design requirements. 

It must be emphasized that the disk simulator approach 
to the CPU interface virtually eliminates the need for soft
ware modifications to the mainframe operating or program
ming systems. It does require, however, relatively complex 
hardware to connect directly to a mainframe channel. Though 
complex, the hardware can often be built less expensively 
than manufacturer supplied interface units (i.e., IBM 270X 



278 National Computer Conference, 1974 

or CDC 6671/6676 multiplexors) which can support only 
much slower, teletype-like devices and demand greater 
CPU processing overhead. 

With the rapidly decreasing graphic terminal and modem 
costs, the time has come for timesharing communication 
systems which support high speed, image-oriented data 
transfer. In this paper at least one feasible approach has 
been outlined, involving some reconfiguration effort but with
out long term increases in communication system costs or 
CPU overhead. In addition to supporting graphics terminals, 
these improvements in communication systems are capable 
of supporting remote batch devices (card readers, line 
printers, electrostatic plotters, etc.) and capable of network 
communication "ith other large scale computers. 

REFERENCES 

1. Sutherland, I. E., "A Man-Machine Graphical Communication 
System," AFIPS Conference Proceedings, Volume 23, 1963. 

2. Hopewell, L., "Trends in Data Communication," Datamation, 
August, 1973. 

3. Gunn, M. A., On the Development of Computer Graphic Design Tools 
for Enhancement of Creativity, Ph.D. Thesis, Purdue University, 
1974. 

4. Boardman, T. L., On the Exploitation of Computing Systems and 
Computer Graphics in the Development of Effective, Economical Engi
neering Design Processes, Ph.D. Thesis, Purdue University, 1973. 

5. Modular Computing Systems, Reference Manual MODCCMP III, 
February, 1971. 

6. Williams, L. H., "A Functioning Computer Network for Higher 
Education in North Carolina," AFIPS Conference Proceedings, 
Volume 42, 1972. 



APL as a development tool for special-purpose processors* 

by SAl\i[LEL LEVY, RICHARD H. DOYLE, and RALPH M. HELLER 

IBM Corporation 
Gaithersburg, Maryland 

INTRODUCTION 

APL5 used as a programming language has been implemented 
in computing systems to provide time-sharing with remote 
terminals.1 ,8 Since the operative principles guiding the design 
of APL include simplicity and practicality of application,2 
APL is extremely effective as a development aid for special 
purpose processors. 

This paper describes two unrelated processor design proj
ects which were significantly aided through the utilization 
of APL. The paper will emphasize the common features of 
many processor development tasks and show how APL may 
be applied advantageously. 

The first example concerns an APL model which assisted 
in the conceptual development and evaluation of arithmetic 
algorithms for an associative processor whose arithmetic 
operations are based on residue arithmetic computations.4 

The second example is an APL simulation of a processor 
·with subsequent use of this simulation to develop object 
code. The processor, together with this object code, served 
as a prototype for a special processor development task. In 
both examples, APL provided timely and meaningful assist
ance. 

It is not within the scope of this paper to compare APL 
with discrete simulation languages. The GPSS and SIM
SCRIPT family of languages6 as well as APL program pack
ages such as SUPERMOD7 provide far more detailed and 
comprehensive analyses than we are addressing in this paper. 
Methods and advantages of using APL specifically as an 
interactive simulator generating system for small computers 
are discussed in Reference 10. 

Some of the basic features of APL which make it attractive 
for our purposes are as follows: A repertoire of application
oriented APL functions can be built incrementally, with 
interactive testing performed at each stage of development. 
At first, these functions can be quite primitive, such as 
representing the behavior of a single processor component 
(e.g., a shift register). Later, as a hierarchy of functions are 
built, testing will become more complete. The advantage of 
interactive development is that interspersed development 
and testing can proceed with confidence at every stage until 

'" This work was supported in part by the Air Force Office of Scientific 
Research on Contract No. F44620-73-C-004. 

279 

a preliminary processor model is available. The model can 
then be used for activities such as processor design, arith
metic algorithm development, and object code development. 
Then, characteristics of the conceptual processor may be 
modified and the APL model revised. Iteration of these 
steps will enable development and evaluation to proceed 
until project completion. 

Other significant features of APL are: a relatively short 
program development cycle and the generality of the lan
guage notation. There is evidence9 that it takes about three 
times as long to program and debug a problem using FOR
TRAN or PL/1 as it does using APL/360. Since APL oper
ates in interpretive mode rather than through early binding 
by a compiler, program execution may be resumed immedi
ately following editing of the line of the function which had 
terminated. 

The APL notation is mathematically rigorous. Just a 
decade ago, a forerunner of this notation was used to present 
a precise formal description of a complete computer system, 
the IBM System/360.3 The primitive APL functions, express
ible as distinct symbols and the APL operators provide a 
concise convenient notation for handling algorithms, with 
the added advantage of direct execution in the notation. 
APL accrues additional advantages from its simplicity, ver
satility and flexibility. These are properties of the language 
itself which are familiar to APL users, and so, are not empha
sized here. Their presence will be obvious as the examples 
are unfolded. 

RAAP MODEL AND ALGORITHM DEVELOPMENT 

The RAAP (residue arithmetic associative processor) is an 
associative processor having a number of semi-independently 
operating associative memories, and whose basic arithmetic 
operations are performed in residue arithmetic format.ll The 
processor design is not fixed and the work reported on herein 
concerns preliminary development work on basic RAAP 
memory structure, and algorithm development and 
evaluation. 

The RAAP consists of a group of associative arrays oper
ating in parallel under the control of one program which 
resides in the control store (refer to Figure 1). Each associa
tive array is associated ",i.th a different modulus of the residue 



280 National Computer Conference, 1974 

110 Control 

Figure I-Block diagram of associative processor 

base representation of a data word. One microcoded pro
gram simultaneously controls all residue moduli computa
tions (associative memory operations). 

Although no attempt was made to finalize the architecture 
or design of a specific RAAP configuration, an approach to 
processor organization functioning and control was needed 
for the development and evaluation of the arithmetic algo
rithms. Figure 2 is a general block diagram illustrating present 
thinking. 

For conceptual and practical convenience we consider the 
RAAP to consist of a number, N, of basic associative memory 
units, AI, A2, ... , AN, having a similar form. Each associa
tive memory unit contains a control field, and from one to 
four fields to store data. The conventional mask, data and 
seJector registers are associatf\d with each memory. 

The associative memories are controlled by one master 
control unit which implements the arithmetic and input/ 
output conversion algorithms. A key feature is that the 
associative memories can interact through their selector regis
ters. The memories are interconnected through. a Selector 
Transfer Register which permits the transfer of selector 
register contents from one memory unit to another. 

Memories Al and A2 have respective storage fields F1 
and F2. These memories will handle input/output to the 

l ....-eon .. UntI I 
I 

A~ I All I A3 I '" ... AN I 

~ ~ ~ ~ ~ 

r1~ s=?~ I~ I~ 
~ ... 

mm~ 
W~ ~~ lliillu lliill~ 

L I I 
. " 

I T 
I 

s.aorT,....... .......... I 

Figure 2-RAAP structure 

Input Output 

• t 
Numerical 

Compute Representation 
Residues of Residues 

.~ 

- Decimal -.. Residue .. 
Processor 

l' : Convert Convert to 

to Binary Decimal 
Residue 
Algorithms h 

- RAAP - Architecture 

t 
RAAP 
Algorithms 

Figure 3-RAAP model data flow 

RA...<\.P and are also involved in the input/output conversion 
to residue base representation. Each of the associative arrays, 
A3, A4, ... , AN, handles one modulus of the residue base 
representation. As indicated in Figure 1, array AK has con
trol field CK, residue fields RKl, RK2, ... , RK4, and data, 
mask and selector registers, DK, MK, and SK, respectively. 
Each memory in Figure 2 has an area labeled storage associ
ated with it. This represents the portion of the memory 
which contains the necessary constants for residue conversion, 
overflow computations, masking and other operations. 

Our study was confined to problems of processing positive 
integers only, there being no loss in generality for multi
plication. Each associative array was assumed to contain 
up to four data fields and one field of control bits. Since 
residue base representations require significantly fewer bits 
p.er operating field than standard representation, the applica
tIOn of residue arithmetic in an associative processor might 
be expected to provide a processing speed advantage over a 
conventional associative processor. An APL model was de
veloped to aid in investigating required arithmetic algo
rithms, processor architecture, and RAAP processing speeds 
as compared to conventional associative processing. 

The APL model consists of two segments representing both 
a decimal residue processor and a binary RAAP model as 
illustrated in Figure 3. Input data consists of a vector of 
positive integers. The model converts the input data to a 
matrix containing the residue values corresponding to each 
integer. The decimal residue processor is simply a hypotheti
cal. pro~essor '~vhich serves as a vehicle fur preliminary ex
ammatIOn of the properties of residue arithmetic and 



APL As a Development Tool for Special-Purpose Processors 281 

convenience in output display. The residue matrix is trans
formed into a three-dimensional binary array which serves 
as input to one data field of the RAAP architecture. After 
arithmetic processing by the RAAP, the contents of a data 
field are transformed into a matrix of residues. The outputs 
from the RAAP or the decimal residue processor are then 
converted to numerical representation through the use of 
the Chinese Remainder Theorem. The output appears as a 
vector of positive integers. 

In the APL model (refer to Figure 4) an associative array 
is represented by four data fields (FLDI-FLD4) and a group 
of control bits (CTL). The number of control bits vades 
with the algorithm under test. All associative arrays are 
under the control of the SEARCH and WRITE functions. 

In an associative processor a search operation interrogates 
specified bits (usually denoted by a mask register) of all 
words in the memory and identifies to a selector register, 
those words which identically compare with the contents of 
a data register. In this model, the right argument of a 
search statement specifies the following: 

1. Bit mask-four data fields and M control bits 
2. Selector register-one of two selector registers with/ 

without logical OR capability 
3. Data register-content associated with bit mask. 

In an associative processor, a write operation transfers 
the contents of a data register to specified bits (based on the 
mask register). of those memory words identified by the con
tent of a selector register. In this model, the right argument 
of a write statement specifies the following: 

1. Bit mask-three data fields and M control bits 
2. Selector register-one of two registers with true or 

complement form 
3. Data register-content associated with bit mask. 

One of the basic problems in developing a computer model 
for a conceptual processor configuration is the requirement 
that the model be readily adaptable to change. The dynamic 
linkage of APL functions considerably alleviates the necessity 
for recoding call sequences. For example, if a variable 
NAMES contains a name list of APL functions and a variable 
FLAG contains a vector of indices to NAMES, then an 
APL function INVOKE can be defined to invoke a call se-

LEGEM) Ejv __ 

OF""""", 

Figure 4-Associative array model 

NAMES 

END 
INPUT 
INITIAL 
OUTPUT 
START 

FLAG 
5 3 2 4 

FLAG INVOKE NAMES 

THIS WILL PRODUCE THE FOLLOWING CALL- SEQUENCE: 

START 
INITIAL 
INPUT 
OUTPUT 
END 

Figure 5-INVOKE example 

quence based on FLAG. Figure 5 illustrates this example. 
The execute function is used by INVOKE to perform the 
construction and execution of statements under program 
control. 

The structure of the RAAP model is illustrated in Figure 6. 
One may run the model by assigning the indices to FLAG 
and executing the function RESIDUE. The function RESI
DUE initializes the model and INVOKE dispatches each 
of the major functions. Names starting with the letter "B" 
apply to functions which operate on binary data and names 
starting with the letter "P" apply to functions which print
out data. TRACE lists the names of all functions invoked. 

The basic operation of the model is illustrated in Table I. 
The contents of the variable FLAG show the call sequence. 
Run number 8 of RESIDUE produces a listing of all func
tions invoked, the input data and its residue representation, 

Figure 6-Program structure 



282 National Computer Conference, 1974 

TABLE I-Illustration of Basic Operation 

FLAG 
2 14 4 5 10 11 6 8 12 

RF:SIDUE 8 

INITIAL1 
TRACE 
INPUTS 
PINPUTS 
TRARSFFJl2 
ADD 
OUTPUTS 
'?CRT 
PRINTOUT 

INPUTS D1Plfl'Sl 

I1IPUT RES(63) 

70 7 
105 42 
500 59 

564950500 16 
1969887318 42 

940422545 62 

RES/61) 

44 
12 
37 
44 

2 

PCRT MINVF.RSE MIl'lVERSE2 

OUTPUT RES I 63 ) RES\6!) 

140 14 18 
210 21 27 

1000 55 24 
1129901000 32 13 
3939774636 21 27 
1880845090 61 

RES/.59) RF,S/55) RF:S(53) RES\47) 

11 15 17 23 
46 50 52 11 
28 5 21 30 
12 15 21 19 
38 3 13 6 
10 40 32 15 

RF:S/.S9) RES\ 55) RF.S\53 ) RES, 47 ) 

22 30 34 46 
33 45 51 22 
56 10 56 13 
24 30 42 38 
17 6 26 12 
20 25 11 30 

RESI43) RP,S\ 41) 

27 29 
19 23 
27 8 
31 20 
42 6 
32 10 

Rt:S'.43) RED/.41 ) 

11 17 
38 5 
11 16 
19 40 
41 12 
21 20 

the residue representation of the output data, and the nu
merical value of the output data. Each of the six input words 
was converted to eight residue values. For example, an input 
of 500 is represented by 27 with respect to a modulus of 43. 
The contents of data field 1 were transferred to data field 
2 by the function TRANSFER2 and the function ADD 
added the number to itself. For example, 27 +27 with respect 
to modulus 43 is 11. Taking into account all eight moduli, 
the output value is 1000 which indeed is 500 doubled. 

The results of binary multiplication are shown in Table 
II for run number 23. One input (1473) was converted to 
residues with respect to six moduli. The contents of data 
field 1 were transferred to data field 2 and the function 
ENCODE2 converted these values to binary form. The algo
rithm under test, BMUL TIPL Y2, initialized FLD2 with 
the multiplicand and FLD3 with the multiplier (which are 
equal). The results of performing binary multiplication in 
the RAAP are shown under output. For example, 42 times 
42 with respect to modulus 53 is 15. Each residue was then 
converted back tD its decimal equivalent by the function 
DECODE! and the function CRT (Chinese Remainder 
Theorem) computed the value 2169729 from the six residues. 
Thus, since 1473 squared is equal to 2169729 the run was 
successful. 

In Reference 4 much more elaborate examples of APL 
utilization for RAAP structure and algorithm development 
are presented. The interactive use of the model with print
out of binary field content during intermediate arithmetic 
stages permitted the quick isolation of deficiencies. Con
siderations of carry and overflow techniques, field utilization, 
modulus adjustment, selector transfer and control bit usage 
became evident as successive versions of the algorithms were 
tested. In this manner several addition and multiplication 
algorithms were developed. 

TABLE II-Illustration of Binary Multiplication 

FLAG 
2 14 4 5 10 12 17 25 24 16 6 8 12 

RESIDUE 23 

INITIAL1 
TRACE 
INPUTS 
PINPUTS 
TRA NSFER 2 
PRINTOUT 
BINITIAL 
ENCODE2 
BMULTIPLY2 
DECODE1 
OUTPUTS 
PCRT 
PRINTOUT 

INPUTS INPUTS1 

INPUT RES(64) RES(63) RES(61) RES(59) RES(55) RES(53) 

1473 1 24 

INITIAL CONDITIONS 
~FLD2 : 

o 0 0 0 0 1 (mod 64) 

o 1 0 0 0 (mod 63) 

o 0 0 0 (mod 61) 

1 0 o 1 

o 1 o 1 1 

1 0 1 0 1 0 

(mod 59) 

(mod 55) 

(mod 53) 
~FLD3 : 
000 0 o 1 

o 1 000 

001 o 0 

0 o 1 

1 o 1 0 1 

o 1 0 1 0 

~ 1 2 3 4 5 6) , 

9 57 43 42 

BMULTIPLY2 BTRANSFER31 BTRANSFER12A BASICADD4 BASICADD5 BTRANSFER13 SEARCH2 

AVERAGE INSTRUCTIONS PER BIT 
SEARCH= 99.8 .fRITF:= 91. 5 TOTAL= 191. 3 

PeRT lfINVERSF. MINVERSl?2 

OUTPUT RESI 64) RF.S( 63) RES\ 61) RRSI. 59) RF.SI 55) RES( 53) 

2169729 20 34 15 

POL PROCESSOR EMULATION AND INTERPRETER 
DEVELOPMENT 

This example involves the functional simulation of a pro
cessor and the subsequent development of an interpreter to 
enable the processor to directly execute problem-oriented 
language (POL) statements. The purpose of this project 



APL As a Development Tool for Special-Purpose Processors 283 

MEM 

MEMORY 

OPERATION CONTROL 

DD 
INTERNAL REGISTERS 

Figure 7-POL simulation 

LEGEND 

A VARIABLE 
L--.J 

D FUNCTION 

was to build a feasibility model of a proposed low-cost, stand
alone machine which would interpret and directly execute 
problem-oriented language code. As a stand-alone device, 
this proposed machine would be required to support only 
one user at any given time, and hence, high execution speed 
was not a primary factor in its design. Accordingly, the 
design approach taken was to emulate, via software, the 
interpretation and execution of the source-language code, 
rather than to build special-purpose microcoded hardware. 

For the prototype, a small commercially available micro
computer was ordered. At that time, no support software 
existed to assist in the assembly or debugging of code written 
for this machine. For this reason, as well as a delivery lead 
time in excess of six months, a decision was made to emulate 
the POL processor with APL as the medium. 

The first task was to create, in an APL workspace, a func
tional replica of the set of object machine registers and the 
memory. This included general registers (REGS), a "push 
down" stack of address registers (STACK) and flip flops 
(FF) to indicate the result of arithmetic operations and 
parity (refer to Figure 7). These were easily represented as 
APL Boolean arrays, (vectors and matrices). APL routines 
to perform elementary machine functions such as STEPIC 
(STEP Instruction Counter), GETOP (GET OPeration 
code), etc., were then coded in APL, and a main control 
routine was "'Titten to call the other routines, treating them 
as subroutines. Each of the approximately 50 instructions 
of the object machine repertoire was representable within 
this main routine by not more than three short lines of APL 
code, most by one line. 

As the process of building this package progressed, it was 
possible at all stages to check proper emulated processor 
operation by entering sample machine code into the simulated 
memory, limiting the subset oi machine code to that which 
was then possible to interpret. Interaction was of particular 
value during this process, since program errors were elimi-

nated en route, and not allowed to go undetected until the 
package was thought to be complete. The package was 
supplemented by APL support software that facilitated load
ing, trace during execution, and code error diagnostics of 
object machine code. 

The final task consisted of writing the machine object 
code that was to interpret and execute the problem-oriented 
language as entered from a keyboard. Using the APL ter
minal, both in its normal role of user-APL interface, and in 
the role of a simulated prototype keyboard for machine code 
entry, and again, later, for problem-oriented language source
code entry, the prototype package was developed and en
tirely checked out through processor emulation. Again, the 
interactive feature of APL was exploited, this time with 
machine source code developed and tested incrementally. 
At every stage of code development, trial runs were invoked, 
and each partial package was thoroughly checked out before 
proceeding with the next development phase. 

It is estimated that, counting both tasks, (i.e., creating 
the machine simulation tools and coding the product machine 
code), more than 150 "turnarounds" were invoked. The 
effective total turnaround time, measured in human terms, 
(i.e., human time spent unproductively waiting for results), 
amounted to no more than 10 to 15 minutes. 

CONCLUSIONS 

In this paper we have illustrated ways in which APL can 
be useful as a development tool for special-purpose processors. 
It provides simplicity and practicality of application in a 
time-sharing environment and, as such, provides a powerful 
capability for processor modeling. 

In the first example, the APL model was extremely useful 
during the study of algorithms for a residue arithmetic 
associative processor. It proved quite flexible for conceptual 
processor features such as: bit precision per residue, number 
of associative memories, modulus per associative memory, 
number of control bits per memory word, number of words 
per memory and bit size per I/O word. Dynamic reconfigura
tion of the APL model aided in reducing program debug time 
as well as enabling interactive development and analysis of 
the arithmetic algorithms. The APL model enabled predic
tion of timing characteristics for the arithmetic algorithms 
operating in the associative processor. 

For the second example, an APL simulation of a micro
computer enabled development of an interpreter in machine 
language code and validated the machine specifications. APL 
was then successfully used as an emulator for the prototype 
processor. The entire effort was accomplished in three weeks, 
and the developed software ran faultlessly in the micro
computer on the first and all subsequent trials. 

ACKNOWLEDGMENT 

The authors wish to acknowledge the support and encourage
ment of Col. R. Ives and Col. T. Wachowski of the Air 
Force Office of Scientific Research and Dr. R. Van Blerkorn 
of IBM. 



284 National Computer Conference, 1974 

REFERENCES 

1. Falkoff, A. D. and K. E. Iverson, APL/360 Users Manual, IBM 
Corporation, (GH20-0683-1) 1970. 

2. Falkoff, A. D. and K. E. Iverson, "The Design of APL," IBM 
JournaJ, of Research and Developmlmt, pp. 324-333, Vol. 17, No.4, 
July, 1973. 

3. Falkoff, A. D., K. E. Iverson and E. H. Sussenguth, "A Fonnal 
Description of Syst~m/360," IBM Systems Journal, pp. 197-261, 
Volume Three, Numbers Two and Three, 1964. 

4. Heller, R. M. and S. Levy, A Study of Arithmetic Algorithms for a 
Residue Arithmetic Associative Processor, Tech. Report on AFOSR 
Contract No. F44620-73-C-004, September 20, 1973. 

5. Iverson, K. E., A Programming Language, Wiley, New York, 1962. 
6. Kay, 1. M., "An Over-the-Shoulder Look at Discrete Simulation 

Languages," pp. 791-793, AFIPS Conference Proceedings, Vol. 40, 
1972. 

7. Leiner, A. L., SUPERMOD: An Analytic Tool for Modeling the 
Performance of Large-Scale Systems. IBM T. J. Watson Research 
Center Report No. RC2796, February 12, 1970. 

8. Pakin, S., APL/360 Reference Manual, Science Research Associates, 
Inc., Chicago, 1968. 

9. Streeter, D. N., "Cost Benefit Evaluation of Scientific Computing 
Services," IBM Systems Journal, pp. 226-231, Volume Eleven, 
Number Three, 1972. 

10. Brame J. L. and C. V. Ramamoorthy, "An Interactive Simulator 
Generating System for Small Computers," pp. 425-449, AFIPS 
Conference Proceedings, Vol. 58, 1971. 

11. Szabo, M. S. and Tanaka, R. 1., Residue Arithmetic and its Applica
tions to Computer Technology, McGraw-Hill Book Co., 1967. 



Narrowing the generation gap between virtual machines and 
minicomputers 

by HENRY J. THEBERGE and ERIC E. BEAVERSTOCK 

Honeywell Informoiion Systems Inc. 
Waltham, Massachusetts 

INTRODUCTION 

A virtual machine system has been defined by R. Goldberg3 

as "A system ... which ... is a hardware-software duplicate 
of a real- existing machine in which a non-trivial subset of 
the virtual machine's instructions execute directly on the 
host machine, ... ". 

Large computer systems have been shown to be excellent 
environments on which virtual machine systems operate.1 ,2 

If these systems were implemented on small computer sys
tems (liminicomputers"), a desirable environment for soft
ware development would exist because of the capability of 
evaluating and testing .different operating systems. Mini
computer applications such as graphics, process control, 
intelligent terminals, could be developed on a virtual machine 
while sharing support equipment. Current mini-computer _ 
inadequacies prevent the successful implementation of 
virtual machine systems. These inadequacies include: 

• no automatic memory protection 
• the lack of sensitive instruction recognition 
• no virtual memory facilities 
• no virtual I/O handling 

This paper presents a method for implementing a virtual 
machine system in a mini-computer. The approach circum
vents existing inadequacies by utilizing a software/firmware
implementable, interpretive, high-level, system program
ming language. The system, if implemented in software, 
has an emulator rather than a virtual machine monitor as 
the term has been currently defined. 5 

This paper is divided into three parts 

• Description of the higher level language 
• Description of the Emulator 
• Description of the Virtual Machine Monitor 

DESCRIPTION OF THE HIGHER LEVEL LANGUAGE 

The language we considered is TRAIL.4 The basic ele-
ments of TRAIL are: 

1. a source language 
2. an intermediate interpreted language 
3. an interpreter 

285 

Source language 

The source language was d.esIgned. to facilitate system 
design and debug phases, to enhance documentation, and 
to allow greater productivity of programming. The language 
facilitates recursive programming and elicits a programming 
discipline for the separation of logical flow of control from 
the basic manipulative operation. TRAIL ~ffectivity sepa
rates conditional tests and branching decisions (rules) from 
straight-line code (action sequences). Each program is 
called a graph and is comprised of rules and action sequences. 
An action sequence is a free statement consisting of a se
quence of action calls, variable references, and action 
operators without any Go To or conditional instructions. 
Action sequences apply to a run time work-stack and may 
be nested to any depth. The work-stack is used mainly for 
expression evaluation and parameter passing. 

Variables are allocated dynamically at' graph-call time 
and deallocated at graph-exit time. Variables can access 
virtual addresses since TRAIL allows definition of a virtual 
memory mapping scheme. 

These features provide greater productivity in design 
and debug phases, and enhance communication between 
programmers via simplified documentation procedures. 

Intermediate interpreted language 

The source language is converted into an intermediate 
or target language by a translation process. The target 
language is interpreted at execution time. This interpretive 
approach achieves portability, and programs are treated as 
relocatable data by the interpreter. Each action sequence 
is encoded into a string of byte sized intermediate language 
operators for interpretation. This choice of an interpreted 
target language accomplishes minimum object code size 
(roughly 50 percent smaller than assembled code) and 
machine independence of the developed software. 

Interpreter 

The interpreter is either written in assembly language or 
firmware implemented. It is designed to maximize speed 



286 National Computer Conference, 1974 

USER 
PROGRAMS 

USER 
PROGRAMS 

Figure 1 

USER 
PROGRAMS 

with respect to interpreting the byte sized string of inter
mediate language operators, and at the same time mini
mizes the actual code size required. When a graph is entered, 
the interpreter allocates relative space for an environment. 
The environment consists of the work stack and an area 
for the interpreter to maintain pertinent run-time informa
tion. By associating a unique environment with each graph 
or groups of graphs, the concept of coroutine is introduced. 
A coroutine is a graph which can relinquish control to another 
coroutine and later be reactivated to continue computation. 
All environment management is controlled by the inter
preter. The interpreter I/O mechanism is activated, when 
an I/O request is identified. The mechanism performs a 
type of subroutine call to the I/O controller, which per
forms the desired I/O action. 

These features of TRAIL along with others [4], provide 
an excellent base for the creation and support of an emulator 
or a virtual machine monitor for a small machine. 

DESCRIPTION OF THE EMULATOR 

Figure 1 depicts an emulator system through the use of 
language primitives as designed by Robert P. Goldberg of 
HIS.l The architectural design consists of a basic machine 
that executes an emulator. The emulator is written in as
sembly code and performs all I/O operations, memory 
mapping functions, and other virtual machine requirements. 
The interpreters, also written in assembly code, interpret 
the TRAIL code of the various operating systems and user 
programs. An interpreter is executed directly by the basic 
machi..'1e and the interpreter passes control to the emulator 

after having interpreted an action operator requiring some 
virtual machine operation i.e. space allocation. The emulator, 
having performed the necessary operations, determines 
which interpreter is to be activated. The interpreter trans
fers control between the operating system and the user 
programs by means of the coroutine mechanism as pre
viously described. 

The emulator as proposed here, solves many problems 
that currently exist in implementing virtual machine con
cepts on mini-computers. Automatic memory protection is 
provided by the emulator because it controls the memory 
allocated to each interpreter and its programs. The inter
preter(s) recognizes certain action operators to be sensitive-
i.e., an instruction requiring some virtual machine function
thus the sensitive instruction is dealt with at the inter
pretive level. A virtual memory scheme is implemented 
within the emulator, and is activated by the emulator when 
required. Virtual I/O handling is also provided by the 
emulator. 

Thus, with some software design modification, one can 
easily move toward emulation on a mini-computer. 

DESCRIPTION OF THE VIRTUAL MACHINE 
MONITOR 

Figure 2 depicts a virtual machine monitor system. The 
basic model requires that an interpreter be firmware (micro
coded) implemented. The virtual machine monitor is written 
in the language being interpreted (e.g. TRAIL). The operat
ing system, also written in the same interpreted language, 
controls the execution of the various user programs. The 

:Figure 2 



Narrowing the Generation Gap Between Virtual Machines and Mini-Computers 287 

firmware transfers control between. the operating system, 
user programs, and the virtual machine monitor by means 
of a coroutine mechanism. The firmware passes control to 
the virtual machine monitor when virtual machine functions 
are required. An important characteristic is that the virtual 
machine monitor is not performing an instruction by in
struction interpretation of the operating system or user 
programs, but rather remains inactive until called upon by 
the firmware. 

The virtual machine monitor accomplishes memory pro
tection by gaining control from the firmware as required by 
the various programs. Certain action operators which require 
virtual machine functions are recognized and the virtual 
machine monitor is activated by the firmware. Virtual 
memory, is also handled by the virtual machine monitor 
when given control through the firmware. The virtual ma
chine monitor accomplishes the mapping of the set of 
resources found in the· virtual machine configuration into 
the set of resources existing in the basic machine. 

This virtual machine concept provides for the creation 
of various extended machines upon which user programs 
may run. Since the virtual machine monitor is written in 
TRAIL, monitoring and debugging is readily accomplished. 

CONCLUSIONS 

From the described configurations, the problem of imple
menting a virtual machine system on small machines is 

reduced. The emulator approach enhances current capabili
ties of mini-computers without major modifications or 
extensions; however, a slow down in execution time will 
result. This problem can be avoided if the virtual machine 
monitor approach is taken. 

The simplicity and compactness of the TRAIL language 
makes it possible to implement the virtual machine require
ments on a mini-computer. 

Although TRAIL was mentioned as the interpretive 
language to be used, it is noted that any interpretive lan
guage with the same basic characteristics can be utilized. 
With either of these approaches, a broader use and greater 
reduction of the limitations of mini-computers are accom
plished. 

BIBLIOGRAPHY 

Gagliardi, C. o. and R. P. Goldberg, "Virtualizable Architectures," 
Proceedings of the 1972 ACM International Computing Symposium, 
Venice, Italy, April, 1972 pp. 527-538. 

Goldberg, R. P., "Architectural Principles for Virtual Computer Sys
tems," Report #24-72, Center for Research in Computer Technology, 
Harvard University, Cambridge, Mass. 

Goldberg, R. P., "Virtual Machines-Semantics and Examples," IEEE 
Comput. Soc. Conf., Boston, Mass. Sept. 1971 pp. 141-142. 

Lechner, R. J. and W. Stallings, "A Minisystem Programming Lan
guage," Proceedings of the 1973 ACM Annual Conference, Atlanta, 
Georgia, (August 1973), pp. 174-182. 

Lichstein, H. A., "When Should you Emulate?," Datamation 15, 11, 
Nov. 1969, pp. 205-210. 





Pipelining-The generalized concept and sequencing strategies* 

by C. V. RAMAMOORTHY and K. H. KIM 

University of Califm-nia 
Berkeley, California 

INTRODUCTION 

In this paper, we generalize the concept of pipelining to in
crease throughput, processing speed, resource utilization and 
reliability. Its wide application spectrum is demonstrated and 
major design problems such as sequencing, reconfiguration, 
etc., are indicated. A scheme called the dynamic sequencing 
and segmentation model (DSSM) is proposed as a solution 
for providing efficient sequencing with very low overhead. 
The model is analyzed under various realistic environments 
and its performance is evaluated. 

Pipelining can be defined as a technique of imbedding 
concurrency in a computer system by implementing it in 
the form of a pipeline, a configuration of independent 
autonomous units each of which is dedicated to perform a 
specific subfunction in an overlapped mode with others. An 
autonomous unit or a segment of a pipeline is also called 
a pipeline-segment or ajacility-segment. Pipelining has emerged 
as an important aspect of computer architecture especially 
of scientifically oriented computers. A large number of com
puters have been built with one or more pipelined functional 
units. l ,2,3,11 

Pipelining, however, still remains as an ad hoc procedure 
and a specialized technique of exploiting computational 
parallelism. Total parallel processability in computations 
has not been fully exploited in conventional pipeline systems. 
In this discussion, we classify the approaches to parallelism 
exploitation into two categories: (1) a passive approach, and 
(2) an active approach. In the passive approach the parallelism 
is exploited without any modification of execution sequences 
within a program, while in the active approach the exploi
tation is achieved by the automatic detection of the paral
lelism inherent in the program at various levels7 ,9 and the 
judicious sequencing of these detected parallel processable 
tasks. Conventional pipelining has mostly been confined to 
the passive approach to exploiting the local parallelism, i.e., 
the parallelism between adjacent tasks. 

Pipelining in a functional unit is achieved in two steps: 
(1) segmenting the functional unit into a number of facilities 
(segments) each requiring generally the same amount of 

* Research sponsored by the National Science Foundation, Grant GJ-
35839, and the U.S. Army Research Office-Durham, Grant DA-ARO 
D-31-124-73-G 157. 

289 

execution time and (2) streaming independent jobs through 
these segments. 

Levels oj pipelining 

The principle of overlapped concurrent operation can be 
employed effectively at various levels in the computer archi
tecture. 

Pipelining at the gate level is exemplified in the design of 
the instruction processing unit (IPU). The IPU can be 
decomposed into various functional segments, namely, in
struction fetch, instruction decode, address generation, etc. 
(Figure 1). It takes one minor cycle for a task (instruction) 
to pass through each segment. Thus after a stream of tasks 
enters this pipeline, the pipeline starts outputting one task 
per minor cycle. Microprogram prefetch, that is, overlap of 
decoding the current microinstruction with fetching the next 
microinstruction is another example at this level. 

The next level for the application of pipelining is the sub
system level, "i.th the pipelined arithmetic units3,4 being 
the typical examples. Pipelined ADD, MULTIPLY, DI
VIDE3 and SQUARE-ROOT6 functions have been in exist
ence in a number of contemporary computer structures. 
Figure 2 is the conceptual representation of the operation of 
the DIVIDE unit of IBM 360/91, where, as Di iteratively 
approaches 1, N i approaches N / D, the quotient. 

Generalization 

So far, the design practices have confined the principles 
of pipelining (overlapped concurrent operations) to facility
segments with almost equal processing times and whose 
control and data flows are linear or unidirectional. Since 
computational sequences cannot always be divided into 
equal processing time-segments and since recursion and iter
ation are common computational modes, it would be desirable 
to remove the restrictions and extend the precept of pipe
lining. We shall next discuss the concomitants of this generali
zation. We shall characterize the generalized pipelining into 
the following aspects. 

The first criteria would be segment-lengths (processing 
times) of each facility-segment in the pipeline. These pro
cessing times can be the same or variable. Multiprogramming 



290 National Computer Conference, 1974 

INST. INST. ADDR OPD. 
DECODE 

. . . . . EXEC • FETCH GEN. FETCH 

Figure I-The pipelined IPU 

is an example of a pipeline with two variable-length segments 
(CPU and I/O). 

The second factor for characterizing pipelines is the di
rection of control and data flow. It could be unidirectional 
(e.g., the IPU) or bi-flow or bidirectional (e.g., IBM 360/91 
DIVIDE unit). 

The third criteria would be degree of replication of the 
pipeline. There may be several pipelines which perform 
identical operations on different operands (e.g., TI-ASC's 
arithmetic pipes). 

The fourth characterization of the pipeline system is its 
reconfigurability. The system could be non-reconfigurable 
(e.g., IBM 360/91) or dynamically reconfigurable. Figure 3 
shows an example of a replicated reconfigurable pipeline as 
implemented in the TI-ASC computer. 5 There are four 
iden.tical pipelined arithmetic units (AU's), each consisting 
of eIght segments. All AU's would perform the same oper
ation. Four segments among eight ones in each AU can be 
configured into a pipeline configuration for FIXED POINT 
MUL TIPL Y at one time while at another time six of them 
could be configured into a FLOATING POINT ADD pipe
line. Although examples show linear pipelines, configurations 
in general need not be restricted to be linear but could be 
planar (two-dimensional) or multi-dimensional. 

The facility-segment may be not only hardware but also 
hardware-software complex of any complexity. The latter 
type can be often seen in the pipeline of the system level 
(Figure 4). A number of special-purpose computer networks 
can be also looked upon as this class of pipclining. 

The d~vel~pment of various pipeline systems corresponding 
tocombmatlOns of these characteristics is rather an evo
lutionary step in the design of pipeline systems. The fully 
generalized concept of pipelining encompasses both con
ventional parallel processing and pipelining as subsets. Fur
ther improvement of resource utilization is achievable. The 
fully generalized pipelining is capable of utilizing resources 
which would have been idle in the conventional approach. 
In the case of a pipeline which is reconfigurable in multi
dimensions, those resources could often be configured into a 
certain pipeline and used for computations resulting in the 
increased utilization. Improvement of reliability is another 
gain of generalization. Reconfigurability and replication in 
the generalized pipeline provide the sound basis for the in-

DIV 

Flow of Control 

Figure 2-IBM 360/91 divide 

AUl AU2 AU3 AU4 

Figure 3-The replicated dynamic pipeline (e.g., AU of TIASC) 

corporation of graceful degradation as well as fault diagnosis 
and recovery techniques. An example of the generalized 
pipeline, with dynamic reconfiguration and replication is 
shown in Figure 5. 

Design problems 

Now that generalization of the concept has been discussed, 
we shall consider problems involved in designing such a 
pipeline system. Some of the common problems in the design 
of pipeline systems are the following: (1) design configuration 
of pipelines, (2) sequencing strategy, (3) resolution of storage 
conflicts, (4) determination of program suitability, and (5) 
efficient execution of sequences (efficient utilization of 
resources) . 

The design configuration of a pipeline system involves the 
determination of proper segment-lengths, their processing 
speeds, the degrees of their replication and their reconfigur
ability to achieve the necessary performance criteria (through
put rate) on a spectrum of jobs. 

The basic problem in sequencing is to decide the order of 
executiqns of independent tasks such that their completion 
time is minimized. The performance of a pipeline system is 
highly sensitive to sequencing strategies. Figure 6 illustrates 
the effect of sequencing in the case of a simple pipeline 
consisting of two segments. The sequencing problem is in 
general twofold: (1) the development of the algorithms and 
(2) the overhead generated in using it. In other words, one 
has to develop an efficient algorithmlO ,12,14 such that the 
overall execution time including the overhead is minimized. 
There is an obvious trade-off here since the closeness to 
optimality of the algorithm increases its run-time overhead. 
In the next section, an effective approach is introduced. 

Another design problem is concerned with storage con
flicts. This problem generally occurs when more than one 
task being executed concurrently needs to access the same 
memory module. The memory conflicts can be classified 
into two types. The first type is the local conflict occurring 
between consecutive instructions in a program when they 
are executed concurrentl)'" and need to access the same 
memory module. The other type is the global conflict oc-

Figure 4-Pipelining at the system level 



Pipelining-The Generalized Concept and Sequencing Strategies 291 

Pi: A pipeline of the type i, 
e.g. P1:ADD, P

2
:DIV, etc. 

CD: A fac~lity-seJ!!!'ent of the 
~e J, e.g.IJj:Latch, 
\.Y:ADD, etc. 

Figure 5-An example of the generalized pipeline 

curring between independent tasks which are executed con
currently. Techniques have been devised in many con
temporary pipeline systems to reduce the local storage 
conflict. One typical example of the solution is memory
interleaving based on the principle of program locality. Since 
in general, global conflicts occur in addition to local conflicts 
there is a need for new techniques for reducing memory 
interferences. 

The next design problem is the one of program suitability. 
Some programs may reconfigure the pipeline excessively 
without utilizing each configuration effectively. It would be 
desirable to develop the techniques for restructuring such 
ill-formed programs so that the restructured ones may be
come more suitable (reduce total execution time) for the 
specific type of pipelining (Figure 7). 

Efficient execution of sequenced tasks is another design 
problem. Efficiency consideration arises in the process of 
activation and synchronization of tasks. These bookkeeping 
operations must be minimized in both extent and frequency. 

In the rest of the paper, one of these common problems, 
namely the sequencing problem is discussed in detail with a 
description of a new approach of resolution. 

SEQUENCING STRATEGIES 

Concept of the dynamic sequencing and segmentation model 
(DSSM) 

As mentioned before, an efficient sequencing strategy is 
essential to the pipeline system, but its run-time overhead 

P E 

J
l 5 3 

--1 P I E ~ J
2 6 9 

UNIDIRECTIONAL, VARIABLE-LENGTH PIPELINE J
3 

7 5 

completion time: 27 completion time: 23 

J 
, , P 

E 
~ J 3 ! J 2 
t---'-I ------. E 

o 5 8 12 1718 27 o 6 8 15 20 23 

(a) An Arbitrar~y Sequence (b) ~~~ Optimal Sequence 

Figure 6-An example of the effect of the sequencing 

K ~ A * B 
N ~ B I C 
L~K+7 

P ~ D * E 
o ~ N + 5 
R ~ G * H 
M ~ L + 3 
S ~ R I I 
Q ~ P + F 
K = M * Q 
T = S + J 
N = M * 0 
P = Q + T 

12 

reconfigurations 
required 

(a) An Ill-formed Version 

K = A * B 
P "' D * E 
R=G*H 
N = B I C 
S = R / I 
L = K + 7 
M = L + 3 
0= N + 5 
Q = P + F 
T = S + J 
P = Q + T 
K = M * Q 
N = M * 0 

reconfigur ations 
required 

(b) A Restructured Version 

Figure 7-An example of program restructuring 

becomes expensive. A run-time overhead is accumulated in 
concurrent processing since a number of decisions regarding 
resource allocation, etc. must be made dynamically. Actually 
this has been the main obstacle in parallelism exploitation. 

To overcome this problem a scheme called the dvnamic 
sequencing and segmentation model (DSSM) is de;eloped 
which overlaps the unproductive overhead (bookkeeping and 
administrative) computations with the execution of compu
tational tasks so that the effect of overhead is greatly 
diminished and an efficient exploitation of parallelism is 
realized. 

In this system a dedicated unit for sequencing, called the 
sequencer, operates on one segment of the computational job 
while the processor, called the executer, executes the previous 
(already sequenced) segment (Figure 8). 

The DDS:M itself is an example of pipelining at the high 
(system) level. For the purpose of sequencing and segmen
tation, computational jobs are modelled by the parallel 
task graph (PTG).9 A task is a set of instructions which, 
once initiated, can be carried out to its completion by a 
pipeline without the need for additional inputs. Thus one 
can consider a single instruction a task. A task can be often 
partitioned into a set of subtasks, each of which can be 
executed by one pipeline-segment. In the rest of the paper, 
no distinction is made in use between a task and a subtask. 
A program or a job in the pipeline system consists of a set 
of tasks. A PTG is a loop-free directed graph in which (1) 
each node represents either a task or a set of tasks in a loop, 
and (2) a transition exists from the node i to the node j if 
and only if the task j depends for its initiation on a result 
generated by the task i. 

In the PTG, each loop or a strongly connected subgraph 
is abstracted into a single node, or task. A sequencing pro
cedure is developed to execute the loop-free PTG. If any 
loop or strongly connected subgraph is large (many nodes 
and/or large execution times), its execution sequence during 

(s~ent \ 

Sequencer I----........ ~ Executer 

computational Tasks 

Figure 8-The concept of the DSSM 



292 National Computer Conference, 1974 

~
6 

7 8 

9 

SEGMENT. SEQUENC • EXEC. 

LAU 

Figure 9-An example of a PTG in execution 

each iteration can be analyzed by the segmentor and se
quencer of the DSSM, and the sequencing information is 
provided to the executer. This is equivalent to opening up 
the loops so that they are in a spiral sequence of tasks 
repeated a finite number of times. If the loop or the strongly 
connected subgraph of tasks is small it can be considered as 
a single task. The segment or and the sequencer together 
may be called the look-ahead unit (LA U) in the sense that 
both sequencing and segmentation are look-ahead functions 
(Figure 9). 

Design principles of the DSSM 

Dynalllic sequencing 

The sequencer determines the execution sequence of a 
segment of tasks while a previous segment of tasks are being 
executed. This sequencing technique possesses high adapta
bility to dynamically varying environments, which is superior 
to the static (pre-) sequencing. Presequencing or static 
sequencing may result in inefficient executions because it 
cannot take into account the variation of job characteristics 
over time, or the run-time changes in resource utilization 
patterns due to external interrupts, etc. 

Basically, the sequencing problem can be formulated as 
follows. Given the configuration and characteristics of the 
pipeline, and a set of related tasks to be executed, it is 
required to develop an execution sequence (schedule) that 
reduces the total execution of the set of tasks. It is assumed 
that the task dependencies and the task execution times (or 
their estimates) are known. In this paper, we shall focus 
ourselves to the problem of scheduling and sequencing a set 
of related tasks in a single large program as represented by 
its PTG. The problem of sequencing unrelated and inde
pendent jobs is a simple case and we shall not consider this. 
It is well-known that the overhead for computing the opti
mu..'TI sequence increases almuiSt exponentially with the size 
and the structure of the task graph. Moreover, the resulting 
sequence could at best be suboptimal because of variances 
in their predicted values of execution times during run-time, 
etc. A heuristic algorithm which produces a reasonably 
efficient sequence with much less overhead would be highly 
desirable. The heuristic should accomplish the fo]]owing" It 

should update the set of ready tasks according to the prece
dence relationships and the availability of facilities and it 
should select a task from the ready set by applying various 
selection rules. One example of a selection rule is to calculate 
the length of the longest path in time from each of the ready 
nodes (tasks) to the exit node and then to select the node 
with the longest path among them. 14 Since the suitability 
of any heuristic is highly dependent upon the system con
figuration and the characteristics of input jobs, comparative 
evaluation of algorithms under the given environment will 
be the reasonable approach for selecting a suitable algorithm. 
An example of the sequenced PTG is presented in Figure 10. 
Figure lO(a) shows an example of the PTG where each node 
(task) is associated with the necessary information for 
sequencing, the estimated time and the kind of facility 
required for the execution of the node (task). A double line 
in Figure lO(b) denotes the determined sequence of the 
parallel processable tasks competing for the same kind of 
facility. For instance, nodes 3 and 6 represent two parallel 
processable tasks requiring the same kind of facility, Fl 
and they are sequenced into the execution order (3,6). The 
execution of the program according to this sequence is 
expected to take 105 time-units. 

Dynalllic seglllentation 

Segmentation here is also a dynamic segmentation anal
ogous to the dynamic sequencing. It behaves according to 
the distribution of the work-load in the DSSM which is a 
dynamically varying characteristic. 

Segmentation consists mainly of two parts: (1) To decide 
on the size of the next computation-segment, i.e., the number 
of nodes in the next segment to be sent to the sequencer, and 
(2) To select the nodes in the giv8n task graph for that 
segment. The efficient segmentor has to pick up the ap
propriate size of segment for sequencing such that the se
quencing time of the new segment is almost the same as 
the execution time of the current segment. Once a segment 
is selected, its execution time can be estimated and this is 
used to determine the size of the next segment. Therefore, 
it is desirable to know the nature of variation of overhead 
(time to generate an efficient execution sequence) with the 
size (number of nodes) of the segment analyzed (i.e., overhead 
characteristic) . 

F1~ 

::1 ,~ 
10 25 45 60 80 105 

(a) A PTG (b) A Sequenced PTG 

Figure 10-An example of the sequenced PTG 



Pipelining-The Generalized Concept and Sequencing Strategies 293 

The other factors that affect the overhead have been 
ignored for simplicity. Once the algoirithm is fixed, this re
lation can be obtained by experiments and utilized in the 
DSSM. 

Figure 11 shows an example of the overhead characteristic 
for a specific sequencing discipline. The curve represents a 
portion of the data obtained by the experiment with the 
randomly generated PTG's (refer to later section). The 
number of nodes contained in each PTG ranged between 
4 and 120. We used the heuristic algorithm developed in 
Reference 10 for sequencing. The selection rule in this 
algorithm is basically to calculate the priority for each task i 
in the set of ready tasks by using the following priority 
function p(i) and then select the task of the highest priority. 

p(i) =SIGN(T(i) - T8(i» ·MIN(T(i),T8(i» 

where T 8(i) = MAXjES(i)[T( j)], SCi) = a set of successor tasks 
of the task i, and T(i) = execution time of the task i. The 
simulated DSSM was run on a CDC 6400 computer. One 
time-unit of overhead in Figure 11 is roughly equal to 1 
millisecond taken by the simulated sequencer for analysis. 
The smooth curve in Figure 11 is an interpolated approxi
mation of the data represented by the discontinuous line 
shown in it. If a certain segment is going to take 75 time-units 
for execution, the suitable size of the next segment ",'ill be 
of 21 nodes. Of importance here are the shapes of the curves 
rather than their numerical significance, since the latter 
depends upon the method of implementation. The curve 
approximates a polynomial. The reason for this is that the 
analysis time of a segment grows rapidly with the number of 
tasks (nodes) in it. 

N ext, the picking up the given sized segment from the 
task graph, is done by maintaining precedence relations 
between the tasks. A sophisticated method requiring a large 
overhead would not be favorable unless it makes the sig
nificant increase in the system performance. This appeared 
to be valid by experiments with two algorithms of different 
degrees of sophistication.8 One of them called the precedence 

125 

100 

"Cl 
CIS 
Qj 

75 ,d 

'"' Qj 

> 
0 

50 

25" 

8 16 

e.g. 
Execution Time of 

Current Segment = 75 

J 
Next Segment-size = 21 

21 24 32 

Segment-size (No. of Nodes) 

Figure 11-The overhead characteristic curve 

Size of the Next Segment: 2 
1st Precedence Partition: (l) 
2nd Precedence Partition : {2} (3) 
Outdegree of (2) : 2 
Outdegree of (3) : 1 

... The Next Se!Jllent = «(1) .(2}) 

Figure 12-The PPO algorithm 

partition and outdegree (PPO) algorithm is shown below for 
the purpose of illustration. The principle is to select nodes 
in the order of precedence partitions and in the order of 
outdegrees within the same partition (Figure 12). 

The other algorithm used in the experiments was the 
precedence partition and random assignment (PPR) algorithm 
which is different from the PPO algorithm only in that 
nodes ",'ithin the same precedence partition are selected 
randomly. For the example PTG in Figure 12, this algorithm 
will randomly pick up either nodes (1) and (2) or nodes (1) 
and (3) as the next segment. 

Balancing the workload 

As was discussed in the preceding section, the method of 
selecting the segment to be sequenced should be carefully 
designed since the effectiveness of the DSSM is highly sensi
tive to it. W-hen the execution time of the segment just 
analyzed is accurately knmvn, the sequencer would select a 
new segment whose analysis time (overhead) is equal to 
the execution of the segment (just analyzed). If this state 
of affairs is sustained, that is, the execution time of the 
current segment is almost equal to the sequencing time of 
the next segment, we shall call this the normal or balanced 
state. The proper size of the next segment is chosen by 
consulting the overhead curve (Figure 11). 

On the other hand, when the execution times are not 
accurately known, then either the sequencer or the executer 
may occasionally have to wait for the other to complete its 
function. W-hen there is a fixed amount of buffer storage 
between the sequencer and the executer, the segment already 
analyzed by the sequencer may be queued until the executer 
becomes available. If the execution of the current segment 
finishes before the sequencer completes its analysis of the 
next segment, the executer would be idle until the next 
segment is ready. In this case, the DSSM is said to be in the 
sequencer-overloaded state. On the other hand, when the 
executer is busy processing a segment, either the next segment 
just analyzed by the sequencer has to be queued or the 
sequencer would have to wait if there is not space left in 
buffer storage. If there is at least one segment queued in the 
buffer storage when the sequencer just completes the analysis 
of the next segment, the DSSM is said to be in the executer
overloaded state. In any of these cases, the performance of 
the DSSM may become somewhat degraded. 

Many factors are ignored in the evaluation of the overhead. 



294 National Computer Conference, 1974 

(3) Te = 4.0 
'tl 
~ 144 --------

..c 
!-I 
Q) 

6 

30 36 40 

No. of Nodes 

(2) Te = 2.5 

(1) Te = 1.5 

Figure 13-Analysis of the overhead characteristic curve 

So, there exists a possibility that the workload in the DSSM 
may be unbalanced sometimes. In such a case the workload 
can be balanced dynamically in the following simple manner. 
Suppose the DSSM is in the executer-overloaded state. This 
situation is detected by the sequencer examining the status 
of the buffer storage each time it completes the analysis of 
a segment. Then the segmentor will select a larger segment 
of the size corresponding to the overhead equal to the sum 
of execution times of all segments queued up (including the 
segment just analyzed) so that the sequencer may complete 
the analysis of the next segment about the time when the 
executer completes executions of the segments queued. In 
the case of the sequencer-overloaded state, the following two 
cases can be considered. If the execution time of the segment 
just analyzed is accurately known, the segmentor takes a 
segment of the size corresponding to the overhead equal to 
the execution time of the analyzed segment, called a segment 
of the proper S1:ze. On the other hand, when the execution 
time is not accurately known but roughly estimated, it is 
presumed that the sequencer-overloaded state may persist 
if the segme~tor takes a segment of the proper size. Thus 
the segmentor takes a segment of the size smaller than the 
regular size. This is then repeated until the workload distri
bution reaches "the balanced state. In this way, the DSSM 
can resume the balanced state from any unbalanced state. 

Behavioral analysis 

By analyzing the overhead curve, two interesting properties 
of the DSS~1 can be discovered. 

First, the stabilized segment-size is predictable. That is, 
the size of the computation-segment (number of nodes or 
tasks) becomes almost fixed after some transient time. We 
shall call this the stabilized segment-size. 

The straight lines 1, 2, 3 of Figure 13 called the normal 
execution time curves represent the expected execution time 
of the segment depending upon the Regmen t-Rize; when T e 

is 1.5, 2.5 and 4.0 respectively. Here T e denotes the average 
effective execution time per node in the given PTG and is 
obtained as follows: 

Ta 
Te= ADOP' 

where T a denotes the average execution time per node and 

ADOP denotes the average degree of overlapped processing 
which is in turn defined as the average number of nodes being 
executed concurrently during the execution of the given PTG. 
More specifically, T a is the average amount of time required 
for executing one task (node) by the required facility in 
the executer. It can be interpreted as the quantitative 
measure of the level of a task which is directly proportional 
to the level of a pipeline. Provided that the executer is 
always busy, liTe is the average number of nodes which 
the DSSM executes in a unit of time. T e is dependent upon 
the level of a task and the ADOP which are dependent 
upon the job-characteristic and the system configuration. 

We shall call the crosspoint of the normal execution time 
curve with the overhead curve (excluding the origin) the 
stabilized point. Provided that the overhead curve has a 
monotonically increasing property, there ,vill exist a unique 
stabilized point. For instance, the stabilized segment-size is 
36 when T e = 4.0 in the diagram. The reason is as follows. 
For the sake of explanation, let ni denote the number of 
nodes in the ith segment picked up by the segmentor and 
ti denote the normal execution time corresponding to the 
size of the ith segment. Suppose n1 is 30 which is smaller 
than the stabilized size 36 (Figure 13). Then h=n1XTe= 
30X4.0= 120. Now n2 is determined from the point in the 
overhead curve corresponding to t1 (= 120) time-units of 
overhead. So, n2=32 and t2=n2XTe= 128. Similarly, (n3=33, 
t3= 132)=>(n4=34, t4 = 136)=>(ns=35, t5= 140)=>(n6=36, t6= 
144)=>(n7=36, t7= 144)=>···. By the same reasoning, it can 
be intuitively seen that ni iteratively converges to the 
stabilized size 36 in the case where n1 is greater than 36. 

N ext we can determine the lower bound of the average 
executio·n tifne per node (T a) in the DSS~L The line 1 of 
Figure 13 is the derivative of the overhead curve which 
passes through the origin. It corresponds to T e= 1.5. This 
T e multiplied by the ADOP which is constant, is the lower 
bound of T a. Below this bound the execution of a job in the 
DSSM could result in the completion time longer than the 
one by the sequential execution without any segmentation 
and sequencing. Since T e is dependent upon the level of a 
task, there is a practical limit to the level at which the 
DSSM can be effectively applied. One approach to overcome 
this limit would be to reduce the overhead by the specialized 
implementation of the critical portion of the sequencer using 
firmware or hardware. 

Performance evaluation and implementation 

In this section, we present some results of performance 
e1raluation studies carried out to validate the feasibility of 
the DSS.M for implementation. This evaluation was done 
by simulation. 

A PTG is the main input to the simulated DSSM and the 
connectivity matrix9 was adopted for the internal represen
tation of the PTG. 

In order to test a wide range of inputs, the random PTG 
generator (RPTGG) has been developed. It produces the 



Pipelining-The Generalized Concept and Sequencing Strategies 295 

directed graph of random connection without loops, and the 
user can control the arc density and the pattern of the 
graph in order to tune it up to the desirable pattern based 
on intuition or experience. It is a useful tool for various 
studies in parallel processing. The basic algorithm is shown 
in Figure 14. 

The overhead characteristics used was the one determined 
by the experiment in an earlier section of this paper. The 
execution time of each task was randomly generated using 
the average value T a. Simulations were performed for several 
values of Ta (1, 2, 5 and 10 time-units). One time-unit 
represents 1 millisecond taken by the simulated executer for 
execution. The whole simulator was prepared in FORTRAN 
and run on the CDC 6400 computer. 

The first observation was the negative effect of the sophisti
cated segmentation algorithm. The benchmark algorithms 
used were the PPO and the PPR algorithms introduced 
earlier. By simulation, the PPO algorithm didn't show any 
significant improvement of the gain compared to the PPR 
algorithm while its overhead was many times larger than 
that for the PPR algorithm. The PPO algorithm was dis
carded and only the PPR algorithm Vias used throughout 
the remaining simulation. 

As a measure of performance, we used the follo",i.ng quan
tity, the gain by overlap. 

Gain(%) = ( 1- ~:)*100 
where T p = Total completion time for the program in the 
pipeline system and T 8 = Total completion time for the pro
gram in the sequential (non overlapped) system. 

The following diagrams show the typical results obtained 
(Figures 15(a), 15(b)). 

Curves 1 and 2 represent the case where a job is sequenced 
as a whole without being segmented. That is, the system 
doesn't have the segment or. A whole PTG is analyzed at a 
time by the sequencer and then sent to the executer. Curve 1 
is the case where the overhead is completely ignored, while 
curve 2 contains the full overhead. Therefore, curves 1 and 2 
are the upper and lower bounds of the gain obtainable by 
the system without the segmentor. 

Curves 3 and 4 represent the case of the DSSM. Curve 3 

Parameters Generate the precedence partition 
(N. S. P) (p.P.) whose size is decided randomly c:r- until the sum of all P. P. 's exceeds N. 

V 
Starting from the 1st P. P., do the 
following for each node 
1. Generate S successors randomly but 

within the later P.P. 's 
2. Generate P predecessors randomly 

but within the immediately preced
ing P.P. 

3. Generate the required facility and 
the execution time randomly 

N ::= Total 
number of 
nodes in 
the graph 

Figure 14-The random parallel task graph generator 

80 

60 

20 

o 

~20 

," 
1-6... /' 35 

............ / 

", 
", 

".------

",-
/" 

-',----/ 

" .",---------"'''' 

55 75 95 
No. of Nodes 

Figure 15(a)-Performance of the simulated DSSM when Ta = 10 

is the case where the overhead required for segmenting and 
sequencing the first segment, is completely ignored, while 
curve 4 contains the full amount of the overhead·. 

Curves 1 and 3 can be regarded as those situations in 
which jobs are continuously entering the system and the 
sequencing of the new job is fully overlapped ",i.th the exe
cution of its preceding jobs. 

On the other hand, curves 2 and 4 can be regarded as 
those in \vhich jobs are entering at discrete intervals and the 
sequencing of the new job is not at all overlapped with the 
execution of preceding jobs. Therefore, the gain under the 
continuous operation will range between those of curves 1 
and 2 for the system without the segmentor and between 
those of curves 3 and 4 for the DSSM. 

It is noteworthy that the DSS:vr maintains a high gain 
close to the maximum upper bound of performance (curve 1). 
This implies that it is highly adaptive to a dynamically 
varying environment. This can be more precisely stated by 
using the following notations. Gi(n) denotes the gain repre
sented by the curve i in the diagram corresponding to n 
nodes. AG(n) denotes the average gain obtained by the DSSM 
in the case of n nodes. AG(n) is obtained from the diagram 
as -!·[G2(n)+G3(n)]. N denotes a set of all instances of the 

80 
T =1 

'cD 60 

o ~t-;'i;-~--r:h:---IrM-~~--G) 

-20 
--Q 

-40 
CjJ 

Figure 15(b )-Performance of the Simulated DSSM when Ta = 1,5 



296 National Computer Conference, 1974 

Control Processor 

Sequencer 
Region 

Executer -
Region 

Figure 16-Reconfigurability in a pipelined computer network 

discrete variable n which represents the number of nodes. 
Then, the ejJiciency of the dynamic sequencing and segmen
tation, Q, can be defined as follows: 

Q" = A VG[ Average gain obtained by the DSSlVI ] 
•• nEN Maximum upper bound of the gain obtainable 

= AVG[AG(n)] = [ 2:(AG(n»)] / #(N) 
nEN Gl(n) nEN Gl(n) 

where AVGnEN[X(n)] represents the average value of X(n)'s 
corresponding to all nEN, and #(N) represents the cardi
nality of N. As indicated by the diagram, the values of Q 
obtained from simulations were mostly over 85% where T a 

was larger than 2 time-units. 
As expected from the analysis of the overhead curve, the 

simulation results showed poor performance where the aver
age execution time per node was less than the lower bound 
(when Ta= 1 in Fig. 15(b». 

In short, simulation confirmed the validity of the analysis 
as well as the steady high performance of the DSSM. 

The implementation of the DSSM must be based on the 
characteristics of the environment. The level of pipelining, 
the capability of multiprogramming and the multiplicity of 
facilities are the prime factors which affect the implemen
tation. Also the level of language in which the input tasks 
are prepared is one of the factors which affect the method 
and time of parallelism detection. It is much simpler to detect 
parallelism from the machine language program than from 
the high level language program. In the case of the high 
level language input, the implementation varies depending 
upon whether the program is compiled ll,nd executed or 
directly interpreted. 

The physical capacity of the LAU consisting of the 
sequencer and the segmentor may be much smaller than the 
one of the executer because (1) the algorithms employed for 
the sequencing and the segmentation normally don't make 
use of any complex operations and (2) the input data to this 
unit is an abstract model of the program instead of the 

program itself. It could be a special purpose processor with 
a small storage whose critical functions are hardware- or 
firmware-implemented. 

The executer may vary from a set of small processors to a 
set of large scale processors. 

Extension of the DSSM 

Extensibility of LAU 

The sequencing and the segmentation are not the only 
functions which can be provided by the LAD. In other 
words, the LAU can be easily extended to perform other 
desirable look-ahead functions. Typical examples are the 
look-ahead for branching decisions and the fault diagnosis 
and recovery. It is often possible that the execution of one 
segment provides enough information to make branching 
decision in advance before the decision point is encountered 
in later segments. Also the LA U can periodically diagnose 
t.he part of the executer ",ithout interfering with the exe
cution. In addition, it can assist dynamic storage allocation. 

Explorations of various useful look-ahead functions and 
the relevant implementation techniques are under way. 

Pipelined computer network 

Concepts of the pipelining and the DSSM can be effectively 
applied to a reconfigurable computer network which consists 
of a number of processors. The processors in the network 
can be partitioned into two sets according to their functions. 
One set acts as sequencers while the other set acts as exe
cuters. Since there can be several sequencers, more than one 
sequencer may be employed to the sequencing of several 
segments of a single job (this mode of sequencing is called 
the parallel sequencing) or a set of independent jobs. 

The ratio of the number of executers to the number of 
sequencers is variable and thus the system becomes highly 
adaptive to the varying workload distribution. In other 
words, each processor may function as a sequencer at one 
time and as an executer at another time. The function of 
each processor is determined depending on the workload 
distribution in such a way that the system keeps the balance 
(Figure 16). 

Amongst the executers, each processor functions as a 
facility-segment of a reconfigurable pipeline. Consequently, 
a set of facilities available for configuring pipelines are 
dynamically changing. New techniqneR mllRt he developed 
to solve problems in pipeline configuration, sequencing 
algorithm, etc. 

Because of the consistent decreases in the hardware cost, 
a computer network becomes feasible and attractive in the 
future, especially in the form of miniprocessor· networks 
where each miniprocessor takes a specialized functional role, 
possibly via microprogramming. 



Pipelining-The Generalized Concept and Sequencing Strategies 297 

CONCLUSION 

The generalized pipelining appears to be a promising approach 
to further increase the throughput rate, processing speed 
and system reliability. A need exists for efficient implemen
tation techniques. Pipelined computer network is a further 
generalization and needs to be investigated in detail. 

REFERENCES 

1. Thornton, J. E., "Parallel OpEration in the Control Data 6600," 
AFIPS FJCC, Part II, 1964, pp. 33-40. 

2. Anderson, D. W., et aI., "The Systemj360 Model 91: Machine 
Philosophy and Instruction Handling," IBM Journal, Jan. 1967, 
pp.8-24. 

3. Anderson, S. F., et aI., "The Systemj360 Model 91 Floating-Point 
Execution Unit," IBM Journal, Jan. 1967, pp. 34-53. 

4. Hintz, R. G. and D. P. Tate, "Control Data Star-100 Processor 
Design," Proc. COMPCON 1972, pp. 1-4. 

5. Watson, W. J., "The TIASC-A Highly Modular and Flexible 
Super Computer Architecture," AFIPS FJCC, 1972, pp. 221-228. 

6. Ramamoorthy, C. V., J. R. Goodman, and K. H. Kim, "Some 
Properties of Iterative Square-Rooting Methods Using High Speed 
Multiplication," IEEE Trans. on Comp., Aug. 1972, pp. 837-847. 

7. Baer, J. L., "A Survey of Some Theoretical Aspects of Multipro
cessing," Computing Survey, Mar. 1973, pp. 31-80. 

8. Ramamoorthy, C. V. and K. H. Kim, "Dynamic Sequencing and 
Segmentation in the Generalized Pipelining System," Proc. 2nd 
Texas Conf. on Computing System, Nov. 1973. 

9. Ramamoorthy, C. V. and M. J. Gonzalez, "A Survey of Techniques 
for Recognizing Parallel Processable Streams in Computer Pro
grams," AFIPS FJCC, 1969, pp. 1-15. 

10. Reddi, S. S. and C. V. Ramamoorthy, Sequencing Strategies in 
Pipeline Computer Systems, Technical Report No. 134, Electronics 
Research Center, The University of Texas at Austin. 

11. Chen, T. C., "Unconventional Superspeed Computer System," 
AFIPS SJCC, 1971, pp. 365-371. 

12. Ramamoorthy, C. V. and H. F. Li, "Efficiency in Generalized Pipe
line Networks," Proc. NCC, 1974. 

13. Shar, L. E., Design and Scheduling of Statically Configured Pipe
lines, Ph.D. Thesis, Dept. of E.E., Stanford University, 1972. 

14. Chandy, K. M. and J. R. Dickson, "Scheduling Identical Proces
sors in a Stochastic Environment," Proc. COMPCON 1972, pp. 
171-174. 





Interfacing communication network to IBM System/360 and 
System/370 host processors-An end users viewpoint 

by JOHN T. M. PRYKE and LAWRENCE J. MUNINI 

Wang Computer Services 
Tewksbury, Massachusetts 

IBM COMMUNICATIONS EQUIPMENT 

Before discussing interfaces per se, it seems wise to re
view briefly the existing IBM communications environ
ment. As shown in Figure 1, there are four basic types of 
hardware components. These are remote terminal devices, 
which may consist of high-speed RJE stations; low-speed 
time sharing terminals, (CRT or hardcopy); remote CPU's; 
and a variety of other specialized remote devices (credit 
card readers, etc.). 

These remote devices communicate 'with an IBM System/ 
360 or System/370 host processor by means of either a 
2700-series Transmission Control "Gnit (2701, 2702, or 2703) 
or a 37oo-series Communications Control Unit (3704 and 
3705). The 2700's are basic, hardwired controllers which 
contain a limited amount of logic peculiar to the charac
teristics of each line and/or terminal device. This logic 
includes the ability to recognize special control characters, 
the assembly and disassembly of characters, and certain 
line monitoring to time-out inactive devices. The 3700-
series Communication Control Units are actually communi
cation processors, but are programmed to operate as perfect 
emulators of existing 2700's by means of an Emulator 
Program (EP). 

Connecting the host processor with a Transmission 
Control Unit is the multiplexor channel over which multi
plexed messages (either in one or four-byte blocks) are 
transmitted back and forth to the network. The multiplexor 
channel, its architecture and command sequences are diffi
cult to understand, and for many years have blocked de
velopment of effective non-IBM communication controllers. 

In the host CPU, communications are currently handled 
by three basic pieces of software. First, there is the operating 
system (OS, DOS, or VS) which is linked to the user's 
application program via an access method (Basic Tele
communications Access Method-BTAM, Queued Tele
communications Access Method-QTA~1, or Telecommuni
cations Access :Method-TCAM). The interface between the 
operating system and the access method contains linkages 
and protocols which, if violated, ""ill "clobber" the operating 
system. The linkage between the access method and the 
application program is on a macro or assembly language 

299 

level (with the exception of TCAM which incorporates a 
COBOL-level interface) and requires considerable skill by 
an application programmer to communicate with the net
work. 

To transmit (or receive) a message, the application pro
gram must first frame the message with control characters 
appropriate to the destination device. Next, an access 
method macro subroutine is called to translate the message 
from System/360 or System/370 EBCDIC code to the 
code used by that device (i.e., a Device Dependent Module). 
The application program next begins to build the actual 
message in a buffer area; once the buffer is filled, a channel 
program f:!tarts transmission of the message to the network. 
In the meantime, the access method enters a "W AIT" 
state until transmission is complete before the next opera
tion starts. The access method is also responsible for all 
basic teleprocessing functions such as routing, polling, error 
recovery, and device dependencies. Needless to say, all of 
these activities consume CPU cycles and core within the 
host processor. 

TYPES OF CHANNELS 

It is to this environment that the manufacturer of a 
non-IBM communications processor must address himself. 

The input/output architecture of the IBM System/360 
and System/370 supports three types of channels, each with 
its own operating characteristics. The three channel types 
are the byte multiplexor, selector, and block multiplexor 
(S/370 only). 

The byte-multiplexor channel can operate in either of 
two modes, byte-interleave mode or burst mode. Operation 
in byte-interleave mode gives the appearance of multiple, 
simultaneously active devices on the channel to the pro
grams executing in the host processor. This is accomplished 
by splitting all I/O operations into short intervals of time, 
during which only a segment of the available information 
is actually transferred across the channel interface. In fact, 
at anyone instant, only one device at a time is logically 
active on the channel. The appearance of a multiplicity of 
simultaneously active devices is achieved by servicing 



300 National Computer Conference, 1974 

IBM HOST PROCESSOR 

S/~O OR S/370 

APPLICATION OP£RA~ 
(UlIEII) SYSTDI - OS, 

00" 
\IS 

MULTIPLEXOR 'IM 
2.701, 
2702, 

CHANNEL 2703 

ACCESS METHOD- BASIC TELECOMMUNICATIONS ACCESS 
METHOO (BTAM) 

QUEUED TELECOMMUNICATIONS ACCESS 
METHOD CQTAM) 

TELECOMMUlilCATIONS ACCESS METHOD 
(TCAM) 

REMOTE 
TERMINALS 

Figure I-Existing IBM telecommunications environment 

requests from a number of different devices at a rapid rate 
and by constraining each request to be very short in length 
(and thereby, in time). 

Traditional IBM teleprocessing control units request 
service for one to four byte segments at a time. Obviously, 
there is some signalling overhead on each service request to 
identify which device it is associated with. The time for 
this overhead is appreciable, when it it multiplied by the 
number of segments required to comprise a message. This 
overhead tends to make byte-interleaving attractive for 
short messages from slow devices (such as keyboard inter
active terminals) but not as economical for fast terminals 
which typically communicate long messages (e.g., remote 
batch terminals). Operation in burst mode is defined as 
dedication of the channel control functions to one device 
for the duration of an entire information transfer. 

The selector channel operates in burst mode only. The 
utility of burst mode operation is that signalling overhead 
is only needed once per complete message transfer, instead 
of once for each tiny message segment as in byte-interleaving. 
This is why "fast" devices (e.g., tapes and disks) are usually 
run in burst mode. Telecommunications devices, on the 
other hand, do not usually interface to an IBM host pro
cessor in burst mode because of their slow operation (rela
tive to internal host CPU and channel speeds). For example, 
a buffered terminal which "sends" a 1200 byte message to 
a host CPU over a 9600 baud line (assume 8-bit characters 
so that 9600 bits per second and 1200 characters per second 
and no other delays, such as line turnaround, modem la
tency, etc., are taken into account) would require one 
second of channel service time. During that one second 
interval, only about one thousandth of the capacity of the 
channel would have been used. Furthermore, if burst mode 
had been used, the channel would have been "tied up" 
servicing that device for the full second. All other devices 

attached to the channel would have been "locked out" 
for the duration. However, if the system operation were 
reorganized so the message was buffered in a device attached 
to the channel (instead of at a terminal at the other end of 
a communication line), then the limitation of the line speed 
would not be a factor in conveying the message to the host 
processor via the channel. Thus, burst-mode operation 
would be more applicable to telecommunications traffic. 

The block multiplexor channel operates only in burst 
mode, but it has the capability to interleave blocks of data 
from multiple devices. This is done by servicing a pending 
request from another device, when the device occupying 
the channel in burst mode transfer reaches an end-of-block 
condition. The result is that block multiplexor channel 
operation has all the advantages of the high transfer rate 
associated with burst mode operation, and the disadvantages 
of channel lockout are reduced. 

INTERFACING OPTION 

From a user's standpoint, there are three basic methods 
of interfacing communication processors to IBM System/ 
360 and System/370 channels and mainframes: 

• Emulators 
• Intelligent Emulators 
• True Front-Ends 

As its name implies, an emulator is a plug-for-plug replace
ment of an existing IBM control unit. To date, the three 
basic types of emulator on the market have met with vary
ing degrees of success. These include the 2700/3700 emulator 
(270X/370X), the tape drive emulator, and the disk drive 
emulator. Of these, the 270X/370X emulator is probably 
the most popular and has met with the highest degree of 
success. By its very design, it interfaces perfectly with 
existing IBM telecommunications access methods and 
program products, and thus requires no change whatsoever 
in the existing IBM mode of operation. 

For example, if BT AM is the access method used with 
an IBM 2703 or 3705, it remains present and unchanged 
when running with a perfect 270X emulator. 

The 270X emulators can be divided into two categories; 
hardwired controllers (such as the Memorex 1270) and 
software-coded minicomputers (such as the Interdata 270X 
or the Digital Equipment PDP-11). Although the hard
wired controller offers substantial cost savings, certain 
features are available (such as automatic speed detection) 
which give it limited advantages over the standard IBM 
2701, 2702 or 2703. However, the advantages end there. 
The user is still forced to rewrite his host processor access 
method macros and change terminal adapters to support 
new devices and/or different applications. 

Software emulators offer the user some cost advantages, 
but their greatest benefit lies in flexibility. Effective com
munications oriented real-time operating systems and 
modular device drivers make it possible to support non-



Interfacing Communications to IBM System/360 and System/370 Host Processors-An End Users Vimvpoint 301 

IB:M-compatible devices by changing the communications 
processor program only. Thus, a programmable base exists 
for future expansion to permit the minicomputer to take 
over most of the communication control functions from 
the host IBM CPU. Thus, it serves as a stepping stone to 
a true Network Control Program form of front-end. 

A second class of software emulator appears as a sequen
tial device on the IBM selector channel. For the most part, 
these devices emulate IBM 2803 tape controllers, for ex
ample, Action Computer System's communication controller. 

Processors which emulate 2314 disk control units have 
been somewhat less popular (e.g., the large Collins "c" 
System). Although these devices represent an attractive 
interface to user programs at the GET/PUT level, (thus 
eliminating the complexities of BTAM) , sequential devices 
are designed for long message bursts at high speed. If con,
siderable communication traffic is present in a network, it 
is possible as noted above to lock out other devices from the 
selector channel such as standard tape or disk drives, thereby 
limiting the user's access to mass storage media. The se
quential device emulator, while thus attractive in certain 
applications, cannot be classed as a really effective solution 
to network control. 

One step above a standard 270X type emulator, but not 
really a true "front-end", is the so-called intelligent emula
tor. This device usually consists of a programmable com
munications processor .vhich appears to the host IBM 
CPU as a 270X, but which offers a number of enhanced 
features through programming. For example, non-IBM
compatible devices can be supported by such special soft
ware and thus made to appear to the host program as an 
IBM equivalent. 

A second example is the "fail soft" protection against 
cessation of host processor operation. Should the IBM 
mainframe cease to operate, a special program module 
would allow the emulator to broadcast messages to all users 
telling them to discontinue traffic because the central site is 
down. Through the communication processor console, 
variable text could be inserted in such messages to inform 
the users when operation will resume. 

A third example might be automatic port selection. In 
this case, all users would dial a single number for the host 
computer. By a simple sign-on procedure, the user would 
identify his device; the intelligent emulator would connect 
him ",ith that "port" of the IBM CPU through which he 
can access the application he wants to communicate with. 

A fourth possibility might be a local message switching 
capability. Each incoming message would be examined for 
a destination address; those bound for the host processor 
would be passed directly to it, while those bound for other 
terminals would be routed accordingly. 

In all of these example, the communications processor 
appears as a perfect 270X emulator, only the junctions 
performed by the processor differ. Therefore, without change 
to existing IBM telecommunications environment, users 
!Hay realize considerable network flexibility above and 
beyond the control units supplied from Poughkeepsie. 

NETWORK CONTROL PROGRAM 

Finally, there exists the "true front end" or .... ·hat IBM is 
promoting as the X etwork Control Program or front end 
KCP. Fundamentally, a communications front end is in
tended to remove the functions of controlling the telecom
munications network from the host processor. The reasons 
for doing this are threefold. 

The first is to reduce the cost of supporting a communi
cations network. Most IB::Vl teleprocessing installations 
have a significant portion of host processor resources tied 
up in terminal-dependent processing. Each software package 
that controls terminals has its own access method. For 
example, HASP users must use RTAM. CICS uses BTAM 
and special purpose applications; ATS has its O"\vn EXCP 
level programming built right in for terminal control. Ac
cordingly, any installation supporting two or three tele
processing applications usually has two or three teleprocess
ing access methods occupying core and using CPU overhead 
to execute. 

A second motivation to front end an IBM processor is 
the desire to overcome the somewhat arbitrary S/360 and 
S/370 architecture restrictions, (they are not arbitrary from 
IBM's point of view; they are a fundamental marketing 
approach). For example, each terminal (line) is dedicated to 
a specific device address on the channel and thereby limited 
to one access method when the operating system is gen
erated. To date, a single terminal could only communicate 
with one access method and thereby usually only .vith one 
application. Furthermore, since the terminals specific pro
gramming is provided in the host computer, and IBM 
primarily distributes software to control IB~1 terminals, 
the user cannot take advantage of the many benefits offered 
by the new terminals from other vendors. The terminal 
industry is currently one of the most rapidly changing 
segments of the computer field. Considerable advances are 
being made. Greatly expanded capability is being offered 
on new terminals by incorporating mini and micro pro
cessors right into the terminals at ever decreasing prices. 
Many IBM users would like to use these devices sooner 
than IBM is willing to let them. 

The third motivation to front end is to make the network 
more easily accessible to application programmers. This 
means removing terminal I/O from the "bit banging" level 
of device-dependent modules and assembly language coding. 
Access to and from terminals needs to be provided to pro
grammers working in higher level languages. Additionally, 
this type of software support should isolate the user, as 
much as possible, from the unique features of each terminal 
device. This device independence will make it easier to 
substitute new, improved, and lower cost terminals into 
the network. 

From the standpoint of interfacing a front-end to an IBM 
host, the user must examine his individual requirements 
and decide which of the above problems he wants to alle
viate. Then he can start selectLTlg one of the many alterna
tives available to him. Unfortunately, the current state-of-



302 National Computer Conference, 1974 

the-art of software technology does not furnish a general 
purpose solution to all of these problems. Thus, the user is 
forced to decide which specific area or areas he wishes to 
attack, and implement his solution accordingly. 

Some software technology already exists to ease the third 
problem, that of easing access to the network from higher
level languages. These are the TP monitors that are on the 
market. IBM's CICS and PMI's INTERCOMM are 
examples of these. They can be effective if a user can imple
ment all his applications under control of the monitor. Then 
he only has one access method in his machine, and terminals 
can select which application they wish to communicate 
with. Perhaps in the future IBM will bestow upon the in
dustry an improved access method which offers some of 
these advantages. Don't hold your breath waiting for it 
would be our advice, based on IB1\l's past record with 
teleprocessing access methods (remember QTAM?). 

IBM users supporting a network of polled terminals 
usually suffer the most from the polling overhead being 
incorporated in the host. These users would realize an im
provement in their operations by an intelligent emulator 
which does all polling and error recovery. In most cases, 
the host processor application would avoid drastic revision 
if it could be regenerated to use what it "thinks" are either 
unpolled terminals or the autopoll feature. The necessary 
programming could be incorporated into the intelligent 
emulator to achieve compatibility with the existing access 
method in the host. Following this approach usually makes 
it easier to support non-IB~1 terminals, since vendors of 
such systems are usually willing to offer this level of non
standard support as part of their product line. Additionally, 
some vendors offer support to enable the user to undertake 
this kind of activity himself provided the user has the 
expertise to do minicomputer programming himself. 

SOLUTIONS 

Limited solutions to the problems of overcoming S/360 
and S/370 architectural limitations and IBM marketing 
strategy exist at present. Intelligent emulators can contend 
for channel device addresses based on activity when there 
are more lines than addresses. This is an interim solution 
which works well until a user wants more than about 160 

active lines. Then he needs an access method which will 
map many lines onto a few channel addresses. Rumors of 
such an access method from IBJ\1 exist today. However, 
these rumors exist for S/370 users only. IBM has decreed 
that all its future enhancements will be restricted to virtual 
operating systems which only run on the S/370. People 
getting useful work done on S/360s, which are very cost
effective performers these days, are currently limited to 
emulators, intelligent emulators, and TP monitors to im
prove their efficiency. The best hope now is that after OS 
stabilizes for a period of time, some vendor will be brave 
enough to bring out a replacement access method the way 
some people are currently supplying enhancements to DOS. 
This would still be a mixed blessing at best, since existing 
applications would probably require a significant conversion 
and rewrite to utilize such a front end access method. 

SUMMARY 

In summary, in selecting a non-IBM communications 
processor, the user must take into consideration a certain 
number of basic factors: 

• Perturbations to his existing applications environment 
• Conversion to new hardware and software 
• The impact upon existing IBM program products 
• The effect on his overall telecommunications network 
• Emulation versus intelligent emulation versus front

ending as a means of meeting his needs 
• Support and maintenance 
• Cost and benefits 

Only when all these questions have been answered, can 
the user select that communications processor \vhose inter
face will truly match his environment, and which will 
effectively meet his needs. 

BIBLIOGRAPHY 

1. S/370 Principles of Operation, IBM Corporation, Armonk, New 
York. 

2. Pryke, J. T. M., "A Front-End Primer for IBM Users," Datamation, 
April 1973. 



Implications of changes in the secondary school-Mathematics 
curriculum for the computer science and computer 
engineering curricula 

by M. E. SLOAN 

Michigan Technological University 
Houghton, Michigan 

INTRODUCTION 

Many professors of computer science and computer engi
neering are relatively unaware of the changes in the second
ary mathematics curriculum in the last decade. The changes 
in mathematics have major implications for the design of 
computer science and computer engineering curricula in 
the colleges and universities. The thesis of this paper is 
that changes can be made in computer science courses to 
accommodate the changes in mathematics prerequisites 
and will result in strengthening the undergraduate program 
and allowing more time for advanced computer science 
topics. 

CHANGES IN SECONDARY SCHOOL MATHEMATICS 

In the early 1960s, a number of groups began working 
on major revisions of the elementary and secondary mathe
matics curricula. The most prominent of these groups was 
the School Mathematics Study Group, funded by NSF 
through the 1960s and early 1970s to combine the work of 
research mathematicians and high school mathematics 
teachers in a complete restructuring of the precollege mathe
matics curriculum. l SMSG initially developed curricular 
guidelines for the introduction of an approach to mathe
matics that would more clearly emphasize the structure of 
mathematics rather than routine computation. Realizing 
that the most effective way to get their ideas into the schools 
was to write textbooks and to train teachers to use them, 
SMSG initially devoted much time to the writing of texts 
that could be used in the schools and to the conducting of 
inservice training institutes to introduce teachers to their 
views of teaching mathematics. Later they concentrated 
on testing the effectiveness of their program versus more 
traditional programs and allowed other textbook authors 
to adapt SMSG materials freely. So pervasive were the 
SMSG ideas that by the time the project ended in the 
summer of 1973, SMSG director E. G. Begle of Stanford 
University commented that there were no mathematics 
texts in the country that had not been influenced by SMSG. 

303 

The changes in the secondary mathematics curriculum 
effected by SMSG may not be familiar to computer science 
teachers who graduated from high school ten or more years 
ago although they may know vaguely that even grade school 
students now spend much time on sets and less time on 
computational drill. Ten or fifteen years ago, the mathe
matics program of most high schools offered the college
bound student two years of algebra, a year of plane geom
etry, and a year of solid geometry and trigonometry. Some 
of the more adventurous schools offered an introduction to 
analytic geometry and calculus. All these courses comprised 
much the same material and approach since the turn of 
the century. 

The SMSG approach centered on displaying the structure 
of mathematics. Perhaps most important to computer 
science curricula is the early introduction to concepts of 
discrete mathematics that are central to digital computa
tion. Students are ordinarily introduced to basic ideas of 
sets in kindergarten and learn concepts such as set inter
section and cardinality in the lower elementary grades. 
They also gain an early introduction to number representa
tion and the use of number bases other than base 10. By 
sixth or seventh grade, most students have learned "clock 
arithmetic," an introduction to modular arithmetic. Com
puter-related concepts commonly taught in secondary 
mathematics are shown in Table 1.2-5 Many of these topics 
were previously not taught before the sophomore or junior 
year in college. The greater emphasis on discrete mathe
matics offers opportunities to accelerate development of 
computer science courses at the same time that the relative 
neglect of traditional computational skills, e.g., in trigo
nometry, necessitates greater remedial emphasis on pre
requisite skills for courses like surveying in other disciplines. 

A more recent development in secondary mathematics 
is the introduction of computer-based courses into the 
secondary schools.6 •7 There is not yet a standard pattern 
in the development of computer-based courses in the sec
ondary schools; much depends on the individual interests 
of the teachers introducing these courses although several 
universities are attempting to provide standard training 
for teachers in their localities.8- 11 Basically the computer-



304 National Computer Conference, 1974 

TABLE I-Typical Computer-Related Topics Taught in Secondary 
School Mathematics Courses 

Grade 7 
Numeration systems besides the decimal system 
Sets, including subsets, intersection, and solution sets 
Clock arithmetic (modular arithmetic) 
Number theory, including prime number factors, multiples 

Grade 8 
Equations and inequalities 
Elementary probability and statistics 

Grade 9 
Expressions, statements, and conditions 
2X2 systems of equations 
Mean, standard deviation 
Linear programming 

Grade 10 
Relations and functions 
Coordinate systems and distance 

Grade 11 
Relations and functions 
Linear programming 
Systems of equations 
Matrices 
Trigonometric functions and their graphs 

Grade 12 
Topics in linear algebra 
Topics in the elementary functions 
Topics in probability and statistics 

related courses offered in secondary schools can be classified 
into two different types: mathematics courses ",ith an 
algorithmic or computer-assisted approach and computer 
science courses. 

Courses of the first type use the computer as a key to 
the teaching of mathematics. Either the computer is used 
to assist instruction in much the same way that it might 
be used to teach any other subject, or it is used to give greater 
insight into the details of mathematics by using an algorith
mic approach to give the students more insight into under
lying principles. These courses either use no programming 
language at all-students converse with the computer by 
simply responding to tutorial programs written in a tutorial 
language-or use a simple programming language like BASIC. 

True computer science courses are being taught more 
frequently in high schools in what some reporters have 
even described as a torrent or an explosion. The most fre
quent computer science course taught is an introduction to 
programming and computers, similar to the BI course in 
ACM 68.12 Beyong this basic course, variations exist de
pending only on the whim of the instructor. Many second
ary schools offer seminars in mathematics at the senior 
year; in several of these, various aspects of computer science 
are discussed. Engineering-oriented courses in computer 
science are possible as an outgrowth of courses in electronics; 
in these courses, students learn elements of computer logic 
and computer organization. Vocational courses in data 
processing teaching elements of COBOL and business 
techniques have been suggested; the author does not know 
of any high school currently offering such a course. Even 
such advanced computer science topics as operating systems, 
that three years ago had not yet been codified into a text1 
are successfully being taught to high school students.10 At 

present, this is a very rapidly developing field which the 
university computer science instructor should try to follow. 

Computer science courses in the high schools have not 
yet made much impact at Michigan Tech. A survey made 
by the author this fall of 71 students enrolled in a sopho
more electrical engineering circuits course and 22 students 
enrolled in a senior electrical engineering logic design course 
showed that only 13 (15 percent) in the sophomore course 
and 3 (14 percent) in the senior course had taken a com
puter-related course in high school. As Michigan Tech 
draws its students primarily from rural high schools that 
lack the resources of urban schools, these figures are as
sumed to be an underestimate of the percentage of students 
in technical courses in the country who have had computer
related courses in high school. 

In addition to changes in the formal secondary mathe
matics curriculum, many high school students learn com
puter science topics from what is sometimes called the in
formal curriculum. The informal curriculum comprises 
activities such as mathematics and science clubs as well as 
popular science magazines frequently read by high school 
students and general exposure to the news media. It is 
through the informal curriculum that many high school 
students learn of computers. This influence is so pervasive 
that it is doubtful that many scientifically oriented high 
school students anywhere in the country today are unaware 
of such basic facts of computer operation as their binary 
nature and the need for precise specification of tasks. 

IMPLICATIONS FOR CURRENT COMPUTER 
SCIENCE COURSES 

The main changes for capitalizing on the improved back
ground of high school graduates in computer science and 
in discrete mathematics naturally occur in the first college 
courses in these areas. The most obvious improvement is 
to exempt students who have had programming in high 
school (or in the armed services or in industry) from begin
ning programming courses. Fortunately this is usually easy 
to implement. Most large colleges and universities offer a 
variety of beginning programming courses with variable 
credit or no credit. With good counseling available, a stu
dent should be able to choose the proper programming 
course or be exempted from the usual first programming 
courses depending on his background. 

Another opportunity for building on the background of 
most high school graduates occurs in the introductory 
computer courses, whether service courses for nonmajors 
or the first courses for computer science majors that are 
more than just programming. A perusal of texts available 
for such courses will show that many texts are written with 
the expectation that students know little of modern com
puters. The majority of such texts devote unnecessarily 
thorough coverage to the fact that computers use binary 
arithmetic; some texts spend more than a chapter on the 
details of binary addition and conversion to decimal num
bers. Since it can nmv be expected that nearly all students 



entering such courses will have dealt with binary numbers 
for several years, the treatment can be revised to a matter 
of fact review. 

To illustrate the knowledge of typical electrical engineer
ing students of simple calculations in binary arithmetic 
and number conversion, I gave a short unannounced quiz 
on the first day of class to students entering my sections 
of sophomore circuits and senior logic design. The results 
are shown in Appendix A; answers were counted as correct 
only if they were wholly correct. On this basis, about 40 
percent of the students in the sophomore class, only 20 
percent of whom had taken any computer-related course 
other than programming, could solve simple problems in 
binary addition and multiplication. A smaller percentage 
could convert numbers from or to binary, but nearly all 
were familiar with the processes and needed only brief 
review. Students in the senior course, all but one of whom 
had passed a course dealing in part with binary arithmetic 
through one's and two's complements the previous year, 
were only slightly more successful on binary addition and 
multiplication. The seniors did significantly better on the 
two's complement problem and on number conversion. 
While neither group did as well as might be desired, the 
sophomores without college training on these topics had a 
command comparable to the seniors. 

The course on which the greatest gains can be made by 
building on the students' improved secondary school mathe
matics is the introductory computer science course in dis
crete structures, B3 in the ACM 68 curriculum. Yet this 
course often repeats secondary mathematics because the 
instructors teaching the course and writing the texts are 
not all aware of the amount of discrete mathematics taught 
in the high schools. For example, two computer science 
educators commented last year that the ACM 68 descrip
tion of the B3 course is inappropriate since it begins with 
"Review of set algebra including mappings and relations" 
while the prerequisites in the ACM curriculum do not 
cover these subjects.14 While this is admittedly true, the 
ACM 68 curriculum does not exist in isolation. The review 
suggested in ACM 68 should be a review of the material 
the student has learned in high school. The course should 
not be taught as if the students had not seen any of the 
concepts before; yet this is too often the case. It is more 
desirable to note as one author of a text for the course has 
done that the first material of the course (in this case the 
first chapter of the book) is covered in its entirety by the 
mathematics texts in state-wide adoption in the California 
schools.14 . 

In the computer engineering curriculum, the first course in 
logic or computer organization is often a place where savings 
in time can be made by capitalizing on the students' back
ground in logic. The short entrance quiz, previously men
tioned and shown in Append~ A, also showed that about 
70 percent of the sophomores and 80 percent of the seniors 
could correctly write truth tables for AND and OR al
though less than 20 percent of either group had formally 
encountered this material in college. It seems likely that 
students have learned this material just as part of their 

Implications of Changes in the Secondary School 305 

basic cultural background and that they probably know 
many other simple logic concepts. Hence it seems that a 
more sophisticated approach to logic design and computer 
organization will appeal to most students. Unfortunately 
many current texts spend as much as two chapters in labored 
descriptions of elementary logic functions. 

In any course, sound pedagogy requires the determina
tion of the student's prerequisite knowledge. While it is 
often desirable to review prerequisites at the beginning of 
a course, it is important that a review acknowledge the 
student's previous contact with the material and not be a 
naive introduction. A review can build on a student's in
creased sophistication and mathematical maturity to pro
vide increased rigor in an approach similar to Bruner's 
spiral curriculum. 

I::\fPLICATIONS FOR THE FUTURE 

The changes in secondary mathematics in the last decade 
exemplify changes we can expect in the future. While the 
content of the basic mathematics subjects has probably 
stabilized, changes in the use of computers in both basic 
mathematics courses and in computer science courses are 
occurring very rapidly. Closer articulation is needed between 
the high schools and the universities to improve the transi
tion in mathematics and computer science. One possibility 
for increasing articulation would be a national study group 
with joint membership from both communities and with 
specific responsibilities for determining the best allocation 
of subject matter for each level. Such a group does not seem 
likely in the near future. Another possibility is for each 
university computer science department to establish an 
advisory committee of teachers from the high schools and 
the community colleges to keep it abreast of new curriculum 
and to recommend changes in the computer science curricu
lum. A third possibility is for colleges and universities to 
offer short courses in the use of computers in teaching mathe
matics for high school teachers and to see that such short 
courses allow two-way dialogues. A fourth way is for pro
fessors who make recruiting trips to high schools and com
munity colleges to spend some time on their visits looking 
over the mathematics program. Fifth, all computer science 
faculty can establish informal contacts with secondary 
school teachers or students. 

The increased activity in computer-related mathematics 
in the secondary schools is just one instance of the pattern 
of growth of computer science and computer engineering. 
These disciplines began as practical activities in the field to 
solve immediate problems. As the need for people who 
could design computers and program them grew, the grad
uate schools began teaching courses at a descriptive level 
and began codifying the material. As a theoretical basis 
for computer science grew and as the relationship with 
already established areas such as numerical analysis became 
more evident, undergraduate programs in computer science 
increased The current stage of growth represents more 
codification of known material into a form that can be taught 



306 National Computer Conference, 1974 

at the secondary level; this stage is characterized by a 
marked increase in the number of texts available to high 
school teachers who do not ordinarily have the time or 
background to teach courses without texts and in an in
creasing interest of some computer science professors to 
develop courses for high school teachers and students. At 
the same time, research is exploring the frontiers of com
puter science and discovering material that in another few 
years will be conceptualizing the material and establishing 
a theoretical base that allows the material to be taught at 
earlier levels. At any time, of course, some older material 
becomes obsolescent and drops completely out of the cur
riculum. However, the growth of computer science is so 
rapid that it is essential to maintain efficient transitions 
from kindergarten to terminal degree and continuing educa
tion so that each student can effectively learn as much as 
he needs for his future. 

REFERENCES 

1. Wooton, W., SMSG: The Making of a Curriculum, Yale University 
Press, New Haven, 1965. 

2. Johnson, D. C., et al., Computer Assisted Mathematics Program 
(CAMP), Scott, Foresman, Glenview, Illinois, 1969. 

3. Shanks, M. E., et al., Pre-calculus Mathema.tics, Addison-Wesley, 
Menlo Park, California, 1972. 

4. Dolciani, et al., Modern School Mathematics, Houghton MifHin, 
Boston, Massachusetts, 1967. 

5. Wiebe, A. J., Foundations of Mathematics, Holt, Rinehart & Winson, 
New York, 1962. 

6. Stenberg, W., "Computing in the High School-Past, Present and 
Future-And Its Unreasonable Effectiveness in the Teaching of 
Mathematics," AFIPS Conference Proceedings, Vol. 40, SJCC 
1972, pp. 1051-1058. 

7. Koetke, W., "The Impact of Computing on the Teaching of Mathe
matics," AFIPS Conference Proceedings, Vol. 40, SJCC 1972, pp. 
1043-1049. 

8. Atchison, W. F., "Computer Science Preparation for Secondary 
School Teachers", SIGCSE, 5, 1, pp. 47-50, February 1973. 

9. Jansson, L. C., "Teacher Training in Computer Education," 
SIGCSE, 5, 1, pp. 47-50, February 1973. 

10. Fu, K-C. and B. Koo, "Computer Science Education for an Over
looked Group-High School Teachers," SIGCSE, 5, 1, pp. 51-52, 
February, 1973. 

11. McGinley, P., "The Training of Teachers in the Use of Computers 
in the Classroom," SIGCSE, 5, 1, pp. 53-55, February 1973. 

12. ACM Curricuhlm Committee on Computer Science, "Curriculum 
68," Comm. ACM, 11,3, pp. 151-168, March 1968. 

13. Booth, T. L., personal communication. 
14. Engel, G. L., and N. D. Jones, "Discrete Structures in the Under-

graduate Computer Science Curriculum," SIGSeE, 5, 1, pp. 56-59, 
February 1973. 

15. Stone, H. S., Discrete Mathema.tical Structures and Their Applica
tions, Science Research Associates, Chicago, 1973. 

APPENDIX A 

Percentage of Correct Responses to Entrance Test Given to 
Students in a Sophomore EE Circuits Course and a Senior 
Logic Design Course 

Problem 

1. Change 451 in base 8 to base 2. 
2. Change 110101111000 in base 2 to 

base 8. 
3. Change 110101111000 in base 2 to 

base 16. 
4. Multiply 101 by 110 in base 2. 
5. Add 1101 to 1011 in base 2. 
6. Complete this truth table. 

X Y XORY 

o 0 
o 1 
1 0 
1 1 

7. Complete this truth table. 

X Y XANDY 

o 0 
o 1 
1 0 
1 1 

8. Change -25 in base 10 to two's 
complement notation. 

Biographical Information 

Percent taking computer - related 
course in high school 

Percent taking computer SCIence 
course other than programming 
in college 

Median age 
Number (N) 

Circuits Logic 
Class Class 

11 86 
11 77 

11 36 

41 50 
35 77 

72 82 

66 77 

6 32 

18 14 

23 23 

19 22 
71 22 



A cognitive model for structuring an introductory programming 
curriculum 

by CHARLES B. KREITZBERG 

City University of New York 
New York, New York 

and 

Educational Testing Service 
Princeton, New Jersey 

and 

LEN SWANSON 

EDUCOM 
Princeton, New Jersey 

THE PROBLEM 

Introduction 

From its inception the electronic digital computer has been 
involved in education, although its role has been the subject 
of some debate.! Academically, the computer has been used 
as a device for conducting or augmenting instruction, as a 
calculating device adjunctive to courses in engineering and 
the sciences, and most recently as an object for study in its 
own right.2 Increasing attention is now being focused on 
undergraduate training in computer use, partly as a result 
of the recommendation of the President's Science Advisory 
Committee3 that computing education be provided to all 
college undergraduates. We can expect that the number of 
students who undertake incidental study of programming 
as a part of their undergraduate curricula will continue to 
increase rapidly. 

While the demand for programming instruction is in
creasing, little research has been conducted on how that 
instruction might be improved. There have been some investi
gations of programming behavior,4 but these have mainly 
been concerned with how experienced programmers behave 
rather than how programming skills are acquired or how 
learning these skills may be facilitated. Many instructors 
express an uneasy feeling that the objectives of the intra
d uctory programming course are often not met; that many 
students fail to develop programming competency. 

It is, therefore, important that we look for the sources of 
learning difficulties so that the courses we teach may be more 
effective. Motivational and instructional pacing problems, 
resulting from the frequent occurrence of students of unequal 
aptitude and experience heterogeneously grouped in large 
classes, clearly a~e factors. However, theories founded on 
educational psychology seem to suggest that more funda
~ental problenls, arising from the absence of certain require
.n-:..ents for effective learning, are at play. It is the objective 

307 

of this paper to propose a theory explaining some of these 
more fundamental problems, and to suggest the need for 
research supporting a methodology for overcoming them. 

Rote and meaningful learning 

Educational psychologists classify learning along several 
dimensions. One of the most important of these dimensions 
is the rote-meaningful continuum. Learning which is rote is 
verbatim memorization. In contrast, meaningful learning is 
non-verbatim; that is, the learner is able to restate the 
material in his own terms. Material which is meaningfully 
learned may be reformulated and used by the learner. In 
order to learn material meaningfully, the learner must inte
grate the material 'with ideas which he already understands. 
Thus the background of the student must be adequate if the 
material is to be meaningfully learned. 

Rote learning and meaningful learning are not absolutes. 
Learning may be more or less meaningful or rote, depending 
upon a number of factors. The precise degree of meaningful
ness "\Vill" vary with the individual student. Factors which 
lead to rote learning tendencies are: material which is ver
batim by nature (such as most foreign language vocabulary), 
lack of background on the part of the student, poor presen
tation of the material, and anxiety on the part of the student. 
A complete discussion of the rote-meaningful dimension of 
learning may be found in Ausubel. 5 

Numerous studies have shown that meaningfully learned 
material is remembered far longer, recalled with less diffi
culty, and utilized more effectively than is material learned 
in a rote manner. However, in order for a student to learn 
a subject meaningfully each fact to be learned must be inte
grated with the student's previous knowledge. Each new 
idea must be either an elaboration, an addition, a contra
diction, or an example of an idea already in the student's 
background. 



308 National Computer Conference, 1974 

Learning to program is not typical of other learning 
because it has decidedly rote and decidedly meaningful com
ponents. The syntactical elements of the language cannot 
easily be presented in a meaningful manner, or related sub
stantively to other constructs in the beginning student's 
experience. For example, it is difficult to see how the fact 
that a FORTRAN statement must begin in (or beyond) 
column 7 can be presented in a meaningful manner. It is an 
arbitrary fact which must be memorized by the student. 
However, the assembly of statements into a program requires 
a skill quite beyond the recall of arbitrary facts. It is impos
sible to learn how to program in a "verbatim" manner be
cause programming is fundamentally a process of selecting 
and structuring statements chosen from those available 
within the language. Even general forms must be adapted 
to the particular requirements of the problem before they 
can be used in a program. For this reason it is important 
that the learning of programming be meaningful rather than 
rote. 

We have pointed out that there are several factors which 
may cause material which could be learned meaningfully to 
be rote learned by the student. One of these factors is the 
lack of adequate background for the material, or insufficient 
context. Another factor which may inhibit meaningful learning 
is insufficient vertical transfer-an inability on the part of the 
student to transfer his understanding of a concept to an 
application of that concept in a program. A third inhibitory 
factor in the meaningful acquisition of concepts is a state of 
anxiety on the part of the student, which in this context we 
have called computer shock. 

It must be recognized that these factors are not absolute. 
Material is rarely learned either completely by rote or com
pletely meaningfully. In general, the rote-meaningfui dimen
sion is a continuous one, and the inhibitory factors to mean
ingful learning may operate to a greater or lesser extent de
pending upon factors unique to the individual student or to 
the learning situation. However, to the extent that these 
factors are operative they will tend to make it more difficult 
for the student to learn programming. Therefore, a pro
gramming curriculum which minimizes the effects of these 
factors should be more successful in meeting its objectives 
than alternative approaches. Before recommending a cur
riculum which minimizes these factors we will elaborate on 
them. 

Insufficient context 

Insufficient context results from a lack of related ideas in 
the student's background which can serve as a base ("an
chor") for the new programming concepts and techniques 
being learned. Context derived from internalized concepts 
and ideas can provide substantive links between existing 
cognitive structure and the new meanings being encountered. 
For the beginning student context must be derived from 
prior knowledge and experience; as the student progresses 
context can be constructed from the set of basic and unifying 
principles that underlie the programming discipline, and as a 
result comprehension of more subtle concepts is possible. 5 

The lack of relevant prior knowledge on the part of the 
beginning student makes learning and retention more difficult. 
The presence of a sufficiently inclusive context makes it 
possible for new ideas to be reconciled with existing ideas 
and integrated into the cognitive structure more rapidly and 
efficiently. Bransford and Johnson have shown dramatically 
that establishment of context prior to exposing students to 
material to be learned facilitates both comprehension and 
retention of the material. 6 

Beginning students usually have few relevant anchoring 
ideas that could support efficient learning of programming. 
The study of a programming language is in this sense quite 
different from the study of a second verbal language. Bernard 
argues that the latter "consists fundamentally in the acqui
sition of an additional set of symbols for old, familiar mean
ings."7 In acquiring a second language the student has al
ready mastered basic concepts and syntactic code and thus 
has the necessary relevant context as part of his prior 
knowledge. In programming, however, the student has no 
easy referents for such concepts as the interchange of two 
variables or the searching of a matrix. These concepts thus 
form basic meanings whose learning must precede the purely 
syntactical concerns and provide the anchorage for subse
quent learning. This explains why a programmer proficient 
in a single language can usually learn a second programming 
language very rapidly. The "vocabulary" and syntax of a 
programming language is usually quite simple once a basic 
set of constructs is learned, and the student has an ap
propriate context into which he can integrate the new set of 
symbols. 

The lack of adequate context for the beginning programmer 
stems from the fact that a computer is unlike anything which 
the student has previously encountered, nor is programming 
very much like any problem-solving behavior in which the 
student has previously engaged. Yet computers are designed 
as they are for very good reasons-to provide them with 
certain well-defined capabilities. Unfortunately, it seems 
that most students are not presented with the relevant 
anchoring ideas that would help them see the language 
requirements as a necessary concomitant of the computer's 
functions. 

Unless sufficiently inclusive unifying context is provided, 
a beginning student without the relevant anchoring ideas 
must either learn in a rote manner or press into service less 
relevant ideas, relying on his own ability to reconcile the 
new ideas with existing ideas in his cognitive structure. In 
the latter case the new ideas being encountered will be less 
firmly anchored and more quickly forgotten. If the student 
must learn by rote, deferring integration until he has acquired 
more background, then reconciliation and synthesis of ideas 
becomes difficult and his ability to apply his new "knowl
edge" is correspondingly impaired. 

Insufficient vertical transfer 

The second hypothesized source of difficulty in learning 
programming is insufficient "vertical transfer." Transfer is 
the facilitating effect of previous learning on new learning. 



~A~ Cognitive Madel for Structuring an Introductory Pl'ogtctuuuiug Curriculum 309 

Transfer is usually defined as Hhorizontal" or "vertical." 
Horizontal transfer occurs when a previously learned task, A, 
facilitates the learning of a new (and different) task, B. 
Vertical transfer occurs "vhen rules or concepts learned at a 
"lower" cognitive level (such as concept learnill{J) are applied 
at a "higher': cognitive level (such as problem solvill{J).* In 
the case of programming, the objective of instruction is to 
help the student move from the level of knowledge (of 
syntax) to the level of application, which is generally re
garded as a higher cognitive level. In another context, the 
ability to playa musical instrument represents a (vertical) 
transfer from the level of knowledge (of musical notation 
and instrument mechanics) to the level of skill or application. 
In this case the skill is partly motor and partly intellective. 

Transfer from the intellective to the skill level is essential 
when applying knowledge of a programming language to a 
specific problem. In most cases the beginning student's 
knowledge of the language consists primarily of vocabulary 
and syntax. Even if the solution to a specific problem is 
given to him in the form of a verbal algorithm-indeed, even 
if the implementation itself is shown to him-he has diffi
culty accomplishing the transfer because the gap between 
knowledge of vocabulary and syntax and problem solution 
is too great. 

Gagne has said that "the components \vhich appear to 
make problem solving possible are the rules that have previ
ously been learned. Problem solving may be viewed as a 
process by which the learner discovers a combination of 
previously learned rules that he can apply to achieve a 
solution for-.a. 410V-cl.pr.oWem-situation.' '(Refere.nee-8,-page· . 
214) 

Thus a proficient programmer, working on a problem 
that is 'within his experience, is hypothesized to operate pri
marily at a synthetic level. That is, he has learned or dis
covered the techniques or "meta-rules" that might 'be ap
plicable to his specific problem, and applies these techniques 
in a relatively straightforward manner. It is precisely these 
meta-rules which permit him to operate at the level of 
synthesis much' of the time, using analytic skills only when 
new constructs or techniques are required. 

The beginning student, however, must try to break his 
problem down into a much finer set of subtasks that are 
recognizable to him in terms of his knowledge of the basic 
vocabulary and syntactic rules of programming before he 
can begin to develop the larger structures. In effect, he is 
constructing new techniques for solving non-intuitive prob
lems, and this is an intellectually difficult task. Moreover, 
he must hold all potentially relevant rules in mind at one 
time when searching for those which might be applied to his 
problem. 

The specific rules may not be obvious to the student 
because there are fundamental differences between human 
problem-solving techniques and computer solutions. People 
~end to solve problems by a "top down" approach, seeking 

* A number of authors have constructed cognitive hierarchies-learning 
tasks of increasing complexity. Two of the best known hierarchies are 
due to Bloom and to Gagne.8,9 An analysis of programming texts in terms 
of Bloom's taxonomy may be found in Rademacher,lo . 

patterns which may then be considered as problems of re
duced complexity. Computers, on the other hand, have almost 
no ability to consider patterns, but rather operate in a se
quential manner. As an example of this, consider the problem 
of determining which of the following numbers is largest: 

1 12596 14 

A person scanning this list would automatically and effort
lessly pick out the second number as the largest, not because 
of its value but because of its length. A computer program 
to perform this same task would need to be written as a 
complex series of sequential operations; the following al
gorithm is an example: 

i:=l; j:=a[l]; 
for k:=2 step 1 until n do 
begin 

end; 

if ark] > j then 
begin i:=k; j:=a[k] 
end; 

Such algorithms, while they are "natural" to the experienced 
programmer, are highly non-intuitive to the beginner who 
does not recognize the relevant rules. To expect the student 
to be able to create such algorithms without careful prepa
ration is unreasonable; yet attempts are often made to teach 
this algorithmic approach by showing the student a complete 
program or two and exp.ecting him to somehow absorb these 
non-intuitive concepts. , 

Even when a student is shown the solution to a problem 
1iehasdifficultytransferriniihiit sofutionto Other situations.8 

A stimulus-response chain may be created, in which the 
student learns to respond ip. certain ways to certain problems 
without understanding the underlying rationale for the re
sponse. When asked to generalize from the solution, or solve 
related but perhaps more complex problems, he is at a loss. 

The problem of learning from a given solution, or con
structing generalizations of it, is particularly acute when 
the solution is complex or counter-intuitive, as for example 
in a sort routine. A study by N ewsted suggests that there ~s 
a critical point of program complexity beyond which the 
student is unable to grasp the solution as a unit and requires 
additional documentary aids. ll 

It therefore seems reasonable to conclude that the learning 
of a programming language can be significantly improved if 
the student is encouraged to operate primarily at the level 
of rule application. To do this he must draw on knowledge 
of larger (non-intuitive) constructs than those represented 
simply by the vocabulary and syntax of the language. He 
must be able to subordinate his problem under such gener
alized techniques or meta-rules as sorting, interchanging, 
searching, etc. In a sense he must be presented with an ex
tended "syntax" which includes these basic techniques or 
processes. 

Computer shock 

Beginning programming students are particularly sus
ceptible to a phenomenon similar to one which in mathe-



310 National Computer Conference, 1974 

matics courses is referred to as "number shockiJ or "number increasing subsets of the language are developed, would be 
anxjety." The student tends to panic in the face of uncer- an optimal mode of presentation. A student will encounter 
tainty about his understanding of the new and generally an idea not once, but several times at increasing levels of 
non-intuitive ideas he is encountering, and lacks confidence complexity. Some attempts have been made to provide a 
in his ability to apply these ideas to specific problems. The subsetl2 of the language initially and then progressively 
phenomenon is familiar to programming instructors who have extend that subset; this is a useful approach but it is essential 
seen students perform well on knowledge tests but struggle that the subsets be so selected that the student will see the 
to construct even a relatively simple program. Faced with logic of each extension. It is not sufficient to merely defer 
uncertainty and accompanying panic, the student tries to certain details to a later time. Each concept should be pre-
learn by rote lest he lose grasp of the material completely. sented as an elaboration of the previously learned ideas. 
The result is that synthesis of ideas is difficult if not im- Thus the student presented with materials in the "spiral 
possible. curriculum" learns ever-increasing supersets of the subject 

Computer shock may be partly due to general unfamiliarity as though he were walking up a spiral staircase, traversing 
with or lack of prior context for the subject. It is also caused the same points over and over again but at successively 
by the necessity to operate with a degree of precision and at higher levels. The effectiveness of this approach has been 
a level of detail which seems demanding to the student. substantiated by psychological studies. 5 

We tend to forget how really technical programming can Learning materials should begin with concepts which are 
appear to the beginning student. He is exposed to a wealth essential to an understanding of the subject. These concepts 
of new information on complex machines and processes, and are of the follov.ing types: "What is a computer?" "What 
asked to operate in a cognitive mode which is different from is a program?" "What sort of things can a computer do?" 
his normal way of thinking. More important, he must learn The introduction of these concepts must be carefully made, 
a variety of rules and a difficult syntax before he has acquired basing each new concept upon concepts with which the 
the ability tn-apply his new knowledge in concrete situations. student is already familiar and showing the logical necessity 
When he is asked to solve a specific problem it is usually of of each new idea as a consequence of the properties that we 
a complex variety which requires the synthesis of many desire in a computer. This minimizes the problem-of learning 

-Tdeas-jiit6 -aconerent sorutiori:--TIie-reslliris--ah -aIiuety -"tnat------interms-nf-cImLexLaal pI er equisiLes.-
makes meaningful learning difficult. - In accordance with this philosophy, the introduction of 

,The three -factoTs discussed above-insufficient context, new ,concepts should be preceded by advance organizers which 
insufficient vertical,transfer, and computer shock-can make provide a brief introduction to the concepts in terms of 
it difficult for the b~ginning student to learn programming. previously learned ideas.' As the new ideas are then en-
A numb~r of factof$, including, ,the student's aptitude, the countered the student has some notion of their relationship 
effectiveness of classroom lectures, and the availability of to other ideas with which he l~"familiar. A number of psycho-
adequate laboratory facilities, will effect the ease and rapidity logical studies -(including the Bransford and Johnson6 study 
of learning. However, much can be done to overcome these cited earlier) have demonstrated that the use of advance 
specific bars to learning by improving the presentation of organizers has a substantial effect on both comprehension 
materials and methods of instruction. The following section and retention of the material that follows. 13 

suggests some guidelines for overcoming the problems dis-
cussed. 

PROPOSED SOLUTIONS 

Context 

Since context is such an important part of learning, the 
organization of learning materials into discrete compart
mentalized sections, each one containing all information 
relevant to a particular aspect of the language, will not 
improve learning and retention. On the contrary, in order to 
learn effectively the student must be presented with an idea 
and shown how it is similar to ideas he already has, how it 
differs, and how it extends, elaborates, or modifies his con
cepts. This makes it possible for the student to learn in a 
meaningful way and then use this new idea as an anchor for 
more elaborate ones. 

The need for continually providing the student with ade
quate context suggests that a spiral approach, in which ever-

Vertical transfer 

The problem of facilitating vertical'transfer, so that the 
student is able to utilize the concepts which he learns, can 
be resolved by judicious selection of exercises which imple
ment fundamental programming structures. These exercises 
should drill the student in such areas as variable assignment, 
exchanging values, statement repetition, and basic program 
structure. The techniques which underlie the selection of 
these exercises can be found by inspection of professionally 
written programs to isolate common program structures 
utilized. 

We have postulated the existence of "meta-rules" which 
are basic constructs which programmers use to build pro
grams. An example of such a meta-rule in FORTRAN might 
be the zeroing of an array by use of a DO loop: 

DO 10 I=l,N 
10 A(I) =0. 



A Cognitive Model for Structuring an Introductory Programming Curriculum 311 

or the interchange of two variables: 

TEMP=A 
A=B 
B=TEMP 

If such meta-rules can be identified and taught to the student 
he should be able to develop programs far more rapidly and 
with greater ease, since he no longer needs to invent these 
constructs each time he needs them. 

Computer shock 

The effects of computer shock may be minimized in several 
ways. First, the mystery which tends to surround the word 
"computer" should be dispelled as quickly as possible by 
describing the simple, readily understandable functions it is 
designed to perform and the manner in which these functions 
are built upon to create the more elaborate structures associ
ated with actual applications. This will provide the student 
with a better sense of the capabilities and limitations of the 
computer, and place in perspective the reasons it is designed 
as it is. 

Second, the basic operations the computer performs should 
bedesc~lbed in terms of similar openltlonswlth--wnidl the 
student is already familiar. The operation of an adding ma
chine, for example, provides a good analogy for introducing 
the concepts of input, output, and program control. 

Finally, written materials used in teaching should be as 
attractive and well-organized for instruction as possible. The 
materials typically found in reference manuals,· for example, 
tend to be imposing to the student and are therefore unsuit
able for instructional use. 

SUMMARY 

This paper has hypothesized three factors which inhibit the 
acquisition of programming skills. We expect that curricula 
which minimize the effects of these factors will be the most 
successful in teaching introductory programming. 

Empirical evidence is required to support these hypotheses. 
Among the research which should be carried out are investi-

gations into the specific concepts required to provide ade
quate context, identification of the meta-rules which will 
enhance vertical transfer, and construction of exercises which 
will facilitate the use and adaptation of the meta-rules in 
various contexts. Such research is much needed in a society 
in which "computer literacy" is rapidly becoming a require
ment of the educated person. 

ACKNOWLEDGMENT 

The authors would like to thank Professor Ben Shneiderman 
for his contribution to some of the ideas formulated in this 
paper. 

REFERENCES 

1. Oettinger, A. and N. Zapol, "Will Information Technologies Help 
Learning?," Teachers College Record, Vol. 74, No.1, September 1972, 
pp .. 5-54. 

2. Mosmann, C., "Computers .and the Liberal Education," The Educa
tional Forum, Vol. 36, No.1, November 1971, pp. 85-91. _ 

3. President's Science. Advisory Committee, "Computers in Higher 
Education," U.S. Government Printing Office; February 1967. 

4. Weinberg, G., The Psychology of Computer Programming, New York, 
__ !l.}7JL'yy._n_1i~~i~_Il~_~_~~~~old. 

5. Ausubel, D. P., Educational Psychology: 4- Cognitive View, New 
York, 1968, Holt, Rinehart and Winston. 

6. Bransford, J. D. and M. K. Johnson, "Contextual Prerequisites for 
Understanding: Some Investigations of Comprehension and Re
call," Journal of Verbal Learning and Verbal Behavior, Vol. 11, 
) 97~,. pp. 717-726. 

7. Bernard, W., i'psyehologIcaCPr~ples-orl:;anguage-r;earnini(aoo:=·-~--:-~=~~ 
the Bilingual Reading Method," Modern Langooge Journal,Vol:35, 
1951, pp. 87-96. 

8. Gagne, R. M., The Conditions of Learning, New York, 1965, Holt, 
Rinehart and Winston. 

9. Bloom, B. S., et al., Taxonomy of Educational Objectives: The Classi
fication of Educational Goals, New York, 1956, Longmans, Green 
and Co. 

10. Rademacher, R. A., Cognitive Levels in Computer Education for 
Business, Ph.D. Dissertation, University of Nebraska, 1971. 

11. Newsted, P. Unpublished manuscript. 
12. Kreitzberg, C. and B. Shneiderman, Fortran Programming: A 

Spiral Approach, New York, in press, Harcourt, Brace, Jovanovich. 
13. Ausubel, D. P., "The Use of Advance Organizers in the Learning 

and Retention of Verbal Material," Journal of Educational Psychol
ogy, Vol. 51, 1960, pp. 267-272. 





On the preparation of computer science professionals in academic 
institutions 

by J. A. ARCHIBALD, JR. and NL KATZPER* 

State University of New York 
Plattsburgh, N ew York 

INTRODUCTIO~ 

One of the major problems facing the computing industry 
concerns the training of professionals. ~fany of the existing 
programs in computer science at academic institutions simply 
do not provide the preparation required for the practice of 
computer science in industry. 1 ,2 This problem is due primarily, 
but not exclusively, to the failure of our academic institutions 
to consider the needs of industry in ordering their priorities 
and goals. Other causes are the specific failure of industry to 
make its needs known in an adequate manner to the academic 
institutions, and the general lack ·of. communication between 
these communities. Regretfully, neither contmnnityis taking 
adequate steps to solve the problem. In this void of activity, 
we find the several professional societies trying to bridge the 
gap with programs for the certification of professionals. 3 

This paper discusses the nature and implications of the 
situation, calls for a reordering of priorities within under
graduate programs at academic institutions, presents an 
applications oriented undergraduate program in computer 
science as a means of solving some parts of the problem, and 
makes specific suggestions of a number of other steps that 
may be taken in the industrial and academic communities to 
strengthen the profession at large. 

THE PRESENT SITUATION 

The disparity in the nature of computer science, as 
practiced in industrial and academic institutions, is abun
dantly clear to anyone who has participated in both areas. 
A maj or portion of the difference is the age-old dichotomy 
between the abstract and the applied. The primary require
ment in industry is for applied computer scientists-people 
who can interact effectively ""ith practitioners of other 
professions to develop meaningful solutions to existing 
problems within the limitations of present day facilities. The 
primary products of an academic institution are the theoreti-

* Presently with Ocean Data Systems, Inc., Rockville, Maryland. 

313 

cians, capable of conceptualizing solutions to formally posed 
problems and relating these solutions to computational 
processes. Said in other words, industry needs people with 
applied backgrounds and academia is producing people with 
theoretical backgrounds.2 Thus, the priorities are different. 
The industrial priority cannot be criticized, since it has passed 
the one universal industrial requirement-profitability. This 
profitability is the cornerstone of a thriving, new profession 
The academic priority is ~iso not wrong-it is the essen,tial 
ingredient to the :future of the discipline. The point is,· 
however, that academia needs to recognize not only the 
priorities for the future, but also those for the present. It 
must increase its emphasis upon applications without sacri
ficing its emphasis upon theory. This can be done by tailoring 
the undergraduate program toward applications, and retain
ing the theoretical emphasis in the graduate programs. 
Undergraduate curricula should be geared to the majority 
that do not proceed on to graduate school rather than to the 
minority that do. 

The fact that this dichotomy between theory and applica
tions exists is not, of itself, bad. Indeed, there are many 
disciplines in which the divergence is greater than it is in 
computer science. The problem is one of timing. Our discipline 
was formed out of necessity. It is thriving because it was born 
with a "golden spoon in its mouth"-a large backlog of 
present day problems capable of solution within existing 
theory on existing facilities and literally crying out for 
solution now, in the present. The solution of these problems 
should enjoy a higher priority in our profession (particularly 
on academic campuses) than it presently has. Said in other 
words, our discipline is too young, and the pressures upon it to 
solve existing problems are too great for us to be able to afford 
the luxury of the current divergences between theory and 
applications. Divergence within the practice of a discipline is 
healthy and desirable once the discipline itself has matured. 
Ours has not, and will not mature until a sizable dent has 
been made in the backlog of problems. 

The industrial world has only recently awakened to the 
potential of a computerized age-an age in which machines 
can and are both performing routine tasks of drudgery, and 



314 National Computer Conference, 1974 

providing formerly incomprehensible solutions to complex, 
practical problems. An age in which, however, computers are 
doing less than they should. The great challenge of industry is 
to harness the power of the computer in the service of 
mankind. Within industry, there is a need for people (primar
ily at the Bachelor's level) with the capability of joining and 
contributing to the problem solving team through the 
infusion of new ideas, techniques, and capabilities. This 
means people who have some understanding of both the 
problems of the industry concerned, and the methods of using 
currently available computers to solve these problems. This, 
in turn, means people who have combined a strong back
ground in the area concerned with an ability to actually 
analyze problems, design and implement programs, and 
perform the other tasks related to the effective use of 
computers. These individuals must be versed in the various 
areas of computer techniques and analysis: e.g., statistics, 
simulation modeling, numerical methods, non-numerical 
methods, artificial intelligence and the like. They must 
understand such things as the effective organization of data, 
the effective utilization of processor time and memory, and 
the nature of multiprogramming computer systems. They 
must have a degree of both competence and sophistication in 
programming-the primary skill of computer science. These 
must be gained through in-depth training (in both classroom 
and laboratory situations) at the level of the current state of 
the art. In short, they must be competent applied computer 
scientists. 
. Our academic institutions have also, recently, a'wakened to 
a new age. They, too, have become impressed by the great 
potential of the computer. Their reaction to the challenge has 
been to plunge headlong into the development of advanced 
theories and courses which teach these theories, without 
concern for the practical uses of either the existing or the 
developing theories. Indeed, by virtue of their background, 
many have been too concerned with the new theories, and too 
disinterested in the practical uses of today's theories. The 
ACM Curriculum 68,4 upon which many of our academic 
programs are based, contains numerous courses which use the 
current state of the art merely as a point of departure to enter 
upon abstract studies. These courses contain little emphasis 
or practice in the use of present technology, with the limita
tions of our present facilities. Thus, many of the young people 
who leave our academic institutions possess an outlook and 
orientation which are unsuited for doing the practical work 
expected of them in industry.6 Industry has reacted to this 
situation by hiring college graduates in their major area of 
interest. These people are then hastily trained to do some 
programming. The results are, naturally, less than 
professional. 

Another shortcoming of present academic programs is the 
tendency to concentrate computer science programs exclu
sively upon the computer, as though the computer were an 
end in itself. Hence, our graduates have little idea as to what 
the theories they have studied are good for. R. W. Hamming 
has referred to these non-professionals as "idiot savants" and 
"computniks."5 Hiring such a graduate in cOlnputer science 

has become a burden that few of our industries with problems 
to be solved can afford. 

REASSESSMENT OF PRIORITIES 

The intent of this paper is to encourage the de-emphasis of 
theoretical computer science at the undergraduate level. 
Theory is important, for without it, the discipline will die, and 
many of the problems of the future will go unsolved. The plea 
is for a reassessment of priorities. J\1uch more emphasis needs 
to be placed on applications in the undergraduate curriculum, 
with the emphasis remaining theoretical in the graduate 
curriculum. This re-directed emphasis on applications in the 
undergraduate program should have two thrusts: (1) the 
development of methodologies to be used in solving general 
classes of applied problems, and (2) the development of a 
level of competence in one or more of the disciplines to which 
computer science is applied. 5 We do, indeed, note some 
movement in this direction.7 Our position is that this move
ment is insufficient. Under the present system, many of those 
who complete the undergraduate program are really un
qualified for anything except graduate school. They go on to 
complete their graduate degrees with an esoteric thesis and 
little exposure to applications. Their training leads them to 
seek positions as undergraduate college instructors-they are 
unprepared for industry. As instructors on the undergraduat~ 
campus, they participate in the training of the next generation 
of undergraduates-again without exposure to applied 
computer science. And so, the vicious circle is closed. It 
continues to roll on by the sheer force of its own momentum. 

This is not to take away from the importance of developing 
new theories. Indeed,' such development is the vitality of a 
thriving discipline. Retention of theoretical emphasis in the 
graduate curricula should meet these needs. In other disci
plines, where new problems are being solved in a timely 
manner as they occur, and where there is no backlog, an 
academic establishment concerned solely with speculative 
theories is ideal. However, in computer science, where there is 
a backlog, it seems appropriate to ask that the academic 
world devote a significant part of its effort to the present, the 
practical, and the applied. In short, there is a great need for 
the academic institutions to divert a greater part of their 
efforts to applied computer science. Theory can find its place 
in such a program in support of applications, in deepening 
understanding and in broadening horizons for imaginative 
solutions to problems. At the present, however, much theory 
is presented for its own sake. Significant applied and theoreti
cal problems are being discarded for vacuom; RpecuJation, The 
result is that our academic institutions are not producing the 
kind of talent required by our industrial institutions. 

The question as to whether academic institutions should 
produce people to meet specific demands of society, or merely 
educate people to enrich their souls, is an age-old question 
which will merely be mentioned here. We do live in a world of 
practicaiity, a world in which one must eat, a world in which 



On the Preparation of Computer Science Professionals in Academic Institutions 315 

the individual who can serve society has a higher survival 
potential than the individual who cannot. 

THE VIEW FROM INDUSTRY 

Industry, of course, is not to be denied. For one thing its 
position is vindicated in our society simply because its 
survival is based solely upon its ability to make profits. 
Industry will pay to get what it wants, or what it thinks it 
needs, in terms of manpower. It trains its own people when 
the skills it wants are not available. The problem here is that 
industrial training, by being oriented around corporate profits 
is generally inadequate, and usually falls far below profes
sional standards. 

Industry certainly needs people with, (1) an understanding 
of industrial problems, (2) an understanding of computers, 
and (3) fresh new ideas. Regretfully, the academic institu
tions are not producing sufficient numbers with this combina
tion. As a result, industry hires graduates with majors in 
their areas of interest, and hastily trains them in computer 
skills. These graduates arrive at industry with, at most, two 
of the three major qualifications. The third one is developed, 
on the job, in a hit or miss manner. Industrial training does, 
indeed, tend to be very shallow. It is designed to meet certain 
very narrow objectives. Persons trained in industry are 
usually trained for a very specific task-with neither breadth 
nor depth. Such people must be continually retrained 
whenever their skills are required in a different activity. 
Industrial training is not geared to the production. of 
professionals. These new employees certainly learn to pro
gram, but they tend to be weak in the areas of non-numeric 
methods, statistics, and the like. When an unusual problem 
arises they are not able to cope with it. This programming 
staff is often supplemented by graduates from two-year 
schools, who are often programmers with little understanding 
of more than straightforward coding, and graduates from the 
various training institutes. The training institutes themselves, 
however, are for the most part, designed to train technicians. 
The result is a total industrial staff that is less effective than 
it should be. It is distinctly subprofessional. 

AN ACADEMIC RESPONSE 

There is much that an academic institution can do to meet 
the needs of society. The new Bachelor's program in Com
puter Science at Plattsburgh State University College, 
included as an addendum to this paper, is one approach to 
this problem. Under this program, our computer science 
majors are required to develop a solid ability to do effective 
programming in at least two languages (one of which must be 
FORTRAN), to study the various areas of application and 
methodology of problem solving such as systems analysis, 
simulation, statistical methods, numerical methods, and 
non-numerical methods, obtain a modest theoretical back
ground, and take an area of concentration in a discipline 
which uses the computer;5 

The intent of this paper is not to present the p:r:ogram at 
Plattsburgh, but rather to encourage other institutions to 
devise their own approaches to applied computer science at 
the undergraduate level. 

Specifics are indeed important at this point. Some of the 
features of the Plattsburgh program which, in the opinion of 
the designers are both important and unusual are listed below. 
We do consider these items to be essential in the proper 
training of computer science professionals. 

Training in programming skills 

We note an unfortunate disdain for courses whose primary 
objective is the teaching of programming skills in specific 
higher level languages. As stated above, programming is the 
fundamental skill of the computer scientist. We do not 
anticipate that our graduates ",-ill spend the major part of 
their time in actually writing instructions for a machine. We 
do feel, however, that skill and ability in the area of program
ming are essential if an individual is to perform any task 
related to the use of machines to solve problems effectively. 

The first course in the major sequence at Plattsburgh 
concentrates primarily on the development of programming 
skills in FORTRAN. We use this language, despite all of its 
actual and theoretical deficiencies, because it is the primary 
language of the industry, and because there seems to be little 
chance that this situation is about to change in the foreseeable 
future. Our students are ~ven instruction in the language 
itself as well as general instruction'in computer science and 
programming. They receive numerous programming iIssign
ments, and, in addition, are required to complete an inde
pendent project in some area of interest to themselves. This 
course has a reputation of being difficult. There are numerous 
suggestions that additional academic credit be assigned to 
this course. Our experience with this course makes us wonder 
how effective programming and the numerous other topics 
that many institutions offer in their first course can be 
adequately covered in a single course. We use a tough 
two-semester sequence to offer, in greater depth, and with 
more actual programming on the computer, that which many 
other institutions offer in one semester. 

We also have a similar course in COBOL programming. 
Most of our students use COBOL as their second language. 
Students in this course are given general information in 
computer science and programming, and specific instruction 
in COBOL, with emphasis upon the latter. Numerous 
programming assignments are also given in this course. 

Area of concentration outside of computer science 

The fact remains that computing is not an end in itself. 
Man does nQt compute for the sheer sake of computation, but 
rather because he is interested in something else-something 
in which computation is used to further understanding. Our 
students are expected to select some outside discipline to 
which computers may be applied, and to gain a depth of 



316 National Computer Conference, 1974 

understanding that, while less than that of a major in the 
discipline, will be sufficient to permit the graduate of our 
program to interface with professionals of the other disciplines 
in the solution of problems of that discipline. Included in the 
possible areas of concentration are the natural, physical, 
biological, mathematical, social, behavioral, linguistic and 
administrative sciences. We have also included disciplines 
where the relationship is not quite as obvious, such as art and 
music. This is the feature of our program that, we feel, is a 
direct reply to Dr. Hamming's comments. Ii We note that 
certain other schools attempt to solve this problem by offering 
only graduate degrees in computer science. 

Courses in techniques and methods 

Our program includes courses in specific techniques and 
methods, such as statistical methods, numerical methods, 
non-numerical methods, systems analysis, and simulation and 
modeling, in which the emphasis is placed upon actual 
problem solving. Programming per se in FORTRAN is not 
stressed in many of these courses. We assume a background 
from previous courses sufficient for carrying out programming 
assignments. We stress the development of specific techniques, 
the use of specialized languages designed for the area 
concerned, and the effective use of library subroutines to solve 
specific types of problems of interest. Thus, the focus is upon 
the effective utilization of the computer, through whatever 
means are available, to solve problems of concern. 

Courses in the fundamental nature and theory of computers 

We do offer courses in machine and assembly language 
programming, programming languages, operating systems, 
and discrete structures. Certainly, no major sequence would 
be complete without courses in these areas. Our courses 
emphasize applications as much as possible. For example, in 
programming languages, we study the languages themselves, 
and their underlying structures from the perspective of how 
the language is used to solve the type of problem for which it 
was designed. Thus, for example, in the study of SNOBOL, we 
try first to understand the nature, applications, and problems 
of string processing, and then study the structures of the 
language as they relate to string processing. We do spend 
some time in a general discussion of abstract language struc
ture, but we do not emphasize such considerations. 

RECOMMENDATIONS FOR INDUSTRY 

So far, we have focused our presentation on our sister 
academic institutions. Let us now consider the role of industry 
in meeting the problems of training the computer professional. 
If the academic institutions have been too unapplied, and too 
theoretical, certainly the reverse is true of industry. Too often 
the sights of industry have been narrowed to the area where 
the industry presently thinks that it can be profitable. These 
decisions of likely profitability are generally short range. 

In general, industry is better able to carry out large scale 
advanced application developments. Industry has been 
deficient in both doing the application development work and 
in inspiring the academic institutions to do this work. 
Industry should interact more strongly with the academic 
world and, in doing so, get the academic institutions back on 
the track of reality. Specific suggestions (some of which have 
been discussed in the pastl) include the following: 

A. Providing of more grants to academic institutions to solve 
specific existing problems. Frequently, industry has the funds 
necessary, but neither the actual nor potential talent to solve 
its major problems. Academic institutions have few funds, 
but possess great potential for developing the necessary talent 
to solve these problems. The funds contained in a grant from 
industry would motivate the academic institutions to develop 
the needed talent. Academic institutions badly need the 
encouragement of industry to turn toward applications, and 
the availability of grants for specific purposes is the best way 
of providing this encouragement. 

B. Providing computer time to academic institutions for use in 
developing techniques and methods for the solution of specific 
existing problems. Actually, this is another form of the grant 
suggestion made above. Relatively few academic institutions 
have the facilities needed to handle significant applied 
problems. This is particularly true in the area of scientific 
applications. Industry, by making its excess time available, 
and by indicating the kinds of problems that they are 
interested in having solved on the machine, can very effec
tively re-direct the academic institutions to ·significant 
applications. 

c. Temporary employment of academic faculty members. One 
of the major causes of the current problem is the lack of 
communication between industrial problem solvers and 
academic faculty. There needs to be more contact between 
these groups. There should be a flow of both ideas and people 
between the two communities. Each community needs to 
know the problems of the other. Faculty members have 
always been available for temporary positions for durations 
of several months (one summer) up to fifteen months (two 
summers and the included academic year). The nature of 
college teaching lends itself to special summer work, and to 
sabbatical leaves. Very often, temporary employment for 
these periods is obtained at other academic institutions. 
Industrial institutions should avail themselves of the services 
of faculty members as consultants and in other special 
assignments of a temporary nature to aid this flow of ideas. 

D, Making industrial personnel available to academic -institu
tions either as temporary full-time faculty members or as 
part-time adjunct faculty members. This suggestion comple
ments the previous one, and it has the same motivation, the 
flow of ideas and people between the academic and industrial 
communities. The temporary use of people on a full-time basis 
is,the reverse of the academic sabbatical. It would be of great 
help in making the academic institutions cognizant of the 
problems of business, while enabling the academic institution 



On the Preparation of Computer Science Professionals in Academic Institutions 317 

to retain the flexibility of staffing that is so important in the 
modern college. 

E. Providing "internships" with pay for students. This again 
may take one of two forms, the full-time employment of 
students in areas of interest for specified periods of time, and 
the part-time employment of students in areas of interest for 
longer periods. Certainly the best way to learn applications is 
to be involved in applications. This experience can be very 
meaningful in directing students to promising areas of 
application, and would be an ideal supplement to the instruc- . 
tion in methodology and techniques. Additionally, it would 
provide the student with badly needed funds. The actual 
employment, if over the summer, would be analogous to the 
conventional summer job. Full-time employment for a single 
semester would be analogous to the semester of student 
teaching that education students go through, or the internship 
served by new medical doctors. It would have the same 
benefits. Where conditions permit, half-time employment, and 
half-time course loads is another very viable possibility. 

CONCLUSIONS 

We, collectively, as practitioners of computer science, at both 
industrial and academic institutions, have a serious problem 
in terms of effective utilization of human resources. ',v e must 
all dedicate ourselves tmvard working together to solve it if 
we are to make the contributions to civilization that we have 
been challenged with. 

ADDENDUM-The Applications Oriented Undergraduate 
Program in Computer Science at Plattsburgh State Uni
versity College 

General Implementation 

Students in the computer science major program at 
Plattsburgh are required to take a broad spectrum of applied 
computer science courses which include techniques and 
methodologies, a kernel of pure computer science courses 
which include concepts and theories, and a sequence of courses 
in an area of concentration, or a discipline \\lith present or 
potential computer application. In our consultations with our 
students we point out the interactions between computer 
science and other disciplines. As a result of our appli
cations oriented philosophy, our students are encouraged 
to devise study plans that combine investigations in computer 
and information science with the study of other fields. 
Simultaneously, they learn to apply the ideas of systems 
analysis to areas of contemporary concern. We emphasize the 
sequence in a related discipline as being the specific means of 
avoiding the lack of breadth which was the basis of much of 
the historical opposition to undergraduate programs in 
computer science. l ,5 Many of the courses included in our 
program are designed for both computer science majors and 
for students needing courses to support work in other 
disciplines. 

The faculty at Plattsburgh is unusual in the large degree of 
interdisciplinary collaboration that goes on in research and 
teaching. This factor has aided greatly in the implementation 
of our computer science program. Our colleagues have joined 
us in advising students as to how to apply the knowledge 
obtained in computer science to yield interesting results in 
other disciplines. Concurrently, we have joined our colleagues 
in aiding them to include the use of computers in their own 
courses, and in their research. Many of the applications 
advocated at computer science education conferences and in 
the literature have been independently implemented at 
Plattsburgh.8 ,9 ,10 

Specifics of Implementation 

The emphasis in our computer science curriculum is upon 
applied computer science, i.e., upon the use of computer 
science to support work in other disciplines. Within the scope 
of applied computer science' are both numerical and non
numerical applications. Numerical applications include 
numerical methods, statistical analyses of data, simulation 
and modeling, and applications to business and the quantita
tive sciences. The non-numerical applications include list 
processing, string manipulation, text editing, information 
storage and retrieval, and applications to the graphical 
sciences. Applied computer science is also involved in the 
mastery of techniques for organizing complex informational 
structures and the development of skills in analytic 
approaches to problems. Such skills are especially developed 
in the study of systems analysis and artificial intelligence. 

There are a number of courses which we denote as pure or 
theoretical computer science courses. In order for anyone 
discipline to be used effectively in support of other disciplines, 
its own development must have a certain degree of sophistica
tion and maturity. Thus, the practitioners of computer 
science must have a certain competence in pure or unapplied 
computer science in order to apply it to advance other 
disciplines. Pure computer science includes such things as 
programming in machine and higher level languages, the 
study of languages and compilers, operating systems, discrete 
structures, computer logic, computer electronics and theories 
of computability and automata. We expect our majors to 
acquire a degree of competence in these areas. 

In Table I, we present a general overview of the courses in 
our program. We note that the exact sequence for each 
student is determined on an individual basis depending upon 
the interests and capabilities of the student concerned as well 
as the area of concentration selected by the student. 

Descriptive Listing of Generally Recommended Courses 

Introduction to Electronic Data Processing: Introduction 
to computers, information science, data processing, concepts 
of hardware and software, cybernetics, and programming in 
BASIC language. Major emphasis on concepts of information 
science rather than on computer programming. 



318 National Computer Conference, 1974 

TABLE I 

Usual Year of Study in the 
Computer Science Program Courses 

Freshman Introduction to Electronic Data 
Processing (with BASIC) 
Systems and Information 

Freshman or Sophomore Introduction to Computer Science I & II 
(with FORTRAN) 

Second Higher Level Language 
Computers and Society 

Sophomore or Junior Machine and Assembly Language Pro-

Junior or Senior 

gramming 
Discrete Structures and Computational 

Analysis 
Numeric Methods 
Non-Numeric Methods 
Analysis of Statistical Data 

Programming Languages 
Operating Systems 
Graphical Methods 
Artificial Intelligence 
Simulation and Modeling 
Undergraduate Independent Study 
Undergraduate Research 

Systems and Information: The course will show how to 
study complex systems in terms of their interacting com
ponents. A general approach to such studies will be presented. 
This approach will involve analysis, modeling, and simulation 
of systems, together with information flow, control, and 
information processing within systems. Interdisciplinary 
skills are used for analysis and modeling in the social sciences, 
natural sciences and environmental studies. Contemporary 
examples will be taken from areas of concern such as ecology 
and economics. The role of information flow l:\.nd control in 
systems is investigated. The processing of information by 
computer is demonstrated. An individual term project 
requiring the student to analyze a system of his choice is 
included. 

Introduction to Computer Science I (with FORTRAN): 
Introductory course in computer science. Introduction to 
computers and use of computers to solve problems. Emphasis 
on introduction to FORTRAN programming. Numerous 
programming assignments. Development and implementation 
of independent project of the student's choice is required. 

Introduction to Computer Science II: Intermediate 
problem analysis and FORTRAN programming, introduction 
to error analysis, numerical applications, non-numerical 
applications, operating systems, and machine and assembly 
language programming, survey of higher level languages and 
debugging techniques. 

Second Higher Level Language: Introduction to computers 
and the use of computers to solve problems in the language 
concerned. Emphasis on programming in language concerned. 

Machine and Assembly Language Programming: Elements 
and techniques of machine and assembly language program
ming as applied to hypothetical and actual computers, with 

emphasis on relationship to programming In higher level 
languages. 

N on-numeric Information Processing: Fundamentals of 
non-numeric information processing, and programming tech
niques used in the solution of non-numeric problems. List and 
string processing languages and compiling techniques. 
Emphasis on applications. 

D'iscrete Structures and Computational Analysis: An 
introduction to discrete mathematical structures with special 
emphasis on theories that are relevant to the study of 
computer science. Topics include aspects of logic, Boolean 
algebra, finite machines, switching circuits, set theory, 
induction, trees, strings, graphs and finite automata. Em
phasis on applications. 

Numerical Methods: An introduction to the basic notions 
of numerical solution of problems through an in-depth study 
of numerical processes. Emphasis is placed on errors inherent 
in computation and error analysis. 

Computer Analysis of Statistical Data: An introduction to 
the use of a digital computer for the analysis of statistical 
data. The characteristics and significance of common 
statistical tests and distributions are studied through experi
mentation on a computer. Existing computer-library routines 
are used where possible. Application to problems in the 
student's major area is stressed. 

Simulation and Modeling: Introduction to the use of 
computers for the simulation of systems studied in the fields 
of natural, social, and administrative sciences. Emphasis is on 
the formulation of problems and the design of models which 
reflect the activities of the systems concerned, and which lend 
themselves to being programmed for the computer. Prob
ability functions, stochastic variables, :\lonte Carlo tech
niques, and queuing theory. Both continuous and discrete 
systems are studied in detail. Specialized simulation languages 
and statistical verification of simulation results are' also 
considered. 

Programming Languages: A study of the general principles 
and applications of computer languages and the techniques 
and problems of language implementation. Emphasis will be 
placed upon the use of significant languages excluded in other 
computer science courses, e.g., ALGOL, PL/I, APL, LISP, 
and SNOBOL. 

Operating Systems and Systems Programming: Detailed 
study of the design and nature of the interface between man 
and computer: job scheduling, resource allocation, task 
overlapping, input/output handling, interrupt processing, 
multiprogramming, multiprocessing, time-sharing, assembly 
and compilation, and system subroutines. 

Graphical Data Processing: Nature of graphical informa
tion processing and programming techniques used in the 
solution of these problems. 

Artificial Intelligence: A survey of the application of 
heuristic programming techniques in computer game playing, 
problem solving, searching and pattern recognition. Principles 
involved in list processing languages will be reviewed. 
Machine learning approaches will be used for the writing of 
interactive educational programs. 



On the Preparation of Computer Science Professionals in Academic Institutions 319 

Independent Study and Research: Project or study 
individually arranged between student and sponsoring faculty 
member. Results presented in seminars. 

SUMMARY 

We feel that the sum of the courses and requirements 
presented above yields more than the knowledge of a 
computer as a problem solving tool. Rather it imparts an 
ability to recognize and formulate problems, to seek solutions 
to these problems, and to make optimal use of the computer. 
This results in part from the emphasis that the faculty lends 
to the subject matter, and the interaction between students 
and faculty. A graduate with a bachelor's degree (in any field) 
will hold a subordinate position in his first job. As such, he 
will be carrying out tasks assigned by others. As a result of 
our program, our graduates will have an understanding of the 
requirements and interests of their superiors and will be able 
to carry out their duties in an appropriate and efficient 
manner. 

REFERENCES 

1. "Higher Education: Study Urges Altered Thrust in Federal Sup
port," Science, Volume 182, Number 4112, November 1973. 

2. "The Misdirection of Computer Education Efforts," Journal of 
Data Education, 1972. 

3. Bylaws, Institute for Certification of Computer Professionals 
(ICCP). 

4. Curriculum '68," Communications of the ACM, Volume 11, Number 
3, March 1968. 

5. Hamming, R. W., "One Man's View of Computer Science," Journal 
of the ACM, Volume 16, Number 1, January 1969. 

6. Kandel, A., "Computer Science-A Vicious Circle," Communications 
of the ACM, Volume 15, Number 6, June 1972. 

7. Austing, R. H. and G. L. Engel, "A Computer Science Course 
Program for Small Colleges," Communications of the ACM, Volume 
16, Number 3, March 1973. 

8. Blum, R., Ed., "Computers in Undergraduate Science Education," 
Comm. on College Physics, 1971. 

9. Proceedings, Conference on Computers in the Undergraduate Curricu
lum, 1970-1-2-3. 

10. Recommendations for an Undergraduate Program in Computational 
Mathematics, Committee on the Undergraduate Program in Com
putational Mathematics, May 1971. 





EDP education-An acute crisis* 

by GOPAL K. KAPUR 

University of California 
Livermore, California 

INTRODUCTION 

According to a recent AFIPS study,! the estimated number 
of unfilled openings for trained programmers in 1970 was 
between 200,000 and 650,000; and for systems analysts there 
were between 60,000 and 200,000 positions available. In
dustrialleaders are the first to admit that existing educational 
facilities are not adequate to supply the quantity and quality 
of training needed to fill the present market requirements
not to mention the steadily increasing demand foreseen for 
the future. From these observations it is obvious that the 
full potential of the computers presently in use cannot be 
realized because of the scarcity of sufficiently qualified pro
grammers and analysts. As a consequence, many present-day 
computer installations are on the brink of chaos. 

This shortage of sufficiently competent personnel hurts 
the computer users in more ways than just the imposition of 
artificial limitations on the utility of their computers. Since 
the demand exceeds the supply, job placement odds favor 
ill-qualified programmers and analysts. Such individuals 
change job after job, often landing better paying ones, and 
even more often compounding the miseries of their new
found employers. 

The intent· of the present paper is to examine the existing 
methods of training and to discuss the considerations in
volved in the development of educational programs for turn
ing out highly competent and knowledgeable programmers, 
analysts, and data processors. 

Without question, the most critical problems facing the 
people on the hiring (and firing) end of the EDP staff 

• An inadequate supply of well-qualified programmers and 
analysts. 

• An abundance of poorly trained, unqualified and in-
efficient personneL 

If the latter of the two observations seems unduly harsh, 
one need only consider the vast number of data processing 
installations that are approaching virtual collapse, caught 
months and years behind their schedules. A recent study by 
:McKinsey & Company2 of computers in 36 major firms 
states that "In terms of technical achievement, the com-

* Work performed under the auspices of the U. S. Atomic Energy 
Commission. 

321 

puter revolution in U.S. business is outrunning expectations. 
In terms of economic payoff of new applications, it is rapidly 
losing momentum." It further states that " ... from a profit 
standpoint, our findings indicate computer efforts in all but 
a few exceptional companies are in real, if often unacknowl
edged, trouble. Faster, costlier, more sophisticated hard
ware; larger and increasingly costly computer staffs; in
creasingly compJex and ingenious applications: these are in 
evidence everywhere. Less and less in evidence, as these new 
applications proliferate, are profitable results. This is the 
familiar phenomenon of diminishing returns .... " 

The March 25, 1970 issue of COMPUTERWORLD re
ported that McDonnel & Company, a 65-year-old securities 
dealer, will gradually liquidate its businessJReason: " ... the 
failure of a new computer system to operate as it had planned, 
compounding the back office problems during the latter part 
of 1968 when stock brokerage volume was at a record level."3 

Yet another example of mismanagement is contributed by 
the data processing department of the State of Massachu
setts. According to a recent report filed by Donald R. Dwight, 
Commissioner of Administration, misuse and underuse have 
created a data processing wasteland, State legislators have 
charged, "mismanagement" of computer installations, and 
they plan to conduct public hearings on purchase procedures.4 

These are but a few of the many examples of doom brought 
on an organization by the data processors. 

WHY SUCH A POOR SHOW? 

Data processing, especially programming, has been and 
still is being taught as a trade. :Most programming training is 
really an introduction to coding, and systems analysts are 
created by promoting senior programmers to new positions 
(rarely accompanied by any training in systems analysis). 
The educational institutions have also looked upon (or shall 
we say looked down upon) business data processing and 
analysis as technician's work, rather than an applied science. 

. Little has been done to impart the discipline of a science to 
the data processing curriculum. The industry's record is no 
better. The recruiting, training, and treatment of EDP per
sonnel have not been approached in the same manner, or 
vvith the degree of thorough..11ess, as is the case with engineers 
and scientific computing personnel. Very seldom does one 



322 National Computer Conference, 1974 

hear about bridges collapsing, computers shorting out, or 
buildings tumbling. Even the leaning tower of Pisa is taking 
its sweet time. But there are scores of writeups on EDP 
project failures each month in EDP news magazines and 
papers. The lack of proper education and training in the field 
of business data processing is one of the major causes for the 
sad status of the data processing industry. 

The computer is one of the most precise machines ever 
developed. And yet, little effort has been spent in imparting 
disciplined education to the people who use this machine as 
a tool for information processing and management. Training 
has been haphazard, and it continues to be so even today. 

There are four main sources of instruction for data process
ing personnel: private EDP schools, colleges and universities, 
manufacturers' schools, and in-house training within the 
industry. 

PRIVATE EDP SCHOOLS 

Over the past decade approximately 1,000 private EDP 
schools have mushroomed into existence throughout the 
country. This has become a $100 million-a-year business. 
Individual schools charge as much as $2,000 for a six- to 
eight-month course. Often the performance records of these 
schools leave much to be desired. l\10st of the EDP schools 
are franchised, and unfortunately the franchise is usually 
bought by a salesman or commercially oriented person who 
wants to make a fast buck and disappear from the picture. 
These schools give their students very little other than a 
framable piece of paper. Very seldom is the franchise owner 
a person dedicated to, or even interested in, the cause of 
decent education. The quality of education provided by most 
of these installations is substandard, and their overall train
ing approach provides little preparation for the actual busi
ness environment for which the student is being prepared. 

The past few years have seen an increasing number of 
instances where the malpractices of such schools have been 
brought to the attention of public authorities. During an 
interview the director of the :Massachusetts Consumer Pro
tection Division remarked, "I will close every computer 
school in the state, if necessary ... " to stop misrepresentation 
and fraud. 5 Fraud and malpractice have also been brought to 
the attention of the authorities in Texas, California, and 
many other states. Certainly there are reputable EDP schools 
imparting good educations, but their number is small. 

Private EDP schools try to teach too much too fast to 
students who are simply not qualified. Most of these schools 
cover FORTRAN, COBOL, RPG, and assembler language 
in a six- to eight-month period, and some even throw in a 
course in PL/l for good measure. All this is directed at stu
dents who have passed a watered-do",n, so-called aptitude 
test. Personal interviews with students from different schools 
on the West Coast revealed that most had not received any 
classroom exposure to tape and disk file processing. The 
main emphasis is on theory, and very little is placed on the 
pract,ic~J side of business data processing expertise. These 
students get precious little experience in structuring prob-

lems for solutions and almost no exposure to information 
processing applications. 

The instructors in these schools are usually underpaid, 
they are seldom qualified, and only rarely are they competent 
teachers. Instruction usually concentrates on the mechanics 
of the given languages, with very little time or effort being 
devoted to the overall logic of the language, its application, 
and basic programming techniques. 

CONTROL OVER PRIVATE EDP SCHOOLS 

Private EDP schools are on the front line in the effort to 
meet tlie needs of the manpower market for entry-level 
personnel in the coming years. These schools merit careful 
and continuous evaluation and guidance. Until recently, in
dustry as a whole has chosen to disregard these schools; thus 
their effect on the quality of the education offered has been 
minimal. The participation of industry is essential to the 
proper orientation, control, and effective monitoring of these 
institutions. Industry should press for tighter governmental 
controls over the licensing and operation of such schools. 
Through its professional organizations, industry should draw 
up workable and practical standards for private schools, 
and such standards should be made available to the public, 
the press, and-most important of all-to the vocational 
counselors. 

Recent EDP school guidelines prepared independently by 
the AC:\f and DPMA represent a major step toward the 
standardization of educational benchmarks and goals. How
ever, such organizations cannot by themselves legislate a 
workable solution, nor can they force individual schools into 
compliance. One obvious practical solution lies in industry's 
backing up its evaluations by providing legitimate employ
ment opportunities to graduates of the schools that uphold 
high academic and professional standards. Furthermore, the 
data processing industry, as potential employers, should 
realistically evaluate their existing and future job require
ments for trainee-level personnel. This should be conveyed 
clearly to reputable EDP schools. 

WHAT ABOUT COLLEGES? 

One of the greatest enigmas is the gross failure of colleges 
and universities to involve themselves in the development 
of business data processing science. The academicians are 
among the worst culprits in the unforgivable practice of 
imparting substandard and superficial instruction and repre
senting it to be far more than it is. Only a handful of uni
versities and four-year colleges are presently offering pro
grams leading to degrees in business data processing, and 
very few have plans to implement such programs. Why 
have the pundits of higher education chosen to ignore such a 
vital field? Very few institutions offer courses in data process
ing systems design, data structures, information retrieval, 
analysis methods, programming techniques and applications, 
mathernatic::; oriented Lo business data processing, and other 
related subjects. Usually the courses are aimed at engineering 



and scientific uses of the computer. The emphasis is on pure 
science, with only cursory attention paid to the development 
of applied computer techniques for commercial utilization. 

. One reason for the poor quality of courses and the in
adequacy of instruction stems from the manner in which the 
faculty at such institutes gets its exposure to business data 
processing. One or two instructors (in the fields of manage
ment, law, accounting, marketing, etc.) leaf through this or 
that manual for a given language, write a few elementary 
programs, and-without further ado-a data processing pro
fessor emerges. They usually have only skeletal knowledge 
of the language and often no appreciation of the real world 
of data processing. Engineering, mathematics, or even basket
weaving departments would never allow so shoddy an ar
rangement. Nonetheless, these people are now acknowl
edged leaders in the academic world of data processing. Just 
because a person happens to have the title of assistant, 
associate, or full professor in law, marketing, management, or 
accounting, it does not mean that the same person, by read
ing a few manuals, has qualified himself as a professor of 
data processing. It is not uncommon to assign such teachers 
to data processing classes for the sole purpose of filling their 
minimum unit load requirements. These instructors are usu
ally only about a semester ahead of their students. What a 
flagrant violation of a student's basic rights to decent educa
tion. This is not to suggest that they are incapable of teach
ing such courses, only that they should be required to get 
vigorous training and first-hand experience before taking up 
teaching assignments. 

The educational community has failed to realize the im
portance of disciplined training in business data processing. 
Proof of this is the lack of adequate-much less excellent
courses in colleges and universities throughout the country. 

The California State Universities and State Colleges have 
acquired a network of third-generation computers with a 
price tag of approximately $8,000,000. Nonetheless, only 
one of these schools, California Polytechnic State University 
at Pomona, provides a major in business data processing
and only at the undergraduate leveL Of the other schools in 
the system, only California Polytechnic State University at 
San Luis Obispo offers a substantial number of courses in 
business data processing. The University of California, Kan
sas State University, Howard University, Georgia Institute 
of Technology, Ohio State University, and Brigham Young 
University are typical of a seemingly endless list of excellent 
schools that, while offering instruction in computer sciences, 
have not seen fit to offer many courses in business data 
processing. 

In his keynote address to the ACM Conference on Person
nel Research, Anthony Oettinger of Harvard stated, "We 
ought to help the programmer survive by proper education. 
But who can we look to for such education? Not the new de
partments of computer science in universities. These de
partments are just getting out from under the influence of 
competing engineering and mathematics departments, and 
they are too busy teacr.Jng Simon-pure courses in their 
struggle for academic recognition to pay serious time and 
attention to the applied work necessary to educate program-

EDP Education-An Acute Crisis 323 

mers and analysts for the real world." The. degree of purity 
of the computer science that is taught," claimed Oettinger, 
"is inversely related to the competence of the department in 
meeting social needs." He further stated, "We don't need 
any courses in Latin to develop general powers of reason
ing .... "6 

INDUSTRY AND THE COLLEGES 

In the long run, colleges and universities are the only hope 
for wen-qualified business data processing professionals. The 
data processing community should exert pressure on the 
acaderriicians for the rapid implementation of new courses 
and the upgrading of the existing ones. The business com
munity can show its real interest by setting up scholarships 
and by contributing time, expertise, financial assistance, ex
cess computer time, and ,vhatever else might be available 
to help establish a business data processing curriculum and 
adequate facilities in colleges. The educators need this type 
of participation rather than donations of obsolete hardware 
that give the donors handsome tax writeoffs and the recipi
ents perpetual headaches. 

Colleges, on the other hand, should abandon their ivory 
towers as far as education in business data processing is 
concerned. They should seek advice and help from the in
dustry in designing data processing courses.· The academic 
community should not feel that asking for guidance in such 
matters from the people in the industry is belittling. The 
commercially oriented people are the ones who are faced 
with the problems. They know what basic knowledge and 
training is required. They know what general trends exist in 
the industry and what will be needed in the foreseeable future. 

One reason for the shortcomings of business data process
ing courses in colleges and universities is the dearth of quali
fied faculty. To fill this void, serious consideration should be 
given to the possibility of employing knowledgeable people 
from the industry. These people may not fulfill the estab
lished degree and credential requirements, but they have 
much more to offer the student than a professor with a degree 
in accounting or law and a short course in a computer lan
guage. "A little knowledge is a dangerous thing." 

The programs offered by colleges and universities should 
concentrate on business data processing systems design, 
analysis methods, programming logic and techniques, busi
ness mathematics, data structures and information retrieval, 
equipment evaluation and selection, and the design, evalua
tion, and implementation of software. Refresher courses for 
upgrading industrial staff members already working with the 
computer should not be neglected. Courses oriented to the 
problems of data processing management and executive edu
cation should be offered through seminars and workshops. 
If business data processing applications are to attain the 
same stature as other applied sciences, they will have to be 
accomplished in an environment conducive to such develop
ment, and they will require some formidable exertion on the 
part of educators. 

Industry, on the other hand, should offer programs in 



324 National Computer Conference, 1974 

which teachers from colleges can be given opportunities to 
obtain first-hand experience in practical data processing. 
This could be realized in the following ways: 

• In-house training programs during summer or at other 
convenient periods to train the sort of data processing 
teachers the industry particularly requires. The 
businesses that are most influential in the future of 
EDP should take the initiative in this matter and estab
lish lines of communication with various colleges and 
universities. 

• Occasional workshops in the advanced "state-of-the
art" could be offered for teachers to keep them informed 
about the latest innovations and developments within 
the industry. 

• Some larger commercial installations might see their 
way clear to lending various sorts of assistance to pre
pare students of selected colleges for the real world of 
computer applications. 

The long-range benefits from such programs will outweigh 
by far the immediate expenditures incurred by the computer 
industry. 

COMPUTER ~1ANUFACTURER SCHOOLS 

Objectively speaking, the training imparted by the com
puter manufacturers does not deserve many laurels, either. 
Nonetheless, the level and extent of such training has, in 
many ways, saved the business data processing industry from 
total disaster. Their efforts in developing qualified user per
sonnel for their equipment have at least supplied the industry 
with a large number of coders and some programmers and 
analysts. However, the training provided by the manu
facturer schools should be recognized for what it is: training 
in how to make their computer execute procedures. The 
emphasis is merely on teaching people the instruction set of 
a given language. Little or no emphasis is placed on basic 
programming logic, file structure, file organization, system 
analysis techniques, system design methods, efficiency con
siderations, and documentation methods. People so narrowly 
trained end up learning only the language instruction sets. 
They certainly are not taught to program well, since very 
little emphasis is put on the logic and structure of the com· 
puter language, even though logic is the backbone of good 
programming. Some of the computer manufacturers have 
been providing essentially a makeshift education in EDP
yielding quick, generally flimsy, results. 

IN-HOUSE TRAINING: A FIRST SOLUTION 

It is easy to call for upgrading of private EDP schools 
and the institution of new and better courses at colleges and 
universities. However, it would be a long time before such 
efforts would really start to payoff. For example, it takes 
many years before ne\v courses can be taken from conceptual 
stages to full implementation. Then, there is the need fur 
upgrading the programmers and analysts who, due to a lack 

of real education, are contributing to the delinquency of the 
data processing industry. 

The internal turmoil, inefficiency, and overall confusion 
within the majority of data processing installations stems 
from the quality and extent of training given to in-house 
programmers and analysts. Top management has been led 
to believe that programmer training is a fairly straightfor
ward and not-so-important matter. The usual sequence of 
steps for in-house selection and training of programmers7 

goes like this: 

• Administering an aptitude test to a number of company 
employees. 

• Selecting a group of people who happen to have done 
well on the above tests and who can be spared from 
their present jobs. 

• Having them attend a two- to three-week class con
ducted by the computer manufacturer. 

• Placing them in the data processing department to start 
programming. 

This approach to programmer training is in many ways 
similar to preparing "instant potatoes". What you get is a 
substandard product; in fact, you have created the "instant 
programmer".8 The entire approach is open to serious chal
lenge. 

Quickie training of this sort exposes the student to nothing 
more than how to code--not even how to code well. The main 
emphasis is on programming languages, and during the train
ing phase an average student will write one or two elementary 
programs. Basic EDP concepts are completely overlooked, 
and the results are disastrous. 

The first step in improving the performance of the data 
processing departments is to improve the in-house training 
methods. The categories listed below provide a frame of 
reference for identifying programmer training needs: 

• Basic familiarity with computer hardware and general 
architectural concepts. 

• Introduction to programming, the bases of systems 
analysis, operating systems, and software. 

• Learning the structure, usage, logic, and application of 
the programming language. 

• Introduction to good programming habits, documenta
tion, program optimization, and program structuring 
methods. 

• On-the-job training in programming application-start
ing with simple I/O oriented programs-to be rein
forced with discussions on modular programming con
cepts, desk-checking, and debugging techniques. 

• Periodic seminars, workshops, or discussion group meet
ings to explore such subjects as file organization and 
resources, decision table application, and other related 
subjects. 

• Occasional discussions on the efficient usage of company 
software. various utility routines, and job control lan
guage. 

It is realized that it may not be possible for many installa
tions to institute a formal training program, and in other 
cases it may not be advantageous to go deeply into every 



suggested area of study. Reasons for this could be many: 
lack of funds, very small staff, lack of training material and 
personnel. However, most installations will need to develop 
some type of organized approach if they are to survive the 
increasing shortage of well-qualified data processors. 

The question arises: How can an organization develop 
adequate, workable, in-house programmer training material? 
The points outlined below, with certain modifications and 
adjustments, may be the solution for many companies: , 

• Conducting formal classes in those areas that tend to be 
formalized and routine, e.g., programming languages, 
introductions to hardware and software. The scope of 
each class will depend mostly on the background and 
needs of the participants. The overall approach and 
organization of such classes should be flexible enough to 
accommodate participants with varying degrees of ex
perience. Such classes could be supplemented by pro
grammed instruction (PI) and audiovisual courses avail
able from computer manufacturers and other EDP edu
cational concerns. 

• Holding informal one- or two-hour workshops once a 
month may be advisable for dealing with topics of 
limited relevance to the majority of data processing 
employees, e.g., sessions on program debugging, uses of 
certain utility routines, interpretation of dumps, etc. 

• Company management should also explore the possibil
ity of inviting experts from other companies, reputable 
computer consultants, and qualified teachers from local 
colleges to discuss such matters as data structures and 
information retrieval, file organization techniques, and 
design and handling of large computer projects. 

• An excellent method to fire up individual interest is to 
set aside a one-hour meeting time, perhaps once every 
three months. Different subjects are selected by the 
participants, and each month a programmer prepares 
and conducts the meeting on one subject, followed by a 
question-and-answer period. It is surprising how much 
good material can be developed through such meetings 
and, at the same time it gives the participants a sense 
of accomplishment. 

Similar training methods and approaches can be applied 
to the upgrading of the systems analysis staff. The following 
categories identify the training needs in general: 

• Basic training in the use of existing hardware and soft
ware. It is very important that a systems analyst have 
a clear understanding of the capabilities as well as limita
tions of the company hardware and software. Kew 
systems analysts, especially the entry-level personnel, 
should be familiarized with basic data processing and 
computer concepts, computer programming, and the 
software in use. 

• Training in analysis and system design. This phase of 
training may touch on such topics as feasibility studies, 
basic system design, system development, and system 
implementation fundamentals. 

• The system staff should be kept cognizant of all soft-

EDP Education-An Acute Crisis 325 

ware changes, i.e., changes in operating environment, 
new utilities, new procedures, etc. 

• Professional development. This phase of training in
volves those areas of systems development that wilJ 
help the analyst to develop better and more efficient 
systems. Specifics of this area of training could be: the 
use of decision tables, special system techniques applic
able to problems at hand, training in various phases of 
company business, test data generation, and system 
testing techniques. 

• Other short courses such as effective communication, 
effective writing, leadership, problem analysis, financial 
management and budgeting, and interpersonal effective
ness should also be looked into. 

In-house training requires considerable thought, planning, 
and commitment by the top executives, time and effort by 
the data processing staff, and inevitably, a definite financial 
outlay. However, such efforts will pay big dividends: more 
efficient use of company hard\vare and software, better em
ployee morale, and above all, a smoothly operating data 
processing department-to name just a few. 

COKCLUSION 

There is no one solution to the problems that exist, and will 
continue to exist, in the field of business data processing. 
However, if sincere and conscientious steps are t'aken by 
the industry and the educational institutes, tne problems 
could be alleviated significantly. It is obvious that the in
dustry stands to gain tremendously by working in partner
ship with colleges, universities, and private EDP schools 
for the purpose of establishing sorely needed guidelines and 
objectives. 

The collapse of McDonnel & CO.,3 chaos in the data 
processing department of the state of Massachusetts~4 and 
the general confusion and mismanagement that abounds 
should serve as dire warning to industry of the great peril at 
its gates. Industry is limping along hoping that manufac
turer's schools, colleges, universities, and private EDP schools 
will improve their education and training systems, and the 
education institutes are expecting the same of the industry. 
But problems will never be solved unless all parties come to
gether and agree on a system of data processing education 
that is mutually beneficial to the educators, the potential 
students, and the industry as a whole. 

REFEREXCES 

1. AFIPS, 1970. 
2, Unlocking the Computer's Profit Potential, McKinsey and Company, 

Inc., 1969. 
3. Computerwarld, March 25, 1970, p. 25. 
4. Computerworld, April 1, 1970. 
5. Computerworld, April 15, 1970. 
6. "ACM Conference on Personnel Research," Datamation, August 

1968. 
7. Kapur, G. K., "Sharpen your EDP Staff Through In-House Train

ing," Computer Decisions, March 1971. 
8. Kapur, G. K., "The Instant Programmer," Datamation, November 

15, 1970. 





An undergraduate/graduate program in information systems 

by CHARLES J. TESTA 

University of Maryland 
College Park, Maryland 

A recent report! by the Association for Computing Machin
ery (ACM) Curriculum Committee on Computer Education 
for Management (C3EM) offered recommendations for grad
uate professional programs in information systems develop
ment. The integration of the disciplines of computer science 
and business administration led to the development of a 
curriculum whose objectives are: "(1) to develop a systems 
point of view, (2) to provide a conceptual basis for the 
analysis of information systems in large complex organiza
tions, (3) to develop an understanding of how to create an 
economically viable and technologically feasible computer
based system, and (4) to provide experience in the implemen
tation of a complex information system." Thus, the program 
is designed to prepare students for a career as a designer and 
manager of computer-based information systems. It is 
assumed that students entering this graduate program will 
have suf!!cient preparation in basic mathematics, operations 
research, statistics, psychology, economics, and computer 
programming. 

In a subsequent report2 the C3EM proposed a curriculum 
for an undergraduate program based on the same general 
concept of the information systems specialty in organizations. 
In both reports the life cycle of an information system was 
viewed as consistng of an iterated process of information 
analysis, system design, and implementation. The graduate 
program was structured to include both information analysis 
and system design, but the undergraduate program offered 
two concentration options. The organizational option prepares 
students as computer users while the technological option 
prepares them for an entry level position as a programmer. 
Each option requires the student to choose a field of applica
tion in which he will complete 15 semester hours of course 
work or the equivalent of a double major. Since the two 
options will typically reside in the schools of business and 
engineering respectively, the undergraduate student is faced 
with "school requirements" as well as "university require
ments." As a result, the undergraduate program imposes 
strict requirements on students and limits their flexibility. 

It is the author's belief that an undergraduate program can 
prepare students for entry level positions in the field of 
information systems. Additional on the job training and/or 
advanced education should enable these individuals to make 
significant contributions to the development of effective 
information systems. If structured properly the under-

327 

graduate program can provide sufficient background to enable 
students to complete a master's program in one additional 
year. 

BEHAVIORAL FACTORS 

In the aforementioned ACM reports, the need for better 
understanding of human behavior in information systems was 
clearly expressed. For many years hardware/software prob
lems demanded the most attention while "people" problems 
were often ignored. As a result, sophisticated information 
systems were often developed, but people experienced 
difficulty in interacting with these. compl,ex systems. Since 
information systems are used, operated, a~d maintained by 
people, it is essential that students develop an underStanding 
of human behavior. 

It is the author's opinion that the field of information 
systems must identify and apply the specific behavioral 
principles involved in system design. The design of effective 
information systems will only result if man's perceptual, 
cognitive, motor, and motivational capabilities are taken into 
consideration. For too many years, we have bemoaned the 
fact that a "communication gap" between the manager and 
the information system specialist prohibits effective system 
development. A better understanding of the manager's 
personality should help to narrow this gap. 

Current societal problems cannot be packaged for solution 
by specific disciplines. Their solution depends upon the 
contributions of individuals from many disciplines who often 
speak different "languages." In an attempt to foster inter
action across traditional disciplinary lines, the University of 
Maryland has recently undergone an academic reorganiza
tion. The new organization is based upon the grouping of 
related disciplines into Divisions in the hope that this will 
facilitate the joining of theoretical and empirical aspects of 
knowledge and enhance the ability to develop interdisciplinary 
programs. The departments of economics (ECON), geography 
(GEOG), government and politics (GOVT), information 
systems (INSY), psychology (PSYC), and sociology (SOCY), 
and the college of management (BSAD) constitute the 
Division of Behavioral and Social Sciences. This structure 
prov-ides an ideal opportunity for students and faculty to 
cross traditional barriers to interaction. 



328 National Computer Conference, 1974 

TABLE I-Undergraduate Program 

General Requirements for Bachelor's degree in Information Systems. 
A minimum of 120 semester hours with 30 hours in general university 

requirements, 30 hours in electives, and 60 hours in courses constituting 
Groups I-IV below. 

Group I 

INSY 200 

INSY 201 
INSY 202 
INSY 203 
INSY 204 
INSY 205 

Group II 

BSAD 240 
BSAD 241 
PSYC 100 
PSYC 200 
ECON 100 
ECON 101 

Group III 

MATH 100 
MATH 101 
MATH 102 
CMSC 100 
CMSC 101 

Group IV 

BSAD 110 
BSAD 210 
BSAD 211 

Group V 

Credit 
(Information Systems) Hours 

Introduction to Electronic Data Processing 3 
Systems 

Advanced Electronic Data Processing Systems 3 
System Development 3 
Systems Analysis 3 
Management Information Systems 3 
Computerized Planning Systems 3 

(Behavioral Sciences) 

Personnel Management 
Management and Organization Theory 
Introduction to Psychology 
Personality and Adjustment 
Principles of Economics I 
Principles of Economics II 

(Mathematics and Computer Science) 

Calculus I 
Calculus II 
Calculus III 
Elementary Algorithmic Analysis 
Language and Structure of Computers 

(Operations Research and Statistics) 

Business Statistics 
Operations Research for Management 
Linear Statistical Models in Business 

(Electives)-30 hours 

At least 18 of the 30 hours must be taken at 
the 200 level or above. 

Subgroup VA (Related Discipline) 

Choose one group of three courses (9 credits) 
from the following disciplines: 

1. Accounting and Finance 
2. Operations Research and Statistics 
3. Marketing and Transportation 
4. Government 
5. Sociology 

See Table 2 for suggested courses in each of the 
related disciplines 

18 

3 
3 
3 
3 
3 
3 

18 

3 
3 
3 
3 
3 

15 

3 
3 
3 

9 

Group VI (General University Requirements)-30 hours 

At least 9 of the 30 hours must be taken at the 
200 level or above. 

Code: 
Courses numbered from 100-199 are first and 

second year undergraduate courses. Courses 
numbered from 200-299 ate third and fourth 
year undergraduate courses. 

UNDERGRADUATE PROGRAM 

As a result of the preceding discussion, it is proposed that 
undergraduate students choosing information systems as 
their major field of study be responsible for the body of 
knowledge contained in the groups of courses shown in 
Table r. Emphasis is placed on understanding the funda
mentals of the courses studied in Groups II-IV and applying 
the acquired knowledge to the field of information systems. 
In recent years a trend has evolved toward a broad general 
education at the undergraduate level. In keeping with this 
philosophy, Group V (electives) and Group VI (general 
university requirements) allow the student flexibility in 
fulfilling the requirements for 120 total credit hours. 

The following is a collection of descriptions of under
graduate courses in information systems. Each course descrip
tion specifies prerequisites or preparation expected of students 
taking the course. In addition, references (textbooks) are 
included to assist in further identifying the subject matter of 
the course. 

INSY 200. INTRODUCTION TO ELECTRONIC 
DATA PROCESSING SYSTEMS3,4 

Description 

The objecti~e of this course is to develop an understanding 
of the digital computer and its role as a tool in the information 
systems of organizations. Topics include an orientation to the 
stored program computer and its use as an automatic data 
processing system, concepts and use of a problem oriented 
computer language (COBOL), and the impact of computer
based information systems upon organizations and their 
management. 

INSY 201. ADVANCED ELECTRONIC DATA 
PROCESSING SYSTEMS5,6 

Prerequisites: INSY 200 and BSAD 110 

Description 

Intensive study of advanced COBOL topics and computer 
applications in scientific, information, and control systems 
with particular emphasis on information systems. Hardware 
and software features of third generation computers. Topics 
include COBOL for tape and direct-access devices, manage
ment information systems, multiprogramming and multi
processing systems. 

INSY 202. SYSTEM DEVELOPMENT7,8 

Prerequisites: INSY 201, :MATH 102 

Description 

Techniques for identifying an organization's information 
requirements and methods to design systems to meet these 



An Undergraduate/Grad.uate Program in Information Systems 329 

needs. Emphasizes systems development process and partici
pation of management in this process. Topics include systems 
methodology, data analysis, data processing files, systems 
technology, systems economics, systems management. 

INSY 203. SYSTEMS ANAL YSIS9 ,10 

Prerequisites: INSY 202, BSAD 211, MATH 103 

Description 

Application of systems analysis techniques to the develop
ment of information systems. Measurement, simulation, and 
evaluation of information systems. Topics include the 
principles of systems analysis, simulation models, network 
analysis, hardware/software performance. 

INSY 204. MANAGEMENT INFORMATION 
SYSTEMSl1 ,12 

Prerequisites: INSY 202 

Description 

Conceptual approaches for the analysis and design of 
management information systems (MIS). lV[ethods used in 
designing, establishing and maintaining a data base for a 
MIS. The role of data management in information systems. 
Topics include the concept of MIS, information structures, 

TABLE II -Suggested Courses in Related Discipline at the 
Undergraduate Level 

1. Accounting and Finance 

BSAD 100 
BSAD 101 
BSAD 200 

Principles of Accounting 
Intermediate Accounting 
Cost Accounting 

2. Operations Research and Statistics 

MATH 103 
BSAD 212 
BSAD 213 

Linear Algebra 
Operations Research I 
Operations Research II 

3. Marketing and Transportation 

BSAD 220 
BSAD 221 
BSAD 230 

4. Government 

GOVTl00 
GOVT 101 
GOVT200 

5. Sociology 

SOCY 100 
SOCY 101 
SOCY 102 

Marketing Principles and Organization 
Marketing Management 
Principles of Transportation 

American Government 
Introduction to Political Behavior 
Principles of Public Administration 

Introduction to Sociology 
Principles of Sociology 
Research Methods in Sociology 

3 
3 
3 

3 
3 
3 

3 
3 
3 

3 
3 
3 

3 
3 
3 

TABLE III-Master's Program 

General Requirements for Master's degree in Information Systems. 
A minimum of 30 semester hours with 15 hours in the major field and 

15 hours in a related discipline plus a comprehensive written examina
tion taken at the end of all course work. 

Group I 

INSY 400 
INSY 401 
INSY 402 

INSY 403 
INSY 404 

Group II 

(Information Systems) 

Design of Large-Scale Information Systems 
Information Systems Management 
Application of Advanced Developments in In-

formation Technology 
Human Factors in Information Systems 
Concepts of Information Systems 

(Related Discipline )-15 hours 

Choose one group of five courses from the fol-
lowing disciplines. 

1. Accounting and Finance 
2. Operations Research and Stati'3tics 
3. Marketing 
4. Transportation 
5. Management 
6. Personnel 
7. Economics 
8. Psychology 
9. Government 

10. Sociology 

See Table IV for suggested courses in each of 
the related disciplines. 

Code: 
Courses numbered from 200-299 are third and 

fourth year undergraduate courses. Courses 
numbered 400-499 are graduate courses. 

Credit 
Hours 

3 
3 
3 

3 
3 

15 

elements of data management systems, query systems and 
report program generators. 

INSY 205. COMPUTERIZED PLANNING SYSTEMS13 ,14 

Prerequisites: INSY 202, BSAD 211 

Description 

An examination of the techniques used in the design and 
implementation of computer-based planning and analysis 
models. Formulation of mathematical models and analysis of 
information requirements for the data base to operate the 
model. Verification and validation of models. The use of 
management information systems to support corporate 
strategic and tactical planning. Topics include industrial 
dynamics, statistical analysis, forecasting techniques, and 
conceptual framework for planning models. 

The undergraduate program, as constituted should provide 
students ",ith the necessary prerequisites for related graduate 
study in management, personnel, economics, and psychology. 
However, if a student expects to choose accounting and 
finance, operations research and statistics, marketing, tranR-



330 National Computer Conference, 1974 

TABLE IV-Suggested Courses in Related Discipline at the Graduate 
Level 

1. Accounting and Finance 

BSAD 201 Advanced Accounting 3 
BSAD 202 Advanced Cost Accounting 3 
BSAD 203 Financial Management 3 
BSAD 400 Managerial Accounting 3 
BSAD 401 Financial Administration 3 

2. Operations Research and Statistics 

BSAD 410 Managerial Analysis 3 
BSAD 411 Application of Management Sicence 3 
BSAD 412 Management Simulation 3 
BSAD 413 Management Science I 3 
BSAD 414 Management Science II 3 

3. Marketing 

BSAD 222 Marketing Research Methods 3 
BSAD 223 Consumer Analysis 3 
BSAD 224 Industrial Marketing 3 
BSAD 420 Marketing Administration 3 
BSAD 421 Advanced Marketing Research Methods 3 

4. Transportation 

BSAD 231 Advanced Transportation Problems 3 
BSAD 232 Urban Transport and Urban Develop- 3 

ment 
BSAD 430 Management of Physical Distribution 3 
BSAD 431 Transportation Strategies 3 
BSAD 432 Product, Production, and Pricing Policy 3 

5. Management 

BSAD 242 Organizational Behavior 3 
BSAD 440 Behavioral Factors in Management 3 
BSAD 441 Application of Behavioral Science to 3 

Business 
BSAD 442 Management Planning and Control Sys- 3 

terns 
BSAD 443 Organizational Conflict and Change 3 

6. Personnel 

BSAD 243 Personnel Management-Analysis and 3 
Problems 

BSAD 444 Personnel Management-Manpower 3 
Procurement & Development 

BSAD 445 Personnel Management-Manpower 3 
Compensation & Evaluation 

BSAD 440 Behavioral Factors in Management 3 
BSAD 441 Application of Behavioral Science to 3 

Business 

7. Economics 

ECON 200 National Income Analysis 3 
ECON 201 Intermediate Price Theory 3 
ECON 202 Quantitative Methods in Economics 3 
ECON 400 Quantitative Economics I 3 
ECON 401 Quantitative Economics II 3 

TABLE IV-Suggested Courses in Related Discipline at the Graduate 
Level (Continued) 

8. Psychology 

PSYC 201 Personnel and Organizational Psychol- 3 
ogy 

PSYC 202 Engineering Psychology and Training 3 
Models 

PSYC 400 Quantitative Methods I 3 
PSYC 401 Quantitative Methods II 3 
PSYC 402 Seminar in Human Performance Theory 3 

9. Government 

GOVT 201 Governmental Organization and Man- 3 
agement 

GOVT202 Quantitative Political Analysis 3 
GOVT203 State and Local Administration 3 
GOVT 400 Metropolitan Administration 3 
GOVT 401 Scope and Method of Political Science 3 

10. Sociology 

SOCY 200 Fortnal and Complex Organizations 3 
SOCY 201 Industrial Sociology 3 
SOCY 400 Intermediate Procedures of Data Analy- 3 

sis 
SOCY 401 Practicum in Data Analysis in Field Reo 3 

search 
SOCY 402 Computer Methods for Sociologists 3 

portation, government, or sociology as his area of specializa
tion it is recommended that nine of his 30 electives hours be 
utilized to complete the appropriate courses in Table II. In 
any event, careful planning and counseling is required at the 
undergraduate level to ensure adequate preparation for 
graduate study. 

MASTER'S PROGRAM 

The master's program in information systems is structured 
to provide students with increased skills in information 
systems and a specialization -in a related discipline thereby 
preparing them for careers as designers or administrators of 
information systems. With the trend toward less rigidity in 
undergraduate education it seems more appropriate to 
encompass a related discipline at the graduate level. As such, 
the program requires students to complete the groups of 
courses shown in Table III. In addition, students are required 
to pass a final '."fittcn examination which emphasizes the 
integration of course material. 

The following is a collection of descriptions of graduate 
courses in information systems. Each course description 
specifies prerequisites or preparation expected of students 
taking the course. In addition, references (textbooks) are 
included to assist in further identifying the subject matter of 
the course. 



An Undergraduate/Graduate Program in Information Systems 331 

INSY 400. DESIGN OF LARGE-SCALE INFORMA
TION SYSTEMsui ,16 

Prerequisites: INSY 204 

Description 

Application of systems analysis techniques to the design 
and implementation of large-scale information systems for 
organizations. Emphasizes systems concepts, user's require
ments, and the measurement, coding, and classification of 
data. Programming techniques for large-scale information 
systems, including time sharing and real time. 

INSY 401. INFORMATION SYSTEMS 
MANAGEMENT17 ,18 

Prerequisites: INSY 205 

Description 

An intensive study of the functions, requirements, and 
problems of managers of information systems. Methods and 
models for evaluating information system performance. Data 
security, legal considerations, and social impact of an 
information system. Personnel requirements and documenta
tion procedures. 

INSY 402. APPLICATION OF ADVANCED DEVEIr 
OPMENTS IN INFORMATION TECHNOLOGY19,2o 

Prerequisites: INSY 204 

Description 

Equipment useful in implementing information systems 
including key-to-tape, key-to-disc, mini-computers and 
microfilm. Data communicating devices including telegraph, 
telephone, microwave, and broadband telephone. Applications 
in business information systems. 

INSY 403. HUMAN FACTORS IN INFORl\1ATION 
SYSTEMS21 ,22 

Prerequisites: INSY 204 

Description 

Sensory, motor, and cognitive functions related to man's 
capacity to perform information system tasks. Man as an 
information processor and transmitter. Intensive study of 
relationships between man and the computer. Topics include 
measurement and psycho-physics, personnel subsystems, 
computer I/O devices, programming languages, time sharing 
and interactive programming lVIlS and management decision 
systems, mini-computer systems. 

INSY 404. CONCEPTS OF INFORMATION 
SYSTEMS23 ,24 

Prerequisites: INSY 203 

Description 

Thorough investigation of the systems approach to prob
lem solving and decision making in large-scale systems. 
Emphasizes the interrelationship of the systems approach and 
the planning process. Techniques and methods involved in 
systems analysis. Topics include general systems theory, 
information theory, cybernetics, and decision theory. 

Table IV offers suggested courses in the related disciplines 
at the graduate level. However, through counseling with a 
faculty advisor the student may choose any five coherent 
courses compatible ",ith his career objectives. 

CONCLUSION 

The recommendations in this paper are consistent with the 
curriculum models proposed by the C3EM. It has been a well 
accepted fact that the field of information systems requires 
the contributions of many disciplines. As a result, many 
undergraduate/graduate programs incorporate certain as
pects of computer science, operations research, and other 
quantitative techniques within their purview. It is the 
author's opinion that the behavioral aspects of information 
systems design must form an integral part of such programs. 

LIBRARY LIST 

The following list is not exhaustive, but represents the author's at
tempt to compile a list of books which he deems valuable for the under
graduate and graduate courses in information systems described in this 
paper. 

1. Anthony, R. W., Planning and Control Systems: A Framework for 
Analysis, Boston, Harvard Univ., 1965. 

2. Ashby, W. R., An Introduction to Cybernetics, New York, Wiley, 
1956. 

3. Beer, S., Decision and Control: The Meaning of Operational Research 
and Management Cybernetics, New York, Wiley, 1966. 

4. Berelson, B., and G. A. Steiner, Human Behavior: An Inventory of 
Scientific Findings, New York. Appleton, Century, Crofts, 1968. 

5. Bisco, R. L., Data Bases, Computers, and the Social Sciences, New 
York, Wiley-Interscience, 1970. 

6. Chapanis, A., Man-Machine Engineering, Belmont, Calif., Wads
worth, 196.1. 

7. CODASYL Systems Committee, Feature Analysis of Generalized 
Data Base Management Systems, New York, ACM technical report, 
1971. 

8. Davis, G. B., Computer Data Processing, New York, McGraw-Hil1, 
1969. 

9. Dearden, J., F. W. McFarlan, and W. M. Zani, Managing Com
puter-Based Information Systems, Homewood Ill., Irwin, 1971. 

10. Dickmann, R. A., Personnel Implications for Business Data Process
ing, New York, Wiley, 1971. 

11. Forrester, J. W., Industrial Dynamics, Cambridge, Mass., MIT 
Press, 1961. 



332 National Computer Conference, 1974 

12. Gruenberger, F. (Ed.), Critical Factors in Data Management, Engle
wood Cliffs, N.J., Prentice-Hall, 1969. 

13. Gruenberger, Fred, Information Systems for Management, Engle
wood Cliffs, N.J., Prentice-Hall, 1972. 

14. Guide/Share, Guide/Share Data Base Management System Require
ments, New York, Technical Report, 1970. 

15. Hare, V., Systems Analysis: A Diagnostic Approach, New York, 
Harcourt, Brace, World, 1967. 

16. Head, R. V., A Guide to Packaged Systems, New York, Wiley & Sons, 
1971. 

17. Head, R. V., Manager's Guide to Management Information Systems, 
Englewood Cliffs, N.J., Prentice-Hall, 1972. 

18. Head, R. V., Real Time Business Systems, New York, Holt, Rine
hart, & Winston, 1964. 

19. Hillier, G., and G. Lieberman, Introduction to Operations Research, 
San Francisco, Holden-Day, 1967. 

20. House, W. C. (Ed.), The Impact of Information Technology on 
Management Operation, New York, Auerbach, 1971. 

21. Kanter J. B., Management Guide to Computer System Selection and 
Use, Englewood Cliffs, N.J., Prentice-Hall, 1970. 

22. Kanter, J., The Computer and the Executive, Englewood Cliffs, N.J., 
Prentice-Hall, 1967. 

23. Karplus, W. J. (Ed.), On-Line Computing: Time Shared Man
Computer Systems, New York, McGraw-Hill, 1967. 

24. Katz, D., and R. L. Kahn, The Social Psychology of Organizations, 
New York, Wiley, 1966. 

25. Kelly, J. F., Computerized Management Information Systems, New 
York, MacMillan, 1970. 

26. Krauss, L. I., Computer-Based Management Information Systems, 
New York, Amer. Management Assoc., 1970. 

27. Martin, James, Design of Man-Computer Dialogues, Englewood 
Cliffs, N.J., Prentice-Hall, 1973. 

28. Martin, J., Design of Real Time Computer Systems, Englewood Cliffs, 
N.J., Prentice-Hall, 1967. 

29. Martin, J. and R. D. Norman, The Computerized Society, Englewood 
Cliffs, N.J., Prentice-Hall, 1970. 

30. Meadow, C. T., Man-Machine Communication, New York, Wiley, 
1970. 

31. Metzger, P. W., Managing a Programming Project, Englewood Cliffs, 
N.J., Prentice-Hall, 1973. 

32. Miller, G. A., The Psychology of Communication, New York, Basic 
Books, 1967. 

33. Murdick, R. G. & J. E. Ross, Information Systems for Modern 
Management, Englewood Cliffs, N.J., Prentice-H!tll, 1971. 

34. Optner, S., Systems Analysis for Business Management, Englewood 
Cliffs, N.J., Prentice-Hall, 1968. 

35. Orlicky, J., The Successful Computer System: Its Planning, Develop
ment, and M ana.gement in a Business Enterprise, New York, Mc
Graw-Hill, 1969. 

36. Rosove, Perry E., Developing a Computer-Based Information System, 
New YorK, Wiley, 1967. 

37. Sackman, H., Computers, System Science, and Evolving Society: 
The Challenge of Man-Machine Digital Systems, New York, Wiley, 
1967. 

38. Sackman, H., Man-Computer Problem Solving, New York, Auer
bach, 1970. 

39. Schoderbeck, P. P., Mana.gement Systems, New York, Wiley, 1971. 
40. Shannon, C. E. and W. Weaver, The Mathematical Theory of Com

munication, Urbana, Illinois, The Univ. of Illinois Press, 1964. 
41. Sharpe, W. F., The Er(Yfl,omir."1 oj Com.p1J.terg, New York, Columhi$l. 

Univ. Press, 1969. 

42. Simon, H. A., The Shape of Automation for Men and Management, 
New York, Harper & Row, 1965. 

43. Weinberg, Gerald, M., The Psychology of Computer Programming, 
Cincinnati, Van Nostrand Reinhold, 1972. 

44. Withington, F. G., The Organization of the Data Processing Function. 
New York, Wiley, 1972. 

REFERENCES 

1. Ashenhurst, R. L. (Ed.), "Curriculum Recommendations for 
Graduate Professional Programs in Information Systems," Comm. 
ACM, 15, 5, May, 1972, pp. 365-368. 

2. Couger, J. D. (Ed.), "Curriculum Recommendations for Under
graduate Programs in Information Systems," Comm. ACM, in press. 

3. Sanders, D. H., Computers in Business, McGraw-Hill, New York, 
1972. 

4. McCracken, D. D. and U. Garbassi, A Guide to COBOL Program
ming, Wiley, New YorK, 1970. 

5. Murach, M., Standard COBOL, SRA, Palo Alto, Calif., 1971. 
6. Naftaly, S. M., B. G. Johnson, and M. C. Cohen, COBOL Support 

Packages: Programming and Producti~'ity Aids, Wiley, New York, 
1972. 

7. Clifton, H. D., Systems Analysis for Business Data Processing, 
Wiley, New York, 1969. 

8. Gildersleeve, T. R., Design of Sequential File Systems, Wiley, New 
York, 1971. 

9. Couger, J. D., Systems Analysis Techniques, Wiley, New York, 
1973. 

10. Gordon, G., System Simulation, Prentice-Hall, Englewood Cliffs, 
N.J., 1969. 

11. Lefkovitz, D., File Structures for On-Line Systems, Spartan, New 
York, 1967. 

12. Lyon, J. K., A n Introduction to Data Base Design, Wiley, N ew York;, 
1971. 

13. Morton, M. S. S., Management Decision Systems, Harvard Uni
versity, Boston, 1971. 

14. Wheelwright, S. C. and S. Makridakis, Forecasting Methods for 
Management, Wiley-Interscience, New York, 1973. 

15. Blumenthal, S. C., l"fanagement Information Systems: A Framework 
for Planning and Development, Prentice-Hall, Englewood Cliffs, 
N.J., 1969. 

16. Yourdon, E., Design of On-Line Computer Systems, Prentice-Hall, 
Englewood Cliffs, N.J., 1972. 

17. Canning, R. G. and R. L. Sisson, The Management of Data Process
ing, Wiley, New York, 1967. 

18. Myers, C. A. (Ed.), The Impact of Computers on Management, MIT 
Press, Cambridge, Mass., 1967. 

19. Martin, J., Telecommunications and the Computer, Prentice-Hall, 
Englewood Cliffs, N.J., 1969. 

20. Martin, J., Future Developments in Telecommunications, Prentice
Hall, Englewood Cliffs, N.J., 1971. 

21. DeGreene, K. B. (Ed.), Systems Psychology, McGraw-Hill, New 
York, 1970. 

22. Sackman, H. and R. Citrebaum, Online Planning: Towards Creative 
Problem-Solving, Prentice-Hall, Englewood Cliffs, N.J., 1972. 

23. Buckely, W., Modern Systems Research for the Behavioral Scientist: 
A Sourcebook, AIdine, Chicago, 1968. 

24. Johnson, R. A., F. E. Kast and J. E. Rosenzweig, The Theory and 
Management of Systems, McGraw-Hill, New York, 1973. 



Understanding the software problem 

by JOHN B. SLAUGHTER 

Naval Electronics Laborarory Center 
San Diego, California 

INTRODUCTION 

In addressing the question of the high cost of software it is 
essential, first of all, to surround the issue in such a way 
that it is possible to achieve some understanding of the 
problem and its causes. The first question to be answered 
is that of whether or not software costs are, in fact, too high. 
In order to answer this question requires a definition of 
software itself. Continuing this vein of questioning obviously 
can lead to a circuitous path which never leads to anything 
but tangential conclusions about pseudo problems and pseudo 
causes. 

Many articles, pamphlets, and government documents 
have been written about "the software problem" and what 
can be done to solve it. The fact that there is so much at
tention attributed to this concern is, in fact, indicative that 
some form of problem is extant and that the future of com
puter utilization is strongly dependent upon the manner in 
which software developers and users direct their energies to 
solve it. 

Computer technology has advanced to an era where hard
ware development costs are declining per unit of capability. 
Extrapolation tends to indicate that for the foreseeable 
future, at least, this trend will continue. Conversely, software 
development costs usually measured in terms of lines of 
validated code per man-hour expended, are rising and ex
pected to continue to rise. It is enlightening to examine the 
reasons why this difference exists and attempt to discern 
what inherent properties the hardware development process 
has that are not similarly possessed by software production. 
There are three major characteristics that can be identified 
immediately. They are design procedures based upon engi
neering discipline, highly developed automated manufactur
ing processes and technology, and the existence and use of 
design and production standards. None of these exist in a 
macroscopic sense for software. 

A successful design effort must begin with a carefully 
conceived requirement that can be stated in the form of 
performance and design specifications which can be under
stood and followed by design engineers. Furthermore, it 
allows the project manager to keep track of the development 
and maintain control of the activities. This does not exist 
in the realm of software development. The reasons are 

333 

several. Managers generally do not understand software and 
are unable to generate adequate specifications for its per
formance and design. Neither are they very capable of 
managing its development since, in comparison with a 
hardware device, it is an intangible quantity whose final 
form defies description in an engineering sense. 

The absence of agreement on languages, programming aids, 
documentation methods, etc., for software is another major 
problem. Software development is a highly individually 
oriented activity where the programmer's skills, biases, and 
motivation govern the process. Automated program develop
ment is used by a small minority of programmers; most 
coding is performed by pencil and program worksheet. The 
wide range of abilities found in the members of the pro
gramming profession, the absence of a prescribed curriculum 
of educational experiences which are required for a person to 
qualify as a programmer, and the relative immaturity of the 
software profession all combine to create this facet of the 
problem. 

The absence of design and performance standards which 
are used to govern software design is a key reason for some 
of the software development difficulties encountered by in
dustry and government. Such standards are required if 
modular programs are to be developed since interfaces must be 
defined and met and care must be taken to assure total system 
compatibility of the component modules. Standards are also 
the essential link in software transferability from one applica
tion to another. The cost of generating a new program module 
each time it is required to perform a function could be elimi
nated or at least reduced greatly if adequate design and 
documentation standards were applied. 

It is obvious that much of the software problem is due to 
the non-existence of the discipline and rigor which char
acterizes hardware design and production. Steps are being 
taken to introduce these needed features into the software 
process, e.g., structured programming, and the results are 
expected to provide improvements in software quality in 
addition to reductions in software development costs. 

During the workshop sessions it was stated by one par
ticipant that the overwhelming characteristic of software is 
uncertainty. What constitutes reasonableness in terms of 
performance, cost, and schedule? The unavailability of sound 
answers to questions such as these is a major concern to 



334 National Computer Conference, 1974 

developers, purchasers, and users of software. An attempt 
to define approaches to obtaining answers was a major 
theme of Workshop No. 1. 

THE SOFTWARE PROCESS 

Rather than attempt to state or develop a dictionary defi
nition of software, it seems more meaningful and expedient 
t.o define the elements of the software process. These elements 
can be viewed as line-item cost factors that might appear in 
a budget for a major software system development. Thus 
they provide a very useful means of identifying where costs 
occur in the process. 

PHASES 

Elements Development Maintenance Major Redesign 

Define 
Analyze 
Design 
Code 
Compile 
Integrate 
Test 
Document 
Manage 
Provide 

facilities 

THE SOFTWARE PROCESS 

The production of software requires the successful com
pletion of several specific activities. In the foregoing chart 
ten activities have been identified as cost elements which 
must be taken into consideration in the development of a 
software product. Included among these are the elements of 
software production management and the provision of fa
cilities and equipment on which the development will be 
accomplished. These are two significant factors which must 
be taken into account in any analysis of cost even though 
they are usually not addressed L.'1 most examinations of the 
investment required to produce a software output. 

The chart also delineates three phases which occur during 
the life-cycle of any sizable software product. They include 
the initial development of the software which has been fully 
designed, tested, and documented for some particular appli
cation. The cost associated with this function is only a 
fraction of the total cost which must be allocated to the 
product. Also the maintenance of the software, i.e., the cor
rection and elimination of faults which are discovered only 
after the package is put into use, minor improvements which 
are made to enhance the operation of the program, and ex
pansion required to allow the program to work with minor 
changes in function, procedures, or equipment, must be con
sidered as an important component of the total cost al
gorithm. Finally, major redesign or revision of the software 

is often required to accommodate major changes in mission, 
equipment, or operating doctrine. The extent to which the 
software is designed and documented initially to allow the 
maintenance and redesign functions to be accomplished easily 
are major considerations which must be addressed. Life
cycle cost, therefore, is the sum of the individual costs as
sociated with each of the three phases. 

Each of the cost elements will appear to some extent in 
each of the three phases. The weighting of each element will 
no doubt differ depending upon the phase being considered. 
Although time was not available during the workshop to 
quantify the extent to which a particular element is involved 
in the three phases, it was the consensus that such an effort 
could be very productive in focussing on where major cost 
problems occur. 

As stated in the introduction, uncertainty is one of the 
major deterrents to a clear definition of the software problem. 
This is due in part to the paucity of data which can be used 
to examine where costs are incurred in the software process. 
An approach such as that described above, although perhaps 
somewhat simplistic in the exact form shown, would be useful 
as a means of acquiring needed information and providing a 
basis for improvement. 

SOFTWARE PROBLEMS 

What are the problems associated with the development 
of software? How do these problems manifest themselves and 
what are their causes? In answering these questions it is 
useful to assume the perspective of the individual or agency 
that contracts for a software development. The problems 
that are viewed from this vantage point are basically the 
following: 

• Software Quality 
• Life-Cycle Cost 
• Delivery Schedule 

It is obvious that these three factors are not independent 
variables and that perturbation of anyone of them has a 
significant impact on each of the others. Nevertheless it is 
possible to examine each of them separately and attempt 
to identify the form in which the problem appears and some 
of the prominent reasons for its occurrence. From such an 
analysis, it is possible that the shape of potential solutions 
may become evident and that future research and develop
ment can be directed toward solving the basic problem. 

Problem: Software Quality 

Symptoms: 
1. Unreliable 
2. Unresponsive 
3. Incompatible 
4. Non-adaptable 
5. Non-transferable 
6. Uncertified 
• 
• 
• 



Principal Causes: 
1. Inadequate statement of reqUirements by user 
2. Inadequate understanding of user requirements 
3. Poor testing and certification practices 
4. Lack of standards by which performance can be 

measured 
5. Inadequate documentation 
6. Lack of appropriate management attention and control 
7. Improper use of current technology 
8. Inadequate programmer skill levels 
9. Inadequate hardware/software trade-offs 

10. Lack 'of adequate support software 
• 
• 
• 

Problem: Life-Cycle Cost 

Symptoms: 
1. High initial development cost 
2. High operational and maintenance costs 
3. Poor utilization of machine resources 
4. Costly to modify 
5. High cost of documentation 
• 
• 
• 

Principal Causes: 
1. Poor estimation of production costs 
2. Poor procurement practices 
3. Poor software development practices 
4. Lack of automated programming techniques 
5. Improper or non-use of existing developments 
6. Inadequate system hardware 
7. Inadequate programmer skill levels 
8. Poor system requirements and specifications 
9. Lack of management control of costs 

10. High salaries of programmers 
11. Uncertainty of cost allocation 
12. Inadequate attention to system integration and testing 
13. Poor documentation practices 
• 
• 
• 

Problem: Delivery Schedule 

Symptoms: 
1. Failure to meet schedule 
2. Long development time 
3. Untimely software documentation 

• 
• 
• 

Principal Causes: 
1. Poor estimation practices 
2. Inadequate definition/understanding of job 
3. Variable programluer skills and productivity 
4. Poor management control and monitoring 
5. Unrealistic milestones 

Understanding the Software Problem 335 

6. Inadequate use of existing developments 
7. Long lead-time procurement 
8. Inadequate support software 
9. Lack of automated programming activities 

10. Inadequate attention to documentation 
• 
• 
• 

The repetitious presence of such factors as insufficient 
requirements, inadequate attention to testing, documen
tation, and integration, poor software maI).agement, lack of 
support software, and utilization of outdated techniques and 
tools points to these as the primary woes of the software 
community. 

Many solutions to these problems have been postulated 
but their success requires a significant change in thinking by 
the developers and users of software. For example, the con
cept of structured programming in which software teams of 
specialists are formed is perhaps an approach which strikes 
at the heart of most of the faults attributed to the software 
generators. Structured programming follows a top-down 
design approach which inherently possesses an effective 
managerial structure, an ever visible and current set of docu
mentation, an emphasis on testing and integration, a clear 
delineation of responsibility, and the development and utili
zation of new tools essential to the completion of the project. 
Experience with structured programming teams has shown 
that productivity of an order of magnitude can be achieved 
by the use of such a team over that obtained from a well.:.. 
qualified individual programmer. 

Changing user's habits may be more difficult. A more 
knowledgeable and aware set of project managers must be 
developed to generate meaningful requirements and specifi
cations for software, to understand the dynamics of the 
hardware/software trade-off equation, and to provide the 
overall direction necessary to successfully integrate a complex 
software program with state-of-the-art hardware. 

PROPOSED RESEARCH EFFORTS 

One of the key causes of the uncertainty characteristic of 
software development is the absence of meaningful standards. 
Not only are there inadequate measures of performance, 
there are also inconsistencies in the jargon of the profession. 
Productivity of programmers is difficult to define because 
of different yardsticks. A standard data base is needed to 
provide benchmarks which allow software people to com
municate meaningfully and effectively. 

The question of standard languages is a particularly 
meaningful one to address. When one considers the number 
of different languages available (FORTRAN, COBOL, 
JOVIAL, CMS-2, PL-1, ... ) and the many versions which 
exist for anyone of these, an appreciation of the lack of 
language standardization is readily gained. There is a strong 
and direct relationship between the lack of language stand
ards and the cost of software. It can be measured in terms 
of the price of additional documentation, non-transferability 



336 National Computer Conference, 1974 

of code, compilers, etc., development of new and often unique 
tools, unreliability, and the resultant large software inventory 
required. There is a need for standard operating system inter
faces which can achieve a reduction in errors over that 
obtainable with current job control languages. A standard 
data definition language which eliminates the need for many 
data structures is another important requirement. Research 
into the costs of language standardization and how languages 
can be brought closer together represent sensible efforts to 
be initiated. 

Workshop No. 1 addressed several "causes" of the software 
problem to attempt to develop approaches which could be 
recommended as potential means of obtaining solutions. The 
three chosen for consideration were: 

• Lack of uniform measures of performance 
• Inadequate exchange of information within software 

community 
• Non-transferability of technology developments 

It has been stated earlier in this paper that software de
velopment and procurement are handicapped by the absence 
of a meaningful and uniform system of metrics. Because of 
this, it is not possible to quantitatively measure the per
formance of either the programmer or his product and be 
assured that the reported values can be understood by others 
in the software community. As a result of this situation, it is 
difficult to identify what, if any, progress is being made in 
the area of increasing programmer productivity, for example. 
The recommended action to overcome this situation is the 
initiation of an R&D program designed to establish measures 
of programmer productivity. The approach to be followed is 
to collect objective statistics on such items as errors/lines of 
code, lines/day/programmer, and program documentation. 
In order to collect accurate statistics and make the results of 
the research meaningful, automated aids which accumulate 
statistics and on-line code production facilities are needed. 

In spite of the numerous journals, conferences, symposia, 
seminars, etc., which address various aspects of software 
technology, working-level programmers are not sufficiently 
aware of the contributions which currently available tech
niques and tools can provide. Neither are they able to 
articulate precisely the help which they feel they need. It 
seems reasonable to make a concerted effort to identify users 
(persons who write software) and ascertain the form of the 
problems which they encounter and the kind of tools which 
they perceive would be useful to them. The recommended 

action is that there be established a 4-6 person ad hoc group 
consisting of tri-service, ARPA, FCRC members who during 
a period of 6-8 weeks will do a nation-wide study on the 
following questions. 

• Who creates software? Where? 
• What software functions are performed (requirements, 

analysis, coding, documentation, ... )? 
• What are the applications (Scientific, MIS, C2, ... )? 
• What tools are in use? 
• What tools are perceived as needed? 
• What problems or difficulties exist? 

Strongly related to the previous two issues is the question 
of transferability of technology developments throughout 
the community. Because there is no efficient information 
network linking software developers, useful and available 
tools are not used widely, and feasible techniques and tools 
are often not carried to completion. To solve this problem 
it is recommended that a network-based (ARPANET, for 
example) software evaluation and exchange facility be es
tablished. This facility would perform the following roles: 

• Evaluate new software tools 
• Disseminate evaluation results and experiences of other 

users to requestors (a system of charges to use the 
services can be established) 

• Provide for general information exchange on techniques, 
standards, languages, etc. 

CONCLUSIONS 

Near the termination of Workshop No.1, the question of 
what future course of action, if any, should be followed was 
discussed. Unanimously it was felt that some follow-on pro
gram was required in order to further the coupling of the 
deliberations of our meetings to users. The suggestions ranged 
from scheduling a regular series of meetings of our workshop 
group to establishing a full-time DOD activity to address 
the important issues of software. Certainly the sponsors of 
the symposium will want to consider a wide range of possi
bilities. It is believed by the participants of our workshop 
that a valuable exchange of information and ideas occurred 
as a result of the symposium and we would like to thank 
the sponsors and the chairmen for providing the opportunity. 
I would like to thank each member of my workshop for his 
(and her) candor, enthusiasm, and support. 



Automated monitoring of software quality* 

by J. A. CLAPP and J. E. SULLIVAN 

The Mitre Corporation 
Bedford, Massachusetts 

THE PROBLEM 

Widespread acceptance of computer systems for com
mercial and military applications has led to widespread dis
satisfaction with the software components of these systems. 
Major criticisms have focused on the high cost of develop
ment and maintenance, the slippages in delivery dates, and 
the poor quality of software. Those of us who produce soft
ware readily admit to these complaints since we ourselves 
have to rely on software to help us do our job and have 
experienced the same problems. Weare equally ready to 
acknowledge that the solution to these problems lies in 
better management of software development, but we quickly 
claim that software development is harder to manage than 
other kinds of production processes. 

We know from experience that it is notoriously difficult 
to determine, prior to a software development project, just 
what product and product quality to expect with given 
resources, or vice versa, what resources will be needed for a 
given product. Even while a project is in progress, we do 
not know how to determine just what kind of product is 
emerging, how far along it is, and therefore how to project 
the (perhaps all too visible) resource expenditures that have 
already occurred to the final cost and time, so that plans 
can be altered and adjustments made. The result is that it is 
easy to be overambitious, and not even realize it until it is 
too late to do anything but sacrifice quality or commit still 
more time and money, and hope for the best. 

Not surprisingly, such cost and schedule overruns-in 
conjunction with the poor product that is the usual result of 
such a badly controlled process-come to be regarded by 
customers as exemplifying the "high cost of software." But 
the notion that the cost is high is really only a conjecture; 
all that is known for sure is that, for most large, complex 
software systems, we do not know how to estimate cost, the 
proper relation of cost to quality, or even what quality is, 
and are therefore frustrated in our attempts to manage. 

The problem comes down to a lack of generally applicable 
measures and measure-relating theorems that are useful to 
the manager in planning and controlling software develop
ment. Hoare, l in calling for a "software engineering disci
pline," and Boehm,2 commenting on the factors of software 

* This work is sponsored by the Rome Air DeVelopment Center under 
Air Force Contract F19628-73-C-0001. 

337 

costs, have said the same thing: we lack quantitative data 
and a systematic body of knowledge that will allow us to 
bring experience gained in one area to bear on a new situation 
in another area. 

WHAT WE HOPE TO DO ABOUT IT 

Our objective is to provide measures that give clear and 
current visibility to a software development project so that 
managers can know the real status of the software at all 
times and spot potential trouble in time to do something 
about it, and programmers can be made aware of the effects 
of their work. Making measurements implies the collection 
of data. It is often impractical or impossible to collect the 
necessary data manually because it is too costly or the data 
lacks the consistency and reliability which is required. How
ever, the production of software has a distinct advantage 
over other kinds of production: much of the actual work 
takes place within a computer, and thus status information 
as well as data about the characteristics of the emerging 
product can be easily captured automatically and analyzed. 

For these reasons, we decided to design and implement an 
automated software implementation monitor, called Simon, 
which extracts measures continuously throughout a software 
development project, stores data in a centralized data base, 
and provides analyses of the data to managers and pro
grammers. In short, Simon's direct purpose is to provide 
project visibility in a practical, that is to say automatic way. 
In the long run, over many projects, the data gathered by 
Simon should become a part of our experience base, to 
support research into software quality and cost, and the 
causes thereof. Simon's contribution is to automate, control, 
and standardize the process of data collection and analysis. 
Equipped with observations and measures, we can relate 
pre- and post-implementation costs and final product quality 
to controllable variables during development. 

WHAT IS SIMON? 

Overview 

Simon is an automated aid that is integrated into a con
ventional programming environment in the sense that it 
runs under the Operating System and invokes existing tools 



338 National Computer Conference, 1974 

OSpecifications, Estimates, 
Source Code, etc. 

• Status Queri es 
OAction Directives 

eDetai I Reports 

OSUIIII1ary Reports 

I Simon I +4---_. Project Data Base 

/ I'\. 
Pre- ---.. compiler-+Q 
Compile ~ 

Testing +-+ System 
Tool Data 

Base 

Figure I-A configuration for the Simon system 

such as a text editor, compiler, debugging tool, etc. In 
general, any transactions between the software builders and 
the computer are filtered through Simon to provide the 
following advantages: (1) Simon can monitor what is being 
done, by whom, and when; (2) standard procedures can be 
enforced; and (3) additional information can be requested 
of a user which would not be required by the operating 
system or other facility services. The data gathered before, 
during, and after a transaction is recorded in a data base 
which is structured to permit analyses to be performed and 
reports generated about any aspects of the data which are 
of interest. 

Monitors are now in use which collect data about software 
automatically but these tend to serve specialized purposes, 
such as analyzing software performance characteristics, or 
hardware resource usage. In a few cases, monitors maintain 
a data base about the characteristics of the software under 
development. For example, the Automated Software Evalu
ation System3 collects such data but limits its analyses to 
supporting software evaluation and validation. Still other 
software packages analyze and report on cost data to show 
managers where estimates and actual values deviate. All of 
these capabilities and others would also be incorporated into 
Simon in the belief that the whole can be greater than the 
sum of its parts. 

The design of Simon is open-ended so that it can be 
adapted to different programming environments and extended 
as we gain experience in its use and as new techniques for 
software development emerge. 

At the time of this writing, only a general design of Simon 
has been completed. A refinement of this design (in top-down 
fashion, naturally) will lead to the development of a version 
of Simon tailored to our particular programming environment 
and the measures of current interest to us. The description 
of Simon which follows is, of necessity, quite general. It is 
intended to convey the important concepts in its design and 
the kinds of capabilities it might offer, in order to provide a 
framework for future implementations by ourselves or others. 

The specific method of implementing Simon will naturally 
hp. dependent on what data is desired and can be captured 
from existing sources, and what data must be generated by 

Simon. Figure 1 illustrates a typical Simon configuration of 
four modules: a pre-compiler, a post-compiler, a module 
testing tool and a monitor. The information flow among 
these units, the units native to the operating system, and the 
managers and programmers is also outlined. This configur
ation will be used as the basis for the descriptions which 
follow. 

Functions 

Simon has four principal functions, viz: 

1. Edit 
2. Compile (Static Module Analysis) 
3. Test (Dynamic Module Analysis) 
4. Status Report 

Editing is the direct entry by project personnel of Simon 
file data, including documentation and certain status data 
such as estimates, schedules and costs, as well as source 
code. As a side-effect of editing, iIi the case of significant 
products such as documents and program modules, simple 
measures are extracted to project whether and when the 
change process will converge. 

Static module analysis is the extraction of information 
derivable from the source (or object) code without actually 
running it or simulating a run. This is the kind of information 
that is available at compile time (or at edit time, but as a 
practical consideration many compilers already provide much 
of the information we want). Such information includes: 
file and variable set/used lists (concordances), inter-module 
reference graphs, the several measures of module complexity 
and data element complexity, independent path analysis (for 
testing), and static resource requirements (e.g., module 
memory size). 

Dynamic module analysis is the extraction of information 
normal,ly avai'lable only when the module is running-i.e., 
an instrumented test. This includes paths tested and success
failure data (for reliability estimation) and dynamic resource 
use (e.g., execution time). 

Status reporting, the heart of the matter, is the systematic 
dissemination of summaries of the information collected, 
together with projections based on that information (in
cluding estimates and budgets). This implies that all perti
nent information about a project is maintained in central 
files. There are in fact three basic kinds of files in Simon: 
(1) entity files, (2) relational files, and (3) event files. 

Data base 

Entity file~ track the current status of all entities thought 
to have a significant bearing on the project. An entity is any 
item that has duration in time, and properties that change 
over time without disturbing the basic unity of the entity. 
There are eight entity classes: 

1. the project itself 
2. people (programmers and managers) 
3. program modules 



4. documents 
5. system tests 
6. macros 
7. files and external variables 
8. programming errors 

The current values of properties are recorded for each 
instance of an entity. "Project" properties are those not 
specifically related to other entities individually or in small 
combinations-e.g., the overall schedule, and overhead bud
get and cost entries. The properties of people are generally 
those that have relevance to a given hypothesis under 
stud-y-e.g., year of entry into the computing profession, 
productivity, or current number of simultaneous projects. 
The most extensive data will be kept on module properties: 
the source code itself, a short description and interface 
specification, estimated and current length and complexity, 
current computed reliability and so forth. For documents, 
the text and some simple measures such as number of out
lined vs. completed sections are maintained. System tests 
have specifications that go through stages of development; 
thus their properties are the status of this specification and 
also the status of the system with respect to passing or 
failing the test. Macros are centralized source language frag
ments or forms; depending on the environment, COMPOOL 
entries or manually inserted COMMON statements serve 
the same purpose. Macros, files and external variables are 
usually characterized only by their definition and brief de
scription. Finally, programming errors are "entities" of 
interest in software research. To go into some detail in this 
one case, the following properties are typically kept for each 
error: 

1. time found (symptoms appeared) 
2. time debugged 
3. time fixed 
4. classification by type(s) 
5. method of discovery (code reading, diagnostic, test, 

etc.) 
6. mental level of error (motor, memory, logic) 
7. when made (original code, change, adding instrumen

tation, etc.) 
8. direct costs (man-hours, machine time) of this error. 

Relational files are lists that keep track of interrelation
ships between entities; in effect, they are extensions of the 
properties of the entities involved. For example, there is a 
file relating each module to the errors that occurred within 
it, and another file that keeps track of intermodule references 
(who-calls-whom) . 

Event files contain the time and complete details of all 
transactions that affect the status of the other two files. 
An event is thus any particular instance of one of the first 
three major functions-i.e., edit, compile or test. The purpose 
of the file is mainly historical, to be able to reconstruct a 
prior state, and also to permit computation of any current 
state descriptor not originally defined-in other words, to 
support hindsight research. For practical reasons, very little 
of this file is kept online. 

Automated Monitoring of Software Quality 339 

How Simon operates 

Corresponding to each Simon function and each type of 
transaction used in developing software, a dialog takes place 
between the user and the system to supply inputs to the 
data base and to cause requested actions to occur. To 
illustrate how combinations of data are. collected to add to 
or modify different files during a compilation request, the 
follovving sequence of actions might take place: 

1. The user is requested to specify a reason for the 
compilation, e.g., to add instrumentation, or to fix an 
error. In the case of an error, he may be requested to 
supply data about the error if it has not been previ
ously recorded, or to cite the error(s) if already 
entered. 

2. A preprocessor scans the source data and adds code 
for system macros referenced by the module. Other 
alterations might be made to the code to introduce 
standard run-time instrumentation. If so directed, 
the preprocessor also performs analyses of the source 
code and records the results in the module entity 
file, e.g., the complexity measure might be calculated, 
or forbidden forms or references detected. 

3. The relational files are updated to show what macros 
are referenced, and what modules are called by this 
module. 

4. The compiler is called ·with either a standard set of 
options or user-specified variations. The object code 
is directed to the data base. The compiler output is 
scanned to obtain, for entry into the entity and re
lational files, the object size, a list of external refer
ences set and used, and data about compiler-generated 
error messages, such as the number and severity of 
errors or the number of statements flagged. 

5. The cost of compilation and current date and time 
are used to update budget and schedule information 
in the module entity file. 

6. The fact of compilation, and reason therefor, and the 
time are entered into the online part of the event file; 
other details (e.g., the compiler-generated listing) are 
retained in the "paper" part of the event file. 

USES OF SIMON 

Overview 

Research into management techniques is essentially the 
formulation and validation of hypotheses relating what can 
be done or seen at one stage of a project to the effects thereof 
at a later stage. Practical management is largely a matter 
of applying validated hypotheses, or theorems, to a par
ticular case-although good managers rarely refrain from 
doing a bit of "research," formal or informal, while they're 
at it. 

In the case of software, we have difficulty formulating 
hypotheses in the first instance because even the terms are 



340 National Computer Conference, 1974 

"soft," or ill-defined. For example, it should be possible to 
relate cost to quality. But we lack understanding of what 
quality is, and so it is not surprising that we cannot relate 
cost to quality. Secondly, even widely-held hypotheses are 
understood only vaguely. For example, everyone seems to 
agree that modularity is a good thing, and that the lack of 
it costs money, but we are not agreed on what it is, let 
alone how to measure it. Many hypotheses, some of them 
widely publicized, seem to be in this category at present. 
For example: 

1. Structured Programming leads to greater compre
hensibility and reliability. 

2. Complexity (the inverse of comprehensibility) and the 
cost of debugging are strongly covariant. 

3. The programmer "inherent skill factor," sometimes 
said to have a 1-to-26 or even higher range, (is/is not) 
really that important when properly separated from 
other variables, (for example, learned work habits), 
and (does/does not) manifest itself in comprehensi
bility measures which can be taken before reliability 
can be estimated. 

4. Chief-programmer techniques lead to vanishing error 
rates and lower development costs. 

The list is potentially endless. And when it finally comes 
down to validating any of these hypotheses, even when 
properly understood, we are up against the same classic 
problems faced by social scientists: (1) truly controlled experi
ments of representative scale are impractical, and (2) even 
just plain observations are lacking or not consistently based. 

Simon should overcome this last problem, at least, bringing 
us closer to the goal of useful measures and theorems in three 
ways: 

1. by hypotheses validation, as mentioned; 
2. by consistent data collection, toward the formation 

of better hypotheses; and 
3. to the extent that current hypotheses are correct, by 

providing a direct visibility aid to the managers and 
programmers. 

Direct use of Simon 

As a simple example of how such a system can be a direct 
aid to the manager, consider what can be learned from the 
error data described earlier. At any given point, there are a 
certain number of errors that have been observed, and some 
smaller number that have been fixed. It is a simple matter 
to fit a line through the points expressing total number vs. 
time and another line through the number of corrected 
errors vs. time and observe whether the lines cross (i.e., all 
known errors become fixed) before the project deadline. 
Such a method has been described by Coutinho.4 Of course, 
the validity of such a projection will depend on the assumed 
model of the way in which errors are discovered and removed. 
The model is a.n hypothesis tha.t ha.s to be proved, ,vhich 

brings us back to the main purpose of Simon from our stand
point, namely that of serving as a vehicle for measurement 
definition, hypothesis validation and formation. 

SIMON AS A TOOL FOR EXPERIMENT 

An experiment 

The same data on the number of errors vs. time used in 
the prior example might be used to evaluate a testing tool 
or technique by contrasting the plot for modules in which 
one method of testing was employed with the plot for 
modules in which it was not used. This is one of the techniques 
which was used to evaluate FADEBUG-1.5 All of the quanti
tative measures of FADEBUG-1 could be derived easily 
from the Simon data base. In this case, the hypothesis was 
that a tool such as F ADEBUG-1 would reduce the cost of 
validating software. 

A nother experiment 

We close with a description of an experiment that we plan 
to conduct with Simon, and that will perhaps summarize its 
purpose in most concrete terms. The hypothesis to be 
examined is a refinement of the second one on our list, viz: 
(a) length of code is roughly proportional to errors of clerical 
level only; (b) complexity of code (in terms of independent 
paths, a concept described in Sullivan 6) is roughly propor
tional to errors of higher level; and (c) the latter account 
for so much of the effort expended in debugging that com
plexity is an approximate indicator of required debugging 
effort, or when that effort is artificially constrained, un
reliability. 

1. A software project is selected which will be using the 
programming environment in which Simon operates. 

2. The data collection and analysis requirements for 
Simon are determined based on the hypotheses. For 
example, error data must distinguish clerical errors 
from errors of a higher level, and the time spent de
bugging an error must be collected from programmers. 

3. Any analysis or collection routines not already avail
able under Simon must be written. 

4. The system is defined, designed and implemented in 
the usual way, using Simon as the intermediary be
tween programmers and the computer. 

5. The hypothesis is evaluated: complexity does, or does 
not, correlate well with the higher-level errors and 
debugging costs (or projected costs to achieve 100 
percent reliability) of the several modules. (Of course, 
there is always the "gray area" of say, 80 percent 
correlation-which leaves almost 40 percent of the 
phenomenon to be explained.) Refinements or alter
native hypotheses may be developed at this point, 
fitted to the historical data and further evaluated on 



CONCLUSIONS 

Problems of software cost and quality can be solved by 
providing measures and measure-relating theorems which 
can be used by managers to plan and control software 
development. Currently, progress is hampered by the lack 
of data of the kind and amount needed to validate hy
potheses about the definition of such measures, and their 
utility in controlling cost and quality. A software implemen
tation monitor can aid in the validation of hypotheses and 
in the development of new insights by making it possible to 
collect and analyze current data about activities, costs, and 
product characteristics and their interrelationships. 

Automated Monitoring of Software Quality 341 

REFERENCES 

1. Hoare, C. A. R., "Computer Programming as an Engineering Disci
pline," Electronics and Power, 9 August 1973, 316-320. 

2. Boehm, B. W., "Software and Its Impact: A Quantitative Assess
ment," Datamation 19 (5), May 1973, pp. 48-59. 

3. "Design and Construction of an Automated Software Evaluation 
System," 1973 IEEE Symposium on Computer Software Reliability 
April 1973, pp. 28-37. 

4. Coutinho, J. De S., "Software Reliability Growth," 1973 IEEE 
Symposium on Computer Software Reliability, April 1973, pp. 58-64. 

5. Itoh, D., "FADEBUG-I, a New Tool for Program Debugging," 
1973 IEEE Symposium on Computer Software Reliability, April 
1973, pp. 38-43. 

6. Sullivan, J. E., Measuring the Complexity of Computer Software, 
The MITRE Corporation, Report MTR-2648 Vol. V, 25 June 1973. 





Embedded computers-Software cost considerations 

by JOHN H. MANLEY 

Headquarters Air Force Systems Command 
Andrews Air Force Base, D.C. 

There is a special subset of the total set of electronic 
data processors that is growing in importance, especially to 
the Air Force. This class of computers possesses several 
unique features that cause software development to be very 
expensive with relation to the number of lines of code re
quired to make them run. This paper describes some of 
these unique features and illustrates how they tend to drive 
software costs upward. Potential solutions to the high cost 
of software problem in this area are offered which, as the 
reader will find, are tentative at best since we have only 
recently begun to investigate in depth the intricacies of 
what we call "embedded computers," 

EMBEDDED COMPUTERS 

Embedded computers are information processors which 
are integral to electromechanical systems such as auto
mated production lines, modern aircraft, ballistic missiles, 
automated rapid transit systems, naval vessels, spacecraft, 
and the like. They are considered different than normal 
computers primarily in the context of how they are built 
and acquired for a using system. For the purposes of this 
paper, a computer can be considered to be of the embedded 
variety when it is: 

1. physically incorporated into a larger system whose 
primary function is not data processing; and 

2. integral to such a system from a design, procurement 
and operations viewpoint. 

Furthermore, it is generally not desirable to manage the 
development and acquisition of an embedded computer 
and its associated soft-ware totally independent of other 
Bystem parts. Therefore, they are normally acquired as an 
integrated subsystem or "configuration item" which, in our 
terminology, represents a well defined part of a larger 
system. 

It is emphasized that this definition of embedded com
puters prevents them from being classified as "general 
purpose." The author also feels that they should not be 
loosely classified as "special purpose" in the generally 
accepted meaning of this terminology. The fact that many 
special purpose computer systems exist that are actually 

343 

unique general purpose machines, such as the ST ARAN 
and ILLIAC IV, seems to warrant the use of new termi
nology for those of the embedded variety. It is the com
bination of all the descriptive parameters taken together 
that makes embedded computers unique. Many of the 
problems with developing the software to make them 
function are also somewhat different as shall be discussed 
later. 

The argument for partitioning out embedded computers 
for special consideration may not seem too important to 
many computer professionals, however it is vitally impor
tant that program managers who are responsible for their 
development and acquisition become more aware of the 
special problems that embedded computers can create for 
them, including their impact on the systems that cOIltain 
them. Special management techniques are necessary for 
developing embedded computer systems that do not pertain 
to most general purpose and many special purpose processor 
systems. 

Therefore, much of the following discussion is intended to 
support the author's firm convictions that: 

1. embedded computer systems are sufficiently unique 
to be placed in a class by themselves; and 

2. special management techniques are required to 
oversee their development, testing, operation and 
maintenance. 

DEVELOPING EMBEDDED COMPUTER SYSTEMS 

The systems approach to developing any large scale 
system can be logically viewed as a consistent method of 
reducing highly complex problems into sets of relatively 
simple parts that can be dealt with individually. Subsys
tems and other "building blocks" or "black boxes" are 
defined and developed individually. Then, a system archi
tect integrates the parts into a whole. This process permits 
a single program manager to keep the "big picture" in proper 
perspective, rather than forcing him to direct his attention 
to relatively minor aspects of the total system. 

When a digital computer subsystem is treated as an 
individual building block, especially one that is intended to 
integrate the parts of a large scale system through informa-



344 National Computer Conference, 1974 

tion transfer, many problems arise in developing its software 
that cause high costs. The computer system that is embedded 
into an aircraft in the form of a digital avionics subsystem 
must receive special attention from the program manager 
and not be treated simply as another configuration item 
that can be built in relative isolation from the rest of the 
system. The importance of this notion can be realized when 
we consider that an aircraft avionics subsystem includes 
airborne electronic sub-subsystems such as computers, 
sensors, display devices, control elements, and so forth; all 
of which must be integrated by means of electromechanical 
interface elements to assist the aircrew in managing aircraft 
resources. 

The nature and extent of the problems in creating avionics 
computer subsystem software are still mostly undefined. 
For years the use of information generating devices in 
aircraft subsystems have been largely limited to analog 
types directed toward semi-autonomous subsystems involv
ing communications, navigation, weapons delivery, elec
tronic countermeasures, stores management, power plant 
monitoring, and so forth. Very sophisticated analog compu
ters have been developed in the radar navigation and bom
bardment areas, for example, and routine use of on-board, 
cathode-ray display devices for monitoring aircraft engine 
performance have been in existence on transport aircraft 
for well over twenty years. 

Within each of these subsystem areas, however, there 
are interactions and the consequent need for more efficient 
information transfer. The logic of using digital devices 
throughout all subsystems is highly persuasive to satisfy 
the information transfer and overall integration needs. 
Therefore, a definite trend has developed toward the re
placement of analog with digital equipment. However, the 
basic point is that this trend has introduced problems that 
were not foreseen and consequently are still in the process 
of being defined. 

The currently accepted practice used to develop large 
scale automated systems such as aircraft equipped with 
digital avionics uses program management techniques. To 
plan the system development, the overall system is broken 
down into subsystems, sub-subsystems, and so forth, until 
a level of detail is arrived at that serves as a baseline speci
fication for design engineers to begin detailed specification 
of individual parts. At some point in this decomposition 
process, the program manager's interest is fully satisfied by 
a detailed description of the inputs and outputs of various 
components without regard to their internal structure or 
their detailed interface requirements. The program mana
ger's staff look at a much finer level of detail within their 
individual functional areas, but still not to the level required 
by those persons who will actually build the system. 

The problem with using this normal systems approach 
with respect to embedded computer subsystems is that 
they are treated as a "black box" exactly the same as any 
other configuration item. In aircraft systems, the tendency 
is to define the size and weight of the computer hardware 
so that it will be compatible w iLh the overall aircraft design, 

weight and balance as early as possible in the planning 
process. This specification is usually made well before 
software designers have developed sufficient detail in their 
area to really know how big a computer is required with 
respect to core and auxiliary storage. Concurrently, at the 
macro subsystem level, tradeoffs are made to reduce the 
physical size and weight of the computer hardware to its 
absolute minimum to relieve pressures to develop greater 
aircraft lift capacities by enlarging the wings or engines. 
The software problem is greatly increased by these proce
dures whenever it is later determined that the hardware is 
inadequate for the software. This forces the use of lower
order basic languages, tricky programming to save space in 
core, and other devices that all lead to higher software costs. 

Therefore, it follows that one of the basic problems in
volved with embedded computer systems lies in the diffi
culty of developing them using normal program manage
ment procedures. It should also be noted that automatic 
process control systems and other embedded computer 
systems, in addition to aircraft digital avionics, are all 
individually created and require their design specifications 
to be developed mostly from scratch. At the very least, 
useful documentation exists for only part of the develop
ment problem, and certainly not for the entire task since 
prior systems are not sufficiently the same to copy, especially 
in the computer software area. In addition, full comple
ments of automation and computational equipment are 
generally lacking. It is difficult indeed to find an off-the
shelf computer that can po the job without major modi
fication. 

NEED FOR EXTRA CAPACITY 

With any large complex automated system such as a 
spacecraft, early warning and control system, advanced 
aircraft, and so forth, that contains a controlling embedded 
computer, it is well understood that regular modifications 
will be made to add new functions and improve those which 
were included in the original design. As such modifications 
are made over time, the software must also be modified, 
usually requiring additional code. Since the programs in an 
embedded computer are generally stored in the system 
itself, the system computer memory can rapidly become 
saturated. Also, the additional functions often cause a 
system to become overworked to the point where the cycle 
time is not fast enough to keep up with the increased work
load. 

When the memory and speed capabilities are approached 
through the modification process, it is not normally possible 
to replace the computer with a more powerful one as can be 
done relatively easily in a conventional computer center. 
Since the hardware has been engineered into the overall 
system, and is therefore relatively fixed, the modifications 
must be forced to fit through non-standard, "tricky," 
programming practices which ignore the original strict 
control standards used during development. This results in 



generally costly and unreliable software modifications, yet 
another factor ,,,hich drives up the life cycle cost of em
bedded computer systems. 

The most logical solution to this problem is to add suffi
cient extra memory and speed capacity to the original 
specifications to allow for future modifications. This is an 
extremely difficult tradeoff for the program manager to 
make, especially where he is closely scrutinized for his 
efficiency in reducing costs to an absolute minimum. The 
recommendation is to educate the program manager and 
his technical staff in the dangers of cutting the memory 
and speed specifications too close during initial develop
ment. Precisely what is "too close" and how one determines 
just how much "extra capacity" to allow for is a subject 
for further research. What is important to point out, is that 
this is a rather unique problem for embedded computer 
systems that management must become familiar with to 
prevent excessive future software costs. 

SUBSYSTE:\1 IXTEGRATION 

Returning now to the avionics area, it was stated pre
viously that many diverse aircraft functions must be co
ordinated by the embedded computer subsystem. For 
example, in our military aircraft we must integrate com
munications, command and control, traffic monitoring, power 
distribution, flight instruments, flight control systems, 
detection of an enemy, tracking an enemy, fire control sys
tems, weapons management, and many others. Each of 
these functions are performed by analog and digital pro
cessors that operate on input data supplied by an extremely 
wide variety of sensors. 

During the evolution from stand-alone analog devices 
to interacting digital systems in our aircraft development, 
it has been found that many relatively autonomous avionics 
subsystems are not fully compatible with each other. This 
has resulted in requirements being placed on the system archi
tect, generally a prime contractor, to force various pieces 
of the system into being compatible. This practice results 
in an additional requirement for considerable interface 
software (and sometimes hardware) development. This adds 
to the overall complexity of the system software at higher 
cost, but does not in any way increase overall system ca
pability. 

Furthermore, since every newly developed aircraft is 
substantially different from the last, new mechanical com
ponents are acquired that perform substantially the same 
functions from plane to plane, but are sufficiently different 
to warrant different software to operate them or to use their 
developed output data. This is often the case because two 
processors that develop information from two different 
segments of the electromagnetic spectrum, for example, 
such as radar energy and infra-red energy, are usually 
developed by two different subcontractors. Present proce
dures do not generally demand investigation to see if these 
potentially common items could be operated in a redundant 

Embedded Computers-Software Cost Considerations 345 

mode, with one serving as a back-up system for the other; 
or whether one could be eliminated by increasing the speed 
and capacity of the other to the point where it could handle 
both workloads. 

Considerations such as this should be pointed out to the 
overall system architect by the program manager. We are 
currently investigating how to prescribe specific systems 
engineering procedures that will insure that similar items 
will be thoroughly investigated to see if they can be shared 
or used to provide redundant back-up capabilities. Such a 
procedure will ultimately decrease the total cost of software 
through a reduction in overall system complexity and 
diversity. 

STANDARDIZATION 

Since the development of embedded computer systems 
must be tailored to the function of the overall system they 
are contained in, standards for system development are 
taken as those that pertain to the overall system. For ex
ample, standards for building railroads would be applicable 
to an automated rapid transit system, aircraft standards 
are used for airplanes, and so forth. The difficulty here is 
that each of these systems use their own methods for de
veloping subsystem software. Thus, even though there are 
many software development standards available, none are 
standard for all embedded computer system software. This 
is not only true across the classes of major systems, but 
even within classes of systems such as avionics. 

Because universal standards do not exist, soft-ware de
velopments are often characterized by poor programming 
practice and inadequate documentation and support soft
ware, all of which generally lead to higher than necessary 
life cycle costs. Weare therefore looking careful1y at inno
vations such as structured programming techniques which 
may be useful to partially standardize coding methodology. 
Weare also in the process of analyzing our configuration 
control procedures and documentation standards to provide 
a basis for establishing embedded computer. standards by 
1975. 

The preparation of reprocurement data and technical 
order handbooks also represents a significant portion of 
the development and acquisition cost of embedded com
puter systems. One must consider the usefulness of acquiring 
reprocurement data in view of its relatively high cost. 
Alternatives to our militarized versions of "tech orders" 
are also being examined since it might possibly be more 
cost effective to use commercial handbooks in some cases. 
Therefore. the goal of standardization of all data must be 
carefully evaluated and weighed against ,,,hat it will cost in 
the long term. 

On the other hand, the standardization of subsystems and 
components in our automated weapon systems appears to 
have a large potential for cost savings. Standardization 
permits reduced numbers of i .. rlventory items, such as eom
puter programs, and larger production runs on hardware 



346 National Computer Conference, 1974 

components. Weapon systems and similar embedded com
puter systems should take advantage, whenever appropriate, 
of subsystems on hand or commercially available. 

TIME-SHARING 

For a fully-integrated system that utilizes an embedded 
computer for its control, time-sharing becomes an extremely 
critical problem for software designers. When time-sharing 
is recognized as a problem in general purpose computer 
shops, it is frequently because low priority jobs never seem 
to get into the processor for execution; or users operating 
remote consoles cannot get timely responses to their inputs. 
Identical problems in an embedded aircraft computer can
not be tolerated. For example, the central computer must 
continually poll various sensors to determine whether or 
not the electrical, hydraulic and other such subsystems are 
operating correctly. Simultaneously, the computer receives 
radar and radio sensor signals which must be processed into 
real time information such as current aircraft position, air
speed, groundspeed, and so forth. The question comes up 
dUring software design as to which particular functions are 
more important than others. Should an impending engine 
failure take precedence over a radar input indicating the 
aircraft is flying too close to a mountain? These questions 
are extremely difficult to answer and generally consume 
more manhours to study and define than comparable prob
lems in general purpose interactive and time-sharing pro
cessors. The net result-increased software costs. 

:MAINTENANCE AND CONFIGURATION CONTROL 

Malfunction analysis in complex embedded computer 
systems presents additional unique problems which drive 
up the cost of software maintenance. Whenever mechanical 
system components exist that are controlled by computer
generated input signals, malfunctions appearing to originate 
in the mechanical components can also be caused by logic 
errors in the controlling software. For example, the inability 
of an automated subway train to stop precisely at the right 
spot alongside a loading platform might be initially diag
nosed as a malfunction of the braking system, sticking relays, 
or some other mechanical defect. Maintenance technicians 
would probably take apart and inspect all suspected system 
components that might be causing the problem as their 
first order of business. Only after all mechanical possibilities 
are eliminated would the complex system control software 
be painstakenly checked for a bug. Since the preliminary 
detailed mechanical checks that are performed prior to the 
discovery of a software problem should properly be costed 
against the software account, the overall software cost for 
embedded computer systems is uniquely higher insofar as 
troubleshooting is concerned when compared to other types 
of computer systems. 

In highly complex systems it is virtually impossible to 
completely test all possible logic paths during software 
development. Again and again new bugs are discovered 
whenever the system encounters a set of logical circum
stances against which the software must function that had 
not been anticipated. The occurrence of such bugs in normal 
management information systems are aggr~vating since the 
system might be late producing a particular report, or crash 
as a worst case. Note carefully that when the software is 
being used to guide an Air Force bomber close to the ground 
at the speed of sound, such a bug can be disastrous. 

To help reduce the occurrence of bugs in the sensitive 
control subsystems of major systems, it is necessary to 
devote considerably more attention to the original planning 
of the system and, in particular, to the use of a stringent 
configuration control program. Minor changes to the soft
ware during development to make fixes, or to accommodate 
changes to other system parts, must be carefully analyzed 
with regard to their impact on other subsystems and the 
system as a whole. 

The real proof of software adequacy and reliability is 
achieved during the testing phase. Traditionally, software 
has been tested to determine whether or not it meets the 
original specifications. Even in operational tests, the major 
criterion is whether or not it performs to its design. In the 
case of testing large scale embedded computer systems, it is 
also necessary to do the following: 

1. Perform detailed diagnostic analyses of mechanical 
components that have failed to determine whether 
or not software can be a contributing cause. 

2. Develop and install automatic test equipment that 
records the operation of the overall system over 
time. When any new malfunction occurs, test data 
will then be available to aid in the diagnosis. 

3. If at all feasible, provide one or more systems that 
are highly instrumented and are capable of dupli
cating malfunctions that only occur during actual 
operation and cannot otherwise be observed and 
analyzed. Such instrumented systems can provide 
the complex interface data between subsystems that 
is critical to accurate and timely troubleshooting. 

Another major problem with embedded computer software 
with regard to configuration control is the requirement that 
it be relatively "tamper-proof." The software that inte
grates and controls various subsystems in a complex 'weapon 
system, for example, must not be made too easily accessible 
to deter unauthorized personnel from tampering with it. 
For this reason, the most. important programs are generally 
protected by such methods as storing them in read-only 
memories. This specialized requirement tends to make 
software maintenance relatively more costly than in general 
purpose computer systems since the latter systems' pro
grams can be readily accessed in the computer room. It 
should also be pointed out here that protection against 
tampering would probably not be a critical necessity if it 



were not for the complexity of the integration problem 
discussed previously. 

PROGRAMMER SKILL REQUIREMENTS 

Finally, there is one more potential problem area in 
software development and implementation that may be 
somewhat unique to embedded computer systems. Although 
it probably cannot be proved as a fact, it would seem that 
the basic modus operandi of software developers and imple
menters are a direct result of a specialist's viewpoint and 
not that of a true systems engineer. Programmers concen
trate primarily on getting subroutines to run, making sub
routines run together in a program, and getting programs 
to run precisely in the manner as dictated in the original 
specifications. The exact methods used to get the programs 
running to specification (which are frequently more art 
than science) are centered on the program logic itself and 
not necessarily on what each fix, patch, or other coding 
change might do to the overall system. 

Although this is speculative reasoning, it might partially 
explain why many of our key personnel engaged in develop
ing and implementing embedded computer systems keep 
asking for a "special breed" of programmer, one who is a 
hybrid between an 'electrical design engineer and a com
puter programmer. The experts in this field claim that the 
normal analyst/programmer does not have the proper 
outlook on "systems" that he should have. Consequently, 
the extra awareness must be learned on the job. This ulti
mately requires additional training expense and, hence, 

Embedded Computers-Software Cost Considerations 347 

increases the overall cost of special embedded computer 
system software. 

Therefore, we are also beginning to investigate precisely 
what special skills are required for personnel engaged in 
developing embedded computer systems. We hope to have 
some results in this area in the near future, at the very 
least a determination of whether or not this is a real problem. 

SUMMARY 

The arguments presented above have attempted to justify 
the requirement for special management treatment of a 
class of computers that are "embedded" in large, complex, 
electromechanical systems. This subset of electronic data 
processors are more difficult to program, and hence more 
costly to program, than most other types of computers due 
to their interactions with other parts of a larger system. 
More attention to planning their development and stricter 
configuration control of all modifications and changes are 
mandatory to prevent adverse side effects in the operation 
of the overall system due to software bugs. These factors, 
in addition to the others discussed, cause the overall cost of 
embedded computer system software to be driven to a level 
that is proportionately higher than comparable software 
used in normal data processing applications. For this reason, 
we are intensively investigating this special subset of com
puter systems to determine how to improve our acquisition 
management methods to hold their life cycle costs to a 
minimum. 





An examination of TIC-TAC-TOE like games 

by ROBERT C. GAMMILL 

The Rand Corporation 
Santa Monica, California 

INTRODUCTIO~ 

There is a class of games which resemble TIC-TAC-TOE. 
These are games where two players alternately put X's and 
O's into playing spaces, attempting to get n of their signs in 
a row. Well-known games of this class are TIC-TAC-TOE 
(3X3) and QUBIC (4X4X4). The boards of these games 
form squares, cubes and hypercubes with n playing positions 
on a side. We will speak of these games as nk TIC-TAC-TOE 
following Citrenbaum.2 

Many games in this class are trivial, such as TIC-TAC
TOE (n=3, k=2), while others display considerable char
acter. QUBIC (n=4, k=3) is an example of one of the 
latter. No solution is known for the game of QUBIC. It is 
commercially distributed and a number of computer pro
grams have been written to play it.1,8 Most of those programs 
have demonstrated a rather poor understanding of the 
intricacies of QUBIC. 

In the material which follows we will examine a number 
of results which hold for all nk TIC-TAC-TOE games. These 
results demonstrate that QUBIC is the smallest unsolved 
member of the class. Means will be shown by which a solution 
attempt is being undertaken. A computer program which 
plays QUBIC will be described and its use in developing 
strategies and moving toward a solution will be discussed. 

nk TIC-TAC-TOE GAMES 

Some notation will be needed for a concise exposition. 
Table I gives the needed terms. Some of the terminology 
(e.g., LOSS) may appear strange unless one accepts our 
predeliction for defining the board state from X's point of 
VIew. 

No loss strategy exists 

One might think that DRAW STRATEGY should have an 
alternative meaning when it is a strategy for X, but it turns 
out that X should not be interested in DRAW for these 
games. This is because it is known from game theory that, in a 
finite two-player perfect information game, either the first 
player has a WIN STRATEGY or both players have a 

349 

DRAW STRATEGY.3 In other words, no LOSS STRATEGY 
exists. This is because if a LOSS STRATEGY existed, X 
could convert it to his own use and make it a WIN 
STRATEGY. Thus, to paraphrase the above, between two 
perfect players who completely understand an n k TIC-TAC
TOE game, there can be no LOSS. The only possibilities are 
WIN and DRAW. When a game of this class has been 
solved, it means that a WIN STRATEGY or DRAW 
STRATEGY has been produced. Games for which solutions 
exist are characterized by the type of strategy which has 
been found. It is well-known that TIC-TAC-TOE is a draw 
game. In the material which follows we will examine a 
method developed by Erdos and Selfridge4 which provides a 
draw strategy for a large number of nk TIC-TAC-TOE 
games. First some examination of the properties of nk boards 
is needed. 

Board properties 

It is important to have a number of equations at hand 
when examining n k boards. Equation (1) gives the number of 
lines in an arbitrary n k board. -

L = _( n_+_2_) k ___ n_k 
2 

(1) 

Different points in an nk board will have differing numbers 
of lines through them. This makes some points more powerful 
than others. We will need to know the number of lines 
passing through the most powerful point on the board. When 
n is odd, the centermost point of the board is the most 
powerful. Equation (2) gives the number of lines through 
that center point when n is odd. 

3k -l 
LCP= --

2 
(2) 

When n is even, there is a collection of most powerful points. 
The number of lines through these points is given by equa
tion (3). 

(3) 

These equations and many more can be found in Reference 2. 



350 National Computer Conference, 1974 

POINT 

LINE 

X 
o 
STATE 
WIN 
LOSS 
DRAW 

TERM 

TABLE I 

MEANING 

A playing position where an X or 0 may be 
placed. 

A sequence of n points, which when covered by 
X's will produce win. 

Pieces played by first player, also his name. 
Pieces played by second player, also his name. 
A configuration of pieces on the board. 
A state where first player (X) has won. 
A state where first player has lost (i.e., 0 wins). 
A state from which neither WIN nor LOSS 

can be reached. 
STRATEGY A plan of action for a player. 
WIN STRATEGY A plan (for X) which reaches WIN, no matter 

what 0 does. 
LOSS STRATEGY A plan (for 0) which reaches LOSS, no matter 

what X does. 
DRAW STRATEGY A plan (for 0) which reaches DRAW, no matter 

what X does. 

Draw strategies 

Erdos and Selfridge4 have devised a strategy by which 0 
may achieve draw under certain conditions. In order to 
describe the strategy a number of definitions are needed. 
Table II defines the Erdos-Selfridge value of a line. 

TABLE II-Erdo.s-Selfridge Line Values 

Character of line L VeL) 

One or more O's (blocked) 
empty 
1 X, no O's 
2 X's, no O's 
n X's, no O's 

o 
1 
2 
4 
2" 

The value of a board state V(B) is the sum of the values of 
all lines on the board (4). The value of a move V (M) is the 
sum of the values of the lines passing through that point, 
before a piece has been played there (5) 

V(B) = x: VeL) 

V(M) = L VeL) 
MEL 

(4) 

(5) 

From the above, the following sequence of equations (6) can 
be deduced. 

V(Bo) = number of lines on the board = initial board value 

V(B1) = V(Bo) + V(M1) 

= board value after first move (by X) 

V(B:!) = V(B1) - V(~~f;.:) 

= board value after second move (by 0) (6) 

This means that equation (7) holds whenj is odd. 

V(Bj +2) = V(Bj ) - V(2Jfj +1) + V (Mj +2) (7) 

If 0 picks his moves so they always have the maximum 
possible value (the Erdos-Selfridge strategy) then equations 
(9) and (10) are true when j is odd. Equation (9) holds 
because placing an 0 on a point (Mi+l) causes all lines 
through that point to take value zero. Points contained in 
those lines may then have reduced value. No point will have 
increased value. Thus, the value of X's next move V(M j+2) 

cannot be greater than the value of O's move V(M j+1). 

V(Mi+I) ~ V (M j+2) 

V(Bi+2) ::; V(Bj ) 

(9) 

(10) 

It is clear that a WIN board state must have a value V(B) 
which is greater than or equal to 2n , since at least one line 
must have n X's in a row. This means that if V(Bj ) <2n for 
any oddj, 0 can prevent X from winning, since all succeeding 
V(B;) wherej is odd will be no greater. 

Finally, if the maximum possible value of V(B1) is less 
than 2n , 0 can use the Erdos-Selfridge strategy to achieve 
draw every time the game is played. The maximum value of 
V (BI ) is the number of lines on the board plus the value of 
the best possible move. That best move will be the· point 
which has the most lines through it. Thus, using equations 
(1) through (3) we produce equations (11) and (12), which 
specify a test for an nk game being drawn for n odd and n 
even respectively. 

(if n odd) (11) 

(if n even) (12) 

The smallest interesting game which satisfies these equations 
is (n=4, k=2) 4X4 TIC-TAC-TOE. Working out an 
example for that game is an instructive exercise. 

It should be emphasized that this technique not only 
characterizes complete games, but if at any time the board 
state value after X's move dips below 2n , the Erdos-Selfridge 
criterion declares that draw has been reached. 

The Erdos-Selfridge strategy does not apply to TIC-TAC
TOE, i.e., the criterion is not satisfied after the first move. 
However, it is well-known that TIC-TAC-TOE is a draw 
game. Games which are known to have draw strategies are 
summarized in Table III. 

VV" in strategies 

Win strategies are known for a number of nk games. In 
most cases these games are so trivial that the strategy need 
not be explained. However, 33 TIC-TAC-TOE. has a win 
strategy and a simple explanation may be needed. The initial 
move should; of course, be in the centermost point, '~vhich is a 
member of 13 lines. Thereafter, it is almost impossible for 0 



An Examination of TIC-TAC-TOE Like Games 351 

TABLE III-Summary of nk games 

n, the number of points in each line 

2 3 4 5 6 7 8 9 10 

1 2 3 4 5 6 7 8 9 10 points 
k=1 1 1 1 1 1 1 1 1 1 1 lines 

W ESD ESD ESD ESD ESD ESD ESD ESD ESD strategy 

1 4 9 16 25 36 49 64 81 100 points 
k=2 4 6 8 10 12 14 16 18 20 22 lines 

W W D ESD ESD ESD ESD ESD ESD ESD strategy 

1 8 27 64 125 216 343 512 729 1000 points 
k=3 13 28 49 76 109 148 193 244 301 364 lines 

W W W ? ? ? ? ESD ESD ESD strategy 

1 16 81 256 625 1296 2401 4096 6561 10000 points 
k=4 40 120 272 520 888 1400 2080 2952 4040 5368 lines 

W W CW ? ? ? ? ? strategy 

E-S number 2 4 8 16 32 64 128 256 512 1024 

Wmeans WIN CW means Citrenbaum WIN 
DmeansDRAW ESD means Erdos-Selfridge DRAW 

to achieve draw. Every time X moves, 0 must block on the 
opposite side of the cube. If X makes a move that produces 
two X's in a line in the cube side, he will also probably have 
produ,ced a line of two X's through the center. The simul
taneous production of two lines of two X's results in a win, 
since 0 cannot block both. 

A theorem by Citrenbaum2, page 113, states that if an 
nk game has a win strategy, then the same strategy will 
apply for k larger than that. The reasoning is that if a winning 
strategy can be carried out on a k-dimensional board, it can 
be carried out in a sub-cube of a k+ 1 dimensional board, etc. 
The extra dimensions simply allow more space for 0 to spread 
his responses over, weakening his defense. Thus, we now know 
that all n=3, k~3 games have a win strategy. 

Summary of nk games 

In Table III are summarized the results which are known 
concerning various nk TIC-TAC-TOE games. From the table 
it is clear that QUBIC is the smallest game for which no 
solution exists. 

Two interesting conjectures stem from the table. 

(a) Conjecture due to Citrenbaum:2 If n5:k then the game 
has a winning strategy. If n>k then it has a draw 
strategy. 

(b) Conjecture due to Gammill: If the number of lines is 
greater than or equal to the number of points in the 
board, the game has a win strategy. Otherwise it has a 
draw strategy. 

(n+2)k- nk k· r . 
2 >n Imp les WID 

Note, from the table, that this means that Citrenbaum 
assumes that a draw strategy will be found for QUBIC while 
the author assumes a win strategy will be found. Both con
jectures are supported by all presently known information. 

Succeeding sections will describe methods used in the 
attempt to find a solution (strategy) for the game of QUBIC. 

QUBIC 

In the preceding sections we have shown that QUBIC 
is the smallest nontrivial nk TIC-TAC-TOE game. QUBIC 
is interesting from a number of points of view. It is a simple 
enough game to serve as a fruitful test-bed for ideas in 
strategy analysis. By contrast with chess or checkers, it has 
such simple rules and structure that the data processing tasks 
do not overcome the more interesting (and important) 
analysis tasks. However, despite the simplicity of the game 
the size of the board state space is sufficient to preclude 
brute force analysis (64! by unsophisticated methods). Like 
other sophisticated games (e.g. checkers and chess) it has 
phases of play which exhibit differing properties and require 
rather different kinds of analysis. The three phases of QUBIC 
are represented in the table below. 

PHASE 

OPENING 

MIDDLE 

END 

TABLE OF QUBIC PHASES 

CHARACTER OF THE PHASE 

Usually the first 5 to 7 moves. No direct 
threats occur and no defensive play is neces
sary. Primary goal is gaining control of board 
resources (lines and planes) . 
Threats and counter threats occur con
tinually. Every move has both an offensive 
(threat creation) and defensive (threat 
elimination) component. 
An unstoppable threat is created by one of 
the players. The other player may stall, by 
creating mh'10r threats which must be fended 
off, but ultimately he is forced into com
pletely defensive play until finally he loses. 



352 National Computer Conference, 1974 

In order to examine the analytic tools which are useful in 
each of the phases, we must examine some specific features 
of QUBIC. 

The QUBIC board 

The following facts are known about the board. 

ELEMENT 

POINTS 
LINES 
PLANES 
RICH POINTS 
POOR POINTS 

NUMBER 

64 
76 
18 
16 
48 

Rich points are those that are members of seven different 
lines. Poor points are members of only four lines. Rich points 
are cube corner and interior points (elements of main diago
nals). Rich points capture more lines for a player, so opening 
play is usually limited to them. 

The QUBIC board is large enough so that brute force 
examination of all possible games is not productive. How
ever, many seemingly different games are actually the same, 
although rotated, reflected or otherwise transformed. Silver:> 
has shown that QUBIC has a group of 192 automorphisms. 
This includes the 48 standard axis transformations of the 
cube due to rotation and reflection. Added is a factor of 4 
more automorphic images due to three "scrambling" trans
formations. These transformations do violence to the layout 
of the cube, but have no effect on the game of QUBIC. 
Perhaps the best way to describe them is to show hO\v they 
transform a position. If we describe a position using matrix 
notation (i, j, k) where the range of indices is 1 to 4, then 
Figure 1 gives the transformations. For example, using trans
formation 1, the position (1,2,3) becomes (2, 1,4). Figure 

2 

3 

TRA NSFO RMA TlO NS 

( __ means "changes to") 

1--2, 2--1, 3-4, 4--3 

1--4 4--1 

2--3, 3--2 

(inside out exchange) 

(outside exchange) 

(inside exchange) 

TRANSFORM 1 TRANSFORM 2 TRANSFORM 3 

Figure I-Scrambling transfOIIflatioui:l applied on a 4X4 square 

1 also shows how the transformations look when applied 
in the 42 game. The result of the 192 automorphisms of 
QUBIC is that on an empty board all the rich points are 
automorphic images of one another, and likewise for all the 
poor points. Thus, the first move of the game involves a 
simple choice, whether to playa rich or poor point. 

The opening game 

The 192 automorphisms as well as the fact that differing 
sequences of moves can achieve exactly the same board state 
cause a dramatic reduction in the number of different board 
states which are possible in the QUBIC opening. The follow
ing table gives the number of distinct states, when play is 
restricted to the rich points, oyer the first five moves. The 
tabulated results were produced by computer enumeration. 

TABLE 

Comparison of number of states for first 5 moves 
(on rich points) against number of distinct input 

sequences. 

MOVE 

1 
2 
3 
4 
5 

NUMBER OF NUMBER OF 
DISTINCT STATES POSSIBLE INPUTS 

1 
5 

20 
103 
307 

16 
240 =15X16 
3360 = 14X240 
43680 =13X3360 
524,160= 12 X 43680 

It can be seen that the first five moves of QUBIC form a 
finite automaton of 436 states (when play is confined to rich 
points). Furthermore, if we are d~fining a winning strategy 
for the first player (X), then only the best move from each 
state where X plays need be defined. This results in only 12 
possible states after three moves have been made. Thus, as 
more becomes known about the middle game, it should be 
possible to find optimal paths through the opening by a pro
cess of enumeration. 

The end game 

The end game is the best understood aspect of TIC-TAC
TOE games. The end game involves forcing sequences, where 
one player makes moves which require a specific reply by the 
opponent to prevent a loss. This sequence ultimately cul
minates in a win by the forcing player. Figure 2 shows two 
examples. Example (a) is the simplest form of forcing 
sequence, requiring only three moves. Example (b) shows a 
common eleven move forcing sequence. The examples are all 
planar subparts of the QUBIC board. Forcing situations like 
that of example (b) are extremely common. Anytime three 
pieces of one player occupy a plane, without interference from 



the opponent, it is likely that an eleven move forcing sequence 
can be found. Despite the importance and frequency of 
occurrence of this "three-in-a-plane" situation, many QUBIC 
players (people and computers) do not know about it. A 
classic example is a game listed in Reference 6 shmving a game 
played between a person and a computer program (written 
by Dalyl). In that game the person creates a situation like 
example (b), the program fails to make a defensive (block
ing) move, the person fails to use his forced win, and there
after the computer forces a win. Regrettably this "double 
blunder" game has been presented as an example of a skillful 
computer beating a person at QUBIC. Competitive play, 
like the ACM Computer Chess Tournaments, appears to be 
the best way to improve the quality of play. 

The force language 

Citrenbaum2 and the writer have independently devised 
graphical notation systems (languages) for representing and 
recognizing a forcing situation. Where Citrenbaum has 
achieved slightly greater generality, creating a notation 
suitable for representing forcing situations in positional 
games (of which nk TIC-TAC-TOE is a subclass), the author 
has developed a language especially suited to QUBIC. Unlike 
Citrenbaum's notation, the graphical language to be pre
sented here has been implemented in an efficient program for 
finding extremely complex forcing sequences. Sequences con
taining as many as 31 moves have been found. No depth 
limit is set. The following table presents the elements of the 
language. 

ELEMENT 

@ 
o 

TABLE OF LANGUAGE ELEMENTS 

MEANING 

Line containing n X's 

Unplayed point 

Membership (point in line) 

Line containing 2 X's, showing 
its two unplayed points 

Using these elements we are able to describe the forces ,,,,hich 
were shown in Figure 2. It is not necessary to show all of the 
lines in each plane, only those lines directly involved. Figure 
3 shows the representation of the forces from Figure 2. The 
number next to each point indicates the order in which 
moves occur. Odd numbered moves are X and even moves 
are O. 

From the graphical force descriptions shown in Figure 3 a 
general characterization of all forces can be produced. To 
start a force requires at least one line containing two X's. To 
continue the force requires intersection with a line containing 
one X, or two intersections with an empty line. Figure 4 
provides a graphical description of the configurations which 

An Examination of TIC-TAC-TOE Like Games 353 

EXAMPLE (a) 

Situation 

3 move playing 
sequence 

EXAMPLE (b) 

Situation 

11 move playing 
sequence 

Odd numbered moves are X 

Even numbered moves are 0 

1 

10 

3 

9 

5 

X 

X 

6 

8 7 

11 

X 4 

2 

Figure 2-Two examples of forcing situations and the playing sequence 
leading to WIN" 

make up forces in part I and examples of some actual forces 
in part II. 

The ability to describe forces in QUBIC provides a power
ful new tool. It appears that the language describes all 
possible forces, but no formal proof has been carried out. An 
important side effect, not described by the language, is that 
the force may not work if any of O's replies (even numbered 
moves) are forced into a line where 0 has two pieces. This has 
been termed a counter-force by Gilmartin,7 because it forces 
X to defend rather than continue the force. The solution to 
counter-forces is to avoid them or to order the forcing moves 
so that the reply which counter-forces is last, allowing the 
winning move to be made next. Gilmartin has also described 
an interesting case where forces and counterforces interact in 
a complex manner, as shown in Figure 5. 

The program 

A QUBIC playing computer program has been written 
using the methods described in the preceding sections. The 
most important features of that program are the following: 

(1) A module capable of responding to direct threats, 
collecting easy wins, and handling other obvious 
tactical situations. 

(2) A module capable of finding and playing out a force, 
if one exists. 

(3) A module capable of evaluating moves in terms of 
resources (e.g., lines and planes) controlled, and 
ordering those moves in a (best first) plausibility 
list. No searching is carried out. 



354 National Computer Conference, 1974 

Example (a) 

;!.~-.~ 
~ 

Example (b) 

Figure 3-Graphical representation of Figure 2 

(4) A module capable of finding forces available for the 
opponent. This module finds the most plausible move 
(if one exists) which prevents all forces by the 
opponent. 

This program plays a good game of QUBIC, but of course 
that statement cannot easily be verified. The surest method of 
verification is competitive play. The program has beaten 
many good players, but competition with other good players 
(computers or humans) is actively being sought. 

Perhaps the most interesting facet of the program is that 
it is much more capable of recognizing board states that 
contain forcing sequences than is any human being observed 

1. GRAPHICAL CONFIGURATIONS OF THE FORCE 

(0) FORCE STARTING (i odd) 

(b) FORCE CONTINUATION (i, j and k odd) 

~ i 6 rj 

Pj + 1 j > i 

~ 
~ Pk-k>i 
Pj P k > j 

k + I 

(c) FORCE COMPLETION (i, j and k odd) 

II. EXAMPLES OF ACTUAL FORCES 

~
2 135 

2 1 2 

4 

X X2 1 
5 X 

X 4 

1 4 3 X 

9 X 510 
11 8 X 

6 2 

Multiplanor 

Figure 4-Graphical force ianguage and example forces 

0 0 
X X 

X X 

0 0 

X's turn to play (play anywhere) 

Figure 5-Situation where X wins, but every forcing move produces a 
counterforce 

so far. This has had the interesting result that the program 
has taught a number of experienced QUBIC players, in
cluding the writer, to playa better game. This is accom
plished by the module described under (4), which eliminates 
moves that fail to defend against a force threat. So many of 
the middle game board states contain forces or force threats, 
that games between humans invariably contain a number of 
blunders (normally not as obvious as the game mentioned 
above from Reference 6). Thus, modules of the program can 
serve as analysis tools for human players. It is particularly 
useful, for example, to have the program produce the small 
set of different moves which will prevent a force by the 
opponent and for the human to select that move from the 
set that captures maximum resources or threatens the oppo
nent with a force. Up until recently the program had been 
organized to act as an independent player (maldng all its 
own decisions). As a result of the feeling that in some ways 
the program has superior capabilities (e.g. in recognizing 
force states) but in others (e.g. strategic reasoning) the human 
is better, the program has been reorganized to allow maxi
mum interaction with a human player (i.e., kibitzing). 

Where the program formerly would playa game as either 
X or 0, now it may play both sides but accept advice from a 
human observer. Another mode is for the program to serve 
as an adviser (to a human player who is playing one or both 
sides) suggesting sets of moves or warning against certain 
moves. This can allow the human to act as a QUBIC re
searcher, and play out a sequence of moves that appears 
interesting. When the consequence of a particular move 
sequence has become clear, the game can be backed up to the 
last point at which X or 0 may have had a stronger move. A 
kibitzing or research mode like this might be a valuable 
addition to computer chess playing programs, as it could 
allow testing and improvement of the program's capabilities 
through the posing and solution of sample problems. The use 
of these research modes of the program have substantially 
advanced our knowledge of the game of QUBIC. Much work 
remains to be done, but slo'Nly the game of QUBIC is yielding 
its secrets. The time when a solution (strategy) can be 
reported appears to be approaching. 

SUMMARY 

nic TIC-TAC-TOE games have been examined and it has 
been demonstrated that QUBIC (43) is the smallest non-



trivial member of this class of games. The knowledge and 
methods used in research toward a solution of the game have 
been outlined. Finally, a QUBIC playing program which has 
been modified for use as a research tool has been described. 

REFERENCES 

1. Daly, William, Computer Strategies for the Game of Qubic, Masters 
Thesis in E.E., MIT, Cambridge, Mass., Jan. 1961. 

2. Citrenbaum, Ronald L., Efficient Representations of Optimal Solu
tions for a Class of Games, Systems Research Center Report SRC-
69-5, Case Western Reserve University, 1970. 

An Examination of TIC-TAC-TOE Like Games 355 

3. Blackwell, D. and M. A. Girshick, Theory of Games and Statistical 
Decisions, Wiley, New York, 1954, p. 21. 

4. Verbal Communication with Prof. Andrezej Ehrenfeucht, Dept. of 
Computer Science, U. of Colorado, concerning unpublished paper 
by Erdos and Selfridge. 

5. Silver, Roland, "The Group of Automorphisms of the Game of 3-
Dimensional Ticktacktoe," American Mathematical Monthly, Vol. 
74, 1967, pp. 247-254. 

6. Slagle, James R., Artificial Intelligence: The Heuristic Programming 
Approach, McGraw-Hill, New York, 1971, pp. 38-39. 

7. Gilmartin, Paul, An Efficient Algorithm for Detecting Forces in 
QUBIC, Department of Computer Science, University of Colorado, 
January 1973 (unpublished paper). 

8. King, Paul F., A Computer Program for Positional Games, Report 
1107, Jennings Computing Center, Case Western Reserve Uni
versity. 





Provable programs and processors* 

by DONALD 1. GOOD** 

USC/Infarrrwiicm Sciences Institute 
Marina del Rey, California 

and 

The University of Texas at Austin 
Austin, Texas 

INTRODUCTION 

"A proof of correctness guarantees that a program will run 
correctly every time it is executed." That statement is not 
necessarily true. Suppose, for sake of concreteness, that a 
valid proof of a Fortran program has been constructed. 
When this program was proved, it most likely was proved 
in isolation from the other software components which ulti
mately will be involved in actually making the program run. 
So, even though we have proved the Fortran program, one 
of these other components, or the system hardware, may 
malfunction causing the actual machine language program 
that is executed to produce an error. These comments are 
not an argument against proving programs at the Fortran 
level, but rather an indication of the eventual need for a 
completely proved computing system. 

Although, certainly, the development of even a small scale 
system that is completely proved must be viewed as a long 
term goal, the Nucleus project described here is intended to 
be a small, initial step in that direction. This paper sum
marizes the project and evaluates the progress made so far. 

THE KUCLEUS LANGUAGE 

The Nucleus project revolves around the Nucleus pro
gramming language as described in Reference 1. Nucleus was 
designed with three major considerations in mind, program 
provability, processor provability, and expressability of non
trivial programs. These considerations were manifest in seven 
specific design goals. 

1. Program Provability. Every program in the language 
must be provable by the inductive assertion method. 

* This research was supported in part by NSF grant GJ-36424 and by 
the Advanced Research Projects Agency under Contract No. DARC 
15-72-C-0308, ARPA Order No. 2223/1, Program Code No. 3D30 and 
3PlO. 
** Views and conclusions contained in this study are the author's and 
should not be LTlterpreted as representing the official opinion or policy of 
the University of Southern California or any other person or agency 
(lonnected with it. 

357 

2. Structured Programs. The language should support 
the ideas of structured programming. 

3. Provability of a Verification Condition Generator. It 
must be possible to prove the correctness of a verifica
tion condition generator for Nucleus. 

4. Provability of a Compiler. It must be possible to 
prove the correctness of a Nucleus compiler. 

5. Ease of Compilation. Nucleus programs must be easily 
compilable into almost any machine language. 

6. Rigorous Language Definition. All aspects of Nucleus, 
both syntactic and semantic, must be defined rigor
ously. 

7. Express Non-trivial Programs. Nucleus must be ca
pable of expressing non-trivial programs such as its 
own verification condition generator and compiler. 

The central problem in designing Nucleus was in balancing 
the first six design goals against the seventh, expressibility of 
non-trivial programs. Ultimately, the principle was followed 
of making the language just powerful enough so that the 
Nucleus verification condition generator and compiler could 
be written in Nucleus without a great deal of difficulty. 
The following is a very brief summary of the language. 

Essentially, the structure of a Nucleus program is the 
declaration of global variables followed by the declaration of 
procedures. Procedures are recursive, but have neither 
parameters nor local variables, and there is no block con
cept. Every procedure has unrestricted access to every global 
variable, and those are the only variables to which the pro
cedures have access. This simple, but very primitive method 
for accessing program variables was motivated by several 
considerations. First, the construction of verification condi
tions is somewhat simplified if the variable X always refers 
to the same data object whenever it appears in an inductive 
assertion, and simpler construction leads to a simpler proof 
of the verification condition generator. Second, certain prob
lems in proving procedures with parameters had been pointed 
out by Hoare.2 Ulti~ately, the choice was made to avoid 
these problems rather than to solve them. Also, since there 
are no parameters and no local variables, the compiler also 
would be considerably simpler, and hence, easier to prove. 



358 National Computer Conference, 1974 

This rather drastic decision about parameters and local 
variables now certainly seems to be overly restrictive. In 
particular, Hoare2 and Hoare and Wirth3 describe ways that 
can be used to construct verification conditions for the types 
of parameter passage found in Pascal, and also indicate ways 
of treating local variables. It is not yet clear, however, how 
much these features would complicate the proofs of the 
verification condition generator and compiler. 

The types of data objects that can be declared in Nucleus 
are quite limited. There are three primitive data types 
INTEGER, BOOLEAN, and CHARACTER. A value of 
type CHARACTER is just a single character in the basic 
character set of the language, these values being used pri
marily in input/output operations. In addition to simple vari
ables, there is only one other kind of data structure, singly 
subscripted arrays. An array is declared with a constant 
upper bound and has an assumed lower bound of zero. 
Nucleus was limited to these simple data objects because, 
essentially, these were the only objects for which program 
verification methods were known. Since that time some 
additional progress on more sophisticated data objects has 
been made by Bursta1l4 and Hoare. 5 The restriction to only 
singly subscripted arrays was not dictated by verification 
methods, but was chosen purely for the sake of simplicity. 
This eventually proved to be a bad decision because this 
makes it quite awkward to use one of the favorite tools of 
systems programmers, the table. This problem became readily 
apparent when faced with writing the verification condition 
generator and compiler in Nucleus. Allowing at least doubly 
subscripted arrays would help greatly in writing useful N u
cleus programs and would cost very little in terms of addi
tional verification technique. 

The statements available in Nucleus are much more so
phisticated than the variable accessing method and data 
objects. The fundamental statement of the language is the 
assignment statement which is unique only with respect to 
implicit fault conditions in expression evaluation, divide and 
modulo by zero, integer'overflow, and array subscript viola
tion. If any of these conditions occur, the program halts. 

The control statements in the language were influenced 
strongly by the ideas of structured programming. In addition 
to a recursive procedure call, statements of Nucleus include 

IF (exp) THEN (stmtlist) FI 
IF (exp) THEN (stmtlist) ELSE (stmtlist) FI 
WHILE (exp) DO (stmtlist) ELIHW 
CASE (exp) OF (alternativelist) ESAC 
CASE (exp) OF (alternativelist) ELSE (stmtlist) ESAC 

where an (alternativelist) is a (stmtlist) preceded by a list 

CHARACTER ARRAY INLINE[80]; 
INTEGER X,Y,Z,INTVAL,I; 
PROCEDURE ADDXANDY; 

ASSERT IF P IN [1,21 THEN K(P) IN [1,10]; 
ASSERT IF P IN [1,2] THEN NOT :REOF(P); 
ASSERT IF P IN [1,2] AND Q IN [l,K(P)] 

THEN :RDFL(P,Q) IS A DIGIT CHARACTER; 

of integer labels. In addition to the preceding statements, 
Nucleus also has a restricted GOTO. The GO TO can jump 
to any point within a procedure, but it cannot cross a 
procedure boundary. Under this restriction, the GOTO does 
not cause any technical problems in constructing verification 
conditions. 

The statements that were absolutely essential to have in 
Nucleus in order to write a realistic verification condition 
generator and compiler, but for which verification techniques 
were not known, were simple READ and WRITE state
ments. The form of the read statement is READ arrayname, 
and its function is to transfer the next input record into the 
array. Element zero of the array is set to indicate whether 
the record read was, or was not, an eof (end-of-file) record. 
If the record is not eof, the rest of the array, beginning at 
element one, is filled with the characters of the record. If 
the record is eof, the rest of the array is not changed. The 
WRITE statement behaves in a similar way. 

The one statement that was put into Nucleus strictly for 
purposes of provability was the ASSERT, which is the means 
by which inductive assertions are embedded in the program. 
ASSERT statements have no effect on the operation of the 
program and are used only in proving its correctness. In 
appearance, ASSERT is like the ordinary Algol comment, 
except that the word ASSERT is used instead of COM
MENT. This gives the ASSERT statement a very flexible 
range of expressive power, which allows one to state con
veniently the complex properties of the verification condition 
generator and compiler that eventually have to be proved. 
This type of extremely loosely formed assertion is adequate 
for the construction of verification conditions because the 
construction process requires only a way of detecting pro
gram variables in assertions, and this can be done with the 
help of the variable declarations at the beginning of the 
program. However, if the verification conditions are to be 
proved automatically, a more precise assertion language 
must be used. 

PROVABILITY OF NUCLEUS PROGRAMS 

For the most part, features were included in Nucleus only 
if it 'was well-known how to construct verification conditions 
for them; the notabie exceptions begin the input/output 
statements, procedures with side effects, and the fault condi
tions in expressions. This section gives examples of how these 
features can be handled. More detailed descriptions can be 
found in References 6 and 7. 

First, consider the read statement in the READINTEGER 
procedure of the following program. The statement 



Provable Programs and Processors 359 

ASSERT IF P IN [1,2] THEN :RDFL(P,K(P)+l) IS A BLANK; 
ENTER READINTEGER; 
X:= INTVAL; 
ENTER READINTEGER; 
Y:= INTVAL; 
Z:= X + Y; 
ASSERT Z = DECINTVAL(:RDFL(l,[l,K(l)]) + 

DECINTVAL(:RDFL(2,[1,K(2)]) ; 
EXIT; 
PROCEDURE READINTEGER; 
ASSERT NOT :REOF( :RDHD+ 1); 
ASSERT IF Q IN [1,K(:RDHD+1)] 

THEN :RDFL(:RDHD+1,Q) IS A DIGIT CHARACTER; 
ASSERT :RDFL(:RDHD+1,K(:RDHD+1)+1) IS A BLANK; 
READ INLINE; 
I := 1; 
INTVAL:= 0; 
ASSERT IF J IN [1,80] THEN INLINE[J] = :RDFL(:RDHD,J); 
ASSERT IF Q IN [l,K(:RDHD)] 

THEN INLINE[Q] IS A DIGIT CHARACTER; 
ASSERT INLINE[K(:RDHD) +1] IS A BLANK; 
ASSERT :RDHD = :RDHD.O + 1; 
ASSERT I IN [l,K(:RDHD)+l]; 
ASSERT INTVAL = DECINTVAL(:RDFL(:RDHD,[1,I-1]); 
WHILE INLINE [1] NE " DO 

INTV AL : = INTV AL * 10 + (INTEGER(INLINE[I]) - 27); 
I := I + 1; 

ELIHW; 
ASSERT INTVAL = DECINTVAL(:RDFL(:RDHD,[l,K(:RDHD)]); 
ASSERT :RDHD = :RDHD.O + 1; 
EXIT; 

READ INLINE of procedure READINTEGER reads the 
characters of the next record of the standard input file into the 
array elements INLINE[l], ... , INLINE[80]. It is assumed 
that this next record is not an eof record, that there is a 
continuous sequence of digit characters beginning in column 
one of the record, and that this sequence is followed by a 
blank. These assumptions are stated explicitly in terms of 
the "system" variables, :RDHD, :RDFL, and :REOF, in 
the three assert statements at the beginning of the procedure. 
:RDHD is the "read head" variable which always equals 
the number of the last input record read and is advanced 
automatically by the read statement. :RDFL(r,c) and 
:REOF(r) are two functions that define the standard input 
file. :REOF(r) is a boolean-valued function that is TRUE 
if record r is an eof record and FALSE if not. For records 
that are not eof, :RDFL(r,c) is the single character in column 
c of record r. In the assertions, :RDFL(r,[a,b]) denotes the 
sequence of characters in columns a through b, and K(r) is 
an auxiliary function that is assumed, and used, strictly for 
stating the properties to be proved. The effect of the READ
INTEGER procedure is described by the two assertions at 
its exit. Upon exit, INTVAL is equal to the decimal integer 
value of the digit character string beginning in column one 
of the last record read. Also, the value of :RDHD, upon 
exit, is equal to its value upon entry, :RDHD.O, plus one. 

The verification condition for the path involving the read 

statement is 

0.1 NOT :REOF(:RDHD+ 1) 
0.2 IF Q IN [1,K(:RDHD+1)] THEN :RDFL(:RDHD+ 

1,Q) IS A DIGIT CHARACTER 
0.3 :RDFL(:RDHD+1,K(:RDHD+1» IS A BLANK 
Oa :REOF(:RDHD+1) IMPLIES INLINE.1[0] = "T 

AND [1 LE $ LE 80 IMPLIES 
INLINE.1[$] = INLINE[$]] 

Ob NOT :REOF(:RDHD+1) IMPLIES INLINE.1[0]= 
"F AND [1 LE $ LE 80 IMPLIES 

INLINE. 1 [$] = :RDFL(:RDHD+ 1,$)] 
AND [81 LE $ LE 80 IMPLIES 

INLINE.1[$] = INLINE[$]] 
Oc :RDHD.1 = (:RDHD) + 1 
1 1.1 = 1 
2 INTVAL.l=O 

3.1 IF J IN [1,80] 
THEN INLINE.1[J] = :RDFL(:RDHD.1.J) 

3.2 IF Q IN [1,K(:RDHD.1)] THEN INLINE.1[Q] IS A 
DIGIT CHARACTER 

3.3 INLINE.1[K(:RDHD.1)+1] IS A BLANK 
3.4 :RDHD.l = :RDHD + 1 
3.5 1.1 IN [1,K(:RDHD.1)+1] 
3.6 INTVAL.1 DECINTVAL(:RDFL(:RDHD.1, 

[1,1.1-1]) 



360 National Computer Conference, 1974 

This verification condition is read as an implication with the 
dashed line (- - -) corresponding to the implies operator. 
The antecedent is the conjunction of the lines above the 
operator, and the consequent the conjunction of the lines 
below it. The" .1" that is appended to several of the variables 
is an "alteration counter." Each time a variable is altered, 
its alteration counter is increased by one in order to dis
tinguish the different values it may attain as the path covered 
by the verification condition is traversed. 

The verification condition term for the read statement is 
the conjunction of the lines labelled Oa, Ob, and Oc. Line Oa 
describes the effect of the read if the record read was an eof, 
and line Ob describes what happens if the record read is 
not an eof. Line Oc describes the automatic incrementing of 
:RDHD. In this partiCUlar verification condition, line 0.1 
affirms the antecedent of line Ob, thus giving the part of 
the consequent of line Ob that is needed to prove the con
sequent lines of the entire verification condition. 

The treatment of Nucleus procedures is illustrated by the 
single verification condition of procedure ADDXANDY 
which consists of two calls of procedure READINTEGER. 

0.1 
0.2 
0.3 

0.4 

o (PRV) 
o (PRV) 

O(PRV) 

o 

o 
1 
2 (PRV) 
2 (PRV) 

2 (PRV) 

2 

2 
3 
4 

IFP IN [1,2] THEN K(P) IN [1,10] 
IF P IN [1,2] THEN NOT :REOF(P) 
IF P IN [1,2] AND Q IN [l,K(P)] THEN 

:RDFL(P,Q) IS A DIGIT CHARACTER 
IF P IN [1,21 THEN :RDFL(P,K(P)+l) IS A 

BLANK 
NOT :REOF(:RDHD+1) 
IF Q IN [1,K(:RDHD+1)] THEN :RDFL 

(:RDHD+1,Q) IS A DIGIT CHARACTER 
:RDFL(:RDHD+ 1,K(:RDHD+ 1» IS A 

BLANK 
INTVAL.1 = DECINTVAL(:RDFL(:RDHD.1, 
[l,K(:RDHD,l)]) 
:RDHD.1 = :RDHD + 1 
X.l = INTVAL.l 
NOT :REOF(:RDHD.1+1) 
IF Q IN [1,K(:RDHD.1 + 1)] THEN :RDFL 

(:RDHD.1+1,Q) IS A DIGIT CHARACTER 
:RDFL(:RDHD.1+1,K(:RDHD.1+1» IS A 

BLANK 
INTV AL.2 = DECINTV AL( :RDFL( :RDHD.2, 

[1,K(:RDHD,2)]) 
:RDHD.2 = :RDHD.1 + 1 
Y.1=INTVAL.2 
Z.l = X.l + Y.1 

5.1 Z.l DECINTV AL( :RDFL(l,[l,K(l)]) + 
DECINTVAL( :RDFL(2,[1,K(2)]) 

The parts of this verification condition due to the . first 
procedure call are the three lines labeled O(PRV) and the 
two following lines labelled just O. The three PRY lines are 
derived from the initial assertions of the called procedure, 
and the PRY indicates that they are to be proved (from the 
lines preceding them) rather than assumed. These lines are 
formed by inserting the current values (with respect to the 
traversal of the path) of the program variables into the initial 

assertions of the called procedure. Thus, in proving these 
lines, we are proving that the initial assumptions of the 
procedure are satisfied at this particular call. The lines 
labelled just 0 are formed from the exit assertions of the 
called procedure. We are entitled to assume these by virtue 
of the fact that we have proved the initial assumptions of 
the procedure and the assumption that, eventually, the called 
procedure will be proved with respect to its initial and final 
assertions. The final assertions of the called procedure, how
ever, must be stated with respect to the values of the program 
variables upon exit from the called procedure. This can be 
done simply by the use of alteration counters. The called 
procedure is examined to determine the set of variables that 
potentially could be altered during the course of its execu
tion. For READINTEGER, these variables are INLINE, 
:RDHD, I, and INTV AL. The alteration counter of each of 
these potentially alterable variables is increased by one across 
each call of the procedure. The counters of variables that 
cannot be altered by the procedure, such as X, Y, and Z, 
are left unchanged. Then in deriving the lines from the exit 
assertions of the procedure, the updated alteration counters 
are used for exit values of the program variables. Notice, 
for example, the different treatment of INTVAL and X 
across the two procedure calls in the example. 

Fault conditions in evaluating expressions are handled by 
the same technique used to prove that the initial assumptions 
of called procedures are satisfied. For example, if an expres
sion has a division, a PRY line will be constructed that re
quires that the denominator not equal zero. 

METHOD OF DEFINITION 

Probably the most unique feature of Nucleus is the method 
used to define it. The syntax of Nucleus is defined by two 
separate transition networks, one defining the parser, and 
the other the scanner. Both networks use the extensions 
described by Woods8 which allow the recognition of context
sensitive languages. In addition to defining the syntax, the 
parsing network also defines a translation from Nucleus pro
grams into code for an abstract machine. The operation of 
the abstract machine, then, is defined by axioms as sug
gested by Burstall.9 This method was a major contributing 
factor to the provability of the verification condition genera
tor. A more complete description of the method than the 
one given below can be found in Reference 1. 

The networks used to define the Nucleus parser and scanner 
follow closely the ideas of the "augmented transition net
work grammars" described by W oods8 for dealing with nat
ural languages. The basic idea is that a set of programmable 
registers is asso~ia.ted with the network, and each transition 
arc in the network is allowed to have a test and a sequence of 
actions defined on the registers. The test, is considered to be 
part of the transition condition from one state to the next, 
and when a transition is made, any actions that are asso
ciated with the transition arc are performed. This allows 
the network to specify the context-sensitive features that 
exist in most actual programming languages. For example, 
frequently it is required that an identifier cannot be refer-



enced before it is declared and this type of constraint usually 
is handled in some ad hoc way. This constraint can be speci
fied quite easily using the tests and actions of the augmented 
networks. For example, in recognizing the declarations of a 
Nucleus program, actions may set a register, say IDLIST, 
to be the list of all identifiers that are declared. Then, in the 
part of the network that recognizes Nucleus statements, each 
time an identifier is found, a test is made to see if it is in 
IDLIST. Thus, the augmented networks provide a uniform 
mechanism for defining completely the context-sensitive 
syntax of Nucleus, and ad hoc rules are not needed. This is 
extremely helpful in proving the correctness of the language 
recognition parts of the Nucleus generator and compiler. 

In part, the semantics of Nucleus are defined by the parsing 
network which also specifies a translation from Nucleus pro
grams into a set of well-formed sentences in the predicate 
calculus. For example, the sentences corresponding to the 
declarations and the READINTEGER procedure of the 
program given above are 

ARRAY (INLINE,SO) 
SIlV[PLE(X) SIMPLE(Y) SIMPLE(Z) 

SIMPLE(INTV AL) SIMPLE(I) 
READ (O,INLINE) 
ASSIGN(l,I,l) 
ASSIGN (2,INTVAL,O) 
IF(3,INLINE[Il NE" ,4,7) 
ASSIGN(4,I~TVAL,(INTVAL*1O) + 

(INTEG ER(INLINE[I]-27») 
ASSIGN(5,I,I + 1) 
JUMPTO(6,3) 
EXIT(7) 

(Some of the details of these sentences have been omitted to 
make them more illuminating than intricate.) These sentences 
are what Burstall calls the "structural description" of the 
program. The semantic axioms, then, are defined in such a 
way that the execution of the program can be deduced, by the 
ordinary rules of logic, from the structural description. In the 
K ucleus definition, the structural description may be viewed 
as a program for an abstract machine, and the axioms as 
defining the interpreter for that machine. 

The execution of a K ucleus program is defined as a function 
E from program steps (non-negative integers) into state 
vectors-that is, the execution is a sequence of state vectors 
E[O], E[l], .... Each state vector in the sequence is itself 
viewed as a function from names into values. Each state 
vector has in its domain the names of the declared variables 
as well as certain "system" variables such as :RDHD and a 
location counter called :LOC. From a function such as 
SIlVIPLE(X) in the program above, it can be inferred, from 
the axioms, that X is a name in the domain of every state 
vector in the execution. Since each state vector is a function, 
the value of X in, say, state vector four is E[4](X). 

In addition to the "declarative" axioms that define the 
domain of the state vectors, there are also "evaluative" 
axioms that describe precisely how expressions are evalu
ated, including the fault conditions. A third set of "impera
tive" axioms define the transition from one state vector to 

Provable Programs and Processors 361 

the next. These imperative axioms define the effect in the 
abstract program of the functions such as READ, ASSIGN, 
IF, JUMPTO, and EXIT. These functions are interpreted 
as the abstract instructions of the program with the first 
argument of each function being regarded as the abstract 
address that contains the instruction. The imperative axioms 
also define precisely the conditions of program termination. 

IMPLEMENTATION 

It is clear that it is fairly straightforward to implement 
Nucleus from this type of language definition. Such an 
implementation in Pascal for the CDC 6600 is described in 
Josue.lO This implementation is a two pass compiler that 
corresponds very closely to the Nucleus definition. Pass I 
simulates the transition networks and translates the N uc]eus 
program into its corresponding abstract program. This part 
of the compiler actually was used to help debug the transla
tion defined by the networks. Pass II then compiles machine 
language from the abstract program. Although not done, it 
would also be a simple matter 'to write an interpreter for the 
abstract program which would ·correspond fairly directly to 
the semantic axioms. 

This method of q.efinition also leads to an interesting 
technique for debugging the semantics of the language. In 
principle, the entire execution of the program should be 
deducible from the abstract program and the axioms. There
fore, one way of debugging the axioms and the translation 
into the abstract program is to do the translation and then 
begin making deductions from the program based on the 
axioms. (Although it has not been done in any of the work 
on Nucleus so far, this could be done by an automatic theorem 
prover.) In using this deduction technique on Nucleus, 
semantic bugs often were detected in one of two ways. The 
most common bug was one of inconsistency in which an 
abstract program and the axioms led to a contradiction. 
This usually was caused by a multiple definition of some 
component of a state vector. The other common error was 
one of incompleteness. In this case some point in the execu
tion would be reached from which it was not possible to 
deduce the next state vector. 

The abstract program also can be used as the basis for 
driving a verification condition generator. Such a generator 
was implemented by Wang7 in Snobol 4 on the CDC 6600. 
This generator simply follows control paths through the 
abstract program, and constructs verification conditions using 
alteration counters much like the ones shown in the examples 
above. 

An interesting extension was made to the Wang generator 
to permit simultaneous top down design and proof of pro
grams. The generator was extended to allow a procedure to 
have entry and exit assertions, but to have its body specified 
as PENDING. Verification conditions are not generated 
for pending procedures, but they can be called. Since the 
entry and exit assertions of the pending procedure are present, 
the proper verification conditions can be constructed for 
their calls if it were known what program variables the pend-



362 National Computer Conference, 1974 

ing procedure might alter. The generator takes a totally 
pessimistic view and assumes that the pending proc~dure 
potentially changes the value of every program varIable. 
This means that the alteration counter of every program 
variable is increased across a call of a pending procedure. 
The effects of this quite drastic assumption can be nullified, 
however by explicitly stating in the exit assertion of the 
pending' procedure that whatever variables are of interest 
are not changed. With the pending feature, it is possible to 
do, in parallel, a top down design and proof of a program. 
The top level procedure can be written, and the second level 
ones specified as pending. At this point the top level pro
cedure can be proved, and then we can proceed to expand 
and prove the second level procedures. 

PROVABILITY OF THE NUCLEUS PROCESSORS 

A proof of a Nucleus verification condition generator, 
written in Nucleus, is described by Ragland.6 This generator 
also follows the Nucleus definition very closely and consists 
of two parts. The first is a simulation of the transition net
work which does the syntactic analysis and translates N u
cleus programs into abstract programs, and the second part 
constructs verification conditions from the abstract program. 
A proof of a Nucleus compiler has not yet been undertaken, 
but the first part of the Ragland generator could be used~ in 
tact, as the first pass of a two pass compiler so that the only 
part that would remain to be proved would be the code 
generation phase. 

The two parts of the generator are reflected in its proof. 
The transition network simulation part is proved using an 
equivalence proof, and the part that actually constructs 
verification conditions is proved using inductive assertions. 
The contribution of the transition network definition of 
Nucleus to the practical provability of the generator can 
not b~ overestimated. Since the networks give a procedural 
definition of the syntax of the language, and also of the trans
lation into abstract programs, it was a relatively straight
forward matter to show, on a segment by segment basis, 
that the simulation in the first part of the generator is 
equivalent to the defining network. 

The proof of the second part of the generator is done by 
the conventional inductive assertion method. As a prelude 
to this proof, verification conditions were defined for all the 
possible semantic constructs in Nucleus, and it was proved, 
by hand, from the semantic axioms, that these verification 
conditions are valid. The inductive assertion proof of part 
two of the generator then shows that these valid verification 
conditions are written onto the standard output file. 

This proof also is worthy of note because of the size of the 
generator. The entire generator consists of 203 Nucleus pro
cedures, most of these occupying less than one page including 
assertions. Of these 203 procedures, 103 were proved by 
equivalence proofs, and 100 were proved using inductive 
assertions. One of the most encouraging aspects of this large 
proof was that, on the basis of subjective evaluatiun, 70 

percent of the things that were proved were quite simple, 
and it appears that almost all of these could have been proved 
mechanically. 

BOOTSTRAPPING CORRECTNESS 

The ultimate purpose of Nucleus is to serve as the bottom 
level of a bootstrapping process for developing correct proces
sors for other more sophisticated languages. The central idea 
is to develop a correct verification condition generator and 
compiler for Nucleus and use these to build processors for 
other languages. The key question, however, is how to con
struct the first correct Nucleus generator and compiler that 
are to serve as the basis for further bootstrapping. The claim 
is that an unproved generator, such as the one written by 
Wang, can be used properly to help build a proved generator, 
such as the one written by Ragland. 

The Wang generator, extended with the PENDING fea
ture, was used heavily in proving the Ragland generator. 
The key point is that it is not important to the Ragland 
proof that the Wang generator work correctly on all Nucleus 
programs. What is important, is that it work correctly on 
one particular program, the Ragland generator. If the un
proved generator does work correctly on that one program, 
then the proper verification conditions are constructed for 
the Ragland generator, and thus, its correctness depends 
strictly, and properly, on the validity of the proofs of the 
verification conditions. This clearly, then, raises the question 
of how one verifies that the unproved generator worked 
correctly on that one particular program. This was done, 
very carefully, by the standard debugging technique of com
paring the program input and output. 

This development of a proved generator from an unproved 
one leads to the observation of an interesting relation between 
conventional debugging by test cases and proofs of correct
ness with respect to developing program verifiers. First, 
note that the same technique above would apply if the Rag
land generator had been used to assist in its own proof 
rather than the Wang generator, and also that the technique 
still applies if we use complete program verifiers rather than 
just verification condition generators. We now observe the 
fonowing property: if a program verifier operates correctly 
just one time, using itself as input, and obtains a proof, 
then that verifier operates correctly for all input programs. 
Said more simply, if it works on one input, it works for all 
inputs. This relationship is discussed somewhat more fully 
in Goodll with respect to both verifiers and compilers. 

CONCLUSION 

With the exception of a proof of a Nucleus compiler, all of 
the design goals of Nucleus have been attained. Although 
this proof has not yet been attempted, the proof of the Rag
land verification condition generator strongly indicates the 
feasability of the compiler proof. In meeting the design 
goals of Nucleus new techniques have been developed for 



proving programs with input/output statements, procedures 
with side effects, and fault conditions in expression evalua
tion. The main contributor to the attainment of the design 
goals was the language definition method consisting of transi
tion networks and axioms. This method particularly con
tributed to the practical provability and easy implementation 
of the Nucleus processors. 

The main thrust of the Nucleus project has revolved 
around the design of the Nucleus language so that the lan
guage could express non-trivial programs, we could prove 
those programs, and also process those programs with correct 
processors. Ultimately, the important programs to be written, 
and proved, in Nucleus are processors, such as verifiers 
and compliers, for other more sophisticated languages. When 
this goal is attained Nucleus will have served its purpose. 

REFERENCES 

1. Good, D. I. and L. C. Ragland, "Nucleus-A Language of Provable 
Programs," In Program Test Methods, Hetzel, W. C. (Ed.), Prentice 
Hall, 1973. 

Provable Programs and Processors 363 

2. Hoare, C. A. R., "Procedures and Parameters: An Axiomatic Ap
proach," In Symposium on Semantics of Algorithmic Languages, 
Engeler, E. (Ed.), Springer-Verlag, 1971. 

3. Hoare, C. A. R., and N. Wirth, "An Axiomatic Definition of the 
Programming Language Pascal," Berichte der Fachgruppe Com
puter-Wissenschaften, 6, E. T. H., Zurich, November 1972. 

4. Burstall, R. M., "Some Techniques for Proving Correctness of 
Programs which Alter Data Structures," In Machine Intelligence 7, 
Meltzer, B. and Michie, D. (Eds.), John Wiley and Sons, 1972. 

5. Hoare, C. A. R., "Proof of Correctness of Data Representations/, 
Acta Informatica 1, Springer-Verlag 1972. 

6. Ragland, L. C., A Verified Program Verifier, Ph.D. Thesis, The 
University of Texas at Austin, June 1973. 

7. Wang, Y. L., A Nucleus Verification Condition Compiler, Masters 
Thesis, The University of Texas at Austin, June 1973. 

8. Woods, W. A., "Transition Network Grammars for Natural 
Language Analysis", Communications of the ACM, 13, 10, October 
1970. 

9. Burstall, R. M., "Formal Description of Program Structure in First 
Order Logic," In Machine Intelligence 5, Meltzer, B. and Michie, D. 
(Eds.), American Elsevier, 1970. 

10. Josue, E. V., The Nucleus Compiler, Masters Thesis, The University 
of Texas at Austin, June 1973. 

11. Good, D. I., "Developing Correct Software," In Proc. of the First 
Texas Conference on Computer Systems, June 1972. 





A language-independent programmer's interface 

by ROBERT M. BALZER 

USCjInjormaticm Sciences Institute 
Marina del Rey, California 

INTRODUCTION 

This paper addresses the general problem of creating a 
suitable on-line environment for programming. The amount 
of software, and the effort required to produce it, to support 
such an on-line environment is very large relative to that 
needed to produce a programming language, and is largely 
responsible for the scarcity of such programming environ
ments. The size of this effort was largely responsible for the 
scrapping of a major language (QA41) as a separate entity 
and its inclusion instead as a set of extensions in a LISp2 
environment. The few systems which do exist (e.g., LISP, 
APL,3 BASIC,4 and PL/P) have greatly benefited their 
users and have strongly contributed to the widespread 
acceptance of the associated language. 

At a bare minimum, a suitable programming environment 
consists of an on-line interpreter (or incremental compiler), 
an integrated interactive source-level debugging and editing 
system, and a supporting file structure. More extensive 
environments would include such facilities as automatic 
spelling correction, structural editors, tracing packages, 
test case generators, documentation facilities, etc. 

Looking at several programming environment systems, 
one recognizes much uniformity. Most of the software 
supporting these systems is similar in both its organiza
tional structure and functions. The systems differ in detail 
more from style differences between the system designers 
than from differences required by the programming 
languages. 

The Programmer's Interface (PI) concept attempts to 
exploit this uniformity by creating a single programming 
environment capable of easily interfacing users with a wide 
variety of on-line programming languages. Users would 
then have the full facilities of this environment at their 
disposal. The PI is thus responsible for transforming these 
programming LANGUAGES into SYSTEMS. The cost of 
providing such an environment for a language would drop 
from the several man-years now required to the few man-days 
(estimated) to interface to a PI. Additionally, the existence 
of a common programming environment for many different 
languages would justify the inclusion of further capabilities. 

This common programming environment provided by a 
PI'should include facilities for: creating, modifying, storing, 
and retrieving programs; on-line debugging, including trace 

365 

and break facilities as well as the facilities of the language 
for evaluation of expressions at breaks; modifying the in
terface. between routines (via an ADVISES capability); 
automatic spelling correction; remembering, modifying, 
and reissuing previous inputs; and undoing the effects of 
any of these PI facilities. 

Such a PI has been constructed and interfaced to the 
programming language ECL.7 The remainder of this paper 
explains the PI concept in terms of this implemented pro
gram. The deficiencies of this particular implementation are 
discussed in the conclusion. 

SYSTEM ARCHITECTURE 

The facilities provided by the implemented Programmer's 
Interface (PI-I) are based on the INTERLISP (formerly 
BBN-LISP2) system. In fact, they are the facilities of this 
system, as modified for language independence. The Pro
grammer's Interface itself is implemented in INTERLISP 
and coexists with the facilities it invokes to provide the 
programming environment. INTERLISP was chosen as 
the basis both because it already had an extensive set of 
programming tools in an accessible form, and because their 
structure and operation could easily be altered to operate 
as required for a PI. 
) The system structure is shown in Figure 1. The ARPA 

N etwork8 is used as the communications mechanism be
tween PI-I and the user's language processor. This choice 
has three advantages. First, it allows the interfacing of 
PI-I to any language processor available on the ARPANET 
independent of what machine it runs on. Second, this inter
facing can be done by PI-I without the knowledge of the 
language processor. Thus no modifications to the language 
processor are required. Finally, the use of the Network 
greatly simplifies implementing the interconnection by 
allowing external character strings to be used for com
munication, rather than internal data structures with the 
attendant incompatibility problems. 

Three properties are required of a language processor for 
its use with a PI: 

1. There is a way to form a coroutine9 linkage between 
the language processor and the PI by interconnecting 
their I/O ports. This type of linkage is discussed in 



366 National Computer Conference, 1974 

Generate 
output 

User's language 
processor 

Figurel 

LISP 

Yes User's 
language 

detail in Reference 10. With PI-I, the ARPA Network 
provides this linkage. Thus, for PI-I, any language 
processor available on the ARPANET satisfies the 
first requirement. 

2. It has an on-line evaluator (either an interpreter or 
fast compiler) and can field breaks or errors within a 
computation. 

3. It can evaluate arbitrary forms in that language either 
in breaks or at the top level. 

PI-1 begins processing user input by storing it in a history 
list used by the Programmer's Assistant,S an INTERLISP 
subsysterii, to retrieve, edit, group, reissue, or undo previous 
commands. PI-1 then examines the input to determine 
whether it should be processed by an INTERLISP facility 
or by the user's language processor. Basically, environment
type activities, such as loading files, editing programs, 
advising a function, etc., are performed within PI-I, while 
expressions in the user's language to be evaluated are passed 
to the language processor. 

If the user's input is intended for his language processor, 
it is passed across the ARPA Network to that language 
processor. Any output generated by the processor is received 
across the Network again by PI-I. It suppresses the echo 
of the input and passes the output to the user, extracting 
from it the "value" and putting it into the history list for 
use by the Programmer's Assistant. 

If the user's input is an environment-type command and 
should be performed within PI-I, the appropriate facility 
is invoked. In simple cases the operation completes, returns 
a value that is put in the history, and another input is 
processed. In· more complex situations, some interaction is 
required with the user's language processor. This is ac
complished by dynamically generating a series of inputs 
for the language processor that will have the desired effect 
or return the desired information. These are passed through 
the communications mechanisms to the processor; its output 
is captured; and either the success of the modifications is 
verified or the desired information is extracted. Any number 
of such cycles may be required before the PI-1 facility 
completes its processing of the user's command. As an 
example, considered the loading of a file. As. the function 
definitions are read in, they are stored as a property of the 
corresponding atoms to be used by the PI-l's editor for any 
modifications required later. The function definitions also 
are passed to the language processor so that it can use these 
for evaluation. Thus, one cycle is required for each function 
defined in the file. 

PI-l maintains a copy of all functions defined by the user 
and this is used by PI-l's editor when the user alters the 
definition. Whenever this definition changes (by redefinition 
or through exiting the editor), the resulting definition is 
passed to the language processor as a new definition of the 
function. 

INTERFACING A LANGUAGE TO A 
PROGRAMMER'S INTERFACE 

Most of PI-1 is language independent, but certain portions 
must be modified to accept a new language. These fall into 
the categories of syntax modification, synchronization, 
program writing, and debugging. 

The INTERLISP editor used by PI-1 is structural rather 
than string-oriented. To be effective, the text it is manip
ulating must have a structural basis. The syntax modifica
tion routines are responsible for introducing the structure 
into the user's language (only for use within PI-I). This 
structure is of two forms. First is the grouping of characters 
into lexical units. The user's language may have very different 
lexical grouping rules than LISP and the syntax modification 
package is responsible for the lexical analysis. Second, the 
lexical units thus produced are grouped into larger units 
by the use of parentheses. These units can be nested within 
one another to form the familiar LISP S-expression structure. 
The designer of the syntax modifier must decide where 'to 
introduce this structural grouping. In ALGOL-like languages, 



a natural place would be to group the lexical units of a 
statement together and groups of statements within blocks 
together. The structural groupings selected are introduced 
into all program text input by the user, and used by him to 
direct the editor in its modifications of this text. When this 
text is passed to the language processor, those structural 
groupings artificially introduced for editing purposes are 
removed before transmission. 

PI -1 and the language processor must be synchronized 
and kept in step with each other. Logically this is very 
simple and is accomplished by having PI-1 wait until the 
language processor has completed evaluating the previous 
input before giving it another. This situation is signaled by 
the language processor's attempt to read the next input. 
Unfortunately (due to a deficiency in the network protocol), 
this information is not available. Therefore the language 
processor's state of readiness must be determined by exami
nation of its output stream. Fortunately, most on-line 
language processors explicitly indicate their readiness for 
more input by providing the user with a prompt character. 

PI-1/ECL EXAMPLE 

A Language-Independent Programmer's Interface 367 

The language processor's output must be scanned for this 
prompt and this is used as a synchronization mechanism 
between PI -1 and the language processor. 

Several facilities within PI-1, such as break, trace, and 
advise, cause additional statements to be written into the 
user's program for evaluation at runtime. The interfacer 
of a new language must specify the form of these additions. 

PI-1 contains many advanced debugging capabilities not 
found in most language processors. These aids are all based 
on information gathered during execution or at a break 
point within the program. To use these facilities, the designer 
of the language interface must supply routines that provide 
the basic information on which these debugging aids are 
built. 

PI-1 took approximately three weeks to !mplement and 
debug, including the language interface to ECL. Although 
no other language interfaces have yet been built, it is esti
mated that an interface to another suitable language could 
be designed, implemented, and debugged in less than a 
week. 

The following actual example indicates the use of PI-1 with the programming language ECL. The prompt character (as de
fined by ECL) is either -7, *, or a number followed by:>. Commentary is enclosed in square brackets. 

[Input of expression to be evaluated.] 
[Answer returned.] 

-7 TEST1+-EXPR(A:INT,B:INT,INT)BEGIN A+B; END; 

(TEST1) 
-7 TEST1 (3,4) 
7 
-7 EDITF(TST1) 
= TEST1 
EDIT 

(EXPR (A : INT, B : INT ; INT) 
(BEGIN (A + B) 

END» 
*F BEGIN P 
(BEGIN (A + B) END) 
*(2 (A GT B:::} A-B; A+B» 

*PP 
(BEGIN (A GT B :::} (A - B» 

(A + B) 
END) 

*( -4 (A=B -7 B +- 2*A» 

[Define a function, TEST1, which takes two integer arguments A and 
B and returns their sum. Syntax is precisely as defined for ECL.] 
[TEST1 defined.] 
[Invoke TEST1 with arguments 3 and 4.] 
[Answer returned.] 
[Edit TESTl. Notice misspelling corrected by system.] 

[Prettyprint it. Notice how structure has been added to its internal 
representation.] 

[Find the item 'BEGIN' and print what is found.] 

[Replace the second element, the list A+B, by the remainder of the 
input. This is a conditional form in EeL which evaluates A - B if A 
is greater than Band A+B otherwise.] 
[Prettyprint result. Again notice how structure has been added.] 

[Insert rest of input before fourth element of current structure (the 
END item). Addition says to set B to 2*A if A=B.] 



368 National Computer Conference, 1974 

*PP 
(BEGIN (A GT B => (A - B) 

(A + B) 
(A = B ~ (B ~ 2 * A)) 
END) 

*UNDO 

(-4 --) UNDONE. 
*PP 

(BEGIN (A GT B => (A - B)) 
(A + B) 
END) 

*USE -3 FOR-4 
*PP 

(BEGIN (A GT B => (A - B)) 
(A = B ~ (B ~ 2 * A)) 
(A + B) 

*OK 
TEST1 

(END) 

~ TEST1(3,4) 
7 
~ TEST1(4,3) 
1 
~ TESTl(4,4) 
12 
~ADVISE(TESTI BEFORE (A~ 2*A)) 

TESTI 
~ TESTl(3,4) 
2 
~ USE 6 3 10 FOR 4 

18 
3 
16 

[Prettyprint it.] 

[User notices his error (addition made at wrong spot) and asks system 
to undo last command.] 

[Check to see that it's really gone.] 

. [SUbstitute -3 for -4 in the insertion command and reissue it.] 
[Make sure addition put in correct spot.] 

[Exit editor.] 

[Test function. A is less than B, just add them.] 

[A greater than B, subtract B from A.] 

[A=B, double B and add in A.] 

[Modify TEST1 so that before it is entered, but after its parameters 
have been bound, the value of A is doubled.] 

[Invoke modified function.] 
[Double 3 to get 6 and subtract 4.] 
[Successively substitute 6,3, and 10 for 4 in the last statement.] 

[TEST 1 (3,6)] 
[TESTl(3,3)] 
[TEST1(3,1O)] 

~ADVISE(TESTI AFTER (VALUE\\ ~ VALUE-1)) 

TEST 1 
~REDOUSE 

TYPE FAULT 
- BROKEN 
NIL 
TYPE FAULT 
- BROKEN 
NIL 
TYPE FAULT 
- BROKEN 
NIL 
3: > RETBRK(O) 
NIL 
~ TEST1(3;4) 

[Modify TEST1 so that after it is finished, but before it returns, the 
value to be returned is decremented by 1.] 

[Reissue the previous USE command (which generated the 3 invoca
tions of TESTl)] 

[3 type fault error occur.] 

[Go back to top level.] 

[Try simple case.] 



A Language-Independent Programmer's Interface 369 

TYPE FAULT 
- BROKEN 
NIL 

[Error still occurs.] 

1:> IN? [Where did error occur?] 
IN ENTRY OR EXIT OF
IN TESTI ... 
VALUE\\ ~ VALUE - 1 [Error occurred in entry or exit of minus routine which was invoked 

from TESTI in the statement VALUE\\~VALUE-1. User spots 
error (use of the undeclared variable VALUE instead of VALUE\ \).] 

1:> EDITF(TESTI) 
EDIT 

[Edit TEST1.] 

*F VALUE 0 P [Find the use of VALUE. Go up one structured level and print 
group.] 

(V ALUE\ \ ~ VALUE - 1) 
*R VALUE VALUE\\ 
*OK 

[Replace VALUE by V ALUE\\.. 
[Exit editor.] 

TESTI 
1 :>TESTI(3,4) 
(1) 

[Try test case again.] 
[Double 3, subtract 4, then decrement by 1.] 

1:> [Go up one level of error, in this case to top leveL] 
NIL 
~REDOUSE 

(17) 
[Reinvoke previous USE command.] 
[TESTI(3,6)] 

(2) [TESTI (3,3)] 
(15) [TESTI(3, 10)] 

CONCLUSION 

An extensive programming environment has been created 
for the ECL language through a program (PI-I) which 
allows the use of the already existing INTERLISP facilities. 
This greatly expands the user's facilities for creating, editing, 
and debugging his programs. His programming language has 
been transformed into a programming system. The avail
ability of a comprehensive set of "environment" tools 
working in conjunction with the programmer's language is 
extremely important to his productivity. 

The significance of this work, however, lies not in the 
particular interface provided between INTERLISP and 
ECL, nor in the extensive capabilities provided the user, 
but rather, in (1) the observation that very little of the 
interface itself, or of the capabilities provided, are language 
dependent, (2) the recognition that the programming environ
ment can be effectively split into an "environment" part 
and an execution and evaluation part and (3) the experience 
gained from building such a system and interfacing a language 
to it. 

PI-I, however, suffers from a number of deficiencies, the 
most important of which is the use of already existing tools 
in more general environments than they were designed for. 
This was most notable in the use of LISP's editor for non
structured text (and the need therefore to introduce structure 
by parentheses) and the need to replace LISP's input 
routines to provide the proper lexical analysis for the inter-

faced language. Both of these problems could be avoided 
in a PI by having it use the syntax description of the 
language to guide the input, and editing and display of 
programs. 

One of the strengths of the PI concept is the split between 
the "environment" part and the evaluation part. This split, 
however, introduces the problem of communication and 
synchronization; each part must keep the other informed 
about changes it makes that affect the other. In PI-I, this 
communication and synchronization was partial and clumsy. 
The flow of information from the environment to the evalua
tion part was adequate, but the reverse flow was not. The 
need to communicate to another program suitable explana
tions of what the state of the evaluation was, what the 
cause of the error was, or even that an error occurred was 
simply not envisioned or planned for. 

PI-I has thus demonstrated that a moderately integrated 
PI can be built that has facilities for beyond what is typically 
available at a fraction of the cost. However, development 
of highly integrated PI will have to await a better under
standing of the functional requirements of a language 
processor in such an environment. 

Although the Programmer's Interface has only been 
interfaced to one language (ECL), and although it only 
contains a small fraction of the capabilities ultimately desired, 
it is having a major effect by acting as a prototype for a 
major software projectll •12 being undertaken to develop 
this understanding and provide a single, common, compre-



370 National Computer Conference, 1974 

hensive programming environment interfaced to a wide 
variety of languages running on many different machines 
communicating through a network. New languages or ma
chines could be interfaced to the system at a fraction of the 
cost of providing a separate programming environment. 
Widespread usage would justify the expenditure of more 
resources to augment and improve the capabilities provided. 
Such a PI could free users from having to develop their 
programs only with software available on their own machines 
and could provide a much more comprehensive and co
ordinated software development package than is currently 
available. 

REFERENCES 

1. Rulifson, J. F., J. A. Derksen, and R. J. Waldinger, QA4: A Pro
cedural Calculus for Intuitive Reasoning, Stanford Research Institute 
Artificial Intelligence Center, Technical Note 73, November 1972. 

2. Teitelman, W. D., G. Bobrow, A. K. Hartley, and D. L. Murphy, 
BBN-LISP TENEX Reference Manual, BBN Report, July 1971. 

3. Falkoff, A. D., and K. E. Iverson, The APL Terminal System: 

Instructions for Operation, IBM Corporation, T. J. Watson Re
search Center, Yorktown Heights, New York, March 1967. 

4. Kemeny, J. G., and T. E. Kurtz, BASIC Programming, John Wiley 
and Sons, Inc., New York, 1967. 

5. IBM Corporation, O/S Time Sharing Option: PL/I Checkout Com
piler, Form SC33-0033, November 1971. 

6. Teitelman, W., "Automated Programming-The Programmer's As
sistant," AFIPS Conference Proceedings, 1972, Vol. 41, Part II, 
pp. 917-921. 

7. Wegbreit, B., "The ECL Programming Systems," AFIPS Con
ference Proceedings, 1971, Vol. 39, pp. 253-262. 

8. Roberts, L. G., and B. D. Wessler, "Computer Network Develop
ment to Achieve Resource Sharing," AFIPS Conference Proceedings, 
1970, Vol. 36, pp. 543-549. 

9. Conway, M., "Design of a Separable Transition-Diagram Com
piler," Communications of the ACM, Vol. 6, No.7, July 1963, pp. 
396-398. 

10. Balzer, R. M., Ports-A Method for Dynamic Interprogram Com
munication and Job Control, The RAND Corporation, August 1971. 

11. Balzer, R. M., T. E. Cheatham, S. D. Crocker, and S. Warshall, 
National Software Works Design, USC/Information Sciences Insti
tute, RR-73-16, November 1973. 

12. Balzer, R. M., T. E. Cheatham, S. D. Crocker, and S. Warshall, 
The National Software Works, USC/Information Sciences Institute, 
RR-XX-18, December 1973. 



Guidelines for the use of infinite source queueing models 
in the analysis of computer system performance* 

by J. P. BUZEN 
Harvard University 
Cambridge, Massachusetts 

and 
HoneyweU Information Systems 
Waltham, Massachusetts 

and 
P. S. GOLDBERG 
Case Western Reserve University 
Cleveland, Ohio 

INTRODUCTION 

Mathematical models based on queueing theory are widely 
used in the analysis of computer system performance.3 As 
in the case of other engineering disciplines, these models 
never correspond exactly to the real systems they are in
tended to represent. However, if the associated error terms 
are sufficiently small the models can still serve as valuable 
tools for estimating performance levels in specific cases 
and for studying the factors which influence overall system 
behavior. In this paper we examine some error terms which 
arise when the familiar M/G/1 queueing model2 is used to 
predict expected response times and queue lengths in systems 
which contain only a finite number of sources. 

To illustrate the essence of the problem suppose it is 
necessary to determine the mean response time (i.e., waiting 
time + service time) for a particular component or subsystem 
that is being considered for use within a larger system. 
Queueing theory provides a set of formulas for estimating 
this quantity once the service time distribution and the 
arrival process are known. Figure 1 illustrates the M/G/1 
queueing model which is commonly used in such cases. To 
apply this model it is necessary to determine the mean rate 
at which requests will arrive at the subsystem and also 
the distribution of the subsystem's service time. The M/G/1 
model then assumes the following two conditions are true: 

A. Service times are given by independent identically 
distributed random variables having the empirically 
observed distribution. 

B. Requests arrive according to a Poisson process which 
has the empirically observed arrival rate. 

Given A and B it is possible to demonstrate that the 

* This work was sponsored in part by the Electronic Systems Division, 
U.S. Air Force, Hanscom Field, Bedford, Massachusetts under Contract 
Number Fl9628-70-C-0217. 

371 

expected response time of the subsystem is! 

where 

R=!+ p(l+c) 
JL 2JL(1-p) 

JL = the reciprocal of the mean service time 

(1 ) 

p = the mean service time to mean inter-arrival time 
ratio (the load on the subsystem) 

c=the variance to mean squared ratio for the service 
time· distribution 

FINITE AND INFINITE SOURCE MODELS 

Although equation 1 is relatively easy to apply, it is 
only of interest if it yields values of R which are reasonably 
close to the response times one would actually observe in 
real systems. This depends in part on the extent to which 
assumptions A and B are satisfied in real systems. As
sumption A should be reasonably accurate in many cases 
since individual service times are typically generated by 
independent processes and thus tend to be serially un
correlated. However, assumption B is often suspect because 
of the finite source nature of the arrival process. 

This point is illustrated in Figure 2. Assume that this 
figure presents an exact description of some existing system. 
The system contains N customers (programs), each cir
culating counterclockwise through the loop and undergoing 
successive periods of independent activity, queueing delay 
and subsystem service. In the case where service times are 
given by arbitrarily distributed random variables and 
independent activity times by exponentially distributed 
random variables, the system depicted in Figure 2 is known 
as a finite source M/G/1/N queueing system. 

One of the significant aspects of the M/G/1/N model 
is that the rate of arrival of new customers to the subsystem 
steadily decreases as queue length increases, and in fact 



372 National Computer Conference, 1974 

NEW ARRIVALS ~~EUEIN~ 0-
DELAY ACTUAL 

SERVICE 

Figure I-Infinite source model 

drops to zero when all N customers are waiting for or re
ceiving service. However, the arrival rate will not vary 
greatly if N is fairly large and queue length remains relatively 
short most of the time. In such cases it is reasonable to 
assume, as an approximation, that the mean arrival rate 
remains constant regardless of the actual length of the 
queue. 

This is precisely the approximation that is made in the 
M/G/1 model. It is further assumed in this model that 
customer service times are given by arbitrarily distributed 
random variables and that inter-arrival times are exponen
tially distributed. Thus the M/G/1 model can be regarded 
as the limiting case of the M/G/1/N model in which N 
approaches infinity. Of course it is necessary to assume that 
mean independent activity time also approaches infinity 
as part of the limiting process in order to prevent the sub
system from becoming pverloaded as N grows large. 

INFINITE SOURCE ADVANTAGES 

Although it is possible to explicitly solve the "finite 
source" l\1/G/1/N model and derive formulas for quantities 
such as expected response time (see equation 2 in Appendix), 
there are several reasons why the "infinite source" M/G/1 
model is often preferred. The primary reason is mathematical 
simplicity. For example, in the basic case of first come first 
served scheduling, the formula for expected response time 
is significantly easier to evaluate in the M/G/1 case (equa
tion 1) than it is in the M/G/1/N case (equation 2). This 
greater complexity is present in almost all finite source 
formulas. 

Another consequence of the relative mathematical sim
plicity of the M/G/1 model is the fact that infinite source 
solutions exist for certain problems which have not yet been 
solved in the finite source case. Schrage's analysis of the 
infinite level foreground/background scheduling discipline 
is a case in point.4 

1--1 

IND£P£NOENT 
ACTIVITY 

QUEUEING 
DELAY 

Figure 2-Finite source model 

ACTUAL 
SERVICE 

A somewhat different reason for preferring the infinite 
source model is that it is sometimes easier to measure the 
mean arrival rate at a subsystem (a local measurement) 
than it is to measure the independent activity times at 
remote sites (e.g., user terminals in a time-sharing system). 
A final advantage is derived from the fact that the parameter 
N does not explicitly enter into the infinite source model. 
Thus the exact value of N need not be considered when 
applying the model to a specific system. This is particularly 
useful in cases where the actual value of N fluctuates as a 
result of external factors. 

INFINITE SOURCE ERROR TERMS 

Given the advantages of infinite source models, it is 
natural to consider the question of how accurate these models 
are in predicting performance levels of real systems which, 
in fact, almost always contain only a finite number of 
sources. To study this question, suppose that an actual 
system which conforms exactly to the M/G/1/N description 
is being analyzed with the aid of an infinite source M/G/1 
model. Since both models can be solved explicitly it is 
possible to compute both the "exact" mean response time 
RN (equation 2) and the "approximate" mean response 
time R (equation 1). Assuming the M/G/1 model has been 
properly calibrated to the M/G/1/N system so that the 
service time distributions and mean arrival rates are identical, 
it is then possible to obtain the error term (R - RN ) / RN • 

This error is directly attributable to the infinite source 
assumption. As an additional point, it can be shown that 
the relative error in expected response time is identical to 

TABLE I-Relative Errors for Constant Service Times 

p 

N .1 .2 .3 .4 .5 .6 .7 .8 .9 

.059 .127 .215 .332 .508 .742 1.172 2.031 4.375 
2 .030 .068 .117 .188 .296 .456 .725 1.280 2.752 
3 .020 .046 .082 .135 .213 .344 .541 .995 2.239 
4 .014 .036 .066 .105 .171 .276 .455 .819 1.865 
5 .011 .028 .053 .090 .142 .228 .382 .684 1.590 
6 .010 .024 .045 .076 .124 .199 .329 .597 1.480 
7 .008 .021 .038 .065 .108 .173 .297 .569 1.293 
8 .007 .018 .034 .059 .095 .162 .267 .502 1.226 
9 .006 .016 .030 .051 .088 .141 .248 .466 1.132 

10 .006 .015 .028 .047 .078 .133 .230 .430 1.021 
20 .003 .008 .014 .025 .042 .074 .134 .262 .716 
30 .002 .005 .009 .017 .028 .052 .094 .202 .587 
40 .001 .004 .007 .013 .022 .039 .073 .156 .436 
50 .001 .003 .006 .010 .018 .032 .062 .139 .392 
60 .001 .003 .005 .008 .015 .026 .054 .116 .349 
70 .om .OU:l .004 .007 .Oi3 .023 .045 .098 .339 
80 .000 .002 .003 .006 .011 .020 .040 .090 .297 
90 .000 .001 .003 .006 .010 .018 .036 .083 .258 

100 .000 .001 .003 .005 .009 .016 .033 .077 .250 
120 .000 .001 .002 .004 .008 .014 .028 .068 .235 
140 .000 .000 .002 .003 .006 .012 .023 .055 .196 
160 .000 .000 .002 .003 .005 .010 .020 .050 .185 
180 .000 .000 .001 .002 .005 .009 .018 .045 .153 
200 .000 .000 .001 .002 .004 .008 .016 .042 .145 



Guidelines for the Use of Infinite Source Queueing Models in the Analysis of Computer System Performance 373 

TABLE II-Relative Errors for Erlang-2 Service Times TABLE IV-Relative Errors for Hyperexponential Service Times 

p p 

N .1 .2 .3 .4 .5 .6 .7 .8 .9 N .1 .2 .3 .4 .5 .6 .7 .8 .9 

1 .088 .190 .322 .498 .762 1.113 1.758 3.047 6.563 1 .147 .317 .537 .830 1.270 1.856 2.930 5.078 10.938 
2 .044 .102 .180 .290 .442 .674 1.061 1.825 4.012 2 .074 .170 .306 .469 .720 1.080 1.666 2.921 6.366 
3 .031 .070 .127 .204 .321 .495 .789 1.345 3.014 3 .052 .117 .210 .340 .526 .798 1.249 2.175 4.598 
4 .021 .054 .098 .160 .253 .402 .650 1.140 2.591 4 .036 .092 .164 .270 .420 .655 1.013 1.725 3.932 
5 .017 .045 .079 .133 .213 .336 .556 .946 2.217 5 .029 .076 .139 .219 .356 .574 .880 1.483 3.443 
6 .014 .036 .068 .113 .180 .296 .487 .886 1.978 6 .024 .060 .115 .194 .305 .472 .752 1.310 3.071 
7 .012 .031 .057 .097 .164 .260 .421 .772 1.812 7 .021 .053 .102 .168 .262 ~420 .694 1.220 2.570 
8 .011 .028 .051 .088 .140 .229 .383 .735 1.590 8 .018 .047 .087 .146 .242 .373 .608 1.124 2.357 
9 .010 .025 .046 .080 .129 .216 .358 .653 1.505 9 .016 .042 .079 .134 .218 .353 .558 1.025 2.289 

10 .009 .022 .042 .071 .121 .197 .334 .610 1.398 10 .015 .038 .072 .124 .196 .315 .540 .924 2.194 
20 .004 .012 .021 .037 .063 .109 .196 .372 .945 20 .008 .020 .037 .065 .111 .183 .318 .581 1.394 
30 .003 .008 .015 .026 .045 .078 .142 .298 .732 30 .005 .014 .025 .045 .077 .134 .239 .444 1.088 
40 .002 .006 .011 .020 .033 .059 .112 .238 .657 40 .004 .010 .019 .035 .061 .103 .185 .367 .922 
50 .002 .005 .009 .015 .027 .049 .091 .189 .571 50 .003 .008 .016 .028 .048 .087 .153 .303 .835 
60 .002 .004 .007 .013 .023 .042 .080 .172 .483 60 .003 .007 .013 .023 .041 .072 .135 .280 .739 
70 .001 .003 .006 .011 .020 .035 .071 .148 .436 70 .002 .006 .011 .020 .035 .063 .115 .246 .643 
80 .001 .003 .006 .010 .018 .031 .060 .137 .390 80 .002 .005 .010 .017 .031 .056 .104 .216 .592 
90 .001 .003 .005 .009 .0]6 .028 .055 .127 .381 90 .002 .005 .009 .016 .028 .051 .096 .202 .542 

100 .001 .002 .005 .008 .0]4 .025 .050 .110 .338 100 .002 .004 .008 .014 .025 .044 .088 .191 .533 
120 .001 .002 .004 .007 .012 .021 .043 .097 .290 120 .001 .003 .007 .012 .021 .038 .072 .160 .437 
140 .001 .002 .003 .006 .010 .019 .038 .087 .275 140 .001 .003 .006 .010 .018 .033 .064 .135 .422 
160 .001 .001 .003 .005 .009 .016 .031 .080 .263 160 .001 .002 .005 .009 .016 .029 .057 .124 .37] 
180 .001 .001 .003 .004 .008 .015 .028 .067 .224 180 .001 .002 .004 .008 .015 .026 .052 .115 .325 
200 .000 .001 .002 .004 .007 .013 .026 .062 .214 200 .001 .002 .004 .007 .013 .024 .047 .106 .313 

the relative error in expected queue length. Thus the value exponential and hyperexponential respectively. Thus the 
of (R- RN)/RN can be interpreted in either manner. tables present distributions whose variance to mean squared 

Tables I through IV present values of (R-RN)/RN ratios increase progressively through the range: 0, ~, 1, %. 
for a \vide range of model parameters. The service time The other parameters in the tables are the number of 
distributions used in the four tables are constant, Erlang-2, sources in the actual finite source system (N) and the 

empirically observed load (p) placed on the subsystem. 
TABLE III-Relative Errors for Exponential Service Times Conceptually, p is first measured for the M/G/1/N system 

and then automatically duplicated in the M/G/1 model 
p when the input rate and service time distribution are as-

N .1 .2 .3 .4 .5 .6 .7 .8 .9 signed. Note that p is also the subsystem utilization factor 
(Le., the proportion of time the subsystem is busy). For a 

.117 .254 .430 .664 1.016 1.484 2.344 4.063 8.750 more detailed description of the parameters involved and 
2 .059 .135 .237 .379 .588 .894 1.348 2.387 5.339 the manner in which the tables were constructed, see the 
3 .041 .093 .168 .274 .411 .641 1.007 1.764 3.794 
4 .028 .073 .131 .217 .334 .524 .809 1.453 3.159 Appendix. 
5 .023 .060 .105 .175 .274 .443 .696 1.240 2.672 
6 .019 .048 .091 .]49 .240 .382 .615 1.085 2.461 
7 .017 .042 .077 .134 .212 .338 .566 1.006 2.145 DISCUSSION 
8 .015 .037 .068 .116 .189 .308 .492 .919 1.935 
9 .013 .033 .062 .106 .169 .273 .475 .829 1.860 The description of finite and infinite source models presented 

10 .012 .030 .057 .098 .158 .259 .433 .782 1.762 earlier suggests that the M/G/1 model should be a relatively 
20 .006 .016 .029 .050 .088 .148 .255 .473 1.157 good approximation to an M/G/1/N system when N is 30 .004 .011 .020 .035 .060 .102 .189 .370 .950 
40 .003 .008 .015 .027 .045 .082 . ]51 .302 .786 large. Although the tables support this general observation, 
50 .002 .006 .012 .022 .037 .065 .124 .260 .699 they also point out the sensitivity of the error factors to 
60 .002 .005 .010 .018 .031 .056 .104 .211 .608 the value of p. That is, the value of N necessary to attain a 
70 .002 .005 .009 .015 .027 .049 .093 .195 .519 given error level is much smaller for low and moderate 
80 .001 .004 .008 .013 .024 .044 .084 .182 .510 values of p than it is for values of p which are close to one . 
90 .001 .004 .007 .012 .022 .038 .077 .159 .461 

100 .001 .003 .006 .011 .020 .034 .066 .149 .415 Thus the infinite source assumption is of questionable value 
120 .001 .003 .005 .009 .017 .029 .057 .124 . 399 when p is large . 
140 .001 .002 .004 .008 .014 .025 .050 .112 .348 This observation has a number of implications for infinite 
160 .001 .002 .004 .007 .013 .0"22 .045 .10"2 .302 source models in general. When such models are used to 
180 .001 .002 .003 .006 .011 .020 .041 .094 .290 evaluate the relative differences between particular schedul-
200 .001 .002 .003 .006 .010 .018 .035 .087 .279 

ing disciplines or the sensitivity of individual scheduling 



374 National Computer Conference, 1974 

TABLE V-Minimum Number of Sources Necessary to Attain a 
5 Percent Error Level 

p 

Distribution .1 .2 .3 .4 .5 .6 .7 .8 

Constant 2 3 6 10 17 32 6] 160 
Erlang-2 2 5 9 16 27 49 101 200+ 
Exponential 3 6 12 21 38 70 142 200+ 
Hyperexponential 4 8 16 27 48 93 188 200+ 

disciplines to parameters such as quantum size, one usually 
finds that the greatest differences are associated with the 
larger values of p. However, these are precisely the values 
of p for which infinite source models are least accurate and 
therefore most misleading. Thus, even though infinite 
source models may be acceptable in a variety of engineering 
applications that involve small- or mid-range values of p, 

the large error factors that arise as p approaches one may 
seriously undermine the value of these models in many 
theoretical contexts. 

Another point which the tables illustrate is that the value 
of N necessary to attain a given errOr level increases as the 
variance to mean squared ratio increases. This effect is 
explicitly illustrated in Table V which presents the minimum 
value of N necessary to attain a 5 percent error level as a func
tion of the variance to mean squared ratio and also the value 
of p. Similar tables can be constructed for any other error 
levels of interest by using the data in Tables I through IV. 
In addition, error values for any service time distribution 
with a variance to mean squared ratio between 0 and ~-2 

can be estimated from the tables by interpolation. 

REFERENCES 

1. Cox, D. R. and W. L. Smith, Queues, Methuen, London, 1961. 
2. Kendall, D. G., "Some problems in the theory of queues," J. Roy. 

Stat. Soc. B, 13,2 (1951), pp. 151-185. 
3. McKinney, J. M .. "A survey of analytic time sharing models," 

Computing Surveys, 1, 2 (1009), pp. 105-116 
4. Schrage, L. E., "The queue M/G/1 with feedback to lower priority 

queues," Management Science, 13, 2 (1967), pp. 466-474. 
5. Takacs, L., "On a stochastic process concerning some waiting time 

problems," Theory of Probability and its Application.~, 2, 1 (1957), 
pp.00-103. 

APPENDIX 

The expected response time for a finite source M/G/1/N 
queueing model is given by5 

RN= - - - + A.L: -N 1 lr N-l ('1V -1') 1 J"-l 
p. A r=O r H r 

(2) 

where 

p. = the reciprocal of the mean service time 
A = the reciprocal of the mean independent activity time 

N = the number of sources 

H'~!~ .,(iX)/(l-.,(iX)) 

cp(s) = 1~ e-S tdF(t) 
o 

for r=Q 

for r= 1,2, .. . ,N-1 

F(t) = the cumulative service time distribution 

In order to compute the relative error values (R-RN)/RN 
which appear in Tables 1-4 it is necessary to specify the 
following quantities: the service time distribution, the load 
on the server (p) and, for the M/G/1/N case, the number 
of sources (N). The service time distributions used in the 
four tables are as follows: 

Table I. Constant service time, mean = 1, variance to 
mean squared ratio = O. 

Table II. Erlang-2 service time, distribution = 4te-2 t (sum 
of two exponentials each having a mean of 7-'2), 
mean = 1, variance to mean squared ratio = 7-'2. 

Table III. Exponential service time, distribution = e- t, 

mean = 1, variance to mean squared ratio = 1. 
Table IV. Hyperexponential service time, distribution = 

e-2t+%e-2tI3 (equal mixture of exponentials 
with means of 7-'2 and ~-2), mean = 1, variance to 
mean squared ratio = %. 

Once p is specified, computation of R by use of equation 1 
is entirely straightforward. The major difficulty arises in the 
computation of RN • This is because equation 2 does not 
depend explicitly on the value of p but rather on N, A and 
the cumulative service time distribution F(t). Hence it is 
necessary to compute A from p, Nand F(t) before applying 
equation 2. 

In principle, A can be computed from p, Nand F(t) by 
using equation 3. 

P~AN[XN+ ~c~r)~J' (3) 

However, the complex dependency of H r on A makes an 
exact solution for A impossible. Thus the basic strategy 
used in constructing the tables is to first obtain an approxi
mate solution to equation 3 by numerically determining a 
value A' which satisfies equation 4. 

P-AIN[AIN+ ~(N-r)~ J-l <.005 
r=O r r 

(4) 

This va.lue of A' is th~n 11:0;00 in ~quation 2 to compute RNl 
and the corresponding value of R is computed from equation 
1. The value of p used in the computation of R is obtained 
by substituting A' into equation 3. Thus the finite and 
infinite source models will have the identical value of p, 

and this value will always be within .005 of the corresponding 
column headings which appear in the tables. 



Data hase concepts applied to generalized programming packages 

by G. CORT STEINHORST and BARRY L. BATEMAN 

Texas Tech University 
Lubbock, Texas 

and 

DANIEL L. CURTIS 

University of Southwestern Louisiana 
Lafayette, Indiana 

INTRODUCTION 

Software "packages" are becoming more and more prevalent 
in both use and availability. These packages provide many 
useful functions, without the costly, time-consuming de
velopment and testing normally required to implement the 
desired operations. A disadvantage of many packages, how
ever, is the difficulty in modifying them in order to receive 
the desired result, if the original resultant of the package is 
not totally satisfactory. 

TYPICAL TECHNIQUES 

Various approaches have been used in package implemen
tation. A common type of package is a series of subroutines 
(e.g., the Scientific Subroutine Package provided by most 
major computer manufacturers). This type of package pro
vides great assistance to the experienced programmer but is 
of little use to the non-computer-oriented researcher. The 
experienced user can easily modify· these routines to meet 
his particular qualifications. The inexperienced user must 
normally "make do" with his output, must seek technical 
assistance, or, in extreme cases, must forgo the use of the 
computer in his research. 

Another type of package consists of a series of separate 
programs (e.g., The Biomedical Programs). These programs 
are generally very flexible. A disadvantage is that many 
times several of these programs must be run in sequence in 
order to obtain the desired results. Normally, this requires 
many similar calculations, which are repeated with each 
execution of the separate programs. There is little possibility 
of executing the entire set of calculations in one step. The 
usual procedure is to execute one program, check the results, 
execute the next program, check the results, and so on until 
the final answers are obtained. This process requires a rela
tively large block of time and also requires understanding 
the function of several programs in order to achieve the 
final results. 

375 

A BETTER APPROACH 

For the average researcher, with little computer knowledge, 
packages can be written which employ techniques developed 
in data base management systems. The main advantages to 
this approach are (1) a simple, user-oriented "language" can 
be developed to direct the processes; (2) all input data and 
intermediate calculations can be stored in a common, "data 
base" area; (3) modular programming can be used to allow 
easy modification of the package without extensive repro
gramming. 

The user "language" need not be a very sophisticated one. 
The basic purpose of this language is to provide easy di
rection of processes by non-computer-oriented researchers. A 
very likely possibility for the language would be the use of 
the names of the particular calculations desired, followed by 
the data, in free form, which is to be used in the calculations. 
By storing the input data and the intermediate calculations 
in an area common to all routines, it is possible to perform 
a complex series of operations upon the data with little 
redundant calculation. In outline form this type of package 
consists of (1) an executive, language-interpreter module, 
(2) a common data base, and (3) a series of operation modules 
and sub-modules, which operate on the data base. 

The executive program determines the sequence of oper
ations and directs the order of calls to each of the operation 
routines (modules). The data base provides an easy method 
of determining if an intermediate operation has been per
formed and also provides a common area for communication 
among the various modules and sub-modules of the package. 

APPLICATION OF DATA BASE CONCEPTS 

After considering the problems related to the so-called 
"packages," an attempt has been made to design an im
proved package. An example of this technique is STATP AK 
(Statistical Package) and was implemented on the RCA 
Spectra 70/45.1 STATPAK is designed with the intentions 



376 National Computer Conference, 1974 

Computational 
Subprogr8lll 

(1) 

SEGMENT 1 

Executive Program 

Computational 
Subprogr8lll 

(2) 

CoDIDOn 
Storage 
Area 

SEGMENT 2 

SEGMENT 3 

Figure l-ST A TP AK systems 

Computational 
Subprogr8lll 

(m) 

of: (1) Providing the user a packagewhich does not require 
the knowledge of -programming; (2) Eliminating duplication 
of input data; and (3) Providing a common area to store 
information to eliminate duplication of calculations. 

The ST ATP AK system, as shown in Figure 1, is composed 
of three segments: (1) an executive program and a common 
data storage area; (2) major statistical subprograms and a 
generalizeq input subprogram; and (3) minor computational 
subprograms. The executive program acts as both the com
municator between the user and the subprograms and the 
communicator among the subprograms themselves. The 
major statistical subprograms included in the second segment 
consist of the larger subprograms such as hypothesis testing, 
analysis of variance and regression analysis. The generalized 
input subprogram accepts the input data in varying format, 
which allows the data to be in any form. The minor compu
tational subprograms calculate various quantities, such as 
sums, sums of squares, means and variances, which are 
required by many of the statistical subprograms. 

In implementing the system a series of statistical sub
programs were selected to be included within the package. 
The system was designed in such a manner that if the 
package, consisting of the selected subprograms, would prove 
to be feasible, the addition of other statistical subprograms 
would be a trivial task. 

MINIMIZING CALCULATIONS 

A technique was devised to eliminate repeating a calcu
lation by checking indicators to determine if a given sta
tistical subprogram has already been executed. This tech
nique is accomplished through the use of an array which is 
located in the common storage area. This array contains 
values of one and zero which indicate that either a statistical 
subprogram has been executed or has not been executed. 
Each statistical subprogram is assigned a number, i, and 

upon completion of the execution of the ith statistical sub
program, a "I" is placed in the ith element of the array. 
Therefore, any statistical subprogram has the capability of 
determining if any statistical subprogram, including itself, 
has been executed. 

When writing each statistical subprogram, the results of 
every calculation which could possibly be required by another 
statistical subprogram are placed in the common storage 
area. By placing the results of calculations in an area ac
cessible to all statistical subprograms, calculations are not 
repeated. For example, if the mean is required in a statistical 
subprogram, the indicators for the statistical subprograms, 
which calculate or require the mean, are checked. If any of 
these statistical subprograms have been executed, the mean 
is already available in the common storage area, and thus, a 
calculation is not necessary. If none of the statistical sub
programs which use the mean have been executed, control is 
transferred to the computational subprogram which calcu
lates the mean. Once the mean has been calculated, control 
is returned to the calling statistical subprogram. Prior to 
halting that statistical subprogram, a "I" is placed in the 
indicator which references this particular subprogram; there
fore, the mean will not be calculated again. 

GENERALIZED INPUT 

Another subprogram in the second segment of the STAT
P AK system is the generalized input subprogram. This sub
program allows free format of data. In other words, the user 
need not have his input data in a particular form. Another 
feature of the input subprogram is that there are virtually 
no limits placed on the amount of data points or the number 
of variables. Most programs or subprograms have a limit 
to the number of data points or the number of variables 
because the data is usually maintained in a rectangular 
matrix of fixed dimensions within the program or subprogram. 
In these programs or subprograms, a matrix dimensioned 
n by m will allow a maximum of n data points of m variables 
or vice versa. In STATPAK's input subprogram, a single
dimensioned array of n times m locations is used. Thus, if 
there are k variables, the number of allowable data points is 
[n*m/k] where _ [] implies the largest integer such that 
k*[n*m/k]::::; n*m. For example, if an array contains 1000 
locations and the number of variables is 30 then the number 
of allowable data points is [1000/30], which equals 33. 

STORAGE OF DATA 

In addition to allowing a varying number of data points 
or variables within the array, the input subprogram writes 
the array to disk once the array is filled. The input sub
program then places a "1" in an indicator in the common 
storage area; thus, each statistical subprogram can determine 
if the data are in common storage by checking an indicator. 
If the indicator contains a zero, the statistical subprogram 
retrieves the information stored on the disk. The technique 



Data Base Concepts Applied to Generalized Programming Packages 377 

of storing the data, allowing the data to be transferred to 
disk, and free format of data make the input requirements 
of the STATP AK system very flexible. 

EXECUTIVE PROGRAM 

To provide the user with a package which does not require 
a knowledge of programming, an executive program was 
written which uses a series of control cards and performs the 
functions indicated by the code on each card. In addition 
to providing ease of use, the executive program provides the 
user with other desirable features. The user may reference 
several statistical subprograms for one set of data; thus, 
eliminating the need of duplicating common input require
ments of each subprogram. Also, the user may execute a 
specified series of statistical subprograms for any number of 
data sets. 

The executive program reads in the control cards which 
constitute one job, and performs the job X times using the 
X sets of data that follow the END JOB card. This process 
is continued until a STATPAK END card is encountered, 
which terminates the system. The executive program also 
has the function of reinitializing the array of indicators of 
the statistical subprograms for each execution of a job or 
for the execution of a different job. Since each execution of 
a job or the execution of a different job requires a new set 
of data, the results stored in the common storage area are 

for the previous job iteration or previous execution of a 
different job; therefore, it is necessary for all calculations to 
be repeated. 

The executive program has a list of the contained statistical 
subprograms and the corresponding codes for each. As each 
control card following the JOB card is interrogated, the 
code is- matched to the desired statistical subprogram and 
control is transferred to that subprogram. 

CONCLUSIONS 

Generalized software packages can be implemented which 
will provide valuable assistance to the researcher. By using 
data base technology, it is possible to create a flexible organi
zation which allows maximum computer usage with a mini
mum of technical ability. Simple semantic capability along 
with good error messages augment the generalized approach. 

REFERENCES 

1. Curtis, Daniel L., ST ATP AK; A Statistical Package for the RCA 
70/45, Masters Thesis, University of Southwestern Louisiana, 
Lafayette, Louisiana, 1968. 

2. Dixon, W. J., ed., BMD, Biomedical Computer Programs, Los Ange
les, California, 1969. 

3. RCA, Spectra 70 Scientific Subroutine System, Manual No. 79-35-
319, March, 1968. 





On-line user-computer interface-The effects of interface 
:8exihility, terminal type, and experience on performance 

by GEORGE H. WALTHER 

U.S. Air Force Academy 
Colorado Springs, Colorado 

and 

HAROLD "F. O'NEIL, JR. 

The University of Texas 
Austin, Texas 

INTRODUCTION 

In less than two decades the electronic digital computer has 
evolved from a high-speed replacement for the abacus to a 
full-fledged partner in dialogue with humans. By its very 
~ture, on-l~e computing thrusts the user into an entirely 
different enVIronment than does conventional batch pro
cessing. The problems inherent in a person's being made a 
system component-in a sense an extension of th3 computer 
hardware-were largely ignored until quite recently. Since 
the. early users of on-line systems were highly skilled pro
fessIOnals who were both willing and able to communicate 
in terms most convenient for the machine, few programmers 
were aware of the user-computer communications gap, and 
even fewer were concerned about it. However, the lowered 
cost of computer access and the proliferation of on-line 
syst~ms produced a new breed of users, people whose expertise 
:v~s. m so~e area other than computer technology. As their 
lllltlal fascmation with conversational computing wore off, 
users reported experiencing feelings of intense frustration 
~nd of being."manipulated" by a seemingly unyielding, rigid, 
mto~erant dIalogue partner, and these users began discon
nectmg from time-sharing services at a rate which was very 
alarming to the industry. 

Perhaps one of the best and most recent statements of the 
recognition by the computer industry that considerable at
tention should be given to the user comes from MartinI of 
the IBM Systems Research Institute: 

"Increasingly . .. , man must become the prime 
focus of system design. The computer is there to serve 
him, to obtain information for him and to help him do 
his job. The ease with which he communicates with it 
will determine the extent to which he uses it. Whether 
or not he uses it powerfully will depend upon the man
machine language available to hi'in and how well he is 
able to understand it (p. 3)." 

379 

A review of the literature2 clearly indicates that a shift 
of emphasis is currently in progress-from a deep concern 
for the elegance of algorithms to varying degrees of interest 
in satisfying individual users. But how does one discover 
the "best" method for designing a user interface? Can the 
user simply be asked what he would like to have happen 
when he sits down at a terminal device? Apparently not, 
ac~ording to several recent writers on the subject. Further, 
qUIte contrary to popular opinion, "armchair" intuitive de
sign techniques have not proved to be a sufficient basis for 
ev~n the most concerned systems designers to use. The study 
bemg reported on is a case in point. It was the intuitive 
feeling of the present writers that interface flexibility would 
be uniformly "good" for all users, but the data did not 
support this contention. 

Much opinion has been offered as to what constitutes user
oriented design practices, but very few intuitions have been 
supported with data. Bennett2 called for a transformation of 
the current art of system design into an engineering discipline. 
The United States Air Force is requiring human factors 
analyses of software design in new systems. Some writers 
have suggested that a common user interface should be the 
goal, presumably leading to a set of conventions which once 
discovered, would maximize ease-of-use perceptio~ and 
feelings of satisfaction on the part of users. Others point 
out that the differences which make individuals unique over
shadow commonalities, so there is considerable doubt that 
any interface standards would please even most of the users 
most of the time. 

One approach, and the one chosen for this study, is to 
allow the interface to be alterable by the user under operating 
conditions without the necessity for reprogramming. There
fore, the user interface is programmed with the capability 
for making differential responses to a variety of users under 
a "wide range of conditions. This is what will be referred to 
as interface flexibility. 



380 National Computer Conference, 1974 

PROBLEM STATEMENT AND METHODOLOGY 

This study investigates whether interface flexibility is a 
viable solution to the problem of giving the on-line interface 
the quality of adaptability. The question is asked whether 
interface flexibility, operationalized as options offered to the 
user of an applications program, is "good" for everyone's 
performance with their program, irrespective of their personal 
attributes. Where flexibility appears not to be universally 
the best approach for all users, an attempt is made to ascer
tain the kind of users to whom it should be offered. 

The CDC 66/6400 on-line computer system of the Uni
versity of Texas at Austin was used for this research. Four 
terminal devices were employed: two standard Model 33-
KSR Teletypes, and two Datapoint 3300 cathode ray tube 
(CRT) keyboard terminals. Although the CRT's and the 
on-line system were capable of 300-baud display rates, these 
terminals were buffered down to teletypewriter speeds (110-
baud) so that CRT users would have no terminal display 
performance advantage over teletypewriter users. Terminals 
accessed the on-line computer via acoustic data couplings to 
ordinary voice-grade dial-up commercial telephone lines. 

All measurements, instruction, data collection and tasks 
were administered by the on-line computer system of pro
grams created expressly for this experiment. Programs were 
written either in SNOBOL4 or FORTRAN IV and were 
compiled into object code for the CDC 66/6400 system. 
Nine independent programs were called sequentially to ad
minister the experiment to each user. Programs were modu
larized to provide re-start checkpoints in the event of system 
malfunctions from which full recovery was not possible and 
to reduce core storage requirements. A journal file was main
tained on disk for each user. It contained such information 
as user personal data, timing statistics, verbatim transcripts 
of all messages issued by the user, and program instrumen
tation data. The applications program was instrumented to 
record user response time and system response time, syntax 
errors made by the user, counters of the frequency of use of 
flexibility options, and a copy of the target text file as it 
appeared following being edited by the user. 

Sixty-nine undergraduate computer science students, all 
of whom had successfully completed at least the basic 
FORTRAN programming course and were nearing the end 
of either the intermediate programming course or a more 
advanced Survey of Programming Languages course, served 
as users in this study. This was the first encounter with an 
on-line system for about 41 percent of them. Another 38 
percent claimed experience levels ranging from "once or 
twice before" to "several times before" (they will be referred 
to as users with "some experience" in this report), and 22 
percent reported hav"ing "much experiellce." 

An on-line text editor served as the experimental vehicle 
for the study. It was specifically designed and constructed for 
this experiment. Therefore, the syntax of the language of the 
interactive program was equally unfamiliar to all participants 
in the stUdy. The syntax of the on-line editing language was 
a structured subset of English. Parsing was accomplished 
both positionally and by keyword recognition. 

The first part of every command was a verb (RETRIEVE, 
DISPLAY, or CHANGE). The second parameter was a 
specifier indicating which and how many occurrences of the 
literal were to be considered, e.g., LAST 6, FIRST 1, EVERY, 
ALL. The literal came next and was identified by being 
enclosed between two system quotation marks (asterisks). 
The final command part was a file-range part indicating the 
portions of the file to be contextually searched or addressed, 
e.g., BETWEEN 10 AND 200 or IN 60. The two exceptions 
to this four-part syntax were (1) the DISPLAY command 
which required only the word LINES and a range of line 
numbers, and (2) the CHANGE command which of necessity 
included a search-target literal and a replacement literal. 

An on-line tutorial program was embedded in the text
editor and had associated with it the EXPLAIN and HELP 
verbs. 

Two different versions of the on-line text editor, an In
flexible version and a Flexible one, represented two levels of 
interface flexibility. In the Inflexible version, all command 
parts had to be spelled out fully. No mnemonics or abbrevi
ations were permitted. Where a space was required as a 
delimiter, one and. only one space was permitted. Every 
part of the syntax was essential for every command. Each 
statement had to be terminated with an end-of-statement 
character, predefined by the program to be a dollar sign. 

Flexibility was operationally defined chiefly as the factors 
inherent in the interface program which ·would make it easier 
or more convenient for the user to express his commands, 
given that the commands had to follow a specific syntax. 
The design criteria specified that the user of the Flexible 
version should have as much freedom as possible in expressing 
his commands to the editor within the constraints of the 
language syntax, so long as any ambiguity as to user intent 
could be satisfactorily resolved by the program. 

The syntax of the Flexible version was identical to that 
of the Inflexible with the following exceptions: 

(1) the ability to reset the quotation mark and end-of
statement characters. A RESET command served 
this function (e.g., RESET QUOTES TO" or RESET 
EOS TO ;). 

(2) the ability to abbreviate by truncation, so long as the 
remaining stem was unambiguous among other re
served words identified with that particular command 
part. The legal abbreviations for DISPLAY, for 
example, were: D DI DIS DISP DISPL DISPLA. 

(3) the ability to omit certain optional command parts, 
the meaning of which was assumed according to pre
defined default values. The decision logic behind se
lection of default values was selection of those values 
which, in the designer's estimation, were the values 
which would be most frequently intended, so long as 
inadvertent omission of a command part would not 
result in assumption of an option which would be 
costly in terms of excessively long displays or cata
strophic inadvertent modification of the file. 

(4) t.he ability to declare equivalent synonyms for any 
reserved word in the language and subsequently to 



abbreviate them according to the rules described in 
(2) above. The SYNONYM command was provided 
(e.g., SYNONYMS OF RETRIEVE ARE FETCH, 
FIND). 

(5) the ability to use any number of spaces, commas, or 
periods as delimiters. 

(6) the ability to use several equivalent forms of file
range parts. For example, these are all equivalent: 
BETWEEN 1 AND 10, BETWEEN 1-10, IN 1 ... 10, 
and just the digits 1 10. 

(7) the ability to omit an end-of-statement character 
without the command being aborted. Instead, an 
advisory warning message, to the effect that one would 
be inserted and processing would continue, was issued. 

No differences between the two versions were apparent to 
the user until after completion of the first editing task ac
cording to the rules of the Inflexible version. Then, prior to 
presentation of each of the second through fifth tasks, a new 
interface flexibility option was offered to the user, along with 
instructions and examples of how to use it. The options were 
introduced in the following order: (1) resetting of quotation 
marks or end-of-statement characters, (2) abbreviations, 
(3) omission of optional command parts, (4) declaration of 
synonyms for any reserved word. 

,All instructions were administered on-line by a Computer
Assisted Instruction (CAl) module which taught very basic 
text-editing and the use of this particular text-editor. This 
module was identical for users of both versions. No prior 
knowledge of text-editing was assumed. 

The experiment involved only one session of approximately 
two hours' duration. Upon, arrival at the CAl Laboratory at 
the University of Texas at Austin where testing was con
ducted a user was randomly assigned to one of four groups: 
Flexible/CRT, Flexible/Teletype, Inflexible/CRT, Inflexi
ble/Teletype. All subsequent interactions were between the 
user and the computer. A proctor was available in case of 
system malfunction only. Events took place in this order: 
(1) introduction to the experiment and terminal familiari
zation, (2) demographic data collection, (3) typing practice 
and test, (4) survey of user attitudes toward the computer, 
using semantic differentials, (5) a five-item state anxiety 
scale from the State-Trait Anxiety Inventory,S (6) the 
28-item hostility scale of the Multiple Affect Adjective 
Checklist,4 the results of which will be reported in a later 
publication, (7) the CAl module. 

The experimental task consisted of 18 subtasks which each 
required that an error in a computer-based text file be 
corrected using the on-line text-editor. The error was de
scribed to the user, who then had to formulate the text
editing command to accomplish the correction. 

After completion of the tasks, the same anxiety, attitudinal, 
and hostility measures were repeated. Analysis of their results 
appears in Walther.5 

RESULTS AND DISCUSSION 

The principal data analysis employed a General Linear 
Models approach,6 sometimes referred to as a multiple linear 

On-Line User-Computer Interface 381 

regression technique. Bennett2 observed that controlled ex
perimentation involving the user interface had produced 
results of questionable value because of the "unknmvn effect 
of uncontrolled variables on experimental subjects." This 
study capitalized on an important statistical capability of 
the General Linear Models approach-the ability to hold 
statistically constant, or fixed, all variables which were 
measured but which were not under experimental control, 
and whose effects were not specifically being investigated in 
a particular analysis. The net effect is the same as if experi
mental"subjects had been selected such that they were all of 
the same sex, assigned to the same type of terminal device, 
had identical initial levels of anxiety and hostility, typed 
exactly at the same speed, shared in common the same amount 
of prior experience, and shared the same attitudes toward 
the computer. 

In an experiment such as this, it would be obviously ideal 
if one could conclude that, irrespective of terminal type, sex, 
anxiety, attitude, typing ability, experience,' or any other 
user attribute, it is better under all conditions to give the 
user a certain level of interface flexibility. However, as this 
study shows, things are not that simple. When the superiority 
of the Flexible version, for instance, depends on one or more 
factors other than flexibility itself, then it is said that the 
level of flexibility interacts with the one or more other vari
ables, that they act in combination ,vith each other to 
influence user performance. 

Only those tests which were both statistically significant 
and relevant to this paper will be discussed. In all, there 
were fifty-five separate statistical tests made on the data. 

Two measures of user performance are the criterion, or 
dependent, variables in this study: time-for-task and syntax
error-frequency. 

TIME-FaR-TASK 

U se:r experience determines whether the flexible version 
is "better" with respect to time-Jor-task 

Intuitively it was thought that users of the Flexible version 
would work faster during the editing tasks, irrespective of 
other factors, and that the more experienced users would 
be able to complete the tasks in proportionately less time. 

Contrary to expectation, not all users of the Flexible 
version worked faster. Experience was a determinant of the 
level of interface flexibility which resulted in more rapid 
work. All users of the Flexible version worked faster than 
their similarly-experienced counterparts using the Inflexible 
verSIOn. 

The more experience the user had with on-line systems, 
the better he was able to use the options to speed up his 
work. As expected, experience could not compensate for the 
non-availability of options in the Inflexible version, and 
inexperienced users worked at about the same rate with that 
version as those having considerable experience. Strangely 
enough, users of the Inflexible version and having some 
experience took longer than any other group to complete 
the editing tasks. 



382 National Computer Conference, 1974 

Flexibility options appear to help save time for all users 
except those having absolutely no prior experience with on
line systems. The Flexible version by design required less 
typing through the availability of abbreviations and the 
ability to omit optional parts. The more experienced users 
of the Flexible version were better equipped by virtue of 
their experience to take advantage of these short-cuts. 

Users with no prior experience at all were probably some
what overwhelmed with the options at a time when they had 
not yet become comfortable with the basic text-editing com
mands or with interactive computing in general. No expla
nation can be offered as to why the users of the Inflexible 
version and having some experience took so much longer 
than either of the other two Inflexible groups having none 
and much experience, respectively. 

Terminal-type and "evaluative" attitude both determine 
whether the flexible version is "better" with respect to 
time-f or-task 

It was predicted that users of the same version and having 
the same prior experience level would work faster if they 
were using a CRT, even though it operated at the same 
speed as the teletypewriter. Although terminal type had an 
effect on time-for-task, the nature of its effect with respect 
to a particular level of flexibility was a function of the user's 
initial "evaluative" attitude (how much he liked the com
puter and how "good" he rated it). As attitude became less 
positive, times-for-task increased for the Flexible/CRT group. 
As initial attitudes became less favorable, times decreased 
in the Inflexible/CRT group. There was no relationship be
tween time and attitudes among teletypewriter users of 
either version. 

Why should the times-for-task of only the CRT users be 
related to their "evaluative" attitudes? Anecdotal infor
mation provided by the users upon conclusion of the experi
ment indicated that CRT users felt more positive about the 
computer than users of the teletypewriters. For Flexible/CRT 
users who initially felt extremely positive about the com
puter, the features of the Flexible version matched their 
expectations of computers and probably provided sufficient 
incentive for them to work against the possible obstacles of 
greater memory demands of the CRT terminal due to a lack 
of any hardcopy which can be referred back to, and the un
familiar feel of the keyboard. Those whose attitudes were 
somewhat neutral may have been indicating that they just 
were not sure about computers and did not know what to 
expect. For them, the combination of this uncertainty with 
the presentntion of the opt.ions at. a t.ime when they may 
have just begun to feel comfortable about using the system 
and the text-editor, and the greater memory requirements 
and keyboard physical features of the CRT, may have led 
them into more error conditions. These users also may have 
had to take longer between commands to figure out what 
to type next. Either of these conditions would have increased 
their times-for-task. 

Those users of the Inflexible version at a CRT and who 

initially were most positively inclined toward computers 
probably experienced a mismatch between their expectations 
of the system and their observation of it, to the extent that 
they found working with the Inflexible version to be boring, 
highly repetitive, and consequently they had to take greater 
care to avoid errors. The silent characteristics of the CRT 
terminal did nothing to break the monotony for them. So 
it is possible that their need for more deliberate, careful 
typing is what increased their times. Those Inflexible/CRT 
users who expected less from the computer may not have 
been disappointed with the Inflexible version and may have 
been sufficiently fascinated with the CRT itself that the lack 
of flexibility in the interface was not particularly bothersome. 
It is somewhat surprising, however, that the attitudes had 
no apparent effect on time-for-task among teletypewriter 
users of either version. 

SYNTAX ERRORS 

Experience and "evaluative" attitude both determine whether 
the flexible version is "better" with respect to 
syntax-error-frequency 

Prior to the experiment it was thought that increasing 
levels of prior on-line experience would result in progressively 
fewer syntax errors among users of the Flexible version. 
The reverse effect was anticipated among users of the In
flexible version. However, the data showed that experience, 
alone, was an insufficient determinant of the effects of inter
face flexibility on syntax errors. Initial attitudes also had a 
strong effect on the syntax error frequency of each of the 
three experience levels within the Flexible group. The user's 
predisposition or attitude seemed to have very little effect 
on the Inflexible group's syntax errors. Less favorable atti
tudes seemed to predispose all but very experienced users to 
greater error frequencies. Where attitudes were extremely 
favorable, error rates were quite low, with a slightly greater 
error rate being noted among users of the Flexible version. 
However, error frequencies rose sharply among these users 
as their attitudes were determined to be less favorable. The 
exceptions were high experience users of the Fiexible version 
whose error rate, though very restricted in range by com
parison with other users, tended to be higher where attitudes 
were the most favorable or positive. Those users who, on 
the basis of their brief encounter with the experimental on
line system, had developed highly favorable attitudes con
cerning the computer apparently liked the options subse
quently given them in the Flexible version and were able to 
take advantage of these options without undue t:!yutax errors. 
Those users having neutral or negative feelings about the 
computer and having none or only minimal prior experience 
seemed to be predisposed to making more syntax errors. 
Possibly, these users' lower expectations concerning the 
computer were consonant with their earlier discovery that 
the flexibility options could get them into trouble or would 
require greater mental effort until they achieved mastery in 
the use of the options. 



It is possible that those in the Much Experience group, 
who also liked the computer very much, are the users who 
were encouraged to experiment and to "toy around" with 
the flexibility options. The journals of some of these people 
indicate this to be the case. They probably wanted to test 
the system, were possibly Computer Science majors at the 
university, and saw this as an opportunity for creativity. 
This kind of trial-and-error behavior would certainly result 
in a high incidence of syntax errors initially. 

Irrespective of their attitude toward the computer, those 
totally inexperienced users in the Inflexible group made 
virtually no syntax errors at all. They had a version of the 
editor that was straightforward, easy to use, and simple to 
learn. 

Their complete lack of experience and the fact that this 
was a "one-shot" encounter with the system gave them no 
basis for becoming either annoyed or frustrated, even in the 
face of the rigid constraints imposed on them by the In
flexible interface program. 

Terminal-type and "evaluative" attitude both determine 
whether the flexible version is "better" with respect 
to syntax-error-frequency 

Within each version of the editor, it was thought that users 
of the CRT terminals would make somewhat fewer errors 
than users of the mechanical teletypewriter terminals. How
ever, within each version, CRT users made more syntax 
errors than the others, with a linear, positive relationship 
between syntax-error-frequency and "evaluative" attitude. 
As noted earlier, there was a very sharp increase in syntax
error-frequency among users of the Flexible version as these 
users' attitudes were observed to become less favorable. This 
was found to be true of users of both types of terminals. 
Therefore, attitude is a good predictor of syntax-error
frequency among users of the Flexible version, due to its 
high correlation with error-rate, but it is less helpful in pre
dicting syntax errors of users without access to flexibility. 

The chief differences between the two types of terminal 
devices are (1) the greater memory demand placed on CRT 
users with information at the top of the screen is erased as 
a new line is written at the bottom, (2) completely silent 
operation of the CRT compared to relatively noisy tele
typewriters, (3) more modernistic-looking CRT consoles 
which may be perceived as being less mechanical in appear
ance, and (4) easy-to-press electronic action keyboards on 
the CRT and the mech~nical linkage action of a teletype
writer. It is unclear which of these differences gave the 
CRT an inferior position with respect to user-performance. 
The fact that the teletypewriter gave the users access to all 
previous dialogue transcripts, the fact that there was a 
one-to-one correspondence between a key-press and an audible 
click as the character was printed (keeping the user from 
having to look up at the display to see if something h~p
pened), and the possibility that the action of the teletype
writer keyboard was more similar to the "feel" of manual 
typewriters with which undergraduates may have been more 

On-Line User-Computer Interface 383 

experienced, all probably helped the teletypewriter users to 
work faster and more accurately. 

CONCLUSION 

The results clearly indicate that interface flexibility is not 
uniformly effective with all users in optimizing performance. 
In a single encounter with the on-line system, users are more 
prone to make syntax errors if offered short-cut flexibility 
options. Nevertheless, most all users of the Flexible version 
worked significantly faster than those not having the options. 
The exceptions were the novices who worked more rapidly 
without the options than "With them. 

A user's prior on-line experience is a sufficient basis for 
deciding which interface to offer him if it is important to 
minimize length of an on-line session. If he has no prior 
on-line experience, he will work faster in his first session 
without options being offered. If he has any prior experience 
at all, he will need less time if offered flexibility options. 

Neither a CRT nor a teletypewriter always workes better 
with anyone level of flexibility in minimizing time-for-task. 
If only teletypewriters are available, there is no need to 
determine the user's "evaluative" attitude toward the com
puter in order to keep sessions as brief as possible. Using a 
teletypewriter, neither the presence nor absence of flexibility 
options will result in significantly different times. However, 
where a CRT is involved-even one that operates at type
writer speeds, the user's attitudes toward the computer 
become a critical factor in predicting time-for-task. 

The experience factor alone is also an insufficient basis for 
determining whether flexibility will minimize syntax errors 
in a single session with the computer. In general, users having 
access to flexibility options made many times more syntax 
errors. However, the less experienced users who had favorable 
attitudes made very few errors. 

If duration of a session is critical, flexibility can be very 
instrumental in facilitating more rapid work for almost all 
users. But, if the lack of syntax errors at a first session is the 
more important criterion, flexibility should be offered only 
to the less experienced users with very favorable attitudes, 
and to experienced users with a neutral or negative attitude 
toward the computer. The more experienced user with posi
tive attitudes would be expected to make progressively fewer 
syntax errors in subsequent sessions as his temptation to 
experiment declined. 

The data suggest that silent-keyboard terminal devices 
"Without hardcopy capability increase the likelihood of errors. 

The one initial measure which never seemed to make any 
difference was typing ability, confirming Morrill's7 findings 
that professional typing skills are not necessary for effective 
system use if the inputs are short and direct. 

This study also confirmed the findings of Carlisle8 that 
more errors are committed by users of a CRT than by tele
typewriter users. 

Future research in this area should involve multiple ses
sions by the same users to see how performance is affected 
over time. 



384 National Computer Conference, 1974 

Interface flexibility indeed appears to be a viable solution 
to the problem of giving the on-line interface the quality of 
adaptability. Options offered the user of an applications 
program in the manner in which he expresses his commands 
to the computer are not uniformly "good" for everyone's 
performance, and we now have a beginning basis for pre
dicting those kinds of users for whom it is the best approach. 

REFERENCES 

1. Martin, J., Design of Man-Computer Dialogues, Prentice-Hall, 
Englewood Cliffs, 1973. 

2. Bennett, J. L., "The user interface in interactive systems," in 
C. A. Cuadra (ed.), Annual Review of Information Science and Tech
nology, Vol. 7, American Society for Information Science, Washing
ton, 1972, pp. 159-196. 

3. Spielberger, C. D., R. L. Gorsuch, and R. E. Lushene, Manualfor 
the State-Trait Anxiety Inventory, Consulting Psychologist Press, 
Palo Alto, California, 1970. 

4. Zuckerman, M., and B. Lubin, Manual for the Multiple Affective 
Adjective Checklist, San Diego, Educational and Industrial Testing 
Service, 1965. 

5. Walther, G. H., The User-Computer Interface: The Effects of Inter
face-Flexibility, Experience, and Terminal-Type on User Performance 
and Satisfaction, unpublished Ph.D. thesis, The University of Texas 
at Austin, 1973. 

6. Ward, J. H., Jr., and E. Jennings, Introduction to Linear Models, 
Prentice-Hall, Englewood Cliffs, New Jersey, 1973. 

7. Morrill, C. S., C. Goodwin, and S. L. Smith, "User input mode and 
computer-aided instruction," Human Factors, 1968, 10(3), pp. 225-
232. 

8. Carlisle, J. H., Comparing Behavior at Various Computer Display 
Consoles in Time-Shared Legal Information, Rand Corporation, 
Santa Monica, California, September, 1970 (AD 712695). 



The control data STAR-IOO-Performance measurements 

by CHARLES J. PURCELL 

Control Data Corporation 
St. Paul, Minnesota 

INTRODUCTION 

The CONTROL DATA STAR-lOO (STring-ARray) Com
puter is a very large, general purpose, high speed computing 
system. The STAR-100 computer utilizes integrated cir
cuitry, ferrite core memory, 400 hz power and freon cooling 
in the hardware implementation. The logical design of the 
computer combines stream processing, virtual addressing, 
hardware macro instructions, segmented (pipeline) arith
metic units and a 256-word high speed register file to per
form arithmetic and logical operation on discrete or struc
tl:red data elements (Figure 1). 

Several of the STAR-100 Systems are in final test and 
checkout at this time preparatory to delivery. The STAR-100 
is extending the state of computer art in terms of the memory 
bandwidth, the arithmetic pipelin~ performance, hardware 
aids to the operating system and built-in sub-routines for the 
programmer. As with any substantial improvement in com
puting, we at CONTROL DATA have had to learn a great 
deal about the use of this computer before it could be com
pleted. The particular areas of substantial interest are the 
hardware design, potential performance and the program 
language environment. 

HARDW ARE DESIGN 

The initial design goal of the STAR-1oo required the pro
duction of at least 40 million additions per second on arrays 
of data formatted in 64-bit floating point words. This require
ment in the STAR-lOO is met by the execution of a three
addresl3 memory to memory array instruction. The source 
arrays and the result array must be carefully located in con
tiguous cells of memory in order to provide the logic designer 
with the power to completely overlap more than 80 million 
loads, 40 million adds and 40 million stores every second. The 
instruction repertoire of the STAR-100 was carefully selected 
to match the logic design with the program. One can visualize 
the demands on the programmer by considering the STAR-
100 as a simplified hardware implementation of a program
ming language.1 

Array operations are provided in the STAR-1OO on either 
32-bit or 64-bit floating point operands. Consideration of the 

385 

total computational requirements suggested that the rate of 
array operations would require support by a wide variety of 
textual operations on byte strings as well as logical operations 
on bit strings. The 256 'word register file is used to contain 
scalars, descriptors or index quantities used in support of the 
array or string operations. Branch and test operations are 
available on bits, bytes indices, scalars, arrays, strings or 
conditions. In all, some 230 instructions are provided in the 
STAR-lOO. 

A physical design evolved from these considerations 
(Figure 2) whereby the complete computer is assembled in 
one large monolithic structure. The minimum STAR-lOO 
computer contains 4 million (8-bit) bytes of memory, 4 I/O 
channels, 1 direct access channel, the Central Processor and a 
Maintenance Control Unit. The Central Processor contains 
the Storage Access Control unit (SAC), the Stream Control 
unit, and the floating point pipelines. 

The Stream Control unit of the Central Processor contains 
all streaming and instruction control, and operand align
ment, buffering and addressing. The Stream Control unit also 
contains the register file of 256 64-bit words used for instruc
tion and operand addressing, indexing, storing constants, 
field length counts, and as source and destination for conven
tional register to register instructions in 3-address format. A 
microcode memory in the Stream Control unit controls the 
initiation, interrupt (if necessary) and termination of all 
array and string instructions. 

The register file utilizes a twenty nanosecond read orwrite 
cycle time semi-conductor memory component. The micro
code memory utilizes an eighty nanosecond, two phase, semi
conductor memory. ::\1:ain memory of the STAR-lOO is built 
of thirty-two banks each of 1.28 microsecond full cycle time, 
512 bit ,vord, ferrite core memory. At this time, the checkout 
process is focusing on the verification of each individual in
struction to take over control of the data streams, correctly 
operate and form the results in the appropriate location. 
Then each and every instruction combination must also be 
verified as to the correct control and results. 

The Central Processor of the STAR-100 System is aided 
by a number of auxiliary processing input/output stations 
(Figure 3). These stations provide intelligent control of the 
input/output requirements of the STAR-1OO by use of con
trol messages from the central monitor program. These con-



386 National Computer Conference, 1974 

CENTRAL PROCESSOR UNIT 
FLOATING POINT 

IE--i-..;oj fLOATING POINT 

MEMORY IE- f-;> STORAGE ~ 

r---' 
I Ci) I 

: OPTIONALI'--

I MEMORY I L __ J 

ACCESS 
STREAM 

CONTROL 

''I' l' J T 

STRING 

'-- MAINTENANCE 

f:Di ~ STATION 

I 
I~ 
: I ~NEL.S 2-4 

~ 
OPTIONAL 110 
CHANNEL.S 
5-8 a 9-12 

DIRECT 
ACCESS 
CHANNEL. 

- PIPE I 

IE--+-t-~ FL.OATING POINT 

PIPE 21 

r-r-- MUL.TI-PURPOSE 

NOTES: <D OPTIONS ARE SHOWN IN DASHED 
L.INES. 

® ~=~~~C~O S~~~~~ECH~~T 
MAY BE CONNECTED TO ANY 1/0 
CHANNEL. 

Figure I-Basic CDC STAR-Ioo configuration 

trol messages are processed by the station control unit (pro
cessor) while data streams move into and out of the station 
buffer unit. 2 A typical STAR-100 system is shown in Figure 4. 
Peripheral systems of this type have been in use for several 
years in our laboratory. 

FLOATING POINT 

P 

Figure 2-STAR-IOO section identification 

STAR DATA 
TO CENTRAL CHANNEL 
PROCESSOR 

STATION BUFFER UNIT (SBU) 

STAR 
DATA 
CHANNEL 

CONTROL 
LINES 

STATION CONTROL UNIT (SCU) 

Figure 3-Basic station 

PERFORMANCE MEASUREMENTS 

TO PERIPHERAL 
DEVICES 

As of December 1973 about % of the instruction vocabulary 
of the STAR-100 has been verified for correct performance on 
either of two central processors. This verification includes the 
extensive range of interrupt possibilities as well as most of the 
instruction combinations. As a result of these tests we have 
verified the raw performance potential of the STAR-100 via 
the contract SAMPLE PROBLEM. This test is representa
tive of the best use of the STAR-l()() in forming arithmetic 
results on packed arrays of data in either 32-bit or 64-bit 
floating pointing format. Some 32 billion intermediate results 
are correctly formed in 625 seconds yielding a rate of greater 

.05 CARD 
READER 

/1
: ····!··1:~15CARD 

I L ____ ,:: .. '~ PUNCH 
512 TRAIN 

I PRINTER ~2nd LEVEL STATIONS - --- _________ J 

Figure 4-Typical STAR-IOO system 



The Control Data STAR-lOO-Performance Measurements 387 

than 50 million results per second. Other meaningful per
formance measurements await the installation of the STAR 
Operating System and appropriate compilers, interpreters 
and assemblers on the STAR-loo (MARCH-MAY 1974). 

The performance potential of the peripheral system has 
been reported in the previous NCC.2 

SOFTWARE REQUIREMENTS 

The general purpose instruction repertoire and control 
facilities of the STAR-1oo were designed to facilitate the de
velopment of dynamic recursive languages such as PLj1, 
ALGOL and APL. Users, in general, have continued to use 
FORTRAN practices in code development as well as for 
execution time service routines. Thus the'STAR-loo System 
will require the implementation of FORTRAN (ANSI 1973) 
with substantial enhancements before the official release date 
in 1974. The planned enhancements to FORTRAN can be 
characterized as explicit APL-like monadic and dyadic func
tions in a static pre-defined environment. The expansions 
include: 

1. Subscripting (K, I, L, M, N, J, S) 
implied DO loop (K, I, L, M, J, BEGIN :END: 
DELTA) 
cross section (K, I, *, M, N, J, S) 
offset (K, I, L, lVI, N, J, S; LENGTH) 
where any construct that specifies operations on an 
ARRAY will form a VECTOR instruction; other 
constructs will be executed in the conventional in':' 
struction sequence. 

2. New Data Types 
BIT one bit per bit of memory 
SPARSE an order vector BIT mapping of an 
ARRAY 
DESCRIPTOR a scalar containing the length 
and base address of an ARRAY or CHARACTER 

3. ARRAY INTRINSICS and BASICS 
4. ARRAY FUNCTIONS 

where an ARRAY argument is processed to return an 
ARRAY result. 

5. Selection Operations 
controlled store 
compress 
expand 

C=B. CNTRL. A 
C=B. COMPR. A 
C=B. EXPAND. A 

gather C = 1. COMPR. A 
scatter C=1. EXPAND. A 
where A is an ARRAY, B is BIT, C is the result, and 
I is an Indexlist. 

6. ARRAY ARITHMETIC 
7. ARRAY TESTS 

compare B=A. RELATIONAL. C 
search I=A. RELATIONAL. C 
select 

The general theme of these expansions is to produce a 
language super-set which could be compiled and executed on 
a conventional computer having the suggested language con
structs in its compiler. FORTRAN remains a language fixed 
at compile time with an even larger set of reserved words. 

Code optimization for the STAR-1oo computer is a rich 
and rewarding field in terms of potential performance im
provements. The compiler must allocate the use of the regis
ter file, eliminate common sub-expressions, minimize redun
dant address calculations and exploit the special hardware 
facilities of the STAR-1oo. In many cases a conventional 
FORTRAN program must be de-compiled in order to deter
mine the intent of the programmer (INNER PRODUCT, 
INITIALIZATION, etc.). 

The same expansions to FORTRAN would be required for 
the STAR implementation of PLj1 or ALGOL. APL makes 
full use of the STAR-1oo via APL*STAR. 

CONCLUSION 

This project required the services of many divisions in 
CONTROL DATA, particularly the Advanced Development 
Laboratory. Many of the concepts utilized in the STAR-1oo 
have been supplied by the programming community in gen
eral. These concepts were built into the STAR-1oo in response 
to the question: "Just what is it that these programmers 
do?" 

REFERENCES 

1. Iverson, K. E., A Programming Language, Chapter 1, pp. 1-40, 
Wiley, 1962. 

2. Hohn, W. C., and P. D. Jones, "The CONTROL DATA STAR-
100 Paging Station," Vol. 42 N.C.C. Proceedings 1973, pp. 421-426. 

3. Control Data, ST AR-l00 Features Manual, Pub. No. 60418100 
October 1973, Control Data Corp., St. Paul, Minn. 55112. 



( 



Operational experiences with the TI Advanced Scientific Computer 

by W. J. WATSON and H. M. CARR 

Texas Instruments Incorporated 
Austin, Texas 

INTRODUCTION 

Since 1966 a large computer development program has been 
conducted by Texas Instruments. The goal for this effort was 
to provide needed capacity for supporting seismic processing, 
plus offering a general purpose capability for large scientific 
problems. 

This development has resulted in the Advanced Scientific 
Computer (ASC)-a highly modular system offering a ",ide 
spectrum of processor power, memory sizes, and I/O capabil
ity. The ASC is a high-speed, large-scale processing system 
featuring extensive use of pipelining, multiple arithmetic 
units, separate control processors, large and fast central 
memory, and extensive user software aids. The central 
processor has both scalar and vector instruction capabilities. 

First delivered in 1972 and placed into operational status 
during 1973, several operational ASC systems now offer 
extremely high processing rates for particular classes of 
problems. 

OVERVIEW OF THE SYSTEM 

The major subsystems of a typical configuration are shown 
in Figure 1: the central memory, the central processor, the 
peripheral processor, on-line bulk storage, a digital communi
cations interface, plus a selection of standard peripherals. 

The peripheral processor has been designed for executing 
the operating system. The central processor has been designed 
expressly to provide high computing speeds when operating 
upon large arrays of data. The central processor operates as 
a slave to the peripheral processor. This design approach was 
chosen to maximize the overlapping of system overhead tasks 
with the execution of user programs. In operation the job 
stream is analyzed by the peripheral processor. The language 
processors, plus user object code, are executed by the central 
processor. System control and I/O tasks are processed by the 
peripheral processor. I/O is routed through high-speed, 
head-per-track disc storage. A data communications interface 
for the common carriers is provided for the support of remote 
batch and interactive terminals. Standard types of peripherals 
are also provided. The central memory serves as the common 
communications and access storage medium for these 
subsystems. 

389 

CENTRAL :\1EMORY 

The ASC central memory consists of a memory control 
unit (MCU) and appropriately sized modules of high-speed or 
medium-speed central memory. Optionally, a medium-speed 
central memory extension can be used in conjunction with a 
high-speed memory. 

The MCU is organized as a two-way, 256-bit/channel 
(8-word) parallel access traffic net between eight independent 
processor ports and nine memory buses, with each processor 
port having full accessibility to all memories. The nine 
memory buses are organized to provide eight-way interleaving 
for the first eight buses with the ninth bus used for the central 
memory extension. The MCU provides the facilities for 
controlling access from the eight processor ports to a CM 
having a 24-bit address space (16 million words). A port 
expander can be utilized to expand the number of processor 
ports. Figure 2 illustrates this structure. . 

The semiconductor high-speed central memory modules 
have a cycle time of 160 ns and a read time of 140 ns. 
Additionally, all transfers are 256 bits (eight 32-bit words) 
with a Hamming code providing single-bit error correction 
and double-bit error detection for each 32-bit word. High
speed central memory is typically divided into eight equal
sized modules which allow for eight-way interleaving. 

CENTRAL 

MEMORY 

CPITRAL 
PROCESSOR (CP) 

PERIPHERAL 
PROCESSOR (PP) 

DISC STORAGE 

DATA COMMUNICATIONS 

PER IPHERALS 

~ COMON CARRIERS 

Figure 1-Major ASC subsystems 



390 National Computer Conference, 1974 

INTERLEAVED 
HIGH-SPEED OR 
MED lUM-SPEED 
MEMORY MODULES 

r1E~()PY 

CONTROL 

UNIT 

(MCU) 

PRIMARY 
MEMORY 
ACCESS PORTS 

SECONDARY 
MEr1lRY 
ACCESS PORTS 

r------7---------- L
------ 1 

----------~----------INTERLEAVED MEDIUr1-SPEED MEMORY MODULES 

: M"~~~6~L 
EXTENSION 
(OPTIONAl) 

Figure 2-Modular structure of the ASC central memory 

The optional central memory extension allows large 
amounts of medium speed memory (1 p's semiconductor 
technology) to be used in the normal address space of central 
memory. Block transfer between memory extension and 
high-speed memory is controlled by the peripheral processor 
and will transfer at a rate of 40 M words per second. 

Memory mapping registers and protection registers are 
used to facilitate central memory management and access 
control of the ports. 

CENTRAL PROCESSOR 

The central processor provides both scalar (single operand) 
and vector (array) instructions at the machine level. The 
basic instruction size is 32 bits, with 16-, 32-, or 64-bit 
operands. The single instruction stream, which contains a 
mixture of scalar and vector instructions, is preprocessed by 
the instruction processing unit. 

The central processor design is such that one, two, three, 
or four execution units or "pipes" can be provided. These 
units employ the pipeline concept in both scalar and vector 
modes. A single execution unit can have up to twelve scalar 
instruction in process at one time. From one to four vector 
results can be produced every 60 ns, depending on the 
number of execution units provided. 

The CP has 48 program-addressable registers. This group 
of 32-bit registers consists of sixteen base address registers, 
sixteen arithmetic registers, eight index registers, and eight 
vector parameter registers. This last group is used to extend 
the instruction format for the complete specification of vector 
instructions. 

The· CP scalar instruction repertoire includes an extensive 
set of load and store instructions: halfword, full word , and 
doubleword instructions, with immediate, magnitude, and 
negative operand capabilities. Ability to load and store 
register files and to load effective addre:sses is also available. 
Arithmetic scalars include various adds, subtract, multiply, 

and divide for halfword (16-bit) and fullword (32-bit) fixed 
point numbers and fullword and doubleword (64-bit) floating 
point numbers. Scalar logical instructions are provided as are 
arithmetic, logical, and circular shifts. Various comparison 
instructions and combination comparison-logical instructions 
are provided for halfword, fullword, and doublewords. l\Iany 
combinations of test and branching instructions with incre
menting or decrementing capability are also available. 
Stacking and modifying arithmetic registers can be done with 
single instructions. Subroutine. linkage is accomplished 
through branch and load instructions. Format conversion for 
single and doublewords, as well as normalize instructions, are 
available. 

The vector capabilities of the CP are made available 
through the use of VECTL (vector after loading vector 
parameter file) and VECT (assumes parameter file is already 
loaded) instructions. The vector repertoire includes such 
arithmetic operations as add, subtract, multiply, divide, 
vector dot product, matrix multiplication, and others for both 
fixed point and fl'oating point representations. Vector 
instructions are also available for shifting; logical operations; 
comparisons; format conversions i normalization; and special 
operations-such as l\Ierge, Order, Search, Peak Pick, Select 
and Replace, among others. 

One important characteristic of the vector instruction 
capability is the ability to encompass three dimensions of 
addressability within a single vector instruction. This is 
equivalent to a nest of three indexing loops in a conventional 
machine. 

The basic structure of the CP, shown in Figure 3, has three 
major components: the instruction processing unit (IPU) for 
non-arithmetic stages of instruction processing for the CP 
instruction stream, the memory buffer unit (MBU) to provide 
operand interfacing with the central memory, and an 
arithmetic unit (AU) to perform the specified arithmetic or 
logical operations. Figure 3 shows a CP diagram for 2- or 
4-pipeline CP's, each with a corresponding number of 
MBU-AU pairs. Note that a memory port is required for the 
IPU and, in addition, one memory port for each pipeline 
(MBU-AU pair) in a CPo 

A significant feature of the CP hardware is an operand 
look-ahead capability which causes memory references to be 
requested prior to the time of actual need. Double buffering 

PRIMARY 
MEMORY 
PORTS 

r-----l 

{~ 
~

/\ 

I / \ 

i$$ 
~clJ L _____ ..J 

TWO-PIPFLINE CP 

PRIMARY 
MEMORY 
PORTS 

r---------, 

{~ I 

: /TI'1' I :I //1/ \. \, 

1~·/:661 : MBU MBU 9 Ti: 
I ~ I I 

: AU AU f3~: 
L ________ =.! 

FOUP-PIPFL INE" CP 
:.::;c .;~ 

Figure 3-Basic structure of the CP 



Operational Experiences with the TI Advanced Scientific Computer 391 

in multiple 8-word (octet) buffers for each pipeline provides 
a smooth data flow to and from each arithmetic unit. The 
pipelined AU achieves its highest sustained flow rate in the 
vector mode, typically a result each 60 ns per AU, or an 
av€rage of 15 ns per result for a 4-pipe central processor. 

Instruction processing unit 

The primary function of the instruction processing unit 
(IPU) is to supply a continuous stream of instructions for 
execution by the other parts of the CPo One Central Memory 
port is required to provide the instruction stream. Two 8-word 
(octet) buffers are utilized to achieve a balanced stream of 
instructions from memory to the IPU. Instructions are 
transferred from memory in octets as are all other references 
to memory for fetching or storing of information. 

Up to 36 instructions in various stages of execution can be 
overlapped within the 4-pipe CPo There are twenty positions 
for instructions in the 2-pipe CP and twelve positions for 
instructions in the I-pipe CPo Four levels are contained 
within the IPU, and eight levels are contained in each 
arithmetic pipeline (MBU-AU pair). The IPU performs 
routing of instructions to the MBU-AU pairs based on an 
optimum use of arithmetic unit capability. 

Vector processing is altered by software in order to 
distribute segments of the vector for multiple pipe systems. 

Several features are provided to alleviate the potential 
problems of branches and instruction dependencies in the 
instruction pipeline. 

Memory buffer unit 

The memory buffer unit (MBU) provides an interface 
between central memory and the arithmetic unit. Its primary 
function is to supply the arithmetic unit with a continuous 
stream of operands from memory and to provide for the 
storing of the results back to memory. All references to 
memory, whether for fetching or storing, are made in 8-word 
increments (octets). 

The MBU has three double buffers, one octet per buffer, 
called the "X" and "Y" buffers for input and the "Z" buffers 
for output. This double buffering is provided so that pipeline 
processing can be sustained at a high rate with minimal 
memory access conflicts. 

Arithmetic unit 

The primary function of a CP arithmetic unit (AU) is to 
perform the arithmetic operations specified by the operation 
code of the instruction currently at the AU level. There is one 
AU per pipeline in the CP, each having a 60 ns basic cycle 
time. A distinguishing feature of an AU is the pipeline 
structure which allows efficient execution of .the arithmetic 
part of all instructions. There are eight exclusive partitions of 
the AU pipeline involved, each of which can provide an output 
every 60 ns. These eight sections are (1) receiver register, 

FLOATING ADD FIXED MULT 

I 

I 

~ 
I • 

RECEIVER REGISTER I 
I L ___ 

" 
EXPONENT SUBTRACT 

~r 

ALIGN 

MULTIPLY :--, 
• • ADD 

L ___ 
~, 

NORMALIZE I 
ACCUMULATE I 

-, 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

_...1 

-..., 
I 
I 
I 
I 
I 

• .. ---
I 

_-1 

OUTPUT 

I 

~, • RESULT RESULT 

Figure 4-Arithmetic unit pipeline 

(2) exponent subtract, (3) align, (4) add, (5) normalize, (6) 
multiply, (7) accumulate, and (8) output. Figure 4 shows how 
different sections of the AU are utilized for execution of 
particular instructions; i.e., floating point addition and fixed 
point multiplication. 

An AU is a 64-bit parallel operating unit for most scalar 
and vector instructions. Exceptions are double length 
multiply and all types of division. In these circumstances 
various combinations of the components of the AU are 



392 National Computer Conference, 1974 

utilized; and, therefore, more than one clock cycle is required 
to complete these arithmetic operations. 

THE PERIPHERAL PROCESSOR 

The peripheral processor (PP) is a powerful multiprocessor 
designed to perform the control and data management 
functions of the ASC. Several aspects of the implementation 
of the peripheral processor concept greatly increase the 
effectiveness of the ASC system. 

The PP is a collection of eight individual processors called 
virtual processors (VP's). Each VP has its own program 
counter along with arithmetic, index, base, and instruction 
registers. The eight VP's share a read only memory, an 
arithmetic unit, an instruction processing unit, and a central 
memory buffer. Use of the common units is distributed among 
the VP's using sixteen single 85 ns cycles. When an equally 
distributed sequence of time units is used, each of the eight 
VP's receives two 85 ns cycles every 1.4 J.LS. The typical PP 
instruction requires two 85 ns cycles for completion. The 
distribution of available time units can be dynamically varied 
to suit particular processing requirements. 

The 4K 32-bit words of read only memory within the PP 
is utilized for program storage and execution of those short 
routines which are highly utilized by the VP's, such as 
polling loops. 

Because the PP is intended to perform control functions 
rather than execute mathematical algorithms, the instruction 
set is oriented toward control operations and does not require 
multiplication, division, or floating point operations. The 
instruction format is similar to that of the central processor, 
using a 32-bit word for each instruction. Instructions are 
provided for bit (1 bit), byte (8 bits), halfword (16 bits), and 
fullword (32 bits) operations. 

Each VP has direct access to the entire central memory for 
program execution and data storage. Therefore, a single copy 
of reentrant code can be executed simultaneously by more 
than one VP. 

The communications register (CR) file contains sixty-four 
32-bit word registers which are program addressable by the 
VP's. The CR file serves as the principal storage media for 
control information necessary for the coordination of all parts 
of the ASC system. 

DISC STORAGE 

Disc storage is the principal secondary storage system for 
the ASC system. Disc storage consists of head-per-track 
(HIT) disc systems supplemented by positioning-arm disc 
(PAD) systems. 

The HIT disc system is a high-performance device whose 
effective performance is further enhanced because the operat
ing system utilizes a shortest-access-time-first (SA TF) 
algorithm for data transfers. This combination of hardware 
and soft"rare pro"\rides a 'Ter~l high effecti'le transfer rate. 
Each HIT disc module has a capacity of 25 million 32-bit 
words with a transfer rate of approximately 500K words per 

second. Using the shortest-access-time-first algorithm, access 
time ",ill average approximately 5 ns which results in an 
exceptionally fast "effective" transfer rate. 

DATA COMMUNICATIONS 

The data communication system is very modular and, thus, 
externally flexible in the various devices which may be 
utilized for communication with the ASC. D:ata communica
tions are controlled by a data concentrator which, in turn, 
interfaces to the ~ICU through a channel control device. 

The data concentrator is a TI-980A minicomputer 
equipped with special-purpose hardware communication 
interface units on its direct memory access ports. 

The data communications system presently supports com
munication with three types of stations: high-performance 
user terminals, other large computers, and remote concentra
tors. The system can be easily extended to support smaller 
terminals down to the teletype level. These stations may be 
either remote or local. 

Remote links are presently implemented with non
switched, full duplex common carrier data transmission 
facilities. Data is transferred over these links synchronously 
at rates determined by the modems and common carrier 
bandwidths. The data communication system supports 
transfer rates up to a maximum of 240,000 bits per second. 

PERIPHERALS 

Standard types of magnetic tape drives, card equipment, 
and printers have been interfaced with the ASC. These 
interfaces attach to primary or secondary memory ports 
through a variety of standard selected and multiplexed data 
channels. A subset of the system's peripherals can also be 
interfaced via the communications register file. 

SYSTEM SOFTWARE 

Software design and development for the ASC system has 
progressed in parallel with development of the hardware. 
This was accomplished through the use of simulators, meta
assemblers, and higher level programming languages imple
mented on the systems supporting Texas Instruments' 
Corporate Information Center. Thus, the first version of this 
software was placed into operational status v.rith the ASC 
prototype machine. The major software capabilities are 
discussed in the next few paragraphs with emphasis being 
given to those attributes "\vhich provide comprehensive and 
flexible programming facilities for the user. 

ASC Fortran language 

The most obvious interface between the ASC system and 
a user is "',rith the translation of the user-written program into 
machine level instructions that efficiently utilize the special 
hardware features in the system. Texas Instruments has 



Operational Experiences with the TI Advanced Scientific Computer 393 

attempted to make this interface a smooth one by effort 
invested in compiler techniques. The result of this effort is the 
ASC NX Compiler, a highly optimizing, user oriented, 
software package that will produce code acceptable to a 
central processor with one, two, three or four pipelines 
(arithmetic units). 

The ASC's Fortran language is an extension of ANS 
Fortran. The added language features permit the ASC 
Fortran programmer to define and use subarrays, cross
sections of arrays or subarrays, array assignment statements, 
and array intrinsic functions. This is not to provide unique 
access to hardware features, but to simplify the programming 
required for complex problems. 

The ASC Fortran compiler was designed to meet the 
demands of the professional programmer. Its primary function 
is to trallslate Fortran code into object code which will 
execute the program in the shortest possible time. Because 
the ASC has both scalar and vector instructions, the compiler 
has the capability to recognize array-oriented operations 
specified in standard Fortran and to generate the equivalent 
vector instructions to perform the required operations. To 
provide the programmer direct access to the specialized vector 
instructions, array intrinsic and array generation intrinsic 
functions are provided. 

The ASC Fortran compiler produces highly optimized 
obj ect code with complete diagnostic analysis and messages. 
In general, the optimizing task is accomplished by performing 
optimization on the source program logic and on the object 
code instructions produced. Vector instructions are used 
where feasible. Scalar operations are reordered wherever 
possible without affecting results, so as to minimize both 
pipeline and memory reference delays. In addition, the 
compiler provides a complete set of informative messages 
regarding applied optimization procedures and where source 
program logic prevents optimization. 

The optimizing algorithms encompass such areas as 
conventional optimization, instruction scheduling and vector 
generation with optimization. 

Mathematical library 

The ASC Mathematical Subprogram Library is unique in 
that it uses both scalar and vector capabilities. The scalar 
function subprograms include all of the single and double 
precision functions traditionally provided in Fortran libraries. 
In particular, it contains all of the ANS Fortran mathematical 
functions and all of the IBM S/360 Fortran mathematical 
functions. The vectorized math function subprograms exploit 
the vector instruction set of the ASC. A single call to a 
vectorized math function subprogram causes that function to 
be evaluated for the entire vector of arguments. The evalua
tion is effected by a sequence of vector instruction executions. 

Both the scalar and the vectorized math function sub
programs can be used by the Fortran and assembly language 
progrfullmer. The Fortran compiler employs the vectorized 
math subprograms to replace multiple calls to a scalar 
subprogram when possible; however, this action may be 

overridden by the use of a Fortran compiler specification 
option. 

Assembler 

The ASC Assembler is a meta-assembler or translator 
which facilitates symbolic coding of the ASC Central or 
Peripheral Processors at the instruction level. 

Linkage editor 

The ASC Linkage Editor creates a load module for 
execution by linking separately assembled or compiled object 
modules obtained from the job input stream, user libraries or 
system libraries. Linking is accomplished by relocation, by 
resolving external references, and by allocating virtual 
memory. 

Job specification language 

The Job Specification Language (JSL) is a user-oriented 
language. It allows the user to specify the programs to be 
executed, the data files to be made available, the dependen
cies, if any, between individual programs of a job, and 
various cataloging and data management functions which 
may be specified. The user may specify and control a job 
without detailed knowledge of the Operating System. 
Wherever possible, default conditions have been built into 
this language so that only a minimum specification need be 
given by the user. 

The Job Specification Language is composed of job 
definition statements, program processing statements, file 
processing statements, cataloging statements, and macro 
definition statements. It is an extendible (macro facility), 
programmable specification language rather than a set of 
control cards. The philosophy has been to provide many 
explicit statements with relatively few parameters for each, 
rather than a few statements with many operand fields that 
provide all functions. 

The language provides JSL variables which allow the 
programmer to pass control information to and among CP 
programs at execution time. JSL control statements can be 
used to test these variables to determine the programs to be 
executed next. An executing job can initiate a deferred job; 
the decision to do so could be based on the value of a JSL 
variable within the executing job. 

Operating system 

The ASC General Purpose Operating System (GPaS) 
schedules and allocates system resources in response to user 
service requests in a multiprogramming environment. GPaS 
provides input/output service, data transfer -vvithin the 
system; file management services, and other system services 
in a straightforward manner. The utility and accessibility of 
the Central Processor to user programs is increased by 



394 National Computer Conference, 1974 

H/1:g~~tttE~ND DISC INTERFACE HIT 25M WORDS 500K WORDS/SEC. 
UNIT 

E H/~O~~~'tt~:ND DISC INTERFACE HIT 25M WORDS 500K WORDS/SEC. X UNIT 
P 
A 
N 

H 11:J=H~:tctE ~ND DISC INTERFACE D HjT 25M WORDS 500K WORDS/SEC. 
E UNIT 
R 

M 
E 

Hi1:g:ir\~CtE ~ND DISC INTERFACE HIT 25M WORDS SOOK WORDS/SEC. M 
0 UNIT 
R 
Y 

r - - - - - CP- - - - --, 
I I 

TWO 1500 
CARD MIN. 

THREE 1200 
LINE MIN. 

TWO 100 
CARD MIN. 

TEXT EDITING 
CRTS (TWo) 

OPERATOR 
COMM. 

I 
I 
I 
I 
I 
I 

CARD READER LINE PRINTER PUNCHES TWO CRTS 

(A) 114219B 

..J 

TAPE CONTROLLER 

CHANNEL NUMBER 1 
SECONDARY STORAG 

CHANNEL NUMBER 2 
SECONDARY STORAGE 

TAPE 
SWITCHING 

UNIT 
} 

6 DUAL DENSITY 
9 TRACK 800 1600 
BPI TAPE DRIVES 

} 
3 DUAL DENSITY 
7 TRACK 556 800 
BPI TAPE DRIVES 

Figure 5-GFDL ASe configuration 

GPOS performing all overhead functions in the Peripheral 
Processor. The operating system isolates the control, schedul
ing, and resource allocation algorithms for ease in "tuning" 
the system to match the specific requirements of each 
installation. The overall system architecture is maintained to 
accommodate hardware and software system growth and 
flexibility. GPOS, by its simplicity and modular design, 
minimizes the system use of central memory with a small 
resident system and the remainder of the system non-resident. 

The design of GPOS exploits hardware features unique to 
the ASC. Most important of these features is complete access 
to central memory by the PP. Thus, a single reentrant copy 
of code is available to all processors; and, only a branch 
instruction is needed to switch a Virtual Processor from one 
function to another. The Communications Register (CR) file 
is used to allow one VP to control the other seven, while 
common access to the rest of this file supports communication 
between the processors and other system components. 

OPERATIONAL HISTORY 

The prototype ASC initially completed its checkout during 
the Spring of 1971. The system (Serial #1) was available for 
use as a software development tool and for customer demon
strations for the remainder of 1971. In 1972 the prototype 

was moved to a permanent location at the TI facility in 
Austin. During the period of downtime, a retrofit of the 
hardware was carried out to incorporate the latest version of 
circuits and boards and to support a production environment. 
System 1 was operational early in 1973 and is currently being 
devoted to software development and support of application 
program conversion to the ASC. 

ASC #1 is configured with a one-pipe central processor, 
128K words of high-speed central memory, 128K words of 
memory extension, a complement of head-per-track disc 
storage, a data communications interface, plus standard tape 
and paper devices. 

Experience with an ASC operating in a center devoted to 
seismic production work is currently being gained in the TI 
facility at Amstelveen, Holland. This system (Serial #2) was 
delivered early in 1973 and essentially duplicates the capabil
ities described for the prototype machine. Additionally, 
several seismic interactive terminals are interfaced both 
locally and remotely to this system. 

Seismic operational requirements are characterized by 
large data bases, much magnetic tape input and output, many 
job steps composed of long computational sequences, and the 
need to precisely control a complicated series of such jobs. In 
addition to the high computational speeds available on the 
ASC~ the seiswic center experience is shmving that other 
ASC features are valuable when applied to this application. 



Operational Experiences with the TI Advanced Scientific Computer 395 

Head-per-track disc storage, management of the data ba.ses 
and scheduling by the dedicated virtual processors, and Job 
control available via the JSL language appear to match the 
environment of seismic work. Applications programs are 
written in standard Fortran, and no need has been found to 
supplement the available compiler opt~zation by a~ditional 
hand coding. The system is well supportmg the reqUIrements 
by . generating significant improvements in unit p~ocessing 
costs and by permitting new processing technologtes to be 
econ~mically feasible. Improved productivity of geophysicists 
and geologists through real-time interactive sessions is ?ei~g 
achieved. It is expected that the use of ASC for selSIillC 
processing capacity will continue to grow at ~ rapid rate. 

Operational experience has also been gamed from the 
application of the ASC to the U.S. Gover~ent data-proc~s
ing problem of ballistic missile defense. Senal #3, a one-~lpe 
ASC with a configuration similar to the previously descnbed 
systems, was delivered to the U.S. Army in ~he Sum~er of 
1973. It is to be used for research into processmg techmques 
employed in ballistic missile defense. 

Application to long-range prediction of the earth's weath.er 
is the intended use of the largest and fastest ASC to be built 
to date. The National Oceanic and Atmospheric Administra
tion (NOAA) has contracted for an ASC (Serial #4) for its 
Geophysical Fluid Dynamics Laboratory at Princeton Uni
versity. Delivery is scheduled for early in 1974. The ASC is 
configured with a four-pipe central processor, one million 
words of high-speed central memory, head-per-track disc, text 
editing terminals, two channels of high density secondary 
storage devices, and standard magnetic tape and paper 
devices. This configuration is illustrated in Figure 5. Much 
experience has been gained using benchmark programs 
derived from weather models and the actual weather predic
tion codes themselves. Emphasis has been upon Fortran code 
generated by analysts and weather scientists instead of 
hand-optimized machine language. Results obtained from the 
system while undergoing final checkout at TI's facility showed 
the speeds available to be several times faster than other 
current computer systems. 

For weather codes characterized by large data bases that 
are updated frequently, sequences of heavy computational 
work using the data, and mathematical operations performed 
on long arrays of data, the ASC is proving to be a valuable 
asset. The large central memory enables one to maintain 
ample data so that the central processor is utilized to a very 
high degree. The I/O and multiprogramming capabilities 
managed by the operating system resident in the peripheral 
processor also support high CP workloads. 

(1) 

TABLE I-Simple Examples of Vectors 

DO 
DO 
DO 

10 K=l, 50 
10 J =1,50 
10 1=1,50 

10 Z(I, J, K) =X(I, J, K) '" Y(I, J, K) 

(2) Z=X*Y 

(3) VECTL (#460, B2) VMF 

TABLE II -Vector Instructions Produced from Weather Code 

(1) DO 100 K=l,lO 

(2) 

DO 100 1=1,144 

TBXY(I, K)=(T(I+1, K, J)+T(I, K, J» * 0.5 
TXY(K, K)=(T(I+1, K, J)-T(I, K, J» * RDX(JC) 
PBXY(I, K)=(PS(I+1, K, J)+PS(I, K, J» * 0.5 

100 PXY(I, K)=(PS(I+1, K, J)-PS(I, K, J) * RDX(JC) 

VECTL (#3B8, B2) 
VECTL (#3CO, B2) 
VECTL (#3C8, B2) 
VECTL (#3DO, B2) 
VECTL (#3D8, B2) 
VECTL (#3EO, B2) 
VECTL (#3E8, B2) 
VECTL (#3FO, B2) 

VAF 
VMF 
VSF 
VMF 
VAF 
VMF 
VSF 
VMF 

MAXIMIZING PERFORMANCE 

Experience thus far has shown that for the applications 
that have been considered by ASC users the most cost
effective performance is realizable when the capabilities of 
ASC Fortran and the optimizing compiler are used. Although 
particular sequences of code can be found wherein hand 
coding will improve the speed of execution, for the broad 
range of programs where much applications code is involved, 
compiler-generated object code is the best choice. American 
National Standard Institute (ANS) Fortran is completely 
sufficient, and vector instructions are readily produced from 
this Fortran. ASC extensions to the Fortran are sometimes 
found to be useful, not to provide unique access to some hard
ware feature but to simplify notation involved in writing the 
program so that the programmer can deal more directly with 
the mathematics of the application. 

The ASC system design allows easy user access to perfor
mance enhancement through the use of additional central 
processor "pipes." Compiler software is responsible for both 
the generation of vector instructions and the partitioning of 
these vector operations over multiple pipes. Protection of the 
user from vector hazard conditions is carried out by the 
compiler. Partitioning of scalar instructions for multiple pipes 
is carried out by the CP hardware. Extensive checks are made 
by hardware to protect the user from illegal scalar conditions 
that might occur. For mixtures of vector instructions and for 
mixtures of scalars and vectors, the compiler prevents illegal 
conditions by the use of directive instructions for the CP to 
operate in either parallel mode (FORK) or sequential mode 
(JOIN). Thus, the burden is on the system instead of the 
user. Programs compiled for one-pipe ASC's will execute 
correctly on multiple-pipe systems. Performance \\1.ll be 
increased via a recompilation for the multiple-pipe machine. 

Some typical examples of efficient code produced from 
present applications \\1.11 illustrate the optimization level 
provided by the system. Table I shows the type of instruction 
generated by the compiler from a typical triple-nested DO 
LOOP. 

(1) gives the Fortran source with three levels of indexing, 
(2) is an alternate notation that could be used, and 
(3) is the single vector instruction produced. 



396 National Computer Conference, 1974 

TABLE III-ASC Maximum Performance Rate 

ASC IX (ONE AU) ASC 4X (FOUR AU'S) 

32-BIT 64-BIT 32-BIT 64-BIT 

RESULTS/SEC RESULTS/SEC RESULTS/SEC RESULTS/SEC 

ADD 
MULTIPLY 
DOT PRODUCT 

16 X 106 9.2 X 196 64 X 106 37 X 106 

16 X 106 5.3 X 106 64 X 106 21 X 106 

16 X 106 4.0 X 106 64 X 106 16 X 106 

It is a floating vector multiply instruction preceded by the 
loading of the vector parameter registers. Table II gives 
some typical code found in weather models. A double-nested 
DO LOOP with typical indexing conventions is shown in (1). 
(~) gives the sequence of instructions produced by the ASC 
compiler. All instructions are vectors, and the necessary 
indexing information for addressing purposes is contained in 
each vector parameter file. No scalar instructions are neces
sary in this example. 

A powerful example of vector instruction capabilities is 
found in the use of the hardware-implemented dot-product 
operation. This operation consists of the multiplication of 
appropriate elements of two arrays followed by the sum of the 
products. To implement a matrix multiply operation from 
Fortran, the ASC compiler uses a single dot-product instruc
tion and the complex indexing capability of the hardware to 
carry out the full matrix multiply. Three levels of addressing 
changes are implied in this case, and the hardware is designed 
to comprehend this level of indexing complexity. 

The execution rate for the elementary operations of matrix 
multiply is one result per clock cycle for a one-pipe CP, or a 
rate of four results per clock cycle for a four-pipe CPo The 
compiler partitions the total matrix multiply across the 
appropriate number of pipes. Therefore, to complete a matrix 
multiply of two N by N matrices, a four-pipe CP will require 
approximately N3/4 times the clock rate in seconds. This does 
not include the startup overhead necessary to fill the pipelines 
with operands. 

TABLE IV-Relative Computer Capacity* Third Generation Systems 

MFR MODEL RELATIVE SPEED 

IBM S/360 MODEL 65 
IBM S/360 MODEL 75 1.5 
CDC 6500 1.5 
CDC 6600 2.5 
IBM S/370 MODEL 165 3.5 
IBM 8/360 MODEL 91 5 
HITACHI HITAC 8800 5 
IBM S/360 MODEL 95 7 
CDC 7600 8 
IBM S/360 MODEL 195 8 

* Data taken from Table E, page 546, Program for the study conference 
on the Modeling ~! .... speets of G6A .... TE, BuJletin of the } .. mcric:1n ~9fctcGrG
logical Society, Vol. 54 No.6, June, 1973. 

It is the authors' OpInIOn that performance indices for 
array-oriented architectures are not meaningful when only 
the Millions of Instructions Per Second (MIPS) factor is used. 
Since a single vector instruction is equivalent to several scalar 
instructions (typically Load, Operation, Increment and Test 
Branch), and the number of data values used determines the 
number of execution of these scalar instructions, MIP ratings 
are ambiguous at best. 

Consider the performance of an ASC producing "results per 
second." In this context "results per second" is the rate at 
which data fetched from central memory can be operated 
upon and the results stored back into central memory. 
Table III shows the maximum performance rates for one- and 
four-pipe ASC systems performing typical arithmetic opera
tions. Assumptions are that the clock cycle is 60 nanoseconds 
and that the pipelines are already filled with operands. 
Vector dot product is a special case in the sense that the 
results per second rate pertains to the elementary operations. 

Another performance measure can be determined from the 
present performance of ASC System #4 executing a particular 
weather benchmark. Although the benchmark is not a full 
weather prediction code, it does have the characteristic source 
code sequences and reflects the ability of the Fortran compiler 
to produce efficient code from a large applications package. 
Execution speed of the benchmark on the IBM Model 91 is 
approximately 246 minutes, and present ASC timing with 
checkout not finalized has already demonstrated approxi
mately 30 minutes. This ratio of 8.2 is a measure of the total 
system performance upon this program. It reflects a mix of 
both scalar and vector instructions as well as I/O and other 
system services. The design of the ASC has been directed 
t.oward matching the real world mix of instructions en
countered in typical applications instead of sacrificing scalar 
capability to provide vector capability. 

In order to compare the observed ASC performance on the 
Weather Benchmark, data found in the Bulletin of the 
American Meteorological Societyl is given in Table IV. Using 
the IBIV[ S/360 Model 65 as the basis of reference, each of the 
systems listed is compared as to relative speed. Using the 
observed ASC/M91 ratio of 8.2, the present ASC speed would 
be 41 in the table. 

ACKNOWLEDGMENTS 

It would not he possible t.o acknowledge all the contributors 
to the development of the ASC; but particular recognition 



Operational Experiences with the TI Advanced Scientific Computer 397 

should be given to lVlessrs. H. G. Cragon, \V. D. Kastner, 
E. H. Husband, D. R. Best, C. M. Stephenson, C. R. Hall, 
F. A. Galindo, E. C. Garth, and N. M. Chandler who 
contributed significantly to the development of the hardware. 
Software concepts are due in large part to the efforts of 
Messrs. L. C. Dean, G. T. Boswell, A. E. Riccomi, F. A. 
Little, W. Winkelman, W. L. Cohagan, and S. D. Nolte. 
Many other members of the Texas Instruments staff have 

also contributed i..YJlIIleasurably in the development of the 
ASC. 

REFERENCES 

1. Program for the study conference on the Modeling Aspects of Gate, 
Bulletin of the American Meteorological Society, Vol. 54, No.6. 
June 1973, page 546. table E. 





Multiprocessor performance analysis 

by JOHN MITCHELL, CHARLES KNADLER, GARY LUNSFORD, and STEVE YANG 

IBM Corporation 
Morris Plains, New Jersey 

INTRODUCTION 

This paper reports the results of a study to determine the 
expected performance of a "classical" multiprocessor. The 
"classical" multiprocessor as used here is a multiprocessor 
consisting of K (K> 1) central processor units which have 
access to N storage units. The tool used for studying the 
performance is a discrete Fortran model of the hardware and 
software. Hardware measurements of the real system per
formance were available for validation of the model. The 
primary indicator of performance is the system thruput in 
millions of instructions executed per second (MIPS). Since 
the application of the hardware is in a real-time system, 
consideration is also given to response times of critical soft
ware tasks. 

The multiprocessor hardware and software described in 
this paper were developed for a U.S. Government project 
(Contract Numbers DAHC-60-71-C-0005/0017) in which 
Western Electric Company and Bell Telephone Laboratories, 
Incorporated had prime responsibility. Sperry Univac was a 
major participant in the hardware development, together 
with Western Electric Company and Bell Telephone Lab
oratories, Incorporated. International Business Machines 
Corp. provided significant support to Bell Laboratories in 
software development. 

HARDW ARE DESCRIPTION 

The multiprocessor of interest is shown in Figure 1. It is 
built up from Processor Units (PU), Program Stores (PS) , 
Variable Stores (VS) , and an Input/Output Controller 
(IOC). There are also spare units of each type that can be 
switched in for system recovery. 

The Processor Unit (PU) contains all of the logic for 
executing the instruction set. It has direct access to Program 
Store for fetching instructions, and direct access to Variable 
Store for fetching instructions or fetching/storing data. In
struction length is 32-bit or 16-bit, depending on the format 
of the particular instruction. A fetch from PS is 64 bits 
(plus parity) or between two and four instructions. Fetches 
from Variable Store are normally 32-bit; two contiguous 
32-bit words may be fetched 'with a single L'>lStruction. The 
processor unit consists of three subunits-Program Control 

399 

(PCU) , Operand Control (OCU), and Arithmetic Control 
(ACU). These three units operate asynchronously and in 
parallel. 

Program Control Unit-The main function of the PCU is 
to fetch instructions from PS (or VS under certain conditions) 
and distribute these instructions to the other two control 
units. The PCU contains an input instruction buffer of four 
64-bit words. This buffer tends to "insulate" the PCU from 
instantaneous contention at PS, since instructions can be 
fetched faster than the PU can execute them. The buffer is 
normally at least one word ahead of the ACU/OCU. On 
"branch" instructions the next instruction word from both 
sides of the branch is fetched. When the branch decision is 
made, one of these fetches is overwritten by the second word 
of the correct path. The PCU moves instructions from the 
buffer, partially translates, and passes the instructions to the 
ACU or OCU. 

Operand Control Unit-The OCU controls the fetching/ 
storing of operands to Variable Store. Most of its operation 
is controlled by instructions from the PCU. 

Arithmetic Control Unit (ACU)-The ACU performs 
arithmetic or logical operations on data retrieved by the 
OCU or already in registers. The ACU has fixed point and 
floating point capability and all data is expressed in binary, 
two's complement, form. 

The PU instruction execution time varies from 280 nano
seconds add to 5180 nanoseconds square root. The thruput 
is highly dependent on instruction mix and instruction se
quence because of the high degree of parallelism in the 
execution logic. 

A Program Store unit contains two modules of 8192 words 
(64 bits and 4 parity) each. The cycle time is nominally 500 
nanoseconds for each module. The unit has two ports, one 
for each module, and the modules are two-way interleaved; 
Le., odd addresses in one module, even addresses in the 
second module. If the interleaving were perfectly used, a PS 
could supply one word every 250 nanoseconds (4 mega
words/second). With real code, the interleaving is never 
fully utilized and the supply rate is in the range of three to 
four megawords/second. 

Words in PS cannot be modified by the PU; Le., it is a 
read only store in the normal configuration. PS is loaded via 
the IOC from tape or disk under control of the operati.'1g 
system. 



400 National Computer Conference, 1974 

Figure I-Multiprocessor configuration 

A Variable Store unit contains one module of 16,384 64-bit 
words. The cycle time is nominally 500 nanoseconds and 
either one 32-bit word or two contiguous 32-bit words can 
be fetched in one cycle time. Variable store is normally used 
for variables but it can also be addressed for instructions. 
The instruction mode is used for routines which are rolled 
in at very low data rates, for example display formats. 

The IOC is a programmable unit which controls all I/O 
operations. It has direct access to VS and operates on a non
interference basis except when there is contention by PU's 
at a VS. It provides sixteen channels, with lower numbered 
channels serviced more often than higher numbered channels. 

SOFTWARE DESCRIPTION 

The entire collection of real-time software for execution 
on one multiprocessor is called a process. The process is 
composed of timed arrays, where one timed array accom
plishes some defined function. The timed array is composed 
of one or more tasks which in turn are composed of routines 
and subroutines. The task is the basic software unit and is a 
single-process entity; i.e., it is not multiprocessed. In a seven 
PU system, seven tasks can be executing concurrently. These 
seven tasks may belong to the same timed array or to several 
different timed arrays. The routines and subroutines that 
make up the task may be located in different program stores. 
In fact, one result of the study indicated the desirability of 
locating the subroutines of a task in different program stores 
to maximize system thruput. 

Tasks become eligible for execution through enablement. 
There may be several events required before a task is en
abled; e.g., predecessor tasks are completed or an I/O oper
ation is completed. When all of the predecessor conditions 
are satisfied the task is "absolutely enabled" and is placed 
on a queue for execution. Associated with each task is a 
preassigned priority number, based on the importance of 
the task to accomplisrlng the mission of the s3lstem. Tasks 
are placed on the queue in order of their priority number. 
When a processor is available, the highest priority absolutely 
enabled task will execute on the processor. 

A module of the Operating System, the dispatcher, man
ages the assignment of tasks to processors. The dispatcher 
executes on any processor which is available. Its job is to 
search the queue of tasks, find the highest priority task 
which is enabled and transfer control of the processor to 

that task. Notice that under light load, several processors 
may be executing the dispatcher simultaneously, looking for 
a task to execute. Once a task begins execution, it will run 
to completion on its processor unless an error condition 
occurs. 

MODEL DESCRIPTION 

A Fortran model of the hardware/software system was 
developed for use as an analysis tool. The most significant 
design problem of the model was development of an al
gorithm to simulate the effects of contention at the memory 
units. The algorithm which was developed gives good results, 
as determined by comparison of its output with hardware 
measurements. 

The contention algorithm uses three parameters: access 
ratio, memory supply rate, and processor demand. The 
access ratio (AR) is defined as: 

AR = Number of instructions executed 
Number of words (64 bit) fetched 

and is characteristic of each software routine. Recall that the 

16 
--MEASUREMENT 

15 
o MODEL 

14 
IV 

13 

12 

11 

lO 
VI 
a.. 

:E 9 

I- 8 
:::::l 
a.. 
:::::l 7 III e:::: 
:c 
I-

6 J 

1 5 II 

4 

3 

2 

0 J ~' I I I I 
2 3 4 5 6 7 8 9 lO 

NUMBER OF PROCESSORS 

Figure 2-Speed curves, 1 program store 



L.'lStruction length may be 16 bit or 32 bit and also that both 
paths of a branch instruction are fetched. Consequently the 
AR varies from 2 to 4 if there are no branch instructions, 
and may be as low as 0.3 if there are many branches. Analysis 
of the applications code indicated that AR varied from 0.6 to 
2.2 with an average of 1.4. 

The memory supply rate (K) is the words per second that 
a memory can supply under various conditions. The variable 
store unit (VS) is not interleaved and can supply words at a 
maximum rate of l/access time or 2 words/USEC. The 
program store unit (PS) has two ports and is two-way inter
leaved; i.e., even addresses in one module, odd addresses in 
the other module. For PS, the supply rate is a function of 
the number of processors accessing it, and the time distri
bution of the access requests. Consider two processor units 
using one PS. We assume that consecutive requests from 
each PU alternate from odd address to even address and 
that the requests are randomly distributed in time. Then on 
the average, both PU's will need a word from the same 
module one-half the time and from different modules one
half the time. Under these conditions, the supply rate is 
3 words/USEC (K2)' Similar reasoning for three PU's ac
cessing one PS gives Ka = 3.5 words/USEC, etc. 

The processor demand Rpu is the number of instructions 
needed by the processor during each time step of the simu
lation and is derived from the number of instructions in the 
routine being executed. 

15 

14 

13 

12 

11 

10 

9 

8 
MIPS 

6 

4 

3 

o 

PS/PU=I 
EQUAL DISTRIBUTION 
OF WORKLOAD 

- MEASUREMENT o MODEL 

4 5 

NUMBER OF PROCESSORS 

Figure 3-Throughput curves 

III 

Multiprocessor Performance Analysis 401 

(PERCENT OF 

DEOICATED 

SYSTEM) 

PROBABILITY OF CHOOSING MOST POPULAR MEMORY 

o MIX III 

X MIXII 

CONFIGURATION: 
7PU.9 PS. 10VS 

Figure 4-Sensitivity of thruput to biased PS memory usage 

The contention algorithm used is: 

For each PU(PUn) at each D.t: 

(1) Determine the PU demand, :Rpun, and the PS number 
(2) Determine the total number of PU's (k) accessing 

the PS number determined in Step 1. 

(3) R*pun =mi~( :Rpun, k R
pun 

KkXAR) 
~\ LRpuz 

1 

(4) Repeat 1, 2, 3 for VS to obtain Rpun** 
(5) :Rpun *** = min (:Rpun *, :Rpun **) 
(6) Performance Ratio CPR) = Rpun *** /Rpun 

The performance ratio is then used in the model to determine 
the number of instructions actually processed during the 
time step D.t. 

MODEL FEATURES 

The driver for the model is a time line of task enablements 
which is derived from a scenario to which the real system 
must respond. The modules of the operating system which 
are concerned with task management and dispatching are 
modelled such that they are functionally identical to the 
real system. Applications code is characterized by priority, 
number of instructions, access ratio, VS fetches, and PS 
assignment. 

An extensive output module was designed so that a wide 
range of problems could be investigated. For example, a 
time profile of storage utilization can be obtained, which 
can be used to relocate programs in PS to minimize instances 
of high PS utilization. Also data concerning task queueing 
times are available, which are used to study response time. 

STUDY RESULTS 

The performance of the data processor, using the model, 
was studied in three phases. The first phase was to duplicate 



402 National Computer Conference, 1974 

(PERCENT o~· 

DEDICATED 

SYSTEM) 

100% 

90% 

80% 

50% 

40% 

30% 

10 20 30 

o P$ BIAS 
X vs BIAS 

CONFIGURATION: 
7 pu, 'PS. 10VS 

50 60 70 80 90 100% 

PROBABILITY OF CHOOSI NG MOST POPULAR MEMORY 

Figure 5-Sensitivity of thruput to biased memory usage 

some experiments performed on the real system, in order to 
validate the hardware section of the model. The second 
phase was a series of sensitivity analyses to determine the 
parameters which had the greatest effect on system thru
put. The third phase was an evaluation of system performance 
using a detailed characterization of the application software. 

Validation experiments 

Validation experiments were conducted using four different 
instruction mixes, and the results compared with hardware 
measurements. Two types of curves were obtained: speed 
curves, wherein the number of processors was varied from 
one to seven, with only one program store; thruput 
curves, where the number of program stores equals the 
number of processors. The characteristics of the four mixes 
are shown below: 

Uniprocessor 
Mix Thruput (MIPS) Access Ratio 

I 0.50 .34 
II 1. 76 1.24 
III 2.41 1.98 
IV 4.72 3.65 

Mix I consists of all branch type instructions and is a "worst 
case" mix. Mix II and III are arithmetic and logical in
struction mixes and are representative of the applications 
code. Mix IV consists of all "No Op" instructions and is a 
maximum thruput mix. 

The speed curves for these four mixes obtained from the 
model and from hardware measurement are shown in Figure 
2. Good agreement between the model and measurement was 
obtained for Mix I and Mix II. Mix III is characterized by 
an imbalance in the number of words fetched from each 
module of the program store. Thus one of the assumptions 
of the model, "perfect interleaving," is violated. Mix IV 
tends to be very time synchronous in its execution since all 

instructions are the same. This results in less contention at 
the program store than predicted by the model. 

The thruput curves for Mixes II and III are shown in 
Figure 3. For these curves, the number of program stores is 
set equal -to the number of processors. Each time a processor 
completes execution, the program store from which the next 
execution is to be made is randomly selected from all pro
gram stores \vith equal probability. The dashed lines are 
straight line extrapolations of the uniprocessor thruput. 
Notice that if the applications program are designed such 
that an equal distribution of PS usage obtains, there is very 
little reduction in thruput due to PS contention. 

Sensitivity analyses 

A series of studies were undertaken to determine the 
sensitivity of the system thruput to changes in several soft
ware parameters. The parameters considered were access 
ratio (ratio of instructions executed to program store words 
fetched) and bias in memory usage. 

For a configuration consisting of seven PU's, nine PS's, 
and ten VS's and a software design that equally distributes 
demand for memories, the probability that a processor will 
use a particular memory is 1/10 for VS and 1/9 for PS. In 
performing the memory bias studies, the VS and PS prob
abilities were varied to produce results which represented 
memory biases ranging from the dedicated use of memories 
to all processors using the same memory. 

Figure 4 presents the sensitivity dependence of thruput 
upon Program Store utilization bias with a seven PU, nine 
PS and ten VS configuration for the two representative in
struction mixes II and III. The ordinate of the graph repre
sents the achieved thruput as a percentage of dedicated 
thruput; i.e., the thruput achieveable when each PU executes 
out of its own dedicated PS. The abscissa gives the per
centage probability of choosing the most popular PS CPS {}1) 
where a probability of 1.0 equals 100 percent. The zero 

I~ 

90111 

80111 

?(Ml!; AR = 2.2 

THRUPUT 60% 
(PERCENT OF 

DEDICATED 

SYSTEM) 50111 

40% 

30111 AR = 1.0 

20% 

'~j 
iii Iii i 
10 20 30 40 50 60 70 80 90 100% 

PROBABILITY OF CHOOSING MOST POPULAR MEMORY (PS' 

Figure 6-Sensitivity of thruput to biased memory usage, 7PU 9PS I 
I 



probability case is by definition the dedicated case. The 
data were obtained under conditions of zero VS queuing. 

It can be seen from Figure 4 that for a bias of 50 percent 
the thruput falls to 75.8 percent of dedicated thruput for 
mix II and 83 percent of dedicated thruput for mix III, or 
mip rates of 9.35 and 13.88 respectively. These results indi
cate that even with substantial bias (50 percent) in PS #1 
usage, the system provides thruput of greater than 1.3 
mips/PU for two representative instruction mixes. 

Figure 5 indicates the relationship between thruput sensi
tivity and Variable Store Utilization bias for the seven PU, 
nine PS, ten VS configuration with equal probability of 
addressing all PS's. The ordinate of the graph is the achieved 
thruput as a percentage of the dedicated thruput. The 
abscissa gives the probability of choosing the most popular 
memory (VS #1). The zero probability case is by definition 
the dedicated case. The PS bias data are also given for ease 
of comparison. 

The ratio of VS accesses to PS accesses is 0.642 for mix III, 
which is considered to be significantly greater than the ratio 
of 0040 found in the application programs. Thus, the effects 
of VB queuing are magnified in Figure 5 and one observes 
for this mix that VS bias has greater effect upon thruput 
than an equivalent bias in PS usage. For example, a 50 
percent bias in VS usage causes a drop in thruput to 68 
percent, while a 50 percent bias in PS usage reduces thruput 
to 82 percent. 

The results of the Access Ratio Sensitivity study are pre
sented in Figure 6. The data for Figure 6 were obtained using 
the characteristics of mix II and by varying access ratio. 
The ordinate of the Figure is the thruput expressed as a 
percentage of that which a dedicated system can achieve. 
The abscissa is access ratio while the family of curves repre
sents different PS usage biases. The results in Figure 6 
indicate that thruput is very sensitive to coupled variations 
in PS bias and access ratio. However, in the range of 0 
percent to 50 percent PS usage bias, Figure 7 shows that 

THRUPUT 
(PERCENT OF 

DEDICATED 

SYSTEM) 

a BIAS (Pu = .111) 
SO% BIAS (PH = .50 •• 0625 •• 

70%' BIAS (PH = .70. ".0375, . 

90% BIAS (PN = .90, .012S, . 

100% BIAS (PN = 1.0, 0.0, ... 

CONFIGURATION: 
7 PU, 9PS, 10VS 

Figure 7-Sensitivity of thruput to access ratio 

Multiprocessor Performance Analysis 403 

there is less thruput dependence upon access ratio. Figure 7 
presents the same basic data as Figure 6, except the abscissa 
is now PS usage bias. A parametric family of curves is 
generated with a unique thruput curve for each access ratio. 
Figure 7 depicts a relatively slow fall-off in thruput with PS 
bias up to 50 percent for access ratios greater than 1.3. 

System studies 

The model was used to investigate the system thruput 
performance when executing the application programs. All 
of the programs were characterized by their priority, number 
of instructions, access ratio, and variable store accesses, and 
were run under a simulation of the operating system. Many 
model runs were made under different loads and system 
configurations; three runs of interest are presented here. 
The conditions for these runs were: 

Run 1. All code for each program assigned to a single PS. 
VS accesses not simulated. Light load. 

Run 2. Same as Run 1 except heavy load. 
Run 3. Code for each program distributed across several 

PS. VS accesses included. Heavy load. 

The results of these runs are shown in Table 1. We observe 
that the overhead (dispatcher) is reasonably constant, inde
pendent of system load. Also there was a significant increase 
in system thruput when the tasks were distributed in 
Run 3. 

TABLE I -System Results 

System % Utilization 
Thruput 

Run Number MIPS (7 pu) Applications Dispatcher Idle 

1 8.49 34 14 52 
2 9.30 72 14 14 
3 10.89 80 13 6 

CONCLUSIONS 

The model that was developed is a useful tool for investi
gating the system performance under various loads. In com
parison with measurements on the real system, the model 
provided reasonably close results. Of more general interest 
is the 'conclusion that the performance of a multiprocessor 
of the type described here can be optimized by a software 
system design which achieves near uniform distribution of 
the storage unit usage. 

ACKNOWLEDGMENTS 

The authors would like to thank Mr. D. C. Ruberg of Bell 
Telephone Laboratories, Inc., Whippany, N.J. for providing 
data on the performance of the hardware. 





ST ARAN parallel processor system hardware 

by KENNETH E. BATCHER 

Goodyear Aerospace Corporation 
Akron, Ohio 

INTRODUCTION 

The parallel processing capabilit.y of STARAN* resides in 
n array modules (n~32). Each array module contains 256 
small processing elements (PE's). They communicate with 
a multi-dimensional access (MDA) memory through a 
"flip" network, which can permute a set of operands to 
allow inter-PE communication. This gives the programmer 
a great deal of freedom in using the processing capability 
of the PE's. At one stage of a program, he may apply this 
capability to many bits of one or a few items of data; at 
another stage, he may apply it to one or a few bits of many 
items of data. 

The remainder of this paper deals with the MDA memories, 
the STARAN array modules, the other elements of 
STARAN, and the results of certain application studies. 

MULTI-DIMENSIONAL ACCESS (MDA) MEMORIES 

A common implementation of associative processing is to 
treat data in a bit-sequential manner. A small one-bit PE 
(processing element) is associated with each item or word 
of data in the store, and the set of PE's accesses the data 
store in bit-slices; a typical operation is to read Bit i of 
each data word into its associated PE or to write Bit i 
from its associated PE. 

The memory for such an associative processor could be 
a simple random-access memory wi.th the data rotated 90 
deg, so that it is accessed by bit-slices instead of by words. 
Unfortunately, in most applications, data come in and 
leave the processor as items or words instead of as bit-slices. 
Hence, rotating the data in a random-access memory 
complicates data input and output. 

To accommodate both bit-slice accesses for associative 
processing and word-slice accesses for ST ARAN input; output 
(I/O), the data are stored in a multi-dimensional access 
(MDA) memory (Figure 1). It has wide read and write 
busses for parallel access to a large number (256) of memory 
bits. The write mask bus allows selective writing of memory 
bits. Memory accesses (both read and write accesses) are 

* TM, Goodyear Aerospace Corporation, Akron, Ohio. 

405 

controlled by the address and access mode control inputs; 
the access mode selects a stencil pattern of 256 bits,· while 
the address positions the stencil in memory. 

For many applications, the MDA memory is treated as 
a square array of bits, 256 words with 256 bits in each 
word. The bit-slice access mode (Figure 2A) is used in the 
associative operations to access one bit of all words in 
parallel, while the word access mode (Figure 2B) is used in 
the I/O operations to access several or all bits of one word 
in parallel. 

The MDA memory structure is not limited to a square 
array of 256 by 256. For example, the data may be formatted 
as records with 256 8-bit bytes in each record. Thirty-two 
such records can be stored in an MDA memory and accessed 
several ways. To input and output records, one can access 
32 consecutive bytes of a record in parallel (Figure 3A). 
To search key fields of the data, one can access the cor
responding bytes of all records in parallel (Figure 3B). 
To search a whole record for the presence of a particular 
byte, one can access a bit from each byte in parallel 
(Figure 3C). 

The MDA memories in the STARAN array modules 
are bipolar. They exhibit read cycle times of less than 150 
nsec and write cycle times of less than 250 nsec. 

STARAN ARRAY MODULES 

A STARAN array module (Figure 4) contains an MDA 
memory communicating wi.th three 256-bit registers (M, 
X, and Y) through a flip (permutation) network. One 
may think of an array module as having 256 small processing 
elements (PE's), where a PE contains one bit of the M 
register, one bit of the X register, and one bit of the Y 
register. 

The M register drives the write mask bus of the MDA 
memory to select which of the MDA memory bits are 
modified in a masked-write operation. The MDA memory 
also has an unmasked-write operation that ignores M and 
modifies all 256 accessed bits. The M register can be loaded 
from the other components of the array module. 

In general, the logic associated with the X register can 
perform any of the 16 Boolean functions of two variables; 



406 National Computer Conference, 1974 

READIWRITE CONTROL 

t 
WRITE-MASK BUS (25&) 

MDA WRITE BUS (25&) 

IlEMORY 

(&5.536 IITS) READ BUS (256) 

t ADDRESS BUS 

ACCESS MODE BUS 

Figure I-Multi-dimensional access memory 

that is, if Xi is the state of the ith X-register bit, and /i is 
the state of the ith flip network output, then: 

Xi f- q,(Xi, t.) (i=O, 1, .... , 255) 

where q, is any Boolean function of two variables. Similarly, 
the logic associated with the Y-register can perform any 
Boolean function: 

where y. is the state of the ith Y-register bit. The pro
grammer is given the choice of operating X alone, Y alone, 
or X and Y together. 

If X and Yare operated together, the same Boolean 
function, q" is appled to both registers: 

Xif-q, (Xi, Ii) 

The programmer also can choose to operate on X 
selectively, using Y as a mask: 

(where Yi= 1) 

(where Yi=O) 

Another choice is to operate on X selectively while 
operating on Y: 

(where Yi= 1) 

(where Yi=O) 

In this case, the old state of Y (before modification by q,) 
is used as the mask for the X operation. 

For a programming example, the basic loop of an unmasked 
add fields operation is selected. This operation adds the 
contents of a Field A of all memory words to the contents 
of a Field B of the words and stores the sum in a Field S 
of the words. For n-bit fields, the operation executes the 
basic loop n times. During each execution of the loop, a 
bit-slice (a) of Field A is ready from memory, a bit-slice (0) 
of Field B is read, and a bit-slice (8) of Field S is written 

A - BIT -SLICE ACCESS MODE B - WORD ACCESS MODE 

256 256 

25& 256 

Figure 2-Bit-slice and word access modes 

into memory. The operation starts at the least significant 
bits of the fields and steps through the fields to the most 
significant bits. At the beginning of each loop execution, 
the carry (c) from the previous bits is stored in Y, and X 
contains zeroes: 

The loop has four steps: 

Step 1: Read Bit-slice a and exclusive-or (E9) it to X selec-

A - ACCESS TO 32 CONSECUTIVE BYTES 
OFA RECORD 

32 

2048 

B - ACCESS TO CORRESPONDING BYTES 
OF ALL RECORDS 

32 

2048 

C - ACCESS TO ONE BIT OF EVERY 
BYTE IN A RECORD 

32 

2048 

Figure 3-Accessing 256-byte records 



INPUT 

256 

256 

FLIP 
NETWORK 

256 

C C C C 

STARAN Parallel Processor System Hardware 407 

256 

X 

REG 

LOGIC 

MIRROR, 
SHIFT 
CONTROL 

256 

MASK 
256 

C 

8 ADDRESS LINES 
PLUS ACTIVITY-OR 

Y 
REG 

LOGIC 

256 

OUTPUT 

C 

Figure 4-ST ARAN array module 

tively and also to Y: 

The states of X and Yare now: 

Step 2: Read Bit-slice b and exclusive-or it to X selectively 
and also to Y: 

Registers X and Y now contain the carry and sum bits: 

Step 3: Write the sum bit from Y into Bit-slice 8 and also 
complement X selectively: 

The states of X and Yare now: 

Step 4: Read the X-register and exclusive-or it into both 

X and Y: 

This clears X and stores the carry bit into Y to prepare 
the registers for the next execution of the loop: 

Xi=O 

Step 3 takes less than 250 nsec, while Steps 1, 2, and 4 
each take less than 150 nsec. Hence, the time to execute 
the basic loop once is less than 700 nsec. If the field length 
is 32 bits, the add operation takes less than 22.4 microsec 
plus a small amount of setup time. The operation performs 
256 additions in each array module. This amounts to 1024 
additions, if four array modules are enabled, to achieve a 
processing power of approximately 40 MIPS (million
instructions-per-second) . 

The array module components communicate through a 
network called the flip network. A selector chooses a 256-bit 
source item from the MDA memory read bus, the M register, 
the X register, the Y register, or an outside source. The bits 
of the source item travel through the flip network, which 
may shift and permute the bits in various ways. The per
muted source item is presented to the MDA memory write 
bus, M register, X register, Y register, and an outside 
destination. 

The permutations of the flip network allow inter-PE 
communication, A PE can read data from another PE 
either directly from its registers or indirectly from the MDA 



408 National Computer Conference, 1974 

memory. One can permute the 256-bit data item as a whole 
or divide it into groups of 2, 4, 8, 16, 32, 64, or 128 bits and 
permute within groups. 

The permutations allowed include shifts of 1, 2, 4, 8, 16, 
32, 64, or 128 places. One also can mirror the bits of a group 
(invert the left-right order) while shifting it. A positive shift 
of mirrored data is equivalent to a negative shift of the 
unmirrored data. To shift data a number of places, multiple 
passes through the flip network may be required. Mirroring 
can be used to reduce the number of passes. For example, 
a shift of 31 places can be done in two passes: mirror and 
shift 1 place on the first pass, and then remirror and shift 
32 places on the second pass. 

The flip network permutations are particularly useful 
for fast-fourier transforms (FFT's). A 2n point FFT requires 
n steps, where each step pairs the 2n points in a certain way 
and operates on the two points of each pair arithmetically 
to form two new points. The flip network can be used to 
rearrange the pairings between steps. Bitonic sorting (2) 
and other algorithms (3) also find the permutations of the 
flip network useful. 

Each array module contains a resolver reading the state 
of the Y register. One output of the resolver (activity-or) 
indicates if any Y bit is set. If some Y bits are set, the other 
output of the resolver indicates the index (address) of the 
first such bit. Since the result of an associative search is 
marked in the Y register, the resolver indicates which if 
any words respond to the search. 

OTHER STARAN ELEMENTS 

Figure 5 is a block diagram of a typical ST ARAN system 
with four array modules. Each array module contains an 
assignment switch that connects its control inputs and 
data inputs and outputs to AP (associative processor) 
control or the PIa (parallel input/output) module. 

The AP control unit contains the registers and logic 
necessary to exercise control over the array modules assigned 
to it. It receives instructions from the control memory and 
can transfer 32-bit data items to and from the control 
memory. Data busses communicate with the assigned array 
modules. The busses connect only to 32-bits of the 256-bit
'wide input and output ports of the array modules (Figure 4), 
but the permutations of the array module flip networks 
allow communication with any part of the array. The AP 
control sends control signals and MDA memory addresses 
and access modes to the array modules and receives the 
resolver outputs from the array modules. 

Registers in the AP control include: 

1. An instruction register to hold the 32-bit instruction 
being executed. 

2. A program status word to hold the control memory 
address of the next instruction to be executed and the 
program priority level. 

3. A common register to hold a 32-bit search comparand, 
an operand to be broadcast to the array modules, or 
an operand output from an array module. 

4. An array select register to select a subset of the 
assigned array modules to be operated on. 

5. Four field pointers to hold MDA memory addresses 
and allow them to be incremented or decremented 
for stepping through the bit-slices of a field, the 
words of a group, etc. 

6. Three counters to keep track of the number of execu
tions of loops, etc. 

7. A data pointer to allow stepping through a set of 
operands in control memory. 

8. Two access mode registers to hold the MDA memory 
access modes. 

The parallel input/output (PIa) module contains a PIa 
flip network and PIa control unit (Figure 5). It is used for 
high bandwidth I/O and inter-array transfers. 

The PIa flip network permutes data between eight 256-bit 
ports. Ports 0 through 3 connect to the four array modules 
through buffer registers. Port 7 connects to a 32-bit data 
bus in the PIa control through a fan-in, fan-out switch. 
Ports 4, 5, and 6 are spare ports for connections to high 
bandwidth peripherals, such as parallel-head disk stores, 
sophisticated displays, and radar video channels. The 
spare ports also could be used to handle additional array 
modules. High bandwidth inter-array data transfers up to 
1024 bits in parallel are handled by permuting data between 
Ports 0, 1, 2 and 3. Array I/O is handled by permuting 
data between an array module port and an I/O port. The 
PIa flip network is controlled by the PIa control unit. 

The PIa control unit controls the PIa flip network and 
the array modules assigned to it. While AP control is 
processing data in some array modules the PIa control can 
input and output data in the other array modules. Since 
most of the registers in the AP control are duplicated in 
PIa control, it can address the array modules associatively. 

The control memory holds AP control programs, PIa 
control programs, and microprogram subroutines. To 
satisfy the high instruction fetch rate of the control units 
(up to 7.7 million instructions per second), the control 

l 
I 

T,l" :' , I 

SPAR'{! PlO I 

~....-[=:f=~~~~~~~§1'''~~~-§; fliP I '56 ; I 

Figure 5-Typical ST ARAN block diagram 

I 
I 



memory has five banks of bipolar memory with 512 32-bit 
words in each bank. Each bank is expandable to 1024 words. 
To allow for storage of large programs, the control memory 
also has a 16K-word core memory with a cycle time of 1 
microsec. The core memory can be expanded to 32K words. 
Usually the main program resides in the core memory, and 
the system microprogram subroutines reside in bipolar 
storage. For flexibility, users are given the option of changing 
the storage allocation and dynamically paging parts of the 
program into bipolar storage. 

A Digital Equipment Corporation (DEC) PDP-ll 
minicomputer is included to handle the peripherals, control 
the system from console commands, and perform diagnostic 
functions. It is called sequential control to differentiate it 
from the STARAN parallel processing control units. The 
sequential control memory of 16K 16-bit words is augmented 
by a 8KXl6-bit "window" into the main control memory. 
By moving the window, sequential control can access any 
part of control memory. The window is moved by changing 
the contents of an addressable register. 

The STARAN peripherals include a disk, card reader, 
line printer, paper-tape reader/punch, console typewriter, 
and a graphics console. 

Synchronization of the three control units (AP control, 
sequential control, and PIa control) is maintained by the 
external function (EXF) logic. Control units issue commands 
to the EXF logic to cause system actions and read system 
states. Some of the system actions are: AP control start/ 
stop/reset, PIa control start/stop/reset, AP control in
terrupts, sequential control interrupts, and array module 
assignment. 

The design of STARAN allows it to be connected to other 
computers (host computers) as a special-purpose peripheral. 
The interface can take many different forms. One could 
connect to an I/O channel of the host. Alternately, one 
could connect to the memory bus of the host so that it can 
address STARAN memory directly and/or allow ST ARAN 
to address its memory directly. For example, the STARAN 
at Rome Air Development Center (4) is connected to an 
I/O channel of a Honeywell HIS-645 computer. At Goodyear 
Aerospace, another STARAN is interfaced to the direct 
memory access port of an XDS ~ 5 computer. 

APPLICATIONS 

Several representative application areas-fast Fourier 
transforming, sonar post-processing, string search, file 
processing, and air traffic control-are discussed below. 
Other application-oriented work which has been performed 
under contract to various government agencies, include 
image processing, data management, position locating and 
reporting, bulk filtering and radar processing. 

Fast fourier transform 

The Fast Fourier Transform (FFT) is a basic operation 
in digital signal processing which is being widely used in 

STARAN Parallel Processor System Hardware 409 

the real-time processing of radar and sonar signals. The 
structure of the FFT algorithm is such that it can be seg
mented into many similar concurrent operations. Parallel 
implementation of the FFT can provide orders of magnitUde 
speed increases over sequential computer execution times. 
The organization of STARAN lends itself to efficient manip
ulation of data in the FFT. 

The Air Force supplied real radar data (on tapes) to GAC 
to be transformed by the STARAN system. A 512-point, 
16-bit FFT was performed on this real data in 2.7 milli
seconds using only two MDA arrays. A 1024-point transform 
on real input data could be performed in about 3.0 milli
seconds using all four arrays available at GAC's STARAN 
evaluation and training facility. For comparison purposes, 
the following is a list of reported execution times for a 
1024-point, real input, FFT: 

Sequential Computers 

XDS Sigma 5 
IBM 360/67 
UNIVAC 1108 
UNIVAC 1108 (with array 

processor attachment) 

660 msec 
446 msec 
190 msec (complex) 

29.2 msec (complex) 

Special Purpose FFT Systems 

Time/Data 90 System 28 msec 
ELSYTEC 306/HFFT 18 msec 
SPECTRA SYSTEM '900' 9.2 msec 

Sonar post-processing 

Sensor data processing can be split into two major 
categories-signal processing and post-processing. Signal 
processing is the area of the system where operations such 
as the FFT are performed; post-processing involves the 
sorting and editing of the signal processor output data to 
determine tactical information such as whether a real 
target is in the coverage area and where the target is. 

The job of sorting the spectral lines that result from the 
FFT operations is a formidable task, especially in a multi
sensor case. The trend has been for increasing the sensitivity 
of signal processing systems. The acoustic signal line sorting 
task that accompanies any increased sensitivity can be 
staggering. For instance, a 6 db improvement in sensitivity, 
in a classified Navy sonar system, would result in increasing 
the target load by a factor of 16 and the computer processing 
load by a factor of 250 or more. 

A digital sonar signal processing system, under develop
ment at the Naval Air Development Center (NADC), 
requires that subroutines operate on the target spectral 
lines (outputs from an FFT) and other input data to form 
outputs suitable for later use in classification algorithms. 
Since the system is a multi-sensor system, these subroutines 
must process a very large volume of data in real-time. The 
content addressability feature of STARAN provides the 
potential for significant performance gains due to the 



410 National Computer Conference, 1974 

Figure 6-TRANSPO '72 demonstration system 

requirement for many searches in these post-processing 
subroutines. 

As a consequence of this potential improvement, NADC 
issued a contract to GAC to assess the comparative run 
times for the ST ARAN versus a large-scale conventional 
computer (the CDC-6600). NADG-developed algorithms 
for the most time consuming operations in the post-processor 
system were programmed on the STARAN computer. Real 
data was then processed on both the STARANand, by 
N ADC, on a CDG-6600. 

The STARAN executed the programs, using the real 
data, 200 times faster than the CDC-6600. 

String search 

A processing function used by several agencies for locat
ing specific character strings (such as place names) in 
textual information, was developed for STARAN and 
tested on a sample data base. The same function was 
executed on a conventional computer (Sigma 5) for a timing 
comparison. The STARAN solution ran 100 times faster. 
This function is also applicable to nondefense applications 
such as patent, legal, and chemical information searches 
where cost of search may be a limiting parameter. 

File processing 

A personnel record file was used as a sample data base 
for demonstrating multiple-key searches. ST ARAN and a 

parallel-head disk were used for the demonstration. This 
work demonstrated that a query, simple or complex, can 
be processed in less than 120 milliseconds and that several 
queries may be batched and processed in the same processing 
time period. The simplicity of the software for retrieval 
and update was also demonstrated. 

A ir traffic control 

In May 1972 a complete terminal automation system was 
demonstrated at the TRANS PO '72 exhibit at Dulles 
International Airport and later at private showings in 
Washington and Boston. Live radar and beacon sensor data 
were provided from the FAA site at Suitland, Maryland. 
The complete system is shown in Figure 6. The following 
ATC functions were demonstrated: beacon tracking, radar 
tracking, conflict prediction, conflict resolution, display 
processing, automatic voice advisory (AVA), and terrain 
avoidance. 

The TRANSPO demonstration illustrated the use of 
STARAN in a full repertoire of terminal automation func
tions including adv~nced features such as automatic track 
initiation of all the aircraft, automatic tag placement on the 
display, and automatic handoff from sector to sector. The 
live targets were supplemented with 256 simulated targets 
so that up to 400 targets (representative of larger terminal 
densities) could be provided. 

Average execution times for the most important functions 
were: 

conflict prediction 
conflict resolution 
tracking 
display processing 

90 msec 
25 msec 

100 msec 
160 msec 

The entire ATC program executed in less than 5 percent 
of real-time. 

REFERENCES 

1. Batcher, K. E., "Flexible Parallel Processing and STARAN," 
1972 WESCON Technical Papers, Session 1. 

2. Batcher, K. E., "Sorting Networks and Their Applications." 1968 
Spring Joint Computer Conference, AFIPS Proceedings, Vol. 32, 
pp. 307-314. 

3. Stone, H. S., "Parallel Processing with the Perfect Shuffie," IEEE 
Transactions on Computers, Vol. C-20, No.2, February 1971, pp. 
153-161. 

4. Feldman, J. D., RADCAP: An Operational Parallel Processing 
Facility, Goodyear Aerospace Corporation. 



A program for software quality control 

by PAUL OLIVER 

Department of the Navy 
Washington, D.C. 

INTRODUCTION 

The Automatic Data Processing Equipment Selection Office 
(ADPESO) of the Department of the Navy is engaged in a 
development program for software to be used in the quanti
fication of computer systems selection criteria, and the ap
plication of quality control procedures to selected software 
products. 

That such a program be undertaken by this centralized 
ADPE Selection Office is both proper and important to the 
successful performance of our mission. This mission, briefly 
stated, is to evaluate and select, or review the selection of, 
commercially available automatic data processing equipment 
for approval by the Assistant Secretary of the Navy for 
Financial Management. 

This development program is the responsibility of AD
PESO's Software Development Division, and is concentrated 
in three areas. A COBOL Compiler Validation System has 
been designed, implemented, and is being used throughout 
the Federal Government to determine the degree to which 
COBOL compilers conform to the published standard. A 
system to facilitate the process of COBOL benchmark pro
gram conversion, evaluation, and implementation has been 
completed and is being field tested. Finally, an experiment in 
using a library of synthetic programs for system performance 
measurement is being conducted. 

An evaluation of such a program requires a description of 
the projects, the identification of project controls which have 
been applied, and the resultant or expected payoffs. These 
will be discussed in turn. 

Why a quality control program? 

The problem we are attempting to alleviate is a financial 
one. During fiscal year 1973 ADPESO participated in 189 
acquisition actions with a monthly rental value of $691,000. 
This does not include 173 reutilization actions. The scope of 
these actions is quite broad. Recent acquisitions have in
cluded 100 mini-computer configurations. 50 key-to-disk 
configurations, and a medical laboratory information system. 

How do the above dollar figures relate to software? Pre
cise measurements are difficult, but we estimate that the 
Department of the Navy's annual software expenditure is 

411 

approximately three times that of hardware. Barry Boehm 
has cited a similar figure for the U. S. Air Force, l and we 
suspect this figure is fairly universal. 

Our present work has as one of its principal purposes the 
lowering of software production and maintenance costs. 
These costs will of course vary with the nature of the system 
in question. A 1964 SDC report2 suggested that approximately 
19 man-months were required for the delivery of 1000 ma
chine language instructions. The data were derived from 26 
projects, and included program design, coding, and testing 
time. The incremental time per 1000 additional lines of code 
was 5 man-months. Corbato's data gathered from the ::\1ultics 
project3 indicate that productivity can be vastly increased 
through the use of a higher level language, but software still 
remains an expensive product. 

:Much of the high software cost is the result of duplication 
and of conversion costs. Williams4 has reported on a con
version project undertaken in 1964 by the Lockheed Missiles 
and Space Company. The 220 FORTRAN programs which 
were converted, from an IBM 7094 to a UNIVAC 1108, 
required five months for the job, at a cost of approximately 
$241,000. To alleviate this problem we need to ascertain the 
degree to which higher level language translators conform to 
published standards, and we could certainly use more in the 
way of conversion aids, particularly data conversion. 

Finally, we have found that the entire competitive selec
tion time can be disturbingly long-nine to 23 months in our 
experience. We say "disturbingly" because a long selection 
process is expensive for both buyer and vendor. We are 
interested in software which could perhaps be used in shorten
ing the time span. 

THE PROJECTS 

The goals 

The user of higher level languages in software development 
will reduce the cost of such development, principally by in
creasing programmer productivity. Two Janguages, FOR
TRAN and COBOL, have been standardized so as to increase 
their usefulness. Standardization efforts are also under way 
for BASIC and PL/l. If standardization is indeed to bear 
some advantages, commercial compliers must adhere, in their 



412 National Computer Conference, 1974 

translation, to the published standard. The adherence to a 
standard must include language semantics (where unam
biguous) as well as language syntax. Effective implementation 
of a standard requires a means of measuring the degree to 
which compilers conform to the standard. Thus, the develop
ment, use, and maintenance of a validation system for CO
BOL compilers has been an important effort on the part of 
the Software Development Division. 

Portability is a measure of the ease of moving a computer 
program from one environment to another. J\1any factors 
affect a program's portability: the computer system, the 
language used, program design, and the application. At this 
time, we are specifically interested in COBOL program 
portability. A COBOL program would be completely portabJe 
if all non-standard functions (e.g., extensions to the lan
guage) could be reduced to standard functions, all imple
mentor names could be resolved, data representation were 
standardized across computer systems, and no "implementor 
defined" language elements were used. Practically, this 
means that a completely portable COBOL program is a 
figment of the imagination! We can, however, greatly im
prove a program's portability by developing software which 
addresses itself to the above problems. 

It is also important that we not sacrifice too much ef
ficiency for the sake of portability. A recent study by Inter
national Computer Systems, Inc.s indicates that COBOL 
programs are generally easier to convert (to other COBOL 
dialects) than programs in FORTRAX or assembly lan
guages. Unfortunately, the same study also indicates that the 
relative operating costs of converted COBOL programs are 
much higher than those for other languages. Our aim is to 
achieve significant portability at a modest cost in efficiency. 
Because such an aim is quite relevant to benchmark pro
grams, we refer to the conversion system we are developing 
as the Benchmark Preparation System (BPS). 

A significant factor contributing to delays in computer 
systems acquisition has been the preparation and processing 
time of user benchmarks. Some way of measuring minimal 
system throughput capability is required. For selection pur
poses, benchmarks are the accepted measurement tool in the 
Department of the Navy. The major problems with natural 
benchmarks (i.e., existing application programs) have been 
the following: 

(a) Each time an agency selects a system a new set of 
benchmarks is prepared. This is wasteful. 

(b) The benchmarks are often not debugged, and usually 
biased toward a given architecture. 

The latter problem will be partially alleviated by the 
BPS. In order to reduce production duplication and costs we 
arc developing 11 "reference benchmark program Jibl'ar-y." 
This is a set of task-oriented synthetic programs which can 
be used individually or in a mix, in conjunction with or in
stead of natural benchmarks. 

Systems to fulfill the goals 

The COBOL Compiler Validation System consists of audit 
routines, their related data, and an executive routine (VP-

routine) which prepares the audit routines for compilation.6 

Each audit routine is a COBOL program which includes 
many tests, and supporting procedures indicating the results 
of the tests. The audit routines collectively contain the 
features of Standard COBOL (except for the Report Writer 
module). The executive routine automates the creation of a 
file containing the audit routines with implementor names 
inserted in the source code, and the operating system control 
cards required for compiling and executing each routine. The 
testing of a compiler in a particular hardware/operating sys
tem environment is accomplished by compiling and executing 
each audit routine. The output report produced by each 
routine indicates whether the compiler passed or failed 
(individually) the tests in the routine. If the compiler rejects 
some language element by terminating compilation (giving 
fatal diagnostic messages) or terminating execution ab
normally, then the test containing the code the compiler was 
unable to process is deleted, and the audit routine compiled 
again. A test is deleted by inserting KOTE at the beginning 
of the test paragraph, thereby changing the source code in the 
test paragraph to comment statements. The output reports 
of the audit routines constitute the raw data from which the 
members of the Federal COBOL Compiler Testing Service 
(an activity of the Software Development Division) produce a 
Validation Summary Report, which provides a consolidated 
summary of the results obtained from the validation of a 
compiler. 

The results of running the COBOL Compiler Validation 
System do not suggest the degree to which the compiler is 
usable (i.e., capable of data processing applications) but the 
degree to which individual language elements are usable. 
This will give an indication of conversions which will be 
necessary in order to utilize a source program from another 
system supporting the same language specifications/stand
ard. Thus, the Validation System tests a COBOL Compiler's 
adherence to the standard language syntax, and, where un
ambiguous, language semantics. The latter of course is a more 
difficult area because of the lack of appropriate mechanisms 
for precise semantic specifications. The Validation System 
does not evaluate the implementation of a compiler (i.e., is it 
a text-in-core or compiler-in-core, etc.) nor its quantitative 
performance characteristics. 

Additionally} the.summary of a validation includes -an indi
cation of unspecified language semantics (i.e., where latitude 
is given for vendor implementation), and ambiguous language 
semantics. Finally, tables summarizing the running time and 
memory utilization of the audit routines, and a characteriza
tion of compiler hard copy output and diagnostics are in
cluded in Validation Summary Reports. 

The benchmark preparation system performs conversion 
in the major areas affecting portability of application 
COBOL programs; nonstandard COBOL functions, imple
mentor names, and data representation. A COBOL source 
program translator (N A VTRAN -C) takes native machine 
COBOL programs and converts them to machine indepen
dent COBOL (ANSI X3.23-1968 language specifications). 
Those functions in the native machine COBOL which are 
extensions to the ANSI language specifications (and therefore 



cannot be converted) are flagged by the translator. Imple
mentor names in the benchmark programs are replaced with 
unique names in the machine independent source programs. 
These names are recognized and replaced by the VP-Routine 
when the programs are implemented on the target machine. 

Input data files associated with the benchmark programs 
are translated by a series of COBOL programs. These data 
translation programs make use of data conversion subroutines 
inherent in the respective COBOL Compilers (native or 
target machine) in translating the machine dependent data 
to machine independent format and vice versa. Machine 
dependent data characteristics may include arithmetic sign, 
word boundary alignment, and certain internal representa
tions. The COBOL data translation programs are created 
from the benchmark program file descriptions. The creation 
is performed by program generation. File descriptions in the 
data translation programs are those for the native machine 
file, machine independent file, and A~SI/target file. The 
native machine file description is used to read the native 
machine data files and build machine independent data files. 
All data in these will be in display or character mode with the 
signs of numeric data stored separately. Essentially, machine, 
dependent data are translated to a string of characters which 
may then be subject to straight character code translations 
for the appropriate machine. 

Upon transfer of the data files to the target machine, the 
reverse operation occurs. The machine independent data are 
read according to the file descriptions, and written using the 
ANSI/target file descriptions. The data translation programs 
also provide the capability of validating the data files, e.g., 
numerically described fields which do not contain numeric 
data are identified. This can be done by a separate execution 
or in conjunction with creating the independent or target 
machine data files. The benchmark package (programs and 
data files) which is distributed is itself in machine independent 
form. Programs are in a source program library (Population 
File). The Population File contains the benchmark source 
programs, data translation programs and the VP-Routine. 
Prior to benchm~rk processing the VP-Routine selects the 
machine independent COBOL programs from the population, 
inserts the necessary COBOL implementor names and creates 
a job stream file for input into the computer system. The 
VP-Routine also provides the updating capability for the 
Population File. A summary of all changes made to the 
Population File and the job control language generated for 
the run stream file is part of the output created by the VP
Routine. This summary is used to determine the change3 a 
vendor has to make in implementing the benchmark on his 
system. 

The Reference Benchmark Programs Library has been 
used in performing an experiment to determine the suitability 
of synthetic programs in alleviating the problems created by 
natural benchmarks. Five processing tasks were selected as 
representing, in varying combinations, a large number of ap
plication tasks. These were sequential file processing, in
dexed sequential file processing, relative I/O processing, 
sorting, and computation. COBOL programs were written to 
perform each of these tasks, with each program controlled 

A Program for Software Quality Control 413 

by a set of compile-time and execution-time parameters. The 
ability to vary automatically certain parameters at compile
time provides us with the flexibility to develop a fairly rich 
mix from just a few basic programs. 

We have found, through our testing with these programs, 
that a small number of simple, task-oriented, synthetic 
modules can be combined into a versatile job mix. A rela
tively small number of parameters is sufficient to enable a 
single program to reflect the characteristics of a broad class 
of applications. Also, individual modules have proven useful 
in exercising isolated computer system features, such as I/O 
handling. Finally, if one accepts a "modest" workload charac
terization, aimed more at reflecting extremities and crucial 
areas rather than comprehensiveness, it is possible and 
reasonable to construct a benchmark from a set of synthetic 
modules. 

PROJECT CONTROLS 

Why 

Boehm! has suggested that the phrase "software engineer
ing" is a contradiction in terms because we have no data base 
to be used in measuring, in some way, what we produce and 
how well we produce it. Yet, his own studies indicate that we 
do have some data to work with. In order to obtain more, 
those of us whose business it is to develop software must 
keep records of our efforts, and thereby control them. This 
does not present an undue hardship in our case since the 
Department of the Navy strongly encourages that we be ac
countable for what we do, how we do it, and what it is worth. 

How 

Because we are a small organization, our controls are 
modest but, we think, effective. 

Much has been made of structured and modular program
ming.7 These concepts are gaining acceptance in Government 
and private industry. While we take no issue with their merits, 
we would suggest caution in their applicability. Modularity 
will often reduce some of a system's complexity, but may 
introduce additional complexity, particularly in the inter
module connections. The nature of the COBOL Validation 
System dictates that it be highly modular, but we have found 
that much of its complexity is due to its modularity. We have 
also found that GOTO-Iess programming can be awkward 
and, especially in COBOL, costly. We realize that deviations 
from the concepts are "allowed," but then we are back to 
what have for years been recognized as simply good program
ming practices. 

We do follow modular programming concepts as design 
aids. This seems to have become a very common practice. A 
recent Hoskyns surveyS for the British Government showed 
that 98 percent of modular progra..Tynning practitioners did so 
in the design stage. A major benefit of this practice has been 
a lowering of maintenance costs. 



414 National Computer Conference, 1974 

4 JUNE 2 JULY 30 JULY 27 AUG 29 SEPT 22 OCT 

______ ~~-----+------~I~----~j-------,I------

DESIGN 
CODE 

PACKAGE DOCUMENT 

Milestones: 1. Submit Narrative 
2. Submit Par_eter Specifications 
3. Complete Population File 
4. Complete Instruction Manual 

Figure 1-Project history chart for synthetic benchmarks 

We've considered the "lead programmer"9 idea and dis
carded it as inapplicable to our environment. We are blessed 
with a surplus of "lead" programmers, and our projects, 
while sometimes large, as in the case of the Validation Sys
tem, are not massive. 

We keep records of our work. An "initial project form" is 
used to identify the project requestor, the purpose and nature 
of the project, time requirements, resources required, and ex
pected payoff. We generally cannot afford the luxury of con
tinuing if resources required exceed payoff, in dollars. We 
then prepare a work plan. This includes a schedule, check- . 
points, milestones, and manpower requirement distribution. 
Milestones are distinguished from checkpoints in that the 
former require a concrete action or document to be taken or 
produced, while the latter may simply consist of an indication 
that "parameter testing is complete". Figure 1 shows the 
work plan for our synthetic program library project. It 
is important that we indicate the distribution of manpower 
over the project lifespan, since this enables us to coordinate 
manpower requirements for several projects. We review the 
workplans whenever we feel it is necessary (but at least at 
the checkpoints and milestones). If we fall behind we revise 
the workplan. Thus far, we've successfully resisted the temp
tation to add manpower or adopt unreasonable catch-up 
schedules when we fall behind. The necessity for such resis
tance has been well documented by Brooks1o and others. 

We maintained a log of compiler errors (computation, se
quence control, input-output, etc.) but we abandoned this 
because we did not find it overly usefuL Over a sample period 
of five months we produced approximately 10,000 lines of 
COBOL codp.; R,nd 42 compile-time errors. Approximately 
half of these were "clerical" errors (bad keypunching, sloppy 

printing, etc.). Recognizing the smallness of the sample, we 
would still make the generalization that any overly extensive 
effort in beefing up a compiler's syntax diagnostics capability 
may be a waste of time. 

A test log is kept for all projects. The log indicates which 
program or module is being tested, aims of the test, whether 
these were achieved, and resources used. The same five 
month sample showed that we achieved our aims in just 
under 60 percent of the tests, and that new problems were 
discovered in some 30 percent of the tests. Also, the average 
test run used less than three memory minutes of UNIV AC-
1108 time. All our work is done in a remote job entry (batch) 
mode. Yet, the above figures seem to imply that our testing 
habits are more consistent with what would be expected in an 
interactive program development environment. Sackmanll 
and others have suggested that on-line programming im
proves efficiency. It appears that, additionally, experienced 
programmers tend to behave as if they were in an on-line 
environment, even if they are not. 

Boehm'sl statistics indicate that 45-50 percent of software 
efforts are devoted to checkout and testing, and that only 
about 20 percent of the time is spent in coding. The data 
base for these figures was derived from large systems projects, 
such as the OS/360 development. Ours are much more modest 
projects, and our results are both different and more variable. 
About 50 percent of our time in the synthetic library project 
was devoted to coding, and less than 25 percent of the time 
was spent on integration and te&ting. The Benchmark 
Preparation System figures are quite different. Coding has 
taken up less than 25 percent of our time, with integration 
and testing using up some 60 percent of the time. The result
ing Jow figure for analysis and design (15 percent) is due to 
the simple fact that much is already known about the port
ability problem areas in COBOL. 

Packaging and distribution of all our software products fol
low fairly simple guidelines. The programs, in machine inde
pendent form (all implementor names are parameterized, as 
are machine dependent features such as precision and size of 
numerical fields), are placed on a standard magnetic tape 
reel, together with a copy of the VP-Routine. The latter is 
used for parameter substitution (to a form acceptable to any 
specific system), "library management", and job control 
statements generation. A.ccompanying the tape is a user 
guide, brief narrative description of the system, and, where 
applicable experimental results. The programs are self
documented, so that we can avoid excessive external docu
mentation. While we recognize the importance of adequate 
documentation, we have found that excessive documentation, 
such as detailed flow charts can be a hindrance to proper 
documentation. Distribution is through the N aticnal Tech
nical Information Service. 

A few words of caution about these and other published 
statistics and practices. First of all, they reflect a very specific 
environment. We have a small (eight peopJe) staff with very 
homogeneous backgrounds. Our systems are modest in size, 
and "utility" oriented. All our work must be portable, since 
we are currently using UNIVAC-1108, IBM 360/65, and 
HIS 6050 systems for product development. Furthermore, I 

I 



our COBOL compiler validation responsibilities have re
cently required us to use our software on a Burroughs 6700, 
HIS 437, and IBM 370/155 system. Thus, portability is truly 
a necessity for us. 

Secondly, even for a similar environment, the statistics 
should be viewed as "guidelines". They are simply products 
of our experience which we hope to learn from but do not 
expect to be bound by. 

THE PAYOFF 

What has it all cost us? 

Total cost for the synthetic programs library, including 
machine time, clerical support, and salaries was under 
$6,000. This benchmark preparation/conversion package has 
cost us about $8,000. The COBOL Compiler Validation Sys
tem was originated in 1969 by the U.S. Navy Programming 
Languages Group under the direction of Capt. Grace l\f. 
Hopper, USNR. A reasonable estimate of its initial cost is 
not possible, but we do have an expected cost for the audit 
routines we are preparing in anticipation of the revised 
COBOL standard. Our schedule calls for completion of the 
project by November, 1974. Total calendar time for the 
project will be 15 months and we anticipate to expend 36 
man-months on the effort. Total cost for the new Validation 
System should be in the neighborhood of $75,000. The new 
system will be approximately twice the size of the current 
one, which is comprised of about 130 programs, or 100,000 
lines of COBOL code. The implication here is that we expect 
our productivity to be about 33,000 lines of COBOL code 
per man-year; a remarkably high figure (Corbat03 has re
ported a number in the neighborhood of 1200 PL/1 lines of 
code per man-year on the Multics project). This is due almost 
entirely to the fact that we are "borrowing" most of the de
sign work from the present Validation System. We know the 
modules we will require since the standard is defined for us. 
The VP-Routine is already available. Many of the audit 
routines will be extensions of current ones. Thus, our time 
will be spent primarily in identifying tests, coding, and 
testing. 

What are the benefits? 

We expect the returns on our investment to be substantial. 
The best COBOL compiler we have tested to date ("best" 
in its conformance to the standard) has had some 30 areas of 
non-conformance. This not only impacts portability, but can 
have serious side effects. Many data base management sys
tems are COBOL-based. Errors in a compiler can easily re
sult in "dirty" data getting into the data base. We have, for 
example, identified some four different treatments of arith
metic statements, each producing different results! The vali
dation of a compiler tells us where the danger areas lie. 
Furthermore, vendors are required to correct discrepancies 
once these have been identified. Thus, our validation of 
COBOL compilers enables us to reap the benefits of standard-

A Program for Software Quality Control 415 

ization. Without such a measurement tool standardization is 
a fruitless endeavor. 

The high costs of processing benchmarks has already been 
mentioned. We know of a recent selection where the total 
award was for approximately $5 million. Included in that 
figure were some $500,000 which the vendor spent in process
ing the benchmark. Both the benchmark preparation system 
and our synthetic programs library would pay for itself if 
even a small portion of these potential savings in vendor 
expenditures are passed back to the Navy. 

FUTURE EFFORTS 

The benefits derived from validating COBOL compilers 
would also accrue in the validation of compilers for other 
languages. FORTRAN, BASIC, and, later, PL/1 are natural 
candidates. 

Compiler efficiency, in terms of object code execution speed 
and storage utilization, has a significant impact on an instal
lation's throughput. This in turn affects the timing of selec
tions and therefore of expenditures. We believe more ef
ficient compilers mean fewer dollars spent, or more work done 
for the same dollar. Thus, we are planning a set of test rou
tines to determine the relative worth of a given compiler. 
That is, we want to measure how much room there is for 
improvement in execution speed and storage required. This 
project is in the design phase and will restrict itself, initially, 
to FORTRAN compilers, principally because it is easier to 
measure efficiency of FORTRAN compilers than those for 
most other- languages. Knuth's work12 suggests that our ef
forts may prove fruitful. 

Finally, we believe that serious thought must be given to 
validating generalized data base management systems. 
Specifically, we are interested in finding ways of ascertaining 
that the data base one builds with these systems does indeed 
contain what we wish it to, that in retrieving data we get all 
that is proper, and only what is proper, and that use of such 
systems does not impact the integrity of the data base. We 
also plan to develop simple analytical models to be used in 
evaluating different types of data organizations. The possible 
ongoing contamination of these data bases by inconsistent 
object code has already been commented on. 

CONCLUSION 

Software to be used in improving or measuring the quality of 
other software is neither difficult nor expensive to produce. 
Our efforts are concentrated in the system selection area. 
We believe, however, that the benefits to be derived from 
such efforts have a broader scope, and are substantial enough 
to warrant persual by any data processing organization. 

REFERENCES 

1. Boehm, B. W., "Software and its Impact: A Quantitative Assess
ment," Datamation, May, 1973. 

2. System Development Corporation, Estimation of Computer Pro
gramming Costs, SP-1747, September, 1964. 



416 National Computer Conference, 1974 

3. Corbato, F. J., "PL/I as a Tool for System Programming," Data
mation, May, 1969. 

4. Williams, D. A., "Conversion Case Study and Experiences," 
American Management Association, Administrative Services Brief
ing Session #6379-02, "A Hard Look at Software". 

5. International Computer Systems, Inc., Programming for Transfer
ability, AD-750 897, National Technical Information Service, 1972. 

6. Baird, G. N., "The DOD COBOL Compiler Validation System," 
Proceedings FJCC, 1972. 

7. Liskov, B. H. and E. Toster, The Proof of Correctness Approach to 
Reliable Systems, The MITRE Corporation, ESD-TR-71-222, Bed
ford, Massachusetts, 1971. 

8. Rhodes, John, "Tackle Software with Modular Programming," 
Computer Decisions, October, 1973. 

9. Baker, F. T., "Chief Programmer Team," IBM Systems Journal, 
Volume II, No.1, 1972. 

10. Brooks, F. P. Jr., "Why is the Software Late?," Data Management 
August, 1971. 

11. Sackman, A., Man-Computer Problem Solving, Auerback Publishers, 
Inc., 1970. 

12. Knuth, D. E., "An Empirical Study of FORTRAN Programs," 
Software-Practice and Experience, Volume 1, John Wiley and Sons, 
1971. 



Experiences in COBOL compiler validation 

by GEORGE N. BAIRD and MARGARET M. COOK 

Department of the Navy 
Washington, D.C. 

INTRODUCTION 

The Federal COBOL Compiler Testing Service (FCCTS) 
is an activity of the Software Development Division of the 
Department of the Navy, Automatic Data Processing 
Equipment Selection Office (ADPESO). Since July 1, 1972, 
all COBOL compilers brought into the Federal Government 
have to be identified as implementing one of the levels of 
the Federal COBOL Standard. The National Bureau of 
Standards, which has the responsibility for the development 
and maintenance of Federal ADP Standards, has delegated 
to the Department of Defense, and thereby to ADPESO, 
the responsibility for the operation of a Government-wide 
COBOL Compiler Testing Service. This responsibility is 
discharged by the FCCTS through the implementation and 
maintenance of the COBOL Compiler Validation System,! 
a comprehensive set of routines used to test COBOL com
pilers for compliance with the Federal COBOL Standard as 
prescribed in Federal Information Processing Standards 
Publication 21 (FIPS PUB 21),2 published by the National 
Bureau of Standards. 

This paper addresses several questions that arise in com
piler validation. Why validate compilers for conformance 
to a standard? How is the validation performed? What 
experiences have been gained, and what conclusions can be 
derived from them? The questions ,vill be discussed in turn. 

WHY VALIDATE CO:MPILERS? 

The purpose of validating a compiler is to ensure that 
syntactically correct programs compile and execute without 
abnormal termination, and that the semantics of the lan
guage being translated are correctly interpreted. Also, 
(where appropriate to the language), validation should 
point out the impact of implementor defined specifications 
which are allowed by the standard. 

There are three phases in the computer systems acquisition 
cycle during which a validation is important. Prior to selec
tion, a validation of the compilers for the various systems 
being proposed may constitute a part of the systems evalua
tion. Mter a computer system has been selected, a valida
tion of the present compiler and a validation of the compiler 
to be procured disclose the areas of nonconformance in both 

417 

compilers. The effort required in converting existing pro
grams to the new system can then be realistically estimated 
prior to the changeover. Mter the delivery of a new com
puter system, but prior to acceptance, a compiler validation 
will reveal areas where a compiler does not meet the terms 
of the contract. 

Our experience with the Validation System has shown 
that continuing benefits accrue from being aware of a com
piler's status vis-a-vis its language standard. Compiler 
validation for computer systems which have already been 
acquired and are in present use can serve to point out which 
language elements do not operate correctly and therefore 
should not be used. A validation is particularly useful when 
a new version of a compiler or operating system is released, 
since it will immediately reveal errors in the revised software. 

If a user has access to several different computer systems 
and is doing program development on all of these, he must 
know what language elements conform to the standard on 
each of the systems. Validation of the compilers on each 
system shows which language elements perform correctly. 
By writing programs using only these elements, a user 
ensures program portability. 

SCOPE OF VALIDATION 

Errors in compiling a program may arise from a single 
statement or a particular sequence of statements. Since 
validation verifies that individual language elements are 
processed correctly, errors in combining language elements 
may exist even though each of the separate elements are 
processed correctly. 

A validation is not concerned with the efficiency of the 
object code generated, but only tests if the code is produced 
correctly. A validation system does not test implementor 
extensions to the language. If the implementor extensions 
cause problems in the standard language elements, a valida
tion will identify these errors, but any errors in the use of 
the language extensions themselves will not be discovered 
during validation. 

Finally, while a validation identifies problem areas in the 
use of standard language elements with a given compiler, it 
cannot indicate the ramifications of the compiler errors 
discovered. 



418 National Computer Conference, 1974 

FCCTS COBOL COMPILER VALIDATION 

The validation of COBOL compilers by the Federal 
COBOL Compiler Testing Service is performed using the 
COBOL Compiler Validation System (CCVS), which was 
developed by the Department of the Navy Programming 
Languages Section under the direction of Capt. Grace M. 
Hopper, USNR. The CCVS consists of audit routines, their 
related data and an executive routine. Each audit routine is 
a COBOL program, and includes many tests of individual 
language elements. Supporting procedures indicating the 
results of the tests are included in each routine. The audit 
routines of the CCVS collectively contain the features of 
Federal Standard COBOL. 

There are certain adjustments which must be made 
before the audit routines can be compiled upon a given 
computer system. First, names allowed by the COBOL 
standard to be implementor defined must be inserted into 
the audit routines before they can be compiled. Second, 
system control cards are required in order to compile and 
execute a COBOL program. File specification and allocation 
are also regulated by system contr()l cards, and additional 
control cards are usually required by programs using the 
COBOL SORT verb. Third, the given system configuration 
may not include a hardware device or capability required 
by some of the test procedures in the CCVS, for example a 
system which does not support multiple unit assignment 
for mass storage devices. All references to multiple units 
must be deleted for the proper compilation of the audit 
routines on that system. 

EXECUTING THE AUDIT ROUTINES 

Input parameters to the CCVS executive routine3 specify 
the implementor names, hardware dependent language 
elements to be deleted, and the operating system control 
cards required to compile the audit routines on a given 
computer system. The executive routine creates a file con
taining the audit routines with implementor names inserted 
in the proper place in the source code, and the operating 
system control cards required for compiling and executing 
each routine. 

The audit routines in the CCVS consist of source code 
which is syntactically correct; the routines do not contain 
any tests which deliberately introduce incorrect syntax. 
Thus, each audit routine is expected to compile without 
errors. (This is frequently not the case. We have encoun
tered "Standard" compilers where syntactically correct 
source code causes fatal diagnostic messages; compiler 
aborts, and even compiler loops.) 

When an audit routine does not compile, or complete 
execution normally, the source code containing the language 
elements which the compiler could not handle is modified 
or deleted. The tests in the PROCEDURE DIVISION of 
the audit routines are coded so that a test is deleted by 
inserting NOTE at the beginning of the paragraph contain
ing the test. This results in the entire paragraph being 

treated as a comment. The source paragraph following the 
deleted paragraph contains procedures which indicate the 
test has been deleted. 

The CCVS executive routine contains an editing capability 
which permits addition, deletion, or replacement of source 
lines in the audit routines. After an audit routine has been 
modified so that it consists of only the language elements 
that the compiler accepts, the routines are again compiled 
and executed. 

All of the supporting procedures for verifying whether a 
test passes or fails is contained in each routine. An output 
report is produced indicating the actual results of each test, 
and, when a test fails, the expected result. 

ADDITIONAL INFORMATION FROM COMPILER 
VALIDATION 

A compiler validatio~ identifies many characteristics 
which can be used in comparing compilers. Due to compiler 
errors, valid syntax in the audit routines may be rejected 
or the resultant object program may abort during execu
tion. The running of the CCVS on a system supplies infornia
tion concerning the effectiveness of diagnostic messages. 
The effort required in locating the source code which caused 
execution to terminate abnormally can also be assessed. 

The procedures used in validating a compiler give infor
mation on a system's ability to execute a program after 
fatal compilation errors have been diagnosed, or the effec
tiveness of a system supplied option for skipping execution 
if fatal errors are encountered. 

Some minor programming aids may also be discovered 
during a validation. The audit routines can be compiled 
using options for cross reference listings of data-names and 
procedure-names. Some compilers flag blank cards. In some 
cases, we have uncovered hindrances. The suppression of 
the printing of the contents of columns 73 through 80 on a 
source listing is, for example, a hindrance to anyone run
ning the CCVS, since the CCVS executive routine uses 
columns 73-80 to indicate whether a source line has been 
replaced or added. 

THE VALIDATION SUMMARY REPORT 

The output of a validation is a set of listings from the 
executive routine documenting the steps taken in preparing 
programs/jobs for execution; the compilation of each pro
gram; and the execution report of each program. These 
listings constitute the raw data from which a Validation 
Summary Report (VSR) is produced. (Any attempt to use 
the raw results for evaluating a compiler would be painful 
indeed due to the volume of paper involved.) The VSR 
provides the following information: 

(a) The status of the compiler in relation to each of the 
four Federal levels of COBOL as defined in FIPS 
PUB 21. 

(b) A list of language elements whose implementation 



is not consistent with the language specification 
(American National Standard COBOL X3.23-1968).4 

(c) A list of language elements which are not imple
mented due to a lack of hardware necessary to sup
port those elements (e.g., read reversed, hardware 
switches, etc.). The language specification does not 
require the implementation of certain elements if 
they are dependent on specific hardware devices, 
and the system supporting the COBOL compiler 
itself does not support that device. 

(d) Information-only items. These are necessitated due 
to the existence of imprecise language specifications 
in the Standard. 

(e) Compiler characteristics noticed by the validation 
team. This includes the usefulness of diagnostic 
messages issued, format of the source program 
listing, and timings and memory requirements for 
the compiler and individual audit routines. 

COBOL CON[PILER PROBLEMS DISCOVERED 
DURING VALIDATIONS 

The FCCTS has, since its establishment, validated com
pilers supplied by many different vendors. :::v[any problem 
areas have been uncovered during these validations. Some 
of the problems are common to many compilers; others 
occurred only in particular ones. 

In this section we present some of the common problem 
areas we have discovered in "Standard" COBOL compilers. 
The problems are grouped by the COBOL functional pro
cessing module in which they are found. 

Nucleus 

In a NOTE character string, any combination of charac
ters from the computer's character set is treated as a com
ment; the string appears on the source listing, but is not 
compiled. From the NOTE tests included in the CCVS we 
have found that most COBOL compilers check the syntax 
of a NOTE statement. As an example, one of the tests is a 
NOTE sentence containing a single" (QUOTE) character. 
Most compilers generate a message indicating an illegal 
alphanumeric literal format was used since an alphanumeric 
literal is a character string enclosed in quotes. If the NOTE 
statement is not the first sentence of a paragraph, the KOTE 
comment ends with the first period followed by a space. On 
many systems though, the first period, with or without a 
trailing space, terminates the NOTE comment and attempts 
are made to compile the rest of the comment. 

There are tests of the ADD and SUBTRACT CORRE
SPONDING statements with matching items requiring 
five levels of qualification. Most compilers give diagnostic 
error messages for these tests, but in some cases the com
pilation of the program was terminated. 

A test of the noating insertion editing capability included 
in a Nucleus module audit routine moves 000123.45 to an 
elementary item ",-ith a PICTURE clause $$$B999.99. 

Experiences in COBOL Compiler Validation 419 

The language specification states that any of the simple 
insertion characters (comma, blank and zero) immediately 
to the right of floating insertion characters are part of the 
floating character-string. Thus, the contents of the edited 
item after the test should be $123.45. The result usually 
obtained for this test is $1i$123.45. 

Sequential and random access 

The size of the data records for a file may be specified 
by the RECORD CONTAINS integer-l TO integer-2 
CHARACTERS clause. The size of each record in the file 
is defined by the individual record descriptions and the 
RECORD CONTAINS clause is optional. If the clause is 
used, there should not be any restrictions in the File De
scription. We have found compilers which require the num
ber of characters in each record to be a special item at the 
beginning of a record description when this clause is used. 
This is a nonstandard restriction. 

One audit routine for both sequential and random access 
file processing includes a CLOSE file WITH LOCK state.,. 
ment. Attempts are then made to OPEN and READ the 
locked file during the current run unit. A file that has been 
closed with lock cannot be opened again during execution 
of the object program. Most of the systems tested abort 
the program execution with an error message stating that 
an attempt to access a locked file has been made. Some of 
the systems return data and continue executing as if the 
CLOSE WITH LOCK had not been encountered. In one 
case, the program went into an execution loop when an 
attempt to read a locked file was made. 

Table handling 

In the COBOL Table Handling Module, the OCCURS 
DEPENDING ON option specifies a table whose number 
of occurrences varies during execution. The number of items 
in the table during execution depends on the value of the 
data-name in the DEPENDING ON clause. If a SEARCH 
statement is encountered for a variable table, the last 
entry in the table is defined by the contents of the data
name. Some compilers accept the syntax for the table defini
tion, but the table is always considered to be its maximum 
size in a SEARCH statement. 

Segmentation 

An independent program segment is expected to be in 
its initial state each time the segment is made available to 
the program. There are compilers which do not restore the 
initial state of independent program segments. 

Library 

The COpy statement with the REPLACING option 
allows the user to copy library text, replacing each occur-



420 National Computer Conference, 1974 

rence of a word in the text with a new word. A variety of 
problems have been found when exercising this option in 
the audit routines. One compiler correctly handled a COpy 
REPLACING statement, but in a subsequent COpy 
without the REPLACING option of the same library text, 
words were replaced which should not have been. This 
caused undefined data-names during the program com
pilation. 

:Many compilers place restrictions on the REPLACING 
option which are not in the Standard. Some of these restric
tions are that a qualified name could not be replaced; a 
data-name could not be replaced by a subscripted data
name; or a data-name could not be replaced in an 01 level 
entry in the Data Division. 

Sort 

A frequent restriction encountered in the SORT module 
is a limitation in the specification of the minimum number 
of characters in a sort record description. Usually the com
pilation of the COBOL source program will not cause any 
diagnostic messages, but when the sort program is exe
cuted, a message indicating incorrect record length is pro
duced. 

Problems have arisen when one of the sort keys is defined 
as a signed numeric field. For a sort on ascending keys, 
negative values should appear before positive values. In 
some cases, signed numeric items have not been sorted in 
the correct order because comparison was based 'on the 
actual binary structure of the data, and not the algebraic 
value associated with the data. 

Implementation variations 

A file may contain multiple record descriptions, with each 
record having a different length. It is important for a user 
to know how much external storage media must be allocated 
for records of a given file. In order to compute this a user 
must know if a given implementation always writes records 
of the maximum length, or if variable length records are 
written. This would be especially significant if most of the 
records in the file were much shorter than the remainder. 
Though not required by the standard, a great deal of ex
ternal storage space is wasted if fixed length records are 
written. 

There are procedures in both sequential and random 
access audit routines which create a file containing variable 
length records, and in the subsequent reading of the file test 
if the system creates all records as the maximum fixed length. 

As a result of our validations, we have changed some tests 
to information-only tests because of language ambiguities. 
For example, there is no explicit statement in the Standard 
as to what the result should be when moving a signed nu
meric field to an alphanumeric fieJd. There are statements 
suggesting that an:r appropriate con,rcrsion tal(cs place 
during an elementary move, but there could be doubt as to 

whether the elimination of a sign is included. In order to 
determine the result for a partiCUlar compiler, the alpha
numeric item is tested for a numeric value after moving a 
+ 1 and a -1 to the alphanumeric item. 

The use of optional words is only for readability and they 
are not supposed to effect the meaning of the statements. 
However, we have found one case where the presence of 
the optional word 'IS' changes the meaning of a statement. 
One of the audit routine tests is 

IF A = B AND IS NOT GREATER C OR D. 

The presence of the word 'IS' leaves no doubt that NOT 
is part of the relational operator NOT GREATER. As a 
result, the expansion gives 

IF A = B AND A IS NOT GREATER C OR 
A IS NOT GREATER D. 

But for the combined abbreviated relational condition: 

IF A = B AND NOT GREATER C OR D, 

the language specification states explicitly that the word 
NOT is part of the logical connector AND NOT, and is 
not part of the relational operator NOT GREATER. The 
effect of the rule causes the statement to be expanded so 
that the NOT is associated with the operand called C, and 
not associated with the operand called D: 

IF A = B AND ~OT A GREATER C OR A GREATER D. 

The presence of the word 'IS' in the statement can indeed 
violate the law of least astonishment. 

The discovery of problems in tests such as those de
scribed above has resulted in recommendations for language 
clarification to the American National Standards Institute 
Technical Committee X3J4, which has the responsibility 
for the maintenance of X3.23-1968 COBOL. 

REASONS FOR FAILURES IN EXECUTING THE 
AUDIT ROUTINES 

There are several reasons why a compiler may be imple
mented in such a way that there are discrepancies between 
the language specifications and the results given by the 
compiler. The most common reason for discrepancies is 
simply due to logic errors in the compiler. This can be 
attributed to lack of adequate controls in producing com
pilers. 

A second reason for differences in the implementation is 
the misinterpretation of the language specification on the 
part of the implementor. One case in point (which has been 
noticed in several compilers) is the use of the word THRU 
in the current standard (X3.23-1968). In many specifications 
throughout the document, the word THRU appears as 
follows: 

PERFORM procedure-name-1 THRU procedure-name-2 
FILE-LIMIT literal-1 THRU literal-2, etc. 

There is nothing in the above syntax which indicates that 
the words THRU and THROUGH are interchangeable. 



The only reference that establishes this little known fact 
is the reserved word list where they are shown to be equiva
lent. This probably accounts for the fact that we have 
identified several compilers which do not allow usage of 
THROUGH. 

Another problem is the ambiguity that is inherent in a 
language as complex as COBOL. These are areas in the 
current language specification that, at best, are ill-defined, 
and the implementor must make a unilateral decision as to 
the direction the implementation will take. A good example 
would be the default action the compiler takes for a WRITE 
statement to the printer, when the ADVANCING phrase is 
not specified. Based on whether the default assumes WRITE 
BEFORE ADVANCING or WRITE AFTER ADVANC
ING inappropriate spacing or overprinting of lines can 
occur. This was recognized as a shortcoming of the language, 
and subsequently corrected so that a default is now specified. 

RESOURCES REQUIRED 

An accounting summary is prepared for each validation 
performed. This summary includes professional personnel 
time for required modifications to the CCVS (to accommo
date any compiler peculiarities), site visit for acquisition 
of raw data, evaluation of raw data, and preparation of the 
VSR; and processor time required for executing the audit 
routines. An average validation has thus far required 73 
hours of professional time and 29 hours of clerical time. 
The processor time will naturally vary with the computer 
used. Execution of all the audit routines takes approxi
mately 20 minutes of UNIVAC 1108 processor time. We 
estimate the average cost of a validation to be approxi
mately $1,000, although these figures are subject to wide 
variations. 

CONCLUSIONS 

The use of the CCVS in validating COBOL compilers at;.. 
tempts to answer three major questions: 

• Will the compiler accept the syntax as defined in the 
COBOL language specification? 

Experiences in COBOL Compiler Validation 421 

• Will the compiler generate the appropriate object code to 
satisfy the semantic requirements of the language 
specifications? 

• What unilaterial actions does the compiler take when 
the language specification leaves the result up to the 
implementor? 

The results of over a year's work in validating a variety 
of compilers indicate that there may not be a compiler which 
completely conforms to the COBOL standard. In a few 
cases we were tempted to question ,whether the compiler 
was in fact compiling COBOL, or some other language 
similar to COBOL! 

The reasons for the amount of non-conformance or devia
tion from the language specification can be blamed partly 
on the 1968 COBOL Standard. Most of these problem 
areas have been resolved during the development of the 
revision to X3.23-1968. As a result, we feel that we can 
expect to see better compilers since the language specifica
tions are tighter and better defined; the idea of providing 
standard compilers is being encouraged in the marketplace 
by the users; and, most importantly, we have a measure
ment tool which can be used to determine the degree to 
which a compiler conforms to the Standard. 

We recognize that the Validation System is necessarily 
incomplete. But we also are convinced of the importance 
of having some capability for measuring the quality of 
software. What we have learned during the period we have 
been validating compilers confirms the importance of soft
ware engineering, and thereby the importance of any meas
urement tool which results in software quality improve
ment. 

REFERENCES 

1. Baird, G. N., "The DOD Compiler Validation System," Proc. 
1972 FJCC, AFIPS Press, Volume 41, Pages 819-827. 

2. Federal Information Processing Standards PuJJlication 21, U.S. 
Government Printing Office, Washington, D.C., March 1972. 

3. Navy COBOL Compiler Validation System User's Guide, Information 
Systems Division, Department of the Navy, January 1973. 

4. American National Standard COBOL X3.23-1968, American Na
tional Standards Institute Incorporated, New York 1968. 





System for efficient program portability 

by GEORGE N. BAIRD and L. ARNOLD JOHNSON 

Department of the Navy 
Washington, D.C. 

BACKGROUND 

The acquisition of major Automatic Data Processing Equip
ment (ADPE) systems in the Department of the Navy is 
accomplished by either single source acquisition or com
petitive selection.1 In the case of the single source acquisition, 
only one vendor is considered as having the system capable 
of satisfying the needs of the procuring organization. The 
criteria which must be satisfied for a single source acquisition 
include the need for unique hardware, excessive conversion/ 
reprogramming cost and/or time, etc. The competitive se
lection, on the other hand, is open to any vendor who feels 
he can provide a system meeting the requirements specified 
in the solicitation document associated with that procure
ment. 

The major steps in the competitive process are, briefly, 
as follows: 

(1) The requestor prepares a solicitation document which 
explains the requirements of the system being pro
cured. 

(2) Benchmark programs are prepared. These will be used 
to ascertain that vendors participating in the compe
tition can meet minimal performance standards. These 
programs may be written in various higher level 
languages. We will restrict our discussions to COBOL 
programs. 

(3) The vendor examines the solicitation document to 
determine whether he has a system capable of meeting 
the requirements. 

(4) The vendor obtains the benchmark, converts it to the 
system being considered, and determines if the hard
ware/software will be price-competitive ·with the sys
tems most likely to be offered by his competitors. 

(5) The vendor must then demonstrate that the execution 
of the benchmark can be accomplished within the 
time specified in the solicitation document. 

(6) The award is generally made to the vendor who 
qualifies with respect to timed benchmarks and offers 
to provide the system which meets the needs of the 
user at the lo,\\rest overall cost to the GovCfllL'TLent. 

The usual amount of time involved in the competitive 

423 

selection process, as described above, ranges from nine to 
23 months. A significant portion of this time is involved in 
working with the benchmark. The system we are describing 
here is designed to reduce this time. 

USE OF BENCHMARKS IN THE SELECTION 
PROCESS 

The benchmark is a vital part of the competitive selection 
process. It becomes the tool for minimum measurement to 
be used against all systems being considered. Therefore it is 
important that the benchmark be constructed in such a way 
as to accurately reflect the system requirements being speci
fied. The system requirements are defined in terms of the 
current workload and the projected future workload. Properly 
prepared benchmarks will demonstrate that the system being 
offered contains adequate memory and peripherals, and that 
the throughput speeds are sufficient to process the projected 
future workload. Additionally, this exercise demonstrates 
that the operating system and supporting software are 
operative. From a functional standpoint, the "ideal bench
mark" situation could be described as follows: 

(1) The programs would be coded using the language 
elements defined in the American National Standard 
COBOL, so that source code conversion is minimal. 

(2) The implementation of the benchmark programs by 
the various vendors could be monitored as in a con
trolled environment. This would provide useful infor
mation as to the impact of converting other programs 
after the new system is delivered. 

(3) The programs have been debugged to the extent that 
they ",ill give predictable results on both the native 
and the target machines. 

(4) The data files would be in a form readily acceptable 
to all systems, but would at the same time be con
sistent ",ith any given system's architecture, so that 
there is no loss of efficiency, or validity of results. 

(5) The checking of benchmark processing results would 
be as automated as possible. 

Unfortunately, this ideal situation seldom exists. This 



424 National Computer Conference, 1974 

results in excessive time and cost expended on the part of 
the vendor in processing the benchmark. It is not unusual 
for a vendor to spend six to nine calendar months just pre
paring the benchmark programs for processing, or for the 
cost of processing them to represent 10 percent or more of 
the eventual bid price. The cost and time related to processing 
a benchmark causes vendors to be more selective in respond
ing to requests for proposals (RFPs). This could result in the 
best system not being offered if the vendor feels he may not 
have a good chance of winning. 

PREVIOUS BE:NCHMARK EFFORTS 

Little has been done in the area of making the benchmark, 
and, as a result, the competitive process, more palatable. In 
the past, various methods have been used in presenting the 
benchmark to the vendor. These range from the attitude of 
"here is the benchmark, do with it what you must in order 
to make it run on your system, and in the meantime don't 
bother me" to a recent instance where the benchmark and 
its related data were provided in what could be described as 
"machine interchangeable" form (i.e., all data was in DIS
PLA Y form, several "dangerous" language features were 
not used, etc.). This approach is consistent with recommen
dations made by Meltzer and Ickes.2 

The effect of the "don't care" philosophy is that the 
vendor is permitted to make any changes he desires in 
implementing the benchmark. This may destroy the repre
sentativeness of the benchmark. At the same time, through 
the use of his most talented programmers and/or analysts, 
a vendor could optimize the programs for faster execution. 
It is often the case that the talent the vendor is able to turn 
loose on the benchmark is superior to that of the average 
user organization. Therefore, the credibility of the benchmark 
is somewhat lessened, and the timing results now represent 
more what the vendor's programming staff can do than 
what was originally intended. 

The philosophy behind the machine interchangeable 
COBOL calls for no modification being permitted to the 
source programs except in the Environment Division. Basi
cally, the idea of machine interchangeable COBOL is to 
eliminate any form of data representation except for standard 
data format (e.g., character representation only-no binary, 
packed decimal, floating point, etc.). 

The machine interchangeable approach satisfies the ma
jority of the criteria described in presenting the ideal bench
mark; however th~ are two comments worth making: 

(1) The decision to stay with the standard data format 
may force several vendors not to participate; pri
marily those with systems not capable of character 
addressing and/or decimal arithmetic. 

(2) The resources used in manually converting the bench
mark package to machine interchangeable format will 
include a substantial amount of manpower and com
puter time. 

THE SANITATION EFFORT BY THE U.S. NAVY 

The Software Development Division of the Department 
of the Navy Automatic Data Processing Equipment Selection 
Office (ADPESO) is looking into methods and techniques for 
decreasing the amount of time required for competitive 
selection, and lowering the overall cost of the procurement. 
Armed '\\'ith the knowledge of problems associated with 
benchmark techniques, and in particular the problems as
sociated with natural benchmarks, an effort was established 
to mechanize the preparation of natural benchmarks. 

The vehicle we chose (for ease of implementation, '\\'ith 
the necessary documented controls) was the VP-Routine 
developed by the Navy for automatically resolving imple
mentation names within COBOL programs, and generating 
the necessary operating system control cards to compile and 
execute the programs. 3 

Each source program must be purged of nonstandard 
language elements. This is accomplished by automatic con
version (where possible through simple syntax replacement) 
and hand tailoring when additional logic may be required 
to handle semantic differences between two statements. Also, 
all implementor names must be resolved, or converted t() an 
intermediate form. This results in COBOL source programs 
that are VP-Routine sensitive in that they can be tailored 
to a given systems requirements by a single pass of the 
VP-Routine. 

All data files necessary for input to benchmark programs, 
or output files provided for verification purposes, must be 
carefully extracted from the native system and transformed 
into a form readily acceptable to other systems. This must 
be done ,,'ith no loss of data integrity. 

After the source programs and data have been converted, 
it is important to insure that the execution of the converted 
benchmark programs give the same results as the original 
programs, and that the data has not been adversely affected. 
This is accomplished by executing the sanitized benchmark 
using the sanitized data on both the current computer system 
and on other target systems. During the execution of the 
benchmark it is useful to be able to determine the degree to 
which the data is exercising the various procedures of each 
program. Through the help of a software monitor, infor
mation is provided which will help to further determine the 
adequacy of the benchmark. 

The result of the benchmark preparation process would be 
a viable product that is: 

(1) Well documented. 
(2) Checked out on more than one system. 
(3) Easily implementable through the use of the VP-

Routine. 

A discussion of the overall system follows in five major 
sections: 

Source Program Preparation 
Data Portability 
Program Monitor 
Packaging and Distribution 
Limitations 



SOURCE PROGRAM PREPARATION 

The source programs that are to make up the benchmark 
are processed by a COBOL to COBOL translator that per
forms three major functions. 

(1) The Environment Division is rendered VP-Routine 
sensitive by the replacement of all implementor names 
,,,ith an encoded mnemonic that has meaning to the 
VP-Routine. These mnemonics are later used in pre
paring the programs for a given system. 

(2) The source code is examined for nonstandard coding, 
and translated when appropriate. W-here translation 
cannot be accomplished, the translator flags the 
offending code. 

(3) Based on parameter cards, the file descriptions of the 
files to be converted from the native system are used 
to create an intermediate work file containing pseudo 
file/record/field descriptions. This file is later used to 
create Data Translation programs. This is fully dis
cussed in the section entitled Data Portability. 

The translation of one COBOL dialect to another is con
ceptually simple. The more serious problem involves the 
moving of data from system to system. A detailed discussion 
of this problem and a suggested solution follows. 

DATA PORTABILITY 

Problem 

The differences in the internal representation of data 
among computer systems represent the major limitation of 
software portability. These differences can be broadly seg
mented into two categories: Differences in the. : character 
code used (i.e., EBCDIC, BCD, FIELDATA, etc.), and 
differences in the representation of numeric data. Data 
translators for character code conversion are wid~ly available, 
or can be easily created. Transferability of the second type 
requires more than simple code conver.sions,"and, therefore, 
presents the greater problem. Furthermore, the specific 
representation used 'within this general category will, for a 
given computer, seriously impact the effectiveness with which 
that computer is used. Thus, the system described here 
concerns itself only "\\-ith the conversion of noncharacter 
data from any "native" computer to any "target" computer, 
in such a way that the target computer architecture is 
properly utilized. 

Generally, COBOL data portability is impacted by vari
ations in numeric data representation, alignment of data 
within a defined data unit (e.g., a word), and the position 
and representation of arithmetic signs. There are several 
forms of numeric data representation, of which binary and 
packed decimal are the most common. The packed decimal 
format is not universal and may therefore have to be con
verted to a completely different type of data structure. Data 
in binary representation are universal, and although sign con
ventions and word size do vary, conversion between binary 

System for Efficient Program Portability 425 

representations is relativeiy simple. Alignment vanatlOns 
affect the positioning of data within storage units, particu
larly in word-oriented computers. For proper transformation 
of data from external storage to internal storage, the COBOL 
program definition of this data must be consistent with the 
expected data position and alignment on the external files. 

Solution 

Generality and impartiality are principal design goals of 
our effort. Our system must perform data translation from 
any given system to any other system. Furthermore, we 
must not penalize the architecture of the target system. 
Generality implies that the translation programs must be 
automatically generated, as opposed to hand-coded. Im
partiality means we must go from a machine dependent 
form to another machine dependent form. Good sense sug
gests we do this through an intermediate machine inde
pendent code. 

We use available software as much as possible. This is 
done by using the code conversion subroutines already present 
in a system's compiler, together with the data descriptions 
in the COBOL programs being converted. The data trans
lators which constitute the heart of the system are auto
matically generated COBOL program segments. These data 
translators are used to convert native machine dependent 
data (MDD) to standard data format (SDF), and the latter 
to target machine dependent data, which we refer to as 
machine ANSI data (MAD). If character code translation is 
required, it can be performed on the SDF, since this data 
is simply a string of characters. 

Program creation 

Data translation/verification programs (henceforth re
ferred to simply as data translators) are created from the 
file/record descriptions of the COBOL programs being con
verted. The data translators will contain the following 
COBOL file descriptions (FD's): 

(1) Machine dependent data (MDD) file descriptions, 
which are those used to process the file on the native 
machine. 

(2) Standard data format (SDF) file descriptions, in 
which all data items are in DISPLAY mode, unsigned 
and unsynchronized. 

(3) Machine ANSI data (MAD) file descriptions, in which 
all data items are described in Standard COBOL 
formats.4 

(4) Machine ANSI data for the target machine (~1ADT) 
file descriptions. This file description is identical to 
(3) above, and is used for file comparison purposes. 
This comparison process is more fully described below. 

Source code MDD item descriptions which are not Stand
ard COBOL will be defined by the ~fAD file description in 
a form which is as . close to the native file description as 
possible (e.g., COMPUTATIONAL-3 will become COMPU-



426 National Computer Conference, 1974 

MDD 

SDF 

01 MDD-RECORD. 
02 ALPHANUMERIC-D 
02 UNSIGNED-D 
02 SIGNED-D 

01 SDF-RECORD. 
02 ALPHANUMERIC-X 
02 UNSIGNED-X 
02 SIGNED-S 
02 SIGNED-X 

01 MAD-RECORD. 
02 ALPHANUMERIC-A 

MAD 02 UNSIGNED-A 
02 SIGNED-A 

PICTURE X(20) 
PICTURE 9(6) 
PICTURE S9(6). 

PICTURE X(20). 
PICTURE 9(6). 
PICTURE X. 
PICTURE 9(6). 

PICTURE X(20) 
PICTURE 9(6) 
PICTURE S9(6). 

JUSTIFIED RIGHT. 
COMPUTATIONAL-3 

JUSTIFIED RIGHT. 
COMPUTATIONAL 

Figure 1-Example of record description used in a data translator program 

TATIONAL). Figure 1 illustrates a DATA DIVISION from 
a data translation program. Procedures for translating from 
one data form to another and for file comparisons (for data 
verification purposes) are generated for each elementary field 
of the record. There are three data translation procedure 
types, corresponding to alphanumeric data, signed numeric 
data, and unsigned numeric data. The type of procedure 
generated is based on the elementary COBOL item de
scription. 

Data translation procedures for alphanumeric and unsigned 
numeric data require no more than a COBOL MOVE 
statement. Any changes in the data code, data alignment, 
or storage allocation required in converting from one form 
to another are performed automatically by the code generated 
(for the MOVE statement) by the compiler being used. 

To take into account the various sign conventions, COBOL 
procedures are added to check the characteristics of signed 
numeric data. If translation is from a machine dependent 
form to a SDF form, the appropriate sign is stored as a 
separate character in the SDF data description. If we are 
performing the reverse process, we first generate the positive 
value of the machine dependent data item (through a MOVE 
statement), then check the separate sign character in the 
SDF description, and if minus multiply the machine de
pendent data item by minus one to give it the correct sign. 

Data validation and verification procedures are also gener
ated. Figures 2 and 3 give examples of the various COBOL 
procedures used for data translation, validation, and verifi
cation (the latter two functions are described below). 

Once all the procedures and file descriptions have been 
generated, they are merged with appropriate housekeeping 
COBOL statements, resulting in data translators which are 
complete COBOL programs in VP-Routine sensitive format. 

Program operation 

Since the native source code file descriptions in the data 
translators may not be acceptable on the target compiler, 
the VP-Routine is used to provide the capability of selecting 
the appropriate source coding for use on the desired system 
(target or native). This is accomplished by parameter cards 
to the VP-Routine. If any minor updating to the source 
programs is required, this capability is also available through 
the VP-Routine. 

Parameters are used as input to the data translators in 
order to direct the flow of execution. The three categories of 
functions which may be performed are data translation, 
data verification, and data validation. 

Four modes of translation are available. The mode required 

MOVE ALPHNUMERIC-D TO ALPHNUMERIC-X. 
MOVE UNSIGNED-D TO UNSIGNED-X. 

(MDD to SDF 
procedure) 

(SDF to MAD 
procedure) 

IF SIGNED-D NEGATIVE 
MOVE" -" TO SIGNED-S 
ELSE 
MOVE "+" TO SIGNED-S. 

MOVE SIGNED-D TO SIGNED-X. 

MOVE ALPHNUMERIC-X TO ALPHNUMERIC-A 
MOVE UNSIGNED-X TO UNSIGNED-A. 
MOVE SIGNED-X to SIGNED-A. 
IF SIGNED-S EQUAL TO "-" 

MULTIPLY -1 BY SIGNED-A. 

Figure 2-Example of data translation procedures used in a Data Translator 
Program 



System for Efficient Program Portability 427 

( Data Validation 
procedure) 

IF UNSIGNED-X NUMERIC NEXT SENTENCE ELSE 
MOVE UNSIGNED-X TO PRT-FIELD-DATA 
MOVE "UNSIGNED-X" TO PRT-FIELD-NAME 
PERFORM PRINT-VALIDATION-ERROR. 

(Data Verification 
procedure) 

IF UNSIG~""ED-A NOT EQUAL TO UNSIGNED-D 
MOVE UNSIGNED-A TO FLDA-NUMERIC-18V 
MOVE UNSIGNED-A TO FLDA-NUMERIC-V18 
MOVE "UNSIGNED-A" TO FIELD-NAME 
MOVE UNSIGNED-D TO FLDB-NUMERIC-18V 
MOVE UNSIGNED-D TO FLDB-NUMERIC-V18 
PERFORM PRINT-VERIFICATION-ERROR. 

Figure 3-Example of data validation and data verification procedures used in a data 
translator program 

is indica ted by the following parameter cards: 

CONVERT ~1DD-SDF 
CONVERT SDF-MAD 
CONVERT MDD-MAD 
CONVERT MAD-SDF 

The first mode is applicable to the native compiler, and 
translates :Machine Dependent Data to Standard Data 
Format. The second mode is applicable to the target com
piler, and translates Standard Data Format to Machine 
ANSI Data. The last two data translation modes are used 
to create files for data verification. 

There are three modes of data verification. The specific 
one required is indicated by one of the following parameter 
cards: 

CO~1PARE MDD-~AD 

COMPARE MAD-1VIADT 
COMPARE SDF-MAD 

The first mode of data verification is used to compare 
Machine ANSI Data files to Machine Dependent Data files. 
The second mode is used to compare two Machine ANSI 
Data files. The last mode is mainly for flexibility, and per
forms a SDF to MAD translation before a MAD to MADT 
comparison is made. 

The third function performed by the conversion system 
is data validation. This consists of verifying that the data 
content is consistent with its class characteristics (i.e., nu
merically described fields should contain only numeric data). 
This function is performed automatically in combination 
with the translation function, or during a separate pass, 
using a VALIDATE SDF-DATA parameter. 

Data validation/verification 

In order to perform a comparative evaluation of the per
formance of computer systems through the use of natural 
benchmarks, we must ensure that the same amount of 
processing was completed by all competing systems, and 
that the accuracy of computations is within allowable bounds. 
Data comparison and validation procedures are included in 

our system for this purpose. Additionally, these procedures 
provide the benchmark recipient with a tool to check the 
various stages of a multi-step processing application for any 
processing inconsistencies. Finally, the procedures are used 
to confirm that data integrity is not lost in either the pro
gram conversion or data conversion process. 

Processing integrity is verified in two ways through the 
authentication of data files and comparisons of files after 
program execution. The authentication of data files consists 
of validating the data item content for conformance to 
their described data class (Le., numeric fields contain the 
data values 0 through 9 and, possibly, a sign). This specific 
feature was incorporated in the system because it has been 
found, for example, that some compiler implementations 
permit spaces as data in numeric fields, or maintain signed 
data in fields described as unsigned, and provide the ap
propriate translation before processing; other implementa
tions do not. Validation would point out these potential 
problem areas. 

The comparison of files after program execution provides 
a means of determining not only that all the processing was 
done, but also that the numerical results of this processing 
are within the accuracy limits allowed. When any data 
discrepancy is found by the data translators, a report of the 
discrepancy is produced. A report is made for each field in 
error, and includes the name of the field as defined in the 
program, its data content (in the case of a comparison, the 
field being compared to and the comparing field are both 
displayed), the position of the field in the record, and relative 
record position in the file. Record and error counts are also 
provided in the report. Figure 4 gives an example of the 
report generated. 

PROGRAM MONITOR 

One of the principal concerns in using benchmarks as a 
means of evaluating computer performance is whether they 
provide an adequate representation of the user's workload, 
and whether they properly reflect his future processing needs. 
This problem is not completely resolvable, but an indication 



428 National Computer Conference, 1974 

DATA VALIDATION/VERIFICATION REPORT 

WGICAL FIELD STARTING 
RECORD NAME POSITION 

000006 UNSIGNED-A 0021 

000020 ALPHNUMERIC-A 0001 

MACHINE ANSI RECORDS=004562 
MACHINE DEPENDENT RECORDS =004562 
ERROR COUNT=0002 

FIELD 
SIZE DATA CONTENTS 

0006 +000000000000000443.000000000000000000 (INCORRECT) 

* 
+000000000000000444.000000000000000000 (CORRECT) 

0020 aaaaaaaacdeaaagjaaaa 

*** ** 
aaaaaaaaaaaaaaaaaaaa 

Figure 4-Sample validation/verification report from a data translator program 

of the processing characteristics of the programs provided 
for the benchmark can be of value in the evaluation process. 
This data is obtained through a program execution monitor. 

Following program and data conversion, and before distri
bution of the benchmark to the vendors, this monitor is 
applied to the benchmark programs. The monitor, written 
in COBOL, inserts control statements into the benchmark 
programs. Execution of the benchmark programs with a 
given set of data provides a histogram of procedure activity 
in the programs. This, in turn, can be used to determine the 
suitability of the benchmarks in representing the user work
load. 

PACKAGING AND DISTRIBUTION 

Once the benchmark has been sanitized and run on the 
native system to be assured that processing integrity has 
been maintained, the benchmark package is prepared for 
distribution. The package includes a source program library, 
benchmark data, and documentation. 

The source library (population file) 'will contain the bench
mark programs, data translator programs, the VP-Routine, 
and the operating system control language for the major 
computer systems. The VP-Routine selects the programs 
from the population file, transforms VP-Routine sensitive 
programs to machine dependent programs by satisfying all 
implementor defined names in the source program, and 
prepares the job control stream for submission to the oper
ating system. 

Data files for the benchmarks are distributed to the vendor 
on magnetic tape, in SDF format. 

Documentation pertaining to the programs, data, instruc
tions for implementation on a users system, and all infor
mation necessary to run the benchmark for a live test 
demonstration is included in the package. This includes the 
following information: 

(1) Cross reference to data files by reel number. 
(2) Cross reference to data files by program. 
(3) Cross reference to data files for file name. 
(4) Detailed instructions for implementation of the Data 

Translator/" erification Programs. 

(5) Instructions for use of the VP-Routine.3 

(6) A workload processing statement, which is a table 
providing a summary of all the pertinent information 
for implementation of the benchmark. 

(7) Instructions and sample program for the extraction 
of the VP-Routine from the population file. 

(8) Benchmark instructions. 
(9) Individual program documentation, including any 

known areas which may cause implementation prob
lems. 

(10) For variable length records, or multiply defined 
records, a complete COBOL 'record description is 
given, or a record layout is provided together with 
its record type characteristics. 

(11) A system flowchart of the benchmark. 
(12) Listings of each program. 

LIMITATIONS 

Even though the Benchmark Preparation System resolves 
many of the difficulties involved in program and data 
portability, there are areas in which reprogramming will be 
required for complete conversion. The amount of repro
gramming depends on the degree to which machine de
pendency has been imposed onto the program. Data that is 
not explicitly defined, or features for which ANSI Standard 
COBOL does not :have a direct functional replacement 
cannot be detected by the sanitation process. The following 
are a few of the known programming, COBOL characteristics, 
or COBOL compiler implementation practices which have an 
impact on automation of the conversion process. 

(1) Functions in the native COBOL source program which 
cannot be directly replaced by features or elements of 
the AN 81 language specification. Such an example 
would be the READY TRACE statement or the 
TRANSFORM verb in IBM System/360 COBOL.5 
The ANSI language specification does not have an 
element or feature which directly performs these 
functions. To simulate this function requires manual 
conversion. 



(2) Incomplete or inadequate record descriptions. This is 
due to describing fields or groups of fields as alpha
numeric when their true descriptions could include 
other forms of data representation. An example of this 
technique on the IBIV[ 360/370 would be a data field 
described as PICTURE X(4), when the data actually 
present should be defined as PIC S9(9) COMPU
TATIONAL (binary), or a PIC X(2) definition of a 
data field which is in fact PIC S9(3) CO:CVfPUTA
TIONAL-3 (packed decimal). The above examples 
would not only cause the target compiler to incorrectly 
allocate storage but also would not provide the ap
propriate conversion processing, since the data is 
described as alphanumeric. 

(3) Multiply defined records which have different data struc
tures within each record, and do not have a means of 
distinguishing between records. The data conversion 
process is capable of translating multiply defined 
records, but only if they can be identified. 

(4) Machine dependencies fixed into the COBOL program 
itself. This would include such things as assuming the 
initial value of a data item, initializing numeric 
storage areas with alphanumeric literals representing 
a machine's internal sign, or using the character set 
to represent non-character machine data. An example 
would be: 

\VORKING-STORAGE SECTIO:N. 
77 SIGN-FIELD PIC S999. 
77 X-FIELD REDEFINES SIGN-FIELD 

PIC XXX. 
PROCEDURE DIVISION. 
SECTION-NAME SECTION. 
PARAGRAPH-L. 
MOVE +123 to SIGN-FIELD 
IF X-FIELD EQUAL TO '12C' GO TO-

Implementations which do not generate positive sign 
over-punches would require the procedure to be modi
fied before the program would function correctly. 

(5) Collating sequence of fields containing alphanumeric 
data which are critical to program processing and which 
are not completely defined. This problem is somewhat 
reduced, however, in that COBOL instructions which 
may be affected by collating sequence are flagged by 
the COBOL to COBOL translator. 

System for Efficient Program Portability 429 

CONCLUSIONS 

The Benchmark Preparation System was developed to reduce 
the non portability and expense of using natural benchmarks 
without losing the characteristics of the users workload in 
terms of processing efficiency and representation. The results 
we have obtained indicate that these objectives can be met. 

Our current test bed is a Navy benchmark containing 
38 COBOL programs consisting of some 60,000 lines of 
source code, and includes some 150 data files. The native 
system is an IBM 360/50 and the target machines are a 
UNIVAC 1108 and HIS 6050. These programs and data 
files have been successfully converted to both the UNIVAC 
1108 and HIS 6050. Preparation of the benchmark programs, 
development of data translator/verification programs, and 
the packaging of these were done on a UNIVAC 1108. 
Approximately 96 percent of the changes made to the 
programs were handled by this system. The remaining changes 
(manual) were necessitated by extension features with no 
counterparts in the ANSI COBOL standard. Generation of 
the data translators and sanitation of the benchmark pro
grams for packaging required approximately two computer 
runs and one man hour of effort per benchmark program. 
The effort required on each system to set up the VP-Routine, 
and cleanly compile the programs has been averaging one
tenth man hour per program. Character code translation 
posed no problem, as each system had job control card 
options for transliteration (i.e., EBCDIC to BCD on the 
IBM/360 and BCD to FIELDA TA on the UNIVAC 1108 
and IBMC code to HIS 6000 code). 

Based on our efforts, we believe that portability can be 
achieved by an automated means without sacrificing the 
efficiency of a computer system. 

REFERENCES 

1. Department of the Navy, Specijicatioo, Selectioo and Acquisitioo 
of Automatic Data Processing Equipment (ADPE), SECNAVINST 
5236.1, December 17, 1971. 

2. Ickes, Hubert F. and Herbert S. Meltzer, Draft Tutorial 00 Inter
changeable Data Files," ANSI Task Group X3.2F (1970). 

3. Chief of Naval Operations, Information Systems Division (Op-91), 
COBOL Compiler Validatioo System, VP-Routine users guide, 
January 1973. 

4. American National Standards Institute, Incorporated, USA Stand
ard COBOL, X3.23-1968. 

5. IBM System/S60 Operating System Full American National Stand
ard COBOL. GC 28-6396-2, IBM Corporation (1970). 





An experiment in the .use of synthetic programs for system 
benchmarking 

by PAUL OLIVER, GEORGE BAIRD, MARGARET Co'OK, ARNOLD JOHNSON and PATRICK HOYT 

Department of the Navy 
Washington, D.C. 

BACKGROUND 

Competitive computer system selection requires a tool for 
minimum performance measurement. The selection process 
must be fair and, ideally, brief and economical. Thus, the 
measurement tool must be visibly fair and impartial in its 
measurement of a computer system, it must relate what is 
being measured to user needs, and it must be economical to 
apply. The thrust of several ongoing "standard benchmark" 
efforts in the Department of Defense and other Federal 
Government agencies is to develop a measurement tool with 
these qualities. 

There are several characteristics of computer systems 
which can be measured for the purpose of selection: 

(a) Availability of equipment and software, in terms of 
reliability, maintenance time, and the like. 

(b) Work capacity, which can be measured from a variety 
of viewpoints. Job time is a single-job measure and, therefore, 
not often used. System throughput is a measure of how much 
work is done, and is a function of the job mix and job load, 
as well as various system parameters. Response time is a 
measure of the quality of service rendered, and is largely 
dependent on operating system and hardware characteristics. 

(c) Functional capabilities are susceptible to qualitative 
judgments, but demonstrations of these capabilities are often 
required of computer system vendors (e.g., a demonstration 
of an on-line text editor). 

In the context of computer selection, we have felt it pru
dent to limit the scope of our efforts to measuring through
put capacity, recognizing, however, that the other factors 
may take on paramount importance under varying circum
stances. 

Relation to performance evaluation 

It is important that we recognize the affinity of any bench
mark study to the subject of computer performance evalua
tion, since some combination of evaluation techniques ""ill 
of necessity be used in the development of "standard bench-

431 

marks." These techniques can be broadly classified and 
characterized as follows:1 

(a) Task-oriented techniques concern themselves with sys
tem throughput capabilities with respect to a given work
load. Simple instruction timings reduce the "workload" to 
specific classes of instructions (add time, floating-point multi
ply, etc.). Instruction mixes consist of "representative" sam
ples of instruction sets designed to reflect the degree to which 
each instruction class is used for a given type of application. 
These are adequate for estimating processor power, but com
pletely ignore memory, degree of multiprogramming, I/O 
loads, etc. Kernels are relatively small sequences of code 
performing a single (simple) function (e.g., a table search), 
and, again, are designed primarily for measuring processing 
power. The timings for kernels may be obtained by actually 
executing them or by hand-calculations. Benchmarks consist 
of a subset of a given workload ("natural" benchmarks), a 
subset which has been further modified ("hybrid" bench
marks), or a set of programs written specifically for the pur
pose of making a comparative evaluation ("synthetic" pro
grams). Benchmarks are processed on the configurations 
being evaluated or compared, and the processing time is 
used as a relative figure of merit. 

(b) The emphasis in component-oriented evaluation tech
niques is on the system being evaluated rather than on the 
workload to be processed by this system. Hardware monitors 
are relatively inexpensive, precise in what they measure, 
non-disruptive, but insensitive to data-dependent informa
tion. The characteristics of software monitors are almost 
th~ precise opposite of those for hardware monitors. The 
convenience of queueing models is offset by their inaccuracy 
and shallowness. Stochastic models (simulation models) are 
less imprecise but costly, and suffer from a credibility gap. 

Problems with natural or hybrid benchmarks 

Benchmarks have for some period of time constituted the 
accepted form of minimum performance measurement in 
computer selection throughout the Federal marketplace. Nat
ural or hybrid benchmarks have the advantages of dealing 



432 National Computer Conference, 1974 

INPUTS 

POPULATION 
FILE 
FORMAT 

COMPILATION 
TIME 
FORMAT 

X-3~ PRINTER 

X-65 UNIVAC-lIDS 

X-66 UNIVAC-lIDS 

SOURCE COMPUTER. 
XXXXX65. 

OBJECT COMPUTER , 
XXXXX66. 

FILE CONTROL. SELECT RESULTS ASSIGN ~O 
XXXXX30. 

SOURCE COMPUTER. 
UNIVAC-lIDS. 

OBJECT COMPUTER. 
UNIVAC-lIDS. 

FILE CONTROL. SELECT RESULTS ASSIGN TO PRINTER. 

Figure I-Example of VP-Routine input, population file form of audit 
routines, and compilation-time form of audit routines 

with a real system (thus avoiding half of the simulation 
credibility problem) and a "semi-real" job mix. Among the 
more serious problems associated with benchmarks are the 
following: 

(a) It is extremely difficult, except in the simplest situa
tions, to construct a set of benchmark programs which 
accurately reflects a given job mix. This of course is a prob
lem common to any performance measurement technique, 
since the nature of "a given job mix" is dependent on a 
multitude of parameters, many of which are system de
pendent (e.g., EXecute Channel Program instruction counts 
are often used to measure I/O time on IBM S/360 or S/370 
systems, but these instructions have little meaning outside 
the S/360-370 series, and often have no precise counterparts 
on other systems) and most of which are time dependent. 

(b) They are generally non-portable (system dependent) 
and often do not run correctly, even on their native system. 

( c ) They are prepared and processed using a variety of 
procedures resulting in unduly long execution times, un
reasonable file volumes, and inconsistent measurement pro
cedures. This author has seen benchmarks for which the 
required processing time was better than three hours, and 
the file population resided on two dozen (full) tape reels! 
In some cases only processor time is measured; in others, all 
components (including, e.g., printers) must halt before timing 
stops. 

(d) The above problems result in extremely high costs, to 
buyers and vendors, in terms of both time and money. It is 
not unusual for a vendor to spend 6-9 calendar months just 
to prepare the submitted benchmarks for processing, or for 
the cost of processing them to be 10 percent or more of the 
eventual bid price. 

SCOPE OF THE U. S. NAVY EXPERIMENT 

The Software Development Division of the Department 
of the Navy Automatic Data Processing Equipment Selection 
Office (AD PESO) is performing an experiment to determine 
the suitability of synthetic programs in alleviating the prob
lems created by natural and hybrid benchmarks. 

The experiment began in June 1973, with the development 
of a small (5 program) reference library of synthetic programs. 
We assumed that synthetic programs could be written so 
that relatively few parameters control their behavior; experi
mentation could be performed on these programs so that 
their behavior relative to changing parameter values would 
be predictable; specifications of a workload based on the 
parameters implicitly defined by the synthetic programs could 
be made, and synthetic program parameters could be set so 
as to reflect this workload. 

The use of synthetic programs in performance evaluation 
does not represent a new concept. Dopping,2 and Gosden and 
Sisson3 reported on experiments in the use of synthetic pro
grams as far back as 1962. More recent suggestions on their 
use have come from Joslin4 and Buchholtz.s Our aims have 
been to obtain quantitative profiles of certain synthetic pro
grams and to determine the scope of their feasible utility. 

RELATED EFFORTS 

There are several complementary efforts in the Federal 
Government aimed at designing representative benchmarks. 

The U. S. Army Computer System Support and Evalua
tion Command has recently issued a solicitation for a "Stand
ard Benchmark Study." The contract objectives are (a) The 
definition of all tasks and measurable functions performed 
by a computer in executing business-type applications; (b) 
Development of a method or technique of identifying and 
measuring the occurrence of each function or parameter in 

PROJECT: SYNTHETIC BENCHMARKS 

ImDULE: SEQUENTIAL I/O 

COMPILE TI::.a: PARAMETERS: 

1. Records/Block - for all f11es; impacts buffering. 

2. Record Size - for all flies and to reflect application. 

3. Start Variable - used to vary accuracy requireaent in cOJa'PUte 
Iternel. 

4. ~ - to impact _ry requirements. 

S. Data Types - to reflect application. 

DECllTE TIME PARAMETERS: 

2. Detail File Size - in conjunction with "repetitiosw" c:an illpact 
proceaaing tillle. 

3. .Repetitions - nUlllber of repetitiona of a co.-pute Iternel per 
.. ster-detail watch. 

NOTE: See listing for lIOn detaila. 

Figure 2-Sequential I/O module parameters 



An Experiment in the Use of Synthetic Programs for System Benchmarking 433 

each task for the purpose of profiling computer workloads. 
This solicitation is the result of a careful study on the part 
of a Department of Defense Joint Steering Committee which 
has, among other things, defined a preliminary set of applica
tion tasks and task parameters for benchmark purposes. 

The Department of Agriculture has constructed a com
prehensive set of benchmark programs which include trans
action processing and data base management applications. 
There is much in this package which should be carefully 
studied as part of any effort at designing a library of standard 
benchmark programs. 

The Department of Labor is developing a job selection 
simulation model6 Using actual utilization statistics as control 
parameters. Although the goals here are somewhat different 
from those of the "standard benchmark effort" there may 
be some related spinoff benefits. 

A similar project is being carred on by Marine Corps using 
hardware monitors to provide data for the synthetic creation 
of jobs. 7 

RESULTS 

The programs 

Five processing tasks were selected as representing, in 
varying combinations, a broad variety of application tasks. 
These were sequential file processing, indexed sequential file 
processing, relative I/O processing, sorting, and computation. 

Programs were written to perform each of these tasks. 
Because most of the Navy's present benchmark needs relate 

PROJECT: SYNTHETIC BENCHMARKS 

HJDULE: INDEXED SCQUE.\'TIAL UPDATE 

COMPILE TIME FARAMETERS: 

1. Memory Variable - is set by adjusting the size of a table in 
working-storage. This is available to vary the memory storage 
requirement of the program. 

2. Record size - Default is SOO characters. 

3. ~ - Default is 10. 

4. Index key size - Default is 10. 

EDCllTE TIME PARAMETERS 

1. Master File Size - sets the number of records to be created for 
the master file. 

2. Detail File Size - sets the number of transactions to be procesaed 
against the master file to measure 1-0 processing. 

(a) beletion Percent - is percent of detail transactions which 
initiate deletion of master records (d.efault is 10 percent). 
This parameter is available to measure the affect· of record 
deletion type transactions on 1-0 processing tilDe. 

(b) Addition Percent - is percent of detail transactions which 
add records to the master file (default is 10 percent). This 
parSlDeter is available t" measure the affect of transaction 
insertion into the index file on 1-0 processing time. 

(c) Seguential Percent - percent of detail transaction which initiate 
processing the index file sequentially (default is 5 percent). 
This is to measure the affect on 1-0 processing when accessing 
the iodex file sequentially. 

3. Computation Repetitions - sets the number of times the prograa 
cycles through cOq>ute bound procedurds. Ttds parameter 1s 
available to place a workload on the CPU. 

Figure 3-ISAM module parameters 

PIOJECt: S'llmIETIC IDICIDWID 

JIIIOI.t: ULATIVE I/O 

COIIl'ILI 'rDIE PAJWfETEIS: 

1. Muter and Detail Piles Record Size - IIin1aa of 120 charactan -
tha IIMr c:aa. raquest a 1arlar record. 

2. K .. tar and Detail lUes Block Siza - .uu.. of 1 ncord par black -
!:be IIMr _y raqueat a larlar block aiza if applicable. 

IIIaJ'I:I TDIE PAIIAMETE!tS: 

1. 1iuIIber of Mutar Records -(S,OOO default) - !:be _ c:oaU requHC • 

larlar or ..uer nuUer of records. 

2. Order the 1Iec:ords sra created - (aequential defalt) - the _falt 
_ the fil .. to be created with 10% "Jaiasil1l" recorda, 1.a. 5,000 
recorda froa 1 to S,Soo. The uaat uy requaat that a differ_t par
caDtaaa of p,- be laft between recorda for iDaartiq purpoMS. 

3. IlUllbar of Detail II.ecords - (2.Soo default) 

4. PereaDt of tha Follov1u; - (100% total): 

(a) Detail rac:ords which .. tch _ta:: rac:orda and callM sa apdata 
to take place. (33% default). 

(b) Detail records which match uatar recorde sad c:aaaa !:be ..atar 
racord to be deleted. 

(c) Detail records which do not _tch _tar recorda aad ~ a 
11., _tar record to be cr_ted 

Figure 4-Relative I/O module parameters 

to COBOL-oriented workloads, all of the reference library 
programs are written in American National Standard CO
BOL. Additionally, all the programs are in "system inde
pendent" form. This is accomplished through the use of an 
executive program, the VP-Routine. The VP-Routine was 
developed in 1969 by the Department of the Navy as part 
of its COBOL Compiler Validation System.s It is used to 
resolve implementor names (e.g., in the ENVIRONMENT 
DIVISION), modify compile-time parameters (e.g., record 
sizes, precision, blocking factors), and automatically generate 
job control instructions appropriate to the system we are 
executing under (Figure 1). 

Each program is controlled by a set of compile time and 
execution time parameters. Figures 2-6 identify these for each 
of the five programs. The ability to vary automatically cer
tain parameters at compile time provides us with the flexibil
ity to develop a fairly rich mix from just a few basic programs. 

We have adopted certain design principles which, while 
applicable to software design in general, we felt were par
ticularly important to this project. 

(a) We have attempted to make every detail of the struc
ture of each program visible and understandable to a prospec
tive user. This is a prerequisite to a "sellable" product. 

(b) The design of each program is consistent with that 
of the others. We have used "modular programming" 
throughout, although, frankly, this was simply a reflection 
of following long accepted standards of good programming 
practice. We maintained consistency in the binding time of 
parameters across programs. Thus, if a given parameter is 
bound at compile time in one program it is bound at compile 
time in all the programs. Also, all files used by a program are 
generated by that program (eventually, the file generation 
modules may be combined into one program). 

( c) We have isolated the function of each of the program 
parameters so as to render each parameter independent of 



434 National Computer Conference, 1974 

PIOJECT: SYNTHETIC IIENCIIIWUCS 

IIIIULI: SORT 

COIIPII.E TDIE PABAlfETEIlS: 

1. Reeord Length - UHd to illpaeC 

Ca) Buffer size. 
(b) Transfer time. 
Ce) Interaal and external stora .. requir_u 
Cd) Whatber JUn1m\lll and lI&Xiaa 108ic~ ab. of appl1catifta 

can be handled. 
C.) Wbetber aort CIUl IwIdle variabl. leaatb 1opcaJ. recan.. 

2. Blocldn8 Factor. - U •• d to .ffect 

Ca) Buffer .h •. 
"Cb) Trllll8fer time. 
Cc) Ratio of iater-record 8ap./data for -sa.tic tape; b8ace 

ext.l"Dal .torage requirement •• 
Cd) Maea storage partition u .. a/waat. rat1011; heDca ..... tor ... 

requirements and nilllber ot .eeu aDd Crane f.-I'. required. 
C.) Whetner minillua arul IIBlliaa phydcal record aU. can be 

handled. 
Cf) Whether paddiag ia required. 
C.) Whether extra charact.r. must b. added to .. ch ~1cal reccml 

if the file ia blocked. 
(b) Provide. a way to iDcrea.. I/O ti .. uaeil for a a1Dala traaafer 

to cbaage 1/0 to ca.put.r ratio. 

3. llullber of Sort Itaya - Mlecce 

Ca) Nwlber of IIOrt pa._ required to produce lIpecUled .... _. 
(b) Teat that the nUlllber of keya allowed in •• 1Dal. aort step 

equala these required by an appUcatioa. 
(c) Total length of Bort field. 

4. Type of Sort !tey. - DeterlliDe. 

Ca) Whether all types of key. r .... 1red by .... ppUcatioD C8Il be 
handled (nlllleric, alphabetic, alpu_ric, .hned. ~ 
pointe). 

(b) Time required for various typea of ca.p8riaoDa, e_ric ... 
• lpun .... ric. 

(c) P6inU out the collatiag .eqlleGCe uaed by the aachiDa for 
sortl; and cOllpate •• 

5. Order of Sort Key! - Prevent cb .. tiag by settla8 .t tat tWe to 
capare reaulu ... i .. t predicted bebaYiOl' of f10al &ort ....-•• 

6. Mcendins or d .. c ..... 1a1 aort -

iucun: TIHE PAIWI!TEI.S: 

1. ...ber of Record. -

(a) Total data volume for input. 
(b) Whether aort can be done cOllPl.tely in core. 
(c) AIoount of deperulence on uu &tor .. e for 1Dt-..liat. _ .. 

• triaga. 

2. !bIber of CO!!putations on rIC -

Ca) Ability to dlllllate ..aunt of lIOdificatiOll d_ dudng aort 
procesB. 

(b) ChangeB ratio of added cOllpllt.r requir_u/aon I/O pr:oc-tac. 

BDl'E: Although not specifically specified aa • compile tme par_ter, 
the file .. ata-ta f~ IIIPUT-FILE, SORT-FILE, and OUTPUT-FILE 
CUI change the beau aort charact.riaticB frca _ atorase to 
tape orientation. Tbia affecU file r_ind ti_, tr_far ratu, 
... blAlalt1Dc c_t"-a. 

Figure 5-80RT module parameters 

the others. This was necessary to avoid facing an exponen
tially rising set of options in setting parameters to control 
program behavior. This was a difficult principle to follow 
since, for example, a simple specification such as how one is 
to control I/O time can be made in terms of file size, blocking 
factor, logical record size, etc. In this case we could choose 
to usc file size to effect time, blocking factor to impact buffer
ing, and maintain logical record size constant. 

( d) Only those functions which were felt essential to the 
accurate modeling of a task were included in each program. 
Thus we opted for a clearly defined scope and simplicity 
rather than complexity. We feel this was particularly im
portant in the selection of synthetic program functions a,nd 
parameters, since a lack of frugality can lead to a level of 

PROJECT: SYNTHETIC BENC~ 

!«lDULE: COMPUTE 

COKPILE TIME PARAMETERS: 

1. Table Size - used to V<lry the size of an in-core table, thuB 
allowing for codificacion of memory requi~ements. 

2. Data Descriptions - modified by appropriate changes to respective 
PICTURE clauses. Used to vary computation accuracy requirements 
and processing tillle. 

EXECUTE TIME PARAMETERS: 

1. .f...~ - for rarulom number generator 

2. Processing Iterations - to vary CPU activity. 

~. Accuracy Parameter - used to vary accuracy requirements. 

4. "Processing Deletion Switches - to indicate coding to be sipped. 

NOTE: All parameters have default values - see program listing for details. 

Figure 6-Compute module parameters 

complexity in the programs which would have rendered them 
completely unamenable to analysis. 

(e) The design of each program (and of the set of programs 
as a whole) lends itself to extension, so that a wide range of 
task characteristics can be accommodated. 

Each program is self-documented. A "prologue" is in
cluded for each and commenting is plentiful, though perti
nent. External documentation consists of a "module over
view" (see Figure 7), parameter specifications, experimental 
results, and a User Guide to assist an organization in imple
menting the programs and using the VP-Routine. We have 
avoided lengthy descriptions and detailed flowcharts because 
we question their usefulness. 

PIIOJECT: 

PIIiOCOIAK-ID: 

PUllPOSE: 

USAGE: 

EJlVIRONJoIEIIT: 

METHOD: 

REFERENCES: 

SYNTHETIC BENCHMRKS 

SEQUENTIAL MODULE OVERVIEW 

SEQPItGAA 

this .ynthetlc progr. is de.lgned to r.flect the propertia. 
of a seq_tla' 'I Ie update process. 

In Its achln. Independent form SEQPRGRII Is designed to be 
us.d In conjunction .. Ith the VP-routine (see "references). In 
-"Ine ~t foM'll. S~I'IIGRII Is • stiind-iilone progr •• 

This prog,.. .... develooed on a UNIVAC-1I00 5yst .... It Is 
designed to tWlctlon corr.ctly wh.n tr~slated by • COBCL 
CGIIpI1.r c:onton.lng to Federal COBOL stanaaras as int.rpr.t.d 
by the COBOL CCllllpIl.r Validation Syste ... 

.... t.r .. d detan •• quentlal flies ar. created, together .. I th 
an In-cor. table. Ti .. lng for thIs progr ... is then inl tlat.d. 
The _tar fi I. Is COft"I)ared ag4hl!1It t~ rletl!;! fi ls iiiiti 1 .. 
key _tch Is made. For each ~ur ... nce of a key .. tch an updat. 
of the _t.r fll. 'Is fllilde (cr.atlng a new ,.,.st.r fi Ie) and a 
COIIIput. kernel is executed a "arylng nUillber at tilllls. Wt.en the 
detail file Is exhausced,timlr:g for this progr .... is tennill<1lt.d 
and. s_rv r.cord I. written. 

Navy COBOL CCllllpiler Validation SyStM User Guide 
Info ..... tlon Syst.ms Divis ion (Cp-!JJ) 

A Iynth.th: job ... Buci<noltz, IB.'I Sys. J. (It), 1369 

Figure 7-Example of a synthetic module overview I 
I 



An Experiment in the Use of Synthetic Programs for System Benchmarking 435 

, 15 

Memory 
Seconds 

o 
• 

1000 

• 
• 

• 
• 

No. Master File Records 
(Detail File Size is 10) 

• • • 

5000 

Figure 8-Sequential file update time as a function of master file size
no CPU activity, drum-resident files 

The programs, documentation, and VP-Routine are col
lected on a 2400 foot magnetic tape reel. The User Guide 
and experimental results on program behavior are separately 
bound. The entire package is in the public domain. 

Examples of processing results 

A complete summary of processing results is beyond the 
scope of this paper, but we can discuss some of the more 
interesting of those results. All results mentioned are based 
on executions on a UNIVAC 1108 Unit Processor, under 
control of the EXEC-8 Operating System. 

The "sequential I/O" module is the simplest of the file 
processing programs. Its function is to pass a master file 
against a detail file, creating a new master file. The files 
may reside on tape or direct access devices. A compute loop 
may be performed a variable number of times each time a 
master file record is updated. The processing includes a 
table search, and the size of the table is used to control 
memory requirements. All computations are self-checking. 
The program is similar in these and other characteristics to 
the PL/1 program described by Buchholz.5 

Predictably, we found I/O time to be a linear function of 
master file size. This was true for F ASTRAND (drum) 
resident as well as tape resident files. Repeated runs during 
different times of day showed that the curve reflecting the 
behavior of time as a function of master file size remained a 
straight line with constant slope, although the intercept 
value changed (Figure 8). In all these runs, only the master 
file size was varied (from 100 to 5000 records), with the detail 
file size fixed at 10 records), and only one pass through the 
compute loop was performed. 

We processed a series of similar runs with all files residing 
on UNIVAC 8-C tapes. Again, running the program in a 
mix did not change the linear behavior of time as a function 
of file size (Figure 9). As before, the detail file size was held 
constant, and only one pass through the compute loop was 

40 

Memory 
Seconds 

<> 

• <> 

• 
o 

1000 

<> 
<> 

<> • 
<> • <> • <> 

• <> • <> • 
• • 

No. Master File Reocrds 
(Detail File Size is 10) 

<> 
<> 

<> • • <> • <> 
<> 

• • • 

5000 

Figure 9-Sequential file update time as a function of master file size
no CPU activity, tape-resident files 

performed on each record update. Thus, while other programs 
in a mix clearly affect the quantitative behavior of a sequential 
update task, they appear to have almost no effect on its 
qualitative behavior. 

CPU time turned out to be a linear function of the number 
of repetitions through the compute loop. 

Execution of the "compute" module produced some inter
esting results. The program generates a variable-sized table 
of uniformly distributed pseudo-random numbers, performs 
a "runs-up-and-down" test on them, and optionally pro
duces printer output. A parameter controlling the number 
of processing iterations is used to vary the amount of CPU 
activity. 

CPU 
Seconds 

100 

<> 

<> 
10 <> 
o <> 

o 1000 5000 

Number iterations in compute loop 

<> 

10000 

Figure lO-Compute module CPU utilization as a function of number 
of iterations in the computation loop 



436 National Computer Conference, 1974 

Number of 
Iterations 

20 

100 

200 

500 

1,000 

1,700 

5,000 

10,000 

20,000 

CPU Time (minutes) 
(Display Mode 

.083 

.816 

1.497 

4.525 

9.531 

14.945 

45.524 

89.941 

158.507 

CPU Time (minutes) 
(Computational Mode) 

.643 

.007 

• 515 

1.906 

2.990 

5.062 

14.156 

23.324 

47.696 

Figure II-Compute module CPU time utilization as a function of 
number of iterations in compute loop 

When the number of iterations reached a certain threshold 
(usually 5(0) the CPU time varied linearly with this param
eter. Below that point, however, we noticed some fluctuations 
(Figure 10). We believe this is due to the way the EXEC-8 
dispatcher schedules jobs for CPU time. (It uses a variation 
of Corbato's time quantum charging algorithm. 9) 

Figure 11 summarizes two executions, run under identical 
conditions. The only difference was that in one the usage of 
variables was "computational," in the other "display." As a 
program becomes CPU bound an exorbitant price is paid 
for the "machine independency" of data. 

Figure 12 shows the relationship between memory time 
(for a given program, a memory second is defined as the 
occupation of 32K words of memory for a period of one 
second, during which time the program is undergoing either 
CPU or I/O activity) and the size of the file being sorted 
for the "sort" module. Again, we found a linear behavior, 
and this pattern was consistent regardless of other jobs in 
the mix, time of day, etc. Fluctuations at the low end of the 
line were due, as in other cases, to EXEC-8 allocation 
characteristics. 

Problems encountered 

We feel confident, based on our tests thus far, that we can 
indeed modify program parameters, for the modules we have 
produced, in such a way that we can force a predictable 
behavior on the programs, in terms of both time and pattern. 
This, however, only tells us that we can control the programs 
-a necessary but not sufficient condition if we are to create 
synthetic benchmarlr...s. 

We have also encountered certain difficulties with the 
synthetic program approach. Not all of these are unique to 
this approach, but this offers us little solace. The following 
were the most serious of these problems: 

(a) Because synthetic programs tend to be stylized, they 
ma:y""producc surprising results. For example, an opti
mizing compiler can have a much greater impact on a 

synthetic benchmark than on a natural one. Yet, 
user workloads are "natural," not synthetic. We have 
found that PERFORM sections which are called only 
once, and not otherwise entered, are placed in-line by 
many compilers, but not by all. This creates no diffi
culties if a user creating a set of benchmarks knows 
what his compiler does, but he does not have to know . 
Also, sequences of code such as 

1=1+1 

A=1, 

where 1 is a loop-control parameter (the syntax here 
is FORTRAN but the principle is equally true of 
COBOL) are generally not performed as such by an 
even moderately intelligent compiler. 

(b) Another problem we have encountered is that over
whelming side effects can occur in overly parameterized 
synthetic programs. For example, the COBOL PER
FORM verb translates to 14 instructions on one 
system we executed under, while the MOVE verb 
translates to 1 instruction. Thus, using the PER
FORM instruction to vary the number of times a 
MOVE instruction is executed leads to grossly mis
leading results when the PERFORM itself is the 
object of yet another PERFORM. 

(c) One needs to understand the "native" system in some 
detail in order to develop benchmarks purporting to 
accurately reflect a given workload for that system. 
Some of the test results cited above, for example, 
were clearly due to the nature of the system on which 
the programs were executed. This means that guide
lines on how to use the synthetic modules will differ 
with differing systems. Also, it is easy to create an 
unduly complex program (in terms of possible combi
nations of parameters) if the architecture of the native 
system is not understood. Repeating, for instance, a 
series of COBOL MOVE's, varying field sizes each 
time, accomplishes nothing more than what could be 
accomplished by moving a fixed size variable on IBM 
S/360 computers, since a single machine instruction, 
MVC (move character) is used regardless of field 
size. Yet, on a UNIVAC 1108, changes in object code 

MEMORY 
SECONDS 

60 

• 
• 

olL---.· ._. -
o 100 1000 

Figure I2-Sort module memory seconds utilization as a function of 
number of records sorted 



An Experiment in the Use of Synthetic Programs for System Benchmarking 437 

do occur at certain field sizes. Also, moves of literals, 
numerics, and character fields are usually all per
formed in the same way, so that incorporating all of 
these in a program is simply adding to the combi
nations of parameters ",ithout really contributing to 
the value of the program. 

(d) We see no evidence of a satisfactory way of modeling 
a workload. Even a simple I/O-CPU analysis of a 
file maintenance problem depends on a multitude of 
parameters: proportion of active to passive records, 
distribution and location of active records in the master 
file, number of instructions executed per active/in
active record, record size, frequencies ",ith which in
structions are executed, etc. This difficulty is seriously 
aggravated in a mix of programs. It is not at all clear 
that techniques for matching job parameters to mix 
parameters is feasible. The use of analytical models to 
characterize a job mix and thereby provide inputs to 
the synthetic programs! is clearly unsatisfactory, since 
the limiting factor would then become the analytical 
techniques themselves. This class of techniques is 
already regarded as grossly imprecise. 

The use of software monitors for data collection is likewise 
unacceptable since they create serious instances of the 
"Hawthorne" effect.lO This could possibly be compensated 
for, but with considerable difficulty. 

In fact, it is important to. note that all suggestions on 
how to model a workload rely on one of the evaluation 
techniques previously surveyed (monitors, simulation, etc.). 
Thus, we should not expect the synthetic mix approach to 
be an improvement over these. 

The problem of "representativeness" which exists in 
natural benchmarks will simply not disappear just because 
we use synthetic programs. We have cited the system de
pendency of workload parameters (particularly as they apply 
to I/O time) and the sheer magnitude of the number of 
combinations of program parameter values. An equally 
crucial problem is the fact that the nature of a workload is 
time dependent. Any attempt to condense a workload into a, 
say, two-hour benchmark is bound· to result in substantial 
homogenization, and some important characteristics could 

10,500 r-----------... 

9,250 

~18'OOO 
gl 6,750 r 

5,500 '----------' 
JASONDJFM 

250~-------, 

101 J ~----------~ 
JASONDJFM 

utIle Model 75 Utilization 

July 1969 - March 1970 

(-- gIves a'llailge for July 1968 - March 1969) 

Figure 13-Monthly utilization profile (Source: Annual Report, Uni
versity of North Carolina Computation Center, 1970) 

1.-___ ----_-.,..._-- ,_ 

1 2 ~ 4 S 6 7 a 9 10,. P 12 13 l4 13 16 11 la B 2021 2223242526 2728 29 30 31 

Figure 14-Daily utilization profile (Source: Annual Report, University 
of North Carolina Computation Center, 1970) 

be lost. As a simple example, the annual workload of a com
puter center, in terms of productive hours, is given in Figure 
13. It suggests that there is plenty of excess capacity. Yet 
the workload on a typical mid-week day shown in Figure 14 
indicates that for this period the system was saturated. We 
know of no satisfactory techniques which allow us to model 
this behavior for the purpose of building benchmarks. 

CONCLUSIONS 

Can a controllable job mix be constructed? 

We believe, on the basis of our experience thus far, that 
task-oriented synthetic programs can be combined into a mix 
which can be controlled to exhibit desired processing time, 
memory, I/O time, and I/O devices utilization character
istics. There have been other efforts that bear this out.ll 
We plan additional testing on a variety of systems so as to 
learn more about some of the system dependencies we have 
encountered. 

Can a workload be profiled? 

We do not believe that it is possible to arrive at a gener
alized, comprehensive, and accurate model of system work
loads except in the most trivial cases. We can certainly 
retrofit. That is, we can accept a workload definition based 
on the synthetic program parameters. We also believe that 
this need not impede the use of synthetic programs in bench
marks. In this, we strongly support the view expressed by 
J. C. Strauss. In a recent paper!2 on the use of natural bench
marks, he stated that, based in part on prior experience and 
on the difficulties encountered, "it was felt more important 
that the behavior of the benchmarks be well understood and 
cover a broad range of important system features than that 
the complete benchmark series be representative of the 
general workload." 



438 National Computer Conference, 1974 

Other uses for synthetic programs 

Isolated system characteristics can be exercised using syn
thetic programs. We have in fact used the I/O modules in 
our reference set to test various operating systems data 
management capabilities. Synthetic programs also serve as 
convenient tools to determine the impact of certain pro
gramming practices, as was done in using the "compute" 
module to measure the degradation, on a specific system, 
resulting from COBOL DISPLAY mode computation. 

A recommendation 

We feel our testing has substantiated our original as
sumptions. A small number of simple, task-oriented, syn
thetic programs can be combined into a fairly rich and 
versatile job mix. A relatively small number of parameters is 
sufficient to enable a single program to reflect the character
istics of a broad class of applications. Also, individual modules 
have proven useful in exercising isolated computer system 
features, such as I/O handling. Finally, if one accepts a 
"modest" workload characterization, aimed more at re
flecting extremities and crucial· areas rather than compre
hensiveness, it is possible and reasonable to construct a 
benchmark from a set of synthetic modules. 

Synthetic programs are neither difficult nor expensive to 
produce. Our present set, admittedly small, was designed, 
coded, and debugged in two calendar months. An additional 
three months were required for experimentation, packaging, 
and system documentation. These times do not consider the 
VP-Routine, which was already available. Total manpower 
used for the effort amounted to four man-months. Total 
cost, including machine time, clerical support, and salaries 
was under $6,000. Furthermore, the system is available to 
anyone upon request. Thus, we feel we have made a small 
investment for a product which has already given a sub
stantial payoff, in what we have learned if nothing else. 

A reference set of "controllable" programs is a useful tool 
for any data processing installation. Our concern was pri
marily with benchmarks for system selection. We have indi
cated that performance measurement is a related area of 
application. System sizing, throughput estimates against a 
changing workload, expected response time to a varying 
stimulus, and availability measurements are other reasonable 
applications for a set of synthetic modules . .The modesty of 
the effort required to produce such a set certainly commends 
further study. 

REFERENCES 

1. Lucas, H. C., "Performance Evaluation and Monitoring," ACM 
Computing Surveys, 3, 3, 1971. 

2. Dopping, D., "Test Problems Used For the Evaluation of Com
puters," Bit, 2, 4, 1962. 

3. Gosden, J. A. and R. L. Sisson, "Standardized Comparisons of 
Computer Performance," Proc. 1962 IFIP Congress. 

4. Joslin, E. 0., "Application Benchmarks: The Key to Meaningful 
Computer Evaluations," Proc. 20th ACM Nat. Conf., pp. 27-37, 
1965. 

5. Buchholz, W., "A Synthetic Job for Measuring System Perform
ance," IBM System Journal, Vol. 8, No.9, 1969. 

6. Byrne, T. A., et aI., "A Job Selection Simulation Model," Sym
posium on the Simulation of Computer Systems (ACM), June, 1973. 

7. Hesser, W. A., "Creation of a Simulation Model From Hardware 
Monitor Data Using the SAM Language," Symposium on the 
Simulation of Computer Systems (AMC), June 1973. 

8. Baird, G. N., "The DOD COBOL Compiler Validation System," 
Proc. FJCC, 1972. 

9. UNIVAC 1100 Series Operating System Programmer Refere:nce, UP-
4144, Sperry-UNIVAC (1973). 

10. Ferrari, D., "Workload Characterization and Selection in Computer 
Performance Measurement," IEEE Comp1ller Journa.l, July! 
August, 1972. 

11. Wood, David C. and Ernest H. Forman, "Throughput Measure
ment Using a Synthetic Job Stream," Proc. 1971 FJCC, AFIPS 
Press, Vol. 39. 

12. Strauss, J. C., "A Benchmark Study," Proc. 1972 FJCC, AFIPS 
Press, Vol. 41, Part II. 



A microprocessor implementation of a dedicated 
store-and-forward data communications system 

by P. M. RUSSO and M. D. LIPPMAN 

RCA Laboratories 
Princeton, New Jersey 

INTRODUCTION 

The stored-program approach to data communications 
system design is not new. The past several years have 
witnessed a large and ever-increasing number of mini
computers and larger processors dedicated to the imple
mentation of a variety of data communications functions. 
To date, however, the use of computers has been relegated 
primarily to medium-sized and larger systems where highly 
complex data communications requirements justify reason
ably large investments in hardware and software. In many 
low-end applications, however, the high cost of minicom
puters and their associated peripherals cannot be justified. 
This is especially true in a dedicated system where two 
terminals (or groups of terminals) communicate over a 
dedicated communications channel. 

The advent of low-cost LSI microprocessors and mass 
storage devices (e.g., floppy discs) is having a significant 
impact on the design of new low-end data communication 
systems. A multitude of systems that, until recently, would 
have required a hard-wired logic. implementation with 
logic speeds far in excess of the system requirements, can 
now realize the many advantages of the stored program 
approach. These advantages include, among others, lower 
cost, programmability (flexibility), improved reliability, 
ease of maintenance, and the addition of many new system 
functions hitherto impractical to implement via hard-wired 
logic. The many advantages of micro-processor implementa
tions of data communications systems are discussed more 
fully below. 

In this paper we will describe a dedicated store-and-for
ward system that may prove suitable for international data 
communications. The system is configured around the RCA 
COSMAC LSI microprocessor and the Century Data Sys
tems CDS-II0 floppy disc, with suitable disc, keyboard, 
display and communications interfaces. The system archi
tecture, disc interface organization, COSMAC micropro
cessor, data structure and the system functional capability 
will be detailed. Emphasis will be placed on various new 
functions achievable with stored-program control. Finally, 

439 

other potential applications of microprocessors in the data 
communication field will be briefly discussed. 

LEASED CHANNEL SYSTEM 

The dedicated store-and-forward data communications 
system that we have implemented is functionally related 
to currently commercially available international leased 
channel systems. Hence, for the purpose of this paper, we 
will also refer to the microprocessor based system as a 
leased channel system. An international leased channel is a 
dedicated communications link between a customer's 
domestic and foreign offices, Figure 1. Typically, this link is 
made via a leased channel control unit (CU) that performs 
a variety of functions. :Many CU's are usually located in a 
single centralized control room. The CU acts as an interface 
between domestic and foreign communications networks. 
This includes both electrical interfacing and message format 
interfacing, such as code and speed conversion. Typically, 
the international link employs 5-level baudot character 
encoding whereas the domestic link uses 8-level ASCII. The 
control unit also handles character expansion, handshaking, 
playback/ answerback control, message switching and mes
sage storage. Message storage is often desirable both because 
of existing time differences between distant offices and 
because of transmission speed differences on the interna
tional and domestic links. 

A typical current implementation of a CU consists of a 
dedicated rack of special-purpose hardware specifically 
tailored to a given customer's requirements. The principal 
sub-assemblies are a message switch with appropriate 
communication interfaces,' code converters, and relatively 
expensive tape-loop storage media. Also a minimum of two 
tape loops are required per system since internationally 
and domestically bound traffic cannot share the same loop. 
Finally, use of serial storage media necessitates that mes
sages be transmitted in the same order they are received. 

The principal undesirable features of hard-wired leased 
channel implementations are high cost, difficulty in custom-



440 National Computer Conference, 1974 

DEDICATED LEASED 

(CHANNEL\ 

· · I cu I· I U.S. OFFICE I 
CU- OVERSEAS CU - U.S. LINK 

LINK 

Figure I-Typical leased channel system 

izing a design (e.g., answerback sequences, character expan
sions, character codes and formats are hard-wired), and 
high maintenance costs with high mean times to repair. 
Furthermore, many desirable system functions are pro
hibitive to implement via random logic. 

MICROPROCESSOR IMPLE.MENTATION 

The microprocessor based leased channel control unit 
described in this paper is presented in Figure 2. It consists 
primarily of three basic components: an LSI microprocessor, 
a floppy disc drive and its associated processor interface, 
and a pair of communications line interfaces. The communi
cations interfaces support simultaneous full duplux asyn
chronous data transmission. Modular design minimizes 
the hardware changes required to support a wide variety of 
communications channels and devices. Parameters such as 
data rate, transmission mode, character length, and parity 
are programmable. The microprocessor, called COSMAC, is 
an RCA proprietary, byte-oriented, parallel structure ma
chine. Even though COS MAC can directly address 65 
Kbytes of random access memory, only 4 Kbytes are used 
in our current design. The TV display and keyboard are not 
essential parts of the system but can be used to display 
status information and to provide the system with operator 
interaction and diagnostic capability when required. The 
floppy disc used in the current design is a Century Data 
Systems CDS-110 and as implemented, has a storage ca
pacityof 118 Kbytes. 

The leased channel system depicted in Figure 2 can 

, 
I 
'DEDICATED TTY 
: CHANNEL 
I 
I 
I 

LSI MICROPROCESSOR 
CONTROL PANEL 

2 - 4 KBYTES 
MOS lS I MEMORY 

TV INTERFACE 

Figure 2-Leased channel control unit 

TABLE I-Advantages of Microprocessor Implementation 

1. Rapid Implementation of Customer Requirements 
2. Dynamic Memory Allocation 
3. Message Priority Queueing 
4. Programmable System Specifications 

-Data Rates 
-Character Formats and Codes 
-Character Expansion 
-Playback/Answerback Control 
-Error Detection/Correction 

5. Maintenance 
-Single Unit Backup 
-Fault Isolation 
-Diagnostics 
-Rapid System Regeneration 

6. Data/Message Logging and Archival Storage 
7. Improved Cost/Performance 

duplicate all the system functions available in a hard-wired 
design at much lower cost. Additionally, many new and 
highly desirable system functions and features are now 
available at no extra cost in hardware. These are summa
rized in Table I. 

Notice that the functions and features given in Table I are 
in addition to the functional capabilities of typical current 
implementations. 

Rapid implementation of customer requirements 

Since system control resides in a RAM it is extremely 
flexible because the basic system can be easily tailored to 
individual customer needs by software modification. Thus 
the time needed to get a new customer on-line is greatly 
reduced. Furthermore, system upgrading in the field is made 
possible by modular software design. 

Dynamic memory allocation/message priority queueing 

As previously discussed, where message storage is required, 
two tape loops are currently employed-one for the domestic 
bound and one for the overseas bound traffic. Traffic flow 
imbalances between domestic and overseas traffic often 
result in heavy loading in one direction. This is currently 
resolved by adding an additional tape loop storage unit to 
the heavy traffic direction. Meanwhile, the tape loop asso
ciated with the lighter traffic remains essentially unused. 
The use of a random access storage medium (floppy disc) 
results in the dynamic allocation of memory wherever it is 
needed-thus if the traffic is heavier in one direction, that 
direction will be assigned more memory. 

An additional desirable feature available for free is that 
of message priority queuing. Since messages are stored on a 
random access device, one can tag each message with a 
priority. Thus when messages are requested from the sys
tem, those with highest priority can be transmitted first. 
Contrast this with the first-in-first-out (FIFO) requirement 
associated with tape loops. Finally, individual messages C'l'l,n 

be retransmitted as needed without having to retransmit 
the entire stream. 



A Microprocessor Implementation of a Dedicated Store-and-Forward Data Communications System 441 

Programmable system specifications 

System specifications such as demestic and overseas data 
rates, character codes and formats, control characters, 
playback/ answerback character sequence generation/ detec
tion and character expansion can all be implemented by 
simple software changes. Character expansion is necessitated 
by the use of 5-level (baudot) codes in international data 
communications. Thus many ASCII characters have no 
baudot counterparts and are represented by sequences of 
valid characters. For example, a customer may request 
that $(ASCII) expands into DOLLAR (baudot). Finally, 
error detection/correction algorithms can be implemented 
or modified by changes in the software. 

Maintenance 

Systems tailored to specific customer requirements \ViII 
differ only in the software. Thus only single unit backup 
needs to be maintained. When a system component fails 
(e.g., cpu, disc, etc.), simply plug in a new component, 
reload the software and go. To facilitate the latter function, 
the disc interface supports a bootstrap function which per
mits system regeneration in seconds. This feature 'will be 
discussed more fully in a following section on the disc inter
face organization. 

A system structure based around a cpu lends itself readily 
to self-testing. Diagnostic programs can be run to isolate 
and identify faulty system modules. A keyboard and TV 
display permit the operator to interact with the diagnostic 
programs and rapidly determine which portion of the hard
ware is inoperative. Xote that this diagnostic testing can 
be done off-line, since the load of the faulty system can be 
taken up by an identical (hardware wise) backup system. 

COSMAC 

The COS MAC microprocessor was designed for imple
mentation on a single 40-pin, MOS/LSI chip. It provides a 
flexible, powerful, building block for a variety of stored 
program products, including device controllers, terminals, 
and computers. Special features such as "on chip" DMA 

BIDIRECTIONAL 8- BIT DATA BUS 

Figure 3-COSMAC microcomputer architecture 

channel minimize added circuits for complete systems. A 
parallel internal structure using static circuits provides 
maximum reliability, speed, testability, and application 
flexibility. Proprietary architecture, utilizing a one byte 
instruction format, minimizes program memory require
ments. 

Figure 3 illustrates the microcomputer architecture. 
"R" represents an array of sixteen, 16-bit general purpose 
registers. (This is essentially a 16 X 16 bit RAM.) 

P, X, and N are three 4-bit registers. The contents of P 
X, or N select one of the 16 R registers. R(N) will be used to, 
denote the specific R register selected by the 4 bit hex digit 
contained in the N register. RO(N) denotes the low order 
8 bits (byte) of the R register selected by N. R1 (N) denotes 
the high order byte. The contents of a selected R register 
(2 bytes) can be transferred to the A register. The 16 bits 
in A are used to address an external memory byte via an 
8-bit multiplexed memory address bus. The 16-bit word in 
A can be incremented or decremented by "1" and written 
back into a selected R register. 

M(R(K)) refers to a one byte memory location addressed 
by the contents of R(N). This indirect addressing system 
is basic to the simplicity and flexibility of the architecture. 

D is an 8 bit register that functions as an accumulator. 
The ALU is an 8 bit logic network, I is a four bit instruction 
register. Bytes can be read onto the common data bus 
from any of the registers; external memory, or input/output 
devices. A data bus byte can, in turn, be transferred to a 
register, memory, or input/output device. 

The operation of the microcomputer is best described in 
terms of its instruction set. A one byte instruction format 
is used as shown in Figure 4. The instructions are summa
rized below \vhere [XX] contains two hex digits and repre
sents the instruction byte. 

Register Operations 
[1 N] Increment R(N) by 1 
[2 N] Decrement R(N) by 1 
[8 N] Transfer RO(N) to D 
[9 X] Transfer R1 (N) to D 
[A X] Transfer D to RO(N) 
[B N] Transfer D to R1(N) 
[C N] Transfer DO to ROD(N) 

Memory Operations 
[4 K] Load D from M(R(K)) and increment R(N) 
[5 K] Store D in M(R(N)) 

Miscellaneous Operations 
[0 N] Idle 
[3 N] Branch 
[6 N] Input/output byte transfer 
[7 K] Interrupt control 
[D N] Set P to value in N 
[E N] Set X to value in N 
[F N] ALU operations 

For the miscellaneous operations, N no longer selects one 



442 National Computer Conference, 1974 

MSD LSD 

XXXX x X X X 

~ ________ ~ ____ -J)l------__ .------~) 

I N 
Figure 4-one byte instruction format 

of the R registers, but is decoded as needed. For example, 
for instruction "3", N selects the type of branch instruction 
desired. 

Instruction "6" permits byte transfers between memory 
and input/output devices via the common byte bus. The 
value of N specifies the direction of the byte transfer. 
M(R(X» can be sent to an input/output device or an 
input/output byte can be stored at M(R(X». The digit in 
N is made available externally during execution of the 
input/output byte transfer instruction. This digit code can 
be used by external I/O device logic to interpret the com
mon tms byte. For example, specific N codes might specify 
that an output byte be interpreted as an I/O device selec
tion code, a control code, or a data byte. Other N codes 
might cause status or data bytes to be supplied by an I/O 
device. COSMAC can directly address up to 65K bytes of 
RAM or ROM, has a program execution speed of up to 
100,000 instructions/second and can achieve a DMA burst 
transfer rate of up to 200,000 bytes/second. Additional and 
more detailed information on the COSMAC microprocessor 
architecture and its instruction set is available in References 
1 and 2. 

Our experience, to date, indicates that COS MAC is 
indeed very well suited to the types of processing required 
in data communications systems (table look-up, interrupt 
driven software, data management). Multiply and divide 
must be done in software, but these operations are un
common in low end data communications systems. 

COl\1MUNICATIONS INTERFACES 

An interface links the microprocessor to each communi
cations channel. The domestic interface connects to a voice
grade telephone line via an RS-232C compatible modem or 
data set. The overseas interface connects directly to overseas 
channel terminal equipment which accepts TTY current
loop signals. 

Both interfaces may be active simultaneously supporting 
full-duplex asynchronous data transmission. They perform 
serial-to-parallel and parallel-to-serial conversion, parity 
generation and checking, and character synchronization 
and buffering. For convenience, status display registers are 
also included in the communications interfaces. To maint.ain 

maximum flexibility, all other communications functions 
such as code conversion and control character recognition: 
are performed in software. More detailed information on 
the operation and implementation of the communications 
interfaces is presented in a companion paper.3 

FLOPPY DISC INTERFACE 

Floppy discs 

Since the commercial introduction of floppy discs in the 
latter part of 1972, the number of announced drives has 
increased from two (CDS and Memorex) to almost a dozen. 
Use of floppy discs in systems such as the IBM 3740 Data 
Entry System attests to the floppy disc drive's basic sim
plicity, low cost (potentially much lower) and applicability 
to many low end systems. 

Properties common to most floppy disc drives include 
the following: The recording medium is a non-volatile, 
flexible, small (7.5" dia.) oxide coated disc, usually packeted 
in an envelope. Data is recorded on only one side of the 
disc. Typically, a one inch recording band is accessible 
through an aperture in the envelope. During reading or 
writing, contact is usually made between the head and 
medium (in some cases, a "fragile" air bearing exists). 
Since some contact exists, precise "flying head" and me
chanical stability problems are avoided-however, head 
and medium wear do occur and must be accounted for 
(usually by maintaining head/disc contact only during 
reading and writing). The disc rotates at slow speeds ranging 
from 90 to 400 RP~f, can store typically 0.5 to 2.5 wlbits, 
has an average access time of about 500 milliseconds, can 
transfer data at 33-250 Kbits/second, and costs about $5. 
Changing cartridges can be accomplished in seconds. More 

Figwe 5-Fluppy disc data structure 

256 BYTE 
BLOCK 



A Microprocessor Implementation of a Dedicated Store-and-Forward Data Communications System 443 

information on floppy discs is available In References 4 
through 6. 

Interface organization 

Appendix A presents a block diagram of the floppy disc 
(FD) interface and discusses the hardware implementation. 
The philosophy behind the interface architecture was 
motivated by our leased channel project. A substantial 
portion of the CPU's processing power will be needed to 
support the communications interfaces. Thus it was decided 
to dedicate the CPU's Direct l\lemory Access (DMA) 
channel to the FD whenever I/O to/from the disc is required. 
Of course, the DMA is available to other devices (such as 
the TV display) whenever the FD is not busy. With the 
above philosophy, the CPU need only issue a few instruc
tions and then check, periodically, to see if the data trans
fer is completed. 

Four instructions need to be issued by the CPU to effect 
data transfer. These will select the FD, load appropriate 
status information into a two-byte buffer (2 instructions) 
and start the I/O operation. When block transmission is 
completed, a flag is raised which can be tested by the CPU. 

Each disc sector (8 sectors/track, 64 tracks/disc) will 
contain one 256 byte block, see Figure 5. Each block consists 
of a 16 byte synchronization pattern, 232 data bytes and 
an 8 byte trailing pattern, Figure 6. The total disc capacity 
is thus 512 blocks or 131,072 bytes (118,784 data bytes). 
There are 9 bits/byte-8 data bits plus parity. This block 
per sector approach greatly simplifies the interface elec
tronics and seems to be a useful organization for most low 
cost random access bulk storage systems envisioned. 

The selection of a 256 byte block size in conjunction with 
the present design allows for an 11 msec guard gap follow
ing the data block before the next sector is reached. Thus 
there is enough time for the software to access the very 
next sector should data chaining be desired. 

cpcpcpcpcpcpcpcpcpcpcpcpcpcpcpcp 

cpcpcpcpcpcpcpcpcpcpcpcpcpcpFC 
16 BYTES SYNC 
PATTERN 

232 DATA BYTES 

8 TRAILING BYTES 

Figure 6-Data block structure 

The present interface is equipped with a control panel 
which, among other things, resets the head over track 00. 
A bootstrap feature enables the user to enter a loader pro
gram (resident on the disc) into the CPU's memory at the 
flick of a switch. This loader can then load the CPU's mem
ory with any other program residing on disc, and renders 
the system completely self-contained insofar as Initial 
Program Loading (IPL) is concerned. 

Control buffer 

Since the FD interface must work independently of the 
CPU, it must initially be provided with status information. 
This status information must include the following: 

~track information 
~sector information 
~read/write information 

Status information is stored in the interface in a two 
byte control buffer. The bit assignments are presented in 
Figure 7. 

Use of the control buffer in the FD interface enables it 
to work completely independently from the CPU since all 
the information the interface needs is continuously available 
to it. 

Disc related CPU instructions 

In our current implementation, a 61 instruction "selects" 
the peripheral device to or from which information is to be 
transferred. Device selection is accomplished by assigning 
each I/O device a "device number" and ensuring that 
M(R(X)) contains the desired device number when the 
"61" instruction is executed. The five CPU instructions 
needed for disc/CPU communication are as follows: 

I l\1(R(X)) Function 

61 08 (hex) Select FD 
62 llXXXXXX Load Buffer A 
62 01XXXXXX Load Buffer B 
62 10XXXXXX Start I/O 
62 00XXXXXX Turn FD off 

When a start I/O instruction is issued, the head moves 
over the desired track and the correct sector is located. 
Simultaneously, the head is loaded (contact with disc is 
made) and all suitable stabilization delays are generated. 
When the desired sector reaches the head and all stabiliza
tion delays have elapsed, the interface will raise the IN 
REQ or OUT REQ lines of the DMA either wishing to 
.store a byte in M(R(0)) or requesting a byte from M(R(0)). 
See References 1 and 2 for details on the operation of the 
CPU's DMA channel. When one data block has been trans-



444 National Computer Conference, 1974 

l A7 I A6l A51 A4 [ A31 AZ t A I \ A~! 
AI A~ 

\ 87 I 86\ 85\ 84\ 83\ 82\ BI \ B~ I 
L ... I 

BI B~ 

"A" BUFFER: A7 - ALWAYS "I" (IDENTIFIES "A" BUFFER) 
A6 - ALWAYS "I" 
A5-A~ TRACK:j#: (6BITS-64TRACKS) 

"B" BUFFER: B7 -ALWAYS "~" (IDENTIFIES "B" BUFFER) 
B6 -ALWAYS "I" 
B5 -SPARE 
B4 - SPARE 
B3 - "1"_ WRITE TO DISC; "f!"'READ FROM DISC 
B2 - B~- SECTORI' (3 BITS - 8 SECTORS) 

Figure 7-Control buffer 

rnitted to/from the disc, an external flag is raised which 
can periodically be tested by the CPU. If the block transfer 
is complete and if the operation w;:tS a disc read, the CPU 
can then test a different external flag to determine whether 
a parity error has occurred. If the software desires to fetch 
the block of data stored in the next sector (or any other 
sector on the same track) the software can issue a 62 in
struction with M(R(X» = 01XXXXXX to update control 
buffer "B" followed by a 62 instruction with M(R(X» = 

10XXXXXX to start another block transfer. The 11.2 ms. 
guard gap following the data block in each sector is suffi
ciently large to enable the software to catch the data block 
on the very next sector! If the software no longer needs the 
disc, a 62 instruction with 1I(R(X» = OOXXXXXX is 
issued to turn the device off. 

I/O transfer rate 

The present design results in an average access time 
(seek + latency) of 560 ms. and a data block transfer time 
of about 70 ms. for a total average transfer and access time 
of 630 ms. Raw data transfer between the FD interface 
and the disc itself occurs at 33 Kbits/sec. Insofar as the 
CPU is concerned, the critical I/O rate is in bytes/second 
flowing between the CPU ahd interface. Thus the burst 
I/O rate is given by 33K/9 = 3.7 Kbytes/second. Hence 
less than 2 percent of CPU cycles are stolen during disc 
data transfer. 

Bootstrap loader 

In the following it is assumed that sector 0 of track 00 
contains a bootstrap program which can be used to load 
programs previously stored on disc into the main memory. 
The programming convention required for the programs 
residing on disc is given in Appendix B. The structurp. of 
the control buffers is such that when they are cleared (by a 
CPU reset), they point at sector 0, track 00 and are in the 
"read" mode. The disc interface is organized such that the 
flick of a switch will select the disc and issue a false "start 
I/O" instruction which will bring the loader into main 
memory. Any program residing on disc can then be loaded 
via this loader ptogram eliminating the need for auxiliary 

program load devices such as cassettes or paper tape and 
greatly simplifying system regeneration after a crash. 

CONCLUDING REMARKS 

The advent of low cost LSI microprocessors and bulk 
storage devices will bring about a profound change in the 
architecture of next generation low end data communication 
systems. Microprocessor based data communications, typi
fied by the leased channel system described in this paper, 
will begin to proliferate before the end of this decade. Many 
desirable system functions and features will be made eco
nomically viable via the stored program approach. Functions 
such as programmability, dynamic memory allocation, 
message priority queuing, etc., have already been discussed. 
However, system features such as ease of maintenance, 
which are of prime importance to the operator, rarely receive 
sufficient attention from system designers. A microprocessor 
based system, with modular hardware, can recover from a 
failure in minutes instead of days, as is sometimes necessary 
in the repair of customized hard-wired logic. Simple sub
stitution can identify the faulty hardware, and the system 
can be regenerated in seconds. 

Looking into the future, many other microprocessor 
based data communications systems can be envisioned. 
Intelligent multiplexors, buffers, concentrators, code/speed 
converters, and/or any combination of the above are but a 
partial list. These systems are certainly technically feasible 
and may operate either on a stand-alone basis or as adjuncts 
to larger computer based data communications systems. 

The advent of commercially available all digital com
munications channels may encourage the development of 
intelligent repeaters where error detection/correction algo
rithms, speed/code conversion, buffering, multiplexing, 
concentration and routing can all be implemented (and 
readily modified) via software. As new applications and 
mass markets emerge for low end microprocessor based 
systems of all types, new LSI CPU's and matching low cost 
peripheral devices will certainly become available. These 
in turn will spur the development of multi-microprocessor 
systems where many of the peripheral device controllers 
will themselves consist of dedicated CPU1s. Thus it seems 
reasonable that this decade will witness the introduction 
of complete low-end computer systems, including CPU, 
display, simple keyboard and mass storage, having manu
facturing costs of under $1000. Therein, perhaps, lies the 
germ for yet another technological mini-revolution that 
will more than rival the current calculator explosion. 

ACKNOWLEDGMENTS 

The authors are indebted to R. O. Winder, A, Longo, and 
J. A. Weisbecker, the inventor of the COSMAC architec
ture, whose constant support and many hours of diRellR810n 
have been invaluable in the successful evolution of this 



A Microprocessor Implementation of a Dedicated Store-and-Forward Data Communications System 445 

system. Finally, the authors wish to thank D. Nichols for 
his fine work in building the prototype hardware and for 
his patience and responsiveness in our many design changes. 

REFERENCES 

1. Weisbecker, J. A., "A Simplified Microcomputer Architecture," 
Computer, February 1974. 

2. Swales, N. and J. A. Weisbecker, "COSMAC-A microprocessor for 
Minimum Cost Systems," Proceedings of the IEEE International 
Convention, New York, N. Y., ·March 26-29,1974. 

3. Lippman, M. D. and P. M. Russo, "A Microprocessor Controller 
for International Leased Data Channels," Proceedings of the IEEE 
International Conference on Communications, Minneapolis, Min
nesota, June 17-19, 1974. 

4. Roessler, G. D., "Selecting a Mass Storage Memory," EE Systems 
Engineering Today, June 1973, pp. 83-86. 

5. "Focus on Disc and Drum Memories," Electronics Design, Vol. 20, 
No. 10, May 11, 1972, pp. C16-C22. 

6. Davis, Sidney, "Disc Storage for Minicomputer Applications," 
Computer Design, June 1973, pp. 55-66. 

APPENDIX A-DISC INTERFACE HARDWARE 
IMPLEMENTATION 

A detailed block diagram of the FD interface logic is 
presented in Figure 8. Six basic functions can be identified. 
The control logic is activated either by CPU (normal opera
tion) or by control panel (initial start-up) signals. Except 
for initial start-up, the control panel is only used to display 
status information. The control logic acts on information 
previously stored in the control buffer, simultaneously posi
tioning and loading the head and generating all the required 
settling delays. When the head is over the desired sector, 
and all required delays have elapsed, disc reading/writing 
is initiated. When a disc block read is desired, the sync 
pattern detector locates the beginning of the data stream 
and 232 bytes are framed, checked for parity, and trans
mitted to the CPU via the DMA channel. An external flag 
is raised to signal end of transmission. When it is desired 
to write a block to disc, output bytes are immediately 
requested from the DMA channel. These bytes are, in turn, 

I 
I 

IN/OUT REQUESTS{f 
FLAGS,N BITS - -----
TIME PULSES --+---
I/O INSTRUCTION r-~--~ 

~ 
II I 

f 

STEP IN 
STEP OUT 

WRITE ENABLE 
HEADLOAD 

IOlscl 
READ 

INBUS ....... ~.-.-,."..,..,... k __ ...L., __ +-PULSES 

OUT BUS 4.. ~ ......... ..,.,....,.,.." 1--------+'" WRITE 
1...-----' LEGEND PULSES 

------CONTROL 
---DATA 

t INTERFACE I ~ATA BUS 

Figure 8-Floppy disc interface organization 

serialized and appended ·with an odd parity bit. When 256 
bytes have been written, a flag signaling end of transmission 
is raised. The end of transmission flag can be tested by the 
CPU which can then either modify (if needed) the control 
buffer and issue another start I/O instruction, or issue a 
"turn FD off" instruction which will, among other things, 
unload disc head to minimize head/medium wear. Head/ 
disc contact is maintained only when the disc is active. 

The current disc interface design can readily handle 
several disc units by adding simple multiplexing logic. 

APPENDIX B-DISC PROGRAMMING 
CONVENTIONS 

Programs must start at memory address hes 110088" 
(M(0088)). M(0000) to M(0087) can be used during pro
gram execution as temporary storage or as the TV display 
area. However, program execution must not depend on the 
initial contents of this area. Utility programs, including the 
disc loader, will be executed in M(0000) to M(0087). The 
last function performed by any utility program is to insert 
an unconditional branch over the utility code to permit 
normal program operation. 





The multipurpose batch station (MBS) system-Software design 

by CLEMENS B. HERGENHAN and MARK M. ROCHKIND 

Bell Telephone Laboratories, Incorporated 
Murray Hill, New Jersey 

INTRODUCTION 

In 19i1, Bell Laboratories undertook the development of a 
minicomputer based batch terminal system primarily to 
support remote computing activities at its many locations. 
The effort was to result in a high performance, cost effective 
system which could be used to improve upon an array of 
specialized terminals leased from a variety of vendors.2 In 
addition to functioning as a conventional remote batch 
terminal, the system, kno'wn now as the Multipurpose Batch 
Station (MBS), was to serve as an interlocation data link, 
as a local media conversion station and as a generalized 
communications interface between large central computers 
and foreign vendor peripherals. In terms of communications 
support, the MBS System was to accommodate synchronous 
disciplines, either 2-wire or 4-wire, at bit per second rates 
from 2,000 to at least 50,000. The system was to be interrupt 
driven and was to optimize thru-put for voice grade 
channels.3 ,5 

These design objectives were achieved. There are MBS 
Systems installed today which communicate with both 
Honeywell and IBM large scale systems; software to support 
Control Data central systems is under development. The 
architecture of today's installed set of MBS Systems varies 
widely. Prospective users select a combination of peripherals 
determined by their needs. A popular configuration supports 
a 500 lpm line printer on a communications line. Such a 
system operates in a self-service polling mode drawing batch 
output from some central system in support of time-sharing 
users. More comprehensive configurations support card 
reader, different types of line printers, card punch, console 
typewriter (TTY or EIA), paper tape reader/punch, push
buttons, industry compatible 7 and 9 track, 800 bpi magnetic 
tapes and DECtape for loading library programs. Systems 
range in cost from $11,000 to more than $60,000, peripherals 
included. 1 There are more than 20 systems currently installed. 4 

The MBS mainframe functions as a peripheral switch in 
that it serves principally to interconnect I/O devices. The 
software design accounts in large measure for the success of 
the system. Whereas the explicit design of the software was 
driven by the very primitive character of the mainframe 
selected, this combination of hardware and software provided 
a competitive edge which MBS continues to enjoy. 

447 

REVIEW OF MAINFRAME ARCHITECTURE 

The :MBS System is designed around a Digital Equipment 
Corporation PDP-8E, one of the very early entries in the 
minicomputer field and still one of the most economical and 
reliable of small machines. A basic understanding of the 
operation of the 8E is necessary to appreciate the design of 
MBS software.6 

The MBS mainframe operates with 4K, 8K or 12K of 
12-bit words depending on the application intended. Each 
4K of memory is called a field, and each field consists of 32 
128-word pages (0 thru 31). Memory reference instructions 
can directly address any location on Page 0 or on the current 
page of the current memory field. One level of indirection 
allows a memory reference instruction to access any location 
in memory. 

There are two 12-bit working registers available to the 
programmer. The AC receives the results of all logical and 
arithmetic operations. The MQ functions principally in ex
tended arithmetic operations of which no use is made in the 
MBS design. It is available also as a temporary storage 
register but because it can communicate only with the AC, 
it is little used. The L register is a I-bit extension of the AC 
used for "carry" purposes. 

The instruction counter consists of 2 registers; a total of 
15 bits. The 3-bit IF (Instruction Field) register provides the 
3 most significant address bits; it selects the field from which 
the next instruction will be taken. The 12-bit PC register 
provides the 12 least significant address bits. The 12 least 
significant bits of the effective address of a memory reference 
instruction are derived from the instruction word. When an 
instruction is of the direct memory reference type, the IF 
register provides the 3 most significant bits of the address. 
For indirect memory reference instructions, the 3 most sig
nificant bits of the address are provided by the 3-bit DF 
(Data Field) register. In addition, 8 special memory locations 
provide an auto-index capability. When addressed indirectly, 
these are automatically incremented before use. 

All memory reference instructions indicate the operation 
code in bits 0-2, a specification of direct reference or indirect 
reference in bit 3, a specification of Page 0 or current page 
in bit 4, and the 7 least significant bits of the address in 
bits 5-11. There are six memory reference instructions. These 



448 National Computer Conference, 1974 

Code Symbol Function 

0 AND AC .AND. (ADDR) ~ AC 
I TAD AC + (ADDR) ~ AC 
2 ISZ I + (ADDR) ~ (ADDR) 

If (ADDR) = 0; PC + I ~ PC 
3 DCA AC ~ (ADDR); zero ~ AC 
4 JMS PC ~ (ADDR); ADDR + I ~ PC 
5 JMP ADDR~PC 

Figure I-The PDP-8 provides 6 memory reference instructions. 
ADDR=effective address computed at execution time; (ADDR)= 

contents of effective address 

are reviewed in Figure 1 in terms of an effective address 
ADDR which is calculated at execution time. 

Of the two remaining operation codes, #6 (lOT) is used to 
control I/O devices. Bits 3-11 are used to select the proper 
device and to initiate functions. The final operation code, 
#7, is for microinstruction operations involving the AC, L 
and MQ. Bits 3-11 indicate the operation to be performed, 
such as load MQ from AC, clear Land AC, increment AC, 
rotate AC 1 or 2 bits to the left or right, halt, no operation, 
etc. These bits may also specify that the next instruction 
should be skipped if certain conditions exist in the AC or L. 
For example, one can skip on AC=O, L~O, AC>O, AC<O 
or some combination of these. 

The PDP-8E has a single level of interrupt. An interrupt 
by any device causes a Subroutine Jump (JMS) to location 0 
of Field O. All future interrupts are inhibited until enabled by 
the program with the Interrupts On (ION) instruction. The 
program must poll each device to discover which caused 
the interrupt and to request that device to remove the 
interrupt. This is typically done with a "skip on flag" 
instruction (operation code 6) for each device followed di
rectly by a JMP and then by a "clear flag" instruction 
(also operation code 6). 

SOFTWARE DESIGN CONSIDERATIONS 

The ability to cope with exception conditions was designed 
into MBS software. Among the mechanisms used are alarm 
clock tables which can initiate recovery routines. Robustness 
has been established by the many field installed systems. The 
first such system, a self-service card lister, was installed at 
Murry Hill in 1971. It runs, entirely interrupt driven, for 
months at a time without requiring a software reload. An
other installation which interconnects an IBM 1403 printer 
to a Honeywell Series 6000 computer is without a card 
reader. The PDP-8E in use here is served by core memory 
and the software remains intact even across interruptions in 
pow~r. 

For the PDP-8E, whole word operations are preferable to 
bit operations. The lack of an OR instruction and index 
registers make table searching and bit setting difficult. Ac
cessing tables, searching them, and setting and resetting 
bits take large amounts of code. To make the operating 
system efficient, we relied on executable tables. Planting 
JMS instructions in the right places results in simple whole 
word operations and eliminates scanning tables. 

The MBS software had to remain flexible since we expected 
large growth in the number of peripherals MBS would be 
asked to accommodate. Today the number has grown to 
more than a dozen and several communications protocols 
are supported. The System is interrupt driven with software 
implemented priorities. This prioritizing of a single level of 
interrupt follows a scheme used by Honeywell in its Data
N et/355 General Remote Terminal System. The design out
lined here using executable tables is especially suitable for 
very simple computers. 

INTERRUPT HANDLING AND INTERRUPT 
PROCESSING 

MBS makes a clear distinction between interrupt handling 
and interrupt processing. Interrupt handling is defined to be 
the querying and acknowledging of interrupts on the inter
rupt bus. Interrupt processing is the response to a specific 
interrupt for a specific device. The MBS Interrupt Handler 
acknowledges interrupts from all devices and activates Inter
rupt Processors in the Master Dispatcher Table. An activated 
(enabled) Interrupt Processor is one which is a candidate for 
execution. 

Every device on MBS is capable of generating at least one 
type of interrupt; a request for service. Some devices have 
several interrupt flags and ·will generate interrupts to report 
error conditions. The interrupt handling code begins at 
location 1 of Field O. 

Before the Interrupt Handler begins the task of scanning 
the I/O devices, it must save the registers being used by the 
interrupted code. The Handler saves the PC, MQ, AC and 
flags (L, IF and DF) in 4 words specified by the Master 
Dispatcher Table for use later. After all devices are scanned, 
control is given to the Master Dispatcher Table which will 
dispatch to the highest priority Interrupt Processor which 
has been enabled. 

The interrupt handling code runs with interrupts inhibited 
and so is kept to a minimum. Interrupt handling code for 
most devices consists of resetting the interrupt flag for that 
device and making an entry in the Master Dispatcher Table 
(MDT) so that control will pass to an Interrupt Processor to 
service that specific device. 

For a few devices the amount of code to make an entry in 
the MDT is greater than the code needed to process the 
interrupt. For such cases interrupt processing occurs during 
interrupt handling. For example, a clock in MBS used as an 
interval timer interrupts every 20 milliseconds and requires 
only that its flag be reset and a word in·core be incremented. 
This is done by the Interrupt Handler. 

THE MASTER DISPATCHER TABLE 

The MDT is executed rather than searched. Each Interrupt 
Processor has a 7-word entry reserved for it as shown in 
Figure 2. 

When an Interrupt Processor is neither enabled nor in 
execution, word 1 is a NOP (No Operation). Execution of 
word 1 will allow control to pass to ,vord 2 and cause a JMP 



The Multipurpose Batch Station (MBS) System-Software Design 449 

to the next Interrupt Processor's 7-word entry. When the 
Interrupt Handler wishes to activate an Interrupt Processor, 
it overlays the NOP with a JMS DISPAT. 

DISPAT is a subroutine which uses the address in its 
return linkage to access words 3 through 6 of the block 
which transferred control to it. DISPAT simply restores the 
MQ, AC and flags, enables interrupts and jumps to where 
word 3 (the Program Counter save area) is pointing. 

Word 3 is set initially to the value of word 7, the Interrupt 
Processor's entry address. Thus the first time any Interrupt 
Processor is enabled it "will gain control at its entry point. 
Should an interrupt occur while an Interrupt Processor is in 
execution, the Interrupt Handler gains control and uses the 
value in DISPAT to find the proper set of words (3 through 
6) in which to do its saving. When this block is encountered 
and executed again, DISP AT will restore control to the 
Interrupt Processor where it was last interrupted. Note that 
DISPAT has no idea whether it is giving control to an 
Interrupt Processor for the first time (at its entry point) or 
redispatching at an interrupted stage. 

All Interrupt Processors return to a routine called RMDT 
(Return-Master Dispatcher Table) when they are done. 
RMDT uses the value in DISPAT to discover which Inter
rupt Processor has completed its function. It uses this value 
to locate word 7 of that block and to place it in word 3. 
This assures that the Interrupt Processor will gain control at 
its entry point when it is dispatched to next. RMDT changes 
word 1 back to a NOP and then executes the MDT to give 
control to another Interrupt Processor which has been en
abled. The highest priority Interrupt Processor enabled is 
always dispatched to. 

When no Interrupt Processor requests service, control 
passes to the Task Dispatcher. This is accomplished by 
retaining a JMS DISPAT in word 1 of the last MDT entry. 
The Task Dispatcher never returns to RMDT; it is always 
enabled-that is, word 1 never becomes a NOP. This uncon
ditional exit from the Master Dispatcher Table means we 
need no special code to check for the end of table. 

The Master Dispatcher consists of 3 parts: MDT-the 
executable dispatcher table, DISPAT-the subroutine which 
gives control to an enabled routine, and RMDT -the entry 
point back into the Master Dispatcher Table. 

The dispatching process is quick. DISP AT consists of only 
13 instructions and. scanning MDT requires only 2 instruc-

Master Dispatcher Table I Entry 

1 NOP or JMS DISPAT 
2 JMP to next MDT Entry 
3 Program Counter save area 
4 AC save area 
5 MQ save area 
6 FLAGS save area 
7 Entry Point to MDI Entry 

Figure 2-The Master Dispatcher Table consists of 7 word entries as 
shown. An entry appears for each Interrupt Processor. The earlier in 
the Table an entry appears, the higher the priority assigned to that 
entry. The last entry in the Master Dispatcher Table is the Task Dis-

patcher for which word 1 is always JMS DIS PAT 

Task Dispatcher Table 

TDT ~ NOP or JMS RTDT I for Task #1 
NOP or JMS RTDT I for Task #2 

NOP or JMS RTDT I for Task #n 
JMPTDT 
Pointer to Task #1 Entry Point 
Pointer to Task #2 Entry Point 

Pointer to Task #n Entry Point 

Figure 3-The Task Dispatcher Table consists of 2n+ 1 entries where n 
is the number of tasks to be dispatched to. When the System is quies
cent, the processor cycles through the Task Dispatcher Table (TDT) 
executing NOP's and the JMP TDT. A task is queued by replacing the 

corresponding NOP with a JMS RTDT 

tions (2.4 microseconds) for each inactivated Interrupt 
Processor. 

The sequence of entries in the MDT assigns implicit 
priorities to the Interrupt Processors. If an interrupt occurs 
while we are executing a low-level Interrupt Processor (one 
deep in the MDT), we will service a higher level Interrupt 
Processor before returning to the lower one. It is possible 
then to have all Interrupt Processors in an interrupted state. 
By its position in the MDT, the Task Dispatcher ranks as 
lowest priority; we only dispatch to tasks when no Interrupt 
Processors are enabled. 

TASK DISPATCHING 

The Task Dispatcher is also an executable table. Each 
task has 2 words associated with it. The task queue is 
arranged as shown in Figure 3. 

Initially the Task Dispatcher Table (TDT) is all NOP's. 
Any Interrupt Processor or any task can queue any task 
by placing a JMS RTDT (Return-Task Dispatcher Table) 
in the appropriate place in the TDT for that task. The 
subroutine RTDT knows how many events there are in the 
system. It adds this to the value in RTDT to obtain the 
word which will give it the address (and field) of the task 
being requested. It also stores a NOP on top of the JMS 
RTDT just executed. Thus, a task may queue itself. This 
also simplifies the return to the Task Dispatcher Table when 
a task is complete. Upon completion a task executes a JMP 
to RTDT indirect; control will go to the next entry in the 
TDT to continue scanning for another task. All tasks are 
of equal priority. Dispatching is done on a round-robin basis. 

Since the Task Dispatcher and all subordinate tasks appear 
to the Master Dispatcher as one large routine (which has 
lowest priority but is always enabled), an interrupt during 
any task "\\-ill cause the Interrupt Handler to save the place 
in that task in the Task Dispatcher's 7-word entry in the 
Master Dispatcher Table (see Figure 2). On redispatching 
to this entry, we return to the interrupted task. Thus no 
matter which other tasks get queued, a task always completes 
execution before another "task receives control. This makes it 
possible for tasks to share scratch space-a vital "property 
of the design. 



450 National Computer Conference, 1974 

When a task queues itself it places itself at the bottom of 
the task queue. Since the JMP to RTDT indirect which is 
executed to return to the Task Dispatcher Table will bring 
control into the task queue just one location below the TDT 
word for the completed task, tasks may queue themselves 
without fear of lock up-another important feature of the 
design. 

Both the Task Dispatcher Table and the RTDT pointer 
reside or Page 0 or Field 0 so they are accessible to allmodulcs. 

The RTDT routine (19 instructions) together with the 
Task Dispatcher Table comprise the Task Dispatcher
which operates with interrupts enabled. It should be clear 
that when MBS is quiescent, it will cycle through the Task 
Dispatcher Table executing NOP's and the final JMP TDT. 

The pointers to tasks are I-word entries. A 12-bit address 
suffices since all tasks are forced to start on even locations. 
Bit 11 indicates the field and bits 0-10 (with an implied 0 
as the last bit) indicate the starting address in that field. 

BUFFERS AND MAILBOXES 

The strategy for handling buffers derives from an early 
application of the MBS which required only 4K of core. 
This application, which interconnected a card reader, a line 
printer and a panel of pushbuttons, was expanded to include 
a card punch, a magnetic tape transport and a console 
typewriter, still within the 4K core limit. When support for 
synchronous communications was added, a memory extension 
to 8K was required to accommodate both the additional 
software and the large buffers needed for efficient data 
transmission. This separation has been preserved because it 
allows an MBS without communications to accommodate a 
wide range of peripheral devices on a 4K mainframe. 

There are two pools of buffers. The buffers in Field 1 
serve communications and can each be several pages in 
length. The buffers in Field 0 serve all I/O devices other 
than communications. To develop a chain of available buffers, 
the initialization code of MBS divides the unused portion 
of Field 0 into a linked list of 92-word entries. The 92-word 
entry will accommodate a 132 character print line plus 3 
words of control information. 

Tasks employ mailboxes in order to pass buffers between 
them. A mailbox is a memory cell in which a task expects to 
find a pointer to a buffet or chain of buffers. Upon completion 
of some process, tasks will determine whether to requeue 
themselves by inspecting their mailbox. A task which finds 
its mailbox empty simply relinquishes control. Any task or 
Interrupt Processor which fills a mailbox or adds to a buffer 
chain must queue a task. 

ILLUSTRATION OF AN INTERRUPT DRIVEN 
PROCESS 

We consider here how MBS handles one of the simpler 
peripheral devices: the medium speed (600 lpm) drum printer. 

In the MBS System, the drum printer can receive only 3 
commands: (1) enter "print" mode~ (2) enter "slew" mode, 
and (3) leave all modes. When directed to enter either mode, 

the printer responds with an interrupt when ready to receive 
data-the print line (if it has entered "print" mode) or 
the slew control (if it has entered "slew" mode). When 
directed to leave all modes, the function of the current 
mode is executed, that is, the actual printing or sle"ing 
occurs. Data are fed to the printer through the AC by the 
mainframe processor. The printer can accept characters as 
fast as they can be loaded into the AC and presented (2.4 
microseconds per character). 

The task GTPRT is responsible for initiating I/O using the 
printer. It has a mailbox named PRBUF in which it expects 
to find a pointer to a chain of buffers to be printed. Assume 
GTPRT has been queued and a pointer to a buffer is in 
PRBUF. When GTPRT gains control from RTDT, it re
moves the top buffer from the PRBUF chain and leaves the 
pointer in PBUF (a cell which the Interrupt Processor 
PRINT knows about). GTPRT directs the printer to enter 
"print" mode and relinquishes control. 

Eventually, the printer supplies an interrupt to notify the 
mainframe that it is ready to accept print line characters. 
The Interrupt Processor PRINT is activated by the Interrupt 
Handler and eventually gains control from DISPAT. PRINT 
feeds data from the buffer pointed to by PBUF, directs the 
printer to leave all modes, then directs it to enter "slew" 
mode and returns to RMDT. The line will now be printed. 
Upon completion of the printing, another interrupt will be 
generated to indicate that the printer is prepared to receive 
the slew command. PRINT gains control again and this 
time causes slew information to be transferred. It also returns 
the buffer in PBUF to the free buffer chain and clears 
PBUF. PRINT then queues GTPRT just in case there are 
more buffers waiting on the PRBUF chain; it directs the 
printer to leave all modes (so slewing will begin); and it 
returns to RMDT. 

GTPRT "iII gain control again to initiate I/O for the next 
buffer in PRBUF if there is one. Any task which places a 
buffer in the PRBUF mailbox should queue GTPRT just in 
case the mailbox is currently empty and GTPRT is not in 
the TDT. Note that queueing a queued event results in 
overwriting the JMS RTDT in the TDT "ith another JMS 
RTDT; it does no harm. 

GTPRT may gain control many times between the time 
it first directs the printer to enter "print" mode and the 
time PRINT releases the buffer in PBUF. GTPRT always 
checks PBUF to see if printer I/O is already in progress. If 
PBUF is non-zero, it relinquishes control to the Task Dis
patcher knowing PRINT will queue it when the current 
printing is complete. 

SUMlVIARY 

The Multipurpose Batch Station represents a reduction to 
practice of a minicomputer system which offers very high 
performance at very low cost. We have demonstrated that 
well designed software can compensate more than adequately 
fer prhnitivc hardware-and cost effectively where there are 
several applications for the developed system. The packing 



The Multipurpose Batch Station (MBS) System-Software Design 451 

of 1.5 characters per 12-bit word presents no problem and the 
searching of tables is circumvented by the technique of 
executing tables outlined in the text. MBS communications 
software is independent of bit per second rate and can 
accommodate data transmission speeds in excess of 50,000 
bps. The asynchronous handling of peripheral interrupts 
permits several I/O streams to be serviced simultaneously. 

ACKNOWLEDGMENT 

The line printer interface described in the text was designed 
by Peter E. Rosenfeld of Bell Laboratories. Rosenfeld de
signed other MBS peripheral interfaces as well. 

BIBLIOGRAPHY 

1. Bowknight, W. J., G. R. Grossman, and P. M. Grothe, "The ARPA 
Network Terminal System-A New Approach to Network Access," 
Proc. Third Data Communications Symposium 73 (1973). 

2. Harrison, T. J. and T. J. Pierce, "System Integrity in Small Real
Time Computer Systems," AFIPS, 42, 539 (1973). 

3. Mills, D. L., "Communications Software," Proc. IEEE, 60, 1333 
(1972). 

4. Mollenauer, J. F., E. J. Sitar, V. B. Turner, "The MINICOM 
Data Entry System," AFIPS Proceedings, Vol. 4B. 

5. Newport, C. B. and J. Ryzlak, "Communications Processors," 
Proc. IEEE, 60, 1321 (1972). 

6. Small Computer Handbook, 1973, Digital Equipment Corporation, 
Maynard, Massachusetts. 





The MINICOM data entry system 

by J. F. MOLLENAUER, E. J. SITAR and V. B. TURNER 

Bell Laboratories 
Murray Hill, New Jersey 

INTRODUCTION 

The MINICOM system has evolved from the Bell Labora
tories Multipurpose Batch Station (MBS) system described 
in an earlier paper.1 It is designed to facilitate the entry of 
data into central site computer systems from laboratory 
minicomputers. The effort illustrates the growth possible 
within the MBS framework and makes a new service available 
to the computer center user. 

Central computers as providers of remote services via 
communications have been known for over a decade. Initially 
it was assumed that data from laboratory apparatus could 
be collected directly by large central computers to be 
processed and stored at some central site. However, this 
original idea has been considerably modified in recent years. 

The principal reason for this change in attitude has been 
the availability of inexpensive local data processing in the 
laboratory in the form of the minicomputer. Minicomputers 
satisfy real time demands but do not provide all the process
ing power that a user needs. They do provide decentralization 
of decision making among users, as well as decentralization 
of disasters. The acceptance of minicomputers has been 
extensive; various universities, manufacturing installations 
and research and development laboratories throughout the 
world have acquired them in quantities ranging into the 
dozens and hundreds. 

Given that data lines to large central computer systems 
have been available for many years, the number of mini
computers that have taken advantage of them has been 
remarkably small. The potential savings in data storage and 
program development costs have likely been outweighed by 
the difficulty of programming the minicomputer for data 
communications and by the spotty records of computing 
centers in providing continuously available service. Those 
systems that have been tied in have generally been the work 
of computer enthusiasts more challenged than put off by the 
communication protocols set up by manufacturers of large 
systems. 

With the costs of logic and storage heading consistently 
down and salaries up, we expect to see both the number of 
minicomputer systems and the costs of operating each of 
them increasing. In fact, we have seen not only the pro
liferation of minicomputers but also a gradually increasing 

453 

cost per system as more and more peripherals are being 
added. It has become increasingly desirable to provide 
centralized support to the minicomputer community. MINI
COM provides this support in the form of data communi
cations between minicomputers and a large central system, 
reducing the necessity for secondary storage and expensive 
and hard to maintain peripherals on the laboratory systems. 

DESIGN GOALS FOR MINICOM 

In designing the MINICOM system, four primary goals 
were adopted: 

1. High reliability 
2. Ease of use 
3. Low cost 
4. Adaptability 

High reliability is vital for the minicomputer system which 
must dispose of its collected data in order to collect more. 
Central computer system downtime can be disastrous. MINI
COM uses a PDP-8E with a disc file to collect data arriving 
via communication lines. When a user's transmission is com
plete, his data are queued for transmission at 9600 bps to 
the central site computer. Should the central computer be 
unable to accept the data, they remain on the MINI COM 
disc until the central site becomes available. 

Ease of use has been attacked, in a departure from common 
computer center practice, by providing software for the user's 
minicomputer, enabling it to use the MINICOM system 
with little or no programming effort. Subroutines callable 
by the user's programs will be provided for the more popular 
minicomputers. These subroutines will drive synchronous 
communication line interfaces either provided by the com
puter manufacturer or locally designed. 

Synchronous communication is preferred to asynchronous 
communication because it is more efficient and is relatively 
open-ended in bit per second rate. The objective of low cost 
is achieved through the use of voice grade facilities, either 
dial-up or private line. The investment in data communi
cations hardware can range from low priced 2000 bps devices 
to more elaborate units operating at tens or thousands of 
bits per second. The route taken by data going back to the 



454 National Computer Conference, 1974 

HIS &110 
CPU 

....... DATA~ 

LAIIIRllIY 1 SETS 
1IIIICI2.~J 

FI.E 
SYSTEM 

Figure I-Data path from minicomputer to central system via MINICOM. Not all components of the H6000 are shown 

user does not include a stopover on the disc; if the central 
system is not available, a user w'aiting to draw data must 
try again. 

Adaptability built into the central design of MINI COM 
will permit the system to be used as a front end for several 
large systems. The initial implementation is being done for 
Honeywell Series 6000 equipment. An IBM implementation 
will follow, with the same user interface. 

SYSTEM OVERVIEW 

The MINI COM system enables the user to IP...ake several 
different requests to the central site computer as indicated 
by request codes in the message header: 

1. Append data to a file 
2. Erase file and write data 
3. Start a batch job to process data sent 
4. Draw output from the central computer 

Even though MINICOM will support as many as 6 synchro
nous lines concurrently, we are unwilling to dedicate a line 
to a user for a long period of time. The intended mode of use 
is not interactive; the user machine will be connected to send 
or receive data and will then be disconnected in order to 
free the line. 

The overall MINI COM system is indicated schematically 
in Figure 1. A group of five lines is available for users calling 

in to the MINICOM computer, a PDP-8E ,,,ith 12K of 
12-bit core. A sixth communication line is connected directly 
to the Datanet 355 of the H6000 complex. This connection 
mates the normal EIA modem interfaces of the two com
puters by exchanging the data in and out signals and ap
propriate control leads. The Datanet supplies clock pulses. 

The disc system uses two removable cartridges, each with 
a capacity of 1.6 million words. The use of two drives makes 
it possible to replace full cartridges with empty ones and 
makes the capacity of the system virtually unlimited in the 
event of extensive downtime on the central system. A tele
typewriter used as a console completes the hardware con
figuration. 

THE MINICOM SOFTWARE STRUCTURE 

The object in using a PDP-8 for MINICOM, rather than 
any of the newer 16-bit machines, was to take advantage of 
existing cude amI the famiiiarity that had been gained with 
this machine in the course of earlier MBS work, as well as 
to use the available central site support, including cross
assembler, macros, library, and linking loader. In terms of soft~ 
ware, taking advantage of the MBS system included pre
serving its nucleus of interrupt and task processing routines 
and adding a file system and disc handlp.rl'l within a multi
programming framework. 

The change in emphasis was rather profound: from single 



stream processing of data in MBS (see Figure 2) to a multi
programming environment including secondary storage. In 
MBS, data proceed from a source such as a card reader to the 
destination on the communication line. When a card is read, 
for example, an appropriate task is queued. When this task 
finishes, it may link a buffer of processed data (circles in 
Figure 2) to another task and place that task in the round
robin task queue. All tasks proceed to completion (except 
for time out to service interrupts) without waiting for an 
I/O action to complete. 

In the case of MINICOM, several users may send in data 
simultaneously; the processing invoked by the receipt of a 
block of data on the communication line will involve disc 
I/O. Because of the presence of several simultaneous users, 
tasks have to be re-entrant at any point that disc I/O is 
requested. It is no longer possible for a given routine to 
proceed to completion without waiting for I/O. While in 
principle it would have been possible to write every leg of 
the flow chart between instances of disc I/O as a separate 
task, the number of tasks would have been intractably high. 
The code would have been difficult to understand, debug, 
and maintain. As a result, two special routines were de
veloped, permitting tasks to make requests to another level 
of the system for disc I/O. One of these routines is a disc 
subroutine callable from any task; the other is a special 
task to cause re-entry to the calling task after its I/O is 
complete. 

The common disc I/O subroutine marks the requesting 
user dismissed for I/O and issues the disc commands if the 
disc is not busy. If the disc command can be issued, the 
user's status is set to "I/O in progress," otherwise to "waiting 
for I/O." The disc subroutine does not return to the calling 
task but exists directly to the task dispatcher, which initiates 
the next waiting task in round-robin sequence. No further 

TASK 
A 

+ 
t 

TASK 
B 

TASK 
C 

MBS 

TASK 
D 

SI NGLE STREAM 

Figure 2-Data flow through original MBS system 

The MINICOM Data Entry System 455 

DISC 
I/O 

RETURN 

I""---------~ l iLl 
rt"----------~ I ----------, 

TASK 
A 

INTERR 
PROC. 

r---~ I 

TASK 
B 

TASK 

C 

MINICOM 

TASK 

D 

MULTI-STREAM 
REENTRANT PROCESSING 

Figure 3-Data flow through MINICOM; data buffers belonging to 
users dismissed for disc I/O are shaded 

file system work is initiated for the user, although he may 
continue to send data in by communication line. 

When a disc I/O request is complete, an interrupt occurs 
and the disc interrupt processor is entered. (Since it has the 
highest priority, it preempts control from any other interrupt 
processor or task.) If any disc I/O is waiting to start, com
mands are issued for the first requesting user in circular 
order after the one whose I/O operation is completing. The 
latter user's status is changed to "I/O in progress," and the 
requestor of the first I/O is set to "I/O completed." The 
interrupt processor then queues the disc return task and 
control reverts to the routine (a task or a lower-priority 
interrupt processor) that was executing when the disc inter
rupt occurred. 

The function of the disc return task is to capture control 
at the task level, after· all interrupt processors and other 
tasks have completed normally. On entry, it searches for a 
user with disc I/O complete, again preserving equal priority 
among users by going in circular order, and updates his 
status to "return from I/O." From his disc status table it 
picks up the number of the task in which the disc I/O was 
requested and jumps back into the original task at the 
instruction following the call for I/O. 

The foregoing sequence is not markedly different in func
tion from that employed on any multiprogramming system 



456 National Computer Conference, 1974 

FILE ID 

1 SEARCH -

/ 
o 

CATALOG 
BLOCK 

MtNICOM 
FILE 

STRUCTURE 

8 DATA BLOCKS 

DATA GROUPS 

8 DATA BLOCKS 

2 

Figure 4-Minicom file system structure; a file with three data groups 
is shown 

with a disc. It should be noted, though, that it conforms to 
the original interrupt/task processing structure of the MBS 
systems despite the changed requirements. Figure 3 indicates 
the multiple-stream processing schematically, for contrast 
with Figure 2. Reentrant use of the tasks is indicated by 
multiple overlays of the boxes, although only one copy of 
the code remains in core. Separate tables are maintained for 
each user for file and I/O status and for subroutine return 
stacking. Data queued for the various tasks may be inactive 
(shaded) because the user owning the data is dismissed for 
disc I/O. The disc I/O return routine is sho'wn out of the 
main stream because of its special function of returning 
control to the task which requested the I/O. 

The same mechanism enables a task to yield control when 
it is denied write access to a table that is being copied to 
disc. The disc return task is que~d for it and control passes 
back to the task dispatcher. The process is repeated until 
the table is available. 

FILE SYSTEM 

In contrast to most file systems, the MINICOM file 
system was designed for data that are to be read only once. 
In this case, efficiency of writing is as important as efficiency 
of reading. In addition, the fact that the disc cartridges 
might be removed has required that each cartridge be 
totally self-contained, with its own directory, indices, and 
available-space map. 

The file system is illustrated.in Figure 4. Each file is 
given an identification number in sequence, and the least 
significant five bits are used to get the master catalog block 
number in which it resides on the currently active cartridge. 

This scheme is used in preference to any more elaborate 
hashing because it permits the same master catalog block to 
remain in core for use by a number of successive files. The 
master catalog contains a pointer to the index, which is the 
first sector of the file. In order to minimize the time required 
to write on a file, space is allocated in groups of eight 256-
word sectors. Each time space is allocated or released, the 
available space table is recopied to the disc. The index sector 
contains pointers to the. data groups, each of which except 
the first contains eight data sectors. End-of-file is not marked 
as such but is indicated in the sector count written in the 
master catalog entry when the file is closed. 

When the final sector of a file is written, it is marked 
ready for transmission and the transmission task is queued. 
This routine checks the master catalog for completed files; 
when it finds one it marks it open to read, then reads and 
transmits it to the central system sector by sector. When it 
has successfully transmitted the file, it queues it for release. 
Files are sent to the central system one at a time in order to 
make recovery from a central system (or MINICOM) crash 
easier and more certain. Forwarding buffers in the order 
received would have permitted a much simpler file system 
but at excessive cost in reliability. 

EFFECTS OF MINICOM USAGE 

Anticipated usage of the central computer facility through 
MINICOM falls into three categories: as a destination for 
data collected by minicomputers, as a source of input data, 
and as a source of programs. Since the flow of data from 
the central machine has no disc buffering, downtime will 
cause inconvenience to minicomputer users of this mode just 
as it does to time-sharing users. For inputting data, MINI
COM is expected to provide long uninterrupted periods of 
service owing to the dedicated nature of the application. 

We are convinced that minicomputers will require greater 
levels of support than computer centers have given them in 
the past. MINICOM provides only one component of this 
support. In the future, it is clear that minicomputer support 
will constitute an important part of the computer center's 
mission. 

ACKNOWLEDGMENTS 

This work depends on many contributions from the MBS 
effort described in the previous paper, as well as on many 
additional contributions by C. B. Hergenhan in the areas of 
communication line service and H6000 support. 

REFERENCE 

1. Rochkind, M. M. and C. B. Hergenhan, "The Multipurpose Batch 
Station (MBS) System: Software Design," these proceedings. 



The implementation of the PROPHET system* 

by P. A. CASTLEMAN, C. H. RUSSELL, F. ~. WEBB, C. A. HOLLISTER, J. R. SIEGEL, 
S. R. ZDONIK and D. M. FRAM 

Bolt Beranek and Newman, Inc. 
Cambridge, Massachusetts 

INTRODUCTION 

PROPHET is a computer system designed to augment the 
information-handling capabilities of individual scientists. It 
is oriented toward the needs of pharmacologists, medicinal 
chemists, and other scientists who study how chemical sub
stances affect biological activity. The system hardware con
sists of a large time-sharing computer connected over tele
phone lines to display terminals (Figure 1) in medical 
schools, hospitals, and other pharmacological research cen
ters. PROPHET's software provides a computing environ
ment, tailored to deal with chemical and biological infor;.. 
mation, which allows non-programming users to perform 
complex operations and also supports programming users 
who wish to extend the system in new ways. PROPHET's 
purpose is to aid individual research rather than to distribute 
existing data bases; it does, however, possess capabilities and 
data structures to facilitate the sharing of data and algorithms 
between users. 

The system is currently in service operation with approxi
mately thirty users at five sites (Figure 2). Typical uses of 
the system include organizing and filing experimental results; 
analyzing data through the system's graphing and statistics 
commands and through user-written procedures; and manipu
lating models of molecular structures. Specific biomedical 
research interests of the individual users are outlined in 
Figure 3. 

The impetus for PROPHET development has come from 
Dr. William Raub of the' Division of Research Resources of 
the National Institutes of Health. PROPHET is being de
signed and built by the Medical Computer Systems group of 
Bolt Beranek and N e,\vman Inc. in collaboration with the 
NIH. The greater part of the system designl was performed 
in 1968 and 1969; prototypes of the basic capabilities were 
implemented in 1970, and an initial service version was com
pleted in early 1972. Current efforts are directed toward 
maintaining and refining the system in a demanding user 
environment and toward adding new applications. The oper
ation and maintenance of the computer equipment and the 

* The work described in this paper was supported by the National Insti
tutes of Health, under contract number NIH-DRR-70-4113. 

457 

time-sharing monitor are performed by a separate organi
zation, First Data Corporation. 

This paper describes the major implementation approaches 
selected in the construction of PROPHET. It focuses on the 
ways in which a variety of computer-science techniques 
(including time-sharing, extensible languages, interactive 
graphics, data management, graph-matching, molecular 
model building, and statistics) were adapted and integrated 
into a single system to aid drug research. ,\Ve hope that this 
discussion of the capabilities and limitations resulting from 
our implementation choices will be helpful in designing re
lated systems. For example, we believe that this is the first 
large service system to be based on an extensible language, 
and that our experiences will be useful to others considering 
the technique. 

This paper is organized into two parts: The first part 
gives a general overview of the PROPHET System, in
cluding an example of its use; the second part is a technical 
discussion of the implementation of PROPHET. 

AN OVERVIEW OF PROPHET 

A major premise of the PROPHET design is that pharma
cologists employing computer aids should be able to work 
directly with entities related to their research. PROPHET is 
structured around a set of applications-oriented data types. 3 

This set currently includes "molecule," "data table," 
"graph," and "statistical sample," in addition to such types 
as fixed and floating point numbers, text, Boolean variables, 
bit strings, and procedures. The existence of a data type 
implies the creation of a computer representation of that 
entity (e.g., a molecule as a set of atom and bond represen
tations, which are in turn broken down into types, positions, 
connectivity, and so forth). It is not intended that either 
the set of available data types or their representations be 
fixed; they are designed to grow according to the research 
interests of the system users. Accommodating this growth 
gracefully is a major implementation goal. The existence of a 
data type also implies capabilities for making up instances 
of that type from user input or from existing entities, for 
displaying and filing the type, and for performing useful 



458 National Computer Conference, 1974 

Figure I-The PROPHET tenninal consists of a storage-tube display 
unit for typing commands and displaying responses, and a tablet with 
pen for indicating positions. It also includes two devices which are not 
shown: a hard copy unit for reproducing displays on paper and a modem 

for communicating over telephone lines 

applications-oriented operations on the type (e.g., computing 
a plausible three-dimensional conformation of a molecule). 

PROPHET permits access to data types on two different 
levels. First, there is a large set of English-like commands 
to specify the most common kinds of operations. By using 
commands in a step-by-step manner, a user can perform 
non-trivial manipulations without knowledge either of pro
gramming or of the internal structure of the data types being 
used. Commands can be abbreviated; many spelling errors 
are corrected, and the terminal's tablet can be used to indi
cate arguments graphically (this is most convenient when 
the argument is a part of a larger entity such as a point on 
a graph). 

It is also possible to write procedures which access the 
basic components of data types through programming state
ments modeled upon those of PL/I. A programming user 
can arbitrarily combine commands (which deal with data 
types as a whole) and PLII statements (which can deal with 
their parts) in order to carry out a task. The existence of 
system-wide representations for entities, and the ability to 
intermix commands and programming statements freely, 
make it relatively easy for one user to use another's algorithms 
in his work. 

A PROPHET example 

To provide a better picture of PROPHET use, and to 
serve as a concrete reference point for discussion of implemen
tation, a sample session with PROPHET is represented in 
Figures 4(a) through 4(e). The pharmacological content of 
the example is simplistic; it does, however, suggest how 

PROPHET's data-types, commands, and statements might 
be used to explore a problem. 

The figures show the appearance of the screen at different 
times throughout the session. The text at the top of each 
figure is a record of the last few lines typed by the user 
(underlined) and by the system. The pictures in the center 
of the screen are generated by the system in response to the 
user's actions. 

The user first logs onto the system and is told that he has 
several saved tables (structured data files) which he created 
in earlier sessions. He asks for one of them to be displayed; 
it appears as a matrix-like arrangement of cells. In Figure 
4(a), the first 12 rows of a larger (21-row) table are displayed. 
The table contains one row for each of a number of amino 
acid derivatives, specifying their biological activities, com
mon names, and molecular structures. The table was origi
nally created by specifying the structure of the table (the 
names and data types of the columns) and then filling in 
the data (typing the numbers and texts and drawing sketches 
of the molecules). Tables are the primary means in 
PROPHET of entering, organizing, saving, and retrieving 
data. 

In Figure 4(b), the user retrieves a subset of the entries by 
making up a new table containing only those rows which 
represent substrates with high activity. He causes this to be 
displayed in place of the original display with the EAD 
command (EAD is a system abbreviation for the common 
sequence ERASE ALL; DISPLAY). To obtain a clue about 
the relation of the structure of the molecules to their activity, 
he requests a conformational model of the most active variant 
by typing the COMPUTE MODEL command and pointing 
(with the tablet's pen) to the table cell containing the 
structure of that molecule (column 4 row 1). He requests 
that this model be displayed (Figure 4(b» and repeats this 
operation for a second molecule. 

Figure 2-PROPHET user map (October 1973) 



INSTITUTION 

Department of 
Pharmacology 

University of 
Pittsburgh 
Medical School 

Harvard 
Medical Unit 

Thorndike 
Memorial 
Laboratory 

Boston City 
Hospital 

Department of 
Pharmacology 

Mt. Sinai School 
of ~·1edicine 
City University 
of New York 

Department of 
Molecular 
Biophysics 

Medical 
Foundation 
of Buffalo 

Department s of 
Chemistry and 
Medicinal 
Chemistry 

Northeastern 
University 

USERS 

Anderson, M.D., Ph.D. 
Somani, Ph.D. 

Werner, M.D. 
Kulics, Ph.D. 
Fierst, Ph.D. 

Connamacher, Ph.D. 

O'Donnell, M.D. 

IBlackburn, M.D. 
Feeney 

Silva, M.D. 

M.D. 

I McGowan, M.D. 

I 
! 
IWagner, M.D. 
Kane, M.D. 

Ransil, M.D., Ph.D. 
Auty, Ph.D. 

Green, Ph.D. 
Johnson, Ph.D. 

Glick, Ph.D. 

Duax, Ph.D. 
Rohrer, Ph.D. 
Weeks, Ph.D. 

Clagett, Ph.D. 
Kier, Ph.D. 
Aldrich, Ph.D. 
Lynch 
Mathers 

Jankowski, Ph.D. 
Freiberg, Ph.D. 

The Implementation of the PROPHET System 459 

INVESTIGATIONS 

Study of the interactions of uricosuric drugs. Mathemati-
cal modeling of enzyme systems near equilibrium conditions. 
Metabolism of neostigmine in isolated perfused rat liver. 
Experimental and simulation studies of the pharmacokinetics 
of secobarbital. Correlation of drug metabolite informa-
tion in various animal species. 

Investigation of the neuropharmacology of hallucinogens and 
narcotic analgesics by measuring single neuron activities 
in primates in response to tactile stimuli in various con-
trol, behavioral and drug states. 

Experimental studies of the mechanism and locus of a pheno-
typic resistance to tetracycline. Study of the effects of 
tetracycline and selected inorganic ions on bacterial pro-
tein synthesis. 

Metabolic studies of sepsis and shock in pigs and humans. 
Studies of parenteral alimentation in humans and dogs. 
Liver metabolism studies. 

Study of potassium metabolism in the isolated kidney. 
Study of Na-K-ATPase activity; the effect of different 
mineralocorticoids and relation to oxygen consumption. 

Epidemiological studies of exposure to automobile exhaust 
(initial screening of lead values in Turnpike Tunnel 
subjects) . 

Demographic study of hospital admissions to obtain 
denominator data for the incidence of bacteremia and for 
cost-benefit analysis of bacteriological cultures. 

Effect of the manipulation of cardiovascular compliance 
data in animal subjects. 

Study of systolic time intervals following exercise. Experi-
mental and mathematical investigation of insulin clearance in 
renal insufficiency. Standardization and use of amino acid 
analysis and gas chromatography in the clinical laboratory. 

Correlation of physico-chemical properties of compounds 
with their biological activity, particularly: quantities 
computed from M.O. wavefunctions, Hansch n coefficient, 
and Taft a parameter. 

Study of behavioral effects in rats of certain drugs. 

X-ray crystallographic studies of steroid ana thyroid 
hormones. Structural-functional relationships, particu-
larly: unusual Cotton effects in a series of androstenes, 
the relationship between A-ring conformation and gluco-
corticoid activity in a series of cortisol derivatives, 
and analyses of conformational transmission through the 
rings. 

Synthesis and study of ribosylureas as potential anti-
metabolites. Study of singlet oxygen-nucleoside reactions. 
Mathematical modeling of drug-receptor site interactions. 

Study of the interaction of heavy metals with the environ-
ment and the transport of heavy metals through the first 
steps of the food chain. 

Figure 3-Research investigations using PROPHET (October 1973) 



460 National Computer Conference, 1974 

GOOD 1't[)~ ... tlG,. CHAIILOTTE 
YOU H,A,VE 10 "RIVAlE TA&LES you HAVE 1 ~u&LtC lABLE 
THIS 1S .. 1tO~t£l I'" 

tQlsrLA'I" SYNTHflASff )( • 

r SYNiHEUSE ' 1 2 !3 1.01 
121 R ! TY'E OF ~ELATtVf IC::N 

-+~~~:: I 

04 Ci ACTlVlTY ACTIVITY 
I ! SU.8STRATE 100. . L-GLUTAI'IATE 

CS"9f\(}4 J 2 :'SU5STRATE 121 . ' O-GLUTAI'IATf 

.3 i SU8STRATE 121. THltEO-3~ETHYL - C6H"NO., J 1 L-GL.UT N1ATf 

04 ' SUlSTUTf 12. THltEO-3-f'1fTHYL- C6H, , N04 
I O-GLUT NlATl 

S SUBSTRATE IS. fRYTHaO-3~THYL C6HII~" 
-i..-GLUTNIATE 

6 SUIIS TR ATE 11. !RYTHItO-3-P1fTHYI.. C6H" I1C .. -D-GLUT .MATE 

7 SUBSTUT£ 29. C1S-L- CSH'3"IJ .. 
CYCLOGLUTN1ATf 

• SUlSTtATE O. ,C1S-D-
I CYCLOGUTT N1ATE 

CeHI3'«>. 

• St.esTlATl 2.2 THftEO-2 -/'tfTHYL- Cf.M, ,"C .. 
O-Q..UT AI'!A TE 

10 SI.8!"Alf O. ~O-2-1'ETH'I"L- Cf.H, r;.o .. 
L-Q..UTMATE 

If -""AT£ O. ~ YTHItO-2-rtfTHl'L ~Hllroc>4 
-L~NtATf 

II ...,.A. O . fItYTHlllO-2-flE1H\'L (4Hl.M)4 
-D-Q.UTMlAT! 

Figure 4(a) 

H:ypothesizing that the differences in activity mi~ht be 
partially accounted for by the distances between the mtrogen 
and the furthest oxygen, the user decides to write a procedure 
to compute this distances and to enter them in the table as 
a new column. He types the MAKE PROCEDURE com
mand, which causes him to enter a text editor to compose 
the procedure. 

Figure 4(c) shows the completed procedure definition. It 
adds a column to the table, then cycles through the rows of 
the table. For each row, it retrieves the molecular structure, 
computes a three-dimensional model of the molecule, and 
cycles through the atoms to compute the maximum distance 
between the nitrogen and an oxygen; it then enters this value 
in the new column. The procedure uses a combination of 

" 
, 2 .3 loll 

:~ Ik~v~~Y ~~m~ '00'""" . COP'POUIC) i 
N.ttIf 

1 SUJlSTllAiE 100. L-Q..Ui..,.ATf Cs,H,NO.oI i 
2 'SUBSTltAiE 27. D-«-UT..,.ATE CsHoJIC.oIj 

:5 Sl.IISTIlATE 27. THUO-:5-ft;THYL- C6H, ,NO. I 
L...:LUT ...... TE 

4 Sl.IISTltATE IS. E1t'fTHI'O-:5-fETHYL C6H, ,NOA i 
~-Q..UT"""TI! 

S a.sTltATE II. !1I'YTHI'O-:5-fETtfTL c.H"NCI. J -o-GLUT ...... T! 

6 IlUllSTltATE 29. C1S~- CeH,.lNO .. I 
CYCLOGLUT IillATE 

- HY' - NO 

N 

o~. 
Figure 4(b) 

I 

PROCEDURE (T,C) ; 

DECLARE 
DECLARE 
DECLARE 

T TABLE, M MOLECULE; 
(C,NC,R,NR,A,AA) FIXED; 

MAXD FLOAT; 

CALL ADDCOLUMN(T,'O-N DISTANCE','FLOAT'); 
CALL ROWSIZE(T,NR); CALL COLSIZE(T,NC); 

DO R=l. TO NRi 
SET M TO COL CROW R OF T; 
COMPUTE MODEL OF M; 
MAXD=O. ; 

DO A=lTO NUMBER OF ATOMS IN M; 
IF M.ATOMS[A].TYPE='N' 

END; 

THEN DO AA=l TO NUMBER OF ATOMS IN M; 
IF M.ATOMS[AA].TYPE='O' 

THEN MAXD=MAX (MAXD, 
DISTANCE M.ATOMS[A] ,M.ATOMS[AA])i 

END; 

IF MAXD=O.O 
THEN ERROR CONTINUE, 

'MOLECULE IN ROW '.CTEXT(R). 
, IS MISSING NITROGENS OR OXYGENS'j 

SET COL NC ROW R OF T TO MAXDi 
SET COL CROW R OF T TO Mi 

END; 

RETURN; 
END; 

Figure 4(c) 

commands and PL/PROPHET statements, including calls to 
system routines. As written, it. depends heavily on character
istics of the particular molecules in the table, each of which 
has one nitrogen and one or more oxygens. In Figure 4(d) 
the user exits from the editor, compiles the procedure, calls 
it, and displays the table. 

To see any structure/activity pattern more clearly, the user 
makes a graph (Figure 4(e)) from the activity column and 
the distance column. He fits a straight line to the graph and 

COPf'lU!:? ~ [COWIL.l~,. DONe) ~ALL "IST41'T oil)' ~~ T1t 

TT I 2 1.3 .. S i 
I III T'l'1"1E OF 1tEL. ... nvE 'COI'1I'1ON COHI'OUN) 0-/11 DIST4NCE 
0; C ACTIVITY ACTlvt""Y N.AI'IIE 
I 'i SUBSTIlAT! 100. ! i..~LUTAtlATf . CSt'q/'()4 .33.3 

2 . SUBSTItAT£ 27. O~L.UTAMATf Cs~NO..; 3.01 

.3 : StJeSTUTE 27. Tl1I'fO-3-f'1!THYL- i C6H, :JIC..; ... 21 
L~1.U1AMATE .. USlItAT! I!.. EIilYTHltO-3-itETHYI.. I C(;H, .NO", 3.09 

i -L-1OurtAtlAT! ! . . 

!. IUlSTltAl! IT. i ERYMO-3-itfTHYL . C6H, ,NO., \2.9 
1-D~WTNtAT! , 

6 SUMTItAT! 129 . ClS-l.- C.HI.3NO .. .3.04 
i ' CYCL.OC;LUl APlAT! 

7 SUlSTIATE 2.2 TtttfO-2"""ETHYL - !C6H l1 J1C .. 13 ... 
D~UTNtAT! 

I SUISlUTE 70S. Z-GUlTAl'tAl! Csf1t"lO .. Il.ss 

Figure 4(d) 



displays it. The line-fitting routine warns him that the linear 
relation computed is unlikely to be significant. The user logs 
off, saving his work area (core image) so that he can continue 
from the same point at a later time. 

Software Structure 

The programs which comprise PROPHET and which sup
port the kinds of capabilities shown in the example are 
extensive (currently more than a quarter-million machine 
instructions). These programs are not homogeneous but are 
divided into distinct layers of software which transform the 
capabilities of the computer to the form which PROPHET 
users see. These layers are a time-sharing operating system, 
an extensible base language, a set of display and table 
handling utilities, a body of applications programs and com
mands, and a library of user-written procedures. 

As shown in Figure 5, each layer extends the preceding 
layer to produce a new computing environment. The time
sharing monitor builds on the bare computer to create a 
"user machine," in which many users can operate concur
rently without interfering with each other and in which real 
resources are presented as virtual resources which are general, 
easy to use, and protected from other users. The extensible 
base language provides high-level programming statements 
which facilitate computation, the definition of new data 
types, and the addition of syntax for new statements. It 
parses incoming statements, compiles machine instructions, 
and allocates resources within the user area provided by the 
operating system. The display and table utilities, using both 
machine language and the extensible language, implement 
general schemes for handling the display and the filing 
system. The applications programs use high-level procedures, 
new data types, and commands to present an environment 
for the PROPHET user in which he can deal directly with 

M! ItAP-H 
)if T "DO YOU IIAN; ... FlT FOItCED Tt«OUGH OI!!(;IN 1~OO YOU WAHT -

• LEvEL. ON THE SLOf'E 'i'~DO yO\) IIAIIIT EMPiY Y VALUES FILLED I-
N 'IN04 USI ... II D.14 !'OlNTS 
THE-OOltltf~T1ON COEFFIC1ENT tS II •. 199"1" 
T~ !EST STltAt;ttT LINE 15; 
y • fS.86299-x + -16.19012 
DO YOU WANT TO ICO THAT FUICTION N; A NEil ClJItVf IN YOUR GRAPH 1yu! 
THf SLff HAS • CONfIDfNCf L.!VEL OF I..!IS THAN 50. PEII CENT 
~AD" LOGOUT. SA\iE WO!tKAIIEA1 !Hl 

" E 
L 
A 
T 
! 
V 
E 

A 
C 
T 
t 
V 
t 
T 
y 

1::

1 

.. + 

70. 
60. 
50. 
..0. 
~. + 

20 .• 
10. f 

o r I l' I I' I 

2.9 3.1 3.3 l.S l.7 l.9 A.f ..... 

O-N 01STMICE 

Figure 4(e) 

The Implementation of the PROPHET System 461 

AVAILABLE TO 
PROPHET USERS 

USER PROCEDURE 
6. 

LIBRARY 

APPLICATIONS 
5. PROGRAMS AND 

COMMANDS 

DISPLAY AND 4. 
TABLE UTILITIES 

---_._. 

EXTENSIBLE 
3. 

BASE LANGUAGE 

2. OPERA~:~~S;y~~I~ 

COMPUTER 
HARDWARE 

(I) 
I-
z 
w 
~ 
w 

~ 
(/) 

(!) 
z ...J 

ex: <[ 
z <[ 0 :I: 
!i (/) 

W 
::IE I-

;;;) i= a.. 
::IE 
0 u 

(I) '" W III 
...J ... 
CD >-
<[ I-

ex: ~ 
~ c a ~ (I) 

w w 
(J) II: I- ...J 
<[ III (/) CD 

'" ~ 
:::> >- ~ (/) 

z 
0 t:t ~ ::l ?c:l i= u 

"'0 ~i z 0 

~ 
...J 

ii: ...J g ~~ W <[ 
0 >- III 0 a: ~ w 
~ 0 N 

::IE I-
::::i z w 

~ >- ::IE <[ 
a: (/) a W z 

0 w w (!) a.. 
a.. 
<[ 
::IE 

Figure 5-The numbered levels correspond to the layers of PROPHET 
hardware and software. The vertical bars represent each of the major 
computer capabilities within the systEm. Each capability is provided by 
the layer at the bottom of the vertical bar to each of the higher layers 
that the bar passes through. (For example, the bar labeled "SYNTAX 
DEFINITION" indicates that the base language provides this capabil
ity of defining new command syntax for use in constructing the utilities 
and the applications commands; on the other hand, creators of the user 
procedure library or general PROPHET users do not have access to this 

capability 

entities and applications related to his research. Finally, the 
library of user-written programs allows users to build on the 
basic system capabilities to handle new applications. 

The use of distinct layers of software has had several im
portant benefits. It has made it possible to write, maintain, 
test, and document sections of the software independently, 
without requiring that each implementer have a compre
hensive knowledge of the system. The creation of a succession 
of documented, tested programming environments means 
that new operations can be programmed quite simply (e.g., a 
programmer writing a procedure to twist a molecule can 
concentrate on the application without explicitly providing 
for multi-user use of the procedure, allocation of storage for 
data structures, or displaying or filing the altered molecule). 
Because of the isolation of functions into layers, there have 
been relatively few bugs related to complex interactions 
between parts of the system. Development of separate layers 
has also been valuable in reducing the impact of basic 
system changes (for example, a change to a new operating 
system affected only the base language and the display and 
table utilities). 

A drawback of the layered approach is a cost in efficiency. 
For example, use of a generalized filing system is slower 
(perhaps by a factor of 2) than would be direct access to 
disks; and applications programs written in the base language 
run more slowly (by an average factor of 5) than if they 
were vHitten in assembly language. 

Despite this cost in efficiency, several critical constraints 
precluded such alternatives as writing the whole system in 
assembly language. Specifically, given the three constraints ' 



462 National Computer Conference, 1974 

OPERATING SYSTEM 
(35K) 

PROPHET SHARED 
SEGMENT 

(aOK) 

PROPHET PRIVATE 
SEGMENT FOR 

USER A 
(READING A TABLE) 

(25K) 
ASSEMBLER FOR BBN 

DEVELOPER (8 K) 
PROPHET EDITOR FOR 

USER B (4K) 

PROPHET PRIVATE 
SEGMENT USER C 

(30K) 

(BEING SWAPPED IN) 

CORE 

DRUMS 

Figure 6--Memory snapshot of the PROPHET system 

of developing a useful service system within two years, of 
allmving for modifications and extensions of the original 
design as experience with users required, and of providing an 
easy language for user programming, the layered approach 
has proved invaluable if not essential. 

PROPHET IMPLEMENTATION 

As shown in Figure 5, PROPHET has been implemented 
in six distinct levels. Each level is discussed in turn. 

Levell; Computer hardware 

PROPHET runs on a large Digital Equipment Corporation 
PDP-lO system. The PDP-lO was selected in 1969 primarily 
because of its moderate price and working time-sharing 
system. The configuration has 192K 36-bit words of core 
memory and two separate swapping-drum systems (drums 
and controllers) to help handle the large core images used in 
PROPHET. The system has six disk-pack drives (a total of 
150 million characters of on-line storage) as well as magnetic 
tapes for backup and for exchange of programs and data 
with other systems. 

The system currently supports two kinds of terminal: 
Teletypes for BBN system developers and Computek 400 
display terminals for users. The Computek (Figure 1) was 
selected in 1970 because it supports the minimal input and 

output functions of PROPHET at a low price and in a form 
which places low computational and transmission demands 
on the central computer. The display is based on a storage 
tube, which produces a stable, highly readable display of an 
arbitrarily complex picture without being refreshed from the 
main computer. The principal defects of the display are its 
inability to make partial deletions (the entire screen must be 
erased and the picture retransmitted) and the low brightness 
of the screen (particularly of the non-storing cursor). The 
terminal includes a tablet which has been modified so that 
"tracking" (moving the cursor on the screen to correspond to 
the current position of the tablet's pen) is a purely local 
operation, and data is sent to the computer only when the 
pen is pressed down to indicate a point. 

Level 2: Operating System 

The operating system used for the service PROPHET 
system is a version of the DEC system-lO level D monitor. 
The system also runs on, and was developed on, the BBN 
Tenex monitor. The major function of the operating system 
is creation of a multi-user environment. The system does 
this by allowing programs to be written as if they were to 
be run alone, then dynamically assigning them real core and 
the CPU for short periods of time in order to run. Figure 6 
shows what might be the contents of the main memory at 
an instant of time with several PROPHET users active. 
Four operations are happening in parallel: User A is reading 
data from the disk; User B is running his program; one part 
of User C is being read in from one drum, while the other 
part is being read from the second drum. Also, the operating 
system provides for several programs to share a single copy 
of common routines. The main portion of PROPHET is 
shared in this way. 

The operating system organizes storage on disks into a 
file structure, in which a user program can create, read, 
write, and update named files. This frees a program of the 
necessity of knowing exactly where on the physical device 
its data is placed (this can be complicated in view of shared 
use of the device, "bad spots" on the disk, the potential of 
data moving when the disk undergoes maintenance, and so 
forth). The DEC file system also allows protection codes to 
be assigned to files so that access rights may vary for the 
creator, for his group of users, and for the system as a whole. 

A few modifications have been made to tailor the monitor 
to PROPHET. The most important additions have been 
programs to support the dual-drum swapping hardware and 
to provide special echoing conventions for the display 
terminal. 

LevelS: Base language 

The base language serves as the programming language for 
approximately three-quarters of the PROPHET software. 
Because of its central importance in the system, and because 
it is one of the more novel portions of the system from a 



computer science point of view, the base language level is 
discussed here in some detail. 

The base language is called PARSEC (for PARSer and 
Extensible Compiler). Many of the approaches taken in 
designing PARSEC extensibility were patterned after the 
language Proteus, developed by Dr. James Bell at Stanford. 
This language was selected as a starting point after a survey 
in 1968 of the major extensible language efforts then under 
way. In implementing PARSEC, techniques and features 
were borrowed from other language efforts. 7 ,9,10 The compu
tational statements are taken from PL/I, omitting the fancier 
mechanisms for storage control (dynamic, static, own), 
input/output (list, data), and run control (tasks, ON state
ments). The internal design of PARSEC is discussed in 
detail in An Overview of PARSEC Implementation.5 

The overall function of the base language level of 
PROPHET is the analysis and execution of several kinds of 
program statements. These statements (a) perform compu
tation (arithmetic, accessing data structure, iteration, branch
ing, subroutine calling, etc.), (b) define new data types as 
aggregates of existing types, (c) define syntax transformations 
to parse new statement formats, and (d) control the operating 
environment. Each of these functions is discussed below. 

(a) Computational statements 

The computational statements of the base language are 
based on a subset of PL/I. They include declarations, as
signment, full IFs and DOs, block structure, and procedures. 
Operations are defined on fixed and floating point numbers 
(arithmetic), Boolean variables (logic), text (concatenation, 
location, extraction), and bit strings (bit by bit logic). Multi
dimensional arrays of any type can be defined. 

All variables are allocated dynamically when they are 
used. Text strings and arrays are completely variable in 
length. Assignment is pointer-oriented; it is defined as copy
ing a pointer to the result of the right-hand side into the 
location referenced by the left-hand side. This allows complex 
(even circular) structures to be built and manipulated, and 
avoids wasteful reallocation in system handling of PROPHET 
data types. A unique pointer value "empty" is used to 
represent uninitialized variables; use of this value in an 
operation results in an error message, which helps to detect 
failures to set things up correctly. 

The computational language is intended to be flexible: 
mixed mode operations are allowed, undeclared variables are 
implicitly declared, expressions are permitted wherever sensi
ble, and nesting of IFs, DOs, and expressions is allowed to 
any depth. The result is a language which is designed to be 
extremely easy to use; when misused, however, it can incur 
noticeable inefficiencies. For example, while variable-length 
arrays allow a programmer to "\\Tite and run procedures 
using arrays without the bother of dimensioning, a program 
can cause repeated reallocation of the array if it expands the 
array one element at a time. With care, inefficiencies of this 
kind can be avoided in system routines, while allovving 
PROPHET users to write simple programs without efficiency
motivated restrictions. 

The Implementation of the PROPHET System 463 

COMPLEX NUMBERS 

DECLARE COMPLEX PATT! make a template called 
• COMPLEX" 

COMPLEX="<RP:FLOAT> + <IP:FLOAT>I"! define real and imaginary 
fields 

DECLARE X COMPLEX! declare a complex variable 

X.RP=l! set the real part 

X. IP=2 ! set the imaginary part 

TYPE X! type the value 

1. + 2.1 

TYPE X.IP! type a field 

2. 

LISP LISTS 

DECLARE LISP LIST PATT! make a template called 
"LISPLIST" 

LISPLIST="( <HEAD: ANY> • <TAIL:LISPLIST»"! define fields 

DECLARE LL LISPLIST! declare a LISPLIST 

LL.HEAD.='A'I set head 

LL.TAIL.HEAD='B'! set second element's head 

TYPE LL! . type value 

(A.(B.***» *"* denotes an undefined 
field 

LL.TAIL.TAIL=LL! make list circular 

TYPE LL! 

(A.(B.$$$» $$$ denotes circularity 
(to prevent indefinite 
typeout) 

Figure 7-Data type definition and use. The first section defines a com
plex number, previously unknown to the system, as an entity with a 
rea] and an imaginary part. The second section defines a list element like 

that used in LISP 

(b) Data type definition 

New data types can be defined in the base language as an 
ordered set of elements of other data types. Figure 7 shows 
how two compound types can be defined and used. To make 
a new data type, a template is formed which lists the ele
ments, assigning a name and a data type to each. This 
template can then be used to declare instances of the data 
type. An instance of a compound data type can be treated 
in much the same way as one of the basic types, (viz., an 
integer or a text string): it can be declared, be used as an 
argument to procedures, have operations defined on it, be 
typed out, and so forth. The components of a compound 
data type can be accessed through dot-notation, in a manner 
similar to accessing structures in PL/I. Components can in 
turn be compound types (the lower levels can be accessed 
through further levels of dot-notation). 

The utility of compound data types can be underestimated 
by those who have not worked with them. Although many 
of the same basic capabilities can be obtained by using 
arrays or simple variables to represent the different parts of 
a compound object, compound types have important ad
vantages when either the elements of the representation or 
the kind of permissible operations change. Because structures 
are handled as single variables, calling sequences never have 
to change when components are added or deleted. Com
ponents are referenced by name, not by location within the 
structure, so references need not be changed when unrelated 



464 National Computer Conference, 1974 

COMPUTE MODEL COMMAND 

COMPUTE: %MACRO; 

%RULE "<>MODEL OF"= 

"<>" ! 

%RULE "<> <M:MOLECULE>"= 

"<>CALL CM«M:MOLECULE»"! 

RETURN; 

%RULE "<> <T:TABLETINDICATION>"= 

"<>CALL CM«M:MOLECULE»!"! 

FAIL; 

END; 

BEGIN; 

CALL FINDVAR(M, T, UDL); 

IF EMPTY(M) THEN FAIL; 

END! 

RETURN; 

start macro definition 

throwaway noise words 

to next rule in any case 

if. user typed a variable of 
type molecule, set up 
procedure call to do 
computation 

if user pOinted to a 
molecule on the screen 
call compile-time routine 
to find it and set up ca 11 

announce an error if the 
argument was not of type 
molecule and the user did 
not pOint to a molecule 

Figure 8-Syntax definition of the COMPUTE MODEL command. 
The definition consists of a set of syntax rules which are executed when 
the system encounters the keyword "COMPUTE". The first rule dis
cards the words IIMODEL OF"; the second rule compiles a program call 
for the case in which a user named a molecule; and the third rule com
piles a call for the case in which the user pointed to a molecule on the 

screen 

components are redefined. Perhaps the most important ad
vantage in a large system like PROPHET is that programs 
using compound data types are easy to write and to read. 

(c) Syntax definition 

The base language also allows the definition of new state
ment syntax on an equal basis with the original syntax of 
the language without changing the compiler. The base system 
contains a set of machine-language routines to process user 
input according to a set of syntax statements which have 
been supplied to it. The syntax statements supplied to the 
compiler fully define the language which it is to implement. 
The base language itself is constructed from lists of syntax 
statements which define the formats for the computational 
statements, the data-type definition facilities, and the syntax 
definition facilities. New syntax can be added to extend the 
language or even to redefine the original base language; this 
is in fact used in the process of loading the base language to 
bootstrap the full base language from a simpler initial 
language. 

The syntax interpretation process starts by breaking the 
user's input down int.o a RerieR of tokenR which are repreRenteo 
as name-type-value triples. A token can be a variable name, 
a special character, or a constant. A msater list of syntax 
statements is then called to interpret the set of tokens and 
to transform it to collections of progressively "simpler" 
forms which can ultimately be represented in machine lan
guage. For example, a command input by a user as "TYPE 
1,2;; is transformed to a longer equivalent form of simpler 

components "DO; OUTPUT 1; OUTPUT 2; END" in the 
process of compiling it into machine language. 

Most of the work of a transformation is performed by a 
syntax statement called a rule. A rule performs a matching/ 
replacement function similar to that of an AMBIT state
ment. 8 It consists of five parts: an input pattern, an output 
pattern, a program, a pointer to an arbitrary syntax state
ment, and a pointer to the next statement in the list. The 
input and output patterns each consist of a template set of 
tokens (which can be named so that both templates can 
refer to the same token). When a rule is executed, the input 
pattern is matched against the set of tokens derived from 
the user's input. Matches can be against specific sets of 
characters or against any token of a given data type. 

If a match is found, the output pattern is inserted into 
the set of tokens at the point of match, and the program 
part of the rule is called. This program can be any statement 
in the base language, such as a block or procedure call. The 
program can access the matched tokens to perform further 
checking or to compile instructions. The program can termi
nate by announcing success or failure. If it fails, the output 
pattern is removed from the set of tokens and control passes 
to the next syntax statement in the list. If it succeeds, the 
tokens matched by the input pattern are removed and control 
branches to the success pointer specified in the rule. Other 
syntax statements exist to control flow through the state
ment lists. Figure 8 is an example of syntax which defines 
the COMPUTE MODEL command. 

(d) Control statement 

A fourth class of PARSEC statement is used to control 
the operation of the base system in various ways. The most 
powerful of these statements is the RUN statement. RUN 
saves the current state of PROPHET and causes a specified 
PDP-lO program to be executed. This program may be 
written in any language available on the PDP-lO (assembler, 
FORTRAN, LISP, etc.), and be essentially the same as a 
stand-alone version of the program (the only necessary 
change is insertion of a call to a machine-language library 
program to return to PROPHET). It is possible to use the 
RUN command within a PROPHET procedure, and to have 
control return to the correct point in procedure execution. 
Files can be used to communicate arguments and results be
tween PROPHET and the program being run. The RUN 
statement has been valuable in implementation of sections 
of the system which require very fast response (the text 
editor is a small, easily swapped program-written in as
sembly language-executed through RUN) and in adaptation 
of large existing programs to interface to PROPH~T (for 
exampie, the ORTEP molecule display program-written 
in FORTRAN-for crystallographers). 

Level 4-: Display and table utilities 

The levels composed of the computer, the operating 
system, and the base language are still a Teletype-oriented 



system, with access to files only on a do-it-yourself basis. 
The display and table utilities extend the system toward the 
PROPHET user environment by providing for displaying 
user data and filing it in a structured way. Because the 
specific user data types, and the representations selected for 
them, are not fixed, display and table-handling schemes were 
designed to be sufficiently general to survive additions and 
changes in user types without severe dislocation. 

Displays 

The overall purpose of the display utility is to provide a 
framework for managing the display terminal and for dis
playing arbitrary data types, and "Within that framework to 
provide specific routines to display tables, molecules, graphs, 
and statistical samples. 

One set of utility routines performs the lowest level oper
ations on the display terminal (e.g., draw a line, display a 
character, erase the screen, or activate the hard copier). 
Because the storage-tube display requires that the entire 
screen be erased and much of its contents be retransmitted 
to effect even a small change, the terminal-handling routines 
save the actual bytes sent to the terminal so that an indi
vidual display can be redrawn without the program's having 
to recompute how the display should be presented. 

Another set of routines exists to present each data type 
in the way best suited to its meaning. For example, a table 
is displayed as a grid of cells, which may be "folded" to fit 
as much as possible on the screen, a molecule as a figure "With 
lines for bonds and characters for atoms, a graph as a Car
tesian plot with curves, labels, ticks, and so on. The routines 
which display an object access it in a read-only fashion. 
This safeguards the displayed object in the event of inter
ruption of display, and permits the same object to be dis
played in several ways at the same time. 

Above these data-type-dependent routines, there is another 
set of display operations which is common to all data types. 
When an object is displayed, an instance of a special data 
type called a display-list is created consisting of pointers to 
the object, to a data-type-dependent entity which is used to 
store user-specified display options, to the coordinates of the 
area of the screen in which the object is displayed, and to the 
saved bytes from the last regeneration of the display on the 
screen. These display lists are linked together into a tree 
structure representing all objects currently being displayed. 
Control routines exist to manipulate the tree and to walk 
the tree to cause different sets of objects to be regenerated. 

There is a second kind of operation, parallel to displaying, 
which requires specialized handling for each data type: corre
lating user tablet input with meaningful entities within the 
data type. Handling this operation is not as simple as it may 
appear at first because the meaning of pointing to a displayed 
element may vary according to the context. For example, in 
different operations, a user might wish pointing to an atom 
of a molecule to mean that atom (e.g., type the coordinates), 
the molecule as a whole (e.g., compute a model of that 

The Implementation of the PROPHET System 465 

molecule), or the display of that molecule (e.g., move the 
display). 

The finding operation is implemented by cycling through 
the current list of displays and pretending to redisplay them. 
Instead of drawing on the screen, the lowest level routines 
notice when lines or characters would have appeared near 
the coordinates where the user pointed. A stack is maintained 
during this process to represent the hierarchy of constructs 
currently being searched; from this stack routines can select 
which level they wish to deal with when a hit is detected (in 
the example above, the atom, the molecule, or the display). 

Tables 

The table-handling utility provides a means of storing and 
organizing data in a format which is familiar to users. The 
PROPHET table is patterned after the tabular formats used 
in scientific journals or in laboratory notebooks. It is dis
played as a matrix-like structure with rows and columns; each 
column is constrained to contain instances of just one data 
type, but different columns can contain different types. The 
user specifies the number of columns and the types they 
should contain. Any data type may be specified for a par
ticular column, including molecule, graph, and even table 
itself. A special kind of column can be defined which is 
filled by deriving values from the entries in other columns. 
For example, one column might be defined as containing the 
natural logarithms of the values in another column. Tables 
also permit such niceties as names for columns and (op
tionally) rows, notes, and the ability to limit the entries in 
a column to a user-specified list of permitted values. 

A large number of user commands have been defined to 
manipulate tables. There are commands to create a new 
table, to make a table by selecting parts of one, to enter 
data in various ways, to access individual existing cells, and 
to display different sections of the table. Commands can 
also be used to retrieve information from tables according 
to specified criteria. In this context, tables are logically like 
record-oriented files, in which the rows are the records and 
the columns define the fields. It is possible to retrieve entries 
according to an arbitrary Boolean combination of criteria, 
and also to sort tables on the values in a set of columns. 

Tables are implemented using the file structure provided 
by the operating system, one table per file. Although it in
volves slight inefficiencies, the use of the file structure has 
simplified implementation (allocation on the disk is trivial) 
and has greatly enhanced reliability. Use of the file structure 
also provides protection against unauthorized access, allows 
tables to be saved off-line and restored individually, and 
makes it possible for system implementers to access tables 
in a limited way from outside of PROPHET. 

As a table command is processed, data are read from the 
table in rectangular arrays of entries (called windows); in no 
case must a program read an entire table into core, so that 
programs can deal with tables which are too large to fit in 
core. Cells containing variables which are large (such as 



466 National Computer Conference, 1974 

PROPI£T Commands (listed alpheetlcallyl 

ABBREVIATE 'text' TO unused-name 

ACCESS ~~:~~~LE TABLE table-name OF user-name AS unused-name 

ADD COLlIMNS TO table-name [FR.OM table-name [FOR relational-expression)] 

ADD CURVES TO graph-name AS X-specification VS Y-specification 
[. Y-spec ifi ca t ion ••.. ] 

ADD CURVES TO graph-name FROM graph-name 

ADD ROWS TO table-name [FROM table-name] 

CALL commandl ist-name 

CENTER Oit element-indication - I~se.i foY' J1'1oleC!ular models 

CLEAN 

CLEAR ~g~UMfl number OF table-name 

COMPLA I;~ 

COMPUTE HODEL 'IF molecule-name 

GRAPHS 
DEFAULT MOLECULES TO display option(5) 

TABLES 

UtL I:. TE vari abl e-name 

UELETE ABBREVIATION abbreviation-name 

IllLETE ~~~UMN number OF table-name 

DELETE CURVE curve-number OF graph-name 

~ /SHARABLE) . 
_ELETE !fUBLlC J SAVEO varl able-name 

DELETE WORKAREA [workarea-name] 

DISPLAY variable-name [display option(s)] [position-indication] 

DISPLAY graph-name [[NO]KEY] [[NO]LABELS] [[NO]WARNINGS] 

UHREE~ U:SPLAY molecule-name SKETCH [[NO]COMPLETE] [[NO]LABtL] [[NO]INOEX] 
STEREO 

DISPLAY table-name ~~~~INGJ [[NO]FOLD] [[NO]ROWNAMES] [tOLUMN[S]column-number(s)] 
~UICK J [ROW[S] row-number(s)] 

ii:SPLAY text-name tLlNE[S·) line-number(s)i 

DISPLAY COLUMN column-number ROW row-number OF table-name [display option(s)] 

text-name 
EDIT commandl ist-name 

procedure-name 

ENTER COLU .. N column-number(s) OF table-name 

ENTER ROW row-number(s) OF table-name 

ERASE ~~~plaY-indication 

FILLI. CO~UMNS column-numbers] [ROWS row-numbers] OF table-name FROM 
LCOLUMNS column-nu:mbersl [ROWS row-numbers] OF table-name 

FIT ~6~~NOMIAL TO ~8~~~\~~~~~~~:~:~e~F V;r;~~~~~m~Olumn-number OF table-name 

FREEZE display-indication - used for moleoular models 

LIST ABBREVIATIONS 

LIST VARIABLES [OF TYPE data-type] [WITH VALUES] 

LOGlN 

LOGOUT 

MAKE COMMANDLIST unused-name 

MAKE GRAPH unused-name [FROM table-namel [AS x-specification VS Y-specification 
[.Y-specification •••. ]] 

MAKE MOLECULE unused-name [FROM molecule-name] 

MAKE SAMPLE unused-name FROM ~~~~~:~:~: COLUMN col umn-number 

HAKE ISHARABLEl TABLE unused-name IFROM table-name [FOR relational-expressionjJ 
!fUBLIC J lYSING table-name J 

MAKE TEXT unused-name 

MOVE element-indication position-indication 

MOVE TO cal UMN col umn-number ROW row-number 

MOVE TO LINE 1 i ne-numDer 

X 
ORIENT [ABOUT) ; bond-indication - ,sed fol' molecular models 

PRINT variable-name [display option(s)] 

Rt~AME table-name TO unused-name 

, ISHARABLE] 
REJTORE !fUBLIC J saved-name rAS unused-name] 

RESTORE WORKAREA [workarea-name] 

ISHARABLEl . 
SAVE !fUBLIC J unable-name [AS saved-name] 

SAVE WORKAREA [workarea-name] 

X 
SCALE [scale-factor] [IN Y ]·display-indication 

Z 

SCAN variable-name [display option(,)] 

SEND MESSAGE 'tw' TO :~~~~E~~~' 
SET variable-na .. e TO expression 

SORT table-name BY COLUMN[s] ~~:~:~:~~=~~~W) 
X 

TURN angle [[AROUND] Y ] display-indication 
l 

[ASCENDING' 
i!!ESCEIIDI"i!I 

TWIST angle [AROUND] atom-indication atom-indication - used fol' molecular ,"?del. 

TYPE variable-nalle 

WHAT IS element-indication - ueed for the valus of a data poi.t i. a graph 

Figure 9-List of PROPHET commands (excluding the PL/I statements). Command arguments or modifiers listed in brackets are optional; 
those listed vertically indicate alternatives that are permitted. Lower case phrases describe the data-type of the argument expected; italics are 

used for comments 

graphs or molecules) are not read into core unless they are 
specifically referenced, even if they lie within the rectangular 
window. 

Level 5: A pplications commands 

The special PROPHET data types, procedures, and com
mands are intended to aid non~programming users in dealing 
with real problems, and to provide handles for expansion of 
the system by users who are programmers. Figure 9 gives a 
list of the commands available to the PROPHET users. 

The existence of the two preceding levels (the base language 
and the display and table utilities) significantly reduces the 
level of effort involved in the design and construction of 
powerful applications tools. The data-type definition capa
bility makes it possible to define a representation of an 
applications concept which can be accessed either as a whole 
or as a set of components. High level programs can be 
written to perform transformations on variables of the new 
type without concern for the realities of running (e.g., mem
ory management; creation of machine code; and details of 
input/ output 
displayed by adding appropriate displaying and searching 

routines to the display utility, and nothing need be done to 
allow it to be filed in tables. Finally, a set of commands, 
with arbitrary format and using graphic input, can be imple
mented through syntax definition statements. 

Graphs 

An example of a relatively simple data type is a 2-D data 
plot or graph (see example in Figure 4(e)). Several different 
relationships, based either on explicit data points or on 
functions, can be presented on the same graph. The user is 
allowed full control over presentation (specifying log or 
linear axes, labeling, tick distances, symbols used in plotting, 
ranges to be shown, titles, keys, and so forth). When an 
aspect of presentation is not specified by the user, a sensible 
default is provided. 

A challenging aspect of graph implementation was the 
construction of display procedures to handle all possible 
combinations of specified and unspecified presentation op
tions. For example, it is hard to select a default low value 
for an axis, in the case of a log axis with data values near 
zero, "'."'ipich simultaneously· (3,) includes all the data but does 
not leave much of the graph empty, (b) is a reasonable 



number which can be labeled in a few digits and (c) is an 
even multiple of some tick distance from the high value. 
In order to handle this type of problem, numerous heuristics 
had to be included in the graph-display package. 

Molecules 

Because many of the PROPHET users work with mo
lecular structures, the molecule-handling commands are a 
central part of the system. 

The representation selected for molecules is a structure 
containing an array of atoms, an array of bonds, and some 
information related to the molecule as a whole (Figure 10). 
Some fields are redundant and are included to make it easy 
to handle the structure in a variety of ways (e.g., iterating 
on each atom, handling all atoms connected to a given atom, 
or finding the atoms connected by a bond). To conserve 
storage space, some fields are not filled in until needed. 

A user creates an instance of a molecule by drawing it or 
by changing an existing molecule. The drawing program 
uses the tablet to allow the user to point to light-button 
commands and to positions on the screen. We have found 
that the semi-static nature of the current storage-tube termi
nal is not a severe restriction on this kind of task. 

A set of procedures computes a likely 3-D conformation of 
a user-sketched molecule by recognizing local conformations 
(rings, functional groups), and then putting the pieces of the 
molecule together using standard bond lengths and bond 
angles, modified by user-specified exceptions. Generating 
good conformations for rings is a very complex problem. 
Our current approach is to use a dictionary of rings, which is 
expanded at user request; our theory being that because 
users tend to work with small groups of related compounds, 
it is possible to limit the size of the dictionary. This approach 
has not been entirely satisfactory because the process of 
looking up rings is slow; users do not like having to find 
coordinates for their rings, and many rings have to be 
entered to cover minor variations in one basic ring structure. 

MOLECULE 

FORMULA:TEXT 
WEIGHT:FLOAT 
ATOMS: ATOM ARRAY 
BONDS:BOND ARRAY 
SKETCH:BOOL. 
MODEL:BOOL 

ATOM 
TYPE:TEXT. 
CONN:ATOM ARRAY ... 
BONDS: BOND ARRAY . . 
LOCS:FLOAT ARRAY(2), •. 
POSITION:FLOAT ARRAY(3). 
ANGLES: ANGLE ARRAY 

BOND 
TYPE :TEXT .. 
ATOMl:ATOM . 
ATOM2:ATOM . 
LENGTH: FLOAT . 
DIHEDRAL:ANGLE 

ANGLE 

BONDl:BOND 
BOND2:BOND 
ANG:FLOAT. 

.chemical formula 

.molecular weight 

.the molecule's atoms 

. the molecule's bonds 

.whether sketch drawn 

.whether model computed 

.chemical symbol 

.pointers to neighboring atoms 

.pointers to connecting bonds 

. user sketch coordinates 

.conformation coordinates 

.user-set bond angles 

.double, resonant, etc. 

.pointer to first endpoint 

.pointer to second endpoint 

. user-set bond length 

.user-set dihedral angle 

.pointer to first bond 

.pointer to second bond 

. angle in degrees 

Figure 10-Principal parts of the molecule data type 

The Implementation of the PROPHET System 467 

Weare now considering the addition of a more sophisticated, 
energy-minimization program developed by Dr. Todd 
Wipke,14 which promises to construct good approximations 
of most rings. 

Another set of procedures has been written to match 
fragments of molecules against the contents of a column of 
type molecule in a table. This matching is employed both in 
user information-retrieval requests (as a criterion which can 
be specified for this kind of column) and in retrieving rings 
from the ring dictionary. The basic approach used is loosely 
based on the Sussenguth graph-matching algorithm ;16 it 
matches by using sets of atoms with like properties rather 
than by an atom-by-atom tree-matching scheme. 

Work is now in progress to allow users to deal with inter
actions between several molecules, both graphically and by 
computing energy parameters, and to extend the confor
mation and substructure search capabilities. 

Level 6 : User procedure library 

The users of the system are currently generating a layer 
on top of the basic PROPHET system composed of pro
cedures they have written to handle their applications. Fa
cilities exist for creating shared and public procedures, and 
a Public Procedures N otebook17 has been started. Because of 
the RUN statement in the base language, it is not always 
necessary for an existing procedure to be recoded to be used 
from PROPHET; a FORTRAN application program can, 
for example, be run from a PARSEC procedure which writes 
out a file of arguments, runs the program, and reads the 
results back in. Currently, a small set of user-created library 
programs exist (to manipulate graphs, to perform matrix 
manipulations, and to solve sets of linear equations). This 
library should facilitate one of the important goals of 
PROPHET-the exchange of data and programs among 
biomedical scientists working on related investigations. 

BIBLIOGRAPHY 

1. The PROPHET System-A Final Report on Phase I of the Design 
Effort for the Chemical/Biological Information-Handling Program, 
Bolt Beranek and Newman, Inc. (June ]970) . 

2. User's Manual for the PROPHET System, Bolt Beranek and New
man, Inc. (last revised January 1974). 

3. Raub, William F., "The Role of Specialized Data Structures in 
Computer-Based Management, Analysis, and Communication of 
Pharmacological Information," Xational Institutes of Health 
(1972) . 

4. PARSEC Manual, Bolt Beranek and Kewman, Inc. (29 September 
1972). 

5. A.n Overview of PARSEC Implementation, Bolt Beranek and New
man, Inc. (September 1972). 

6. Bell, J. R. The Design of a Minimal Expandable Computer Language, 
Stanford l.7niversity Ph.D. Dissertation (December 1968) . 

7. Christensen, C., and C. J. Shaw (Eds.), Proceedings of the Extensible 
Languages Symposium, SIGPLA~ ~otices 4 (August 1969). 

8. Christensen, C., "A Language for Symbol ManipUlation," Comm 
ACM 9 (August 1966), 570-623 . 

9. Irons, E. T., "Experience with an Extensible Language," Comm. 
ACM 13 (January 1970), 31-40. 



468 National Computer Conference, 1974 

10. Cheatham, T. E., and K. Sattley, "Syntax Directed Compiling," 
Proc. AFIPS FJCC, 24 (1964), 31-57. 

11. Sutherland, I. E., "Sketchpad, A Man-Machine Graphical Com
munication System," Proc. AFIPS, 1963 SJCC, Spartan Books, 
Baltimore, Md. 

12. Levinthal, C., "Molecular Model-Building by Computer," Sci. 
Amer., 214: 42 (1966). 

13. Corey, E. J. and W. T. Wipke, "Computer-Assisted Design of 
Complex Organic Syntheses," Science, 166: 3902 (1969). 

14. Wipke, W. T., et al. "Computer Construction of Stereo chemically 
Correct, Three-Dimensional Molecular Models from Two-Dimen-

sional Structural Diagrams or from Connection Tables," Princeton 
University (paper in preparation). 

15. Barry, C. D., R. A. Ellis, S. M. Graessner, and G. R. Marshall, 
"Molecular Modeling with a Small Computer: an Introduction 
and Results of Initial Use," Computer Systems Laboratory Technical 
Memo. No. 96. St. Louis: Washington University (1970). 

16. Sussenguth, E. H., "A Graph-Theoretic Algorithm for Matching 
Chemical Structures," J. Chem. Doc., 5: 36 (1965). 

17. Public Procedures Notebook, Bolt Beranek and ~ewman, Inc. 
(April 1973). 



Applications of the PROPHET system in correlating crystallographic 
structural data with biological information* 

by CHARLES M. WEEKS, VIVIAN CODY, STEPHEN POKRYWIECKI, DOUGLAS C. ROHRER and 
WILLIAM L. DUAX 

Medical Foundation oj Buffalo 
Buffalo, New York 

The goal of the ~folecular Biophysics Department at the 
Medical Foundation of Buffalo is to establish relationships 
between the physical structures of molecules and their bio
logical activities. At present, the steroid and thyroid hor
mones, their derivatives, analogs, and inhibitors are the 
materials of major interest in this research, but work on 
other groups of biologically active molecules is anticipated 
or in progress. The PROPHET system** provides a powerful 
medium for the assembly, storage, and analysis of both 
structural and biological data. Correlative studies of these 
two types of data are particularly important because they 
may lead to an understanding of the molecular level mecha
nisms of action of hormones, drugs, antibiotics, and other 
biological substances. The PROPHET system is well suited 
for this type of analysis because it permits communication 
and interaction among scientists who are experts on various 
phases of molecular biology. 

The investigation of structural-functional relationships as 
it is being pursued at the Medical Foundation may be di
vided into the follo"\\ing stages: (1) The basic structural 
information must be collected and stored within the 
PROPHET system. X-ray crystal structure determinations 
in this and other laboratories have provided a large volume 
of molecular structural information in the form of atomic 
coordinates. Any geometric parameter of interest such as 
interatomic distances, bond angles, torsional angles, and 
deviations from least-squares planes can be calculated from 
these coordinates. The coordinates for 200 steroids, 50 
aromatic amino acids, and 25 thyroactive compounds have 
been stored within the PROPHET system. (2) The geo
metrical data for groups of similar substances are examined 
for correlations between structural features and chemical or 
biological properties. (3) An attempt is made to explain the 
mechanism of action of the molecules of interest in terms of 

* This research is supported by NIH Grant Nos. CA-10906 and AM-
15051. The operation and continuing development of the PROPHET 
System is sponsored by the Chemical/Biological Information-Handling 
Program, Division of Research Resources, National Institutes of 
Health. 
** A detailed description of PROPHET System features and organization 
is given in the accompanying paper by Castleman, et al. 

469 

any observed correlations. (4) Speculation is made concerning 
what changes in the molecular structure may be possible 
and what effects these changes will have on the biological 
action of the molecule. The present paper will illustrate some 
of the ways in which the PROPHET system has been used 
to compare conformational features of related molecules and 
to correlate the structural differences with differences in 
chemical and biological properties. 

The atomic coordinates and related information for each 
molecule in the data bank are stored in disk flIes where they 
may be accessed either by FORTRAN programs or 
PROPHET procedures. A PROPHET variable of type 
MOLECULE is also created for each structure. A pictorial 
representation of a molecule may be created either by sketch
ing a chemical diagram on the tablet or by executing a 
PROPHET procedure which uses the crystallographic coordi
nate file to determine the positions of the atoms and chemical 
bonds. Both methods generate a connection table, and some 
miscellaneous information such as the molecular weight and 
percent composition is also computed. PROPHET can make 
the equivalent of a three-dimensional Dreiding model for 
acyclic molecules and for simple cyclic compounds containing 
rings which are included in its ring dictionary. Figure 1 shows 
sketches of the steroid hormone cortisol and the thyroid 
hormone triiodothyronine (T3). Figure 2 illustrates the three
dimensional model of T3 computed from the sketch as well as 
a view of the actual crystallographic ally observed structure. 
At present, a three-dimensional model cannot be computed 
for the fused ring system comprising the steroid nucleus. For 
obvious reasons, the sketching feature is used only when 
experimental coordinates are not available or for drawing 
a molecular fragment which is to be used in a substructure 
search. 

The TABLE and GRAPH functions of the PROPHET 
system may be used to analyze information derived from the 
coordinates and to arrange this information so that statistics 
may be computed in a convenient fashion. One conforrna,tional 
feature of the thyroactive compounds which was analyzed 
in this way is the disposition of the planar aromatic rings 
about the connecting oxygen atom. The gross conformational 
changes in the molecule which accompany rotations aboufi 



470 National Computer Conference, 1974 

N I ~
oo 

I Q-r 
o 

TRIIfMlflTHYRflNINE 

CI'JRTlSI'L 

Figure 1 

648.965 

. CARBJlN. 27.76 
HYOReGEN. 1 .56 
NITR~EN. 2.16 
UlilINE. 58.67 
.,XYGEN. 9.36 

CARBflN. 69.5" 
HYDRflGEtl. 8.35 
.,XYGEN. 22 . .,7 

the bonds involving the central oxygen atom are depicted 
in Figure 3. All reasonable parameters which could describe 
the relative orientation of the two rings in the 17 thyroactive 
structures were stored in a table (Table I). Plots were made 
of various combinations of rows and columns in order to 
look for systematic patterns. Figure 4 is an example of a 
graph where no correlation between the parameters was ob
served. On the other hand, Figure 5 shows a discontinuity 
with the data falling into two widely separated groups, and 
Figure 6 illustrates the two overall types of molecular con
formations which have been termed transoid and cisoid. 

One of the most convenient features of the PROPHET 

N 

TRII~D0THYR0NINE 
0BSERVED 30 Cf'NF0Rt<tATI0N 

~I 
o 

0"" \ ~ ~o N 
I 

TRII0D0THYR0NINE I 
30 f10DEL FR0H SKETCH 

Figure 2 

/ 

Figure 3 

DISTRIBUTION OF DIHEDRAL 
ANGLES BETWEEN RINGS 

70· 
60 
50 

'" 40 
~ 30 x 

20 xX 

10 x~x~ 

x 
x 

X 

O~rr~~x~-.x~~~~~~~~ 
65 75 85 95 4>3 110 125 145

0 

Figure 4 

/ 

TABLE I-Conformational Parameters for Thyronine Compounds 

NAME Phil Ph12 Phi3 Ph14 

TOOl 01 86.5° 21.0° 83° 20° 
T00202 -92.2 0.1 92 10 
Too)02 79.9 27.3 70 29 
T00402 -66.8 -18.6 65 19 
T00502 -96.7 10.2 96 13 
TN0603 -89.8 -13.1 85 15 
TN0703 86.5 13.4 85 14 
TrlOO03 100.5 -27.2 94 17 
TN0903 -88.7 -14.2 83 4 
T01004 -107. 9 32.9 103 28 
TOll 05 87.6 5.2 84 5 
T01206 116.3 -20.5 115 21 
T01307 144.1 -67.7 143 1:>7 
T01400 89.9 -11.4 88 13 
T01509 88 IU 
T01610 104.7 -34.4 102 33 
T:)1711 86 21 



Applications of the PROPHET System in Correlating Crystallographic Structural Data with Biological Information 471 

o 
30 

10 

TOTAL DISTRIBUTION OF 
TORSIONAL ANGLES IN 
THYRONINE STRUCTURES 

• 
~-10 •• + 

+ + 
+ 

-30 

-50 

-70~-r~~~~,-~~~~,-~~~~~~ 
-120 -40 

Figure 5 

TRANSO!D 

CISOID 

Figure 6 

o 

Figure 7 

o 

80 120 

CIIRTISIL 

HIP VIEW 

SIDE VIEW 

(TURN -~ ARtlUHD X) 

END VIEW 

(TURN -91' A~"IJ!'lD X, 

TURN gill AR0UND Y) 

\ \ t'S 1/ 20 

~021 

0-:;:::;- ~ 017 

0BSERV ED C0NFlMUlATIIlN 
CIS-1l2" DISTANCE' 3.1165154 
CIS-C21 DISTANCE' 4.1165265 
1l17-1l21 DISTAt«:E • 4.121755 

o C1S 020 

~021 
0::::;- 017 

TWIST 30 ARIlUND C17-C211 BlIND 
C18-1l21l DISTANCE' 2.74116116 
C1S-C21 DISTANCE = 4.351967 
017-1121 DISTANCE· 4.11538 

C~Istl 

\ 1 rs 
£021 

~020 

O~ 017 

TWIST 155 AReuND C17 -C21l B/lND 
C18-1l211 DISTANCE' 3.542538 
C18-e21 DISTANCE = 3.5112957 
1l17-1121 DISTANCE' 4.599445 

\ \ r fi
020 

~~ 
o~ 0021 

TWIST 1711 ARIlUND C21l-C21 B0ND 
C18-1l21l DISTANCE' 3.1165154 
C18-C21 DISTANCE = 4.1l65266 
1117-1121 DIST~NCE = 2.1198816 

Figure 8 

system is the ease with which a molecule may be viewed 
from different perspectives. Figure 7 shows the cortisol mole
cule in orientations which may be described as top, side, and 
end views. These pictures were produced using the TURN 
commands which rotate displays about the three axes. 

The experimentally observed conformation of a molecule 
may also be modified using simple commands so that geo
metrical parameters of a theoretical conformation can be 
quickly computed. Examination of these parameters may 
reveal energetically unfavorable features of the theoretical 
conformation. For example, the orientation of the side-chain 
attached to C(17) in the cortisol nucleus might be thought 
to be flexible, but crystallographic investigation of cortisol 
derivatives has shown the torsional angles about the C(17)
C(20) bond to be largely invariant. As shown in Figure 8, 
the CHEMSET command was used to rotate the sidechain 
about this bond, and distances were then calculated between 
atoms in the nucleus and the sidechain by simply pointing 
to the atoms in question with the stylus. This feature of 
the PROPHET system makes it easy to deform a molecule 
by small amounts and to follow the atomic interactions at 
many different points. 

A comparison of the structural data for cortisol and its 
derivatives also reveals one of the best examples of a corre
lation between conformational differences and biological ac
tivity which has been observed in the steroids. The effects of 
cortisol on carbohydrate metabolism and inflammatory re-

Figure 9 



472 

4 

2 

o 

2 

4 

4 

2 

o 

2 

4 

National Computer Conference, 1974 

9A- FLUOROCORTISOL 

CORTISOL 

9A-FLUOROCORTISOL 

6A-METHYL-1-DEHYDROCORTISOL 

Figure 10 

OH21 

OH21 

actions may be enhanced by a number of modifications to 
the steroid nucleus including dehydrogenation of atoms C(l) 
and C (2) and by replacement of the hydrogen at the 9-position 
on the bottom or a-face of the molecule with a fluorine atom 
(see Figure 9). A comparison of the molecular geometry of 
the 9a-fluorocortisol molecule with the structures of cortisol 
and 6a-methyl-1-dehydrocortisol suggests that the increased 
activity of the 9a-fhlOro derivative niay result, in part, from 
unexpected changes in the A-ring conformation. Superpo
sition of these molecules in Figure 10 shows that the A-ring 
in 9a-fluorocortisol is bent underneath the plane of the 
molecule to a much greater extent than is the A-ring in 
cortisol, and in this respect, the conformation of 9a-fluoro-

\ ~"I //0 \ 'I" I //~ l 1:' L ..k~02' 02' ~02t ~ ____ IV' 
of' ~ 017 of" 017 o£, 

CDRT ISDL 6A-FLUIDRIICIDRTlSDL 6A-HETHVL-I-J[HVJ~0l0Rl IS~L 

~02' t '(" 1 ,l,02' ~'0 
~ Y' F 017 O~~7'V or 017 

0
3 

3 CL SR 

,)A-FLUDR0C0RTlS0L 9A-CHLIDRDCIDRTlSIlL 9A-BRl!llllC0RT IS0L 

STRUCTURE 

C0RTISilL 
6A-FLU0R0CIlRTlSDL 
6A-;4ETHYL-I-DEHVDRDC0RT I SilL 
~A-FLU0R0CIDRTlS0L 
9A-CHLIlRIlCIDRTISIlL 
),,-BRI!II1DCIDRT I SilL 

6.846797 
7.022464 
6.592556 
6.827164 
6.709984 
6.811\393 

Figure 11 

INTERATI!IHC DISTAIIC[S 

03-017 03-~21 

9.683412 
9.7011685 
9.196394 
9.032308 
9.773992 
9.687B92 

12.:.1221:" 
1l.60, 
11. ~~'~J 
12.~914', 
12 . .1871 
12.t'l.n(· ... 

cortisol resembles the conformation of 6a-methyl-1-dehydro
cortisol. From inspection of a Dreiding model of 6a-methyl-1-
dehydrocortisol, it can be seen that the presence of the 1-2 
double bond will force the A-ring to adopt a conformation 
similar to that actually observed in the crystal structure. 
However, the reason for the sharp bowing of the A-ring 
toward the a-side in 9a-fluorocortisol is not so obvious, and 
the bowing was not anticipated prior to the crystallographic 
investigation. These differences in A-ring conformation in
fluence the distances between 0(3) and. other oxygen atoms 
in cortisol and its derivatives as shown in Figure 11. Vari
ations of this type may be related to the ability of these 
molecules to bind to proteins in vivo. 

The preceding illustrations demonstrate the utility of the 
PROPHET system in the search for correlations between 
molecular structure and biological function. The investigation 
of such structural-functional relationships will be greatly 
simplified when files of bioassay data become available within 
PROPHET. Greater use of PROPHET to explore mecha
nisms of action and to identify the effects of changes in 
structure will also be made in the future. Molecular model 
building experiments and conformational energy calculations 
are some of the techniques which will be used to accomplish 
these goals. For example, rotameric potential energy mapping 
procedures can be employed to make a sophisticated analysis 
of the interactions which occur when a molecule is deformed 
as was illustrated by rotation of the cortisol sidechain. 
These procedures produce energy contour maps which relate 
various molecular conformations to the energy associated 
with nonbonded contacts between the atoms at the ends of 
rotating bonds. The interactions of more than one molecule 
will also be investigated in order to provide models for such 
molecular events as the binding of a steroid hormone to its 
receptor protein. 



Applications of the PROPHET system in molecular 
pharmacology-Structure-activity relationships in 
monoamine oxidase inhibitors* 

by CARL L. JOHNSON 

City University of New York and Beth Israel Medical Center 
New York, New York 

INTRODUCTION 

Understanding the molecular bases of drug action and drug
related phenomena in man and other animal species is a 
primary concern of the Department of Pharmacology, Mt. 
Sinai School of Medicine. Toward this end, a diverse array 
of laboratory and theoretical investigations involving a 
wealth of analytical and computational tools are in progress. 
This paper describes one of these areas of study, namely, 
structure-activity relationships in inhibitors of the enzyme 
monoamine oxidase, and illustrates how the PROPHET 
System** is employed in the organization, manipulation, and 
analysis of research results. 

BACKGROUND 

Monoamine oxidase (MAO), an enzyme mainly localized 
in the mitochondrion of the cell, is responsible for the oxi
dative deamination of physiological monoamines, including 
norepinephrine, dopamine, and serotonin. The importance of 
this enzyme in controlling the levels of putative neuro
transmitters has created a great deal of interest in deter
mining the mechanism of substrate oxidation and the nature 
of the active site. In addition, considerable effort has been 
directed at understanding the mechanism of MAO inhibition 
by a wide variety of chemical classes, all of which exhibit a 
pharmacological profile including potent anti-depressant 
activity. 

Some of the known MAO inhibitors include arylalkyl
hydrazines, arylhydrazides, a-methylated arylalkylamines, 
ary lcyclopropy lamines, ary loxycyclopropy lamines, N -cyclo
propylaryloxyethylamines, ,B-carbolines and arylpropargyl
amines. A common structural feature of these various classes 
of inhibitors as well as substrates is an amino group, and 
this group is assumed to play an essential role in complex 

* This research is supported by Grant MH-17489 from the National 
Institute of Mental Health. The operation and continuing development 
of the PROPHET System is sponsored by the Chemical/Biological 
Information-Handling Program, Division of Research Resources, Na
tional Institute of Health. 
** A detailed description of PROPHET System features and organiza
tion is given in the accompanying paper by Castleman et al. 

473 

formation at the active site. In addition, the aryl portion of 
the MAO inhibitors, although not an absolute requirement, 
is essential for the potent inhibition of the enzyme, and 
substitution on the aryl ring can markedly affect potency. 

One approach to understanding the role of the aryl portion 
of these compounds and to gain insight into the general 
relationships between chemical structure and pharmaco
logical activity is to carry out quantitative structure-activity 
studies on a series of related molecules .. This approach re
quires, in addition to some estimate of the biological activity 
of the series of derivatives, a set of parameters which describe 
in numerical terms the structural characteristics of the com
pounds. The parameters commonly utilized in this type of 
study include empirical physical-chemical properties, such as 
Hammett sigma constants, partition coefficients, molar vol
umes, etc., and theoretical parameters, such as atomic 
charges calculated by quantum chemical methods. The data 
set, consisting of biological activities and structural param
eters, is then analyzed by some form of computerized multiple 
regression technique. 

In the present communication we report on the quanti
tative structure-activity relationships (QSAR) for a series 
of ::\1:AO inhibitors and compare the results with those re
ported for other classes of MAO inhibitors. In addition, by 
comparing the molecular structures of the various inhibitor 
classes, we have attempted to arrive at a general picture of 
the MAO inhibitor pharmacophore. 

METHODS 

This investigation of monoamine oxidase inhibitors makes 
important use of the table-handling features of the PROPHET 
System. By means of column headings and row names, the 
data type TABLE provides a natural and conceptually at
tractive means of data organization and an easily readable 
presentation. The tables presented in this communication are 
photocopies of the actual tables as they are displayed on the 
terminal. K ote the utility of the feature which allows foot
notes to the table entries to be stored in the form of a text 
associated with the individual table. The types of tabular 
entries generally employed in this work are fixed or floating 
point numbers, text, molecular structures, graphs, and sub-



474 National Computer Conference, 1974 

TABLE I 

HYORAZIOfS 2311 x SC 

1 :!~IGl'lAa ~nc pb 
3 

10111-1'1° l~_l (l'W"!'1. d l~ II~~CI. 
1. 2-FUIIANYL 1.1166 1'98. !~.m8 

,2 )-THIENYL 1.6 ,1.8376 192. ,181.M7S 

,3. 2-1'YRIDYL . 3 ·1."'S ,191. . . 173.Ul 

4. 2-THIENYL \.6\ I.U4" 1<;6. -17 .3S4'S8 

<;. 2-PYRAZYL 1.111'>87 IS2. 141.n22 

~ 4-CL -I'HENYL .23 '2.U '.1.w;<3) 134. 1~.7(7) 

,7. 3-N02-f't£NVL .71 1.8'> 1.86'> 12'>. 138.1763 

8. 3-CL-I'tENYL .37 ! 2.84 1.I16SS 123. 129.2473 

9. 3-PYRIOYL .3 '1.0~ 111. 183.4281 

10. 4-PYRIOYL i .32 i 1.(3)<; 1 •. 188.78'i6 

11. 4-J -C.3H7 -I'HENYL -. IS 3.66 11.09'>3 97. 73.87674 

12. 3-1 SOf'YRROL YL I.Ml1 84. 89.11293 

13. 3 4-1CH)12-1'HENYL ' -.24 3.2<; 1.1/1774 76. 107.1362 

14. 4-<lCH3-PHENYL -.27 2.11 1.1132 63. 48.61728 

IS. 2_2-PHENYL -.7 .9 1.1e17 68. 61.~ 

16. S-THIAZOLE 44 1.1219 38. 24.4'>28) 

17. 4-11 2 3-TRIAZOLEI 1.132'> 38. 4.1'i647 

18. 4-NHZ -I'HENYL -.66 .9 1.1111ZS IS. 68. <1916 

19. 4-QH-f't£NYL -.36 1.46 1.1139 It. 39.31699 

21/1 . 2-()1-1'HENYL -.4 1.46 1.1311J'> e. 8 •• 72WS 

21. S-I'Yftll'lloYL -.4 1.13';4 e. -.631927S 

22. 4-(3 "r-cCteI21-ISOXO' 1.2 l.un e. -213 .• tQ 

ru. )-I'YIUOAZYL I.lU7S t. 111.279 

"HAMMETT SIGMA CONSTANTS ~R()M MCDANIEL AND BROwtH21. 

bOCTANCL:WAT[R PARTITION COEFFICIENTS FRt~ THE COMPILATIONS 
OF HANSCH AM) COWORKERS (.3, 41 . 

cpr ELeCTRON DENSITY AT THE cnl CARBON ATOM OF TI-£ ARYL 
RING FROM CNOOI2 CALCULATIONS. 

doeSERVED POTE.NCY FOR INHIBIT ION OF BRAIN MAO EXPRESSED AS THE. 
MARSIL1D INDEX (M. 1.1 FROM BIEl ET AL. (1). 

epOTENCIES CALCULATED FROM REGRESSION ANALYSIS, EQUATION (A) 

TA&..E 2 

tables, and frequent use is made of the large number of 
routines which are available for operating on these various 
data types. 

The monoamine oxidase project also exercises heavily 
PROPHET's molecule-handling features. Molecular struc
tures are entered by sketching in the molecule on the tablet. 
This provides the atom types and connectivities necessary 
to compute a three-dimensional model of the molecule using 
standard bond angles and bond lengths or user provided 
values. Alternative conformations of the molecule and its 
relative orientations in space then are examined systematic
ally as the user tests various hypotheses about structure
function relationships. Particular use is made of System 
procedures for displaying a Dreiding model of the molecule 
with or without atom labels, in either a two dimensional 
projection or as stereoscopic pairs. In addition, there is 
frequent use of those commands which retrieve information 
about the molecule, such as internuclear distances, bond 
angles, and coordinates. 

Analysis of empirical structure-activity relationships in the 
monoamine oxidase inhibitor class is facilitated further by 
the ready availability of a wide variety of structural param
eters, including electronic, hydrophobic, and steric sub
stituent constants, which have been compiled by the author 
and his associates and stored on the PROPHET System 
disk. In most SAR studies involving substitution on an 
aromatic ring, the user need only supply the biological data 
for a series of derivatives and the necessary structural pa
rameters will be automatically retrieved and fed to the 
multiple regression analysis program. 

RESULTS AND DISCUSSION 

Structure-activity relationships of hydrazide MAO inhibitors 

Arylhydrazides of the general structure 

Ar-CONHNHCH(CHa)2 

were one of the first known inhibitors of MAO. The in vivo 
potencies of a series of 23 derivatives have been reportedl 

and are listed in Table I (column 4). The potencies are 
reported as the Marsilid Index (M.I.) and represent the 
relative extent, of inhibition of brain MAO, taking iproniazide 
(Marsilid) as the standard (M.I. = 1(0). Ten of the deriva
tives are ring-substituted phenylhydrazides and the re
maining 13 contain heterocyclic aryl groups. As empirical 
structural parameters, we have employed Hammett sigma 
constants (Table I, column 1) and octanol: H20 partition 
coefficients (column 2). Since Hammett constants are avail
able only for the phenyl derivatives the empirical QSAR 
studies were restricted to these ten compounds. Multiple 
regression analysis was carried out using a program adapted 
for the PROPHET system. The results are shown in Table 
II. A significant correlation of the Marsilid Index and the 
Hammett constant was obtained (equation 1), electron 
withdrawing groups increasing activity. A much poorer corre
lation was obtained using the hydrophobic constant Log P 
(equation 2) and including this parameter along with sigma 
(equation 3) did not improve the correlation over that ob
tained with sigma alone. These results suggested that the 
major effect of ring substitution was an electronic one and 
that the partitioning behavior or hydrophobic nature of the 
aryl group was not a significant determinant of activity. 

Since the majority of the derivatives could not be included 
in the empirical analysis, molecular orbital (MO) calculations 
were carried out using the CNDO/2 method.5 These calcu
lations were performed on a CDC 6600 computer. At the 
present stage of development of the PROPHET system 
calculations performed on other computers are written on 
magnetic tape and sent by mail to the PROPHET instal
lation where they are then stored on disk and are available 
for input to the multiple regression program. We anticipate, 
however, that in the near future direct connections between 

TABLE II 

REGRESSION SR x 6C r- -·Jri-·---· ~---.---.- ... _-_. 
2, .3 A S '6 

, iiREGRESSION EQUATION a N R S F EOUATIQII NO. 

ttl~':'~~.~37 10 . fleA .31.4 14.6 CII 

;2 ;.M.I.=12 4 LOG P + 64.S III 219 64.3 .. . ... 
~iM:'T-.;70-S' S I G + l'0 .8'i6 29.1 9.6 (.31 

_ lLJ~44 . .32 
14 i M. I . =-18<;8 1 Q Cll + 18 .9404 20.8 138.9 CAl 

r1'-fi~·---·-·-· .. . M. r. =-681 . 1 Q 11 1 + 11 .6S SI.8 S.S (SI 
J..:3 LOG P + 820. 1 

a Ae8RE\I!ATIONS: SIC; = HAl'ttETT SIGI'IIo CONSTANT· LOG P • OCUNOl..WAT!1t 
PARTITl~ COf"FICIENT; Q(11 '"' PI ELECTRONofNSHY AT THE CO i 
CARBON ATOM ~ THE RING; N .. N'J1I3IER OF COMrOU'~; lit .. i'IU. iIPL£ 
C~RELATJON COEFFICIENT; S • STA/I[lMD ERROR OF THE RECOItESSION· 
F = F-TEST FOR SIc;NIFICANCE ~ TI'£ REGRESSleN. • 



Applications of the PROPHET System in Molecular Pharmacology 475 

the PROPHET computer and one or more large computers 
,vill be available for transmitting data in both directions. 

The hydrazide data were examined for correlations of 
activity with a variety of MO parameters, including total 
and pi charges, frontier densities, dipole moments and orbital 
energies. A significant correlation was obtained (Table II, 
equation 4) with only one of the many MO parameters, 
namely the pi electron density at the l-position of the aryl 
ring (position of attachment at the hydrazide group). Four 
of the 23 compounds did not fit the regression and were not 
included in the analysis. A fifth compound was predicted to 
have a large negative activity and in fact was reported to be 
inactive. Thus, of the 23 derivatives, only four were poorly 
predicted by the regression equation (predicted potencies are 
given in column 5 of Table I). Inclusion of both Q(l) ~nd 
Log P in one equation resulted in a much poorer regressIOn 
(equation 5). The results suggest that the Imver the. pi 
electron density at the l-position of the aryl group (I.e., 
the less negative this atom) the greater the potency of the 
inhibitor. Lowering the pi density can be accomplished either 
with electron withdrawing groups on the ring or with hetero
atoms at specific positions in the aryl ring. 

Comparison of the QSAR of other MAO inhibitors 

QSAR studies have recently been published6 for a large 
number of MAO inhibitor classes (Table III). Although 
there are some differences among the various groups, and 
part of this could be due to different enzyme sources, experi
mental technique, choice of derivatives, etc., it is remarkable 
that many of the equations show similar parameter values. 
All show an apparent steric inhibition (ES) effect and most 
show a hydrophobic bonding effect (PI), although in some 
cases the coefficient is positive and in others negative. For 
our purposes, the electronic effect is of greatest interest and 
it is notable that in all cases where this type of effect is 
demonstrable the coefficient of this term is positive. Thus, 
for the examples shown in Table III and our own results of 
Table II, electron withdrawing groups on the aryl portion 
of the MAO inhibitors increase potency. Since many of the 
inhibitors have saturated carbon atoms between the aryl 
group and the amino group it is safe to assume that the 

'1100 I 111111)( 3C 
TABLE III 

r-
kGRE.SSION EOJATlON

a 2 II 
N R 

I N-CYCLoPR?!:;~;., 1. 7'iSIG+.17ES+. 18I'1+~ .• IS .9,. 
2. PRQPARGYLAI'1INES 1 .19SIG+. 76ES+.39PI'-;'.'iF.> " .'»7 

~ BENZYLHYDRAZINES 1.r..SIG+.SZES-.S9'I'-;'.83 I .'i96 

~~~A;"'~THYl- 1.2SSIG+I . 87ES-I .1I9f'1+3. IS IS :tif" 
S. P~NO)(YCYCLOf'ROf'YLAI'1INES 1.ISIG+1.2'XS+S.3S 6 .9S

f6. ~~NYLCYCLOf'IIOf'YLAI'1INES I .I6SIC;+. seES-. 19I+S.18 18 .939

i 7. BETA-GAftBOLlNES I: .72SIG+.73ES·.'i9I"I+.~2.71 12 .97'9

r~T~~~X.~2;" . 73ES+.S3P1+1.1!ID+2.S9 IS .989

~~~~t;t"~~ .93ES+.6IPI+3 . .34 7 .176 

i~~>.:~~:;'~~~;"£:' R 1 .67ES- .681'1-.21 7 .19~ 

TABLE IV 

MAOIP1OLECULES 8R x Ae 
r---

I 2 " ~(21" · " FORP'U..A 0(11 D(31 
<HOl.EClLE) 

1 :PRONIAZ ICE: Co/i,.ON3 1.1. 3.7t;, •. SS 

Z. eENZYLHYORAZII£ Cp;,eN2 1.37 3.7. "'.';6 

3. ~~~~;:~YL C'I Hlt;N2 1.33 3.92 · ... 43 

". PHENOXYETHYLAr1II£ CgH'1 NO 1.19 3.83 4.62 

C; PARGYLINE C,IH,)N 1.11 ".21 4.93 

6 ~~~-~~~~[~T~ Co/1lZON 1. .... 4.19 <;.03 

17 ~~;~~~;~TrE C<#t12N 1.49 3.86 ..... S 

8. HEAN+/-STD. DEV. 1 .30+/-8. IS 3.93+/-i5.20 4.66+/-8.23 

"INTERNUCLE.AR DISTANCES (IN ANGSTRCJtSl IN A CONFORI1ATI()\I 
CORltESPONOIt«; TO T't1E PRoPOSED MAe I/'<I1IB!TOR PHARI'1ACOP~RE. 
SEE TExT FOR HE~ING ry: PAlW"ETERS. 

electronic effects are restricted to the aromatic ring and not 
directed to the side chain functional groups. Since electron 
withdrawal increases activity it is possible that the ring 
interacts with an electron rich enzyme site (e.g., a tyrosine 
residue) through 11"-11" stacking or charge transfer type inter
actions. 

Comparisons of the molecular structure of MAO inhibitors 

The remarkable similarity in the QSAR results for the 
various MAO inhibitors shown in Tables II and III en
couraged us to look for similar structural features in the 
molecules. Three dimensional models of the various MAO 
inhibitors were constructed in the PROPHET computer 
using standard bond angles and bond lengths. Then, using 
PROPHET's ability to manipulate molecules in the same 
coordinate space and to rotate single bonds, we examined 
the structural relationships of the amino group to the aro
matic ring in the various inhibitors. All of the inhibitors show 
considerable rotational flexibility. However, we found that 
it was possible to orient the amino group of all of the in
hibitors, with the exception of the propargylamines and 
~-carbolines, in the same relative position with respect to 
the aromatic ring. The results are shown in Table IV. D(l) 
is the distance of the amino nitrogen above the plane of the 
ring. D(2) and D(3) are the internuclear distances betwe~n 
the amino nitrogen and the C(l) and C(2) carbon atoms m 
the ring, respectively. Although the amino group of pa~gy~i~e 
cannot be made to fit the same pattern as the other mhIbI
tors it is of interest that the acetylenic carbon atom does 
fit tins pattern (see Table IV). However, ~-carboline, being 
a completely planar molecule, cannot fit this pattern and 
has been suggested to bind to a different site on the enzyme. 7 

Thus, we propose that the MAO inhibitor pharm~cophore 
consists of an electron rich functional group (eIther an 
amino nitrogen or an acetylenic carbon) located 1.30±O.15 A ° 
above the plane of the ring and 3.93±O.20 AO away from the 
ring. The proposed pharmacophore is consistent. with t~e 
stereo-selectivity of the phenoxycyc1opropylarnmes: ClS

phenoxycyclopropylamine is more potent than. the trans 
isomer by a factor of 107 and only the former Isomer fits 



476 National Computer Conference, 1974 

the proposed pattern. Similarly, the trans isomer of pheny
cyclopropylamine is more potent than the cis isomer7 and 
only the former fits the pattern. 

REFERENCES 

1. Biel, J. H., A. Horita, and A. E. Drukker, "Psychopharmacological 
Agents," Moo'idnal Chemistry Series, Vol. 4-1 (Gordon, ed.), 
Academic, New York, 1964, pp. 359-443. 

2. McDaniel, D. H. and H. C. Brown, J. Orgn. Chem. 23, pp. 420-427, 
1958. 

3. Hansch, C., A. Leo, S. H. Unger, K. H. Kim, D. Nikaitani, and 
E. J. Lien, J. Moo'. Chem. 16, pp. 1207-1216, 1973. 

4. Leo, A., C. Hansch, and D. Elkins, Chem. Rev. 71, pp. 525-616, 
1971. 

5. Pople, J. A. and G. A. Segal, J. Chem. Phys. 44, pp. 3289-3296, 
1966. 

6. Fujita, T., J. Med. Chem. 16, pp. 923-930, 1973. 
7. Zirkle, C. L., C. Kaiser, D. H. Tedeschi, R. F. Tedeschi, and A. J. 

Burger, Med. Pharm. Chem. 5, pp. 1265-1284, 1963. 



Applications of the PROPHET system in 
human clinical investigation* 

by BERNARD J. RANSIL** 

Boston Gity Hospital 
Boston, Massachusetts 

INTRODUCTION 

The study of chemical-biological interrelationships reaches 
its most challenging levels of complexity and difficulty in 
human clinical investigation. Whether the objective is de
velopment of a new drug, better understanding of an old 
one, or further elucidation of life processes which normally 
or pathologically distribute, transform, and eliminate exoge
nous and endogenous chemical substances, there is no experi
mental subject more important and more complex than man. 
And since no experimental subject is more difficult to study 
systematically than man, there probably is no area of biology 
and medicine where computer science and technology are 
needed more, but exploited less, than in human clinical 
investigation. 

This paper surveys the nature of clinical investigative 
research and the information-handling problems associated 
with it. Selected topics are illustrated by describing how 
the PROPHET systemt has been used in the Clinical Re
search Center of the Harvard Medical Unit at Boston City 
Hospital. Among other things, the discussion attempts to 
show that PROPHET possesses a sufficiently large and 
powerful repertoire of features to make it not only an invalu
able tool in clinical pharmacology but also an instructive 
paradigm of a protocol-oriented, research data-handling 
system for almost any type of clinical investigation. 

CLINICAL INVESTIGATION 

Human clinical investigation is both descriptive and quan
titative, inductive and deductive, concerned with both indi
vidual and collective events. Not unlike statistics (defined 

* Supported in part by Grant RR-76 from the General Clinical Research 
Centers Program of the Division of Research Resources, National 
Institutes of Health. The operation and continuing development of the 
PROPHET system is sponsored by the Chemical/Biological Informa
tion-Handling Program, Division of Research Resources National 
Institutes of Health. 
** Address after July 1, 1974: Department of Medicine, Bet4 Israel 
Hospital, Boston, Massachusetts 02215. 
t A detailed description of PROPHET system features and organization 
is given in the accompanying paper by Castleman et al. 

477 

somewhere as "the art of being precise though vague"), 
it possesses an applicational elusiveness arising in part per
haps from the range and actuarial nature of the phenomena 
it explores. 

Human clinical investigation begins with observations of 
various types and degrees of precision and accuracy at 
various organizational levels, concerning the function and 
malfunction of the human body, made upon identifiable 
subjects or groups of subjects for specified periods of time 
under specified circumstances. The less known about a phe
nomenon under study, usually the more descriptive the ap
proach. As the phenomenon, process or mechanism under 
study approaches less complex levels of structural organi
zation and function (organism~organ~tissue~molecule), 

the greater the potential for more quantitative studies, for 
more rigorous experimental control, and greater investigative 
precision. 

The activity of clinical investigation depends on data-its 
collection, storage, retrieval and utilization as a basis for 
understanding disease processes in man, and their cure, 
reversal or control, in a context that can range from the 
so-called "controlled" to "non-controlled" investigative con
ditions. 

The "controlled" experiment attempts to study a phe
nomenon in terms of both a perturbed and unperturbed 
state, or in terms of one state compared to some defined 
reference state. This may be done in a number of ways, 
which is a topic itself in experimental design. 

The "controlled experiment" is demarcated in both time 
and population size. Its conclusions refer to the small samples 
studied but are often extended (with varying degrees of 
validity) to populations-at-Iarge on the basis of sampling 
theory, under the assumption that a true cross-section ob
tains. Most modern clinical investigation is conducted in 
this mode. 

Less common nowadays is that form of clinical investi
gation arising from the so-called "bedside observation." As 
practiced by the early pioneers of clinical medicine, at a 
time when the practice of medicine was more personal, more 
descriptive, less precise, less academically oriented, this tech
nique consisted of periodic observations of scores or hundreds 
of patients over time spans of months to years. It was 



478 National Computer Conference, 1974 

inseparable from patient care and usually employed the long 
term qualitative and descriptive patient care data as its 
data base for comparison, correlation and inference. The 
"data bank" was one physician's files and personal experi
ence; the "memory" his own; the primary data processing 
technique was "clinical correlation" using trial-and-error 
therapeutics with outcome (improvement, cure, no improve
ment, death, etc.) as a measure of therapeutic efficacy upon 
which the value of a drug, therapeutic regimen or accuracy 
of diagnosis was judged. Transmission of information was 
primarily by example, word of mouth and the published 
case history. This form of investigation-uncontrolled by 
modern standards, descriptive, qualitative for the most part, 
correlative-was open-ended as to time and population 
sample. Generalization to larger populations, always pos
sessed of an element of risk even with the best controls and 
sampling techniques, possessed sufficient validity to produce 
recognizable improvements in patient diagnosis and treat
ment. In its own way, judging from the contribution it 
made to the understanding of many disease processes and 
the alleviation of human suffering, it worked. 

CLINICAL INVESTIGATORS 

Contemporary clinical investigation is performed by indi
viduals, groups and teams possessing incredibly diverse back
grounds, training and levels of competence. They range from 
high school students on summer projects to multiple-de greed 
scientists with decades of experience in their specialties. 
They include individuals formally trained in medicine, the 
biological, physical, mathematical, engineering and social 
sciences. 

Because most clinical investigation is rooted in the study 
of small representative samples of subjects or specimens, a 
working knowledge of statistics is mandatory. This includes 
a good knowledge of, and feel for, the notion of distributions 
(especially Gaussian, Poisson and binomial) and their central 
measures, the theory of sampling, error analysis and confi
dence limits, the basic idea of significance tests and the 
common types of significance tests for the most frequently 
encountered distributions, the notion of correlation for one 
or more variables, trend analysis, ranking tests, curve fitting 
and measures of goodness of fit, analysis of data for internal 
consistency and elimination of outriders. 

It is probab.ly not overstating the case to say that the 
acquisition of the prerequisite statistical, mathematical and 
computing skills is not as urgent a priority to most clinical 
investigators in their formal scientific training and formation 
as the development of expertise in the preclinical and clinical 
sciences. Having been exposed to the customary elementary 
course in statistics, usually taught by statisticians or mathe
maticians with cursory concern for applications, many be
come discouraged from further formal training by the 
calculational aspects and rely on picking up what they 
"need to know" for problem solving from colleagues and the 
research 1it.er9~t.ure_ Perusal of the di."'lica! investigative liter
ature reveals a tremendous variability of statistical rigor and 

facility not infrequently taxing credibility, despite an ever 
increasing demand from journal reviewers for better data 
reportage and analysis. It is the author's impression that 
many clinical investigators use biometrics not as an analytic 
tool to evaluate what the data actually may say about a 
phenomenon or a system, but as a set of required rules one 
follows grudgingly, mechanically, in follow-the-Ieader fashion 
to verify or rule out a working hypothesis. 

DATA PROCESSING REQUIREMENTS 

From the foregoing descriptions we may infer that the 
data processing capabilities required for clinical investigation 
include: collection, storage, retrieval, sorting, interfacing, 
transmission, analysis and diagnosis. Collection can be in 
several modalities-written anecdotal and descriptive data 
from human observers (both textual and numerical), digital 
or analogue data from instruments. Storage can be long or 
short term; if the former, the concept of a data bank arises. 
Data analysis can range over all forms of statistical analysis 
and a variety of mathematical operations such as c~rv~ 
fitting and model building. 

Given the nature of clinical investigation, its data proc
essing and analysis requirements, and the general level of 
statistical-mathematical-computing competence of its prac
titioners, what characteristics might a data processing system 
ideally be expected to possess for clinical investigative 
applications? 

Responses to this question can be as varied and unique as 
the investigators, applications and clinical research environ
ments themselves. The author's experience in a specific 
clinical investigative setting has led him to identify a number 
of factors that must be considered. How one orders these 
factors as priorities to match his overall resources, con
straints and goals will largely determine the system design 
and its hardware/software configurations. These factors 
include: 

• Economy of initial cost, operation, maintenance and 
repairs, user time. 

• Features important to non-specialist users: reliability
low down time, accessibility, flexibility, versatility, sim
plicity of operation, minimal or no programming, pro
grammed instruction capability, interactive dialogue and 
batch processing modes. 

• Hardware characteristics: speed (not a high priority for 
many applications), average down time, graphics, mem
ory size, analogue/digital input, hard copy output. 

• Nature of applications and problems to be solved: small 
or large (epideIT'iological) samples, high ur low voiume, 
one-time or repetitive solutions. 

• Physical relation of labs and users. 

The reader can probably supply additional criteria relevant 
to his particular environment and applications. In the 
author's setting, given the type and technical background of 
investigators, the nature of their problems, he has observed 
that the user features, i.e., accessibility, reliability, system 



Applications of the PROPHET System in Human Clinical Investigation 479 

flexibility and versatility, simplicity of operation with no 
programming, were given highest priority by novice users. 
As several investigators gained experience and confidence 
however, their priorities tended to shift toward wanting 
greater problem-solving power, table-making and data bank 
capability, visualization of tables and graphs \-vith ability 
to produce camera-ready hard copy, thereby bypassing 
manual graphics production costs. As a by-product of ob
serving this growth and developmental process, the author 
came to appreciate the potential of the appropriately pro
grammed data analysis system as a programmed instruction 
tool for teaching statistics, graphics and mathematical 
analysis in the context of ongoing research projects. 

It is perhaps appropriate at this point to interject a useful 
distinction to keep in mind between "state of the art" 
systems and systems designed to meet specific applicational 
needs when the primary goal is problem solving. The striving 
toward "ars gratia artis" seems as appropriate to computer 
science as it is to the arts and other disciplines. Yet the 
drive for "state of art" development as an important priority 
can often be inappropriate to applicational solutions where 
operational economy, system reliability, accessibility" sta
bility, and ease of operation are critical priorities. Thanks to 
the "state of art" drive, the computer industry possesses 
the technical facility and know-how to produce relatively 
cheap, flexible, reliable data processing systems for identifiable 
uses. But paradoxically the "state of art" mentality is often 
associated with an aversion for the so-called "pedestrian" 
application that has an inhibitive effect on applications 
problem solving, obscuring the very real value, and even the 
"state of art" quality in its own right, of applications/ 
problem-solving development. 

All of which serves as preface to PROPHET, a biological! 
chemical data handling system under development by the 
Division of Research Resources, NIH with Bolt Beranek 
and Newman, Inc. and First Data Corporation. Its anatomy, 
physiology and functional characteristics are described else
where. What will concern us for the remainder of this article 
is the PROPHET performance in a specific clinical investi
gative setting, the Clinical Research Center Core Laboratory 
of the Harvard Medical Unit, Boston City Hospital.* 

FEATURE/FUNCTION APPLICATIONS 

Some idea of PROPHET's applicational relevance to hu
man clinical investigation may be conveyed by describing 
how specific PROPHET features and functions are utilized 
in investigative problem-solving, and then how individual 
investigators have combined various features and functions 
in PROPHET procedures to achieve specific data processing 
and analytic capabilities tailored to their needs without 
recourse to programmers, keypunchers or other middlemen. 

The investigative needs of the Unit for the most part 
require a large variety of statistical and mathematical 
manipulations, curve fitting, graphing and error analysis on 

* The Harvard Medical Unit, Boston City Hospital is in process of re
locating to the Beth Israel Hospital, Boston, Massachusetts. 

TABLE I 

PROJECT TITLE 

Metabolic studies of sepsis and 
shock in pigs and humans. 

Liver metabolism studies. 

Studies of parenteral alimenta
tion in humans and dogs. 

Substrates and control mecha
nism of protein loss in trauma 

Potassium metabolism and N a
K-ATPase activity in the iso
lated perfused kidney. 

Mineralocorticoid metabolism 
and relation to O2 consump
tion. 

Insulin clearance in renal insuf
ficiency. 

Effect of exercise or systolic time 
intervals. 

Epidemiological study of cardio
pulmonary resuscitation at 
BCH. 

Relation of amino acid levels to 
lipid, carbohydrate and pro
tein metabolism in normal and 
diabetic, pregnant and non
pregnant subjects. 

Charge density basis of chemical 
reactivity and biological ac
tivity. 

PROPHET 
FEATURES/FUNCTIONS 

Data bank, statistical and mathe
matical analysis, graphics, pro
file analysis 

Data bank, systems control and 
accounting procedures, statisti
cal and mathematical analysis, 
text, graphics, profile analysis 

Data bank, statistical and mathe
matical analysis, graphics 

Make table procedures, statistical 
and mathematical analysis, 
graphics 

MUltiple-exponential fit and 
graphics from tables 

Trend analyses and graphics 

Trend analysis, graphics, statisti
cal significance 

Pen-tablet input of absorption 
curves for amino acid determi
nations, graphical and error 
analyses from tables by column 
and row 

Three dimensional plotting, deter
mination of non-integer func
tional dependencies using "De
rived" feature of table and linear 
curve fit commands, correlations 

small sample populations, usually on a demand basis. In 
addition, certain investigators require a capability for con
struction of open-ended, permanent (i.e., life of project which 
can be many years and several generations of investigators) 
data bank which may be easily corrected, extended or up
dated at any time, and some facility for text introduction 
and manipulation. Examples of typical projects and their 
various data processing requirements are given in Table I. 

PROPHET meets such needs first and foremost by the 
"MAKE TABLE" design feature whereby data are entered 
via keyboard as a permanently stored table which may then 
be addressed by numbered row or column to perform a 
variety of statistical, mathematical and graphical operations, 
using simple English word commands of specified syntax in 
a dialogue mode. Appropriate commands and dialogue yield 
graphs (with full control over formatting), straight-line fits 
to curves, measures of goodness-of-fit to plotted curves, 
polynomial fits of any degree, correlation studies and so on. 
The table feature (foreshadowed a decade ago by the stored 
arrays of the National Bureau of Standards' OMNITAB 
System*) has many practical and significant uses and conse
quences. It forces the investigator to organize himself and 
his data in a more systematic manner than is often the case, 
setting the stage for better analysis and therefore better 

* OMNITAB: A Computer Program for Statistical and Numerical 
Analysis. NBS Handbook 101, U.S. Gov. Printing Office, 1966. 



480 National Computer Conference, 1974 

basis for inference. Once the table is made, a camera-ready 
copy for slides or prlnts can be made. Statistical or mathe
matical analysis is accomplished by simply addressing rows 
or columns, using the appropriate commands (comprising 
English words and specific syntax) e.g., "Fit line to colI vs 
col 4 of Tablename." (The PROPHET command language 
currently accepts only column addressing for statistical and 
mathematical operations, but several investigators have 
written row procedures as well.) 

Functional relationships of any kind may be computed 
from any column or combination of columns by the "DE
RIVED" command in the "MAKE TABLE" dialogue. This 
feature alone is a significant time saver where large numbers 
of cases are at stake, yielding derivations that require no 
number-by-number checking. 

As useful as all this is to the clinical investigator in ob
taining derived clinical parameters involving such things as 
drug dosages per unit area, dose response curves, concen
trations of labeled drugs corrected for background, and 
cardiopulmonary parameters from catheterization data, even 
greater power is realizable in such applications as linear and 
non-linear regression. Regression is a term statisticians use 
to refer to a least squares fit of an independent variable 
against a dependent variable. Most often only one inde
pendent variable and a linear dependence (first degree poly
nomial) is assumed-whence the regrettable but ubiquitous 
term "linear regression." Linear regression studies are quickly 
performed on PROPHET by the command "Fit line to 
col 3 vs col 24 of Tablename." The output consists of the 
best straight line fit, correlation coefficient, standard devi
ation from regression and several other "goodness of fit" 
criteria, produced as hard copy in a few seconds. 

Appropriate combination of the "Derive column" and 
"Fit line" features of PROPHET further enable the investi
gator to free himself from his dependency on "linear de
pendence" and experiment at "",-ill, in a matter of seconds to 
minutes, with other functional dependencies simply by 
making columns of any integral or non-integral power of the 
independent variable, invoking the command "FIT LINE 
. . . " to the appropriate columns and comparing the "good
ness of fit" data (which include the correlation coefficient, 
standard deviation from regression, standard deviations of 
the slope and intercept, and significance of the slope) for the 
best fit within the precision limits of the data being analyzed. 

What is done for the single variable linear and non-linear 
functional analyses can be done for multiple variable de
pendencies-the so-called· multiple regression. Here again 
most clinical investigators who use the technique confine 
their analytic efforts to linear dependencies, unless other 
relationships are known to hold. Although multiple regression 
is available as a Public Procedure only for linear and expo
nential dependency, PROPHET's "Derive column" feature 
combined with the multiple regression feature allow the 
investigator to test any non-linear functional dependency by 
a series of simple commands or procedures, opening up 
regions of functional relationships hitherto rarely explored 
because of their inaccessibiiity to the average clinical in
vestigator. 

The value of the graph feature resides in the inherent 
superiority of picture over text for instant and unambiguous 
identification (to the trained eye) and communication of 
functional relationships. Thanks to its design, the PROPHET 
"MAKE GRAPH" feature gives the investigator full control 
over graph formatting, scaling, titling, curve identification 
and the like. Because it is quick and easy to use (from data 
previously stored in tables or arrays) investigators freely use 
it as it ought to be used-as the first step in determining 
functional relationships. In the majority of applications 
visual inspection suggests the most probable functional 
relationship(s) to be explored, which may then be carried 
out by making the necessary table alterations and functional 
dependency calculations. Where several functional depend
encies are possible, the "goodness of fit" data may be used 
as a basis for ruling out one or more possibilities. If all fits 
yield comparable "goodness of fit" criteria, other criteria, 
based on additional knowledge of the system under study, if 
available, may be invoked; failing that, Occam's Razor (or 
Law of Parsimony)* is employed. 

The "MAKE TEXT" feature finds a variety of uses in 
footnoting, annotating graphs, and report writing inter
spersed with graphs and tables. 

The pen and tablet entry feature speeds up data corrections 
or alterations in tables. It also enables the investigator to 
move graph and table displays to any part of the screen, 
scaling them at will. Combining these capabilities he may 
display four to six graphs (depending on size and complexity) 
simultaneously on one page of copy for sequential analysis 
studies. The Public Procedure "% Points" allows data entry 
from a graph or drawing placed upon the tablet, enabling 
the investigator, via appropriate procedures, to perform 
curve fits and "area under curve" calculations directly from 
analogue recorder output tracings. 

In all the foregoing applications the hard copier receives 
steady employment to produce both temporary and perma
nent copy of tables, graphs, arrays and text displayed on the 
screen for reference, communication and publication. To the 
clinical investigator it is an invaluable design feature . 

Because clinical investigative data at this center is largely 
of the small sample type, special attention has been paid to 
the concept of "sample processing." Built into the "MAKE 
SAMPLE" software is the ability to construct a sample from 
any segment of a table or array, test it for the type of distri
bution to which it belongs (currently it tests for Gaussian, 
but will ultimately test for Poisson and binomial as well), and 
compute central measures, moments (skewness, kurtosis), 
median, minimum and maximum. Further, the graphics 
feature encourages the construction of histograms for quick, 
visual evaluation of population sample distribution character
istics. And the text capability allows carrying along pertinent 
descriptive explanations and footnotes as the need arises. 

* "Entia praeter necessitatem non multiplicanda" which, freely ren
dered in this context is "If offered a choice between two hypotheses or 
P.'11Hl.t.ion.~j choose the simpler." Cf. Mathematical ~\.pproach to Physio
logical Problems by Douglas S. Riggs, Williams and Wilkins, 1963, 
p.51. 



Applications of the PROPHET System in Human Clinical Investigation 481 

Why the concern over "sample processing"? Because medi
cal investigators, for historical reasons and the practical 
difficulties related to extensive calculational efforts (prior to 
the invention of low cost high speed computing devices) 
usually assume their data to be normally (Gaussian) dis
tributed; and the mean and standard deviation the only 
sample measures that possess clinical meaning. Specific ex
ceptions to this generalization are recognized, such as samples 
of cell counts (which obey Poisson statistics), drug titers 
(usually requiring log-normal transformations and the use 
of geometric means) and data that are binomially distributed. 
Generally speaking however, in all situations not previously 
established to be other than Gaussian, and in studies of 
new phenomena, most investigators will assume a normal 
distribution because few possess the innate curiosity and/or 
statistical know-how to test for type of distribution. The 
PROPHET System significantly changes all this by con
verting a seemingly hopelessly difficult (to the non-statis
tician) and time consuming task to a simple matter of typing 
a few words of command and answering "Yes" or "No" as 
required. 

The revolution this obvious and simple design feature 
portends is suggested by a recent experience with one of the 
projects passing through the Core Lab data analysis facilities. 
One clinical investigator became interested in reviewing the 
status of the white blood cell (WBC) count as a clinical 
indicator for infectious disease (ID). He arduously collected 
samples of hundreds of patients in each of several categories: 
ambulatory patients with and without ID, hospitalized 
patients with and without ID, and patients with various 
types of ID. Because "unless you look for something, you'll 
overlook it," he was advised to examine the basic distribution 
characteristics (beginning with histograms) of several typical 
samples, though he was strongly inclined by force of habit 
to accept the work of many investigators before him and 
assume a normal distribution. To his surprise, he found that 
all samples possessed skewed normal distributions, calling 
for the use of geometric means and a non~symmetric confi
dence range rather than the familiar symmetrical confidence 
limits. With further prodding he saw that the degrees of 
skewness and the confidence range roughly correlated with 
the clinical condition, a new diagnostic concept in this setting. 
By now excited by the possibilities, he went back to the 
early studies of WBC counts in normal and sick populations. 
Some of the early German literature contained tables of 
raw WBC counts which, on recalculation, yielded results 
compatible with his own. The entire experience significantly 
improved his attitude toward statistics and computing 
systems. 

Another example of the relevance of the sample feature to 
routine clinical investigation occurs in applications of Stu
dent's 't'-test, invented by Fisher to provide a criterion for 
deciding whether two sample distributions belong to the 
same population sample, or indeed are significantly different 
from one .another. One of the basic requirements of the 
't'-test is that the distributions be comparable and possess 
a mean and standard deviation. To fulfill this requirement 
rigorously, the full distribution characterization (type, mean, 

variance, sample number, skewness and kurtosis) should be 
known. If Poisson or binomial, the appropriate central 
measures must be calculated. If the variances are significantly 
different (determined by the F-ratio test) a correction is 
applied, a refinement that becomes important at borderline 
levels of significance. Finally if the two distributions possess 
significantly different degrees of skewness or kurtosis, they 
most likely reflect two significantly different sampling situ
ations, which in itself may have significant clinical or investi
gative ramifications. 

In short, what the PROPHET System sample feature 
provides for the medical investigator is the statistical ex
pertise and rigor of a Fisher and a Snedecor, with none of 
the calculational tedium, providing both a learning experience 
and tool for exhaustive analysis of samples and the phe
nomena they represent. The investigator may ask more than 
elementary questions about the functional characteristics 
and relationships pertinent to his data with full confidence 
he will be able to get answers almost as readily as he can 
formulate the questions without calculational tedium, thereby 
freeing him to think about and test his data in many ways 
which could result in a stronger basis for inference and 
prediction. 

This catalogue of PROPHET applications to clinical in
vestigation by feature and function is by no means complete 
or all-inclusive, but it does give some idea of what is possible 
and provides a framework for describing how these features 
may be used to solve problems as they arise in the course of 
a research project, and how they may be combined in pro
cedures, using PL/PROPHET programming language, to 
produce custom-made data processing systems for specific 
clinical investigative applications by the investigator himself. 

PROJECT APPLICATIONS 

At this center, clinical investigative applications of 
PROPHET fall into two categories-those which accept and 
utilize its basic design features, utilizing its command lan
guage and syntax, and those having additional requirements 
that are met by recourse to the definition and writing of 
procedures in PL/PROPHET. 

Two ongoing projects involve the construction of a data 
bank, for which the investigators wrote procedures enabling 
them to load, delete and alter data in a single command, 
multiple entry mode, not possible with the usual table 
commands. 

One such study, originating in the Harvard Surgical Unit 
at Boston City Hospital, involves the collection of some six 
dozen parameters for a well characterized patient population. 
Study specifications required the construction of an open
ended data bank allowing indefinite addition of patient 
parameters with indexing and accounting capabilities, the 
storing of each patient's identification, clinical and research 
data and the calculation of such output parameters as: 
cumulative weight loss, body surface area, sodium and po
tassium balance, total nitrogen balance and total nitrogen 
per unit body area, change in urinary nitrogen, creatinine 



482 National Computer Conference, 1974 

clearance, mean blood pressure, cumulative nitrogen loss, 
and insulin/glucagon ratio. 

The sequence of procedures written in PL/PROPHET to 
accomplish this, is itself monitored by a system of accounting 
tables and procedures. A procedure called TRAFFIC, for 
example, records the name of the table operated on, the 
name of the procedure called, the date and investigators' 
initials, the volume of information recorded by type, and 
the speed of program execution. Two procedures, STATUS 
and COLCOUNT tell the investigator what kind of data is 
present in a specified table or set of tables without giving 
the values. READOUT allows for a quicker display of non
empty values in a series of tables than is allowed by the 
usual PROPHET table commands. 

Output procedures include PRINTNOTES (which prints 
out a specific patient's study notes), PRINTPTAB (which 
does the same thing for patient research data tables), 
RANGESCAN (which prints out the name of any patient 
specified and the number of values below or above normal 
of a given clinical laboratory test), GRAPHS (which makes 
up serial graphs having the same curves and axes from 
different patient tables) and CODESORT (which searches 
through a specified set of patient studies and locates a 
specified set of measurements associated with a specified 
event code). 

In constructing a data processing system to meet the 
project's unique needs, the investigator utilized the command 
language and procedures writing capabilities, the text, table 
and graph features and many of the statistical and mathe
matical computation functions. Because the design involved 
many patients, many input and output parameters, with 
several investigators operating the terminal, additional 
PROPHET procedures to monitor, oversee and perform ac
counting so as to stay in control of, and obtain some idea of 
the magnitude of, the data processing activity seemed ap
propriate and has proven its worth to the group. 

The above project is a typical example of a frequently 
occurring class of clinical investigative problem-a multi
parameter study designed to permit correlation of a large 
group of factors with some relevant aspect or facet of the 
patient's response to a drug, or his overall clinical condition 
or course, with hopefully, the emergence of some predictive 
capability as to outcome. 

Typical approaches to such multi-parameter correlations 
with clinical condition are multiple regression; factor, cluster 
and discriminant analysis; and profile construction coupled 
with pattern recognition. The latter technique has been 
utilized by two investigators to follow a group of subjects' 
clinical courses over a period of time. One such study took 
15 clinical observables in a specific order, collected for five 
subjects over a 24 hour span at three hour periods, divided 
each set of values by the control values and arrived at a 
series of curves (patterns, signals) that showed the departure 
of the complete sequence from control (straight line with 
zero slope, unit intercept) as a function of time, which in this 
case, correlated with a deterioration in clinical condition 
(sepsis in pigs). These diagrams clearly identified a group of 
parameters that on the average remained constant, another 

that decreased and a third that increased with respect to 
control as a function of time. It remained for the investigator 
to take each group and rationalize each correlation in terms 
of physiologic mechanisms and metabolic pathways. To the 
best of the author's knowledge, the investigator is still so 
occupied. 

A third frequently occurring application of interest to the 
clinical investigator is a quick method for computing areas 
under curves and calculating best-fit functions or non-linear 
curves. One investigator utilized PROPHET's pentablet in
put device and the "% Points" entry procedure written by 
a Bolt Beranek & Newman staff member to determine the 
area under a Gaussian curve in order to compute amino 
acid concentration from a strip-chart recording. To utilize 
this procedure, the analyst simply lays the recording over the 
tablet and calls the procedure. Then, responding to prompting 
dialogue he identifies the acid, run number and date, inputs 
axes reference points, supplies appropriate background levels, 
enters each point on the tracing by a slight pen pressure on 
the tablet, proceeding in this manner with each curve until 
the last. On completion of the tracing, a table identifying 
each acid peak with its area, half width, maximum point, 
and associated concentration, together with certain measures 
of experimental error is printed out. While the PROPHET 
system is, in principle, ideal for this application, attempts to 
use the procedure when response time is slow are less efficient 
than an alternative (but not equivalent) programmable 
calculator routine. 

USER ACCEPTANCE 

This account would not be complete without some descrip
tion of user use, acceptance and impact. By and large as 
pointed out earlier the average clinical investigator is poorly 
prepared for mathematical and statistical analysis, and for 
any technology not directly related to and used frequently 
in patient care/research applications. Most come to research 
activity from medical school, internship or residency, steeped 
in the anatomy, physiology and biochemistry of their special 
interest career, but somewhat timorous about such basic 
tools of their trade as bioanalytical instruments, monitoring 
devices and computers. They recognize the need to "know 
this stuff," but emulating the example of many senior staff, 
often try to relegate it to a technician or a knowledgeable 
medical student spending elective time on a research project. 

Accordingly, most users of PROPHET at this location 
approach it innocent for the most part of previous computing 
experience, not a little anxious about such "technical" in
volvement and the threat of competition it represents to 
"tL.?}1e t.hat should be spent on the "vards" or "at the bench." 
The introduction therefore is one-to-one, personal, systematic, 
step-by-step, utilizing where possible data from the investi
gator's ongoing research project. One hour of such instruction 
usually finds the novice investigator irrevocably hooked. 
Thereafter most proceed on their own, using the PROPHET 
manual as a kind of programmed instruction device, di
recting questions not answered in the manual to other users 
or to the software systems representatives at Bolt Beranek & 



Applications of the PROPHET System in Human Clinical Investigation 483 

Newman. Most users master enough of PROPHET in this 
manner to make effective use of it in their research activities 
without recourse to writing procedures or programs. 

CONCLUSION 

In summary, the PROPHET System, though still under 
development, has proved an invaluable research tool in this 
clinical investigative environment for the following reasons: 

(1) With proper orientation it is readily mastered and 
efficiently utilized by investigators with little or no 
previous computer experience. 

(2) It enables every investigator to apply rigorous sta
tistics and mathematical analysis with a few simple 
commands, thereby stimulating his development in 
statistical/mathematical analysis. In this respect it 
functions as an efficient programmed instruction tool 
for teaching better biometric design and analysis. 

(3) While it provides a relatively wide range of bio
metrical techniques without programming effort to 
the user, it also accommodates the user who also can 
program, allowing him to program and incorporate his 
own procedures into the basic system. 

(4) Its capacity for data bank construction and table 
sharing has greatly facilitated long-term analysis of 
data and the communication of data among groups 
of investigators. 

(5) It has been singularly responsive to user problem
solving needs. 

ACKNOWLEDGMENT 

The author gratefully acknowledges the contributions to this 
manuscript of the PROPHET users at this center, especially 
Dr. Robert Auty and Dan Keatinge, arising from the descrip
tions and documentation of their PROPHET procedures. 





A simple distributed systems approach to 
manufacturing information systems 

by LELAND R. KNEPPELT 

Industrial Nucleonics Corporation 
Columbus, Ohio 

INTRODUCTION 

The number of application packages for the production and 
inventory control function has steadily increased over the 
past ten years. The successful installations have been limited 
in number but the documented resultant savings are major.l,2 
These results combined with the ever present need to increase 
productivity and offer better customer service have furnished 
much of the impetus to automate effective manufacturing 
control techniques. 

The American Production and Inventory Control Society 
(APICS) has generated a modern-day crusade in an attempt 
to focus attention on just one of the major techniques, ma
terial requirements planning. IBM through its PICS (Pro
duction Information and Control System) application pack
ages and the recently released COPIeS (Communications 
Oriented Production Information and Control System) man
uals has generated interest among both the manufacturing 
and data processing personnel. With all this interest and 
education material, the manufacturing users are demanding 
the data processing systems and support for obtaining the 
promised cost savings. 

The Industrial Nucleonics Corporation is a Columbus, 
Ohio based firm specializing in process automation systems. 
Major industry support includes pulp and paper, rubber, 
plastics, tobacco, and metals. The systems installed involve 
sensors, control devices, data collection equipment, and 
computers. The manufacturing function produces a large 
variety of configurations of fairly complex products. Product 
structures include both metal fabrications and electronic 
assemblies. This environment requires effective production 
and inventory control to maintain customer service and 
delivery objectives. 

PROBLEM 

Generally manufacturing systems have been plagued with 
a multitude of problems. In most companies the data 
processing installation is controlled by the financial organi
zation ·within the company. Thus, any development and 
subsequent scheduling of manufacturing systems usually 
has the lower priority than the more established accounting 

485 

systems. This is even the case when substantial paybacks 
can be realized through effective utilization of manufacturing 
control systems. 

The manufacturing area is also at fault through their 
many failures to effectively utilize previously automated 
manufacturing control systems. They often lack the necessary 
formal system methods, solid objectives, and goals required 
to maintain control. Inaccurate inventory records, inaccurate 
bills of material, and unrealistic production schedules prevent 
any system from assisting in the control of their environment. 
When business conditions warrant increased production, the 
informal systems comprised of hot lists and expediting are 
used in an attempt to maintain control. The automated 
manufacturing systems are hard pressed to maintain a log 
of what has happened. 

The approach of systems development. to counter these 
problems is the use of on-line terminals to insure that the 
manufacturing control systems can provide accurate and 
timely information for production and inventory control 
decisions. This results in the requirement for additional hard
ware, software, and systems development to handle the 
communications environment. However, many of the prob
lems remain, such as, the priority of scheduling and instal
lation responsibility within another functional department. 

MINI/MAXI 

An alternative approach is the use of a minicomputer 
under the responsibility of the production and inventory 
control department combined with the utilization of a large 
scale batch computer on a "as required" basis. This concept, 
referred to as Mini/Maxi, provides a simple distributed 
systems approach to the implementation of production and 
inventory control applications. 

The minicomputer operates in an on-line and real-time 
systems environment providing current status and control 
information. The maxi provides batch processing which is 
used to accomplish the more extensive applications of long 
range planning and manufacturing standards maintenance. 

The approach places a total system under the control of 
the operating department \vith all the associated responsi
bilities of the data base integrity. User involvement was one 



486 National Computer Conference, 1974 

Figure 1 

of the key ingredients for the successful implementation. 
This was accomplished through the establishing of ambitious 
but realistic goals which have to be met to justify the system. 
Production personnel are not new to this technique since 
they have had similar experiences with the purchase of new 
production equipment, such as, numerical control equipment. 
This does, however, vary from the normal data processing 
environment since equipment justification is usually ac
complished in the systems development group or data 
processing department. 

HARDWARE 

The Digital Equipment Corporation's PDP 11/40 oper
ating under the RSTS time sharing operating system was 
chosen for the mini hardware. The application programs 
were written using the BASIC PLUS language. The con
figuration includes disk, magnetic tape, and a line printer. 
The primary terminals used are the Digital Equipment 
Corporation VT05 Alphanumeric Display Terminal (CRT) 
with the RT90 Data Collection terminal available for shop 
floor data collection. 

The maxi hardware is an IBM 370/145 operating under 
OS/VSl. The programs are implemented using both COBOL 
and assembler. 

APPLICATIONS 

The previously stated use of the mini/maxi approach was 
to implement current status and control information systems 
in the on-line environment of the minicomputer. The maxi 

Figure 2 

Figure 3 

computer is then only utilized in a batch environment for 
the long range planning and manufacturing standards main
tenance systems which require extensive magnetic file ca
pacity, complex file management techniques, and extensive 
internal processing capability. The successful implementation 
required a comprehensive understanding of the various manu
facturing control techniques to arrive at the proper allocation 
of application functions and data base responsibility. The 
next few sections provide a brief review of the key manu
facturing control systems and the resultant distribution of 
functions between the two processing units. 

FORECASTING 

A forecasting system was necessary for the establishment 
of a master production schedule in a time frame to allow 
adequate production and inventory planning. It also provides 
assistance in the maintenance of order point and safety 
stock quantities for items controlled via this inventory 
replenishment technique. 

The automated portion of this system consists of only two 
major tasks; projection and tracking. The projection task 
provides a time phased demand projection using either an 
intrinsic method (based on past demand) or a qualitative 
method (projection accomplished manually outside the sys
tem and input). The tracking task is merely the compare of 
actual demand versus the projected demand which provides 
a signal when the deviations beyond established units may 
require a forecast adjustment. 

The forecasting system is periodic batch run which can 
best be accunlplished on the maxicomputer. The capture of 

Figure 4 



A Simple Distributed Systems Approach to Manufacturing Information Systems 487 

Figure 5 

the actual demand figures require a constant update resulting 
from demand or issues from the physical stock locations. 
This task was therefore allocated to the minicomputer system. 
The transfer of actual demand figures is then made from the 
minicomputer to the maxicomputer for subsequent execution 
of the forecasting runs. 

INVENTORY CONTROL 

The maintenance of item status both on-hand and on-order 
is essential for effective inventory planning. Normally this 
was accomplished via manual recording of the stockroom 
transactions on an inventory ledger card or via batch input 
of the transactions for the production of a periodic stock 
status report. Record accuracy was marginal both from the 
lack of formal procedures and the timeliness of recording. 

The minicomputer is used to accomplish inventory status 
maintenance in a real-time environment. Stockroom trans
actions are entered via the terminals with the associated 
data elements updated. Figure 1 is an example of the item 
status display available upon request. 

The maintenance of current inventory balances is the 
heart of the inventory control system but additional status 
information is required to maintain control and support the 
planning systems. The minicomputer system is therefore 
expanded to maintain the status of reservations against an 
item, purchase orders, production orders, operations status of 
production orders, and work center load status. 

Figure 2 is an example of the reservations (or allocations) 
against an item. This feature provides the information 
regarding what production orders have reserved this item 
for subsequent production. Figure 3 is an example of a 
related display illustrating what items (components) are 

Figure 6 

Figure 7 

required to accomplish a production order and their avail
ability. This feature eliminates the need for physical material 
staging by allowing a check of component availability before 
the actual release of the production order. 

Figure 4 is an example of the production or purchase order 
status display. The status of replenishment orders for an 
item is essential for the effective use of material requirements 
planning. The system maintains their status through initial 
planning to completion. In addition to the order status 
display, a display of all order for particular item (Figure 5) 
is available. This display and function provides the time
phased on-order balance information. 

The control of production orders required the minicom
puter system be capable of providing shop floor control 
information. The system provides the maintenance capability 
for operation steps necessary to complete the production of 
an item. Figure 6 is an example of the operation status for a 
production order. Status is updated via operation completion 
information entered through the terminals. This information 
also provides the base for maintaining work center load status. 

Figure 7 is an example of a work center load profile 
illustrating the load verses capacity for an eight time periods. 
The detail make-up of the load can also be accessed via the 
terminal. Figure 8 is an example of the detail operations 
within a work center. 

The previous paragraphs have illustrated some of the 
typical displays generated via the minicomputer inventory 
control system. In addition it provides the transaction 
processing and the production of hard-copy reports upon 
request or on an exception basis. The hard-copy reporting 
includes reorder lists, cycle counting reporting, dispatch 
lists, job packets, material requisitions, and inventory pick 
lists. 

Figure 8 



488 National Computer Conference, 1974 

BILL OF MATERIAL 

The bill of material system provides for the storage and 
retrieval of the various product structures of items produced 
by the manufacturing function. The majority of this infor
mation is not required on a fast access basis, but is essential 
to production control for both material requirements planning 
and item identification. The automation and data base por
tion of this system is accomplished on the maxicomputer. 

The data available consists of the bill of material (or 
parts list) and standard manufacturing routing for each item 
which can be produced. Reporting for the system includes 
the various explosions, implosions, standard routings, where
used list (work center and item), and engineering notes. 
Request for the reports as well as data base maintenance is 
captured on-line through the minicomputer. They are then 
transmitted to the maxicomputer for subsequent processing. 
The actual reporting can be output on the maxicomputer or 
transmitted for printing on the minicomputer. 

The bill of material system provides for the establishment 
and maintenance of mechanized manufacturing standards. 
As previously described, the minicomputer system maintains 
control over inventory status and open order status. The 
master files within the bill of material system and mini
computer system must be compatible in identification and 
content. This compatability is accomplished by establishing 
the mini data base as the controlling file and by the transfer 
of both the bill of material and standard operation routing 
at the time of a production order release. The transfer occurs 
either via a request transaction originated on the mini
computer or the fact that a planned order via material 
requirements planning exists in a specified commited horizon. 
These conditions cause the bill of material and standard 
routing to be transmitted to the minicomputer during the 
periodic execution of the maxi systems. 

MATERIAL REQUIREMENTS PLANNING 

The material requirements planning system provides the 
major techniques assisting in the reduction of inventory. 
The replenishment of inventory is usually controlled via one 
of two techniques; reorder point or requirements planning. 
The reorder point technique uses a developed quantity figure 
based on historical usage which is compared to the on-hand 
balance when there is activity for the item. If the on-hand 
balance drops to or below the quantity figure (reorder point), 
it signals the need to order more of the item. This technique 
usually causes higher inventory levels at the component 
item level since higher quantities are stocked in anticipation 
of the release of a large production order of any of the 
higher level products which use the component. 

The requirements planning technique is based on planned 
replenishment, when the item is needed. Planned replenish
ment is accomplished through the establishment of a master 
schedule for items whose demand is externally controlled. 
The master schedule is time-phased (spread into planning 

periods) and usually composed of forecast, customer order 
backlog, or a combination of both. The system accepts the 
master schedule and develops a plan based on available 
and scheduled inventory generating the planned orders 
(planned replenishment) to accomplish the schedule. In the 
case where components are needed to manufacture the items, 
the system calculates the required amount and when they 
are needed which becomes a portion of their associated master 
schedule. This calculation is based upon the current bill of 
material for the item. This planning continues throughout 
the various bills of material until all items controlled via 
this technique have been requirements planned. The planning 
accomplished through the requirements planning system uses 
various files and parameters. Current inventory and scheduled 
inventory (on-order) is used to deplete the requirements 
within the master schedule. The current inventory and 
scheduled inventory must be accurate to insure a proper 
materials requirements plan. This information, as previously 
defined, is maintained on the minicomputer and transmitted 
to the maxicomputer with any associated master schedule 
and parameters for a requirements generation execution. The 
requirements planning technique used is regeneration, thus 
the total plan is redone once a week. 

CAPACITY REQUIREMENTS PLANNING 

The capacity requirements planning system supports the 
identification of production capacity problems. The system 
accomplishes this by providing visibility of the impact of 
the production orders (planned and released) on the various 
work centers within the plant. 

The system requires the production order plan generated 
from the material requirements planning system, a reorder 
of an item, and any current production order. It then 
schedules and loads these production orders using the stand
ard operation routings and work center definitions. Output 
consists of a time-phased report illustrating any overload 
or underload condition for the various work centers. 

WEEKLY (OR AS REQUIRED) 

BILL OF 
MATERIAL 

APPLICATION RELATIONSHIPS 
CUSTOMER ORDER 

/' 
·.~5T<. coer'>, r ..... ----------, 

~ 
MATERIAL CAPACITY 

RE~~1~~7~~TS .-___ .., RE~~!~:~:TS 

"AXil L--.:.S.:,:TA.:..;.;NDA;,,:;:RD-I //iL...-__ ...--_---I ROUTINGS __ 
WEEKLY (OR 
AS REQUIRED) 

-T -~-r-.~,~.~,~~ - --------

COJ4TROl 

REAL-TIME 

Figure 9 



A Simple Distributed Systems Approach to Manufacturing Information Systems 489 

The planned production orders, standard operation rout
ings, and work center definitions exist on the maxicomputer 
for this periodic run. The current work center load and 
production order status is maintained on the minicomputer 
and must be transmitted along with any parameters for 
subsequent capacity requirements planning. . 

Figure 9 illustrates the overall relationship of the various 
application systems and their associated run frequencies. As 
previously described, the execution of all systems is controlled 
via the minicomputer system. The customer order backlog 
and master schedule functions on the chart are currently 
manual interfaces to the automated systems. 

DATA BASE DISTRIBUTION 

The distribution of data base responsibility between the 
two processing units accomplishes a separation of data re
quired to control priorities and capacity versus data required 
for planning priorities and capacity. The mini data base 
consists of a set of files which resemble the maxi data base 
but only contain data required to maintain current inventory, 
production capacity status and order status. 

Figure 10 is an illustration of the mini files and their basic 
relationships. The inventory master file provides the basic 
balance information, item identification-description, and 
control policy information. The open order file contains 
information about all replenishment orders. Each replenish
ment order is linked to the appropriate item. The allocation 
file contains the reservations against the item (via a link). 
It also provides the linkage which links all the component 
reservations required to accomplish a production order on 
the open order file. The allocation records are generated 
using the bill of material for the item specified on the pro
duction order. 

The operation detail file provides the various operation 
steps and extended standards required to produce items 
specified on the current production orders (linked to open 
order file). Each operation step to be accomplished in a 

MINI DATA BASE 

Figure 10 

MAXI DATA BASE 

Produ ... · 
Strur 
ture 

Figure 11 

Standard. 
RoutiDg9 

given work center is linked to the work center file which 
contains summary load and capacity information. The oper
ation detail records are generated from the standard routing 
for the item. 

The transaction detail file contains a log of all transactions 
with associated update information. The file provides a 
recovery mechanism and also storage of the maxi transactions 
for subsequent transmission. 

Access to the master files is accomplished through the 
combination of hashing techniques and indices. All files are 
unordered with linkages providing open space information. 

Figure 11 is an illustration of the maxi files and their 
various relationships. The relationships are similar to those 
maintained on the mini data base. The product master is a 
combination of inventory master and open order file as 
described on the mini. The open order (planned and released) 
are only stored when the planning systems are executed. 
The standard routing file equates to the operation detail 
file on the mini but contains all standard routings for items 
which can be manufactured. The product structure file 
equates to the allocation file on the mini but maintains the 
bill of material for all items which might be produced in the 
plant. The work center master file is a copy of the work 
center file on the minicomputer system. 

SUMMARY 

The installation of this system was accomplished through a 
time-phased implementation plan with the assistance in de
sign, counseling, and education of G. W. Plossl, Incorporated. 
The initial implementation consisted of the inventory infor
mation modules with the production control modules as 
subsequent tasks. 

The system offers the many intangible benefits which can 
be attributed to a real-time processing environment. Studies 
made on the cost alternatives projected that the mini/maxi 
approach was about equal in cost to the accomplishment of 
the total system in a batch environment on the maxi
computer. 



490 National Computer Conference, 1974 

The maxicomputer alone in a real-time environment in
creased the costs by one third over the previous alternatives. 

The use of this distributed approach to the system provided 
user involvement throughout the design and implementation 
cycles. Further development plans may include the use of a 
minicomputer to handle other major functions, such as, 
customer order processing. Another potential area is the 
enhancement of both systems to allow a closer interaction 
between the mini and maxi computers to provide a net 
change material requirements planning system. 

This paper has presented a brief overview of one system 
design using a simple distributed system approach. The con
cept of the system is simple; hqwever, the distribution of the 

data base and application functions required a detail under
standing of the user requirements. 

REFERENCES 

1. The Odds are 20 to 1 "PICS" Won't Workfor You, Newsletter Num
ber 8, Oliver Wight, Inc.; P. O. Box 138; Wilton, Connecticut 
06897. 

2. What Better Investment Can You Make?, Newsletter Number 11, 
G. W. Plossl & Co., Inc.; P. O. Box 32490; Decator, Georgia 30032. 

3. The Production Information and Control System, IBM; E20-0280-1. 
4. Communications Oriented Production Information (rul Control 

System, IBM; GBOF-4115. 



Interactive computer graphics application of the bi-cubic 
parametric surface to engineering design problems 

by G. J. PETERS 

McDonnell Douglas A uwmation Company 
St. Louis, Missouri 

INTRODUCTION 

Engineering design has usually concerned itself with a whole 
host of mathematical techniques or forms. It is most unusual 
to expect one device or curve to serve multipurposes. This 
paper concerns itself with just such a device which may turn 
out to be a panacea for the engineering designer. 

The entity of interest is the parametric cubic (PC) curve 
and its surface counterpart, the PC patch. The original 
theoretical analyses have been set forth by Coonsl,2 and 
Ferguson;3 Forrest4 expanded their efforts. Extensive batch 
computer development of the PC for structural design 
applications has been performed on the West Coast by 
Douglas Aircraft and McDonnell Douglas Astronautics
West under the leadership of Eshleman and Meriwether.s 

The objective at McDonnell Douglas Corporation (MDC) 
in St. Louis has been to investigate the PC with an eye to 
complete marriage with the Design/Drafting package which 
is a completely interactive computer graphics (ICG) system 
for engineering design purposes as detailed by Lavick6 ,7 and 
Martin.s 

This paper concerns itself with the mathematical tech
niques employed in PC work, especially with respect to the 
PC patch. In addition, actual ICG design examples are shown 
which reflect the general applicability of the PC to engineering 
disciplines. 

COMPUTER SYSTEM 

In the mathematical analyses of the next sections, many 
figures are presented which depict actual on-line computer 
communication between man and machine. Therefore, it is 
deemed necessary to prefix these results with a brief presenta
tion of the computer environment. 

Figure 1 depicts the computer hardware and u,ser terminals 
that are involved in satisfying Computer-Aided Design/ 
Computer-Aided Manufacturing (CAD/CAM) requirements 
at MDC. Throughout the development of this system, prime 
consideration has been given to problems of handling large 

491 

on-line software systems, definition and centralization of a 
geometric data base, and the ability to provide a satisfactory 
timesharing environment for economic use of the computer. 
The specific hardware utilized at MDC-STL is an IBM 
System 360 (Model 191:» computer with four million bytes 
of main core storage capacity. The reason for such a large 
facility is that this system is devoted to the application of 
automation techniques and data processing within a wide 
range of activities that share resources and cost of this 
configuration. For example, as can be seen in Figure 1, a 
large multi-terminal IMS system as well as a general stream 
of batch processing (scheduled from another large 360 main 
frame computer) cohabit this configuration with CAD/CAM 
systems. 

This system features a mix of teleprocessing (phone line 
connected) terminals as well as local connected computer 
graphics consoles. Thirteen alphanumeric terminals support 
Production Planning, Tool Design, Quality Assurance, and 
Loft (including Master Layout) Department activities. 
They are used for a variety of CAD/CAM functions such as 
APT part programming, debugging, and data transmission to 
DNC (Direct Numerical Control) IBM/1800 satellite com
puters for on-line machining or on-line drafting. Nine of the 
IBM 2250 vector graphics terminals are located in user 
project areas at distances up to 12,000 feet from the computer, 
which is believed to be the farthest remote interactive facility 
in the world. Figure 2 illustrates the layout of these terminals 
and their relative distance with respect to the location of the 
main frame computer. The philosophy and effectiveness of 
locating these types of devices in direct user areas are high
lighted in References 7 and 8. One CRT console, located in 
the Loft engineering department, is used primarily for Loft 
surface shape definition. Two consoles are located in the 
Manufacturing Production Planning department. These are 
used in the Graphics Numerical Control (GXC) process 
which involves retrieving an engineering drawing and then 
interactively directing the machine tool around the drawing 
to generate the APT part program. Six scopes, located in 
Engineering project areas, are dedicated to structural! 
mechanical design applications. 



492 National Computer Conference, 1974 

DNCSYSTEM 

I I jiJ. DN·LlNE NC MILLING 
1~ • ON·LlNE DRAFTING 
NO.1. DNCIMGMT DATA 

OSIMVT CAM 
(RELEASE 20.61 ON·LlNE 

SYSTEMS 

• APT PROCESSING 
• RAPID 
• DNC ALiNUMERIC TERMINALS 

• NUCLEUS 8 P I P -------- • PRODUCTION PLANNING 

• SOS 
A R M R 604K • TOOL DESIGN 

• WTRS T 0 S 0 CAD • QUALITY ASSURANCE 

• RORS C C ON·LlNE • LOFT/MASTER LAYOUT 

• LPAIMS H E SYSTEMS 

• GSP- S 210K MFGIPLANNING 
30KlGRAPHICS DESIGN 

• REGION 210K DESIGN 
SWAPPER - LOFT 

30KlGRAPHICS DESIGN 
210K STRESS 

MFG/PLANNING 

DESIGN 
210K DESIGN 

DEVELOPMENT 
--------

94&K 966K 660K 840K 

Figure I-Interactive CAD/CAM configuration at St. Louis (May 1973) 

PARAMETRIC REPRESENTATION 

Reference 4 presents many reasons for using the parametric 
form of a curve vis-a-vis the non-parametric form. A few of 
them will now be discussed. 

The use of the non-parametric form is largely confined to 
planar curves. Aircraft and ship lofting use conic sections, 
cubics, and higher order polynomials, and lofting techniques 
for these curves are well.established. To avoid some of the 
difficulties inherent in the non-parametric form, Newell9 

has classified the conic into 34 separate cases and ShellylO 
using a different approach into three cases. By their very 
nature, conics cannot yield curves with points of inflection. 
Yet such curves very often exist in aircraft shapes, for 
example, in duct contours. 

The planar cubic in the non-parametric form arises mainly 
from the use of splines. The non-parametric spline is a two
dimensional curve. It is continuous in both first and second 
derivatives throughout its length, and is considered by the 
aircraft and shipbuilding industries to give a smooth and fair 
curve. There is an inherent difficulty when curve fitting with 
splines where the data has an implied discontinuity in second 
derivative. While this is not too common, in theory at least, 
in the case of ships and aircraft, it is a frequent occurrence in 
mechanical design. An obvious example is the fillet radius 
joining two straight lines: in this case the spline tends to 
oscillate about the expected curve in an unacceptable mannerll 

unless appropriate end conditions are applied. In addition, 
splines may be inconvenient when the deflections become 
large or the radius of curvature becomes small. 

In general, the non-parametric curve form has several 
inherent drawbacks. A curve which is defined by tangent 
properties as well as points may well require that the slope be 
infinite. This can be avoided either by changing the coordinate 
axes or by using a different form of equation, both of which 
are cumbersome procedures. Curve segments must be bounded 
by defining the end points but the tests to determine whether 
a point lies on the bounded segment can be elaborate and even 
ambiguous when the curve loops. In the case of t·wo-ditnell
sional curves, a given value of x may yield several values of y 

which must be tested, and in the case of twisted curves the 
difficulty is compounded. This complicates the computation 
for display, plotting, etc., of points on the curve; computation 
may involve evaluating square, cube and higher roots. If the 
curve is to be plotted either as a series of points or a series of 
straight lines, the computation involved to generate a 
visually smooth curve could be very great. Parametric 
methods overcome many of these difficulties. 

Consider the parametric representation of a general con
tinuous curve in 3-space as a transformation of the form 

x=f(u), y=g(u), z=h(u) 

defined for u in the interval [a, b]. In vector notation, 

~: = (:~::) = (::(~:) 
dzjdu h'(u) 

then 

is the tangent vector. The real slopes of the curve are given by 
the ratios of the components of the tangent vector. For 
example, 

dz h'(u) 
dx = (dzjdu)j(dxjdu) = f'(u) . 

An infinite slope is specified by setting one component of the 
tangent vector to zero. 

A parametric curve is bounded by hvo parametric values. 
The test for a point lying on the curve reduces to finding the 
parametrro value defining the point and checking that this 
value lies in the stated range. Computation of points on the 
curve segment is by substitution of a parametric value in two 

~~~-_-~---------l 

i
I
I

'----_,.--......r--l I
900 Fr -@] DESIGN I

1880 !
I "r,@] DESIGN I L __________________ ~

r __:;30~~--------,
I BLDG. 106 I
I ~~~ I
I 0 (ASTRONAUTICS) i
I I L ____________ -'

MDAC·EAST

Figure 2-Remote locations of on-line computer graphics terminals at
St. Louis (May 1973)

Interactive Computer Graphics Application of the BI-Cubic Parametric Surface to Engineering Design Problems 493

or three equations which in the case of commonly used
curves such as conics and cubics will be polynomials rather
than equations involving roots. If the curve is twisted, it is
clearly easier to substitute one value of a parameter in three
equations and obtain x, y, and z directly than to solve for
points lying on the intersections of two surfaces and check
that they lie on the specified portion of the curve. The
parametric form of the curve is easily transformed into a
curve of similar form but different orientation or scale by
matrix multiplication; that is to say the mathematical form
of the curve may be axis independent. Similar transforms on
non-parametric curves are more difficult.

Hence, the parametric form is not only more general, but
it is very well suited to computation and display. In addition,
it will be shown that this form has properties which are
attractive for computer-aided design.

PARAMETRIC CUBIC CURVE

Mathematical farm

The PC space curve is represented as:

V(u) =Au3+Bu2+Cu+D (1)

where V is defined as a general coordinate and stands for
x, y, or z.

In matrix notation

V(u) = (u3 u2 U 1) (A B C DF. (2)

where T is the transpose of the row matrix.
For convenience, the curve parameter u is defined to be in

the region O~u~l.
Equation (1) is called the algebraic form of the PC since

it is the usual polynomial representation of a function.

or

The parametric derivative is

dV
- = V'(u) =3Au2+2Bu+C
du

dV . .
du = (3u2 2u 1 0) (A B C D)T.

(3)

(4)

Consider the following set of 4 equations obtained by
setting u=o and u=l in (1) and (3)

or

YeO) =D

V(l) =A+B+C+D

V'(O) =c
V'(l) =3A+2B+C

(V(O) I
V(l)

lV'(O) \

V/(l) J

(0 0 0 11 (AI

1 1 1 1 B

\0 0 1 0IICI
l3 2 1 oj lDJ

(5)

(6)

(7)

(8)

(9)

Solving the linear system (9) for the algebraic coefficients
leads to

(A B C D)T=(M)(V(O)V(l)V'(O)V'(l)F (10)

where

(2 -2 1

-3 3 -2 -1
M= (11)

o o 1 o

1 o o OJ
Substituting (10) into (1) , and re-arranging, yields

V(u) = V(O)Fl(U) + V(1)F2(u) + V'(O)Fs(u) + V'(1)F4(u)

(12)

where

Fl(U) =2u3-3u2+1

F2(U) = -2u3+3u2

F3(U) =u3-2u2+u

F4(U) =US-u2. (13)

Equation (12) is called the geometric form of the PC curve
and (13) defines the so-called "blending functions" which
serve the purpose of blending the quantities V (0), V (1) ,
V' (0), and V' (1) together so as to form a continuous curve
satisfying the end conditions.

In matrix notation, we can write (12) as

V(u) = (u3 u2 U 1) (M)

(V(O)

V(l)

V'(O)

V'(l)

(14)

Note that the end position values and parametric derivative
values of the curve are obtained by inspection of (14). For
this reason, the geometric form is sometimes preferred over
the algebraic form (2).

Expanding (14), the curve is totally represented as

(

X(U)j
y(u) = (u3 u2 U 1) (M)

z (u)

(X(O) yeO) z(O) I
I

x(1) y(1) z(l)

x' (0) y' (0) z' (0)
lx'(l) y'(1) z'(l) J

(15)

Figure 3 depicts the correspondence between real x, y, z
space and parametric space and, in addition, shows the
parametric plot. It is most important to realize that usually
x, y, and z can only be related through the parameter u.

494 National Computer Conference, 1974

Uj 1 U

ALGEBRAIC FORM

V(ul = Au3 + Bu2 + Cu + 0

GEOMETRIC FORM

V(ul = V(OI Fl(ul + V(l) F2(u) + V'(O) F3(u) + V'(ll F4(ul

Figure 3-Parametric cubic (PC) space curve-mathematical form

Creating a PC curve

There are many ways to create a PC curve; however, each
way must provide sufficient data to determine the 12 coeffi
cients implied by (1) or (14) i.e., 4 coefficients for x, y, and z
respectively. From a numerical analysis viewpoint, the follow
ing are three important considerations:

(1) If only position data points are given, are the interior
u values specified?

(2) If direction cosine data are given in addition to point
data, be careful concerning the dependency of the real
slope data.

(3) Are the given data planar or non-planar (twisted)?
A few cases will now be considered.

Case 1. Witness the data: 4 points (planar or twisted) with
the interior u values specified, i.e., 0<Ul<U2<1. Using (1)
or. (12), the unique PC can be obtained by solving 4 linear
simultaneous equations for each coordinate x, y, z.

Case 2. Witness the data: 3 points with non-planar direction
cosines at the first and last point. Using the geometric form

The unknowns are the internal value of u corresponding to
the middle point and the parametric tangents, V' (0) and
V' (1). It is now necessary to relate the direction cosines to
the parametric tangents. Consider the tangent vector

then

T= (dX dy dZ)T
du du du

S(u) = ii t ii

(16)

(17)

is the length of the tangent vector at point u. Furthermore

dx
- =S(u)a
du

dy
- =S(u)b
du

dz
- =S(u)c
du

(18)

and (18) relates the parametric tangents to the direction
cosines a, b, and c at the point of interest. Re-writing our
system to be solved for the unique PC

x(u) =x(0)F1(u) +x(1)F2(u) +S(O)aoFa(u) +S(I)alF4(u)

y(u) =y(0)F1(u) +y(1)F2(u) +S(0)boF3(U) +S(I)b1F4(u)

z(u) =Z(O)Fl(u) +z(I)F2(u) +S(0)eoF3(u) +S (1)c1F4 (u)

(19)

These three non-linear equations in the three unknowns can
be solved very efficiently by N-dimensional Newton-Raphson
[12J provided a judicious choice is made for the initial
solution vector ((uS (0) S (1)) T) o. Then (18) is used to obtain
the parametric tangents which together ",ith the given
position data determine a unique PC. Note that it was neces
sary to obtain the lengths of the tangent vectors to establish
uniqueness since many curves can exhibit the same direction
cosines at their end points.

Figure 4 shows some examples of PC creation at the CRT.
These curves do not represent an over-conditioned situation;
they were created by conjuring up the minimum data re
quired for a unique PC.

Figure 4-Creating planar or non-planar PC curves at the CRT

Interactive Computer Graphics Application of the BI-Cubic Parametric Surface to Engineering Design Problems 495

Planar/Twist PC Test

The "measure of twist" or torsion of a space curve is
obtained by using Frenet's formulas which are fundamental
in the theory of space curves. It can readily be shown [13J
that the torsion is given by

(~x~). 7
T= (19)

I
. . .1 2

-x-
r r

where
r= (x(u)y(u)Z(U»T (20)

is the position vector to any point on the curve and the dot
above the vector signifies differentiation with respect to u.
Assuming the denominator in (19) is not zero (the straight
line PC), the condition for a plane curve or zero torsion is

(. ..) ... - x- .- =0
r r r

(21)

Moreover, (21) is the scalar triple product (or "box pro
duct") which can be expressed in determinant form as

x y z

x y z =0. (22)

x y z

Now, using the algebraic form of the PC, taking the required

Figure 5-Effect of varying PC tangent vector length

parametric derivatives, and substituting in (22) leads to

A", B", C'"

(23)

Thus, to ensure no twist, the coefficients of the PC must
satisfy (23). Observe that if A"" A y , and Az are all zero, then
the torsion is zero. This means, of course, that the "space
curve" is a parametric quadratic; therefore, parametric
quadratics can have no twist and thus are planar curves.
Hence, the minimum power required for a parametric repre
sentation to be twisted is three, i.e., cubic. Also, if all the
quadratic coefficients (B"" By, Bz) or all the linear coefficients
(C "" ell, C z) are zero, then the curve is also planar.

Effect of varying the tangent vector length

A powerful feature of parametric representation is the
ability to drastically change the shape of the curve by varying
the tangent vector length, S, at the end points while main
taining the end direction cosine slopes. For example

dy = dy/du = K dy/du
dx dx/du K dx/du

(24)

where K is an arbitrary constant. Note that it is very easy to
handle an infinite slope for~; set ~ equal to zero.

Interactively, S variation can be used as a design tool to
modify an existing PC, e.g., to clear an obstruction. Figure 5
shows the effect of S variation and indicates that unwanted
kinks can occur if the K factor becomes too large.

Arc length

In parametric form, PC arc length is expressed as

L= f U

2 I:....:... du
U '\i r r

1

(25)

where U2>Ul and r is from (20). After simplifying, (25) can
be written as

(26)

where the A i constants are defined in terms of the algebraic
PC coefficients. Functionally, (26) may be expressed as

f
U2

L= feu) du
U

1

(27)

Using Gauss quadrature [14J,

(2 N
J feu) du= L: Wd(Ui)

U
1

i=l

(28)

496 National Computer Conference, 1974

Figure 6-Geometric properties of the PC

where N is the number of points used, Wi are the weight
values, and Ui are the Gaussian abcissae. The Gaussian
abcissae may be normalized to a more convenient interval
(0 ~ Ui ~ 1) by using the transformation

U-Ul
Z=-

'U2-Ul

Then, L may be written

or

1

L= (U2- Ul) 1 !(Ul+(U2- Ul)Z) dz
o

N

L= (U2-Ul) :E Wig(Zi)
i=l

(29)

(30)

(31)

where weights and abcissae are with respect to the new
interval. For example, using N = 9 with the weights and
abcissae obtained from [15J, the quadrature formula pos
sesses a degree of precision of 2N -1, i.e., yields exact results
if! (u) would be a 17th order polynomial or less.

The basic geometric properties of the PC, including arc
length (N =9), are shown in Figure 6.

Segment a PC

Consider a given curve. It is desired to define a new curve
from Ul to U2 on the original curve. See the sketch.

Using the linear transformation

U=Ul+t(U2- Ul)

du
dt ='U2-Ul.

At t=O, U=Ul; at t=l, U=U2. Since V(u)=V(u(t»

dV dV du

dt du dt

(32)

(33)

(34)

Using (34) and denoting the new curve by v(t), the geometric
coefficients of the segmented curve in terms of the given
curve are

(v(O) I V(Ul)

v(l) V(U2)

(35)
v' (0) ; ('U2- Ul) V' (Ul)

!
lv' (1) l ('U2-Ul) V'(U2»)

Several examples of segmenting a given curve are shown in
Figure 7.

Translation, rotation, and scaling

The transformation operations on the PC are actually per
formed on equations.

For translation

v(u) =V(U)+dV (36)

where v(u) is the resultant x, y, or Z coordinate and dV is
the respective translation. In algebraic form, the translation
is added to the D coefficient; in geometric form, it is added to
both YeO) and V(l).

Figure i-8egmenting a PC curve

Interactive Computer Graphics Application of the BI-Cubic Parametric Surface to Engineering Design Problems 497

For rotation

(

)l(U») (X(U»)
Y(u) = (A) y(u)

Z(u) z(u)

(37)

where (A) is the 3X3 rotation matrix. If the given PC is in
geometric form,

()[(U)~ (x(O)
yeO) z(O) I

x(1) y(1) z(1)
Y(u) = (US u2 U 1) (M) (A)

x'(O) y'(O) z'(O)
Z(u) I

lx' (1) y'(l) z' (1) J

(38)

For scaling

(

::::) = (l~k' l~k,
Z(u) 0 0

+ (:' : :) (::::)
o 0 ks z (u)

(39)

where kl' k2, and ks are the scale factors for x, y, and z,
respectively, and the subscript r signifies a reference point
for scaling. For equal scaling, sometimes called ratio, (39)

Figure 8-Translation, rotation and scaling of Pc curves

Figure 9-Intersecting a PC with a plane or a PC

can be written

(
)l(U») (XT) (X(U»)
Y(u) = (l-k) Yr +k y(u)

Z(u) Zr Z (u)

(40)

where k is the common scale factor.
Figure 8 shows PC curve transformations.

Intersections

Two cases will be considered: the intersection of a plane
with a PC, and the intersection of two PC curves.

For the former case, let the plane be determined by the
normal vector N and a point ~ in the plane. At the inter
section, the point p will lie on the PC and also in the plane;
therefore, using the definition of a plane

(41)
or

Nx(x(u) -xo) +Ny(y(u) -yo) +Nz(z(u) -z(O») =0. (42)

Since each coordinate is a cubic in u, (42) is a cubic equation
which can be solved (either closed form or iteratively) for its
real roots. Of course, the roots of interest are 0 ~ Ui ~ 1.

For the latter case, the following realistic assumptions are
made: (a) each PC is planar and (b) both curves are co
planar. At a point of intersection

(43)

where if and R are the position vectors of the intersection
point with respect to curves 1 and 2, respectively. Therefore,
since the problem is planar

X(u) -)lew) =0

y(u) - Yew) =0 (44)

498 National Computer Conference, 1974

Expanding the x component equation and using the algebraic
form

AzU3+BxU2+Cxu+Dx- (A~+BxW2+CxW+Dx) =0 (45)

A similar equation can be written fory. Hence the result is
two non-linear equations in two unknowns, u and w. Since a
light pen detect can be made very close to the visible inter
section on the CRT, Newton-Raphson is a very efficient
servant for this problem. * Some CRT examples are shown in
Figure 9.

Converting an arc to a PC

Consider the following picture

ideal arc

Using the above geometry, and assuming a unit radius the
approximating PC can be expressed as

where

cos 4>

cos 4>
x(u) = (u3 u2 U 1) (M)

4(1-cos 4»

-sin 4>

sin 4>
y(u) = (u3 u2 U 1) (M)

4 (1 - cos 4>) / tan 4>

l4(1-cos 4» /tan 4> j

4>= (4)2-4>1)/2.

(46)

(47)

The question of accuracy necessarily comes to mind. How

* According to Acton,12 Newton-Raphson is rather like the little girl in
the nursery rhyme who had a curl in the middle of her forehead and
"when she was good, she was T';C"r}'P, very good; but when SlIt was oau,
she was horrid!"

good is the approximation? At any point 0::::;u::::;1,

r(u) = Y(X(U»2+(Y(U))2 (48)

where r(u) is the distance from the origin to the PC. The
error function is

!l.R(u) =r(u)-R (49)

where R is the radius of the true arc (R = 1 in (46) and (47)).
Normalizing with respect to the given radius

!l.R(u) = r(u) -1
R R . (50)

For a given 4>, the task is to extremize !l.R(u)/R since this
would provide the worst error to characterize the fit; therefore

!l.R = ext (!l.R(U»)
R uE[O,l) R

(51)

and the values of u are the extrema of

d
du (r(u» =0. (52)

Performing the differentiation yields

dx dy
x(u) du +y(u) du =0 (53)

which is a 5th order equation in u. By inspection of (46) and
(47), there are three u values for which !l.R is zero; these
values are 0, 0.5, and 1. In addition, these u's also satisfy
(53). Therefore, solving the resultant quadratic equation
yields

(54)

where k and k2 are functions of the given 4> only. Note that
the extrema deviations are symmetric with respect to u = 0.5.
Using the values from (54) in (46) and (47), it can be shown
that the error excursion about the true arc is always positive.
Furthermore, these two values produce equal deviations.

Typical arc-to-PC examples are shown in Figure 10 for
radii of 20, 30, 40, and 50 inches. The left portion shows the

Figure 10-Converting an arc or circle to a PC

Interactive Computer Graphics Application of the BI-Cubic Parametric Surface to Engineering Design Problems 499

original circles while the right portion shows the PC approxi
mations. The number of PC curves are determined by keying
in the desirable tolerance AR. Using AR = .001 inch with the
above radii produced 3 PC curves for the 180 degree sub
tended angle shown in the figure. However, with R = 5
inches and the same tolerance, 2 PC curves would be created.
Figure 11 shows the maximum error obtained for variouR
total arc angles.

Curves do not occur in isolation in the description of solid
objects, but bound or lie on the surface regions which define
these objects. Thus, the study of curves is a prerequisite to
the study of surfaces. Therefore, having covered some of the
features of the PC curve, it is now possible to discuss its
surface extension, the PC patch.

PARAMETRIC CUBIC SURFACE PATCH

ill athematical form

The general continuous surface in 3-space can be expressed
as a transformation of the form

x=f(u, w)

y=g(u, w)

z=h(u, w)

whose domain is a set D in the uw plane. In particular, the
PC surface patch is defined as

V(u, w) = (u3 u2 U 1) (M) (B) (MF (55)
w

1
Where (M) was defined in (11) and

(VOO VOl Voow V 01w I

(B) = (56)
Voou VOlu Voouw V Oluw

l V lOu Vuu V louw vlluwj

e ~R

(DE:GREES) R IDEAL ARC

10 4.2 x 10-10

20 2.7 x 10-8

30 3.1 x 10-7

45 4.0 x 10-6

60 2.0 x 10-5 R

2.5 x 10-4 /
./

90

120 1.3 x 10-3
e/

,-

160 7.4 x 10-3
./

180 1.5 x 10-2 V
R

Figure ll-ARC to PC conversion accuracy

w E2 E3
V10

0,1
1,1

Wi

U Y

x

GEOMETRIC FORM

V(u,w) = [u3 u2 u 11 [MI r VOO V01 VOOw ~01W 1 [MIT r wll l V,. V11 V 10w

Vllw J l w2 J VOOu V01u VOOuw V01uw w

V 10U V 11u V 10uw V 11uw , 1 ,
T

[Bj

ALGEBRAIC FORM

[51 = [MI [BI [MI T = ALGEBR,AIC FORM OF PATCH COEFFICIENTS

Figure 12-PC patch mathematical form

The matrix B is called the boundary matrix since its elements
are geometric properties of the boundaries of the surface
patch. Figure 12 summarizes the basic concepts of a patch.

It is important to understand the notation in (56). The
number subscripts refer to values of the parametric variables
u and w at the corner points while the letter subscripts
indicate the derivative with respect to that parametric
variable. For example

point data (57)

[
oV(U, W)]

VlOW = = V(O, l)w
oW u=l,w=O

rate data (58)

[
02V(U, W)]

V lluw = = V(l, l)uw
ou oW u=l,w=l

twist data (59)

Recall that V stands for x, y, or z. There is a B matrix for
each coordinate. Using a more compact matrix notation

V(u, w) = (F(u» (B) (F(w»T

where

(F(u)) = (u3 u2 U 1) (M)

and
(F(w) = (w3 w2 w l)(M)

are the blending functions defined in (13) .

(60)

(61)

(62)

Computing expense is minimized by the use of another form

V(u, w) = (U) (8) (W)T (63)

500 National Computer Conference, 1974

where

and

Figure 13-PC patch defined by 16 points

(U) = (u3 u2 U 1)

(W) = (w3 w2 W 1)

(S) = (Ar) (B) (~iW")T.

(64)

(65)

(66)

Analogous to the PC curve, the terms "geometric" and
"algebraic" form also apply to the PC patch coefficients.
Boundary matrix (B) of (56) is the geometric form while the
surface matrix (S) is called the algebraic.form.

Equation (56) now requires more attention since it
embodies the individual geometric character of any surface
patch. Note that the first and second rows are the PC
boundary curves for u = 0 and u = 1, respectively; while the
first and second columns are the curves for W=O and w= 1,
respectively. Following Herzog,16 (56) can be divided into
four 2 X 2 partitions

(
p Rw)

(B) = .
Ru T

(67)

The partition P contains the position data of the four end or
corner points. Partitions Ru and Rw contain parametric rates
which are related· to the real slopes or tangents at the corner
points. The interior character of the patch is controlled by
the twist or cross-derivative partition, T. It should be
emphasized that the richness of information contained in
matrix (B) is readily combined and manipulated by the
computer.

From a terminology point of view, the terms "surface"
and "patch" are used int.ercha.ngea.bly_ However, in a more
general sense, surface is the superset since a surface can con
tain one or more patches.

Creating a PC patch

Similarl:,l' as the PC cur"Ile, there are ma.n~T ~r~~ys to cre'l.te ft,

PC patch; however, each way must provide sufficient data to

determine the 48 coefficients implied by (56) or (66), i.e.,
16 coefficients for x, y, and z, respectively. Some specific cases
will now be considered.

Case 1. Witness the data: A grid of 16 points (planar or
twisted) with uw values not specified in advance. See the
sketch with a rough outline of the desired boundary curves
through the border points.

~=1
". .. -- .- - - -- , I. '

t • ,'; a,
" \ .. ~
..t •• I '" \ - .. -.- --.

....... -.- -~=O

An estimate of the uw values for other than the corner points
can be obtained by using a ratio of line segments to get a
value between 0 and 1. Then using the algebraic form of the
patch in (63)

w2

(u3 u2 u I)(S) = V(u, w) (68)
w

i
II j

and expanding this

(u3w3) S11 + (U3W 2) S12+ (u3w) S13+ (u3) S14 + (U2W 3) S21 + ...
+ (UW3)S31+'" + (w3)S41+'" +S4-1= V(u, w) (69)

or

(C)(p)=(b). (70)

Hence, the result is a linear simultaneous system of equations
whose unknowns are the elements of (S). Specifically, (C) is
a 16X 16 matrix of uw pairs; (p) is a 16X 1 vector of the
unknown (S) elements; and (b) is a 16X 1 vector of the given
data points. Note that (70) must be solved for x, y, and z.
The Gauss-Jordan elimination with maximum pivot strategy17
readily handles this problem. Figure 13 depicts a resultant
patch created at the CRT.

Case 2. Witness the data: Two PC curves (planar or twisted).
Create a ruled surface patch between them. Consider the
following sketch

Interactive Computer Graphics Application of the BI-Cubic Parametric Surface to Engineering Design Problems 501

and assume that the surface is to be ruled in w; therefore,
curves 1 and 2 are f(u). It can be shown that the general
point on the patch is given by

OswS1 (71)

where the subscripts refer to curves 1 or 2. Since the paramet
ric derivative and cross derivative can easily be obtained
from (71), all the elements of the (B) matrix are known.

Case 3. Witness the data: Four connected PC curves (planar
or twisted). See the sketch.

This case is the classic Coons patch with zero twist elements
in the (B) matrix. The patch is completely defined by the
four given boundary curves.

Figure 14 shows planar and non-planar ruled patches and
Coons patches.

Determination of cross-derivatives

The cross-derivative elements of the boundary matrix are
esse~tial to the PC patch system. They not only provide
higher accuracy in fitting given data but also permit adjust
ment of the surface normal slope along a boundary. There
fore, they have very practical significance.

The questions come to mind: How are the cross-derivatives
originally determined? Is there a general equation for them?
There is no general rule. Each surface has its own characteris-

Figure 14-PC ruled patches and coons patches

tic interior shape; many times this is dictated by the designer.
For example, if a ruled surface is desired, using (71) yields

a2V(u, w) = dV2 (u) _ dV1 (u)

auaw du
(72)

du

and evaluating (72) for the corner values of u and w deter
mines the four numbers to be placed in partition T of matrix
(B).

Reference 16 discusses methods for adjusting T while
Reference 5 presents some excellent pictures showing the
effect of the cross derivatives on the patch interior.

At MDC-St. Louis, the interior of the patch can also be
modified interactively in two ways: (1) using a tracking cross
to move selected defining points to other desirable locations
and (2) keying in new values for elements of T.

Normal vector

For a smooth surface in 3-space, the normal vector at
a point is

N=ruXrw= X
- _ _ (aT (u, w») (aT (u, w»)

au aw
(73)

or using the Jacobian notation

N = (a(y, z) a(z, x) a(x, y))T.
a(u, w) a(u, w) a(u, w)

(74)

The typical patch has four boundary curves and N is easily
computable. However, three sided (octant of a sphere) and
even two-sided patches do exist, i.e., the length of a boundary
curve can be zero. For these cases, the Jacobian is singular and
the usual normal is not defined at the degenerate point. The
coding of the computer program, that computes the coeffi
cients in matrix array for the surface normals, recognizes the
degenerate curve and performs the appropriate vector
arithmetic on the two curves that actually intersect at the
point. The form of this matrix array is the same as the
standard four-sided patch. Figure 15 shows the surface
normal vectors on a PC patch.

Planar/non-planar patch test

Sometimes it is necessary to know whether a given patch is
planar or non-planar, for example, in blending operations.
Rather than just "plugging in" uw values and determining
whether the associated x, y, z points lie in a plane-certainly
somewhat laborious and definitely not rigorous-consider
the following analysis which is an extension of the technique
suggested by S. L. Martin.Is

Using the definition of a plane

nCO, 0)· (r(u, w) -reO, 0» =0 (75)

where nCO, 0) is a vector in the direction of the patch normal
at (0,0), r(u, w) is the position vector to a general (u, w),
and rCO, 0) is the position vector to the point (0,0). If (75)

502 National Computer Conference, 1974

Figure 15-Surface normal vectors on a PC patch

is true for all u, wE [0, 1J, then the patch is planar. Ex
panding the above equation

nx(O, O)x(u, w) +ny(O, O)y(u, w) +nz(O, O)z(u, w)

=nx(O, O)x(O, 0) +ny(O, O)y(O, 0) +nz(O, O)z(O, 0) (76)

and note that the right hand side of (76) is a constant

K(O, 0) =n(O, 0) or(O, 0). (77)

Now witness

/1 /1 n(O, 0) or(u, w) du dw= /1 /1 K(O, 0) du dw (78)
o 0 0 0

or
1 1 1 1

nx(O, 0) / / x(u, w) du dw+ny(O, 0) / f y(u, w) du dw
o 0 0 0

+nz(O, 0) fl fl z(u, w) du dw=K(O, 0). (79)
o 0

It is seen that if the above integration can be performed, then
the constraint conditions for planarity will be independent
of uw explicitly. Recall from (63) that the general patch
coordinate is

V(u, w) = (U) (S) (W)T

which can also be written

Hence

4 4

V (u, w) = L L SijU4- iW 4- i .
i=1 j=1

(80)

(81)

and when this result is used in (79)

4 4

+nz(O, 0) ~ ~ (5- ;i~z5_ .) -K(O, 0) =0. (82)
0=1 J=1 't J

If the coefficients of the patch satisfy (82), then the patch
is planar.

Geometric properties

The parametric form of the surface lends itself very nicely
to computation of geometric properties since explicit points
do not have to be computed.

Consider the determination of surface area

dA = II N(u, w) II du dw=h(u, w) du dw (83)

where N is from (73) and dA is the scalar element of area.
Hence

A = fl fl h(u, w) du dw.
o 0

(84)

Using Gauss quadrature

N N

A = L L gihih(uj, Wi) (85)
j=1 i=1

where gi and h j are the weight values associated \yith the
specific N-point formula.

For the volume of a closed region, it can be shown19 that

dv= %[r(u, w) oS(u, w)J du dw=h(u, w) du dw (86)

where if and i\T are the position vector and normal vector,
respectively, and dv is the scalar element of volume. There-

Figure 16-PC patch subdivision or extension

Interactive Computer Graphics Application of the BI-Cubic Parametric Surface to Engineering Design Problems 503

fore,

(87)

and again quadrature can be used as in (85).
As for PC arc length, N = 9 is used to compute both surface

area and volume. Other desirable properties such as moments
of inertia, center-of-gravity, and principal axes information
are obtainable.

Creating a patch from a given patch

Three techniques will now be presented whereby a new
patch can be designed which has similar geometric properties
to a given patch.

Subdivide/extend

Consider the following sketch.

P/=o

It is desired to create patch P2 from PI with the indicated
new corner points determined by UI, U2, WI, and W2. The (B)
matrix for P2 is obtained as follows: For position and paramet
ric slope data, the PC segmentation principles of (35) are

Figure 17-PC patch offsetting

Figure I8-PC patch translation and rotation

employed, e.g.,

(88)
and

(V(O, 0)U)P2= (U2-UI) (V(UI, WI)u)Pl. (89)

The corner cross derivatives for P2 are obtained by evaluating
the partial derivatives of PI at the given subdivide points,
e.g.,

(90)

Therefore, the entire geometric form for P2 can easily be
obtained. As a point of interest, the patch can be extended
beyond its original borders; however, this is not too ad
visable since extrapolation is dangerous (at least, large
extrapolation). Figure 16 shows several examples of the
subdivide/ extend capability.

Offset a patch

Given a patch PI, create an offset patch P2 governed by
some rule. See the following sketch.

Select 16 convenient points, e.g.,

U, w=O, %, %, 1 (91)

504 National Computer Conference, 1974

then the offset points can be generated by

(V(u, W))P2= (V(U, W))Pl+ (nv(u, w))PILv(u, w) (92)

where nv is the unit normal vector component at Ui, Wi on PI
and Lv (u, w) is the law or rule which will produce the offset
points. Therefore, parallel or tapered thickness surfaces can
be created. Of course, P 2 is truly parallel at 16 points only.
Figure (17) shows the offset capability for a constant value
of Lv.

Translation, rotation, and scaling

Transformation operations on the PC patch are very similar
to those already discussed for the PC curve in equations (37),
(38), and (39). Again the operations are performed on equa
tions, not just data points. Suffice it to say that for translation
in algebraic form, ~ V is added to the 844 element of the (8)
matrix; while in geometric form, ~ V is added to each element
of the P partition of the (B) matrix in (67). Rotation and
scaling are exactly similar. Figure 18 shows the transforma
tion operations on a PC patch.

Blending patches

Three specific cases will be discussed. These are: (1)
blending at a common border, (2) blending between two
non-adjacent patches, and (3) blending a given patch to the
borders of another patch.

Blending at a com.m.on border

Consider the following sketch:

P, ...
•

Pz
~

,v.j :. 0 (f,O) (O}O) M"=O

The two patches are to be blended such that C(O) and C(l)

continuity exist across the common boundary.
It is now necessary to discuss a most important item: the

slopes across the boundary curve of a PC patch. Indeed, a
powerful feature of the patch is the fact that the slopes across
a boundary curve can be expressed as an actual equation by
mere inspection of the geometric form in (56). The equation
of the parametric slopes in the u direction along the u = 1
curve of PI is

[
av(u,w)] =(I,w) ..

au u=1

=FI(W) V 1ou+F2 (w) VUu

+Fa(w) Vlouw+F4(W) VUuw. (93)

Figure 19-BIending PC patches at a common border, slope discon
tinuity prior to blending

Note that the cross-derivatives affect the slopes all along the
. oouhdary· -except· at--w==:O-ahduf=T-wliereF3 andF';--a:fe-
both zero.

As pointed out in (24), multiplying all the parametric
slopes by a constant k just scales up or down on the real space
slope vector, i.e., direction cosine data are not changed.
Hence, with respect to the form of the (B) matrix, the blend
ing operations for the sample sketch are

(u=o, rmv l)p2= (u= 1, row 2)Pl

and

(u=O, row 3)P2=k(u= 1, ro,v 4)Pl.

C(O) continuity (94)

C(l) continuity (95)

Therefore, adjacent patches have position and slope con
tinuity only if common position rows (or columns) are
identical and if common slope rows (or columns) are multi-

Figure 20-Blending PC patches at a common border, slope continuity
after blending

Interactive Computer Graphics Application of the BI-Cubic Parametric Surface to Engineering Design Problems 505

pIes of each other. Graphically, the elements of interest in
the (B) matrices for both patches of the sample are

PI""
, I I I ,

V P2 I I I b 2I I b 22 b Ib
I I 23 I 24 I - - - - -
I I I I

b2Ilb221b231b24
1--------- - - - - - -- - ._- -1 , I

kb4I:kb42:kb43:kb44 I I I
---- --- - -

b4I :b42 ;b 43 ;b 44
I I

Figures 19, 20, and 21 show the blending operation sequence
for adjacent patches. Figure (19) shows the obvious slope
discontinuity at the common border prior to blending; Figure
(20) shows the slope continuity after blending; and Figure
(21) depicts the blended patches in another view. The bottom
patch lies completely in the xy plane while the top patch is
truly three-dimensional, i.e., has depth (z) values.

Blending between two non-adjacent patches

This case is characterized by the following sketch:

- -- - - --.

Patch Pa is to be created such that it manifests C(O) and C(l)

continuity with patches PI and P2 at the respective common
borders. The same technique is applied as in section 5.8.1,

Figure 21-Blending PC patches at a common border, bottom patch
in X-Y plane

I'll,
I

rI
... u~~

j 11 M .""''''II1II
l' 11 .a~

11 .1 I~~

III
,l:i!

ml
~ rj ~ rJrJ

m
l

I
I

Figure 22-Blending a Pc patch between two non-adjacent patches,
plan view

that is
(u=O, row l)Pa= (u= 1, row 2)Pl

(u=l, row2)p3= (u=O, row 1)p2

(u=O, row 3)Ps=kl (u= 1, row 4)Pl

(96)

(97)

(98)

(u= 1, ro,v 4)Pa=k2(u=0, row 3)P2 (99)

Equations (96) and (97) guarantee C(O) continuity while
(98) and (99) guarantee C(l) continuity. Graphically, the
elements of interest in the boundary matrix are

p?l'
1

bZl:bZZ:bZ3:bZ4
- I" .- 1- I

I ' f--,-.-T-
b41,b4Z,b43;b44

;.(,P3 ,pz
, " ,: I

b Z1 : b zz ,b Z3 :b Z4 !1:!:-,B~.?'~l~ B].4.,

BU : Bl~ ':B13 :Bl~ - :

k;b41: kl b 4Z: k';i, 43: k~ b 44 B;l: B3Z :-B3~; B3;
- - -, - -. - _M 1- - f- - I - ,- -.- j •

k ZB31 , kZB3ZIkZB33,kZB34 ' , ,
'I I I I I

Figures 22 and 23 show a patch blended between two non
adjacent patches. The patch on the left is ruled and in the xy

plane while the right patch is a 90 degree surface of revolution
about the y axis.

Blending a patch to the borders of another patch

Consider the following sketch:

I
j

I '

-- -Dil' I~ - - - - ,_ -:.arz

--- ~z. ...,
• - I "

" :-----'-Ini ~
I
I

506 National Computer Conference, 1974

Figure 23-Blending a PC patch between two non-adjacent patches,
trimetric view

The objective is to bl~nd P2 into the borders of PI and this
will be accomplished by creating eight blending patches
indicated by the dashed lines. Again, the key to this operation
is the relationship between the parametric tangents when a
PC is segmented. From the following sketch

C tJr tJe 1. I /J-

z. (11' ><
t\.Jr'le J

-----~.---~ ----------
111":0

i=o
"".:1

and using (34) of section 4.6, it can be shown that

(dV) (U2 - Ul) (dV)
dt 1=0 = ---;;;- dv =1

(100)

Figure 24---Blending a PC patch to the borders of another patch

and

(101)

Now, applying the ideas of the previous sections, it can be
shown that the elements of interest in the (B) matrices are

u,

B I-zD F #ZH
B liD F r&H

J I"z L I-.. N '1t"iP
!-?l J 1-3"'~L N rzP

A B C 0 E F " H
A 8 C D E F I:i H

1 J K L r.,M r .. N r4~ /," .. p
r~l t"3J 1-?l1< rsL M N if; P

A "Ie E t;~
A J-,C E "I~

l IjK M i"11J t;
1-3 1 Ijlj/(M r,ef;

(0,0) 4, l l Cl,o)

~1-3 If-t-

This format conveniently combines matrix information with
uw values. The blank entries are dictated by surrounding
patches. A. L. Eshleman of Douglas Aircraft, who originated
this technique, calls these blank spaces "freedom elements"
since they can be arbitrary if there are no surrounding
patches. The ratio values

WI
rl= ---

W2- W l

l-U'2
r2= ---

W2- W I

Ul
r3=-

U2-Ul

l-u2
r4=-

U2-Ul
(102)

guarantee e(l) continuity. across the boundaries. Figure 24
shows a surface generated by the "blend eight" operation.

The general "blend eight" case can be pictured as

.w- = 1
u ~ P.

! » y 1

o ~)---- ~----- ---j~
II ~ .V I - - , , r •• .,. "

" - - - - - - I """z /I , /

: i'
L---------~u~,----~

~= 0

This case has been implemented and it involves eight ratios

Interactive Computer Graphics Application of the BI-Cubic Parametric Surface to Engineering Design Problems 507

which of course reduce to four for the special case described
previously.

If the patch to be blended, P2, is planar, then both patches
can be rotated such that P2 is in a principal plane, e.g., xy

plane; this effectively reduces the computations involved.
After blending, the patches are rotated back.

Plane and patch intersection

Consider the following sketch:

- - -"':: ~""'tJ'" H ---

In order to generate "cut points" to be fitted later by PC
curves, witness

(103)

where Wl and W2 are obtained by intersecting a boundary
curve or curves by the plane. One of the values for Wl or W2 is
not necessarily 0 since a plane could intersect only one
boundary curve. Let

W-Wl
O~p~l (104) p=--

W2-Wl

hence
W=Wl+pdW. (105)

For p=p*,

w*=Wl+p*dW (106)

Figure 25-Intersecting a PC patch with a plane

Figure 26-8urface modification to include straight hinge line-problem
statement

and u = u* along the line W = w* is produced by cutting W*
with the plane. Hence, the point on the patch surface
V (u*, w*) is easily computed. The points produced in this
fashion are then fitted with a PC curve(s) to a given tol
erance. The major point is that actual continuous curves are
produced, not a string of discrete data points. Figure 25 shows
the intersection of a compound curvature patch by a family of
planes. The solid lines are the resultant intersection curves
while the dashed lines are constant uw lines used for display.

ENGINEERING DESIGN APPLICATIONS

The following typical design problems and their solutions
validate the claim that the PC patch is a realistic, efficient,
and accurate device for CAD interactive graphics.

Figure 27-Surface modification-8olution showing blending patches

508 National Computer Conference, 1974

Figure 28-Surface modification-Plane cut through hinge line

Surface modification to incorporate a hinge line

The problem statement is depicted in Figure 26 where the
two end points of the hinge line lie on the surface of the body
of revolution (e.g., radome or nose cone). The local neigh
borhood of the surface near the hinge is to be modified. The
solution is shown in Figure 27 where the blending patches are
created by using the principles previously described. Figure
28 shows a plane cut through the hinge line while Figure 29
shows the edge view of the cut plane.

Engine inlet duct

The problem is to design an inlet duct such that plane cuts
normal to the air flow center-of-gravity satisfy aerodynamic

Figure 29-Surface modification-Edge view of cut plane

Figure 30-Engine inlet duct cut by a plane

and propulsion requirements. It should be noted that typical
. duct contours possess points o·finflection. of course, this
presents no difficulty for the PC. Figure 30 shO\vs the duct cut
by a plane and the resultant closed and continuous PC curve
lying oil the surface. Figure 31 shows the edge view of the
plane.

Creation of bolt holes for access door

The problem statement is to construct t,,"o bolt holes at a
specified location on a surface. The solution employs PC
surface subdivision and patch revision through blending.
Figure 32 shows the "bossed areas" blended into the original
surface.

Figure 31-Engine inlet duct-Edge view of cut plane

Interactive Computer Graphics Application of the BI~Cubic Parametric Surface to Engineering Design Problems 509

Figure 32-Creation of bolt holes for access door

Thermal insulation tile for re~entry vehicle

The problem statement is to create a parallel or thick
surface. The solution involves specifying the desired thickness
and employing the offset capability to the given patch. Figure
33 shO\vs the designed tile.

Stress analysis

The success of the discrete or finite element method in
solving practical structural mechanics problems has led to its
increased use in other disciplines of engineering mechanics.
In large part, the success of the method has been the result
of its ability to represent the geometric irregularities so often

Figure 33-Thermal insulation tile for reentry vehicle

Figure 34-Stress analysis of specimen, plan view isogram of principal
strain difference

present in actual hardware. Ironically, most efforts to improve
the method have ignored the representation of the initial
geometry and have focused on improving the representation
of the deformed geometry (analysis variables). This has led
to many new plate and shell discrete elements whose accuracy
decreases sharply for structures with initially curved bound~
aries. The number of straight~sided quadrilateral and/or
triangular elements needed to accurately solve an elliptic~
plate problem is significantly higher than that required for a
square plate. This behavior is directly related to the poor
approximation of the curved plate boundary with straight
sided discrete elements. Reference 20 provides several
excellent examples of this behavior associated with a higher
order triangular discrete element. To avoid the situation, it is
enough to return to the basic strength of the discret~element
method and improve the representation of the initial geom~
try. Parametric discrete elements, specifically PC representa
tion, provide this improved modeling for both the deformed
and undeformed geometry.

Figure 34 shows a pseudo-elastic picture obtained by
computing the principal strain differences, fitting them with
PC surface patches over each element and slicing these
surfaces with equally spaced planes. The spacing of the
cutting planes is proportional to the fringe constant of the
photoelastic material (Homalite 100), and hence they should
produce the same "fringe" pattern as the photoelastic test

Figure 35-Stress analysis of specimen, photoelastic test results

510 National Computer Conference, 1974

Figure 36-Stress analysis of specimen, overlay of photoelastic results
and parametric solution

results depicted in Figure 35. How close the parametric
discrete element solution comes to this condition can be seen
in the overlay shown in Figure 36. These rather remarkable
figures were obtained through the courtesy of E. L. Stanton.21

Although--these--results -w-er-e -IH)tobtained -in-t-eractively,-an
ICG implementation is obviously desirable since a change in
the patches that define the plate geometry automatically
would create a ne\y discrete-element model for analysis.
Also, much of the existing software developed for surface
representation can be used to automate the geometry data
for discrete element analysis and to plot the stress and dis
placement results.

CO~CLUSIO~S

This paper has discussed the implementation of the PC curve
and surface patch from the following aspects: the desirability
of the parametric representation, the computer system
environment, the mathematical formulations, and ICG
engineering design problems.

Some of the features of this design device which make it a
very attractive candidate for computer-aided design are:

(1) All curves and surfaces are used in a single form.
(The PC curves area subset of PC surfaces).

(2) Planar or twisted data can easily be handled.
(3) Infinite slopes require no special handling.
(4) Rotation, translation, and scaling are done on equa

tions.
(5) Arc length, surface area, volume, etc. are computed

directly without computing explicit points.
(6) Coordinatf's of f'nd points of curves and corner points

of patches are used directly as coefficients of curves in
the PC equation thus providing an aid to the identifica
tion of surface patches and connectivity to other
patches.

(7) Cross derivative coefficients alter the shape of the
surface without affecting the boundary PC curves.

(8) Patches are bounded by four space curves. Hovvever,

curves may be of zero length, i.e., 2-sided (not too
useful) or 3-sided patches are possible.

(9) Two or more patches can be matched identically
along one boundary of an adjacent patch.

(10) There exists a one-to-one mapping for analysis results;
i.e., stress, strain, temperature, pressure, etc., dis
tributions can be obtained.

Parametric cubic curves and patches form a realistic,
flexible surface system suitable for describing most engineer
ing shapes. It should be emphasized that the designer's
geometric inputs at the CRT are transformed into actual
surface mathematics in such a way that the mathematics are
completely hidden, unless requested otherwise, from him.
Hence, the experienced designer is free to concentrate on
attaining the solution to his defined problem or indeed to
create the definition of his problem.

ACKNOWLEDGME~TS

The_!'tll_thor_e?,J?:r~s~~§_h~i? __ gmtitudeJo _ the follo~wing _ persons:
Mr. R. Rolph for his vast experience in lofting techniques and
programming which facilitated the implementation of the
PC in the Design/Drafting package; Mr. G. Gilsinn for many
helpful discussions and programming relative to the PC; Mr.
A. Eshleman and Mr. H. Meriwether for introducing him to
the PC and providing the batch programs which formed the
kernel of ICG surface development in St. Louis; and Mr. J. J.
Lavick, and Mr. B. K. Winters for their managerial insight
into seeing potential value in a design technique which
merited investigation. Lastly, appreciation is expressed to
the entire Computer-Aided Design Drafting team in St.
Louis, both computer programmers and engineers, for
excellent achievement over a period of several years III

providing an interactive engineering design capability.

RE:F'ERE~CES

1. Coons, S. A., Surfaces for Computer-Aided Design of Space Figures,
M.LT. ESL Memorandum 9442-M-139, January 1964.

2. Coons, S. A., Surfaces for Computet-Aided Design oj Space Form,~,
Project MAC, Massachusetts Institute of Technology 1967.

3. Ferguson, J. C., Multi-variable Curve Interpolation, The Boeing
Company, Document D2-22504, July 1963.

4. Forrest, A. R., Curves and Surfaces for Computer-Aided Design,
Doctoral thesis, University of Cambridge, 1968.

5. Eshleman, A. L. and H. D. Meriwether, Graphic Applications to
Aerospace Structural Design Problems, SHARE Annual Design
Automation Workshop, Los Angeles. 1967.

6. Lavick, J. J., Design Philosophies for a Man-Machine Engineering
Environment, McDonnell Douglas Automation Report No. 6045,
1967.

7. Lavick, J. J., Computer-A_ided Design at ilfcDonnell Douglas, Inter
nation Symposium (CG 70), BruneI University, Uxbridge, England,
April 1970.

8. Lavick, J. J. and G. L. Martin, Modern Techniques in Design, 1972
CA n le.AM Conference, Society of ~,1anllfn..cturing Engineers,
Atlanta, Georgia, February 1972.

Interactive Computer Graphics Application of the BI-Cubic Parametric Surface to Engineering Design Problems 511

9. Newell, A., A General Discussion of the Use of Conic Equations to
Define Curved Surfaces, The Boeing Company, Document D2-
4398, March 1960.

10. Shelley, J. H., The Development of Curved Surfaces for Aero-Design,
Gloster Aircraft Co., Ltd., 1947.

11. Ahlberg, J. H., E. N. Nilson and J. L. Walsh, The Theory of Splines
and their Application, Academic Press, 1967.

12. Acton, F., Numerical Methods that Work, Harper and Row, New
York, 1970.

13. Brand, L., Vector and Tensor Analysis, John Wiley and Sons, New
York, 1947.

14. Hildebrand, F. B., Introduction to Numerical Analysis, McGraw
Hill, New York, 1956.

15. Handbook of Mathematical Formulas, U. S. Government Printing
Office, Washington, D. C., 1970.

16. Herzog, B. and G. Valle, Interactive Control of Surface Patches,
International Symposium (CG 70), BruneI University, Uxbridge,
England, April, 1970.

17. Pennington, R. H., Introductory Computer Methods and Numerical
Analysis, Macmillan Company, Toronto, 1970.

18. Martin, S. L., Informal notes, presently at Stanford University,
formerly with Douglas Aircraft, Long Beach, California.

19. Buck, R. C., Advanced Calculus, McGraw-Hill, New York, 1956.
20. Chernuka, M. W., G. R. Cowper, G. M. Lindberg and M. D. Olson,

Application of the High Precision Triangular Plant-Bending Ele
ment to Problems with Curved Boundaries, NAE Aeronautical Re
ports LR-529, National Research Council of Canada, October 1969.

21. Stanton, E. L. and E. L. Palacol, "Anisotropic Parametric Plate
Discrete Elements," International Journal for Numerical Methods
in Engineering, Volume 6, 1973.

Twinkle Box-A three-dimensional computer input device

by ROBERT P. BURTON

Bell Telephone Laboratories
Holmdel, New Jersey

and

IVAN E. SUTHERLAND

Evans and Sutherland Computer Corporation
Salt Lake City, Utah

INTRODUCTION

During the past fifteen years, use of two-dimensional com
puter input/output devices has become commonplace. Since
the earliest uses of the light pen for target identification in air
defense systems it has been obvious that two-dimensional
input would be interesting and useful. A large number of
two-dimensional tablets and digitizers have been developed
and have come into quite effective use. These devices have
made use of mechanical, electrical, magnetic, optical, and
acoustic phenomena. (See bibliographical references.)

More recently, the use of three-dimensional computer
output devices has become prominent. It seemed obvious at
first that corresponding three-dimensional computer input
devices might be interesting and useful, but there has been
no corresponding development of these devices. Rather,
there has been a series of laboratory developments each with
limited utility. A three-dimensional version of the Science
Accessories Corporation acoustic tablet is the only commer
cially available three-dimensional input device with which we
are acquainted.9 Why has there been no prominent develop
ment of three-dimensional input devices? Aside from the
obvious reason that three-dimensional graphics is used less
than two-dimensional graphics, there are three reasons why
three-dimensional input is not more widespread. First, early
experiments with three-dimensional graphics have shown that
people are not very good at drawing in space without the
support of a writing surface. The years of training that grade
school children go through in learning to write do not facilitate
three-dimensional input. Second; the measurement of three
dimensional positions is substantially more difficult than that
of two-dimensional positions. The measuring signals must
travel through free space; the measuring device cannot be
embedded in a surface. Finally, the coordinate conversion
required to reduce the measurements actually taken to
Cartesian coordinates is generally much more complex for a
three-dimensional device.

This paper describes another laboratory development of
limited utility.2 We think this new device is interesting

513

because, unlike previous devices which have measured the
position of only a single point, it measures the positions of
many three-dimensional points in such rapid succession that
they appear to be measured simultaneously. We also feel that
our novel approach to the coordinate conversion problem
may be useful to others.

BACKGROUND

The earliest three-dimensional computer input device with
which we are familiar is the Lincoln Wand, demonstrated by
Lawrence G. Roberts in 1963.8 Roberts' device used an
ultrasonic signal and four microphones mounted at the
corners of a rectangle. The path lengths from the point
source of sound to each microphone were determined by the
arrival times of the pulse at each microphone. As Roberts
showed in his paper, the rectangular arrangement of micro
phones made the coordinate conversion problem fairly easy.

Concurrent with Roberts' work, Jack Raffel at Lincoln
Laboratory proposed a photosensing device. Raffel's idea
(never published) was to measure the ratio of the illumina
tion falling on two photocells placed at right angles to one
another. This ratio is related to the angle of arrival of the
light. The position of the light could be determined from
three such measurements. As will be seen later in this paper,
the coordinate conversion involved would not have been
particularly difficult if handled by matrix methods. However,
these methods were not available to Raffel at the time.

An activity at M.I.T.lO for measuring three-dimensional
position used the critical angle of acoustic radiation into three
mutually perpendicular solid rods to obtain a measurement
directly in the Cartesian coordinate system defined by the
rods. The idea was that the difference of arrival times at the
ends of each rod locates the pulse source on a plane per
pendicular to the rod and at a distance from its center
proportional to the difference measured.

More recently, A. Michael Noll has developed an electro
mechanical three-dimensional input device in conjunction

514 National Computer Conference, 1974

Figure I-Disk

with a stereo display.6 This device permits direct input in
Cartesian coordinates and apparently works quite well. A
group under Frederick Brooks at the University of North
Carolina has been working on a combined three-dimensional
input/output device. The device receives input from remotely
controlled mechanical limbs, such as those used in handling
radioactive materials.3 The device can be moved by man and
by the computer, serving not only for three-dimensional
input, but also as a force display.

The most successful device now available is a three
dimensional adaptation of the Science Accessories Corpora
tion acoustic tablet. 9 This device measures the time required
for sound to travel from a small spark source to each of three
mutually orthogonal linear microphones. The arrival times
indicate the position of the spark gap. However, the Science
Accessories device has several weaknesses due primarily to
the slow speed with which sound travels in air. Sampling is
limited to about one hundred measurements per second for a
reasonable \,"orking volume. Accuracy is limited to one part

Figure 2-0ptical arrangement

in five hundred due to the movement of air even in a quiet
room. Finally, any object intervening between the sound
source and a microphone will destroy the measurement.

In addition to some difficulties in signal-to-noise ratio,
accuracv reliability utility, etc., each of these devices
measur;; the positio~ of only a single point which may be
moved. Our own interest in three-dimensional input de
veloped from use of the head-mounted display12 for which the
position and orientation of the user's head must be sensed.
For this purpose, the positions in space of at least three
points must be measured simultaneously. Our early efforts to
make these measurements acoustically (reported in Reference
12) were never satisfactory. Instead, a mechanically coupled
head-position sensor has been used. The Twinkle Box, with
three lights attached to a cap, could replace the bulky,
mechanical headgear. Other lights could be attached to the
fingertips or body to allow the user to interact with objects
viewed through the head-mounted display.

The ability to sense the positions of many points in space
provides for a new kind of three-dimensional input. Rather
than- drawing with the point of a three-dimensional pencil, a
user might make broad gestures using his fingers separately.
He might grasp objects to move them, indicate sizes by
gesturing with his two hands, or otherwise make use of the
many three-dimensional motions with which humans (par
ticularly Frenchmen and Italians) are said to communicate.
Possible use in animation comes to mind as a result of the
growing capability of computers to provide realistic perspec
tive pictures. The ability to effectively measure real body
motions with a device such as the Twinkle Box should
materially aid in defining the kinds of (realistic) motions
which could be imparted to the animated objects or char
acters. Weare hopeful that the ability to measure many
points in space will overcome the well-known inability of
people to draw in three dimensions with a free stylus.

DETECTORS

Most people who see the Twinkle Box immediately ask
why television camera technology has not been used. The

Figure 3-Detector-pair and housing

Twinkle Box-A Three-Dimensional Computer Input Device 515

YO

NOTES: LAMP PACK

t. LED, RED-LIT 2-03 (WHITE DIFFUSE) , BY LlTRONIX UNIVERSITY OF UTAH
1:73 - 'I

2. DIODE, IN454

3. TI-Tl6, MPSU52

INSTRUMENTATION RESEARCH

DRAWN BY

CHECKED BY

DATE

DWG

Figure 4-Diode matrix

choice of one-dimensional scanning rather than two-dimen
sional television type scanning is, in fact, the principal idea
in the Twinkle Box design. With similar video bandwidth,
hundreds of one-dimensional scans can be made in the time
required for a single two-dimensional scan. The higher
scanning rate makes it possible to distinguish among many
light sources by turning on only one light during anyone
scan. Because only a single light is on at anyone time, one
dimensional scans from at least three locations provide an
unambiguous measure of position. To measure the positions
of an equivalent number of lights usL'1g two-dimensional
scanning would require a very complicated program which
could match up the individual lights seen in one TV image
with those seen in another image, since many lights would
appear simultaneously in each image.

The Twinkle Box scanners are mechanical. Each detector
pair uses a 22-inch diameter disk with 32 radial slits cut near
the edge (Figure 1). The disk rotates at 3500 rpm to provide
for 1900 scans each second. Four detector-pair units are
mounted in the four upper corners of a room to provide for full
coverage of the room. An improved design would use some

kind of electronic scanning, but mechanical scanning is
sufficient to demonstrate capability.

A wide angle lens in front of the scanning disk forms a
two-dimensional image of the room in the plane of the disk.
When a single light is activated, this image is a single point
of light which can pass through the disk only when a slit is
properly positioned. Behind the disk, a Fresnel lens and a
condensing lens gather light which has penetrated the slit and
direct it into a photomultiplier. This optical arrangement is
shown in Figure 2.

For a given orientation of the disk, the photomultiplier is
sensitive to any light which lies in a plane defined by a
particular slit and the center of the objective lens. As the disk
rotates, the plane sweeps through the working volume of the
detector. The coefficients of the plane equation are deter
mined by the position of the slit which is determined by the
time at which a pulse of light is sensed. The times at which
each of three detectors sees a particular light determine three
plane equations whose simultaneous solution is the position
of the light.

Because the plane of sensitivity is determined by the

516 National Computer Conference, 1974

Figure 5-Lamp pack and user

position of a radial slit and the center of the objective lens,
one might think that accurate knowledge of the disk dimen
sions, the focal length of the lens, the axis of rotation, and the
position of the detector would be required to determine a
plane equation relative to a standard reference frame. More
over, one might think that very complicated geometric
computations would be involved. As we shall see in a later
section, all of the necessary geometric unknowns can be
expressed in a single matrix problem. Moreover, the requisite
geometric measurements can be performed at once by a
simple calibration procedure using only the known positions
of seven or more lights. The calibration procedure directly
determines not only the relative positions and orientations of
the detectors in the room, but also the effects of the focal
length of the objective lenses, and the positions and orienta
tions of these lenses relative to the associated axes of disk
rotation.

Some reference time must be established if the time at
which light strikes the photomultiplier is to be converted into
a slit position. An auxiliary photodetector with a fixed light
source determines the time at which a slit reaches a reference
position during each scan. This reference assembly also
provides an input for measuring variation in rotational
speed.

Tvl'"O detectors share each rotating disk. The two detectors
are placed roughly 90° apart around the periphery of the disk
so that their scanning planes are approximately at right
angles to one another. The two detectors are placed near the
lmver left and lower right parts of a disk. With the detectors
mounted just below ceiling level (Figure 3), each detector can
view a large volume of the room. A pair of detectors is

mounted in each upper corner of the room which measures
roughly twenty feet on a side. Wide angle lenses with fields of
view of approximately 90° provide complete coverage of the
volume of the room.

LIGHT SOURCES

The high switching rate required to turn on each light for
only one scan virtually requires that light-emitting diodes be
used. Since the duty cycle of each light is relatively low, the
light-emitting diodes can be severely overdriven. Unidirec
tional conductivity permits an 8 X 8 array of light-emitting
diodes to be driven with just 16 drivers (Figure 4). A lamp
pack with the necessary drive circuitry and jacks for eight
groups of eight lights each has been assembled. The light
weight lamp pack may be worn on a user's belt (Figure 5).

There is a tradeoff between scanning rate, resolution, and
the amount of light which falls on a photocell. To get a high
scanning rate, the disk turns at 3500 rpm. To get high
resolution, we have made the slits quite narrow, 0.3 mm in a
35 mm image. As a result, very little light actually gets from
a single lamp into the photocell. Adequate sensitivity in solid
state photodetectors was not available, so photomultipliers
are used. Efforts to maximize lamp brightness and photo
multiplier sensitivity have payed off i~ acceptable per
formance. Of course, a design using electronic rather than

Figure 6-Perspective projection from the lens image into time space

Xl

X2

or

Xl

X2

X
n

Yl Zl 1 tll t12 wl

Y2 Z2 1 t21 t22 w2

~41 1

w6

Figure 7-Calculation of the transformation matrix T

Y
l

Y2

Y
n

Zl

Z2

Z
n

1 -XIUl

1 -X2U2

1 -X U
n n

-YIUl

-Y 2U2

-Y U
n n

-ZlUl

-Z 2U2

-Z U J n n

Figure 7(b)

tll

t21

t31

t41

t 12

t22

~32

Twinkle Box-A Three-Dimensional Computer Input Device 517

Ul 1

U2 1

or

H =

X U

Figure 7(c)

mechanical scanning would have to face these same sensi
tivity problems.

COORDINATE CONVERSION

A simple matrix formulation of the computation of
Cartesian coordinates from the time measurements is possible
because a perspective projection is involved. Obviously the
projection from the room space through the lens into the
plane of the disk is a perspective projection. 'Ve can think
of this image as being further projected into the space of time
measurement by a projection centered at the axis of the
spinning disk (Figure 6). This is again a perspective pro
jection. In fact, the total projection from room coordinates
into time space is a perspective projection. Using homoge
neous coordinates it may be represented as

[X Y Z 1J =[x y z wJ (1)

and

u= ~
w

where [X Y Z 1J represents the room coordinates of a light,
the tij are terms in a matrix related to the position, orienta
tion, and dimensions of a detector, [x y z w J are inter
mediate variables, and U is the time measurement made for
that light.

Only a single measurement is made on the final perspective
projection. Hence, only a single output variable U exists. The
intermediate variables y and z play no part in the expression
and these two colu..1n T1s of the matrix are irrelevant. As we
learned in digitizing photographs7 it is convenient to drop

518 National Computer Conference, 1974

] x]H

or

or

Figure 8-Least mean squared error fit

these two columns and rewrite the expression as:

tn t12

[X Y Z 1J =w[V 1J

and
x

V= -
w

which can be written

(2)

tuX +t21Y +t31Z+t41= V (t12X +t22Y +t32Z+t42). (2a)

The final expression can be thought of in three ways, de
pending upon what is known. If we know the position of a
detector (the tii) and the position of a light (X Y Z 1),
we can use this expression to compute the time V (a useless
computation). If we know the position ofthelight (X Y Z 1)
and the time measurement V we can compute the coefficients
of one equation involving the unknown elements of the matrix
T, and have the basis of a calibration procedure. Finally, if
we know the position of a detector (the tii) and a time V,
we can equally well compute the coefficients of a plane
equation involving X, Y, and Z.

(t11-t12V)X + (t21-~2V) Y + (t31-t32V)Z+ (t41 -t42) =0

or
(2b)

aX+bY+cZ+d=O

This is the basic equation for coordinate conversion.
The calibration procedure deduces the elements of the

matrix T frOlYl the timet:; at which seven or more iights with
known X Y Z coordinates \vere sensed. The system of

equations is shown in Figure 7. Since the scale factor of the
tii is arbitrary, one of the tii may be specified and seven equa
tions suffice. When more than seven reference lights are used,
a least mean squared approximation is made to the resulting
system of equations, as shown in Figure 8. This additional
input avoids ill-conditioning in the system and reduces the
effects of errors in the measurement of the positions of the
reference lights. Since the values of the tii do not change, the
calculation of the tii and the 7 X 7 matrix inversion implied
in Figure 7 need be performed only once.

The coordinate conversion procedure to determine the
three-dimensional position of a light source involves the
simultaneous solution of the plane equations determined by
each detector. As light sources move about the room each is
visible to different detectors. As long as at least three de
tectors see a light, three plane equations can be determined
and the position of the light can be deduced. If more than
three detectors see a light, a least mean squared error fit
can be computed.

[
~ai2

. ~biai

~Ciai

~aibi ~aiCi] [X] _ [~a'd']
~bi2 ~biCi Y - ~b.di

~cibi ~Ci2 Z ~cidi

(3)

where the ai, bi , Ci, and d i are the plane coefficients for the ith
detector. For example, ai = t11- t12V where the t's are elements
of the previously computed matrix for the ith detector, and
the time V is the time measured by the ith detector. Note
that the plane coefficients are simply linear combinations of
the t's and V, and thus are easily found from time measure
ments.

Because of the arrangement of detectors and the least
mean squared error fit which accommodates redundant in
formation, no difficulties are caused by parallel or nearly
parallel planes. Most of the calculation time is involved in
computing the summations of Equation 3. Note that we have
not incurred the difficult calculations which one might expect
to be associated with the complex motion through space of
several scanning planes determined by several detectors
whose positions, orientations, and dimensions are arbitrary.
In practice, however, even the simple calculations which are
required cannot be handled by a general-purpose computer
sufficiently fast to keep up with the very many simultaneous
measurements of lights. Equipment appropriate to handle
these computations could be built easily. At present the
problem is solved by generating information no faster than
it can be handled.

OPERATING EXPERIENCE

In the short time that the Twinkle Box has been in use,
several demonstrations of its capability have been made. No
particular technical ability has been required to use the
device. Real-time sensing and conversion of a single point
source of light has been shown to be quite practical. However,
no practical applications have been made. Positions of

Twinkle Box-A Three-Dimensional Computer Input Device 519

multiple lights have been determined in real time at a rate
of 61 points per second. Data recording for 925 light positions
per second with off-line computation of Cartesian coordinates
has also been accomplished. The accuracy of the system has
been determined by moving lights about the room at fixed
distances from one another, and measuring separation. The
standard deviation of the error from zero has been deter
mined to be 7.3 mm, due primarily to time jitter on the
photomultiplier pulses.

The design has three major deficiencies resulting from the
mechanical scanners. First, in order to spin the 22-inch disk
at 3500 rpm, a two-horsepower motor is required. A great
deal of noise, vibration, and heat is generated. With four
motors running, the room becomes unpleasant to work in.
Second, the high starting load presented by disk windage in
a housing which does not fit tightly about the disk forced us
to use induction motors. Because the disks do not rotate
phase-locked, each light must be activated for the time period
of two scans (one millisecond). This guarantees that the light
is on at the beginning, during, and at the end of at least one
complete scan by each detector. Were the disks to rotate
phase-locked, we could double the data collection rate.
Finally, in spite .of considerable care in the production and
assembly of the disks, pulse times determined by different
slits for a stationary light are distributed in time. Because the
pattern of distribution repeats for each revolution of the disk,
we attribute it to non concentricity of the disk and motor
shaft, and to errors in slit placement. A correction table has
been built and is used at run-time after several sequential
reference pulses are received. A design allowing for con
tinuous input by each reference sensor, to indicate which slits
are scanning the images of the room, would obviate this
deficiency.

There is considerable optical distortion in the wide-angle
lenses chosen for the detectors. * This distortion causes
inaccuracies in the measurement of positions. The magnitude
of these inaccuracies is a function of the position of a light
source relative to the calibration lights and relative to the
optical axes of the objective lenses. Measurements near the
calibration lights and near the intersection of several optical
axes are quite accurate; accuracy deteriorates with increased
separation. Efforts have been made to correct lens distortion.
However, only a single dimension is measured by each
detector. Unless corrections are made using data from more
than one detector, these efforts can at most decrease the
magnitude of errors by a factor of three.

An additional source of error is attributed to the fact that
different detectors may see a light at different times. In this
case, nonsimultaneous data are gathered. Similarly, different
lights are measured at different times. Obviously, the actual
time at which a detector sees a light is known, as is the time
at which various lights are measured, for this is the basic
measurement. Some correction might presumably be made.

* Vivitar Auto-Preset, f.1. 20 mm, F3.8lenses are used. Linear distances
are diminished up to 5.89 percent by regular distortion at the edge of a
lens and up to ±1.2 percent by irregular, randomly located distortion.

POSSIBLE FUTURE DEVELOPMEKTS

Henry Fuchs* has discovered that reflected light from a
laser beam provides an adequate input to the Twinkle Box
detectors. It is possible, therefore, to think of a device which
would deflect a laser beam in two dimensions. The Twinkle
Box could then sense the reflected light in one dimension.
Such a device could easily measure the three-dimensional
profiles of objects such as people's faces, and thus provide a
new form of input. Two-dimensional deflection of a laser beam
using mirror galvanometers appears to be quite practical.
Since the Twinkle Box detectors are placed about the room,
the object(s) to be scanned could be positioned at random.

It is possible to think in terms of reversing the Twinkle
Box detectors and light sources. In such a reversed system,
several one-dimensional scanning proj ectors would provide
illumination in sequence to small photocells whose positions
would be measured. Each projector would sweep the working
volume with a plane of light moving in one dimension, and
each photocell would report the times at which it sensed
light. The mathematical computations required for co
ordinate conversion would be identical to those for the
Twinkle Box. There are several possible advantages to such a
reversed system. First, as much light as desired could be
transmitted. Second, because parallel sensing of light pulses
at each photocell could be provided, a much lower scanning
rate could be used to measure as many positions as there are
photocells. Using simpler scanners, scanning rates of 100 per
second rather than 2000 would suffice. Finally, because no
room image would be formed in a detector, the need for wide
angle lenses with their associated distortion could be avoided.
Light columnization could be accomplished by baffles and
lenses. The disadvantage of the reversed system is the in
creased electronic complexity of providing 50 to 100 photo
cells each capable of reporting the time of a light pulse.
Modern solid state photocells, amplifiers, and integrated
circuitry appear, however, to make such a design worth
serious consideration.

* University of Utah.

BIBLIOGRAPHY

1. Brenner, F. H. and M. T. Zayac, A Multi-Color Plasma Panel
Display, Owens-Illinois, 1971.

2. Burton, R. P., Real-Time Measurement of Multiple Three-Dimen
sional Positions, University of Utah Computer Science Technical
Report UTEC-CSc-72-122, June 1973. Also Technical :Manual
T~!A~ -73-01. (Supported by ARPA Contract F30602-70-C-0030.

3. Capowski, J. J., Remote Manipulators as a Computer Input Device,
Department of Computer & Information Science, University of
North Carolina (Chapel Hill), 1971. (Supported by AEC contract
#AT-40-10-3817.)

4. Curry, J. E., "A Tablet Input Facility for an Interactive Graphics
System," Proceedings International Joint Conference on Artificial
Intelligence, Walker, D. E., L. Iv!. Norton, eds. :May, 1969.

5. Davis, M. R. and T. O. Ellis, "The Rand Tablet: A Man-Machine
Graphical Communication Device," FJCC 1964, Spartan Books,
Baltimore, Md.

520 National Computer Conference, 1974

6. Noll, A. M., "Man-Machine Tactile Communication," SID
Journal, July/August, 1972. Also Ph.D. dissertation, Department
of Electrical Engineering, Polytechnic Institute of Brooklyn,
1971.

7. Parke, F. 1., Computer Genera.ted Animation of Faces, University of
Utah Computer Science Technical Report UTEC-CSc-72-120,
June 1972.

8. Roberts, L. G., The Lincoln Wand, M.I.T. Lincoln Laboratory
Report, Lexington, Mass., June, 1966.

9. Science Accessories Corporation, Gmf/Pen Sonic Digitizer, Science
Accessories Corporation, Southport, Conn., 1970.

10. Stoutemyer, D. R., Systems Study and Design of a Blind Mobility

A id Simulator, Master's thesis, Department of Mechanical Engi
neering, M.LT., 1965.

11. Sutherland, I. E., "Sketchpad; A Man-Machine Graphical Com
munication System," Proceedings of the Spring Joint Computer
Conference, Detroit, Mich. May 1963, and M.I.T. Lincoln,
Laboratory Technical Report No. 296, January, 1963.

12. Sutherland, 1. E., "A Head-Mounted Three-Dimensional Display,"
AFIPS Conference Proceedings, Vol. 33, pp. 757-764, December,
1968.

13. Teixeira, J. F. and R. P. SaIlen, "The Sylvania Tablet: A New
Approach to Graphic Data Input," SJCC 1968, Thompson Books,
Washington, D.C.

APLG-An APL based system for interactive computer graphics

by ,V. K. GILOI and J. ENCARNACAO

U niversiial des Saarlandes
Germany

L\"TRODUCTIOX

Computer Graphics (CG) is in its essence interactive. The
customary "batch processing" languages such as, for ex
ample, FORTRAX, ALGOL, PL/I, ... , are not primarily
designed for interactive use. One of the main reasons for
that is their relatively early binding time. Another handi
cap, particularly for CG, is a certain inadequacy of their
control structure for the kind of dialog characterizing CG.
Thus, the usual programming packages for CG based on
one of the above mentioned high-level languages have to
be augmented by devices which allow the system to lend
control to the user, together with a simple command lan
guage \vhich enables the user to execute tE'mporarily control
over the system. The commands are given to a command
language processor which works interpretatively, initiating,
for instance, respective subroutine calls.

The basic transformations of objects (translation, rota
tion, scaling, perspective, etc.) are vector or matrix opera
tions. This holds especially in the case of display systems
in which straight-line segments are used as graphical primi
tives (so-called vector displays), and so far most computer
graphics display terminals are intrinsically line drawing.
Thus, a host language for CG should have vectors and
matrices as data types and arithmetical operations on
arbitrary sets of arrays or operations to rearrange arrays
as primitive operations.

Thus, we feel that a widely used interactive, high-level
programming language which provides the following fea
tures

-Avoidance of formal operand declaration combined
\vith an interpretative execution, leading to a very
delayed binding;

-Control structure for interactive use;
-Inclusion of arrays as primitive data types

will be a better "host" for a language extension for computer
graphics than one of the above mentioned languages. Such
a language is Iverson's APL.l Consequently, the extension
of APL for CG has been repeatedly suggested, and APL is
in fact in use at several places for the purpose of computer
graphics. In this paper, we shall outline the general philoso
phy of such a language extension, using the possibility of

521

APL to \vrite proprietary functions for special purposes.
Whereas this alone would not justify to use the term "lan
guage extension," the justification will stem from the fact
that the APL interpreter will have to be truely extended
by some additional primitives to be explained in-this paper.

Such an extension of ALP, called APLG,2 will be pro
posed in this paper. Furthermore, we shall show a way for
a very efficient implementation of such a system, meeting
the given constraints of a time sharing environment. ':\lore
over, we hope that this paper may also contribute in general
to the ongoing discussion about the question \vhat kind of
intelligence to put into an intelligent terminal.

THE ORGA!\IZATIOX OF APLG

If one starts out to extend APL into a graphic language,
it is a very tempting idea to add to the standard repertoire
of monadic, dyadic and mixed functions an additional set
of complex operators for construction and manipulation of
display items. Such an approach to the language extension
-hO\vever desirable--has a serious disadvantage, namely
that such a solution \vould require a change of the syntax
of APL and, hence, the implementation of a different APL
interpreter. Our goal, however, is to permit the use of the
existing APL implementations and extend it for graphics
strictly by adding a few additional primitives. In pursuing
that goal, APLG will contain the existing ALP as a subset.

Our goal can be achieved if the language extension is
restricted mainly to the definition of a set of standard
functions to be added to the existing APL interpreter.
These functions take care of all operations required for
interactive graphics: piclure generation and manipulation
as well as display file management. An extension of APL
to APLG requires, thus, only the augmentation of the
existing translator by the respective procedures-and, of
course, the extension of the set of recognizable primitive
functions. The standard functions which cause the drawing
of items or control the light pen, etc. will generate code in
an intermediate language to be interpreted by the respec
tive display processor in the graphics terminal and, hence,
the portability of such a system is ensured. Other standard
procedures for the transformation of pictures may strictly
be kept within the proper APL body.

522 National Computer Conference, 1974

The extension of ALP to APLG has to provide the ability
to create and manipulate "pictures" and to work inter
actively at a display console. In order to display a picture
on a CRT screen, code which can be interpreted and exe
cuted by the display processor in the terminal must first be
produced. In extension of the standard APL environment,
iye add a second input/output medium, namely the display
console, and hence, we have now to distinguish between
results of a function application which are obtained in the
normal calculation mode of APL, i.e, which are typed out,
and results which have to be displayed on the CRT screen.
This can be accomplished by putting the latter into a par
ticular memory area which is usually called the "display
file."

Following KATZAK's philosophy,3 we build up the
display file by defining three special APL arrays with the
reserved names DC (display code file), NL (name list), and
CT (correlation table). Here and in the following, reserved
names will be indicated by italics in order to make it
very unlikely that a user might use the same name for a
user's function (an allowable technique in APL). As the
names say, the DC array will accommodate the display code,
the N Larray will contain the names of the pictures and
those of the picture items defined by the display code, and
the CT array will establish the relationship between names
stored as character strings in N L and the graphics program
stored in DC. CT is a two column matrix, from which can
be deducted what name is assigned to a picture or a graphi
cal item (part of a picture). The rows of NL and CT are
related one-to-one to each other, e.g., such that an i th row
of NL corresponds to the ith row of CT. The foHowing
example will illustrate the construction of the display file.

As an example, we assume that the program has to gen
erate the picture shown in Figure 1A. This picture consists
of the two points PI and P2, a straight line connecting them,
and the point IS on this line which is the intersection point
with a (not visible) line PaP4. The program calls a number
of standard functions of APLG which will be explained
later. The name of the picture shall be PIC.

Example 1:

PROGrD]~V
V PROG; P

[1] FILE
[2] PICTURE 'PIC'
[3] P +- 2 2 p A
[4] 'P' POI~T P
[5] 'L' POLYGON P
[6] 'IS' POINT A ISECT B
[7] END 'PIC'

V

The program is actually executed and the result displayed
on the CRT screen by specifying the operands A and B,
followed by calling a function SHOW. The Parameter S of
SHO\V is a "status vectUi"" which defines the mode of
display.

Program call:

A+-100 100 500 600
B+-200 450 400 80
PROG
S SHOW 'PIC'

During the execution of PROG, the standard function
FILE (see label [lJ in the program) generates the NL, CT,
and DC arrays, i.e., the display file for this program as
shown in Figure lB. FILE is called only once before storing
the graphics code in the display file. The picture name
PIC is brought into NL by the PICTURE function. Since
the picture consists in this case of three items: the set of
points P = {PI, P2 }, the line L, and the intersection point
IS, the name list has three more entries following the pic
ture name, that is to say these item names.

The first row of the correlation table CT contains two
pointers: the first pointing to the beginning of the display
code file DC and the second pointing to the end. The first
pointer is entered by the PICTURE function and the
second by the END function. In such a way, the display
code file is built up dynamically and can have any arbi
trary length. A negative integer in the first cell of a row of
CT indicates that this row corresponds with a graphic
item. The value -1 means (point), for example, and - 2
means (line). This simplifies the identification of the types
of items. The second value indicates the number of items
which are represented by one item name.

Generally speaking, the APLG display file is structured
in the form of a 3-level tree. The lowest level is given by
the graphic primitives, points and lines, the next higher
level is given by collection of primitives of the same type,
called items, and the root of the tree is given by a collec
tion of such items, called picture.

The user does not know the exact extent of his display
file (and does not have to). The only indication of the
existence of a display file in his workspace is given by the
fact that the usable part of his workspace shrinks with a
growing display file, and a workspace overflow message
may occur sooner. If it is considered to be necessary, the
FILEs function which builds up the iyorkspace may also
perform some garbage collection.

The statements of the program body are all standard
function calls, except the operation which reshapes A into

8 II I h~~"PbY I

R ~
1 2 t':cocessor

Code

L -2 1

IS -1 1

· .. · .. · ..
(8)

Figure l-(A) Illustration of example 1; (B) Resulting display file

APLG-An APL Based System for Interactive Computer Graphics 523

a matrix. POIXT generates the graphics code for a speci
fied number of points and POLYGON the one for a poly
gon. [SECT calculates points of intersection of specified
lines. Kesting of several pictures is possible.

K ote that the difference between a usual function defini
tion in APL and the definition of a function for the genera
tion of a picture is the following:

(1) the picture definition part has to begin with the
standard function PICTURE and to end \vith the
call of the standard function EXD with the picture
name as parameter, and

(2) picture and item names are defined as character
strings, which are put between quotation marks.

The EXD name statement provides the possibility of
nested picture definitions. The special characterization of
picture and item names is necessary in order to have them
recognized as such and not as variables.

The function execution and the generation (and subse
quent display) of the display code is actually started by
the SHOW function, but of course not before the function
has been supplied with the required data. The 'status'
vector S has the following dimension.

S--7h i j k

The components h, i, j, k may have, for example, the
following meaning:

h : blink status : h = -1 picture blinks
h =0 no blinking

i : beam intensity : i = -1 picture i = 0.5 dim
invisible

j : style

i = 0 normal i = 1 bright
intensity

: j =0 solid lines j = 1dashed
lines

: j =2 dotted
lines

j = 3 = dashed-dot
ted lines

k : light pen control:k=O light pen disabled
k = 1 light pen enabled

Part or all of these parameters can be omitted, beginning
from the right-hand side. Any omitted parameter is auto
matically interpreted as zero. Thus, if S is 0, it means: no
blinking, normal intensity, solid lines, light pen disabled,
while Sf- -1 would mean the same status except that
the picture is now blinking. Xote that the light pen pick
status (light pen pick enable/disable) can in such a way
only be defined for a whole picture but not for individual
items of a picture. Therefore, a second way of specifying
the light pen pick status is provided by the EX ABLE func
tion (see next section) which can be inserted into a picture
definition function. The status specified by ENABLE over
rules the one specified in S. Xote that the purpose of the
SHOW function in connection ,,;ith the parameter S is to
provide an easy way to change arbitrarily the status of a
picture representation, that is SHOW can be called many

times in the course of a terminal session with a varying
status.

A COLLECTIOX OF STAKDARD FlJXCTIOKS OF
APLG

In the following we will list a representative selection of
APLG standard functions (Table I). In our opinion, APLG
should always be considered as a concept open for exten
sions and \vith enough degrees of freedom to satisfy the
particular requirements imposed by the individual display
systems. That means that-besides a core of standard func
tions evolving over time-there should be ahvays the possi
bility of adding special library functions proprietary for a
given system.

So far we have been considering the display solely as an
output device. We shall now discuss some functions which
allow the input of graphic information and, thus, man
machine-interaction.

The follo\ving example shows how to place ten dots on
the CRT screen (and input their coordinates) by use of the
light pen. The RASTER function generates a grid which,
in conjunction with the light pen, causes an interrupt ,vhen
ever a grid line crosses the light pen aperture. After the
coordinates of the picked raster points have been deter
mined by COORD, a dot is displayed at the proper spot on
the screen. All these points are stored under a common
name, P.

Example 2:

VLIGHTPEK[O]
V LIGHTPEN

[1] PAUSE
[2] --7S0URCE X 1

V
VPOINTIX[O]V

V POINTE,
[1] If-O
[2] ATTEXTIOK 1
[3] PICTURE 'PIC'
[4] 0 1 SHOW 'PIC'
[5] K:RASTER
[6] LIGHTPE~

[7] POf-COORD
[8]
[9]

[10]
[11]
[12]
[13]
[14]

If-I + 1

'P' POIXT PO
--7K
L:"POIKT PO
--7KX2I~1O

END 'PIC'

The coordinates of a primitive, the name of the picture
and item to which it belongs, and its index within the
item shall be determined after a light pen pick of this primi
tive. This can be done using the PICNAi\IIE, [TEMNAME,

524 National Computer Conference, 1974

TABLE I-APLG-Standard Functions

Function name

FILE
PICTURE 'pic'
END 'pic'
S SHOW 'name'
a DELETE 'name'

'item' INDEX 'pic'

ITEMNAME

PICNAME

COORD

RASTER

b EN ABLE 'name'

ATTENTION a

SOURCE

PAUSE

'name' POINT (point)

'name' POLYGON (point)
'name' TEXT (text>
POSITION (point)
SUPPRESS

RETURN
point TRANSFORM M

'pic' PICTRANS M

Operation

Organization of a display file
Start of picture definition
Closing of picture definition
Starts display of 'name' with status S
Removal of a picture or an item or all

items with a common name from the
display file

a=O/\'name' ;;C''' deletion of
'name'

a = N (N >0) /\ 'name' = /I deletion of item
with index N in
DC

Returns the index of an item in 'pic'
(absolute index in DC)

Retrieval of the item name of a picked
item.

Explicit result: item name
Retrieval of the picture name after a

light pen pick.
Explicit result: picture name
Returns the coordinate values of a primi

tive after a light pen pick (if the primi
tive is a line, the coordinate of the
terminal point are returned). Explicit
result: x y

Generation of a raster for light pen indi
cation of a position

Enable/disable light pen pick of an item
or picture (overrules the specification
given in the status vector S);

b = 0 disable: b = 1 enable
b can also be a boolean vector represent

ing a mask for the item names of a
picture

Indicates to the system which attention
sources may occur:

a=O no attentions a=2 keyboard
a = 1 light pen

a=32 all attention
sources, etc.

Returns an integer value indicating the
attention source (e.g.: 1 for light pen
attention, 2 for keyboard, etc.)

Computer waits for an attention.
Picture regeneration continues.
Generation of a set of points with a single

name
Generation of a polygon
Display of text (array of characters)
Initialization of the beam position
Stop picture regeneration without clear

ing the display file (renewed display of
a picture can only be achieved by use
of the SHOW function)

Return to teletype control
Transformation of a set of points
M=3X3 matrix (two-dimensional case)

4X4 matrix (three-dimensional case)
Explicit result: trl'l.nsformeo points
Transformation of a picture

and INDEX function. ENABLE is called to enable the
light pen pick of any item of the picture independent of
the status specified in the respective SHOW instruction
assuming that the picture is already being displayed.

THE ENVIRON:\lENT FOR AN DIPLE:.\lENTATION

The environment for the implementation of an inter
active software system-such as APLG in the case we are
concerned with-is on one hand determined by the required
properties of this system-first of all by the ways in which
files have to be organized and updated-and on the other
hand provided by the technical properties of the system.

It is obvious that, in a computer-terminal-dialog, both
sides must have access to the display file. The application
program which generates the display file in the first place
has to update it whenever a change in the pictorial repre
sentation on the display screen shall occur. The terminal,
on the other hand, which receives the display file as the
program for its display processor, may cause an updating
of the display file, too, whenever its user wants some changes
in the picture on the screen~ We will call any action which
changes the pictorial representation on the CRT screen
lipicture editing."

We conceive an liintelligent" terminal \vhich serves the
user's interactions locally and communicates, on the other
hand, with the time-sharing system. If such a system is
organized the way it will be proposed in the following, the
internal processor of such an intelligent terminal has to be
primarily a list processor. All necessary functions of such
processor can be easily realized as firm,:mre routines exe
cuted by one of the now available, inexpensive ::\10SjLSI
microprocessors. With such a system, it will become feasible
to . provide interactive computer graphics services to a
larger community of users in a very economical way.

In regular time-sharing systems, the communication
links between central computer and terminals have to use
voice grade telephone lines for reasons of economy and,
hence, their transmission rate is rather low. This is no
serious handicap if the terminal is a teletype or a storage

I lIpp1!eet!o=
P1"OfW_
and
Dau_

APIA - IIorkop_

(!!!f'li!. !!!)

APIA - Intup
ter

~ - Ellterpr ...
ter

-1 ___ M'l'_' ADL--ir-

IIuIory

(H'l', C"l', DC)

L
4

- Interpreter

I - Interpreter

2xecut1ve

C~lC.tloa

Package

Figure 2-Component of the APLG time-sharing system

APLG-An APL Based System for Interactive Computer Graphics 525

tube display, but it 'would not be tolerable if the terminal
is an interactive graphics display with a dedicated com
puter, . and if large amounts of information have to be
s"\vapped behyeen the two computers in the system. On
the other hand, in the time-sharing system for computer
graphics services which we have in mind, high-speed com
munication links have to be ruled out as being to costly,
and that puts a very serious constraint on the design of
the system. Hence, we have to devise organizational means
by which the amount of information that has to be ex
changed between central computer and terminal will be
minimized.

THE IXTRA-SYSTE:\I CO~'vL\1UXICATIOX

At the beginning of a dialog beh\·een the user at the ter
minal and the application program in the central computer,
a display file assembled in the user's workspace by his
APLG program has to be transmitted to the terminal lead
ing there to the generation of a pictorial representation on
the CRT screen. In the course of a dialog, messages will
have to be exchanged between central computer and termi
nal whenever the user or the application program ask for
certain actions or respond to certain requests made by the
other side. The medium for such a dialog is always the
pictorial representation on the screen. Thus, man-machine
interaction means primarily "picture editing," and hence,
-as a picture always has its logical representation in the
display file-display file manipulation.

A closer look reveals that only part of the information in
the display file is relevant for both sides in the dialog. On
one side, names are only meaningful to the application
program and, thus, the name list does not have to be trans
mitted to the terminal. On the other side, the display pro
cessor code is only relevant for the terminal. Therefore, we
may decompose the display file into two intersecting parts,
one part stored in the main computer and containing the
name list and the correlation table, and the other part
stored in the terminal and containing a copy of the correla
tion table and the code list. The intersection of both is the
correlation table \vhich establishes the link between the
two separated parts.

L1fh~ buttcm

Pick BBGIII

SXIPI!'PICJ: •• ~
SXIP IF PlOt ••

c::d
•• ct1on 1

END················

Figure 3-"Linearization" of a branching in an interaction handling
program

Our philosophy is to generate the total display file just
once at the beginning of a dialog and update it from then
on successively. That way, only the (non-redundant) informa
tion concerning the picture editing has to be exchanged. To
this end, we need a vehicle which will carry this information
back and forth, as editing may be done from either side.
Such a vehicle will be provided by hvo additional lists, one
called 'message table' l\IT and the other 'associated data
list' ADL. These messages will be formulated in an inter
mediate language especially designed for that purpose and
named L4.

Thus we obtain a system as illustrated in Figure 3. On
one side we have the central computer 'with its operating
system and an APLG interpreter* ("\vhich includes, of course,
an APL interpreter). Every user APLG has his APL
workspace which contains besides his programs his pro
prietary functions and his data. The workspace contains,
furthermore, a part of the actual display file, namely the
name list iYL and the correlation table CT. The APLG
interpreter encompasses among the other standard APLG
functions2 a particular function called L4 interpreter.

The terminal, on the other hand, contains also some
parts of the actual display file, namely a copy CT of CT
and the display processor code list DC. Additionally, there
is a second L4 interpreter-which differs essentially from
the one to be found in the APLG translator-and a module
called "interaction handler" (IH) and to be explained later.
:\IT is a matrix that has three columns and an arbitrary
number of rows. The entry in each rO\v constitutes a state
ment in a special intra-system communication language
called 14. ADL is a linear order of data blocks, to which
pointers in the' V statements give access.

THE IKTERl\1EDIATE LANGUAGE V

l\'fessages sent from the central computer to the terminal
have to serve the purpose of generating display processor
code, supplying data, and edit the correlation table CT.
Conversely, messages sent from the terminal to the central
processor may supply data and edit CT, too, but also the
name list NL, and they have to inform about the source
and the attached parameters of attentions. All these pur
poses are served by the command language L4 defined in
the follo,,·ing. Nota bene, V is not a programming language,
and the user of the system is not concerned with it, but
nevertheless, it may be useful if we use a programming
language type mnemonic notation. If the level of a lan
guage is measured by the cardinality of the set of functions
and data types occurring in that language, the language we
need has even a lower level than the customary assembly
language and, hence, we call it a 10w-IO\v-Ievel language
and name it, therefore, 14.

* Names of software modules in the central computer will be dis
tinguished from names of software modules in the terminal by under
lining.

526 National Computer Conference, 1974

TABLE II-List of V Statements

Group 1: Display processor code generating commands
SET CONTROL, 0, reference
SET MODE, 0, reference
SET STATUS, 0, reference
INITIALIZE, 0, reference
DRAW SHORT POINT TO, 0, reference
DRAW SHORT LINE TO, 0, reference
DRAW SHORT BLANK TO, 0, reference
DRAW LONG POINT TO, 0, reference
DRAW LONG LINE TO, 0, reference
DRAW LONG BLANK TO, 0, reference
DRAW LONG POINT AT, 0, reference
DRAW LONG LINE AT, 0, reference
WRITE TEXT, 0, reference

Group 2: Display file manipulating commands
DELETE, i, reference
INSERT PICTURE, i, reference
INSERT ITEM, i, reference
NEWDATA, i, reference
NEWN AME, i, reference
NEWSTATUS, i, reference
DATA, n, reference

Group 3: Interaction handling commands
WAIT FOR pICK, 0; °
WAIT FOR HIT, 0, °
WAIT FOR POINTING, 0, °
SKIP IF PICK, k, reference
SKIP IF HIT, k, reference
SKIP IF POINTING, k, reference
BEGIN CREATE QUEUE, n, reference
QUEUE IN, 0, °
INSERT QUEUE, i, n
ENABLE, s, °
DISABLE, s, °
END, 0, °

Group 4: Attention source indicating messages
PICK RETURN, s, reference
HIT RETURN, s, reference
POINTING RETURN, s, reference

V statements are of the following form

CO~IMAND, IN"DEX, REFERENCE

Semantics:

COl\1MAND
specifies the operation to be performed.

INDEX
is an integer which gives the index number of the CT
row that is associated with the entity (picture or item)
subject to the operation.

REFERENCE
is a pointer to the entry in a data list ADL where the
data block associated \vith the above command begins.
The delimiter for this data block is the first non-zero
reference found in the following statements.

The index origin of all tables iiS Oue. If a command does

not apply to an object or does not require a data reference,
the respective parameter is set to Zero.

It should be emphasized that the CT row index (or CT
row index, respectively) used for object specification is
sufficient to retrieve the associated name from the name
list as well as to provide access to the associated display
processor code. COMMANDS may be grouped into three
categories as listed in Table II.

Semantics:

(1) 'TO' specifies coordinates as being increments,
whereas 'AT' refers to absolute coordinates.

(2) In the DATA command, n identifies a data block to
the application program.

(3) BEGIN ... END are used to delimit a linear section
of the interaction handling program. WAIT IF causes
the terminal processor to wait for an interrupt and
report the respective action of the user. PICK de
notes a light pen pick, HIT denotes a pressed key
of the function keyboard, POINTING denotes the
indication of coordinatE'13 by light pen, cursor, or
tablet stylus. BEGIN CREATE QUEUE tells the
terminal to reserve a number of memory cells, speci
fied in the data part, under the name n and to create
at the end of this section a report using the DATA
statement of group 2. QUEUE IN is executed during
a WAIT and puts all data supplied by the user
(regardless of their source) into the queue. INSERT
QUEUE tells the terminal to put the content of that
queue into the display file part which belongs to
entity i (thus, IKSERT QUEUE has the same
effect as a NEWDATA statement). ENABLE and
DISABLE cause the terminal to enable or disable
the specified attention sources (light pen, keyboard,
tablet, etc.). SKIP IF combines the WAIT with a
conditioned SKIP command. Whereas WAIT causes
a report of the user's action, SKIP prescribes this
action as the skip condition.

(4) PICK returns an object identifier; HIT returns a
key identifier; POINTING returns a pair of coordi
nate values. IS' gives the attention source.

The reader win notice that the statements of group 1
act as an intermediate language for the display processor
code (DPC), that is, APLG functions2 such as, for exam
ple, POINT or LINE, etc., which are used to generate
pictorial objects, will not generate DPC directly but V
code. The translation of V code into DPC will be per
formed by an interpreter in the terminal. This has the
follo'\ving ad'v"antages

(i) All V statements have the same format independent
of the group they belong to and, thus, we obtain a
very uniform structure of L4. Moreover, the informa
tion types of L4 can be better matched than the
information types of a typical DPC to the ones used
in APLG.

APLG-An APL Based System for Interactive Computer Graphics 527

(ii) The translation of certain V statements may result
in more than one DPC statement. Thus, V provides
a more concise way of coding display processor
operations than the DPC itself.

(iii) The introduction of V provides not only a way to
convey information in a concise, non-redundant form,
but it furthers essentially the portability of APLG
(or any similar system).

The last fact should be pointed out more in detail. V is
constructed so that we have commands for all functions
which a display processor may conceivably have. A dis
play processor, on the other hand, may range from a simple
plotter to a high-performance vector display. Thus, com
mands given to such a sophisticated vector display may be
expressed by L4 statements as well as commands given to a
simple plotter (in the latter case, of course, only a small
subset of L4 will be actually used). As the interpreter which
translates L4 code into ·the DPC of a particular display
system is part of this system, we have no problems to use
the same software (such as, for example, APLG) for a large
variety of different display media. We may consider such a
terminal as being an abstract machine vvhose machine
language is V.

THE "INTELLIGENT" TERMINAL

The intelligent terminal has a preprocessor and a display
processor. The preprocessor has to perform mainly the
following tasks.

(1) Interpretation of V statements and translation into
display processor code (DPC).

(2) Origination and updating of the part of the display
file (CT and CL) accommodated in the terminal,

(3) Identification of picked light buttons or other ob
jects, recognition of attention sources, and formula
tion of respective messages to the application pro
gram.

(4) Acceptance of input from the alphanumeric keyboard.
(5) Execution of given subprograms which enforce a

certain sequence of actions by the user.

(i) V interpretation and display file management

Due to the rigid structure and the very low level of the
V language, interpretation is very simple. The command
code gives directly the entry to a table in which the start
addresses of the command execution procedures (CEP) are
stored. The CEPs may call for their part certain commonly
used sUbprocedures. It has already been mentioned that a
CT index provides access to the related piece of display
processor code. The required operations are to count (to
increment and decrement) and to add. Additionally, logical
operations are necessary for bit masking and testing. All
these functions can be easily performed by a minicomputer
or even aMOS microprocessor.

(ii) Object identification

The object identification routines depend very much on
the type of display terminal and on the fact v'lhether such a
terminal has a light pen or whether identification can only
be done by positioning a cursor and test the coordinates
of the cursor position. The required capabilities are again to
count and add, but also to compare coordinate values.

The most crucial part of the envisioned computer-terminal
symbiosis is the handling of user's interactions. We empha
sized already that for practical reasons we have to find a
''lay to avoid the handling of single actions of the user by
the central processor. Hence, interactions should be auton
omously handled by the terminal. However, requests for a
certain sequence of user's actions are made by the applica
tion program, and the sequence is determined by the logic
of that program. We may conceive an attention handling
program segment as a. more or less complicated decision
tree. If the whole tree is too complex to be handled in the
terminal, we have to break it into subtrees which can be
handled. The simplest case is to chop the entire tree into
pieces such that each piece is a linear section connecting
two branch nodes. In this case, testing and branching is
performed by the application program; whereas all other
steps are executed by the terminal processor.

As the reader may have already noticed, there is a device
in the L4 language which allows to transform such sections
of an attention handling program (which is in APLG repre
sented by a respective function) into L4 code. This device
is given by the BEGIN ... E~D delimiters. BEGIN"
signals to the terminal processor that the following L4
statements form an entity which is a linear part of an atten
tion handling routine enforcing a certain sequence of actions
by the user. During the interpretation of such a 'program',
the terminal processor will enter all the information gathered
about the user's actions into a list of V statements called
'message table' (YI:T). Eventually, on recognition of the
END delimiter, this message table will be transferred to
the central computer into a reserved field, called YI:T, and
subsequently, MT in the terminal will be cleared.

This scheme of handling interactions is certainly very
simple. I t is unsatisfactory if the terminal processor is
powerful enough to handle more than just the part between
two branch nodes of the decision tree vvhich represents an
attention handling program. Therefore, ''le provide in V
the possibility to let the terminal execute larger subtrees.

Principally, the execution of a subtree requires a branch
ing. As the simple structure of the V language does not
include labels, a GOTO is not feasible and hence, the only
way to branch is to use a conditioned SKIP command
together with a parameter k which gives the length of the
skip. In V, the conditioned SKIP command is combined
with aWAIT FOR EVEXT process, where the event is an
action of the user, that is, if the result of the user's action
matches the condition set in the SKIP IF EVEXT com
mand, then the following k commands are skipped, else the
next statement is executed. We would like to emphasize

528 National Computer Conference, 1974

that this is the highest form of interaction handling in the
terminal we dare recommend. Any more complex structures
such as, for instance, recursive use of certain commands,
nesting of attention handling program segments, etc. should
be left to the program in the central computer to deal with.

As in any truly interactive system, control is switched
back and forth between central computer and terminal. The
central computer hands over to the terminal by sending a
BEGIN statement, and the terminal hands control back
together with a report of the interactions that have taken
place in the meantime-when the END statement occurs.

CONCLUSIO)J

It is interesting to see how well our proposed system-which
was in the first place designed for maximal efficiency under
serious technical constraints-complies with a modern
construction rule for software systems, namely to modu
larize such a system into several strata of languages and
their interpreters. If L is a language and I is an interpreter
for that language, the ordered pair (L,I) is sometimes called
a computing system C. In our case, we have a stratified
hierarchy of such computing systems such that, on the
way from the application program in the computer to the
user at the terminal, each interpreter generates productions
in the language defined on the next lower stratum. Listing
these computing systems in drtail, we have:

Location

Computer
Terminal
Terminal
Terminal

Terminal

Language

APLG
V

DPC
PICTURES

Interpreter

A PLG-INTERPRETER
L4-I)JTERPRETER
DISPLAY PROCESSOR
HU:\IAN

INTERPRETER
IXTERACTIOXS INTERACTION

IKTERPRETER

There is also a way back from the IXTERACTION I~TER-

PRETER to APLG via V as carrier of messages and the
L4-INTERPRETER in the central computer. However,
this way back to APLG is not as straightforward as the
way down from APLG, since the user's interactions are
not context free but only interpretable if certain information
from the APLG program and from the DPC program are
available.

An implementation of the APLG system outlined in this
paper is under way at the University of Minnesota. The
environment for this is provided by a CDC 6400 time
sharing system running under the KRONOS operating
system, for which an APL implementation was provided
by W. Franta and G. R. :\1ansfield.4 The terminal is an
IDIIOM I display system of INFORMATION DIS
PLAYS INC. with a VARIAN 620 as 'controllable mem
ory.' The communication link has only 300 baud (and this
will really put our message table mechanism to test).

In order to ensure the feasibility of our concept, we wrote
and tested most of the key functions of APLG. The intra
system communication on the base of V was tested by
elaborate simulations of a 'virtual' computer-terminal
system. The simulation proved a faultless operation of the
respective PRADIS5 module for interactive construction
of 3-dimensional objects. The author's are greatly indebted
to :\1r. J. Hunger of the Heinrich-Hartz-Institute in Berlin/
Germany who performed the simulation.

REFERENCES

1. Iverson, K. E., A Programming Language, J. Wiley & Sons, New
York, 1962.

2. Giloi, W. K., J. Encarnacao and W. Kestner, "APLG-APL Ex
tended for Graphics," ON LINE 72, Conference proceedings, Vol. 2,
pp. 579-599, BRUNEL University, Uxbridge/England.

3. Katzan, H. Jr., "Representation and Manipulation of Data Struc
tures in APL," SIGPLAN Notices, 6, 2, Feb. 1971, pp. 366-397.

4. Mansfield, G. R., APL/KRONOS-An APL Interpreter for the
CDC 6000 Series Computer, M.Sc. thesis, University of Minnesota,
CICS Dept., Minneapolis, Minn., 1972.

5. Encarnacao, J. and W. K. Giloi, "PRADIS-An Advanced Pro
gramming System for 3-D-Display," Proc. AFIPS SJCC, 72, pp.
985-998.

Project FIND-An integrated information and modeling system
for management

by JOHX S. l\1cGEACHIE and DONALD L. KREIDER

Dartmouth College
Hanover, New Hampshire

INTRODUCTION

Project FIND (Forecasting Institutional Needs for Dart
mouth) has been established at Dartmouth College to make
institutional data readily accessible to administrative officers
and faculty members through the facilities of the Dart
mouth Time-Sharing System (DTSS). A concomitant goal
is to develop models of the operation of the institution to
facilitate long-range planning by providing quantitative esti
mates of the effects of policy changes.

Thus Project FIND has a threefold purpose:

(i) to provide a tool, requiring minimal computer ex
pertise, through which administrators and faculty
members can obtain current information on the col
lege's finances, students, staff, and physical facilities,

(ii) to provide a universal format and language through
which members of the college community can manage
their own private data, and

(iii) to provide a capability for making projections of ex
pense revenue trends, tenure ratios, student choices
regarding major fields of study, requirements for aca
demic space and student housing, and so forth.

The first and second objectives have been met. An easy
to-use interactive information retrieval and analysis system
also called FIND-is available through terminals connected
to the Dartmouth Time-Sharing System. The FIND system
has been operational for a year and is used· by personnel in
the offices of the President, the Budget Officer, Personnel
Administration, Alumni Affairs, and Student Affairs.

Significant progress has been made toward the third goal
stated above-namely, toward a capability for developing
institutional models. The FIND system can now also operate
as a program-driven data retrieval and analysis system, con
trollable by programs written by the user in the BASIC
language. Thus programs can be written which use the full
computing facilities of the Dartmouth Time-Sharing System.

The purpose of this report is to discuss some of these
applications of the FIND system and to indicate directions
that further development will be taking.

529

THE FIND SYSTE~r

Project FIND began to take shape in December 1971,
and was officially launched in March 1972. In that month
Dartmouth President John G. Kemeny met with a group of
college officers and consultants to discuss the purposes, a
timetable, and a tentative design for an information retrieval
and modeling system.

The first version of the information retrieval system was
completed by June 1972, the bulk of the programming having
been done by a group of undergraduate students in a course
taught by President Kemeny. Two of these students con
tinued to work on the project during the summer as mem
bers of the FIND staff, and by September 1972, the original
programs had been refined, new programs had been added
to allow simple statistical analyses and cross-tabulations,
several data bases covering faculty and administrative officers
had been brought into existence in a format specifically de
signed for Project FIND, and the first modifications in the
FIND system that would make it accessible to users' pro
grams (for modeling purposes) were completed.

One of the fortuitous aspects of the modeling capability
was that users across the campus were able to write programs
in BASIC to manipulate their own data available through
FIND. Some of these user programs were subsequently stud
ied by the Project FIND staff and incorporated into the
official FIND system for everyone to use. Thus any member
of the Dartmouth community is a potential contributor to
the FIND system, and the evolution of the system in direc
tions needed by its users is ensured.

A great deal of effort was devoted to making the FIND
system easy to use, and a beginning user needs to know only
a few commands in order to access FIND. The most impor
tant of these commands is RETRIEVE, which specifies the
general area of the user's inquiry. For example, the command

RETRIEVE FACULTY, SURNAME, DEPT, RANK, SEX

indicates that the user is interested in the faculty data base
and ,vishes to examine the surname, departmental affiliation,
rank and sex of its members. These four qualifiers are called

530 National Computer Conference, 1974

119 USERS

IBilliJ
FIND (COMPILED) 12 DEC 73 12:38

FIND HERE!

?IRET ADMIN, SURNAME, INITIALS, GRADE, SEX, DEPT, HlREDATEI
*RET: 6 ATTRIBUTES RETRIEVED FOR 271 ENTITIES

LAST MODIFIED 12/07/73
DONE

?ISELECT DEPT - ADMl
*SEL: 14 ENTITIES SELECTED
DONE

?!SORT -HlREDATE!
DONE

? IFORMAT w511
DONE

?lpRINT INITIALS, GRADE, SEX, DEPT, HlREDATE\

INITIALS GRADE SEX DEPT HlREDATE

P 1 M ADM 730906
J 1 F ADM 730901
G 1 F ADM 730821
W 1 M ADM 730814
J 1 M ADM 730430
P 1 F ADM 720901
L 4 F ADM 720201
L 2 F ADM 710819
W 5 M ADM 690701
T 3 M ADM 680901
G 5 M ADM 640915
T 6 M ADM 631001
J 4 M ADM 620901
T 7 M ADM 360701

DONE

Figure 1-A sample session with FIND

attributes; a typical data base may have over one hundred
attributes for almost a thousand members. The attributes
associated with the RETRIEVE command are collectively
known as the working data base. A user's working data base
is usually very much smaller than the full data base.

If the user wishes to focus his inquiry on a subset of the
faculty, he may use the SELECT command, which restricts
the system's attention to members who meet the user's
specified criteria. For example, the command

SELECT DEPT = "HIST"

would narrow the scope of the inquiry to include only mem
bers of the History department.

The SORT command may be used to reorder the working
data base elements in either ascending or descending alpha
betical sequence based on specified attributes. For example,
the command

SORT RANK

will sort the previously retrieved data elements in ascending
order by academic rank. To obtain a descending sequence,
merely precede the a~tribute name by a hyphen, as in

SORT -RANK, -SURNAME

which sorts the working data base in reverse a.1phabet.ical
sequence within descending order of rank. The SORT com-

mand does not cause a physical rearrangement of working
data entities but merely supplies a list of pointers which
indicates the order in which entities are to be processed by
subsequent commands (e.g., PRINT).

The PRINT command is used to display the working
data base after it has been reduced and rearranged by SE
LECT, SORT and other commands. The example in Figure
1 shows how to obtain a list of Admissions Office administra
tive personnel, in descending order by appointment date.
Note the use of a FORMAT command to obtain a printout
which would fit on that page.

One of the most useful commands is DEFINE, which
permits a user to generate new attributes based on combina
tions of existing attributes and constants. Attributes created
through DEFINE are accessible to all other procedures in
the FIND system, including DEFINE itself. The DEFINE
language is modeled very closely on the Basic available on
DTSS, with the exception that attribute names may be used
in place of the one or two character variables permitted in
Basic. The following example illustrates the use of DEFINE
to compute retirement years for Dartmouth faculty mem
bers. Normal retirement is at age 65 except that people
born after September retire a year later.

DEFINE RETIRE
10 LET RETIRE = BRTHYEAR + 65
20 IF BRTHMNTH < 10, THEN 40
30 LET RETIRE = RETIRE + 1
40 END

Statistical functions are available through commands such
as XTAB, which performs cross-tabulations. For example, to
obtain a breakdown of rank versus sex for the previously
selected members of the faculty, the command

~(standard groupings)

XTAB RANK, PTS, SEX, STD, %

l' (starting points)

would enable the user to specify up to eight ranges for the

'RETRIEVE FACULTY, SURNAME. SEX, RANK I
*RET: 3 ATTRIBUTES RETRIEVED FOR 523 ENTITIES,

LAST MQPIFIED 12/05/73
DONE

?IXTAB Rlu"ii.S.PTS .SEX.STD,% I ;fTt; 2 J;¥jIFY INITIAL POINTS FOR RANK

SEX M F

RANK
1 96.4% 3.6%
2 89.1% 10.9%
3 81. 4% 18.7%
4 73.5% 26.5%

523 IN SAMPLE. 67 EXCLUDED.

Figure 2-Sample frequency table

Project FIND-An Integrated Information and Modeling System for Management 531

attribute rank, after which FIND would display percentage
figures for each sex within the specified ranges. The example
in Figure 2 shows a retrieval followed by a cross-tabulation.
Appendix I contains a list of the available FIND commands.

THE FIND DATA BASE STRUCTURE

A data base is a structured collection of information. For
example, data bases may contain student grades, employee
information, or a budget. In general a data base may be
considered as a two-dimensional array. Each row in the data
base represents one entity, e.g., a student, a faculty member,
or a line of the budget. Each column of the data base repre
sents some attribute of the entities, e.g., age, sex, name, rank,
or account type. The value of an attribute associated with a
particular entity is called an item. Items may be either nu
meric or string valued. Figure 3 shows the relationship between
entities, attributes and items.

All attributes and all entities associated ·with a given data
base comprise the permanent data base. Each permanent
data base has a directory which describes how the information
in the data base is stored. The directory includes such
elements as attribute name, file narn,e, protection level, attri
bute type, etc. The relationship between a permanent data
base and its directory is shown in Figure 4.

In most instances, only some of the attributes contained
in a permanent data base are interesting or useful for the
particular problem at hand. Therefore, the RETRIEVE
procedure has responsibility for accessing the data base,
decoding it, and extracting those attributes which are of
interest. This collection of data is then called the working
data base. The relationship between permanent and working
data base is shown in Figure 5. Most FIND commands oper
ate only on the working data base.

INSTITUTIONALIZATION OF FIND

The first data bases that were accessible to the FIND
system were constructed on an ad hoc basis for experimenta
tion. Thus, although they served this purpose well, they
could not be depended upon for up-to-date accuracy. They
were not yet the "official" data bases of the college.

attributes

name age rank address

entities
item

item

Figure 3-FIND entities, attributes and items

DIRECTORY DATA FILES

SURNAME

DEPT

APPTYEAR

SALARY

[SEX IT r1
Figure 4-Directory-data base relationship

Throughout the academic year 1972-73 a major effort was
directed to four problems that required solution before the
institution could "turn over" its data keeping functions to
Project FIND.

1. Updating of files. An effective and simple capability for
creating new data files and for keeping old ones up-to-date
had to be developed. Ultimately, the accuracy of FIND's
data could be guaranteed only if the many officers of the
college responsible for generating such data could also be
assigned the responsibility for updating the FIND files.
Project FIND's data bases had to become the primary and

PERMA~ENT DATA BASE

APPTYEAR

T TTTT
}

SURNAME DEPT APP SEX

s.EX

WORKING

DATA BASE

Figure 5-Relationship between permanent and working data bases

A
T
T
R
I
B
U
T
E
S

532 National Computer Conference, 1974

ENCLODED
SALARY

USER-SUPPLIED PASSWORD BECOMES

FIRST IN PSEUDO-RANDOM NUMBER SERIES

DECODED

~

LAST WORD ,~ ~T_RAN_SFO_RM_U_S_IN_G_L_AS_T_ ~ I LAST WORD I _ ==-y _ RANDOM NUMBER ----"

Figure 6-FIND enciphering technique

"official" repository of the institution's data, not merely
copies of it.

By the summer of 1973 the required capability for updating
files was in existence. From any computer terminal of the
Dartmouth Time-Sharing System, a user can enter the FIND
system and issue the command "UPDATE". He can then
effect a succession of changes in any data files under his
control by merely typing the additions, deletions, and modi
fications directly to the computer. Alternatively he can
accumulate a log within the computer of changes to be
made to an official institutional data base, and he can have
such changes effected automatically" by making an authoriz
ing call to the Data Processing Center.

Given the existence of the UPDATE system, Dartmouth
assigned official responsibility and accountability to the Qffice
of Personnel Administration for the maintenance of all FIND
data bases relating to employees of the college. As of October
1, 1973, the FIND personnel files are the official files of the
college and are kept up-to-date on a day-to-day basis. The
FIND files supersede all of the previous ad hoc files that
were often inaccurate.

2. Selection of data elements. It was necessary to make a
major study of what data is needed by each office or part of
the college to determine who generates and uses such data,
and to learn how data flows from one part of the college to
another. The Office of Institutional Research and Analysis
made such studies in the areas of students and personnel.
The studies produced an inventory of all data needs, identi
fied the redundancies in the collection of data, and pointed
out inconsistencies in the definition and use of data by differ
ent offices. The recently established Personnel Data Base
was made possible as a result of these studies. And the

Student Data Base, currently under construction, relies
heavily on the inventory study.

3. Protection of information (confidentiality). It was neces
sary to develop the technical capability for protecting con
fidential and sensitive data from unauthorized and unin
tended use. By the late fall of 1972, a highly ingenious
security system was implemented, using a technique of en
ciphering sensitive data. The user effects the enciphering
through a password that he himself gives and which is re
tained nowhere in the computer system.

The enciphering technique works as follows. First, con
sider a sensitive attribute, such as salary, which is com
posed of a long series of n-digit quantities. (The data are
stored on disc in an inverted fashion, with all salary values
together in the file.) If there are 300 entities in the data
base and salaries are five digits, then the salary attribute
contains 1500 digits. These digits occupy a certain number
of computer words; the exact number depends on the par
ticular hardware and data packing techniques used. In the
FIND system, 1500 digits occupy 167 36-bit words.

Now consider the password supplied by the user, which
in FIND is an eight-character (72-bit) quantity. This pass
word becomes the first in a series··ofI67 pseudo-random
numbers, each with 72 bits. Thirty-six bits (one word) are
extracted from each pseudo-random number and used to
decode a word from the salary attribute. A schematic repre
sentation of this procedure is shown in Figure 6.

The specific operation applied to the encoded word by the
thrity-six bit random number is an "exclusive or". Because
this operation is a reversible transformation, exactly the
same procedure (and the same 72-bit password) is used to
encode the data in the process of setting up the FIND data
base.

So effective is the enciphering technique, that even a
minute difference in the password given will result in totally
unrecognizable gibberish. If a user loses his own password,
not even the FIND staff can help him out. The only possibil
ity is to re-create the data base.

4. Data Base Accessibility. It has become necessary to
address the question of who is entitled to access data in the

RECOMMENDATIONS ON:

1) INSTITUTIONAL DATA BASE ELEMENTS
2} ACCOUNTABILITY
3} CONFIDENTIALITY
4) PRIORITIES

Figure 7-Project FIND organizational structure

Project FIND-An Integrated Information and Modeling System for Management 533

FIND files. This is, of course, a matter of college policy,
and it is being resolved through extensive consultation with
college officers responsible for collecting data. The final
policies adopted must accommodate the rights of individuals
who voluntarily provide information to the institution, yet
the purposes of Project FIND as a planning tool must not
be unduly restricted.

An institution-wide advisory committee for Project FIND
has worked on such matters throughout the past year under
the chairmanship of Vice President Donald Kreider. This
group approved in principle last May a set of recommenda
tions from the Office of Institutional Research and Analysis
on which data should be considered institutional data (as
opposed to "private" data relevant only to one office). The
committee also approved in principle a set of guidelines on
Confidentiality, Accessibility, and Accountability. Documents
on all such matters considered by the FIND staff and the
several advisory committees are kept on file and should be
useful to other institutions working their way through the
maze of technical, political, and organizational problems en
tailed in the development of management information sys
tems. This aspect of the Project FIND organization is shown
in Figure 7.

REPRESENTATIVE DATA BASE

The budget data base

The budget of the institution will constitute a major data
base under FIND that will tie together all the other data
bases-personnel, students, space, etc.-in the modeling pro
cess. Substantial progress has been made toward creating
this data base.

Appropriate identifiers for the more than 20,000 college
budget accounts have been agreed upon. Attributes that
provide both current and historical information about each
account have been recast into FIND format. Attributes
that relate each account to the college's administrative struc
ture and to other data bases (e.g., personnel and space)
have been included. And an attribute has been included that
achieves a crossover from Dartmouth's organizational budget
format to the functional categories proposed by NCHEMS
(National Center for Higher Education Management). (Dart
mouth is a participating member of the NCHEMS project.)

A test budget data base has been loaded into the FIND
System, and FIND system programs have been used to
manipulate this data and to identify unanticipated prob
lems. For example, problems with the method of encoding
the data were detected and corrected. Additional software
requirements of the FIND system needed for efficient han
dling of very large data bases were spelled out and recom
mended to the FIND staff; these are currently being de
veloped. And, programs for producing the variety of budget
reports needed by operating managers were written and
debugged.

The full institutional budget has now been recast in FIND

format and has been successfully loaded experimentally. De
claring it to be the "official" budget data base awaits only
the required addition to the FIND system of two technical
features: (i) a capability of retrieving efficiently a part of a
data base as opposed to the entire data base, and (ii) a
catalog feature that will enable each college officer to retrieve
just his part of the budget without access to the full budget.

The inclusion of a NCHEMS attribute in the budget data
base makes it immediately possible, under the FIND system,
to recast the Dartmouth budget in a form that permits
comparison with other institutions that cooperate with
NCHEMS. The next crucial step in the long-range develop
ment of FIND is in producing further attributes that permit
the reformulation of the budget along functional lines de
fined especially for Dartmouth. A major effort has begun
on the development of alternative budget models, and these
are expected to be operational by late 1974.

Other data base

There are several uses of Project FIND that are spontane
ous and not part of the main system development. Three
examples serve to illustrate how the accessibility of the
system lends itself to innovation on the part of the college
community:

(i) The Dartmouth College Art Gallery maintains an in
ventory and monitors the distribution of its approximately
14,000 art objects through the FIND system. The file of art
objects is updated by the Art Gallery staff rather than by
the Data Processing Center.

(ii) A complete inventory of faculty involvement in com
mittee and student advisory capacities is maintained in a
FIND data file and is updated continuously by secretarial
staff in the Dean of Faculty's Office. This information was
kept by the Registrar's Office for several years utilizing com
puter programs accessible to exactly one person on the
campus. In September 1973, the information was translated
into the FIND system and became immediately available
to all faculty committees and department chairmen through
their own computer terminals.

(iii) During the summer of 1973, a request from the Presi
dent for historical information on college investments re
sulted in the creation of a FIND data base as the best
vehicle for transmitting the required information to the
President. Although a small data base, containing 21 different
attributes for 62 different entities, its true value lay in not
restricting the President's knowledge to answers to explicitly
formulated questions. Instead, he will be in a position to
experiment 'with the investments data base and to quickly
answer his original questions plus many more that can only
be asked later.

Appendix II contains a partial list of available data bases.

534 National Computer Conference, 1974

APPENDIX I-FIND SYSTEM COMMANDS

Elementary Commands

ATTRIBUTES
EXPLAIN.
RETRIEVE

SELECT

SORT

PRINT

STATISTICS
CANCEL
STOP

Advanced Commands

List attributes in any data base
Explain a command
Sets up working data base for a session

with FIND
Extracts specified subset of working

data base
Re-orders working data base by speci

fied criteria
Displays the working data base at the

terminal
Computes statistical measures
Halts a command
Terminates a session with FIND

CORRELATION Print correlation between two or more
attributes

DEFINE

EXECUTE

FIT

FORMAT
OUTPUT
RETRIEVE

SORT

XTAB

Composes new attributes based on old
ones

Performs FIND commands stored in
a file

Provides linear and exponential fit rou-
tines

Allows flexible formatting of output
Allows output to a saved file
Additional information on use of the

RETRIEVE command
Additional information on use of the

SORT command
Provides frequencies and cross-tabula

tions

Miscellaneous Commands

COUNT
LABEL

LOAD

REDUCE

RENAME

RESTORE

SAVE
SCRATCH

TIME

Count attributes and entities
Insert textual information into FIND

output
Retrieve a previously saved working
data base
Permanently shrink a working data

base
Change the name of an attribute in

the working data base
Restore the working data base to orig

inal state
Save a copy of the working data base
Destroy a portion of the working data

base
Print running time

Data Base Maintenance Commands

UPDATE
IDENT
LOG

EXIT
ALTER

MODIFY

ADD
DROP

Initiates a data base update session
Specifies a list of identifying attributes
Specifies a file in which to record

changes
Terminates a session 'with UPDATE
Specifies data items for immediate

modification
Specifies a list of attributes for de

ferred modification
Creates a new entity
Deletes an entity from the data base

Project FIND-An Integrated Information and Modeling System for Management 535

APPENDIX II-AVAILABLE DATA BASES (DECEMBER 1973)

ADMINISTRATIVE

FACULTY

STAFF

PERSONNEL

DEPARTMENTAL BUDGETS & EXPENDITURES

STUDENT COURSES

PHYSICAL FACILITIES

ART GALLERY COLLECTION

ALUMNI (DEVELOPMENT OFFICE)

ENDOWMENT FUNDS

Design considerations for microprogramming languages*

by GREGORY R. LLOYD and ANDRIES VAN DAM

Brown University
Providence, Rhode Island

INTRODUCTIOX

Historically, microprograms have been developed using tools
which are appropriate to logic designers (block diagrams,
register transfer languages), or systems programmers (micro
code assemblers). 1 With the growth of user microprogram
ming, and the increased demands placed upon computer
manufacturers for firmware support, imp'roved tools and
techniques have been suggested. In particular, microprogram
compilers, i.e., compilers which translate high level source
statements into sequences of microprogram control words,
have been proposed and implemented.2,3 The larger issue to
be faced is the nebulous task of supporting the needs of a
community which includes:

• Manufacturers developing one particular computer
(target machine) using microprogramming as a design
and implementation technique.

• .:\fanufacturers developing a computer system, inte
grating hardware, operating systems, and programming
language support, utilizing microprogramming to tie
system functions together.

• Users developing their own target machines tailored to
applications such as computer graphics, signal process
ing, or interpretation of higher level languages.

• Users or manufacturers who utilize hardware which is
microprogrammable to directly solve one or more
specific problems, without formally defining a target
machine (i.e., simply programming the hardware, or
host machine).

All groups may be able to employ the same particular host
machine (a microprogrammable computer), but their needs
are shaped by different viewpoints. The remainder of this
paper attempts to focus on the basic issue of problem solving
methodologies, particularly, what can be done to make the
task of the microprogrammer less difficult, regardless of the
application.

Probably the major consideration in the design of a micro
programming language is a pragmatic issue--efficiency of
generated code. The second section briefly describes some of
the problems involved in compiler design. Language design

* This research was supported by U.S. Naval Research Laboratory
Contract NOOOl4-67-A-0191-0027.

537

(third section) is constrained by practical limitations on the
complexity of the compilation process. Within these limits,
determined by machine architecture, it may be possible to
design a useful higher level microprogramming language. A
specific example of a tailored microprogramming language is
presented in the last section.

:MICROPROGRAM COMPILERS

General issues

There are at least two distinct approaches to providing
higher level support for a user microprogrammable computer.
One is definition of a hospitable target machine over the host
machine's basic hardware (and possibly a systems language
which generates code for the target machine). It is possible
to define high level primitives in the target machine's reper
toire which closely match the facilities provided in a higher
level language, including flow of control, expression evalua
tion (for complex mathematical operations), data manipula
tion, etc. A number of papers presented at the SIGPLANj
SIGMICRO Interface Meeting (May, 1973) treat the topic
of instruction set design in some detail. 4-7 A typical target
machine could include general arithmetic, logical, and execu
tive primitives in an efficient manner (particularly given
some hardware support to speed instruction decoding8). .

The other approach is to make the microprogramming en
vironment itself reasonably hospitable by providing higher
level support for the direct generation of microcode. This
also has received some attention in the current litera
ture.2,3,9,1O,1l Defining the phrase "high level language" is one
immediate problem. Within this paper, a high level language
is defined as one which has at least the following set of fea
tures:

(1) Symbolic user variables (allocated by the compiler),
(2) Ability to evaluate arbitrary arithmetic or logical

expressions,
(3) Flow of control statements beyond simple (condi

tional and unconditional) GOTO, SKIP, Branch and
Link.

It should be stated that the target machine approach and
the microprogram compiler approach are not mutually ex
clusive: language and target machine design can proceed

538 National Computer Conference, 1974

----o~

V:

C, c'" N~
-------11 '

c,

____ -..,.~i4~

iJi\-- 1)~ -.- 771~ , ~ I ,
c, ... c' C' c.1oI cS: etc I\. .-.' 1\ •••• ~

Figure I-Microinstruction fonnats

simultaneously. For example, the Microdata 32/8 computer
and the MPL language were designed in parallel, reflecting
language constructs directly into target machine operations,
and vice versa. l2 The end result is a PL/I subset which is the
target machine language in much the same sense that ALGOL
is the machine language of the B5500. In another sense, a
higher level language for the host machine can be considered
an abstraction of the host hardware, shielding the program
mer from details (such as loading a shift-amount register),
but constraining him to those functions which are imple
mented at a hardware level.

Host machine microprogram compilers

The general advantages of programming in a higher level
language apply when the compiler happens to generate micro
code--namely, increased programmer productivity, self
documentation, improved maintainability, ease of training,
etc. In addition, an application running in direct microcode
could gain advantages in efficiency and security over a simi
lar software based system. A language can be designed on a
number of levels ranging from problem oriented languages
through "general purpose" languages to machine dependent
languages. Depending upon the design level of the language,
the prograIru.Yficr can be fullJr isolated from the hard"\vare or
can be presented with a set of facilities which allow him to

interact at a register level (a "CODE . . . ENDCODE"
statement, which allows insertion of assembler or machine
language instructions in-line13). The concept of language ex
tensibility can be used to tailor a base language to a specific
set of applications by, for example, enriching the run time
environment with operating system primitives when ap
propriate.

The major disadvantage of microprogram compilers is the
conjectural nature of statements on efficiency of compiler
produced code. Microprogramming has traditionally been
viewed as a fairly esoteric discipline, requiring complete
knowledge of the host architecture and a willingness to spend
considerable time tuning programs to (simultaneously)
conserve control storage and achieve maximum performance.
If the quality of compiler produced code is significantly worse
than that produced by hand, the ergonomic advantages of
coding in a higher level language may be outweighed. Hope
fully, the efficiency requirement can be recognized as a major
influence on language design, and feature selection can be
guided by (1) the functions which can be performed ef
ficiently in hardware and (2) recognition of constructs which
can be compiled to efficient code. Optimization of code pro
ducedfor some· classes of microprogrammable machines is
inherently difficult, and, except for work by Ramamoorthy
and Tirrell, relatively unexplored in the literature.3,2,14

The fonowing section treats some of the problems in com
piler design which relate to the decision to generate micro
code directly from a higher level language.

Problems in compilation to microcode

Microinstruction forInats

Three possible microinstruction formats are illustrated in
Figure 1. The first (labelled V) is typical of the vertically
encoded format. One microinstruction (MI) consists of a
control field F, and a data part D (which might specify
register number(s), literal data, a branch address, etc.). The
N v bits which comprise the operator part COP) are fed through
a decoding network, controlling up to 2Nv different lines, Ci.

Each control line determines a micro-operation (MO) which
might, for example, perform an arithmetic operation, transfer
the contents of one. internal register to another, initi.ate a
memory read, etc. For format V, one micro-operation is
specified in one microinstruction.

The format labelled HI is an example of a horizontal direct
control format. l Each bit in the operator part controls one
of N HI lines. In general, not all of the OP bit patterns are
legal, since some micro-operations cannot be executed in the
same machine cycle (because of conflicting register or func
tion utilization). The number of micro-operations which
could be specified per microinstruction is N HI, the number of
control lines.

The third format (H2) represents a horizontal field-encoded
microinstruction. The OP is split into several fields, each of
which is decoded to control one of a set of (related) control
lines . .J.t\.Lgain, not all '~lalues of the OP ma:,r be legal. It is also
possible for one field (say, Fl) to determine the layout and

interpretation of the remaining fields. The number of micro
operations specified per microinstruction is K, the number of
encoded fields.

In practice, horizontal machines may employ a mixture of
direct and encoded control fields, and "vertical" machines
may have more than a single encoded field. For the sake of
discussion, each field for H2, each control bit in HI, and the
"'ingle field in V will be said to specify the execution of one
micro-operation. The set of operations in a horizontal ma
chine will be described as independent if, during the execution
of each machine cycle, any bit pattern of the OP designates
the execution of N HI (for HI), or K (for H2) parallel micro
operations (the interpretation of the data part is also assumed
to be independent of any micro-operations specified). Again,
the concept of complete independence of micro-operations is
unrealistic, but the degree to which the independence is con
strained is an important concept in the following section.

Compilation models

In the present context, compilation is the process of trans
lating statements expressed in a source language L into a
sequence of microinstructions. One common compiler design
divides this mapping into two separate translation phases.
In the first, syntactic recognition and semantic analysis pro
duce an intermediate form of the source, which will be re
ferred to as a sequence of language primitives (lp's). Typical
primitives include arithmetic and logical operations, register
loads and stores, condition testing and branching, etc. In the
second mapping, lp's are transformed into a sequence of
microinstructions which may be executed directly.

In symbolic form (quadruples, triples, duos15), lp's might
resemble assembly language statements for a sophisticated
target machine, with instruction addresses replaced by in
ternal linkages and operand addresses replaced by symbol
table pointers. The mapping from lp's to microinstructions
could be one-to-one for simple operations, or one-to-many,
for operations such as procedure calls (or arithmetic opera
tions, l"here a 16-bit adder might be used for 32-bit arith
metic).

Figure 2 illustrates three models for compilation, indicating
the two mappings described so far in the boxes labelled
"translation" and "generation". The first (V) is the com
pilation process for a pure vertical machine. The generation
of microinstructions is a process of selecting a sequence of
(legal) OP bit patterns and data parts (the same as the code
generation phase of a normal compiler). The ordering of the
microinstructions may be modified, subject to data dependent
constraints (input/output relations14).

The second and third diagrams in Figure 2 represent com
pilation models for horizontal machines. The HI diagram
represents the compilation process for a machine with totally
independent micro-operations. The generation phase pro
duces a stream of micro-operations. Since only data depen
dencies exist, the micro-operations may be reordered and
optimized, much as the microinstructions for case V. The
composition phase combines M01S into microinstructions,
utilizing data dependency information from the translation
and generation phases. The complexity of the composition

Design Considerations for Microprogramming Languages 539

V: L~translation hlp ---lIgenerat~on J-+MI

HI: L --'lItranslationl __ lp --iI generation H MO ---!I composi tion ~ MI

HD: L ~translationhlp MI

Figure 2-Compilation models

step is determined by the number of micro-operations within
each horizontal control word.

.Ai3 MO constraints are added, the situation approaches that
illustrated by HD, where the generation and composition
phases are inextricably bound, i.e., the rules governing the
composition of MO's are so complex and interrelated that it
is no longer useful to consider the generation of a stream of
independent MO's. The emphasis shifts back to determining
a sequence of legal OP bit patterns which perform some com
posite action. This analysis may be performed statically,
considering the OP as one large operation code field, or dy
namically, by searching for the required bit pattern on an
MI-by-MI basis. In either case, the probability of determin
ing a sequence of microinstructions which utilize all available
resources most efficiently is low (or the cost is correspondingly
high).

In any realistic case, MO constraints for horizontal ma
chines place the compilation complexity somewhere between
HI and HD. Two distinct phases may still exist, but the
complexity of the composition function is increased to in
clude resource, as well as data scheduling.l4•2 It is useful to
categorize the difficulty of microcode generation for a specific
machine in terms of:

(1) Combinatorial complexity proportional to the number
of MO's within each word.

(2) MO dependency in terms of number of shared re
sources which must be managed.

(3) Timing dependency, i.e. the scheduling of operations
which require more than one machine cycle to com
plete (for example, a core reference).

Any of these factors complicate the code generation pro
cess, and their combined effect is synergistic. In these simple
terms, an ideal horizontal organization for the efficient com
pilation of microcode would utilize field encoded control
(reducing the number of MO's per word), each field managing
a disjoint resource set, with no timing dependencies. To some
extent, this type of design is exemplified by the MCU16 and
the A..\TP.17 A different approach to providing a horizontal
host machine is the QM-1,19 where a horizontal (360 bit)
nanocontrol word specifies the micro-operations to be exe
cuted within one major cycle, and an 18-bit field in the micro
instruction selects a particular nanoword.

MICROPROGRAMMING LANGUAGE DESIGN

Discussion

The previous section concerned itself mainly with compila
tion from an unspecified language through to microcode for a

540 National Computer Conference, 1974

variety of machines. Within this section, the inverse problem
is considered, i.e., given a host machine~ is there a higher
level language which may be defined to ease the micropro
grammer's task, without exceeding some "reasonabJe" ef
ficiency bound?

Microprogramming language levels

Categorizing the levels of microprogramming language
support is a relatively difficult task, due in part to some of the
peculiarities of horizontal machines, as outlined in the pre
vious section. One hierarchical description would include:

(1) Symbolic microinstruction assemblers-Straightfor
ward field sensitive specification of control word con
tents.I

(2) Symbolic micro-operation assemblers-Each state
ment of the language corresponds to one microinstruc
tion. Within a statement, micro-operations may be ex
pressed symbolically (for example, in register transfer
notation), AMIL.I9

(3) Symbolic micro-operation languages-A sequence of
MO·stateiIients is composed by the compiler into
microinstructions.

(4) Restricted language with micro-operation state
ments-A mixture of MO statements and language
constructs which map (one-to-many) onto MO's.
TypicaJIy, higher level constructs include flow of
control (IF ... THEN ... ELSE, conditional DO's,
etc.). Composition of MO's is performed by the com
piler. The level of support is analogous to that pro
vided by PL360,20 in that a detailed knowledge of the
host machine's architecture is required. Examples are
in References 2, 3 and 9.

(5) :Machine dependent languages-Higher level lan
guages with some machine dependent features, but
general symbolic facilities such as expressions, data
aggregates (arrays, structures). Explicit specification
of MO's and host machine registers would not be
necessary.21

(6) Machine independent language-A higher level lan
guage with features specified independently of any
particular machine architecture. For example, ALGOL
or an ALGOL subset.

Levels 1 and 2 provide a representation of microinstruction
sequences. If any composition of MO's is required, the pro
grammer must perform this mapping himself. Thus, detailed
knowledge of all MO and timing dependencies is required.
Macro extensions of these languages could provide some
higher levei support, but the complexity of the composition
phase may practically preclude any non-local optimization
of microinstruction sequences.

Levels 3 and 4 provide a composition function within the
language compiler. For horizontal machines, this removes a
large burden from the microprogrammer, who may concen
trate on the specification of operation sequences "vithout ex
plicitly recognizing many of the low level dependencies which

exist within the hardware. A knowledge of host machine
facilities (registers, local stores) and operations is necessary,
but the flavor of these languages is similar to that of normal
assembly language programming. .Macro extensions from
these levels could be extremely useful in building type 5
support.22

Levels 5 and 6 may be similar in syntactic form. The
distinction between the two is analogous to the differences in
design philosophy between a general purpose programming
language such as PL/I and a systems programming language
such as LSD. * For level 5, some commonality in language
features with a general purpose language is desirable, but
constructs which would require a complex run time environ
ment, or volumes of in-line code, are to be avoided (implicit
data conversions, varying string operations, all but the most
primitive i/o facilities, etc.). The process of feature selection
as it relates to the design of a level 5 language for micro
programming is discussed in the following section.

Tailored languages

A language whose features are explicitly designed to coin
cide (to a large extent) with the hardware capabilities of its
object machine will be referred to as a "tailored language".
In the microprogramming context, this corresponds to de
fining a set of language primitives which map directly into
micro-operations, on almost a one-for-one basis, and building
a more expressive source language on this base.

For example, the set of arithmetic and logical operations
supported in hardware define lp's for these binary and unary
operations. At the source language level, these simple opera
tions may be combined to form expressions. Main memory
references might be defined as lp's which would be expanded
to memory address register loads, and memory read/write
micro-operations. This would allow the use of symbolic main
store variables in the microprogramming language to be sup
ported at the source level. Built-in functions could be in
cluded to reflect specific hardware capabilities (bit string
selection, hardware instruction decoding primitives, etc.).

The extent to which this approach may be successful is
determined largely by the architecture of the host machine.
A complex microinstruction forl11at (HI) in. the cOIlJ,piler
model)· \V"ould define a complex set of ip's: which would make
translation from the source language difficult (or conversely,
would define a strangely convoluted source language).

PUMPKIN-MCU SYSTEMS LANGUAGE

A tailored microprogramming language, PUMPKIN, has
been designed for the Microprogrammed Control Unit
(MCU) of the AN /UYK-17, currently under development by
the U.S. Naval Research Laboratory.I6 After briefly describ
ing some of the hardware characteristics of the MCU, some
features of the PUMPKIN base language are discussed.

* Language for Systems Development, a systems programmer's dialect
of PL/l.I3

Descriptions of the two additional levels of the PU~1PKIN
language (base + operating system primitives, extensible
base), as well as a proposed base language manual are con
tained in Reference 21. To date, only the language definition
exists. Future research will investigate some of the optimiza
tion and code generation techniques which would be used to
implement a PUMPKIN compiler.

It;fCU description

The MCU is a 16-bit processor which functions primarily
as the system controller of the AN /UYK-17 Signal Process
ing Element. Components of the MCU include:

• Two 16-word local stores;
• Two memory data channels which (separately) address

words in 32-bit buffer stores;
• A field select unit (FSU), which may select any subfield

(up to 16 bits) of a 32-bit word read from buffer store;
• An arithmetic and logical unit (ALU) with 16-bit opera

tions such as addition, subtraction, logical and, or, ex
clusive or, complement, equivalence, plus a shift capa
bility;

• 16 hardwired interrupt levels;
• Communication with and control of other system com

ponents (including other ~1CU's) across a shared bus
(Z-bus).

The MCU is a horizontal microprogrammed machine with
a 64 bit wide control word composed of 16 encoded fields
which determine source and destination address for parallel
register transfers, ALU operations, parallel buffer store reads
and writes, conditional microinstruction sequencing, etc.

The firmware development support for the MCU is a
symbolic micro-operation assembler, AMIL,19 which includes
a syntax macro capability.23 Programming the MCU requires
careful consideration of operations which may proceed in
parallel within one 150 nanosecond cycle.

PUMPKIN base language features

Excursions from the tailored concept (e.g., for the MCU,
allowing stack operations) should be carefully examined in
terms of (1) utility, (2) code generation possibilities, and (3)
required run time overhead.

Definition of the primitives for the MCU is relatively
straightforward. Arithmetic and logical operations (add,
subtract, and, or, exclusive or, equivalence, complement, left
shift, right shift, shift left circular, increment and decrement
by one) on 16-bit operands, and substrings of 32-bit operands
read from buffer store (maximum length 16 bits) are the
primitive operations. Iterative loop control, interrupt gen
eration/servicing, (one level) subroutine calls, and Z-bus
communications all have hardware support. Extensions to
these primitives include:

• Symbolic variables in buffer store or local store (sub
merging buffer address register operations and read/write
code points in compiled code).

Design Considerations for Microprogramming Languages 541

• Evaluation of arithmetic and logical expressions involv
ing primitive operations.

• Unrestricted subroutine calls (number of levels).
• Flow of control primitives which involve generation of

condition testing and branching code (IF ... THEN ...
ELSE, DO WHILE, DO UNTIL), or address arithmetic
(CASE).

• Data aggregates involving simple address calculations
(one dimensional arrays, structures of bounded length-
32 bits maximum).

• Based storage without dynamic storage allocation, i.e.,
al10wing pointer qualifiers as in LSD, but restricting the
use of based variables (including structures and arrays)
to storage templates. Allocation of storage would be the
explicit responsibility of the programmer.

• Automatic storage foHowing a simple stack frame model
to facilitate the writing of reentrant code (including in
terrupt service routines).

• Substring qualification on the left of assignments (i.e.,
setting bit substrings of words) which involves masking
code, since the FSU selects bit substrings on input opera
tions only.

• Low level interfaces with A~UL, i.e. hardware facility
reservation and use, a CODE ... ENDCODE state
ment.

The syntactic form of PUMPKIN is similar to that of
LSD, with some limitations (no character strings, data ele
ments of 16 bits or less), and several built in functions cor
responding directly to conditions (carry out, adder overflow)
which may be tested within the 2\fCU (see Appendix for an
example of a simple PUMPKIN program). Constructs within
the language are designed so that the translation phase can
produce a simple sequence of micro-operations which imple
ment the specific function. The language itself was designed
by considering features which are supported by hardware
resources. For example, the field select unit allows definition of
bit substring operations and bit string components of struc
tures with low overhead in terms of compiled code.

Other features (such as multiply/divide operators) would
not be provided in the base language, but could appear: (1)
within a well-defined superset of the base language (another
language level), (2) utilizing an extensible version of the base
language to define new data types and operators, (3) as a set
of micro-subroutines callable from base language programs.

REFERE~CES

1. Husson, S. S., Microprogramming: Principles & Practice, Engle
wood Cliffs, New Jersey; Prentice-Hall, 70.

2. Ramamoorthy, C. V., M. Tabandeh, and M. Tsuchiya, "A Higher
Level Language for Microprogramming," MICR06, Sept. 73.

3. Tirrell, A. K., "A Study of the Application of Compiler Techniques
to the Generation of Microcode," SIGMICROjSIGPLAN Interface
Meeting, May 73.

4. Schneider, V. B. and B. W. Wade, "A General Purpose Language
for Minicomputers," SIGMICROjSIGPLAN Interface Meeting,
May 73.

5. Broadbent, J. K. and G. F. Coulouris, "MEMBERS-A Micro
programmed Experimental Machine with a Basic Executive for

542 National Computer Conference, 1974

Real-Time Systems," SIGMICRO/SIGPLAN Interface Meeting,
May 73. .

6. Harrison, M. C., "Language Oriented Instruction Sets," SIG
MICRO/SIGPLAN Interface Meeting, May 73.

7. Broca, F. R. and R. E. Merwin, "Direct Execution Of the Inter
mediate Text From a High-Level Language," SIGMICRO/SIG
PLAN Interface Meeting, May 73.

8. Rauscher, T. G., On the Feasibility of Emulating the AN /VYK-7
Computer on the AADC Signal Processing Element, NRL Memo
2525, Nov. 72.

9. Blomberg, L. and H. Lawson, "The Datasaab FCPU Micropro
gramming Language," SIGMICRO/SIGPLAN Interface Meeting,
May 73.

10. Oestreicher, D. R., "General Purpose Microprogramming Lan
guage," SIGMICRO/SIGPLAN Interface Meeting, May 73.

11. Eckhouse, "A High Level Microprogramming Language (MPL),"
AFIPS Conference Proceedings, Vol. 38.

12. MICRODATA 32/S Computer Programming Language MPL,
Microdata Corporation, 73.

13. Bergeron, R. D., et al., "Systems Programming Languages-A
Survey," Advances in Computers, Vol. 12, 72.

14. Ramamoorthy, C. V. and R. L. Kleir, "A Survey of Techniques for
Optimizing Microprograms," MICR03, Oct. 70.

15. Gries, D., Compiler Constrv.clion Techniques for Digital Computers,
New York; John Wiley & Sons, Inc. 71.

16. AN /VYK-17 Signal Processing Element Architecture (preliminary),
Naval Research Laboratory,June 73.

APPENDIX

17. Barr, R. G., et al., "A Research Oriented Dynamic Microprocessor,"
IEEE Transactions on Computers, Nov. 73.

18. Q M -1 Hardware Level V sers Manual, N anodata Corporation, March
73.

19. AN /VYK-17 Signal Processing Element Microcoding Support Soft
ware (preliminary), Naval Research Laboratory, June 73.

20. Wirth, N., "PL360," JACM, Jan. 68.
21. Lloyd, G. R., et aI., MCV Microprogramming Language Study

Source Level Description, Brown University Technical Report,
Contract NOOO14-67-A-0191-0027, Dec. 73.

22. Dickman, B. N., "ETC-An Extendible Macro-Based Compiler,"
AFIPSConference Proceedings, Vol. 39.

23. Leavenworth, B. M., "Syntax Macros and Extended Translation,"
CACM, Nov. 66.

24. Agrawala, A. K., and T. G. Rauscher, "The Application of Pro
gramming Language Techniques to the Design and Development
of Microprogramming Languages," MICR06, Sept. 73.

25. Anagnostopoulos, P. C., et al., "Computer Architecture and Instruc
tion Set Design," AFIPS Conference Proceedings, Vol. 42.

26. Magel, K. 1., "Preliminary Overview of Extensions to Program
ming Languages," Brown Vniv. Computing Review, June 72.

27. Magel, K. 1., Extension Mechanisms in LSD, Brown Univ. Tech
nical Report, Feb. 73.

28. Rauscher, T. G., "Towards a Specification of Syntax and Semantics
for Languages for Horizontal Microprogrammed Machines,"
SIGMICRO/SIGPLAN Interface Meeting, May 7:3.

The following is a example of a simple PUMPKIN program. It is presented in the interests of providing some idea of the
fotom of the language. For a formal description of the syntax, see Reference 21.

PROC PARSERX (RX);
DCL 1 RX DWORD, "32 BIT RX INSTRUCTION"

2 OPCODE BIT(8), "OPERATION CODE"
2 REGI BIT(4), "SOURCE/TARGET REGISTER"
2 STORAGE_ADDRESS BIT(20),

3 INDEX BIT(4), "INDEX REG"
2 BASE BIT(4), "BASE REG"
2 DISPLACEMENT BIT(12) ;

DCL P ARSED_OPCODE WORD IN LSB (8); "LOCAL STORE B, LOC 8"
DCL REGNO WORD IN LSB(9);
DCL EFFEC-ADDRH WORD IN LSB(lO);
DCL EFFEC-ADDRL WORD IN LSB(ll);
"SIMULATED GENERAL PURPOSE REGISTERS"
DCL 1 GPR (0:15) DWORD IN BSM1(100), "BUFFER STORE"

2 HIGH WORD,
2 LOW WORD;

"THIS ROUTINE IS PASSED A /360 RX TYPE INSTRUCTION AS A PARAMETER, STORES THE OPCODE
AND REGISTER OPERAND IN LOCAL STORE, AND CALCULATES THE EFFECTIVE ADDRESS OF THE STOR
AGE OPERAND (BASE REGISTER + INDEX REGISTER + 12 BIT DISPLACEMENT). IT THEN CALLS EXECRX
TO EXECUTE THE INSTRUCTION."

PARSED_OPCODE +- OPCODE; "SET OPCODE IN LSB"
REGNO +- REG1; "SET REG # IN LSB"
EFFEC_ADDRH +- 0; "ZERO HIGH 16 BITS OF EA"

"CARRYOUT RETURNS THE VALUE OF THE ADDER CARRY WHEN EVALUATING THE EXPRESSION USED
AS AN ARGUMENT. AS A SIDE EFFECT, THE 16 BIT RESULT MAY BE ASSIGNED WITHIN THE FUNCTION."

EFFEC-ADDRH +- CARRYOUT(EFFEC_ADDRL +

DISPLACEMENT+LOW(BASE» + HIGH(Bl'. .. SE);

Design Considerations for Microprogramming Languages 543

IF INDEX -, =0 THEN
IF CARRYOUT(EFFEC-ADDRL +- EFFEC-ADDRL+ LOW (INDEX))

THEN EFFEC-ADDRH +- EFFEC-ADDRH+l;
"ZERO HIGH BYTE OF SUM (24 BIT ADDRESSING)"
EFFEC-ADDRH +- (EFFEC-ADDRH+HIGH(INDEX)) & X'OOFF';
CALL EXECRX; "EXECUTE THE RX INSTRUCTION"

END PARSERX; "C. BERGMAN, AUG 73"

Controller for a flexible disk*

by RONALD G. HARRIS, JAMES E. SUSTMAN and JOHN F. McDONALD

Yale University
New Haven, Connecticut

INTRODUCTION

In late 1971 several manufacturers of mass recording medial
began to announce initial specifications for a class of simple
low-cost magnetic disks based on the IBM flexible disk
initial microprogram system loader.2 These disks were mar
keted for data logging and other applications where repeated
read-write activity was minimal. Their extreme low cost
made it possible to integrate them into inexpensive hardware
configurations as a substitute for conventional disk drives.
The Memorex 651 has characteristics that are typical of the
available Floppy Disk drives and is selected here as the
device to be interfaced.

DRIVE CHARACTERISTICS

The removable medium of the Memorex 651 is a flexible
4 mil Mylar platter about the size of a45 rpm record, costing
about $2 in large quantities. It is similar to the IBM 23FD-11.
Only one surface is used for recording, the density is 3100
bits per inch on the innermost track, data encoding is Fre
quency Modulated (FM), and the maximum capacity of the
platter is 2.5 million bits, assuming the most compact organi
zation. The platter rotates at a speed of 375 rpm, the data
rate is 250 kilobaud, and the read/write head is positioned by
a simple stepping motor. There are 64 tracks on the Memorex
651 (77 track IBM compatibility is available with the
Memorex 652).

A single electronics card handles all level conversion, signal
amplification, and power driving appropriate to the internal
operation. Communication ·with external TTL control logic
is through line receiver/driver pairs specified by the manu
facturer.3

The signals that concern the interface designer are illus
trated in Figure 2. These signals are functionally divided
into four groups which (1) control head motion, (2) sense
circumferential position on the disk, (3) read the disk, and
(4) write the disk. All signals to and from the disk are
asserted low, that is, a (TTL) low level is interpreted as a
logic 1.

* This work was partially supported by the Alfred P. Sloan Foundation.

545

The head motion logic receives three control signals,
STEP IN, STEP OUT, and HD LD, and returns one status
signal, TRACKO. Asserting HD LD (Head Load) causes a
pad to press the recording surface of the platter against the
head. The head is not settled until 20 milliseconds after the
assertion of this signal; the interface must wait before indi
cating that the load operation is complete.

A 10 microsecond pulse on STEP IN or STEP OUT will
move the head toward or away from the center of the disk.
The head takes lOms to move between adjacent tracks and
an additional lOms to settle on the destination track. When
the head is positioned over the outermost track (track 0 by
convention), it closes a switch, asserting TRACKO, which is
the only data available to the interface about the radial
position of the head.

The drive senses circumferential position on the disk
optically, returning two signals, SECTOR H, and INDEX H.
The assertion of SECTOR H indicates the beginning of a
new sector on the disk. The assertion of INDEX H indicates
that the next sector is sector o. Since the drive returns only
these two pulses to communicate the circumferential position
of the disk, the disk must make one full revolution before
the sector count in the interface can be assumed to be valid.

To write on the disk, the interface must assert WT ENB H
(write enable) and then transmit the data string encoded as
in Figure 3 on WT CLKS.4 A clock signal is recorded with
the data to make the read "self-clocking," as opposed to
systems which have a separate timing track, so WT CLKS
is simply the sum of the data and the clock. To ensure
proper synchronization during a read operation, a string of
128 zeros is inserted at the beginning of every record followed
by a synchronizing pattern (it need only be one bit long) in
order to identify when the first word of data has been
"framed." Guard zeros are appended to the end of the
record to reduce noise on the last data bit. The computer or
DMA channel should insert track .and sector identifying
information at the beginning of the data record and a check
sum at the end t() facilitate error detection.

The read logic in the drive separates the clock pulses from
the data and gives two signals to the interface, SEP CLOCK
and SEP DATA (Figure 2). The 128 bit zero header is
necessary to insure correct separation; the controller ignores
the header until the framing pattern is in its buffer because
drive's synch circuit may miss the first bit and fail to lock
onto the data immediately.

546 National Computer Conference, 1974

Figure I-The Memorex 651 Drive (Reproduced with permission by Memorex Corporation, Santa Clara, California)

The drive requires three power supplies, a 5 volt, 1 amp
supply for the logic, a 15 volt, 600 rna supply for the read
and write amplifiers, and a 24 volt, 2 amp supply for the
head position stepping motor. The power supplies are a
major fraction of the cost of the interface.

DATA INTERFACE DESIGN

The design presented here is highiy moduiar, so that it
may be easily adapted to different computers or I/O archi-

tectures. (Figure 4) The modules are:

(A) Read
(B) Write
(C) Sector Match
(D) Track Position
(E) I/O

The I/O module contains the data buffers and all the logic

Controller for a Flexible Disk 547

...
-SEP DATA

....

READ READ HEAD
-SEP CLOCK LOGIC

LIGHT
EMITTING

-WRITE DATA WRITE PROTECT
DIODE

WRITE ENABLE WRITE
AND WHITE HEAD '1

4-- -FILE UNSAFE SAFETY
LOGIC

-FILE UNSAFE RESET~ ______ T-'

tPOWER-UP
WRITE PROTECT RESET

IHEAD
UNLOADED : \>~

r--I-------~ -HEAD LOAD ACTUA ro~ \ ~

TRACK
POSITION

ACTUATOR

-STEP OUT
----------~~ ~--------~

-STEP IN

-LOAD HEAD TRACK "00"

-SECTOR
CONTROL

LOGIC
-LOAD HEAD 1 CARTRIDGE

-VALID LOAD HEAD r DOO;l SECURED ...

-INDEX
HEAD POSITION ACTUATOR STEP CONTROL Q 1 ...

-TRACK "00"

~ ___________ H_E_A_D_P_O_S_I T_I_O_N _ ACT UA TOR STE P CO N T R 0 L ~~ 2

HEAD POSITION ACTUATOR STEP CONTROL 1/)3

+LED ILiGHT EMITTING DIODE)

Figure 2-The Control Signal Interface for the Memorex 651 (Reproduced with permission by Memorex) as shown in the manufacturer's interface
manual

to decode the control signals from the computer. We will
not describe this module since its details are specific to each
computer.

The Read module (Figure 5) performs the conversion of

'~'I 0 nOD DOD 0

·"1
DATA

8 G
(0)

(b)

Figure 3-Example of FM encoding of data (a) and a sample format for
a record (b) showing the 128 bit zero header, synch pattern, data,

checksum, and trailing guard zeros

incoming data from the disk drive's serial format to 16 bit
parallel format for transfer into the computer. The module
also contains the synchronization logic to frame the data at
the beginning of a record.

To initiate a read operation the Sector Match module issues
ST RD (Start Read). The trailing (rising) edge of ST RD
sets the READ flip flop. Once RD ENB H is asserted,

TRACK ACCESS

MODULE

DATA

=::::> -CONTROL

COMPUTER

OR

DMA CHANNEL

Figure 4-An overview of the organization of the controller showing
data paths and control paths

548 National Computer Conference, 1974

SEP CLOCK H

RD ENB H

ST RD H

DATA WINDOW
ONE SHOT

DATA H

, '------. DATA FF

51

C

74164

CLR

RDIS
ROl4
ROl3
ROl2
ROil
ROIO
RD09
ROOS

OUTPUT
TO

COUNT UP & SHIFT H ROO7 COMPUTER

READ BUFFER
STATUS FF

TAKE H
ROO6
ROOS
RD04
ROO3
ROO2
ROOI
ROOD

DATA FRAMED L

INCOMING BIT
COUNTER

SYNCH FF

RD ENB H

SYNCH L

Figure 5-The Read Module Circuit (Read Buffer not shown)

SEP CLOCK is gated from the drive's synch separator to
the DATA WINDOW ONE-SHOT. The leading edge of the
gated SEP CLOCK initializes the DATA flip flop to zero and
triggers a 3 microsecond aperture during which SEP DATA
can set the DATA flip flop. If SEP DATA is asserted during
this interval, the DATA flip flop will capture it. The falling
edge of the DATA WINDOW ONE-SHOT clocks the data
bit into the shift register and increments the INCOMING
BIT COUNTER. The INCOMING BIT COUNTER asserts
its carry (low) when the count is 15. The trailing (rising)
edge, which occurs after the 16th bit is shifted, clocks the
the READ BUFFER STATUS flip flop, asserting TAKE H.
The rising edge of TAKE H should clock the contents of
the shift register into a buffer and notify the computer or
DMA channel to read the buffer. When the buffer has been
read, DATA TO BUS must be asserted to reset the STATUS
flip flop.

If the computer or DMA channel does not read the data
buffer before the next carry, the new data will overwrite
previously buffered data. Thus, data transfer must occur
within 64 microseconds for a 250 kilobaud rate and 16 bit
buffer.

The Read module synchronizes with the data at the be
ginning of a record by asserting liD ENB H, enablingLhe

SYNC flip flop. Once enabled, the arrival of the synch
pattern in the incoming shift register asserts DATA
FRAMED L, enabling the INCOMING BIT COUNTER.
The pattern used in this implementation is '1001' (octal)
which is not likely to occur during the synchronizing
header.

To make the data self-clocking the Write module (Figure 6)
must have an internal time-base to generate the clock to
which the data is added for recording. To initiate a write
operation the Sector Match module issues ST WT (start
write). The trailing (rising) edge of ST WT sets the WRITE
flip flop, asserting WT ENB H and starting the clock,
which generates three timing signals, <I>A, <I>B, and <I>C. These
signals provide edges at two timing points equally spaced
over a 1 microsecond period. Phases <I>A and <I>B are nearly
identical, except that <I>A starts and finishes at a low level,
while <I>B starts and finishes at a high level.

Rising transitions of <I>A increment the OUTGOING BIT
COUNTER. The WRITE DATA SHIFT REGISTER
shifts or loads on falling edges of <I>B, insuring that the
shift/load level input of the register does not change simul
taneously with its clock input. The least significant two bits
of the OUTGOING BIT COUNTER are used in the fol
lowin.g 8equence to generate cluck and data pulses with the

COUNT16 H

+S

Qc

74163

C

WORD DONE l

7404

ClR

EN BP t--+----l
ENBT

<I> A

OUTGOING BIT COUNTER
+5

<l>C

BIT sTRB H

INIT l

WT ENB H

74123 74123

Q <l>B

WT BIT l

Controller for a Flexible Disk 549

I ClR

SO WD 00
H

WD 01

lD WD 02

74166 WD 03

WD 04

C WD 05

I WD 06

51 A WD 07

SOH~D 08
WD 09

. lD WD 10

74166

C

WD 11

WD 12
WD 13

WD 14

51 A WD 15

+5

INIT l

WT ClKs

OUTPUT
TO DISK

500ns 500ns r P---------+------j-.J WRITE DATA

SHIFT REGISTER

WRITE FF

ST WT

Figure 6-The Write Module Circuit (Write Buffer not shown)

proper timing:

States

QB QA

o 0
o 1

1
1

o
1

Action

Advance or load shift register.
Generate synch pulse on drive's WT
CLK line.
Enable data to WT CLK one-shot.
Generate a pulse on WT CLK line if
shift register data bit is one.

Finally, COUNT16 H asserts the clear input of the OUT
GOING BIT COUNTER and the load input of the shift
register. The next falling edge of cpB then loads the shift
register and the subsequent rising edge of cpA resets the
counter.

The load operation transfers the contents of the write

buffer to the shift register and asserts GIVE H. In order
to insure an uninterrupted flow of data to the disk, the
write buffer must be reloaded before the next assertion of
COUNT16 Hand cpC H. If DATA AVL L does not reset
the WRITE BUFFER STATUS flip flop before COUNT16 H
is asserted again, STOP L is asserted, WT ENB H falls,
and the CLOCK stops after one final rising edge on cpA
(which clears the counter).

SECTOR AND TRACK CONTROL

The Memorex 651 disk platters can be formatted for 32
sectors per track, but the information capacity is reduced
to 2.2 megabits, or 88 percent of the maximum capacity,
when this is done. With the disk divided into only 8 sectors,
97 percent of maximum capacity is achieved. Since every
sector must be written to completion, division into 8 sectors

550 National Computer Conference, 1974

SECTOR H ----t-----------,
LSB

~--~----~D Qr-9-~~

7474

C

SECO

SECI

SO 3900
MATCH H

51

+5

RE A DY H --1I-t---t
RD H--I--+~

WTH--~~~
52

S_EC_2 ________)fJ 8242)()---...-.. OUTPUTS TO
READ & WRITE
MODULES

Figure 7-The Sector Match Module

offers a reasonable compromise. The Sector Match Module
divides the disk into 8 logical sectors.

The SECTOR COUNTER of Figure 7 is a five bit counter
made from a four-bit synchronous counter and a single
flip flop for the least significant bit. The three most significant
bits define the logical sectors. The index pulse asserts CTR
CLR so that the next sector pulse will reset the SECTOR
COUNTER to zero. Whenever a sector match occurs with
the sector (SECO, SEC1, SEC2) specified by the current
operation, a pulse is generated for ST RD or ST WT if
either is enabled.

Track addressing is handled by the Track Address Module
shown in Figure 8. Once the ACTUAL TRACK POSITION
counter is set to the correct value, the computer need only
specify the target track address (TO,T1,T2,T3,T4,T5) and
pulse NEW TRK H. The Track Address Module compares
the target track and the current track, and, after waiting
200 ns to complete the comparison gates, a 10 microsecond
pulse to either STEP IN L or STEP OUT L. At the same
tirne, a 10 IllIS delay ilS generated tu alluw Lhe head ISeLUe.
While the result of the previous comparison was not "equal,"
the falling edge of the settling pulse is gated to the up or
down count input of the ACTUAL TRACK POSITION
counter by MVD L, continuing the motion.

The program should initialize the ACTUAL TRACK
POSITION counter before the first disk access by asserting
TINIT H and NEW TRK H. TINIT H sets the target
track (TO, ... , T5) to zero and starts the step out sequence

cycling the head toward the home position. A microswitch in
the drive senses when the head is home, asserting TRACKO H
which clears the ACTUAL TRACK POSITION counter.

The HD LD H signal must be asserted for the duration
of any read or write activity. A pulse is generated on the
rising edge of HD LD H which provides sufficient delay for
the pressure pad to engage the platter.

When any head motion is taking place, the Track Address
Module asserts MOVING L to prevent the controller from
attempting to read or write the disk until the head has
settled. INDEX H triggers a 160 ms pulse from a retrigger
able monostable multivibrator. As long as the drive is up
to speed, this pulse is continuously retriggered, enabling
READY H, which may be read as a status bit by the com
puter. Finally, when the unit has READY H asserted and
neither RD ENB H or WT ENB H is asserted, DONE H
is asserted.

STATUS SIGNALS

If this interface is used in a program transfer controller,
GIVE H and TAKE H signal the computer to read or write
the device's buffer. In a DMA controller, these signals in
struct the DMA channel to transfer data to or from memory.

Read and Write are not symmetric with respect to the
action taken when a buffer haR not been transferred in time.
The Write module has its own clock, enabling it to detect
the end of a write cycle and shut itself off. Read, however,

HD lD H

T5

T4

T3

T2

T 1

TO

74123

20ms

Qo Qb Qc Qd Qo Qb

TRACK 0

ACTUAL TRACK

POSITION COUNTER

Controller for a Flexible Disk 551

STEP IN l

INIT l STEP OUT l

TRACK EQUAlITY fF

Figure 8-The Track Position Module (Head Load timing included)

is clocked by the data, and so may receive no further pulses
after the last valid data has been read. Therefore the com
puter or DMA channel, which knows when the last datum
has been read, must reset the READ flip flop by deasserting
the enabling input, RD H. DONE H signals the completion
of a disk operation, i.e. Had Load, Move Head, Read, or
Write, and will normally cause an interrupt to the host
computer.

THE PROGRAMMER'S VIEW

The four modules described here are the basis of any
design for an interface to a specific computer. The details of
how specific controi iines are driven, or how transfers of data
are accomplished, may be found in the computer manu
facturer's interface manuals.6 •7

We have built a program transfer controller for the
Memorex 651 and the Digital Equipment Corporation PDP-
11 using these modules. (Figure 9) The interface plugs di
rectly into a PDP-ll Small Peripheral Slot and requires
only the DEC M782 interrupt and M105 bus address
modules.

The PDP-l1 interface has three program-addressable
registers:

(1) CSR
(2) TAR
(3) DBR

Control and Status Register
Track Address Register
Data Buffer Register

Through these registers, the computer program can initiate
activities on the disk, transfer data, and determine the
status of the disk. In addition, the interface can generate
two different interrupts to the computer: a "status" interrupt

552 National Computer Conference, 1974

Figure 9-Interface collage board together with a view of the drive electronics and some sample platters

which indicates the completion of a command, and a "data"
interrupt which is a request to transfer the next word of
data to or from the DBR.

The commands to the interface are to read or write sector
number (SECO, SECI, SEC2), to move the head to track
number (TO, ... , T5), and to load or unload the head. The
status information available to the computer is head loaded
or unloaded, present disk sector, actual track address, ready
for next command, require next data transfer, and head home.

SUMMARY

We have presented a design for a simple disk controller for
a Floppy Disk. The low cost of both platter and drive make
the Floppy Disk an excellent substitute for a conventional
disk on a small minicomputer system. The device can be
used for both data and the resident operating system since
in our experience media wear has proven low and data
reliability relatively high (approaching the quality claimed
by the manufacturer).

ACKNOWLEDGMENTS

The authors wish to thank C. Minter, R. Tuttle, J. Zornig,
M. C. van Leunen and C. Carr of Yale University for their
assistance. We would also like to thank P. Weiner of Rand
Corporation for his contributions to the success of the project.

REFERENCES

1. Davis, Sidney, "Disk Storage for Minicomputer Applications,"
Computer Design, Vol. 12, #6, June 1973, pp. 55-66.

2. Painke, Helmut, "Initialization of Microprogrammed Machines,"
Proceedings of the 5th Annual Workshop on Microprogramming,
Sept. 25, 1972, pp. 3-7.

3. Interface Manual for the Memorex 651 Floppy Disk Drive, Memorex
Corporation, Santa Clara, California.

4. Hawkins, Joseph, Circuit Design of Digital Computers, Wiley, 1968,
Chapter 9 (magnetic Surface Recording).

5. The TTL Data Book, Texas Instruments Incorporated, P.O. Box
5012, M.S. 84, Dallas, Texas.

6. The Peripherals Handbook-PDP11 , Digital Equipment Corpora
tion, Maynard, Mass. 01754.

7. Peatman, J. B., The Design of Digital Systems, McGraw Hill, 1972,
Chapter 6.

Planning and design of data communications networks

by WUSHOW CHOU

N etwor k A rw1 ysis Corporation
Glen Cove, New York

INTRODUCTION

The worldwide trend in computers in the 1970's has been the
movement from off-line to on-line systems and the growing
integration of computing and communications. It is expected
that 70 percent of all computers will be connected to terminals
via communication facilities by 1980. This trend has stimu
lated new applications for integrated systems, generically
termed data or computer communications systems, and has
broadened the current user base for existing applications.

As a result of this, communications systems are becoming
increasingly larger and complex. In addition, innovations in
system design concepts, hardware features and transmission
services have accelerated. It is not easy for a communications
network designer to cope with the complexity and the inno
vations that are being continually introduced. When he is
just becoming accustomed to character oriented data com
munication control procedures as a way of life, he is told
that the advanced control procedures are bit-oriented. W-hen
he is just about to understand the concept of store-and
forward packet-switching for computer communications he
is exposed to "ring" structured network concepts. W-hen he
has begun feeling comfortable with multiplexers, he is faced
with programmable concentrators and front-end processors
-with endless options. W-hen he is just about to think that
modems and analog signals are natural ways to transmit
digital information, he realizes there will be digital trans
mission services and digital interface units. W-hen he is still
struggling to understand and distinguish among the various
terrestrial transmission services offered by common carriers,
he is confronted by the emergence of domestic satellite
communication services that may save him money. The list
of these dilemmas is endless. A system composed of several
hundred terminals used to be classified as "large"; now
there are systems with thousands of terminals. Many existing
systems are experiencing a rapid growth in traffic volume,
and a corresponding increase in response time. It is fair to
say that almost every data communications analyst and
network designer has his share of worrying and uncertainty
about his system. Rules of thumb obtained from previous
practical experience alone are no longer adequate except for
very simple cases. Or, for some situations, there is no such
rule at alL

How should a manager conduct the planning or upgrading

553

of a modern data communication network? How can a
designer or an analyst evaluate the best system concept and
design strategy for his system? How can a user select the
best cost/performance communication devices and trans
mission services for his system? W-hat are the impacts of
new technologies and the proliferation of new devices, new
services, new tariffs, and new vendors? Are there design
and analysis tools available to assist the designer or analyst
make his decision?

The purpose of this paper is to present concise answers to
the questions posed. These answers are an overview of the
state-of-the-art techniques and approaches in the planning
and design of data communications networks. Rules of thumb
and simple concepts that are readily available in trade
magazines are not emphasized. Instead, we will concentrate
on the new, sophisticated techniques which have been spe
cially developed to handle the complex problems present in
modern data communications networks, and are used by
leading experts in the field.

Some of the above mentioned questions are treated in
detail in Lynn Hopewell's, "Planning in the Data Communi
cations Environment,"l Pat :McGregor's, "Effective Use of
Data Communications Hardware,"2 Mario Gerla's, "New
Line Tariffs and Their Impact on Network Design,"3 and
Aaron Kershenbaum's, "Tools for Planning and Designing
Data Communications Networks."4 Another purpose of this
paper is to provide linkage and continuity among these four
papers. Terminology or concepts that are mentioned in this
paper but not discussed in detail in this paper or any of the
above four papers is likely to be found in James Martin's,
System Arw,lysis for Data Transmission. 5

MANAGEMENT AXD PLANXI~G

In most large communications networks currently in oper
ation, costs can easily be reduced by 15 percent or more
with only minor alterations in the network. The cost savings
can often reach 30 percent or more if reoptimization of the
whole network is allowed. Furthermore, the cost reductions
can be realized without degradation in performance. Indeed,
both cost and performance can often be improved simul
taneously.

The implication of the above statement is that the existing

554 National Computer Conference, 1974

networks are not properly planned and designed. Why is
this so? If one has to point a finger, the traditional corporate
structure is to blame.

Traditionally, corporate communications systems have
been left in the hands of middle or low level managers, mostly
with limited technical background. W"ith the emergence of
data communications, which demands a broad range of
knowledge in both practical engineering and advanced theory,
the top management finds it even more undesirable to exer
cise direct control over the planning and operation of com
munications networks. Let us now examine the consequences
of this lack of interest and understanding of the complexity
of the problem.

Middle level technical managers who often have the major
responsibility for planning and operation face many diffi
culties. First, these network managers are usually technically
oriented. They often do not have enough training in manage
ment. They are also likely to have the characteristics common
to almost all technical people, overestimating their ability
and overcommitting themselves for technical projects.

Making the whole planning and operation process worse is
th_~ fact that their hands are~Elually tied. It may be relatively
easy to get approval from the top management for tangible
expenses such as buying communications equipment and
paying line costs. It is considerably harder, however, to
obtain funds for less tangible expenses, such as program
development and seeking expert assistance during the plan
ning and design process. Thus, they must make compromises
within the limitations of their budgets. Furthermore, they
do not want to risk user dissatisfaction. As a result, the
tendency is to overdesign networks, using more lines and
equipment than is actually necessary. So the small saving
in the planning stage often results in a large increase in the
cost of the final network. Also, the overdesign may not
guarantee satisfactory performance.

Due to their relatively low level in the organization
hierarchy, the network managers do not want to chance
any possible blunder. This usually means that they would
hesitate to initiate any innovation or change unless it is
absolutely necessary.

Another difficulty is the lack of coordination among
different groups providing technical assistance to one another
ina broad data processing system or a larger corporate com
munications system, of which the data communications net
work is a part.

Probably the single most significant factor that contributes
to the inefficient designs is a general underestimation of the
complexity of data communications. Data communications
networking is an evolving, new technical field. To be able
to master this field, one needs to kno"\v computer soft'\vare
and hardware, communications hardware, transmission fa
cilities, line tariffs, human psychology, queueing theory,
statistics theory, communications theory, advanced compu
tational techniques, and the most advanced network optimi
zation techniques. Some of the advanced techniques may be
the result of the most current research. He must be aware
of the new developments in the field. In addition, he must
be clever and think innovatively. There are not many people

who possess all these capabilities. Without knowing this
situation, a big corporation's management is likely to think
that somebody in the company should be able to develop an
expertise in the area of data communications networks, or at
least it should be easy to hire someone with this expertise.
In some cases, usually out of desperation, assistance from
consultants is sought. However, with the notion that any
of the many data communications consultants can do the
job, technical competence does not always play enough of a
role in the selection of a consultant. A consequence of this
is that one may not get the necessary expertise.

This whole section has been discussing the negative part of
the management planning process. W-hat is the positive side?
In this author's viewpoint, but not the author's alone, the
improvement can be achieved by upgrading communications
management to the corporate management level. The net
work manager with management background should force
himself to be technical; the network manager with technical
background should force himself to acquire management
ability. There is actually a trend, which is taking hold,
though slowly, toward the upgrading of the communications
manag~ment _ and the merging of both technical and mana
gerial talents into the management. One can observe this
trend by the fact that the chief executive officers of some of
the new specialized common carriers have reputations of
superb ability in both the technical field and management.

REQUIREMENT ANALYSIS AND DESIGN
CONSTRAINTS

Successful implementation of a data communications sys
tem depends to a great extent on the thoroughness of the
data traffic analysis and the user requirement analysis.

Gathering traffic information is the most tedious part of
the planning. Traffic information should be collected from
every user by means of current measurements and future
projections. To be included in the traffic information for
each terminal and for each type of message or transaction
are distributions of the number of transactions per unit time
during the peak hour, average day and peak day, input
message length distribution (number of characters per mes
sage), output message length distribution, and priority. It is
almost impossible to accurately measure and project this
information. However, one should try his best. It is often
helpful if the planner visits the users to assist them and to
validate the information supplied by them.

Even more uncertain than the traffic statistics and pro
jections are the users' re9.uirements on network performance.
In general, uSers do not know exactly what they wanL.
Sometimes they may demand a level performance which is
practically impossible. Other times, they demand a per
formance level that they may not need but must pay a high
price to attain. If cost is not a concern, any user would like
to see negligible response time and almost perfect network
reliability. Apparently, no one can afford to pay for such
level of performance. But users usually do not have the
feeling for the cost/performance relationship. It is the

planner's and the designer's responsibility to educate the
users, to show them the relationship between cost and per
formance, and thereby assist them in modifying their per
formance requirements to reasonably obtainable levels. The
traffic information and the users' performance requirements
thus form the constraints for the design.

PERFORMANCE CRITERIA AND
CONSIDERATIONS

A general goal in designing a data communications network
is "to design a minimum cost network satisfying performance
requirements or criteria." A common slogan in this field is
"improving the cost/performance ratio." W-hat is perform
ance? It means different things to different people. For a
well designed system, the performance should be measured
by the following criteria: blocking probability and/or message
response time, traffic capacity or throughput, network relia
bility, transmission error rate, and sensitivity to variations
in traffic level. Knowing the traffic bottleneck is also an
important piece of information, especially for future expan
sion and upgrading. However, it is not generally used to
measure current network performance.

Blocking probability

This criterion is used to measure the promptness with
which a data communications system responds to calls from
dial-up terminals. It can be defined by any of the following
three factors:

1. At least "A" percent of calls obtain access to a com
puter port within "B" minutes (this definition is used
for systems in which to have a connection, the terminal
must first dial to a switchboard; an operator then
attempts to connect it to an empty computer port).

2. At least "C" percent of calls obtain access to an
empty port on the first attempt.

3. "D" percent of calls obtain access to an empty port
with no more than two attempts, three attempts, etc.

The parameters A, B, C, and D are constants determined
by user requirements or network planners. For example,
"A" can be 99, "B" 5, "C" 95, and "D" 99.

Message response time

This criterion is used to measure the promptness with
which a system responds to terminals connected to the
system by leased or private lines. Message response times
have different definitions at different parts of a data com
munication system. So far as the users are concerned, "termi
nal response time" and "overall response time" are most
meaningful. The terminal response time is defined to be the
time required from the instant the "transmit" or equivalent
key on a terminal keyboard is depressed to the moment the
reply message begins to appear at the terminal. This is the

Planning and Design of Data Communications Networks 555

most commonly used criterion. However, it has serious draw
backs when used as a measure of the "service promptness,"
since a user may have waited a long time at the terminal
before his message is keyed in. The overall response time is
the elapsed time from the instant that a user or a message
arrives at a terminal to the moment the user is completely
served or the reply to that message is received. The response
time requirement is usually defined as "average response
time should be no more than X seconds" and/or "response
time for at least Y percent of transactions should be no
more than Z seconds."

System capacity or throughput

Capacity in its most liberal interpretation is often taken_ o _

to mean the maximum amount of traffic, in terms of trans
actions per second, characters per second, etc., that a system
can carry. Unfortunately, such a definition would be totally
unrealistic since a user, attempting to send messages into a
system operating at this capacity, would experience in
tolerably long delays from the time he inputs his message
to the time he receives a reply.

For a more practical definition, the capacity is defined as
the maximum traffic that a system can carry, while satisfying
the blocking probability criteria and/or response time re
quirements.

Network reliability

While the failure rates, MTTF, and MTTR of the equip
ment and lines are often beyond the control of network
planners, the network's reliability can usually be strengthened
with proper network structures. Again, the definition of
reliability varies according to usage. For most purposes, at
least one of the following definitions is applicable.

1. Percentage of time a terminal can communicate with
the central computer.

2. Percentage of time an office can communicate with
the central computer (the office may have more than
one terminal).

3. Percentage of time a terminal can communicate with
any other terminal (this definition applies when there
is direct inter-terminal communication).

4. Percentage of time an office can communicate ",ith
any other office.

5. Average number of terminals or offices that are con
nected to the network.

6. Average number of equipment failures, or the average
man hours required for repair, in a day or other unit
of time (this definition is usable for equipment main
tenance crews).

Sensitivity

A system may behave properly if the traffic volume is
within the projected range, but break down entirely if the

556 National Computer Conference, 1974

traffic exceeds the volume for which the system was designed.
Thus, a good planner should be concerned 'with the effects
that the system would experience if the actual traffic is
above the projection. He should make sure that a small
variation in the projection does not create intolerable re
sponse times, or blocking probability. He should create a
curve like the one shown in Figure 5 during the planning
process.

Transmission error rate

The transmission error rate is a function of message size,
line conditioning, and hardware characteristics. It is more
critical in a centralized data communications environment
than in that of a distributed computer network. That is
because the former usually does not have error detection or
correction features, while the latter does.

As an example, suppose the error rate is not allowed to be
more than one in every thousand characters. The designer
or planner should calculate the error rate for his candidate
system or network. If it is less than 0.001, he is safe. If not,
he has two choices. One is to add error detection and cor
rection features to the terminals or terminal controllers. The
other is to redesign the system, i.e., use lower speed modems,
and fewer terminals per multidrop line, etc.

Traffic bottleneck

After a system has been designed to satisfy specified
traffic requirements, the traffic bottleneck of the system
initially is not a characteristic of interest. However, if in the
future the network has to be upgraded to handle more
traffic, knmving where the traffic bottleneck is in the network
helps to estimate the incremental cost of expanding the
network's traffic handling capacity. For example, if the bottle
neck is the high speed line between a concentrator and the
central computer, it is quite simple to upgrade the network
capacity, either by adding an additional line or by using
modems of higher speed. On the other hand, if the bottleneck
is at the central computer, the upgrading would be costly.

SELECTION OF COMMUNICATION DEVICES

With the advancement of solid state electronics, communi
cations devices become ever more versatile and generous
with options. There are numerous possible combinations
available for improving performance, reducing communi
cations cost and satisfying special requirements. However,
these goals are not easily achievable. One must know what a
vendor has "not" said, what devices are most effective for
specific network structures or performance requirement, and
how many of each particular device should be used.

A high speed modem can increase throughput, improve
response time, and may even reduce costs, but one has to
be aVlare that the transmission error rate is much higher 011

a line with a higher speed modem. Sometimes, this high
error rate prohibits the use of high speed modems with
non-intelligent terminals. A modem sharing unit can save
cost in a system in which several terminals may be co-located
in a same office and share the same multidrop line, but then
network reliability will be lowered. On the other hand, a
combination of modem sharing units and port or line sharing
units may improve reliability as well as reduce costs. A
multiplexer or a concentrator may reduce overall communi
cations cost, but only under particular traffic and operational
environments. Without proper planning, the introduction of
multiplexers and/or concentrators will degrade network per
formance, and even increase the costs. For more details,
refer to Reference 2.

SELECTION OF TRANSMISSION FACILITIES

All data communications network need transmission lines.
The planner must choose between dial-up and dedicated
lines, choose the right line speed, and calculate and compare
line costs.

In the diai-up case, a terminal needs to be connected to the
network by dial-up only when there is a need for actual
communication. In the dedicated line case, a terminal is
connected to the network via a leased or private line and is
connected regardless of whether or not there is any actual
transmission taking place at a given time. Dial-up connections
are used if terminal locations are not fixed (like traveling
salesmen's portable terminals), terminals do not belong to a
same organization (like in a time sharing environment),
terminals are used in remote batch environment with low
utilization, or terminals are sparsely located with low utili
zation. Presently, the dial-up arrangement is either by direct
distance dialing (DDD), foreign exchange, or WATS lines.
(For the definitions and applications of these three, see
References 5 and 6.)

The choice of terminal speed depends mainly on the appli
cation, performance requirements, available line tariffs, and
cost. It may be determined by rules of thumb, experience,
or standard speeds of terminals for the specific application.
The simulation program described later and in Reference 4,
can be used to deterIT'ine response time· given specific line
speeds to see whether a specific speed satisfies a given re
quirement, and to evaluate cost/performance tradeoffs using
different line speeds. In the same network, different terminals
and communication devices may be connected to lines with
different speeds.

Before the proliferation of specialized common carriers,
such as MCI, it was relatively easy to select a.nd interface
a specific line type and to calculate line costs, since the user
had the convenience of interfacing and di[l.ling with a well
defined transmission facility and common carrier. Now, with
existing and forthcoming special common carriers of various
types, numerous new line tariffs and modifications to old
tariffs (AT&T's Hi/Lo Density, Digital Data Service, etc.),
and the addition oi domestic satellite communications service

and digital transmission service, users are confused. (Com
munications consultants are happy, however.) The determi
nation of line costs and optimal network topologies is harder
than before. The least line cost for routing a line connecting
two terminals or devices in a network is no longer necessarily
a direct connection, or the one of minimum distance. In
some situations, hand calculation is impossible and a special
computer program is necessary. For more detail, see Refer
ence 3.

NETWORK STRUCTURES

Network costs and performance depend greatly on the
structure the planner chooses. In general, there is no easy
way to determine a best structure. Repetitive simulation and
design are required to determine the most desirable one. The
following are the most commonly used network structures:

1. Point to point connection via dial-up.
2. Point to point connection "with leased lines.
3. 2\!Iultipoint tree-structured connection. The tree struc

ture usually terminates at a multiplexer, concentrator,
message switching processor or central computer. In
general, the tree network and terminals are so con
nected that when one device is transmitting a message,
it is transmitted to every other device connected in
the tree. (This is in contr3st with the ring structured
network.) However, only the ones with proper identity
would actually receive the message.

4. :Multipoint ring structured connection. In this struc
ture, terminals or devices form a ring or loop as
shown in Figure 2. W"hen terminal A is sending a bit
to terminal B, no other terminal knows anything
about this bit. (This is in contrast with the tree

Response Time

Throughput

Figure I-Response time vs throughput (Useful for performance
sensitivity evaluation)

Planning and Design of Data Communications Networks 557

Switching
Computers

1

Figure 2-Ring-Structured network

network.) If this bit information is not for B, B then
passes it to C, and so on. At least one of the devices
on the ring is a computer which is either the central
computer or is a message switching computer capable
of switching a message from one ring to another.

5. Multiplexed structure. Several low speed point to
point lines or multipoint tree structured lines are
terminated at a multiplexer; the multiplexer is then
connected to a distant multiplexer with a high speed
line. By this arrangement, every low speed line is
connected to the distant site as though each had its
own line, rather than sharing with other lines.

6. Hierarchical ring structure. Lower level rings are con
nected to higher level rings via a message s"ritching
computer.

7. Hierarchical structure (without rings). Terminals are
connected to concentrators or message switching com
puters first. These computers are then either con
nected directly to a central computer or connected
among themselves.

DESIGN TOOLS

Due to the complexity of many data communications
networks, hand analysis and design becomes almost impos
sible. Computer programs for various analysis and design
functions are essential. The usefulness of such programs
relies heavily on how convenient it is to repetitively run the
programs. Thus, efficiency in size and rUIL--llng time is as
important as accuracy. The following is a list of important

558 National Computer Conference, 1974

Cost

Every curve represents a potential
network structure

Throughput

Figure 3-Cost vs throughput for a fixed response time (Useful for
evaluation of network structure alternatives)

design tools:

Contention simulation. program: Determining blocking
probability

This program is useful for dial-up termin~ls. The output of
the program should give the distribution of blocking proba
bilities for each of the following: number of users (terminals),
number of ports, distribution of number of calls per unit
time at each terminal, call holding time distribution at each
terminal, and distribution of time intervals between two
consecutive attempts to obtain a channel for the same call.

Central processor system configuration program: Verifying
performance for specified CPU configurations

For specified CPU and peripheral device types, the pro
gram should indicate whether the specified configuration
satisfies throughput and/or response time requirements. If
so, the total time span spent by a message in the CPU and
peripheral devices will be given. If not, the bottleneck causing
the oversaturation will be indicated. Analytic queueing
models, as opposed to brute force simulation and analytic
closed form formulae, should be used to develop this module.
Brute force simulation of the· CPU is too complicated and
too time consuming, with respect to both development and
execution.

Network simulation program: Simulation of the whole data
communications system

Given a network configuration and traffic requirements,
the module should be capable of supplying terminal response
time statistics to provide a response time-throughput re
lationship as a function of network configuration. This is done
by simulating a whole system, including regular and intelli
gent terminals, multidrop lines, concentrators, trunk lines,
DCP's and CPU's. For effectiveness and efficiency, simu
lation, analytic formulae, queUeing models, and enlpirical

distributions should be judicially mixed into the program.
Specifically, intelligent terminals, concentrators, and CPU's
are to be simulated by queueing models or are to be described
by empirical distributions. Lines and terminals are to be
simulated.

Network design program: Concentrator and multiplexer
allocation, term·inal clustering, multidrop line
topological design and economical analysis

Given the locations of terminals, concentrators, and CPU's;
their basic characteristics; the traffic characteristics; and
line utilization requirements; multiplexer and concentrator
locations are selected; terminals are connected to the proper
concentrator or CPU via a multidrop line in a cost effective
manner. Thus, an important design goal is to implement
optional heuristic algorithms into the program so that the
program size and running time can be proportional to the
number of terminals. (In general, the size and running time
grow quadratically or cubically with the number of terminals.)

Network reliability/availability program: Calculation of
network reliability

Given element failure rates (or MTTF's and MTTR's),
the module calculates network reliability criteria. A combi
nation of simulation and analytic techniques should be used
to ensure the effective determination of reliability for net
works with thousands of terminals within reasonable com
puter time. For more details on design tools, readers are
referred to Reference 4.

DESIGN STRATEGIES AND COST/PERFORMANCE
TRADEOFFS

It is the network planner's responsibility to assist users
in defining their requirements and to design a least cost
network while satisfying the requirements. To do a good
job for a large network, one needs to develop a set of curves
to weigh and compare the tradeoffs for cost/performance
and for design alternatives. Design tools described in the
previous section are extremely useful for this purpose.

curve represents a potential
network structure

Figure 4-Cost vs response time for a given throughput requirement
(Useiul ior evaluation of network structure alternatives)

Evaluation of design alternatives

By choosing some of the network structures given earlier
and by using different line speeds, one can develop several
sets of curves like those shown in Figure 3 and Figure 4.
For a specified response time requirement, each curve in
Figure 3 represents the cost-throughput relation for a spe
cific network structure. For a specified network through
put, each curve in Figure 4 shows the cost-response time
relationship for a specific network structure. From these
curves, one can determine the most cost-effective network
structure.

Evaluation of cost-throughput tradeoffs

Figure 5 shows the relationship between cost and through
put for a fixed response time requirement. W"ith these curves,
the network designer can help users to decide how much
they are willing to, or must, pay for throughput in the
network.

Evaluation of cost-response time tradeoffs (CPU response time,
network response time, or CPU and network response time)

In Figure 6, each curve represents the cost-response re
lationship for each specified throughput requirement. These
curves help the user to determine how much he is willing
to pay for the response time that he will get, and help the

Cost

Each curve represents
a specific response
time requirement

Throughput

Figure 5-Cost vs throughput with response time as a parameter
(Useful for evaluation of cost-throughput tradeoffs)

Planning and Design of Data Communications Networks 559

Cost

Res onse Time

Figure 6-Cost vs response time with throughput as a parameter
(Useful for evaluation of cost-response time tradeoffs)

designer to determine the best combination of CPU con
figuration and line configuration.

Evaluation of cost-reliability tradeoff s

Reliability is another term that users do not quite know
how to define. There may be many schemes for improving
network reliability. To evaluate them, one must develop a
curve to show the incremental cost one must pay for im
proved network reliability.

Derivation of throughput-response time relationship

Since traffic estimates are rarely accurate and future
growth is even harder to predict, network planners need to
know how sensitive network performance is to traffic vari
ations from projected levels. Figure 1 shows the relationship
between performance and throughput, with performance
measured in terms of response time.

REFEREKCES

1. Hopewell, L., "Planning in the Data Communications Environ
ment," Proc. of 1974 NCC&E.

2. McGregor, P., "Effective Use of Data Communications Hardware,"
Proc. of 1974 NCC&E.

3. Gerla, M., "Line Tariffs and Their Impact on Network Design,"
Proc. of 1974 NCC&E.

4. Kershenbaum, A., "Tools for Planning and Designing Data Com
munications Networks," Proc. of 1974 NCC&E.

5. Martin, J., Systems Analysis for Data Transm~sion, Prentice Hall,
1972.

6. Datapro 70, Datapro Research Corporation, 1973.

Management planning in the data communications environment*

by LYNN HOPEWELL

N etwark Analysis Corporation
Glen Cove, New York

INTRODUCTION

A dominant trend in the computer business is the growth of
data processing systems which are involved with data com
munications.! It is estimated that by 198070 percent of all
computers will use communications. Many organizations are
now using or planning the use of teleprocessing systems. For
those with such systems in operation, the experience has been
one of rapid expansion and grO\vth as the organization learned
to appreciate and use them.

This rapid growth has increased the complexities of plan
ning both for teleprocessing systems in general and for the
data communications subsystem in particular. Data com
munications is now the most dynamic activity of once placid
telecommunications groups in large organizations, and in
deed, is now often the object of reorganization efforts gen
erated by the problems of such a rapid rate of change. Rapid
growth, the relatively long lead time for implementing
changes, and the large investment and operating costs of
data communications have caused heavy emphasis to be
placed on the advanced planning function. Any data com
munications support group that has felt the wrath of users
when experiencing an unanticipated increase in response time
of an inquiry system, for example, will be determined not to
be caught flatfooted again.

This paper will present a conceptual framework for think
ing about planning problems which I found useful in recent
consulting assignments in data communications planning for
large organizations. This conceptual framework has been
tested in the last year on three major organizations: a large
diversified financial conglomerate, a major manufacturer,
and a high technology oriented government agency. In each
case, the contribution of the conceptual framework has been
to provide a way of thinking about planning problems that
provides insight into their interrelationships. The framework
is divided into a data communications process, a planning
process, and organizational considerations. Some typical data
communications planning problems encountered are also
discussed.

THE DATA COMMUNICATIONS PROCESS

Figure 1 is conceptual view of the data communications
process. Process simply means all those organizational ac-

561

tivities that concern managing the data communications
subsystems which are part of larger teleprocessing data pro
cessing systems. This includes both day-to-day activities
concerned with operation of inplace systems, and all future
oriented planning activities. The process primarily consists of
the interaction of the follO\ving elements.

Tools

Tools are the individual technical skills, techniques and
knowledge that are found in the data communications en
vironment-software, telecommunications, simUlation, statis
tics, etc. These tools are necessary no matter ,vhat the time
orientation of any task is-short or long range.

The user

Every data communications support group has a user.
The ultimate user may be, for example, the major lines-of
business divisions in a large multimarket company. Or, more
often, the practical "user" may be a surrogate for the ulti
mate user; for example, the applications programming groups
typically found in the line divisions. These data processing
groups act as interpreters of requirements between the busi
ness user and the various technical system support staffs.

Other system processes

Data Communications is only a sub-system of a larger
data processing system. Depending on the task and relevant
time frame, the data communications process needs knowl
edge about, and must interact with, other systems processes.
For example, system response time is affected by both the
data communications sub-system and by the CPU sub-system.

The data communication process interacts with these ele
ments with an intensity that is proportional primarily to the
time frame relevant to the problem or task that is being
"processed". Specifically:

Time Frame

Short Term:
Medium Term:
Long Term:

Element

Tools
Tools and User
Tools, User and Other Sub-systems

562 National Computer Conference, 1974

OTHER SYSTEM
PROCESSES

I
1- OPERATING SYS.

I+--~ SYSTEM I: ~~LICATIONS
PROCESSES 1- DATA BASE

I
I

Figure I-Data communications process

To see this more clearly, the data communications process
must be viewed with respect to the planning process dis
cussed below. A major thesis discussed later is that it is very
sensible for the data communications staff to do their own
short range planning, but that medium range planning re
quires interaction with user planning activities, arid thaiiong
range planning only makes sense from a total systems stand
point.

THE PLANNING PROCESS

The planning process has been arbitrarily divided into
short range, medium range, and long range. A case could be
made for combining the latter two, but I believe there is a
significant shift of emphasis. The three different planning
processes can be usefully characterized by differences in.data
communications element interactions, goals, degree ot un
certainty, constraints, and technology.

Short range

1. Process Interaction. The primary element involved
here is the use of tools to solve very specific, limited
tasks involving day-to-day operations.

2. Goal. The goal is narrov,r, simply to make the system
work.

3. Uncertainty. Relatively little. No system or structural
changes. Dealing with well defined parameters.

4. Constraints. Highly constrained; few alternatives. At
most, a process of "fine tuning", eg: changing a few
lines in the network, software maintenance, etc.

5. Technology. Technology well in hand; at mostJ unit
substitutions possible, eg: a new modem.

Medium range

1. Process Interaction. Now problems are beginning to
be anticipated, and more interaction with the user
element is required. For example, traffic volumes arfl
increasing. The user is the best judge of "how much"

and must furnish these projections for use in a net
work reconfiguration.

2. Goal. Here the goal is to keep the system working
under the stress of change. Changes confined to sub
system optimization and cost minimization, no major
system capabilities altered.

3. Uncertainty. Since we are now looking ahead, solutions
must be examined for sensitivity to changes in as
sumptions. What if traffic grows faster than antici
pated? What will be the actual costs of a new device
one year from now?

4. Constraints. More choices possible, perhaps some
intersub-system optimization possible. For example,
use of higher speed lines would result in cheaper net
works which could be traded against possible new
terminals. However, no major system changes likely.

5. Technology. Now feasible to examine technological
change. For example, the use of cO:lCentrators in the
network, or a communications front-e;nd at the CPU.

Long range

1. Process Interar:t.ion. Now not only the user and tools
are involved, but heavy interactions with all other
subsystems is required. Consideration must be given
to the tradeoffs and optimizations viewed from the
end-to-end system as a whole.

2. Goal. Here the goal is not only maintenance and cost
minimization, but can include benefits expected from
major data processing architectural developments ex
pected. View is data processing system oriented rather
than data communications, operating system, etc.

3. Uncertainty. High. Planning consists of projecting
, numerous alternative scenarios. Each sub-system
technology regards developments in every other sub
system as more uncertain than their own. Business
intangibles must _be considered.

4. Constraints. Few. Limited by value of service to user.
5. Technology. Limited only to the df'gree to which the

state-of-the-art is pursued. System design must con
sider all meaningful developments in each subsystem,
their interactions, and architectural consequences.

ORGANIZATIONAL CONSIDERATIONS

When considering the technical planning process, it would
be insufficient to address only technological issues, for the
process is really a highly interdependent relationship of
technology and organizations. Weakness in either area can
cause planning to be ineffective.

Teclmical planning can be thought of as the application of
technological tools to problems through organizational design.

Technology
-Provides tools for analysis
-Provides methodology for applying tools
Organization
-Pro'vidcs structure fot applying tools and methodology

to problems.

Management Planning in the Data Communications Environment 563

Indeed, organizational design can significantly influence
whether problems are diagnosed or identified at all.

The broad question of how to organize the data processing
function in organizations has been treated elsewhere.2 The
viewpoint taken here is that of a data processing technical
support group organized as a service function serving line
business operations. Such an arrangement is common in
large multidivisional companies. Figure 2 illustrates this
type of relationship. Within this support group are found the
technical subsystem specialties necessary to support the
broad data processing function, including the data com
munications specialty. Such an organizational approach en
hances communications among the subsystem technicians,
but creates barriers between these specialties and the user.
These b.arriers are a major cause of difficulties in planning.

Thompson3 has shown that most organizational designs
manifest one characteristic in common. They establish
special organizational units to deal with the major business
environmental contingencies. More generally, organizations
faced with heterogeneous task environments seek to identify
homogeneous segments and establish structural units to deal
with each. Thus, an effective method bridging the barriers
created by one way of organizing the data processing support
function is the creation of ad hoc methods of communication
directly between technical subsystem specialists and the user.
Special service representatives, committees, and lunch con
versations are all used for this purpose. The surmounting of
the barriers between support groups and the user is a primary
necessity for effective medium and long range planning.

DISCUSSION

With the above framework for analysis in mind, some
problems relating to planning that have been found to be
common in numerous organizations are discussed below.

Short range: Tools

1. System Models. Amazing as it may seem, many or
ganizations operating large, expensive, and complex
teleprocessing systems and networks have no useful
quantitative understanding of how their systems work
and where bottlenecks will occur with rising transac
tion volumes. Often the lack of a model results from
inappropriate attempts to build one. Advanced plan
ning requires the ability to examine many assump
tions, yet many complex teleprocessing system model
ing efforts misuse simulation techniques, resulting in
unwieldy and unusable models. An adroit blend of
simulation and analysis usually yields better results.4

2. Operating statistics. The problem with most attempts
to collect statistics on the operation of teleprocessing
systems is that they generate an overabundance of
irrelevant information. The idea seems to be that of
creating an infinite pool of data into whlch a manager
could dip and find any information he wants. It is

--------~~RQIitIiHT--------

Figure 2-Typical data processing support organization

more often a pool in which he drowns. Before any
statistics are collected, an explanatory model of the
decision process and the system involved in it must be
constructed and tested. 5

3. Systems Engineering Methodology. In spite of the pro
fuse occurrence of the term "systems analysis" in the
data processing environment, I have found that a

, fundamental barrier to success in planning has been
the lack of appreciation of real systems engineering
methodology.6 The systematic consideration and
analysis of total system alternatives is an under
developed skill in data processing, particularly in the
non-engineering environments of banks, insurance
companies, and the like. Sometimes this occurs be
cause of the isolation of the teleprocessing subsystem
technicians from each other that can occur in a large
organization. Two instances have occurred recently in
which the splitting of a massive 370-165 d~ta base
into two CPU's was averted at the last minute, after
considerable effort had gone into the procurement
process, by improving the response time of the data
communications subsystem. This allowed easing of
the CPU delay requirement and thus achieved more
throughput with much less cost and complexity.

A related problem is the tendency to allow equip
ment vendors to do systems planning by default.
Hardware vendors sell their own hardware, they are
not oriented to, or capable of objectively identifying
with the user's goals. For organizations operating
large and extensive systems to ask hardware vendors to
propose system designs, as is often done, is to transfer
the most crucial systems decisions to a party least
capable of making them.

564 National Computer Conference, 1974

Medium range: The user

1. User Interaction. The ability to anticipate user require
ments and developments rather than simply react to
them depends, to a large degree, on a sophisticated
understanding of the user business and data processing
environment by the data communications staff. (Of
course, the same is true for the other subsystem spe
cialties, but because of its nature, the data communica
tions subsystem is usually the most dynamic, and
thus, needs to be more closely attuned to the user.)
This understanding can only be obtained by the per
sonal interaction of the data communications staff "\vith
users. Functional isolation and the lack of a broad
user viewpoint are deadly to medium and long range
planning.

2. Full Costing of Teleprocessing Systems. In a recent
situation it was endlessly argued as to what the sys
tem response time should be, and it was simply
arbitrarily set. Then it was noticed that operators
paced their data input by the response time of input
edit messages. Full cost analysis of the system showed
thatan.llnprovement in the gata communications
network response time was paid many times over by
the reduced operator costs associated with higher
throughput per operator.

Long range planning

As previously mentioned, it makes little sense to talk about
data communications long range planning, because data
communications is just one subsystem of a larger data pro
cessing system. Effective long range planning must consider
so many broad areas of uncertainty that it can only be ef-
fectively carried out on an overall systems basis. ~

In essence long range planning consists of projection and
evaluation of possible future data processing architectural
~os~ures, given expected deveJopments in: multiprocessing,
lImIts of large processor architecture, operating systems, file
management, multi-site operations, resource sharing net
,,~orks, and business developments. Thus, long range plan
mng for data communications (or any other subsystem)
cannot be addressed out of the context of advanced planning
for the data processing system in general. And data process
ing planning is only effective to the extent it is integrated
with broad business planning.

As discussed under organizational considerations ad hoc
devic.es for crossing organizational boundaries are ~ecessary
to bfl~g user and technician together for effective long range
planmng. A common error, however, is to assign the planning
function to a special staff who then makes planning recom
mendations to operating managers. _ In my experience the
success of a planning effort is inversely proportional to the
autonomy of the planning staff. The value of planning to
managers is more in their participation in the process than
consumption of the product.

REFERENCES

1. Hopewell, L., "Trends in Data Communications," Datamation,
August, 1973.

2. Withington, F. G., The Organization of the Data Processing Func
tion, Wiley-Interscience, N.Y. 1972.

3. Thompson, J. D., Organizations inAction, McGraw-Hill, N.Y.,]967.
4. Chou, W. H. Frank and R. Van Slyke, "Simulation of Centralized

Computer Communications Systems," Proceedings of the 3rd Data
Communications Conference, Nov. 1973.

.5. Ackoff, R. L., A. Concept of Corporate Planning, Wiley Interscience,
N.Y. 1970.

6. Hopewell, L., W. Chou, and Howard Frank, "Analysis of Archi
tectural Strategies for a Large Message Switching ~ etwork: A Case
Study," IEEE Computer, April, 1973.

Effective lIse of data communications hardware

by PATRICK :\tlcGREGOR

Network Analysis Corporation
Glen Cove, New York

INTRODUCTION

The broad range of perspectives of those involved with data
communication networks makes effective use of hard\vare a
topic of many dimensions. We will consider here the par
ticular areas of cost, reliability, performance, and flexibility.
Although these are not all-inclusive areas of network evalua
tion, they do encompass a sizeable portion of most evaluation
efforts. Each of the areas is itself broad, and there is con
siderable overlapping. However, without a functional separa
tion into such areas it is particularly difficult to approach the
topic. We will try to note the interaction bet\veen the areas
whenever possible.

The area of cost is perhaps the broadest, conceivably ex
tending to a profit-loss statement of a network's operation.
We will take a much narrO\ver perspective of considering
the line cost and purchase or rental cost of the hardware used
to implement a net\vork. Such costs are easily found, and
consequently the cost of a particular network design im
plemented with a particular set of hardware is also easily
found. HO\vever, it should be noted that the design of a
network to minimize cost is often a very difficult task.

A factor of major importance to the successful operation
of a network is its reliability. Reliability depends on two
distinct aspects of the network; its components and its
structure. We will be concerned primarily with the use of
hardware alternatives to achieve reliable structures.

The performance of a network can be both difficult to
define and difficult to evaluate. We will use the terminal
response time as the performance measure, and queueing
theory to appraise the effectiveness of hardware alternatives.

Flexibility is an area in which there may be no quantita
tive measures. The ability to expand a network in an orderly
fashion, to adapt to new objectives, and to meet new re
quirements are all important. However, no one has yet
quantified, at least very successfully, the impact of these
capabilities. Consequently, only a qualitative discussion of
flexibility is presented.

A thorough discussion of each of the above areas would
require a book (or many books, e.g., books by James Martin).
We make no such attempt here. Rather, it is our contention
that significant insight into effective use of data communica
tions hardware can be found through a fu..'1ctional approach
to the discussion. It is this tack which we adopt.

565

A BASIC DATA COMMUNICATIONS NETWORK

In this paper we are concerned with the effective use of
hardware in the implementation of a data communications
network. An example of such a network is shown in Figure 1.
The primary objective of the network is access by terminals
to computers. As shown in Figure 1, such a network may
involve more than one computer. We will be concerned with
the terminal-to-computer aspects of the network, and con
sequently will restrict attention to single computer networks.
An example of such a centralized computer network, and the
basic hardware used for communications, is shown in Figure
2. In this example the CPU communicates with the terminals
over leased, multidrop, voice-grade, full-duplex lines. Such
lines represent only one of several alternatives for establish
ing a connection between a terminal and a computer. Other
alternatives include connections on a dial basis, such as the
DDD network and WATS service, leased low speed lines,
leased high speed lines, TELEX and TWX, etc. Which
alternative to use is intimately tied to cost and performance
requirements of a specific case. However, in general leased
lines are cost effective for terminals in use four or more
hours per day. In most of the discussion which follows, we
assume leased lines are appropriate.

Leased, multipoint, voice-grade, full-duplex lines are com
posed of trunks between central offices, and local loops con
necting the CPU and the terminals to their respective central
offices. The central office is the point \vhere local loops and
trunk lines are bridged to form the multipoint line. (We will
not be looking at "daisy-chained" lines.) The cost of using
such lines depends on a variety of factors, and is usually
detailed in a legal document called a tariff.l A typical cost
structure is shown in Table I, and will be used in later ex
amples.

A voice-grade line may be roughly characterized as having
useabie bandwidth extending from 300 Hz to 3400 HZ.2

Full duplex lines can transfer information simultaneously in
both directions, while half duplex lines can transfer informa
tion in only one direction at a time. Both computers and
terminals supply and accept information in the form of a
digital baseband signal. The function of the modem (modula
tor-demodulator), as sho\VTI in Figure 3, is to interface the
digital baseband requirement to the analogue bandpass re
quirement. A variety of techniques may be used to accom-

566 National Computer Conference, 1974

t - terminal

CPU - central processing unit

Figure I-Example of a data communications network

plish the interfacing, giving rise to an extraordinary range
of modem cost and performance characteristics.3,4 Typical
modem costs for various transmission rates are shown in
Table II. We will use these costs in the examples which follow.

A network as described above, and portrayed in Figure 2,
may be viewed as a basic structure for a data communica
tions network. A Wide range of hardware· devices may make
several other structures attractive. We consider alternative
structures, and associated devices, in the following sections.

COST

There are several devices which may enhance the cost
effectiveness of a network. In this section we consider several
such devices, and examine conditions for their use. We will
start at the terminal and work in toward the computer.

Modem sharing unit

A modem sharing unit (MSU), or multiple access coupler,
is a device for connecting several (typically up to six) termi
nals to a single modem. The terminals are usually restricted
to be in the same location (within 50 feet of the MSU).
Information received over the modem is "broadcast" to all

t - terminal
M - modem

CO - central (telephone)
office

CPU - central processing
unit

Figure 2-Example of centralized network

TABLE I-Typical Cost Structure for Leased Voice-Grade Lines

MILEAGE CHARGE (HALF-DUPLEX)

First 25 Miles (1-25) $3.00/mile/mo.
Next 75 Miles (26-100) $2.IO/mile/mo.
Next 150 Miles (101-250) $1. 50/mile/mo.
Next 250 Miles (251-500) $1.05/mile/mo.
Additional (500-over) $. 75/mile/mo.

ADDITIVE FACTORS

First drop in exchange $12.50 /mo.
Additional station-same exchange $ 7. 50/mo.
Installation (one time charge) $10.00

Full Duplex-1O percent additional for mileage charges and drops.

terminals connected to the MSU, and the first terminal to
appropriately respond gains access to the modem. Thus, in a
polled terminal environment, the MSU is functionally trans
parent.

The purpose of an MSU is to replace the multiple local
loops connecting the terminals in one location to the central
office with only one local loop. The MSU effectively bridges
the terminals onto the multidrop line at the local user's
location rather than at the telephone company's central
office. The cost . ()fan MSU is approxImately $600, with a
rental rate of $25/month. With the typical modem costs
noted earlier, it is cost effective to use an MSU for two or
more terminals for any data rate. A location with four termi
nals each requiring a 2400 baud modem would result in
savings of three modems plus line drops, minus the cost of
the MSU, or 3X(50/modem+13.75/FDX drop)-25/MSU
= $166.25/month.

MuUiplexer

We will use "facility" to refer to the part of the telephone
plant described in terms of its properties as a transmission
medium, and "channel" to refer to a functional communica
tions path. A channel is described by its capacity, i.e., the
maximum rate at which information can be acceptably trans
ferred over it. A channel for the transfer of digital data is
formed by placing a modem at each end of a facility. The
capacity of the channel, or maximum data rate acceptable,
depends on a variety of factors, including the bandwidth of

TABLE II-Typical Modem Costs

Transmission Rate (bps)

75
110
150
300
600

1,200
1,800
2,000
2,400
3,600
4,800
7,200
9,600

Purchase ($)

500
500
500
500
500
500
750

1,780
1,780
3,620
4,800
7,200
9,750

Lease ($/mo.)

25
25
25
25
25
25
35
50
50

100
120

265

OODEM OODEM

r-----~CJ~----------~CJ~----------~~
'--------'

"CPU

Figure 3-Function of modem

the facility and the hardware characteristics of the modems.
The use of one facility to form several separate channels is
called multiplexing. A device which combines multiple facili
ties, each used for one or more distinct channels, into one
facility, formed into the same distinct channels, is called a
multiplexer. A device performing the reverse process, i.e.,
transforming one facility, formed into several channels, into
multiple facilities, each with one or more of the channels, is
called a demultiplexer. Many current hardware devices per
form multiplexing in one direction, and demultiplexing in
the other direction. Such a device is usually simply called a
multiplexer.

The channel is the functional communications path, where
as the facility is part of the hardware used to form a channel.
A multiplexer does not alter the channel structure of the net
work, and thus is functionally transparent. However, the
physical facilities from which channels are formed determine
a large part of network costs. Multiplexing offers a way to
achieve significant economies in facilities use. To understand
these economies, it is helpful to examine the two fundamental
"approaches to implementing multiplexing.

One approach is to divide the bandwidth of the facility
into several separate segments, and allow each segment to
serve a separate channel. This is referred to as frequency
division multiplexing (FDM), and is graphically portrayed
in Figure 4. The second approach is to establish a high speed
data stream over the facility and assign periodic time slots,
or bit positions, of the data stream to separate channels.
This is referred to as time division multiplexing (TDM),
and is graphically portrayed in Figure 5. There are several
variations on the implementation of these approaches. 5-9

We turn now to the economics achievable by multiplexing.
Consider two locations each containing three terminals to be
connected to the computer, as shown in Figure 6. If each
terminal is in almost constant use at 150 bps, a leased low
speed line from each terminal to the computer may be used,

10

300

channel
1

10 10 10

channel
4

Figure 4-FDM

3400

-<- facility
bandwidth

Hz

Effective Use of Data Communications Hardware 567

Channel 0 - Synch & Control

Channell

Channel 2

Channel 3

Channel 4

G

CPU

CPU

01234012340123401234

Figure 5-TDM

o +- 100 mile,

A '\

-0 (0
/c 0

60 miles 80 miles ~

\.~

0 0
00

Figure 6-Six terminals in two offices

C

Figure 7-8ix point-to-point lines

Figure 8-Multipoint FDM

o -modem

568 National Computer Conference, 1974

(a) LOW SPEED POINT-POINT (FDX)

Modem Cost
Mileage Cost

First Stations
Additional Stations

12X$25/150 bps modem
3X ($1.93/mileX60)
3X ($1.93/mileX 100)
3X ($34 . 38/station)
6 X ($10. 32/station)

$300.00
347.40
579.00
103.14
61.92

$1,391. 46/mo

(b) VOICE GRADE MULTIPOINT (FDX)

Modem Cost
Mileage Cost

First Stations
Additional Stations

12X ($25/150 bps modem)
60 miles

$3 .30/mile X25
$2.31/mileX35

80 miles
$3.30/mile X 25
$2.31/mileX55

3 X ($13. 75/station)
6 X ($8.25 /station)

$1,391.46/mo.-$763.65/mo. =$627 .81/mo.

Figure 9-Cost analysis-FDM

$300.00

82.50
80.85

82.50
127.05
41.25
49.50

$763.65/mo.

as shown in Figure 7. Based on a typical low speed line
tariff, the cost of such an arrangement is $1391.46/month,
as detailed in Figure 9a. Alternatively, a multipoint voice
grade facility may be used with each modem operating ·with
a distinct pair of tones for its data transmission, as shown in
Figure 8. The cost of this FDM approach is $763.65/month,
as detailed in Figure 9b. This gives a very substantial savings
of $627.81/month, or a reduction of about 45 percent of the
point-to-point cost.

Current FUM techniques are able to achieve an aggregate
bit rate of approximately 2000 bps on a voice grade facility,
and are often implemented with devices having greater
common circuitry at locations of multiple terminals than
simply a separate modem per terminal, thus achieving even
greater economies.: The cost per channel may be roughly
estimated at $500 purchase, $25/month rental. Current
modems can achieve a bit rate of 9600 bps over a voice grade
facility. Through the use of digital logic, TDl\I systems can
use this capability to almost full advantage, yielding a system
with considerably greater band\vidth efficiency than one with
FDM. The logic circuitry required for TDM gives it a
different cost structure than for FDM, having a typical
purchase price of $1000 plus $150 per channel per station,
or $50/month plus $1O/channeljmonth per station rental.
A high speed modem is also required for each station. The
current reductions in logic costs will serve to enhance the
cost effectiveness of TDM systems relative to FDM sys
tems. lO

To examine the potential economy of TDM, we refer
again to Figure 6. In this case assume each terminal is al
most constantly in use at 1200 bps, eliminating the possibility
of FDyr multiplexing. If each terminal is connected directly
to the computer via a leased voice grade line, as shovm in
Figure 7, the cost is $1648.05/month. By placing a TDl\I

unit at each location, and multiplexing C to B, and B to A,
with a single voice grade line used in each link, a cost of
$1284.15/month is achieved, giving a savings of $363.90/
month. Clearly substantially greater savings could be
achieved in cases with more terminals per location and greater
distances between locations.

In the above examples we have illustrated the use of multi
plexing to permit several point-to-point lines to be replaced
by one multipoint line. In the basic network portrayed in
Figure 2, the multidrop line was used to supply a single
channel accessed by each terminal on a polled basis. The
maximum number of terminals which can be placed on such
a channel depends on the capacity of the channel and the
traffic generated by the terminals. It is easy to envision the
potential benefit of multiplexers for this case by simply
considering each terminal in the examples to be an end of a
multipoint polled line. The actual cost differential would
depend on the cost of connecting the multipoint lines to the
computer without requiring them to go through the multi
plexing locations. A significant question in this case is where
to place the mUltipoint lines and multiplexers, a question
beyond the scope of this papery,12

Concentrator

The word "concentration" appears to have a very broad
meaning in data communications. We will discuss only one
narrow interpretation of concentration.

Consider a device having several facilities connected to its
input, and only one facility connected to its output. At this
point the device may be a multiplexer. However, it is dis
tinguished by the following characteristic: the single facility
on the output side carries one channel, the capacity of which
is less than the sum of all the capacities on its input side.
Such a device providing effective communications is called
a concentrator. A multiplexer is transparent to the channel
structure of a network; a concentrator obviously is not.

The percent of time a channel is used is called its utiliza
tion. :Many terminals generate data for transmission at an
average rate which is much less than the capacity of the
channel; resulting in channels with low utilization. A con
centrator achieves economic advantage by replacing several
low utilization channels with one ·highly utilized channeL
A prerequisite for a concentrator is that its output channel
capacity be greater than the sume of the average data rates
of the terminals on its input. It is at this point perhaps help
ful to examine the difference between a multiplexer and a
concentrator in more detail.

To each time slot of each channel on the input of a TDM,
a time slot is assigned in the high capacity chan.nel on its
output. This effectively divides the high capacity output
channel into several separate subchannels, each associated
with a particular channel on the input. It does not matter
whether or not a time slot is being used to transfer informa
tion. A concentrator has more time slots arriving on its in
put side than leaving on itR output side. Each time slot
carrying information must be assigned a time slot on the

output side. Thus a concentrator must be able to identify
which time slots are in fact transferring information. Further
more, it must be able to assign output time slots to this
information in such a manner as to be understood by what
ever device is on the other. end of the output channel. Al
though the average number of time slots carrying information
on the input will be less than the number available on the
output, the random nature of terminal use may result in
the number of slots carrying information arriving over a
brief interval being greater than the number of slots available
on the output. Hence, the concentrator must also have the
ability to buffer the arriving information as it waits for
available slots. The requirements of intelligence and storage
for a concentrator invariably lead to its implementation with
a minicomputer. The actual operation of concentrators varies
considerably, but is usually much more sophisticated than
the simple bit packing noted above.5.13.14.15 By performing
such local operations as polling, error checking, line control,
etc., and transferring information to the computer with effi
cient high speed transmission techniques, the concentrator
can achieve an apparent output channel utilization in excess
of 100 percent.

The minicomputer implementation of a concentrator im
plies a fundamental component cost of approximately
$10,000. Compared to a $1000 cost of a multiplexer, such a
figure requires large economies to be achieved for cost effec
tiveness. Concentrators can typically handle 100 channels,
(provided reasonable traffic characteristics). However, hard
ware required in addition to the minicomputer to achieve
this capability raises the cost to approximately $20,000, or
$500/month rental (excluding maintenance).

As an example of the economies achievable by a concentra
tor, consider a situation where 300 terminals on the west
coast are to be connected to a computer in Chicago. The
terminals are assumed to be interactive CRT's requiring a
channel capacity of 1200 bps. Up to four terminals can share
a channel in a polled fashion. Thus 75 channels are required
from the LA vicinity to Chicago to implement the system
with multiplexers. This requires approximately 10 fully
equipped multiplexers at $2200 each ($1000+8X$150/chan
nel), or the same approximate cost as a concentrator. How
ever, with a concentrator reducing the required channel
capacity by at least 30 percent, the line cost reductions
would be on the order of $1O,OOO/month.

Biplexers

A biplexer is a device which uses two voice grade lines to
effectively achieve a single high speed channel (up to 19.2
kbps). Such a device must be able to compensate for the
possible differential delays of the two separate facilities.
Typically, acceptable operation can be achieved with the
two lines diversely routed with differential delays up to Y2
second.

The cost effectiveness of a biplexer is principally derived
from the current tariff structure for high speed lines versus
voice grade lines. Although in general the cost of capacity is

Effective Use of Data Communications Hardware 569

a concave function, the quantized nature of offerings by
common carriers can make two low capacity channels more
cost effective than one high capacity channel. A 19.2 kbps
channel for 500 miles would cost $3187/month (based on
prorating the use of a 48 KC facility). Assuming a $250/
month rental for a 19.2 kbps modems, such a channel would
cost $3687/month. Two voice grade lines would cost only
$1660/month. The biplexer has a typical cost of $5000, or
$175/month rental, and would require four 9600 bps modems.
Thus, the use of a biplexer and two voice grade lines would
cost $3070/month, a net savings of more than $600/month.
If the 19.2 kbps could not be prorated, the savings would
be dramatically more.

A typical application of a biplexer would be to achieve a
high speed channel from a concentrator to the central com
puter. Although the functions of the biplexer could be per
formed in software, the low cost of the biplexer hardware
and its off loading effect on the concentrator often makes the
biplexer the cost-effective alternative.

Port sharing unit

A port sharing unit (PSU) is a device for connecting several
(typically up to six) modems to a single computer port (or
concentrator, or multiplexer). The PSU broadcasts data from
the port to all the modems, and delivers data to the port
from the first modem to generate an appropriate response.
Thus, in an environment of several simultaneously polled
multipoint lines terminating at the computer, the PSU is
functionally transparent. In general, cost-effectiveness is
achieved by using only one multipoint line rather than several
simultaneously polled lines, thereby saving local loop costs
and port costs. However, occasionally telephone plant per
formance results in an operational restriction on the number
of points acceptable on a single multipoint line. Similarly,
reliability considerations may also require multiple lines.
In such circumstances, a PSU may find effective use.

A PSU costs approximately $600, ~ith a rental rate of $25/
month. Its cost effectiveness is easily appraised for com
puters with additional ports achieved by the addition of
hardware. However, the cost structure of ports for computers
are so varied that we will not venture a quantitative ex
ample.

Front end processors

The central computer and terminals use the data com
munications network to interchange information. The gen
eral facility of a computer for transferring information be
tween it and the outside ,,,orld is its input/output (I/O)
channel. Particular devices are connected with a hardware
interface. In the case of a communications line, the modem
terminating the line must be interfaced with the CPl;. The
overhead required for a large CPU to interact "ith many
communications lines at a modem level is far too great to
be economically attractive. Thus a sophisticated interface is
used to handle the modem interaction, and only useful in-

570 National Computer Conference, 1974

TABLE III-Reliability Values

Percent Inoperative Percent Operative
Device (PF) (P)

Modem (M) .001 .999
MSU .001 .999
PSU .001 .999
CPU .020 .980
Long Lines (LL) .003 .997
Local Loop (LOC) .002 .998
Terminal .007 .993
Multiplexer (MX) .001 .999
Concentrator (C) .005 .995
FEP .010 .990
LTU .002 .998

formation is transferred through the I/O channel to the
CPU. In the early history of such interfaces, hardwired logic
devices called Line Termination Units (LTU) were used.
More recently, it has become very attractive to use mini
computers to accomplish this task. Such minicomputers are
called Front End Processors (FEP).

The software capabilities of minicomputers results in a very
broad range of sophistication in their use as FEPs.16,17,14,13
Consequently, the cost effectiveness-of an FEP is difficult
to quantitatively define. The costs of FEPs range over the
costs of minicomputer systems, i.e., from $6,000 upward.
The cost of an FEP to be used with a large CPU in a large
network may be expected to start at $50,000 purchase, or a
monthly rental of approximately $1000. Such an FEP may
have acceptable performance for up to 100 lines. In general,
minicomputers have been found cost effective even in a
strict emulation of hardwired LTUs.ls We will consider the
impact of their use on performance in a later section.

RELIABILITY

The reliability of a data communication network may be
characterized in a great many ways.19,20,21 We will consider
two measures of reliability of particular use in characterizing
centralized networks:

(1) the expected percent time a terminal cannot com
municate with the CPU, and

(2) the expected percent time an entire office cannot com
municate with the CPU.

The first criterion reflects the reduction in average network
throughput due to failures, while the second is an indication
of the network's ability to withstand catastrophic failures.
The expected percent time a terminal cannot communicate
with the CPU is the same as the probability a terminal
cannot communicate with the CPU, and the fraction of
terminals unable to communicate with the CPU. 'V c will use
the various terminologies interchangeably.

The reliability of a network is dependent on two funda
mentally distinct factors: the hardware component reliability
and the structural properties of the network. The vendors of
hardware have historically been conscious of the reliability
aspects of their products, (although not always concerned).
Unfortunately, many networks are being designed today

with little consciousness on the part of the designer of the
reliability impact of the network structure. In this section
we examine the effective use of hardware to achieve reliable
network structures.

In order to quantitatively appraise the reliability of a
particular network, it is first necessary to know the reliability
of the hardware elements of the network. Although various
manufacturers define their device reliability in various ways,
and some not at all, to use the network reliability measures
described above it is appropriate to define device reliability
in terms of probability of failure. Such probabilities may be
interpreted as the average down time of a device compared
to the period intended for its active use. Different devices
from different manufacturers are sure to have different failure
rates. The probabilities of failure assumed in this paper are
shown in Table III. These values are based primarily on
observations of an existing network. They will serve to show
the relative impact of structural variations on network reli
ability. Note that the probability of operation is simply one
minus the probability of failure. Note also that reliability
will be dominated by the CPU and terminals. We will not
con~ider changing these devices.

A simple network

Perhaps the simplest network structure to analyze in terms
of reliability is a leased line from each office to the CPU,
,,,ith each terminal in the office bridged onto the line with a
local loop, as shown in Figure 10. Since there is no redundancy
on the path between the CPU and the terminal, all compo
nents on the path must be operative in order for communica
tions to take place. Thus, the probability of a terminal being
unable to communicate with the CPU is simply one minus
the product of the probabilities that the individual compo
nents are all operative, or

The probability that an office of k terminals cannot com
municate with the CPU is the probability that all k terminals
are disconnected, or

PFOFFICE-CPU= 1-P cpu XPMODXPLOCXPLL

With k greater than one, the term within the brackets is,
for all practical purposes, equal to one. We now consider

o - modem

Figure lO-A simple network

Effective Use of Data Communications Hardware 571

the effective use of hardware for reliability in more complex .16

structures.

Line redundancy

A simple means of improving network reliability is line
redundancy. The probability of a concurrent failure of two
disjoint leased lines is .000009, sufficiently small as to be
taken as zero in comparison to other network component
failure rates. The probability of a concurrent failure of two
disjoint channels (modem + localloop+ leased line + local loop
+modem) is .0000804, again negligible. Thus provision of
redundancy can achieve almost perfect reliability in com
parison to the CPU and terminal. However, the cost of such
redundancy can be enormous. We will consider cost effective
hardware for providing near perfect communications re
liability. Note that redundant modems, local loops, and leased
lines gives a reliability of PF T-CPU = .02686 and PF OFFICE-CPU
= .02000, with a doubling of network costs. We will use
these figures as representing a "near perfect" network.

A modem sharing unit (MSU) can be used to reduce costs
of a network by reducing the number of modems and local
loops required for each office. In Figure 11 such an arrange
ment to achieve a more economical redundancy is shown.
In this case the reliability measures are

PFT-cpu = 1-Pcpu X[l- (l-PMoDXPLOcXPLLXPLOc

XPMODXPMSU)2]XPT=.02696

PFoFFICE-cPu= 1-Pcpu X[l- (l-PMoDXPLOcXPLL

XPLOCXPMODXPMSU)2] = .02010

Virtually the same reliability is achieved as with total re
dundancy, but with a cost differential of replacing a pair of
modems and local loops for each terminal in an office with
only two modems, local loops, and MSU's for the entire
office.

The major expense in redundancy is usually the redundant
leased line. This expense can be greatly reduced by replacing
the leased line -with a dial-up capability at the office. In this
case, the dotted line in Figure 11 would represent a dialed
connection. The additional cost of a dial option on the mo
dems is negligible compared to the line cost saved, and again
the reliability of total redundancy is virtually achieved.
There may be a convenience factor of having to establish
the dialed connection at times of failure, but not necessarily
so if the computer can identify failed conditions and initiate
an automatic dial. Note that the use of MSU's at the office
may result in a cost reduction sufficient to make this almost

o - modem

Figure ll-Use of MSU for redundancy

.14

1% LINK DOWNTIME 2%

Figure 12

VOICE GRADE

CONCENTRATOR

PC = 2 PL

CONCENTRATOR
WITH REDUNDANCY

total-redundancy reliable system less costly than the non
redundant basic network described earlier. Further cost re
duction may be achieved with negligible loss in reliability by
the use of a port sharing unit at the CPU.

Finally, consider the use of a single MSU and modem, with
the modem having dial back-up capability. In this case only
line redundancy is provided, but with negligible cost. The
reliability is then

PFT-cpu = 1-Pcpu XP~WDXPMODXPMSU XPT = .029777

PFOFFICE-CPU = 1-Pcpu XP~ODXPMODXPMSU= .022937

where we have left out the line terms due to their "perfect"
reliability. Although this is clearly not as reliable as total
redundancy, it is a significant improvement over the non
redundancy case, as is achieved at negligible cost. In fact, in
comparison to the basic network described earlier, it achieves
greater reliability with considerable cost reduction.

Other configurations are possible for various degrees of
cost-reliability trade-offs. However, the above considerations
are sufficient to point up the feasibility of obtaining highly
reliable networks while retaining cost-effectiveness, (and cost
effectiveness while retaining reliability, too).

Multipoint lines, multiplexers, and concentrators

The failure rate of any particular leased line depends on a
multitude of factors, many of which are determined by the
telephone company. The assumption of a uniform probability
of failure for all lines, such as done above, reflects the
designer's lack of knowledge, and control, of the network
implementation. However, as shown above, such an assump
tion is useful in considering reliability aspects of the net
work. Similarly, for multipoint lines it is useful to consider
all line segments as independent entities with uniform prob
abilities of failure. With such an assumption, the probability
of a particular office (or terminal) not being able to communi
cate with the computer depends on the office's position on
the multipoint line. Although this complicates calculation of
reliability, it still can be readily done, by algorithm, with a
computer. Results of such calculations for a typical network
are shown in Figure 12 as a function of the multipoint seg
ment reliability.19.2o

572 National Computer Conference, 1974

Concentrators achieve economies by replacing several long,
low utilization, multipoint lines (trees) centered at the CPU
with many short, low utilization trees centered at the con
centrator, and one high utilization line from the concentrator
to the CPU. The average number of links between a terminal
and the CPU is much smaller in a design using concentrators,
and therefore a perfectly reliable concentrator should im
prove reliability. In fact, even moderately unreliable con
centrators typically improve reliability, as illustrated in Fig
ure 12, with the probability of a concentrator failure being
twice that of a link failure. This is another case of cost
effective hardware being also reliability effective.

Since there are generally a large number of terminals con
nected to the CPU through a concentrator, further signifi
cant improvement in network reliability can be achieved by
increasing the reliability of the concentrators and concentra
tor-to-CPU lines. As before, an additional leased line or dial
back-up can achieve almost perfect reliability in the con
centrator-to-CPU line. To make the concentrators almost
perfectly reliable, a redundant concentrator can be placed
at each site. A less expensive, but equally effective approach,
may be to place a mUltiplexer at each concentrator site, and
a demultiplexer at any two concentrator (or CPU) sites.
A failed concentrator then has its load absorbed by one of
the two selected concentrators. The improvement in reliabil
ity achieved by such redundancy is shown in Figure 12. The
number of concentrators and concentrator-to-CPU lines is
small compared to the number of terminals, and thus the
reliability improvement achievable by such redundancy can
be obtained without appreciable increase in total network
cost.

Multiplexers are usually much simpler devices than con
centrators, with correspondingly greater reliability, less cost,
and less dramatic impact on the network. In general, the
greater the number of channels multiplexed, the greater the
impact of multiplexer failure on reliability. However, the
economies of multiplexers is usually such as to retain cost
effectiveness even with redundancy.

In general, network reliability is improved at the expense
of redundant components. As shown above, often cost-effec
tive hardware can achieve sufficient economies to allow re
dundancy, thereby improving reliability, v.hile still main
taining significant network cost advantages.

PERFORMANCE

There are many possible measures for the performance of
a data communications network. 22 We will examine the im-
pact of data communications hardware on one of the most
common of these measures, the terminal response time.

The terminal response time may be loosely defined as the
length of time between the instant a terminal is ready to send
a message to the CPU until the instant the response of the
CPU is completely received at the terminal. The precise
definition of "message" and "response" depends on the
particular case considered. In the discussion ,vhich follo'ws,
the appropriate interpretation will be clear from context.

The performance of a network depends on a great many
factors, including hardware capabilities, overhead traffic, line
speeds, message length distributions, message arrival dis
tributions, buffer sizes, etc. Appropriately modeling and
analyzing a network to predict terminal response time is an
extraordinarily difficult task, usually involving considerable
queueing theory and often simulation.23 •24 However, it is
possible to gain substantial insights by considering some of
the fundamental characteristics of the networks. It is this
approach that we take.

Terminal demands

The Model 33 Teletypewriter has enjoyed unparalleled
success in being selected for use in interactive networks,
perhaps due to its low cost, availability, and hard copy out
put. It operates at low speed (110 bps) on an asynchronous
character-by-character basis. The market now has several
keyboard/printer terminals of similar characteristics.25 In
small networks, the terminals may be connected directly to
the CPU, with each character typed resulting in an interrupt
of CPU processing for terminal servicing. In such systems the
terminal response time may be taken as the delay before the
echo of the character by the CPU is printed on the terminal.
However, in time sharing systems the user usually interprets
the system's performance on the basis of the delay between
the typing of a "carriage return", signifying the end of a line,
and the return of a "line feed", signifying acceptance of the
line by the CPU. It is this measure which we will use here.

As the number of terminals serviced by a CPU becomes
large, and the level of terminal activity increases, the process
ing of incoming traffic on a character interrupt basis leads to
intolerable overhead. Consequently, it is often attractive to
alter the network to a multipoint, polled, buffered form in
which the CPU directs terminals as to when to send informa
tion, and terminals are buffered so that multiple character
messages may be accumulated before requiring transmission.
This not only serves to reduce CPU overhead, but also in
creases line efficiency.26 The upgrading of the network may
be accomplished in a variety of ways, three of which we note
below.

First, there is the option of upgrading each terminal with a
buffer and stunt box. This has the attractions of simplicity,
equipment retention, and cost. When more than one terminal
is present at an office, there is the possibility of enhancing
cost effectiveness by sharing the buffer and intelligence among
all terminals through a Terminal Control Unit (TCU). Such
a unit may be a hardwired logic device or a very simple
minicomputer or microcomputer. The latter becomes more
attractive in view of the potential for intelligence' expansion.
Finally, it may be attractive to simply replace terminals
with more sophisticated terminals having not only buffering
and polling response capabilities, but also better display
approaches, faster printing, etc. Depending on the particular
case, each of these alternatives may appear most attractive,
and some combination of all may be most appropriate for
some networks.

Queueing delays

In a data communication network it is often the case that
the greatest portion of response time is the time spent by a
message in storage, waiting for transmission or processing.
For this reason, queueing theory has been a particularly
effective tool in gaining insight into network performance.

A data communication network can often be modeled as
an interconnection of queues, with the terminal response
time being the sum of the waiting times of a message in each
of the queues. For a single server queue with Poisson arrivals,
any distribution of service times, and any service discipline
(provided not dependent on service time), the average waiting
time of a message from the instant of its arrival to the instant
of its departure is given by the Polloczek-Khintchine equa
tion:27

where

A-average number of arrivals per second
s-average service time of a customer-seconds

ITs
2-variance of the service time distribution

The percent time the server is busy servicing some customer
is defined as the utilization, p = AS. The dependence of the
average waiting time on utilization and the variance of the
service time is shown in Figure 13.

The first place where a message may experience delay is
in waiting to be transmitted on a polled multipoint line. As
noted above, the service discipline does not affect the average
waiting time, and thus the cyclic discipline of a polled line
may still be modeled as a single server queue. However, an
accurate model must give considerable attention to an appro
priate definition of service time, to include not only the mes
sage transmission time, but also the negative polling response
times, and the polling interrupts for transmission of messages
from the CPU to the terminals (this latter may in fact domi
nate performance). The appropriate modeling and analysis is
indeed complex.28 However, inspection of Figure 13 gives
some pertinent results. First, for highly utilized lines (p> .7),
a little reduction in utilization can give a large reduction in
waiting time. Second, for lowly utilized lines (p<.5), the
waiting time is dominated by the service time, and substantial
improvement occurs only with substantial reduction in serv
ice time. There are numerous ways in which reductions can
be made in utilization and service time. We consider here
two fundamental approaches: (1) increase transmission rate
and (2) reduce the number of terminals on a line.

In many cases the modem is a stand alone unit, and an
increase in transmission rate may be accomplished ·with a
simple exchange of modems. The impact of such an increase
extends beyond the simple reduction of time required to
transmit a message. The time required for a negative polling
operation is also reduced, and thus the time required for a
polling cycle is reduced. Similarly, the percent time the line
is used to transmit messages from the CPU to terminals is
also reduced. Thus, increase in transmission rate may be

Effective Use of Data Communications Hardware 573

Figure 13

expected to have a greater than linear impact on serVICe
time and utilization.

Reducing the number of terminals on a line is accomplished
by replacing one multipoint line with more than one line.
When the terminals have built in modems, this approach
may be particularly attractive. Like increasing transmission
rate, reducing the number of terminals also has a greater
than linear impact on service time and utilization. Not only
is the number of terminals polled reduced, thereby shortening
the polling cycle, but the average number of messages arriv
ing at the line is reduced, and correspondingly, the average
number of transmissions from the CPU to terminals on a line
is reduced.

Both increasing transmission rate and reducing the number
of terminals imply an increase in cost, the usual trade-off
for performance. However, as noted earlier, cost effective use
of hardware can minimize this trade-off. In particular, the
increase in transmission rate from low speeds (:::;;300 bps) to
medium speeds (600, 1200 bps) can occasionally cost only
the incidental exchange cost, with no monthly rental increase
(provided no change in tariff occurs). When a line is replaced
with more than one line, it may become cost Effective to use
multiplexers, or even concentrators. However, it should be
noted that TDM's introduce an incidental transmission de
lay (Y2 bit for bit interleaved and Y2 character for character
interleaved7), and concentrators introduce another queue in
the network.

CPU bound

The heart of the centralized network is the CPU. It is
the resource to which the network is intended to permit
access. The CPU itself is often modeled as a network of
queues.29 For our purposes it is sufficient to envision it as a
single server queue for which the service time and utilization
depend not only on the processing time of a message, but
also on the overhead required to service the communication
lines.

The efficiency of large CPU's is particularly vulnerable to
the inefficiencies of slow I/O devices, unscheduled demands,
and, although less so, to the overhead required for small
processing tasks. Consequently, manufacturers have pro
vided an extension to the CPU to handle terminal communi-

574 National Computer Conference, 1974

cations, permitting interruption of the CPU only when sig
nificant information has been accumulated. Initially, such
devices were hardwired logic units, called Line Control Units,
and performed the tasks of :30

• Assembling received bits into characters
• Buffering
• Inserts and strips control characters
• Validates received data
• Transmits characters to terminals

More recently it has become cost effective to use a mini
computer to perform these tasks. 18 Furthermore, performance
can be considerably improved by using the parallel processing
capability of the minicomputer to further off-load the CPU
by performing the tasks of:

• Assembling characters into messages
• Message validation
• Line and terminal control
• Codes, formats, and speed conversions
• Message transmission to terminals

Minicomputers servi~K_to c~ntrol corrlInunications for the
C-PU are called Fro~t End Processors (FEP), and vary con
siderably in cost and capabilities.13

In a large centralized network, even the FEP may be
overloaded by the time consuming tasks of polling, message
assembly, code conversion, etc. In such cases it may be
necessary to distribute the communications overhead tasks
throughout the network by assigning such tasks to con
centrators and/or terminal control units. The use of mini
computers for this purpose also permits another degree of
off-loading of the CPU by performing simple processing
functions, such as accounting, program assembly, program
editing, etc.3l

FLEXIBILITY

We interpret the term flexibility as both a vertical and
horizontal capability of the network. Vertical in the sense of
growth to handle more terminals and heavier traffic. Horizon
tal in the sense of handling a broader variety of terminals.
The two key words for such flexibility are software and
modularity.

The advent of minicomputers has provided a cost effective
means of providing a software capability at various levels of
the network. Minicomputers have generally shown them
selves to be cost-effective devices for performing the primary
tasks associated with terminal control units, concentrators,
and front end processors. However, the programmability of
minicomputers may give an even greater advantage to their
use in terms of flexibility, both vertical and horizontal.

Both vertical and horizontal flexibility is found in the use
of a minicomputer as a terminal control unit with its potential
for easily performing the following tasks:

• simultaneously handling a variety of terminal codes,
and converting the codes to a standard form,

• simultaneously handling a variety of terminal protocols,

• interacting with terminals on a character basis while
interacting with a concentrator, FEP, or CPU on a
message basis,

• providing sophisticated error control procedures in mes-
sage transmission,

• locally handling terminal failures,
• providing local accounting and simple processing tasks,
• providing local traffic control.

The software nature of minicomputers and the modular
nature of minicomputer systems makes extension of TCU
in any of the above areas a relatively simple task, and can
be accomplished with little effect on the CPU and other
components of the network. This aspect of isolation of modi
fications required for new terminals, procedures, etc., to a
simple network component, greatly enhances the cost-effec
tiveness of flexibility.

The use of a minicomputer as a concentrator has the same
potential for flexibility as a TCU, with the same attractions
of ease of modification and isolation of modification from
the CPU. In addition, the software capability of a concentra
tor also gives a potential for easily performing the following
tasks:

• performing the multidrop polling,
• high speed data transmission techniques and sophisti

cated error control in communication with the CPU or
FEP,

• handling mixed terminal speeds on the same multidrop
line,

• handling different line protocols, and in particular, inter
acting with terminals on some lines and more sophisti
cated TCU's on other lines,

• local handling of line failures.

Both terminal control units and concentrators achieve
flexibility by cost-effective distribution of intelligence in the
network. Minicomputer systems tend to be of a modular
nature in both hardware and software, permitting easy
growth in both horizontal and vertical flexibility. The use of
a minicomputer as a front end processor differs from its use
as a concentrator to the extent that its mission is to achieve
economic advantage by improving CPU efficiency rather
than by reducing line costs. In reality, the operation of a
concentrator and FEP may be very similar, with the FEP
performing the same tasks as the concentrator in order to
efficiently utilize the I/O channel of the CPU. However,
where much of the flexibility of a concentrator is an added
attraction, it is a necessity for the FEP.

Modularity is the ability to upgrade a system by the addi
tion of appropriate modules to an already existing funda
mental structure. Minicomputers usually have both software
and hardware modularity, and consequently offer tremendous
flexibility with their use in a network. Other devices, such
as multiplexers, can also be modular in structure. The trade
off for such modularity - has traditionally been cost and
efficiency, due to the expense and inefficiency of a general
structure to permit growth. However, the achievements of
cost reductions in hardware, and in particular logic, has

made such a trade-off far less dramatic than before. The ad
vantages in terms of the potential for a smooth growth
process in general far outweigh the current cost advantages
achievable in a non-modular approach.

CONCLUSION

There are many ways to effectively use data communications
hardware. Modem sharing units can be used to reduce the
number of local loops and modems required, mUltiplexers to
reduce the number of lines required, and concentrators to
reduce the number of channels required. Redundancy is the
key to reliability, but need not be particularly expensive
when achieved with cost-effective hardware. Improved per
formance is achieved by off-loading the CPU, higher trans
mission rates, and fewer terminals per line. The key words
for flexibility are software and modularity. There is much
more to be said than space permits. There are other devices
to be considered, and other structures to be compared. The
technology of devices and structures is rapidly advancing.
It is our hope that the discussion presented above will help
in evaluating the impact of such advances.

REFERENCES

1. Gerla, M., "New Line Tariffs and Their Impact on ~etwork De
sign," Proceedings of NCC Can ference, Chicago, Illinois, May 6-10,
1974.

2. Martin, J., Teleprocessing Network Organizatian, Prentice-Hall,
Englewood Cliffs, New Jersey, 1970.

3. Davey, J. R, "Modems," Proceedings of the IEEE, Vol. 60, No. 11,
November 1972, pp. 1284-1292.

4. Davis, S., "Modems: Their Operating Principles and Applications,"
CO'mputer Design, September 1973, pp. 75-83.

5. Doll, D. R, "Multiplexing and Concentration," Proceedings of the
IEEE, Vol. 60, No. 11, November 1972, pp. 1313-1321.

6. Fleig, W. E., "A Stuffing TDM for Independent T1 Bit Streams,"
TelecO'mmunicatians, JUly 1972, pp. 23-32.

7. Glasgal, R, "Advanced Concepts in Time Division MUltiplexing,"
TelecO'mmunicatians, October 1972, pp. 27-32.

8. Libby, P. T., "Time Division Multiplexing," Telecommunicatians,
June 1972, pp. 55-60.

9. Pack, C. D., "The Effects of Multiplexing on a Computer-Communi
cations System," CO'mmunicatians of the ACM, Vol. 16, No.3,
March 1973, pp. 161-168.

10. Parker, D. W., "Multiplexer Selection for Effective Data Com
munications," Telecommunicatians, January 1973, pp. 21-27.

11. Chou, W. and A'I Kershenbaum, "Unified Algorithm for Designing
Multidrop Teleprocessing Networks," Data Networks Analysis
and Design, Third Data CO'mmunicatians Symposium, St. Peters
burg, Florida, November 13-15, 1973.

Effective Use of Data Communications Hardware 575

12. Woo, L. S. and D. T. Tang, "Optimization of Teleprocessing Net
works with Concentrators," National TelecO'mmunicatians Con
ference, Atlanta, Georgia, November 26-28, 1973.

13. Newport, C. B. and J. Ryzlak, "Communication Processors,"
Proceedings of the IEEE, Vol. 60, No. 11, November 1972, pp. 1321-
1332.

14. Mills, D. L., "Communication Software," Proceedings of the IEEE,
Vol. 60, No. 11, November 1972, pp. 1333-1341.

15. Starks, J. P., "Functional Systems Approach to Remote Message
Concentrator Design," CO'mputer Design, March 1973, pp. 61-64.

16. Feinroth, Y., E. Franceschini and M. Goldstein, "Telecommunica
tions Using a Front-End Minicomputer," Communicatians of the
ACM, March 1973, Vol. 16, No.3, pp. 153-160.

17. Hibbs, R B., "Features of an Advanced Front-End CPU," Pro
ceedings of the Spring-Joint CO'mputer Can ference, 1971, pp. 15-21.

18. Pryke, J. T. M., "A Front-End Primer for IBM Users," Data
malian, April 1973, pp. 46-50.

19. Frank, H., "Providing Reliable Networks with Unreliable Com
ponents," Data Networks: Analysis and Design, Third Data
CO'mmunicatians Symposium, St. Petersburg, Florida, November
13-15, 1973, pp. 161-164.

20. Frank, H. and R Van Slyke, "Reliability Considerations in the
Growth of Computer Communication Networks," National Tele
cO'mmunicatians Can ference, Atlanta, Georgia, November 26-28,
1973, pp. 2201-2205.

21. Wilkov, R S., "Analysis and Design of Reliable Computer Net
works," IEEE Trans. an CO'mmunicatians, June 1972, pp. 660-678.

22. Meister, B., H. R Muller and H. R. Rudin, "New Optimization
Criteria for Message-Switching Networks," IEEE Trans. an CO'm
municatians Technology, June 1971, pp. 256-260.

23. Chou, W., H. Frank and R Van Slyke, "Simulation of Centralized
Computer Communications Systems," Data Networks: Analysis
and Design, Third Data CO'mmunicatians Symposium, St. Petersburg,
Florida, November 13-15, 1973, pp. 121-130.

24. Van Slyke, R, W. Chou and H. Frank, "Avoiding Simulation in
Simulation Computer Communication Networks," Proceedings of
National CO'mputer Can ference, June 4-8, 1973, pp. 165-169.

25. Hobbs, L. C., "Modems," Proceedings of the IEEE, Vol. 60, No. 11,
November 1972, pp. 1273-1284.

26. Martin, J., Design of Real Time CO'mputer Systems, Prentice-Hall,
Englewood Cliffs, New Jersey, 1967.

27. Cox, D. Rand W. L. Smith, Queues, Metheun and Company,
London, England, 1961.

28. Konheim, A. G. and B. Meister, "Polling in a Multidrop Com
munication System's Waiting Line Analysis," ACM/IEEE Secand
Symposium an Problems in the Optimizatian of Data CO'mmunica
tionSystems, Palo Alto, California, October 20-22,1971, pp. 124-129.

29. Buzen, J. P., "Queueing Network Models of Multiprogramming,"
Deputy for Command and Management Systems, HQ Electronic
Systems Division (AF'SC), L. G. Hanscom Field, Bedford, Massa
chusetts, Publ. #ESD-TR-71-345, August 1971.

30. Audin, G., "TCU!, Front End! Switch! What are Their Functions?,"
Modern Data, June 1973, p. 47.

31. Bouknight, W. J., G. R Grossman and D. M. Grothe, "The ARPA
Network Terminal System-A New Approach to Network Access,"
Data Networks: Analysis and Design, Third Data Communications
Symposium, St. Petersburg, Florida, November 13-15, 1973, pp.
73-79.

New line tariffs and their impact on network design

by MARIO GERLA

Network Analysis Corporation
Glen Cove, New York

IKTRODUCTIO~

The advances in computer and communication technology
have made available several new techniques (packet-switch
ing, satellite multiple access, loops, packet radio, etc.) for
communication network design \vhich, in addition to the
traditional techniques (point-to-point, multidrop, line
switching, etc.) provide a large gamut of alternatives for
network users. At the same time, the increasing competition
between common and specialized carriers is making available
to the user a variety of leased and switched, voice and data
communication services \"ith different qualities and different
rates. The user who wants to implement a private communica
tion network is therefore faced with a variety of possible
alternatives, corresponding to different techniques and line
tariffs.

In this paper, we assume that the communication tech
nique has been selected and limit our investigations to the
impact of the various line tariff alternatives on network de
sign.

Network design programs which take into account several
tariff alternatives should have a very modular structure, with
separate functions implemented in separate modules, so that
tariff changes would affect only a small number of modules.
More precisely, the network designer should be able to sub
divide, on the basis of line tariffs, the various design problems
and subproblems into a small number of classes, each class
corresponding to a different cost structure. For each cost
structure, a different design module is developed, \vhich is
general enough to handle all problems and tariffs that cor
respond to such cost structure. The global design program is
obtained by combining the proper modules; for instance, the
program for a two-level satellite network \vould require two
tariff modules: one corresponding to the satellite cost struc
ture and one corresponding to the cost structure of the ter-
rest rial subnetworks.

In the following sections, we introduce a possible cost
structure classification and discuss some very general tech
niques for the solution of net\vork design problems within
each class.

PRESENT AND PROPOSED LIKE TARIFFS

Several companies are presentiy providing, or applying for
authorization to provide, communication facilities and

577

services in the U.S.A. Line tariffs vary according to com
pany, type of service, and quality of service. A detailed
description of tariffs is beyond the scope of the paper. Here,
we analyze the parameters which are most important for
network design (i.e., channel bandwidth, dependence of line
cost on mileage, volume discount, etc.) and establish criteria
for the comparison and classification of line tariffs.

The following is a list of the most significant present or
proposed tariffs for dedicated voice or data channels.

A. Common Carriers (Bell System, Independent Telephone
Companies, Western Union, etc.)

1. Narrowband: for transmission of data up to 300 bps.
Line cost depends on distance only. The following are
interexchange mileage charges for channel type 1001,
full duplex:

Miles

1-100
101-250
251-500
501-1000

1ool-up

$/MileXMonth

1.10
0.77
0.44
0.33
0.22

Notice that per mile charge decreases with distance.
2. Voiceband: for transmission of voice and data up to

9,600 bps. Line charge is the sum of the mileage and
service terminal charges. The mileage charge depends
only on the distance bet\veen the two exchanges. The
ser~ice terminal charge corresponds to the local circuit
from exchange to user and is independent of distance.
The following are the tariffs for type 3000 full duplex
voiceband channels. Interexchange mileage charge:

l\Eles

1-25
26-100

101-250
251-500
SOl-up

$/11ileX~10nth

3.30
2.31
1.65
1.155
0.825

Service terminal charge: 16.50 $/Month; installation
charge: 50 $. When data are transmitted on the voice
band channel, the use of modems is required. The cost
of modems varies according to transmission rate
(from .3 up to 9.6 kbs).

578 National Computer Conference, 1974

3. Series 8000: Accommodates 12 voice channels or data
up to 48 kbs. Total cost is given by mileage and service
terminal costs. The service terminal cost is 425 $/
Month. The mileage cost is as follows:

Miles

0-250
251-500
50l-up

$/lVrile X Month

15.00
10.50
7.50

4. Series 5000 (Telpak): type 5700 (formerly Telpak C)
accommodates 60 voice channels or a 240 kbs data rate;
type 5800 (formerly Telpak D) accommodates 240 voice
channels or a 1,000 kbs data rate. For data trans
mission, the total bandwidth can be divided into sub
channels of the desired bandwidth. Mileage charges
are as follows:

Type

5700
5800

$/Mile X Month

30.00
85.00

Notice that there is no mileage rate discount based on
distance.
Service terminal charges are as follows:
Type 5703 (19.2 kbs or 6 voice ch.): 425 $/Mo.
Type 5701 (50 kbs or 12 voice ch.): 425 $/Mo.
Type 5751 (230 kbs or 60 voice ch.): 625 $/Mo.

5. High-Low density tariff (proposed by AT&T): Ap
proximately 370 locations are defined to be high
density points; the remaining are low density points.
For a half duplex channel the following interexchange
mileage rates apply:

High point-high point:
High point-low point or low

point-low point:
Short haul (~25 miles):

. 85 $/MileXMo.
2.50 $/MileXMo.

3.00 $/MileXMo.

~tfonthly channel terminal charges are $35 for Hi and
$15 for Low; station terminal charges are $2.5 for both
Hi and Low.
A low to low connection can be implemented either
directly (in which case the low to low direct distance
tariff applies) or through two intermediate high den
sity points (in which case different tariffs apply to
different segments).

6. Digital Data Service (DDS): this new data service,
being developed and proposed for FCC approval by
AT&T, is based on the Tl digital carrier network.
Better quality and considerable economy can be ob
tained by transmitting data on T1 rather than on
traditional analog channels. DDS will interconnect
initially 24 major cities, and will be progressively ex
tended to most of the 370 high density locations men
tioned previously. Different channp.l bandwidths can

be leased; the proposed rates are as follows:

Mileage charge Service Terminal
Bandwidth (kbs) ($/MileXMo.) ($/Mo.)

2.4
4.8
9.6

56.0

.45

.60

.90
4.50

140
200
280
500

From a remote location a customer can access the
DDS network via private analog channels of proper
bandwidth and characteristics (series 3000, 5000 or
8000) and with adequate modems.

B. Specialized Common Carriers (Datran, MCI, etc.)
1. Datran: the network under development will offer

digital communication service between district offices
located in 35 major cities from the East to the West
Coast. Users within 50 miles of each district office
area can be connected to the network with Datran
facilities; however, intradistrict rates will be dif
ferentfrom·interdisti'ict" rates. The latter are expected
to be similar to the rates offered by DDS.

2. MCI: both analog and digital service are presently
offered connecting Chicago, St. Louis and several
intermediate locations with future plans to include
East and West Coast locations. Channels of band
width up to 1,000 kbs are available. The total line
charge is the sum of intercity mileage charge, system
access charge, and channel termination charge. The
intercity charge is proportional to the distance be
tween the two terminal cities. Intercity rates for some
sample full duplex channels are as follows:

Bandwidth (kbs)

4.8
9.6

50.0
240.0

$/MileXMo .

1.32
1.50

14.90
23.00

The system access charge corresponds to the connec
tion between city exchange and user location. Some
sample rates of access charge for a user located in the
metropolitan area around a city exchange follow:

Bandwidth (kbs)

4.8
9.6

50.0
240.0

$/Month.

51.
6,1).

300.
425.

A user located outside the metropolitan area must
purchase the access channel from AT&T or the local
telephone company. The channel termination charge
differs from analog to digital and applies to any chan-

nel termination. Some sample rates are as follows:

Bandwidth (kbs) Analog ($/~o.) Digital ($/Mo.)

4.8 10. 70.
9.6 12. 100.

50.0 40. 100.
230.0 82. 112.

C. Value Added Networks (VAN's): VAN's are communica
tion service companies which lease transmission facilities
from common or specialized carriers and resell communi
cation services not available from the above (packet
switching, lower error rate, speed and code conversion,
etc.) At this writing, only PCI has been granted FCC
approval among the several VAN applicants (Graphnet,
MCI, Data Transfer Corp., Telenet etc). Proposed tariffs
are not available yet; however, there is indication that,
at least for packet-switching networks, the rates will be
independent of distance, and proportional to traffic
volume (packets/sec.)

D. Satellite Communications: Several companies (WU,
Amersat, CML, RCA, GTE, AT&T, etc.) have been
granted (or are waiting for) FCC approval to sell private
satellite communication services in the U.S.A. Most
satellite carriers will provide, in addition to the satellite
channel a terrestrial backbone network to facilitate
satellite' access and improve overall reliability. Although
most satellite tariffs have not yet been defined, it is
anticipated that the total line cost will be given by the
sum of the satellite and terrestrial cost components.
In particular, the satellite segment (from antenna to
antenna) will be much less expensive than a coast to
coast terrestrial channel (e.g., a full duplex 56 kbs chan
nel on the satellite will cost about 500 $/mo). As for the
terrestrial cost, different rates will apply, depending on
whether the customer provides his own ground stations,
arranges for his own terrestrial access to the company's
ground station, or finally uses the company's terrestrial
network. Two general characteristics of satellite rates will
be:

(1) Rates not too sensitive to distance, (2) Strong volume
discount with respect to satellite bandwidth.

A GENERAL LINE COST CLASSIFICATION

In the leasing of communication facilities, the user is faced
with a variety of alternatives wpjch differ in cost, quality of
transmission, delay, etc. In order to achieve a minimum cost
network design, all such alternatives must be carefully con
sidered. It is practically impossible to develop computer
programs for network design which would take into account
all the available commercial offerings. The best approach is
to classify such offerings into a limited number of very general
cost structures and to develop efficient algorithms for each
structure. Specific problems can be solved by properly vary
ing the input parameters of each algorithm.

New Line Tariffs and Their Impact on Network Design 579

Among the line cost characteristics that most often aff~ct
network design are: (1) dependence of line cost on end pomt
locations and (2) volume discount that can be obtained by
leasing channels of larger bandwidth. Based on such charac
teristics we identify three classes of line cost structures:
(1) Distance Dependent (DID) structures: (2) Location
Dependent (LOD) structures; and (3) Volume Discount
(VOD) structures. The following is a description of the three
classes, with some examples.

A. DID Structures: The cost per channel (or per unit band
width) from point A to point B is a function of distance
(A, B) only. It is independent of the specific locations of
A & B and of the number of channels (or bandwidth)
from A 'to B. Examples of DID Structures are the narrow-
band tariff the interexchange tariff for type 3000 voice
band chan~els and the type -8000 tariff. If we restrict
A and B to belong to a privileged set of points, then the
HiLo density tariff (where A and B are high density
points) and some of the VAN tariffs (where A and B
are nodes of the value added network) can also be con
sidered as DID Structures. In the latter case the cost
per unit bandwidth might be even independent of dis
tance.

B. LOD Structures: The cost per channel (or per unit band
width) from A to B depends on the specific locations of
A and B. It is independent, however, of the number of
channels (or bandwidth) from A to B (no volume dis
count). A typical example of an LOD structure is the
HiLo density tariff. When either A or B or both are low
density points, the rate depends not only on distance
(A ,B) but also on the geographical position of A and !3
with respect to high density points. Another example IS

offered by the VAN's, where the relative location of A and
B with respect to network nodes clearly effects the con
nection cost. In problems where only one channel of
given capacity must be allocated between A and B (and
therefore volume discount does not apply) also DDS
tariff and in general all specialized and satellite carrier
tariffs can be considered as LOD structures: in fact, the
cost of the channel will depend on the relative position of
points A and B with respect to the DDS network, the
special carrier network or the terrestrial backbone net
work of the satellite company.

C. VOD Structures: The cost of leasing an additional channel
(or additional bandwidth) from A to B decreases with the
number of channels (or bandwidth) already leased from A
to B. Furthermore, the cost depends on the distance be
tween A and B (but does not depend on their specific
locations). Examples of VOD Structure are: the Telpak
tariffs (where A and B can be any location in the U.S.A.);
the DDS tariff (where A & B belong to the DDS net
work); the specialized carriers and satellite companies
(where A & B belong to the respective networks).

A more general VOD structure would include line costs
specifically dependent on terminal locations (as in LOD).
However, we show in the next section that this more complex

580 National Computer Conference, 1974

@)

x-_ ----

6

X

@) High density points

" Low density points

B'

Figure I-Minimum cost connection under HiLo structure

@)

class of problems can often be reduced, by means of clustering
and partitioning techniques, to the study of two separate
problems of LOD and VOD type respectively.

LINE COST CO:\1PUTATION FOR NETWORK DESIGN

A very general design problem formulation is as follows:

Given:

1. Traffic requirements (voice channels, data rates, etc.)
between the various communication centers (com
puters, terminals, telephone exchanges, communica
tion processors, etc.).

2. Scheme of implementation (point-to-point connec
tions; packet-switching; line switching; multidrop;
loops, etc.).

3. Available tariffs for lines and equipment.

Minimize:

Total communication cost (sum of line, termination,
modem and communication processor costs).

Such That:

The traffic demand is accommodated with the required
grade of performance (average delay, grade of service,
reliability etc.).

Network design algorithms depend very critically on the
particular cost structure corresponding to the available line
tariffs.

In fact, we recall that the backbone of most network
design algorithms is a minimal spanning tree (MST) compu
tation/ or a shortest route (SR) computation,2,3 or both.4

In any case, both MST and SR computations require the
notion of cost per channel (or cost per unit of bandwidth)
associated with each node pair in the network. Furthermore,
at some iteration of the algorithms, links are introduced or
deleted according to cost criteria.1 ,2 The nature of such costs,
and their efficient evaluation have a very important impact
on the overali efficiency of the design algorithm.

In the fonowing we discuss some basic techniques for the
design of networks with DID, LOD, and VOD structures re
spectively.

A. DID Structures: For small network size, one can compute,
using direct distance, the costs of all potential circuits
between all node* pairs and store the information in a
cost matrix. All subsequent operations (MST, SR, link
insertion or removal) are based on such information. Most
centralized network algorithms presently available use
this approach. For networks with thousands of nodes,
however, the full cost matrix cannot be stored in core:
to overcome the difficulty, a reduced cost matrix, which
contains the costs of potential links from each node to
only a subset of the nodes, might be considered. The
criterion for selecting such subsets is highly critical to
the efficiency of the overall algorithm, and varies from
problem to problem. An example of this technique is
discussed in Reference 1.

E. LOD Structures: An LOD structure can be reduced to a
DID structure upon computation of circuit costs between
all (or a subset of) node pairs. In general,. the co~t be
tween t"TO nodes-in an LOD structure is defined as the
sum of the costs of the circuits along the minimum cost
route. More precisely, if A and B is an arbitrary node
pair, and A' and B' are any two points between which a
special tariff exists (e.g., A' and B' are high density
points, or switching centers of a DDS network etc.), the
cost C(A, B) between A and B is defined as (see Figure
1):

C(A,B) =

min{Cd(A,B), min [Cd(A,A') +C8 (A',B') +Cd(B',B)]} (1)
VA',B'

Where:

Cd(X, Y) = direct distance cost of a circuit from X to Y

Cs(X, Y) = special tariff cost of a circuit from X to Y

A straightforward way of obtaining all the new costs is
as follows: consider an augmented network, which includes
original nodes and special tariff nodes) and compute the
matrix of minimum costs between all node pairs of the aug
mented network, using the standard shortest route algo
rithms. 5 Such a minimum cost matrix provides all the desired
new costs. Core and computer time requirements, however,
make the method inefficient for large networks; in such cases
it is possible to improve efficiency by considering costs be
tween each node and a subset only of the total set, of nodes,
in a way very similar to that described for DID structures.
A powerful algorithm, based on the latter technique, has been
recently developed for the high low density tariff: in particu-

* In a communication network, "node" is any device that terminates a
circuit and, eventually, provides connections between several circuits
(e.g, t.erminal, concentrator, telephone exchange, satellite ground sta
tion, communication processor, etc.).

lar it was found that on the average we need only to consider
the cost from each low density point to four high density
points. 6

An interesting example of LOD cost structure is offered
by a network design that can utilize unsaturated links of a
preexisting Telpak network. On such links the cost of adding
a new channel (marginal cost) is zero. The minimum cost for
establishing a voice grade link between any two telpak nodes
is given by the cost of the shortest path between such nodes,
where link length is defined as the marginal link cost. If we
assume that the new network requirements are small enough
so that no Telpak link becomes saturated, the preexisting
Telpak network induces an LaD cost structure where the
shortest route, and therefore the cost of a circuit between any
two points, depends on their relative locations with respect to
Telpak nodes.
C. VOD Structures: Under such cost structures, network de

sign tends to route the external requirements on the
routes that provide the best economy of scale (which are
not necessarily the most direct routes). Among the
several problems with a VOD structure are: the Telpak
problem;4 the design of the long haul common carrier
network;3 and the design of a packet-switching network.2

The network design algorithms proposed for the three
above examples and described in the corresponding
references have the following common feature: they re
peatedly compute shortest routes according to appropri
ate link costs (which change from iteration to iteration)
and redistribute (or "deviate") requirements on such
routes. The effect of such deviations is to achieve better
economy of scale and, therefore, reduce cost.

Without entering into details, we simply mention that
the efficiency of the VOD algorithms is strictly related
to the nature of the cost-capacity functions of the links.
For example, if such functions are continuous and concave
(or convex), it is possible to develop efficient, suboptimal
and, in some cases, optimal algorithms using the theory
of mathematical programming.2 In most practical ap
plications, however, channel capacities are available for a
discrete set of values only, and therefore, cost-capacity
functions are not continuous. In such cases, various de
grees of heuristics must be used, and the difficulty of
the problem depends on the nature of the functions. In

~------,-----

Figure 2-Telpak-like tariff

New Line Tariffs and Their Impact on Network Design 581

Cost ..-----

Figure 3-MCI-like tariff

particu]ar, link functions which are rather irregular,
"neither concave nor convex," and which have large
capacity jumps (like the Telpak case shown in Figure 2)
are difficult to handle during net\vork design. On the
other hand, link functions with small capacity jumps and
which can be reasonably approximated by continuous
curves (one such example is provided by MCl's tariff
FCC #1 (see Figure 3)) lead to quite efficient algorithms.

As a general rule, although optimal topology will de
pend on many factors (economy of scale, throughput
level, node geographicaJ location, traffic requirements,
etc.), it is possible to anticipate that cost structures with
strong economy of scale lead to tree topologies, while
structures with mild economy of scale lead to highly
connected topologies.

D. Partitioning and Node Location Problems: Xetwork parti
tioning consists of dividing the nodes into subsets and
solving a separate design problem for each subset. This
operation typically requires the solution of a location
problem, because partitions are connected to each other,
or to a central node, through one or more "exchange"
nodes whose locations must be optimally selected (e.g.
concentrator location, for centralized networks, or satel
lite ground station location, for satellite networks).

K etwork partitioning is necessary for the design of
networks that are too large to be handled in their en
tirety by computer algorithms. Furthermore, network
partitioning is the natural consequence of a VOD cost
structure or, more generally, of any economy of scale
situation where it pays to implement a multi-level hier
archical structure. In a two-level structure, 'where several
regional networks are connected by one national net
work, interregional traffic is sent from regional nodes to
their respective regional exchanges, and from there
through the national network. N ationallinks carry a high
traffic volume and can achieve a better volume discount
than can regional links.

A typical example of partitioning and node location
problem is the design of a two-level net,vork where the
national network contains both terrestrial and satellite
links, with private ground stations. The national net

582 National Computer Conference, 1974

shows a strong economy of scale effect, due to the volume
discount for satellite bandwidth and, more important, to
the very high cost of ground stations. In order to take
advantage of such an economy of scale, we would like to
send as much traffic as possible through the satellite
links.

However, there is a complex trade off between ter
restrial line cost, satellite bandwidth cost, and ground
station cost. A reasonable heuristic approach is as follows:
we fix arbitrarily the initial number and location of
ground stations; we design a low cost national topology;
and we assign to the global problem an LOD cost struc
ture (where line cost between two nodes of the national
network is considerably less than direct distance cost).
Then, we accommodate the node pair requirements of the
global network along minimum cost routes relative to
the LOD structure. At the same time, we determine na
tional network requirements and regional partitions.
Next, using such requirements, we design the national
network, which has a VOD cost structure. Once the
national solution is obtained, we recompute the LOD
cost structure, based on marginal costs, and reiterate the
procedure. The algorithm also provides for relocation,
addition, or deletion of ground stations.

CONCLUSION

The advances in communication technology and the increased
competition between communication services vendors will
generat~, as a consequence, a variety of offerings and of
tariffs w'hich will be subject to more frequent changes than
before. The user, in implementing and upgrading his com
munications network, will be faced with a variety of alterna
tives and will be able to achieve considerable economies by
carefully selecting the most appropriate communication
facility. In particular, the user will be asked to: (1) specify,
in more precise terms than before, his communication require
ments (traffic volume, traffic statistics, grade of service, ad
missible delay, error rate, reliability, etc.) so that such re
quirements can be met at minimum cost by the use of proper
technology and proper communication offerings; (2) be pre
pared to reconfigure his network more often than before in
order to take advantage of rapidly changing cost and quality
of services.

As for the impact of new tariffs and services on communica-

tion network design, we can anticipate that:

1. All Network Design Will Be Computerized: In fact,
it will be too cumbersome, if not impossible, to evalu
ate manually the trade offs between all the available
alternatives.

2. Programs Will Be More Modularized: Each function
(e.g., subnetwork design, partitioning, LOD and
VOD cost computations, etc.) will be confined in a
specific module so that tariff changes require only
the modification of a few modules. Furthermore, new
design algorithms can be easily built from existing
modules.

3. Network Design Will Be More Flexible: in view of
technology and tariff changes, network design must
allow efficient reconfiguration of the sections affected
by those changes.

4. Network Performance Will Be More Frequently Moni
tored: From traffic statistics and performance mea
surements, and on the basis of the new technology and
tariffs the communications manager must be able to
deterrcine when the network must be upgraded or
reconfigured. . -

5. Design Programs Will Be More Interactive: Changes in
technology, traffic and tariffs will require frequent
verification that network design is still optimal or near
optimal. In order to do that, one must be able to
evaluate, in an interactive fashion, the sensitivity of
network performance to changes of input parameters
and design variables.

REFERENCES

1. Chou, W. and A. Kershenbaum, "A Unified Algorithm for Desi?n
ing Multidrop Teleprocessing Networks," 3rd Data Commumca
tions Symposium Proceedings, Tampa, Florida, November 1973.

2. Gerla, M., The Design of Store-and-Forward Networks for Computer
Communications, School of Engineering and Applied Science, Uni
versity of California, Los Angeles. Ph.D. Dissertation. January 1973.

3. Yaged, B. Jr., "Minimum Cost Routing for Static Network Mod-
els," Networks, 1: 139-172, 1971. . .

4. Goldstein, M., "Design of Long Distance TelecommUnIcation Net
works: the Telpak Problem," Report R-4, Office of Emergency
Preparedness, January 1971.

5. Floyd, R.W., "Algorithm 97, Shortest Path," Communications of
the ACM, 5 (6): 345, June 1962.

6. Private communication from Aaron Kerschenbaum, Network
Analysis Corporation, Glen Cove, N.Y.

Tools for planning and designing data com~unications networks

by AARON KERSHENBAUM

Network Analysis Corporation
Glen Cove, N ew York

INTRODUCTION

The planning, design, and management of a large telecom
munications network is a complex process involving many
aspects of the network's cost and performance. Throughput
capability, reliability, response time performance, and cost
must all be considered in evaluating alternatives. For a large
network, obtaining an accurate analysis of anyone of these
aspects is a formidable task involving cumbersome calcula
tion and many decisions. The problem of obtaining an ac
curate analysis of the entire system is magnified by the fact
that these individual factors interact strongly with one
another. Thus, in order to design a "good" network, or verify
that an existing network is operating properly, one must not
only be able to solve each of the above problems, but also be
able to evaluate the solution of each one in the context of
solutions to the others.

Computer programs, if they are carefully designed and
properly used, can be pO'werful tools in the planning and
management process. While one cannot reasonably expect
that such programs will solve all problems or even that they
will solve anyone problem perfectly, such programs can
take a large burden off the analyst by providing accurate and
reliable answers to subproblems which can then be used to
answer global questions about the overall network.

Thus, these programs are used by the qualified analyst as
tools. If the man-machine interface is good, the analyst and
the computer together can solve problems that neither could
solve as well separately and each works on the aspects of the
overall problem which he can handle best. The analyst de
composes the overall problem into subproblems and couches
his questions to the computer in such a way as to reflect the
peculiarities of each particular network and the relative im
portance of each design criterion, which also varies from
system to system. The machine answers specific questions in
the context posed and enables the analyst to consider many
more alternatives than he would otherwise have the time or
inclination to approach using hand analysis alone.

This paper functionally describes programs which can be
used as design and analysis tools, and the uses they can be
put to. Examples of the benefits obtainable through the use
of such tools in the design and analysis of actual networks
are presented. Although much of the material presented can
be applied to the design and analysis of all types of networks,

583

the discussion is limited to centralized telecommunications
networks.

PROGRAM ARCHITECTURE

There are many programs currently in use as netvI-'ork
design and analysis tools,1-8 and each approaches the overall
problem from its own point of view. Some stress a compre
hensive data base to describe the system. Others stress topo
logical design, equipment selection, or some other single
aspect in the design/analysis process. Still others approach
the problem as a whole, solving many aspects of the problem
simultaneously. Each of these approaches has its advantages,
but most stop short of the ultimate goal of being true design
tools as defined above.

Useful design tools must be reliable and flexible. If the
user cannot be reasonably sure that the program will con
sistently produce accurate results which he can rely on, he
might just as well solve the problem by hand. Similarly, it
might be easier to solve a problem than it is to twist the
problem into the form which will fit into a rigid program.

One way of achieving these goals is to build tools mod
ularly, using a group of programs which are each designed
for a specific purpose. Each module is simple to design, flex
ible, and reliable because it deals only with one particular
aspect of the overall problem. It is tailored to that specific
subproblem and derives its utility from being able to treat
that subproblem well, rather than having to approximate a
solution to many problems at once. A screwdriver is a reliable
tool which can be used to put screws into a wide variety of
objects, but consider the problem of designing a single tool
which will cut wood, drive nails, and put in screws. Worse
yet, consider the problem of having to work with such a tool.

Building tools modularly has additional advantages.
Changes to one module to accommodate new equipment or
tariffs need not affect other modules and thus, can be made
with relative ease. This is another dimension of flexibility.
Modules designed to solve a specific problem usually run
efficiently and thus, many more alternatives can be con
sidered that could be with a large, cumbersome program.
This is another dimension of reliability.

These modules must, of course, be coordinated with one
another as the solution of the global problem depends upon

584 National Computer Conference, 1974

each individual subproblem solution. More so, the subproblem
solutions often depend upon one another. This task falls
mainly upon the analyst. He may choose to coordinate the
modules by specifying input parameters to each module, by
examining outputs, by interacting with the modules during
their execution, or even by using a program manager module
to control some of the flow of information among individual
modules. In each case however, it is the analyst who decom
poses the original problem, specifies the context of the solu
tion of each subproblem, and assembles the· solution of the
global problem from its component parts. This places the
responsibility upon the analyst of not only understanding the
problem, but also of understanding what his tools can do for
him and what they can not. The situation which thus arises
is more realistic than one where this responsibility is placed
on the tools and is a significant improvement over working
with no tools at all.

INPUT MODULE AND DATA BASE

Before one can make use of design and analysis tools, he
must first specify the network and his objectives to the pro
grams he is using. While this is not the most conceptually
difficult task in the design/analysis process, it can be the
most time consuming unless it is done efficiently. This can
best be done using an input module and a data base which
interact with one another.

The input module reads in user supplied data including
parameters and pointers into the data base. It then filis in
the defaults and fetches user requested information from the
data base, collecting all specified data in one place. Next it
checks the collected data for completeness, correctness, and
consistency, outputting error messages, and possibly halting
if any sufficiently serious errors are encountered. Finally, it
organizes the data into the structural form required by the
other modules, and if the input module is run as a separate
program, outputs this data structure to be read in by other
modules.

The ideal mode of input is the interactive mode where the
user is permitted to enter data while the program is running.
Error checking and corrections can be done immediately,
and the user can specify some parameters after having seen
output from some of the modules. An important property of
an input module running in an interactive mode is that parts
of it will run after other modules are run or, in some cases,
even while they are running. This differentiates it structurally
from an input module run in a static mode, which usually
does its whole job at the start of execution. Thus, an inter
active input module should consist of several sections which
are executable separately and closely linked to the modules
controlling the overall program flow. For each particular
network design, the task of inputting all the required data
can be greatly simplified by incorporating an easily usable set
of defaults, aHowing the user to omit parameters and have
the system fill them in. The NAMELIST facility, present in
many higher level languages, which allows the user to input
data in free format specifying both the variables' name and

value and omitting variables which are to take default values,
is one good way of implementing defaults.

The data base is a body of information which is not, in
general, dependent upon a particular network (e.g., de
vice characteristics or tariffs) and is necessary input to
the program. The user can specify a block of information
he wishes to make use of, and the input module fetches it
from the data base thereby relieving the user of the burden
of specifying each piece of information individuaHy. One sec
tion of the input module, which in general may run entirely
independently of the rest of the sections (and the rest of the
program), is a procedure for creating and modifying the data
base.

It may be necessary to input parameters which overwrite
and supplement values gotten from the data base. A common
example of this is pricing information which is rightfully
part of the data base but is often varied from system to
system because it is volume dependent. By providing this
flexibility, the data base can be kept to a manageable size,
excluding devices of marginal utility without fear of limiting
the use of the program. It is also not necessary to constantly
change the data- base when-a new line of equipment is intro
duced. 1VIanual override parameters and system default
parameters together provide the user with the ability to
freely intermix input data with information gotten from the
data base, using the program under a wide variety of cir
cumstances with a minimum of effort.

NETWORK CONFIGURATION AND HARDWARE
ALTERNATIVES

One of the first questions which must be answered in order
to design a network is what hardware devices should be used
in the design and how should the hardware be configured.
The choice of central processor, peripherals, concentrators,
multiplexers, terminal controllers, and terminals greatly in
fluences the network's cost and performance, and forms the
basis of all further analysis and evaluation of the system.

Central site configuration

Given a central processor (or several processors) and a set
of peripheral devices (tapes, disks, drums, etc.), one must
evaluate the throughput capability and cost effectiveness of
the configuration. One can thus compare different lines of
equipment and different configurations of a specific line of
equipment.

A program of this nature can range from a simple closed
form queueing formula to a very elaborate brute-force simu
lation. The former approach, though simple, must adhere to
rigid assumptions. Thus, the scope of its application is
limited. The latter one requires enormous efforts both in
developing and using the program, and is in general only
useful for one particul~r system. Thus, it is quite impractical
to use, as two essential features of a simulation program are
that it be inexpensive for repetitive usage and versatile
enough to be used in a varying operating environment. There-

Tools for Planning and Designing Data Communications Networks 585

fore, this module should be a simulation program with em
bedded queueing models.

A properly constructed queueing model can represent
many different systems by changing parameters and can ac
complish many important tasks, such as considering systems
containing peripheral devices with different characteristics,
pinpointing traffic bottlenecks, and allowing arbitrary dis
tributions for CPU processing time and message arrival
rates.

Terminal configuration

The basic function of such a module is to evaluate the cost
effectiveness and throughput capabilities of different types of
terminals and terminal configurations. In particular, one
may \vish to evaluate the effectiveness of using terminal con
trollers \vith simple slave terminals as opposed to using more
sophisticated terminals which can operate without control
lers. For each configuration, the module calculates the
number of terminals required as a function of throughput
and the total cost versus throughput capacity.

Choice of multiplexers and concentrators

The decision whether or not to use concentrators and
multiplexers in a network design must be partially based
upon how m.uch money can be saved in other parts of the
network and how their inclusion wilJ affect the network's
reliability and response time performance. Configuration
modules can help in making this decision by evaluating alter
nate devices and calculating .the number of devices required
and their cost for given traffic loads.

Each of these modules takes, as input, device character
istics and traffic characteristics and yields as output an eval
uation of a hardware configuration. A final decision as to
what hardware configuration should be used need not be
made on the basis of such information alone, but instead,
can be made using the output of other modules as welL By
treating problems of hardware configuration in these modules
however, rather than as part of a large program which con
siders other issues as well, one can obtain clear answers to
these configuration questions and greatly simplify the tasks
of the design and analysis modules.

RESPOXSE TIME/THROUGHPUT AXALYSIS

One of the most important, and most difficult problems in
analyzing a telecommunications net\vork is getting an ac
curate analysis of response time and throughput capability.
Without a clear picture of the system's response time per
formance, the analyst must make conservative assumptions
dUIing the design process, and runs the risk of introducing so
much slack into the design that it cannot be sold in today's
highly competitive market. Worse yet, he runs the risk of
designing a system which will not work. When the system to
be analyzed includes concentrators, multiplexers, terminal

controllers, and complicated central processor hardware con
figurations, the problem becomes especially complex.

The output of the hardware configuration modules can be
used to great advantage in solving this problem. One can
explicitly simulate message flow along a single path bet\veen
a terminal and the central computer by using the param
eterized analytic queueing models in the configuration mod
ules to represent system hardware and software. In this way,
it is possible to accurately account for the delays introduced
by hardware, software, and the presence of traffic from other
lines incident to the path being simulated.

This approach to the problem is more effective than pure
simulation or analytic modeling alone. Analytic models of
the complex network of queues present in real systems can
only be formulated by making simplifying assumptions which
result in inaccuracies in the response times obtained from the
modeL Pure simulation, while more accurate, is cumbersome
and results in a model which is specific to the particular sys
tem under consideration. Such models must be modified ex
tensively for each new system considered. The hybrid tech
nique, using analytic models for each device as part of a
simulation model of the entire system, results in an accurate
model which is at the same time flexible enough to be used
in the analysis of a wide variety of different types of systems.

By means of input parameters, the user should be able to
specify message length distributions for input and output
messages, keying and display (or printing) times, distribu
tions for message interarrival times, number of terminals (or
terminal controllers) per line, number of lines per concen
trator, line speeds, line discipline, polling and addressing
sequence lengths, number of bits per character, propagation
times, device turnaround times, message processing times,
and parameters describing the delays in hardware devices.
Additional input parameters controlling the operation of the
simulation package might include multiple simulation option,
trace feature, output control parameters, maximum simu
lated time, maximum number of transactions simulated, and
transient response suppression.

The output of the response time/throughput module may
be formatted in many ways, dependent upon the user's
needs. Response times may be presented on an overall basis
or components of response time such as waiting times in
various devices may be presented separately if they are of
interest. Response times may be given as functions of facility
utilization (e.g., line utilization, or CPU occupancy). Em
pirical distributions may be presented if a detailed analysis
of systemwide variation in response time is required, in par
ticular if a constraint at a given percentile of traffic must be
checked. In some applications, where leased lines are used,
queueing delays may be of primary interest while in others,
where contention or dialup is used, blocking probabilities
may be required.

Thus, with the aid of output from the configuration mod
ules, the response time/throughput module can produce an
accurate and reliable analysis of a network even when it is
complex and contains several levels of hardware. This analy
sis is not only interesting in its o\vn right as it provides one
of the most useful measures of a system's performance, but

586 National Computer Conference, 1974

also, it can greatly simplify the task of the topological design
module by providing it with useful relationships between
response times and facility utilizations.

RELIABILITY ANALYSIS

One of the most neglected areas in the network design
process is reliability analysis. Many networks are designed
without giving any thought to this important measure of
network performance, and only after painful experience
with frequent failures and degraded response times following
periods of downtime is it given belated consideration.

The most fundamental decisions in the configuration of a
network-hardware selection, use of alternate paths to provide
backup for critical communications lines, use of spare com
ponents for backup, and connection of on-line devices, in
series or in parallel-relate strongly to the network's reli
ability. Here, as in the case of response time, inadequate
analysis may lead to conservatism in design, or to excessive
optimism, which can result in unacceptably poor system
performance.

Given a topological d('sigIl of a nct,York and the failure
rates of components (mean time to failure, mean time to
recovery, or probability of failure) one must calculate reli
ability measures for the entire network. Here, as in the case
of response time and throughput analysis, the output may
be organized in different ways, depending upon the user's
needs.

Usually, one wishes to obtain the average value of the
percentage of time a terminal or location (with several ter
minals) can communicate with the central computer. Some
times this information is useful on a terminal by terminal or
location by location basis. One may also want the average
reduction in system throughput capacity due to equipment
failure.

If the network under consideration is topologically simple
(i.e., a tree, a series parallel netvwrk, or a loop network),
such reliability measures can be obtained analytically. A
combination of analytic and simulation techniques is often
highly effective in obtaining solutions in many practical
situations which do not fall into any of these simple to
pologies. In particular; many networks can be analyzed as a
collection of trees or loops which are interconnected by a
more topologically complex backbone network. Each tree or
loop can then be collapsed analytically into an equivalent
node in the backbone network, and the problem can thus be
reduced to that of a small number of nodes which can be
analyzed using simulation. Alternatively, when the network
under consideration is composed of many small topologically
complex subnetworks linked by a backbone, each subnet
work can be separately reduced to an equivalent node in the
backbone, and the backbone can then be analyzed efficiently.
In each case, the network is collapsed from the extremities
toward the center, replacing increasingly large subnetworks
with equivalent nodes. If the overall network is not complex
topological1y, both the running time and memory require-

ments of the procedure need be only linearly proportional to
the number of nodes in the network.

TOPOLOGICAL OPTIMIZATIO~

The task of topological optimization, i.e., deciding how to
interconnect network locations as economical1y as possible
while still meeting all performance constraints, is the most
complex task facing the analyst, as it encompasses all the
previously mentioned problems. The other modules at his
disposal provide great assistance in this task; but he is still
left with many decisions, especially if the network is large
and geographically diverse enough to benefit from the econ
omies offered by concentrators and multiplexers.

In order to design networks using concentrators and multi
plexers, one must first choose the number of concentrators
and multiplexers and their locations. Next, each terminal in
the network must be associated \vith a particular concentra
tor or multiplexer. Then the routing and speed of the multi
dropped lines connecting the terminals to the concentrators
and multiplexers must be decided upon. Finally, the routing
and speed of the lines connecting the multiplexers and con
centrators to the central computer must be decided.

A module which is to be a useful tool in solving these
problems must itself be composed of submodules, each of
which is designed for a specific purpose.

First, because of the variety of tariff structures currently
in use, one needs a submodule for evaluating the cost of con
necting any pair of points with a given speed line. Where
certain tariff structures are applicable, such as the high/low
density tariff, or where existing Telpaks can be used, inter
mediate points may be used in routing circuits, and this cost
calculation may itself be complex. By separating the cost
calculation from other functions, the topological optimization
module can be used with a variety of tariff structures with
out becoming unduly complex.

The problems of associating terminals with concentrators
and routing the multidrop lines connecting terminals to con
centrators are separable from the other problems and should
be treated by a separate submodule dedicated to this purpose.
One such efficient algorithm has been the subject of another
paper4 by this author.

The remaining problems, which concern the location and
interconnection of concentrators, can often be dealt with
manually by the analyst, since the number of concentrator
or multiplexer locations are often limited by the existence of
manned facilities. If, despite these factors, the remaining
problems are not tractable manually, a straightforward
automated procedure can be implemented by embedding
solutions to the multidrop line layout problem into an algo
rithm which evaluates different numbers of concentrators
and different concentrator locations.

The topological optimization module requires, as input,
information describing the applicable tariffs, traffic at each
location, terminal locations, and utilization factors for lines
and devices. In addition to this, concentrator and multi-

Tools for Planning and Designing Data Communications Networks 587

plexer locations must be input unless an automated procedure
for their selection has been included. X otice, however, that
performance criteria need not be input directly. It is the
function of other modules to evaluate such criteria and pro
duce as output the utilization factors and specific device
types which are input here. This operation greatly simplifies
the task of the module, allowing it to solve its problem ac
curately and efficiently.

COORDINATION OF THE :\10DULES

As has already been mentioned, the task of coordinating
these modules usually falls on the analyst. ~onetheless, it is
possible to lighten this burden to some extent by designing
another module, the Program Manager, to assist the analyst
in the performance of part of this task. The point must be
stressed, however, that an attempt to use such a module as a
substitute for insight on the part of the analyst can easily
complicate the Program Manager and all the other modules,
and seriously impair their functions.

The basic function of the Program Manager is to link the
other modules together while they are executing, allowing
them to' pass information to one another which would help
them in performing their individual tasks.

Some of the parameters passed to each module as input
can be gotten from the output of other modules. Thus, the
utilization constraints on lines and devices input to the
topological optimization module (TO~f) can be gotten
directly from the output of the response time module (RTM)
rather than having the user specify them as input. This not
only makes the TO:M easier to use; it also provides for greater
flexibility in specifying these constraints, since the RT~f can
generate combinations of constraints that are too complex
for a user to specify by hand. The RT:\f may also pass
several different combinations of constraints and aJlow the
TOM to choose the best set.

Similarly, the TOM can pass detailed information about a
particular design to the RT:\f, allowing the RTM to produce
a more exact analysis of that particular design than could be
provided using only general parameters describing the net
work. The RTM could then reevaluate constraints and pass
them back to the TO::\f, and the entire process can iteratively
improve the network design.

A detailed description of alternate CPU and terminal con
figurations can be passed to the RT::\f, enabling it to produce
a more exact response time and throughput analysis of the
network using each configuration. The results of this analysis
can then be passed back to the configuration modules, allow
ing them to produce a more detailed comparison of the al
ternatives. Again, this process can be iterated. Similarly, the
topology of a design can be passed directly from the TO::\f to
the reliability evaluation module. :Note, however, that in
each case, the functions of the module is kept distinct, even
though each module makes use of information provided by
other modules. This is as close as one can reasonably expect
to come to having one's cake and eating it too.

I
I

CENTRAL
PROCESSOR

CONFIGURATION

I
I

~\ TRUNK ~INES CONNECTING CPU
TO CONCENTRATORS

\

REMOTE

-+ MULTIPLEXERS

CONTROLLERS

++ TERMINALS

Figure I-X etwork schematic

Another possible function of the Program Manager is to
facilitate multiple designs and analyses under a variety of
assumptions about the system and its loading. Thus, one can
obtain an entire spectrum of designs for different traffic levels
and evaluate the cost of providing additional throughput
capacity. Similarly, the effectiveness of alternate configura
tions to improve reliability or response time can be evaluated.

EXAMPLES

The techniques described in the previous sections have in
fact been used to design and analyze real networks. Many
problems which would have been intractable to manual solu
tion or which would have necessitated the development of
costly software to solve them entirely automatically were
solved by analysts using the basic design tools described
above. The following illustrative examples \vere chosen from
among these problems.

Response time analysis and central site configuration

Figure 1 is a simplified schematic of a network whose re
sponse time capability was recently analyzed using the tech
niques described earlier in this paper. A detailed schematic
of the central processor configuration is given in Figure 2.
Pairs of remote concentrators are linked to the CPU by high
speed trunk lines ranging in speed from 7200 bps to 50,000

588 National Computer Conference, 1974

1 2 3
CORE }lE~10RY" CORE HEHORY CORE MEMORY

1 I .. -1 I I ! •
J 1 • I .. .

I SPARE ?O~ TS

CO!:l.'TROL C·PU CPU ~ONTROL
CONSOLE ------ r-.----- tONS OLE

1
I 12 I/O

2

II11 Ir CHANNELS-- I 8 CBM~""ELS
,/.

~ j f

,
1 1

I \
I I I I I 1 I I
SPI I SPI I . SPI j L::~ SPI I SPI I SPI SPI SPI SPI

·1 l ·1··· 1-
DRu~11 lDRU~\ DRUHI DRUM DRUl-ll I DRUMl CTMC CTMC 1 !~~~ I~{UI CONTt CONT CONT CONT' C01.iT CONT

and and
:r~ I

j 2 j ~ 2 j~ I ~30J
I 16 16 /?RI~"TER r FH-43 7 CTM's ~T.[\1· s

600 LPt-l PH-431 f'C;U 0-
7 Chan. 1 2

93

1
tDRWsi ·DRUMS

PH~~78- . 2 .~~~ tPH-1782 r.t;;;: TAPES

DRW,S DRUMS ,~e::
~

50 KB
MODEMS

t
TO

NYC

S~qITC

R}l..cK

1

[48:°42400 B rz400 B
MODEr . M?DEZ.~~ MODEY,S

t t
TO

OTHER
SITES

TO TO
NE'ViS- LEvEL ~
'HIRE DISTRIB

UTORS

VCA'RD
READER

GOO CPH

930[1
J,E"'CARD

?UNCH .
!

200 CD\li
~

Figure 2-CPU configuration

bps. Terminal control1erR are linked to the remote concen
trators by multi dropped full duplex voice grade lines. When
economical, groups of up to five low speed lines are multi
plexed onto a sing1e high speed channel. Each terminal con
troller handles up to 12 terminals. The network contains
over 1,000 terminal controllers and almost 2,000 terminals.

Because of the stringent response time requirements used
in the design of this system, the line discipline is unusually

complex. The system handles two kinds of messages "'lith
different length distributions and different arrival patterns.
PoIling sequences are nested into acknowledgments in order
t.o reduce queueing delays on the regional lines. In addition,
flow control procedures are imbedded in the central processor
and concentrator software to prevent any possibility of buffer
overflows at the concentrators and CPU. The simulation
package is organized in such a ·way as to allow for several

Tools for Planning and Designing Data Communications Networks

TOTAL STMULATED TIMF = 7?nl.I73 SFcoNn~
TOT.AL N"MRER OF TRANSACTT()NS = S44
TOTAL t..)lIMRER OF FORMS 3AR

9787'":1. INPUT CHAPACTERC:;
'7657r::: ~ OUTPUT CHARACTFRC:;
.15490 INPUT LINE UTTLIZATTON
.i3?A20UTPUT LINF UTILIZATION
.51314 FORM LTNF UTILI7ATION
.RooA6 TOTAL LTN~ UTILT7ATTON

FOR~ULA 1 RID TO POLL

NO. OF T~PMTNALS If-
AVERAGE CUSTOMER INTERARPIVAL TI~f
LTNE ~p~En Q4S PPS
POLL TNt, 0 I SCI PLT r-,IE -- D I SCRFT
SELFCTlnN DISCIPLTNF -- 8CKNOWLFnGED

1 ? () 0 SF cnt'-.!nS

AVERAGE TERt-.1INAL ,,JATTING TIM!=" 9.770AOf... SECONnc::.
AVERAGE CONCENTRATOP WAITING TIMF 1.Sh7101 SFrnN~C:;

AVERAGE TERMINAL RFC;PONSF TTME lh.4743?4 C:;ECON~S
AVERAGE OVEPALL RESPONSE TIME 1?S.Ol??34 SECONDS

EM P I R I C~ L 0 1ST P I RUT TON !=" 0 P T F P M I 1\1 A L \./ A ITT N r; T 1 M F

94.Q PERCENT NO LESS T~AN .7?OI43 SFCONDS
~9.7 PERCENT f\JO LESS TI1A'" 1.?Q03~] SF CO"IOC:;
R4·6 PERCENT NO LESS THAN ??R0333 SEC()NnS
79.,-+ PEPCENT t-..IO LESS THl1N 1.0SC;S71 SFCONOc::
74.~ PERCENT NO LESS THA,"! 4.0SRS?4 SFCOt-,lnc:;
69.~ PERCENT NO LESS TI1AI\I S.109hh7 SE C()t'-lf)C:;
64.C; PERCENT NO LESS T~AN f-.3?46A7 SECONr)S
59.h PERCENT NO LESS TI1AN 7.11R76? SEfONDc::.
54.1=. PERCENT NO LESS THAN 7.79651? SEC()1\l1)5
49.f.- DERCFNT NO LESS THAN R.C;PI~lO SECONIIC;
44.7 PERCENT NO LESS TYAN Q.~qq9C;? SECONOC:;
39.7 PfRCENT NO LESS THAI\J 10.1??04R SECOf\H1c;
14."7 PERCENT NO LESS TH8N 11.04A777 SE"C[)",H)C::

Figure 3-Sample output for response time analysis

589

distinct line disciplines and, by a change of input param
eters, for a variety of polling and selection sequences for each
type of line discipline. Thus, even a system as complex as
the above one could be analyzed accurately.

Part of a sample output from the simulation package is
shown in Figure 3. Faciiity utilizations, parameters describ
ing the system, line discipline, and the length of the simula-

tion are given first. Next, the average values of several
common measures of response time performance are given.
Empirical distributions of this type are useful, not only be
cause they provide information about system\vide variation
in response times, but also because they often relate directly
to design constraints, such as "90 percent of the messages
must have terminal response times less than 20 seconds."

590 National Computer Conference, 1974

Figure 4

Terminal response time is defined as the time eJapsed between
the keying in of the last character of the input and the start
of printing of the first character of the acknowledgment.
Overall response time includes terminal response time, key
ing, printing, and waiting time at the terminal before the
input is keyed in.

Empirical data collected from the system after it was put
into operation was used to check the validity of these simula
tion results. The response times were found to be accurate to
within five percent under normal operating conditions. Most
of this variation was due to noise in the statistics. This simu
lation package is currently running on a CDC 6600 and re
quires roughly five seconds of CPU time to simulate 1,000
transactions, an adequate number for most purposes. It
requires roughly 30,000 core locations to run. Because of the
program's small running time and its ability to do multiple
simulations on the same run by setting input parameters, it
is possible to generate response times under different operat
ing conditions very easily, thus facilitating a detailed analysis
of the system's performance under a variety of assumptions
about the system's loading.

On t.he basis of output from this simulation package, a de-

tailed analysis of the throughput capability of the system was
performed. The levels of traffic at which the central computer,
the trunk lines connecting concentrators to the CPU, the
concentrators, and the regional lines connecting terminal
controllers to the concentrators became saturated were each
identified for future planning and management of the net
work's operation.

Economical network design using multiplexers and
concentrators

As an example of how much can be saved by incorporating
concentrators and multiplexers into a telecommunications
network design, a cost comparison between design8 with and
without concentrators and multiplexers for a network linking
102 locations across the United States is presented. The de
sign was produced subject to the constraints that 90 percent
of the transactions have response times no greater than 25
seconds during ordinary operating conditions and no greater
than 35 seconds during the peak hour. Furthermore, the ex
peeLed number uf terminals communicating with the central

Tools for Planning and Designing Data Communications Networks 591

TABLE I-Network Design Summar] Using Concentrators and
Multiplexers

Number of Terminals
Number of Locations
Input Traffic
Output Traffic
Average Terminal Response Time
90th Percentile TRT
Expected Fraction of Terminals Communicat

ing with Central Computer
Tariff-AT&T 260

Cost Summary:
(a) Monthly Line Rental Cost
(b) Monthly Concentrator and Multiplexer

Cost (amortized)
(c) Total Monthly Cost

348
102

6,450,279 char /hr
12,413,010 char/hr

9.1 seconds
14.8 seconds

.967

$39,263.24

25,972.60
$65,235.84

computer in a network using multiplexers and concentrators
must be no more than .1 percent lower than the expected
number communicating in a comparable network without
multiplexers and concentrators. A simulation package was
run to determine what combinations of facility utilizations
(line, concentrator, CPU, and buffer) would safely meet the
response time constraints under a variety of assumptions
about traffic load and mix. Designs were then produced with
and 'ivithout multiplexers and concentrators, using a sophisti
cated network design package. The design using concentra
tors and multiplexers is summarized in Table I.

The design using multiplexers and concentrators saved
over $900,000 in annual line charges when compared with a
similar design without multiplexers and concentrators. Not
only was the reliability of the concentrator/multiplexer de
sign nearly indistinguishably different from the design with
out them, but also, because of the concentration of key
network components in a small number of areas, it was
possible to provide more effective and economical backup to
the system when concentrators and multiplexers were used.

As an indication of the quality of designs which can be
produced by a sophisticated network design package, some
of these designs were compared with proposals sent by ven
dors for the same network. Designs supplied by the vendors
did not consider reliability, and utilized a single line utiliza
tion constraint. The comprehensive design procedure using
multiplexers and concentrators had reduced line costs by
over 25 percent and runs made solely for the purpose of this
comparison showed savings of up to three percent over vendor
supplied designs, even when identical design constraints were
used.

The running time and core requirements for the design
package are essentially linearly proportional to the number
of locations in the system. Designs of this system required
an average of 7.5 seconds of running time and 35,000 core
locations on a CDC 6600. The module can be used to design
networks connecting as many as 1,000 terminals.

The user can even specify the tariff to be used, subject to
the restriction that it is not dependent upon the topology.
Thus, even the newly proposed high/low density tariff can be

used in network designs. Figure 4 shows a design obtained
from this module uf'ling AT&T's proposed high/low density
tariff. Not only is the design of high quality, but also, the
linear dependence of core and running time on the number of
locations is unaltered.

This last fact is noteworthy. The high/low density tariff
charges a lower rate for lines connecting high density points,
reflecting AT&T's lower costs for providing service between
these points. Thus, in general, when evaluating the cost of a
connection between two low density points, one must also
consider the possibility of routing the line through one or
more high density points, in order to take advantage of the
lower tariff between these points. If done naively, this calcu
lation 'ivould greatly increase the compjexity of any algorithm
for designing networks using this tariff. If proper care is taken
in developing the design module, however, it is possible to
incorporate the flexibility of allowing the high/low density
tariff in its design procedure without sacrificing efficiency in
the design process or in the design itself.

CONCLUSION

We have shown that problems of network design and analy
sis can be successfully solved by an analyst equipped with
tools in the form of modular programs, each of which is de
signed for a specific purpose-input, reliability analysis,
configuration, response time and throughput analysis, and
network design. These tools, when used together with the
analyst's experience and judgment, can produce better solu
tions with less effort than could be obtained by a man or
machine alone.

REFERENCES

1. Bahl, L. R. and D. T. Tang, "Optimization of Concentrator Loca
tions in Teleprocessing Networks," Proc. of Symp. on Comp.-Comm.
Networks and Tele-Traffic, Poly. Inst. of Brooklyn, April 1972, .pp.
pp. 355-362.

2. Chou, W., H. Frank, and R Van Slyke, "Simulation of Centralized
Computer Communications Systems," Data Networks Analysis and
Design, 3rd Data Communications Symposium, November 1973, pp.
121-127.

3. Frank, H., 1. T. Frisch, and R Van Slyke, "Testing the NASDAQ
System-Traffic and Response Time," Proc. of the Symp. on Comp.
Comm. Networks and Tele-Traffic, Polytechnic Inst. of Brooklyn,
April 1972, pp. 577-586.

4. Chou, W. and A. Kershenbaum, "A Unified Algorithm for Designing
Multidrop Teleprocessing Networks," Data Networks Analysis and
Design, 3rd Data Communications Symposium, November 1973,
pp. 148-156.

5. Van Slyke, R, "Recursive Analysis of Network Reliability," Net
works, Vol. 3, No.1, 1973, pp. 81-94.

6. Whitney, V. K. M., "A Database System for the Management and
Design of Telecommunications Networks," Data Networks Analysis
and Design, 3rd Data Communications Symposium, November 1973,
pp. 141-147.

7. Pan, G. S., "Communications Information System," Telecom
munications, June 1970.

8. Doll, D. R, "Topology and Transmission Rate Considerations in
the Design of Centralized Computer-Communications Networks,"
IEEE Trans. on Comm. Tech., June 1971, pp. 339-344.

Automatic storage and retrieval system control

by P. R. WITT

I BM Corporation
Endicott, New York

IKTRODUCTIO~

The ~'faterials Distribution Center (MDC) at IB~f Endicott,
Kew York, is a new automated warehousing facility (Figure
1). In addition to the conventional facilities, the \varehouse
contains an Automatic Storage and Retrieval System (Stack
er Cranes), a network of pallet conveyors, and an IBM 1800
Data Acquisition and Control System to control the Auto
matic Storage and Retrieval System and portions of the
conveyors. * The warehouse, adjacent to the main manu
facturing buildings, is for storage of raw materials, parts,
and assemblies.

The computer-controlled portions of the ::\.fDC will be
discussed in detail. The general background, physical lay
out, and material flow of the l\fDC are first presented to
describe the environment for the computerized sections.

l'"fDC BACKGROUND

The Endicott plant is responsible for the manufacture,
assembly, and test of printers, medium-sized computers,
banking equipment, and circuit boards. The manufacturing
process is complex, requiring storage of the many levels of
subassemblies produced in the plant. In addition to manu
facturing for its o\vn use, the Endicott plant produces parts
and assemblies for use at other IB~.f plants and is the central
supply for these items.

* The following is a general description of a stacker crane system: The
typical installation consists of sets of high rise storage racks, rising to
heights of 100 feet or more, and extending to lengths of from 120 feet
to over 800 feet, which are arranged in parallel rows in a large room.
Each set of storage racks consists of two side panels containing a multi
plicity of storage bins. The panels are separated by a narrow aisleway
that contains a "guide rail" running along the floor of the aisleway or
above the aisleway higher than the height of the highest bin. The
storage-retrieval machine or "stacker" moves along the aisleway on the
guide rail carrying loads to and from specific, pre-selected bins in pre
selected storage racks. The machine is self-propelled; it functions auto
matically on the basis of programmed instructions. The design of the
stacker is relatively simple: it consists of a "shuttle arm" or shuttle table
which extends laterally to pick up and deposit the load; an elevator car
riage which raises the load to the proper height (the elevator runs along
a "mast" which is a part of the stacker); and the electrical apparatus
which controls both the vertical and horizontal automatic movements
of the machine.

593

Prior to the construction of the new ~fDC, \varehousing
operations were fragmented and occupied 15 leased, off-site
locations spread over the Endicott area. Approximately
60,000 active items were stored in the off-site locations.

The objective of creating the :MDC was to bring all ware
housing activities-receiving, inspection, storing, order filling,
and parts shipping--on site, under one roof, and in a loca
tion adjacent to IB:M Endicott's manufacturing complex.

Prior to the new :Material Distribution Center, our 120,000
parts, of which 60,000 are active at anyone time, were stored
in over 15 off-site locations. This procedure involved a num
ber of duplicate functions, including extensive transportation
between the manufacturing plant and the off-site ware
housing locations. The basic reason for building the ~.fDC
was to bring the major portion of the warehousing operation
under one roof adjacent to the manufacturing buildings.

By using a central location for MDC operations a number
of important objectives have been met \vhich provided the
justification for building a new \varehouse facility.

The first \vas to substantially reduce Endicott pipeline
inventory and resulted in a substantial savings to the manu
facturing facility.

Figure I-Materials distribution center, IBM Endicott, ~ew York

594 National Computer Conference, 1974

Figure 2-Automated Storage and Retrieval System (ASRS)

The second was to terminate many of the leases on the
off-site locations and also have a facility that was designed
for our type of warehousing.

During the design stage of the ~fDC, one of the problems
to be solved was the fact of being landlocked in the Village
of Endicott. As a solution, the use of a high-rise Automatic
Storage and Retrieval System (ASRS) was investigated.
A cost comparison (in terms of land, construction, equipment,
and operating costs) of the ASRS with conventional truck
and rack systems showed the ASRS to be a favorable choice.
Because of its narrow aisles and ability to utilize high-rise
storage racks, the ASRS (Figure 2) requires substantially
less area than a conventional 25-foot warehouse, thereby
reducing the land acquisition cost.

The ASRS also reduces manpower operating costs since
it moves the product to and from the operator for storage
and picking, essentially eliminating the long and unproduc
tive transit time of men going into the storage areas to fill
requisitions or store parts. The l\IDC, as shown in Figure 3,
has 235,000 square feet in three basic portions. The first
portion is a single level building (First Floor Layout, Figure
3) with 118,000 square feet of conventional ,,'arehousing.
Thi~ building contains:

• the docking positions for both receiving and shipping

• an oversize bulk storage area
• bin storage for small parts
• steel and bar stock storage
• an environmental controlled room for storage of printed

circuit cards
• a field service area
• parts shipping

The second area (First and Second Floor Layout, Figure 3)
is a two-story building with a total of 70,000 square feet.
The first floor-two-story portion-of the building contains
the CBOSS area (Count, Back Order, and Sample Select).
This location is for basic receiving of parts from outside
vendors and other plants. Also, there is an inspection area
for our quality assurance work on received materials. The
second floor area contains:

• the input and picking areas for the ASRS
• the sort and accumulate area which consolidates parts

into full loads for delivery to the Manufacturing building

First Floor Layout

_

Automatic Storage and Retrieval Sysutm Inspection

(ASRS)

r-----.
I

I CBOSS I I
Bin I Pallet & !

Storage I Bulk Storage
I
~--,

1------- Field I

Environmental Room : Service I

------T---r------- Dock
I

Steel Storage I Circuit
I Card & Machining
I Storage

!

ASRS

I Aru
I Parts
I
I Shipping

I

1

Second Floor Lavout

: Computer Room ;
I & Offices I L.., ___ _

~~!S: StOCk
Area I Cribs

I

I------------.--------------------L~--~-,

Roof

Sort & I
Accumulate !

Figure 3-First and second floor layout

• cribs for special parts and tools
• the computer room and office area

The third area is the ASRS. It is single level, with a clear
height of 54 feet, 47,000 square feet, and 2.5 million cubic
feet of space. The area has nine 300-foot aisles with a stacker
crane for each aisle. There are 18 rows of high-rise racks for
storage of pallets; each crane services either side of the aisle
two rows of racks. A more detailed description is given later.

Computer simulations were used to aid in designing the
Material Distribution Center. One important simulation was
used in designing the ASRS. By knowing the storage and
throughput requirements, a model was constructed which
analyzed the various costs such as land, construction" equip
ment, and operating, to obtain the configuration (height,
length, number of aisles) which minimized the total cost.
The curve in Figure 4 indicates a minimum cost is near to
the 55-foot height.

Another simulation model was used to aid in layout of
the operating departments within the MDC. Using pre
viously forecasted department space requirements and ma
terial movement volumes between departments, the model
calculated the total transportation costs within the J\fDC
for proposed layouts. This information was used to select
the final layout to minimize operating costs. In addition,
this data was used to determine where conveyors would be
required and justified, and what throughput capacities were
required.

In the ASRS, a single conveyor is used to handle both
incoming and outgoing pallets to the stacker cranes. This
was simulated to ensure that the single level conveyor was
feasible for both control and throughput requirements. This
simulation was also used to test and project the hardware
system (cranes and conveyors) operation for different di
verting and merging rules, partial and total sequencing of

Satisfy:

Minimize
costs:

Compute:

Storage volume
Throughput requirement

Land
Building
Equipment

1. Number of cranes
2. Amount of racks, building and land
3. Total system investment

smEll I cosr

Figure 4-Graph of ASRS model results

Automatic Storage and Retrieval System Control 595

Figure 5-ASRS pallet with badge (lower center) ASRS pallet badge

596 National Computer Conierence, 1974

M D C First Floor

~ASRS Lift

C BaS S -- ------- --1

-_.
11 11 1 t 11 II

==- - I ::::1_ I - I =:::I I - I

:
:
:
!

RECEIVING

DOCK

MATERIAL FLOW:

_Receiving
to CBOSS

____ Receiving

to ASRS Lif

CBOSS
to ASRS Lif

Figure 6-Material flow from receiving to ASRS

output pallets, and different command selection rules prior
to actually programming of the control system. Additional
programs were written for the IBM/1800 computer to simu
late the cranes and conveyors to the control programs and
the crane/conveyor control programs to the remainder of
the control system. Also, simple programs were written to
perform the actual testing of the cranes and conveyors. These
programs were developed to separate the initial testing of
hardware and software and portions of the application soft
ware. By this separation, the testing was simplified and
shortened. Simple queuing models were used to develop the
docking requirements (number docks, dock space, service
times, truck waiting times).

There is material flow, via conveyor or electric truck,
between most portions of the MDC. For the purpose of this
paper only the flow to and from the ASRS will be outlined.

Incoming parts from vendors or other plants arrive by
truck at the receiving dock. The bill of lading accompanying
the shipment is used to obtain the proper receiving paper
work in the form of punched cards. These cards indicate if
the item is to be sent to the ASRS, bin area, or directly to
Manufacturing. The cards are placed on the parts. Parts
going to the ASRS are loaded onto the special ASRS captive
pallets. These pallets are 40 inches by 52 inches or 40 inches
by 62 inches. Each pallet has two badges, which are on
diagonal corners (Figure 5).

Each badge has a reflective and non-reflective side to be
used for control of the pallet routings through the conveyor
network on the first floor. Also, there is a number punched
in the badge that is to control the flow through the ASRS
conveyor network on the second floor.

The man at the receiving area orients the two badges for
the desired routing. As the pallet flows through the network
of conveyors, the elective photo-cells check for reflection or
non-reflection of the two badges. This information controls
the routing through the various portions of the downstairs
conveyor.

The flow of ASRS parts from Receiving to the ASRS is
shown in Figure 6. Pallets can move directly to the ASRS
lift from the dock (dashed line 1). However, most ASRS
parts are initially sent through the CBOSS (Count, Back
Order, Sample Select) area. In the CBOSS the pallets are
directed to one of ten identical spurs.

Here the basic receiving of goods is completed. The parts
are counted and the receiving paperwork completed. Back
orders are filled. If the parts require inspection, a sample
lot is selected and sent to the Quality Department. ASRS
parts are then released on the main line conveyor at the end
of the CBOSS spurs and directed to a lift which takes them
to the second floor. The pallets enter the lift and are brought
to the input station for the ASRS (Figure 7). Here data is
entered into the terminal describing the parts and pallets
entering the system.

The individual pallets flow through a physical-sized sensing
for proper matching to the appropriate slot size in the ASRS.
Then each pallet moves on the conveyor to the selected aisle
and is stored by the cranes.

As parts are required for manufacturing, requests are sent to
the warehouse. In the ASRS, parts are retrieved by the stacker
cranes and placed on the conveyor which delivers the pallets to
one of the seven identical picking spurs in the pick area (Figure
7). The parts are picked and the activity reported through a
terminal. Parts that remain on the pallet after picking are
recycled back into the stacker crane system for restorage.
The parts that have been picked move along the conveyor
to a Sort and Accumulate area.

In the Sort and Accumulate, the parts are sorted by loca
tion in the manufacturing buildings and consolidated into
fun loads for delivery to manufacturing. From the sort and
accumulate area, pallets move on a conveyor to the manu-

5
T
o
R

Moe Second Floor

-'II~I~
I~L:J

ASRS tilt

MATERIAL FLOW-

_ASRSliFttoASRSStoroge

AS~5 Storage to Pick Area

_P;ckArl!ntoASRSSrnrnol!'
IlJl"I!)icked Porlsi -

_____ ?i,1. Area 10 ManuFacturing

I Pi c:k ed Porl~'

5
Figure 7-Material flow ASRS to manufacturing

facturing facility. This description briefly summarizes the
material movement to and from the ASRS within the :Ma
terial Distribution Center.

COMPUTER CONTROL-PHYSICAL AREA

The portions under computer control are the ASRS
(stacker cranes) and the conveyors on the second floor that
service the stacker cranes for both input and output of
pallets. These are shown in Figure 8 and consist of four basic
areas:

Input area
• As shown in Figure 8, new Pallet Spur (A) enters pallets

coming from the receiving dock or CBOSS via the lift
from the first floor into the system.

• Recycle Spur (B) returns pallets that have been re
trieved and partially picked to the system with the
remaining parts.

• Size Sense Station (C) determines pallet load sizes.
• Reject Spur (D) handles pallets failing to meet input

criteria--either sizing or data. These pallets are tracked
onto Pick Spur S7 for correction of deficiencies and re
entry into the system.

Pick area
• Pick Spurs (SI-S7) handle the retrieved pallets for

picking and counting. Each spur has space for seven
pallets. An eighth position (SS) on the spur is for 40-
inch by 48-inch slip sheets used for taking away parts
that have been picked. There is a computer-controlled
physical gate between this position and the first pallet
on these spurs. This allows for release of pallets from the
pick spurs under the proper conditions. .

• Take-away Line (V) returns partially picked pallets
to the system via Spur B and carries parts to Sort and
Accumulate.

Key • InputArea
New Pallel Spor-A
-,c1eSpu--B
SazeSense StatlQrl-C
Reject Spur~D

• ~ .. am L:ne C!:lr.\I!2'pr-M.!=!

ASRS/CONVEYORS
CRANE / RACK AREA

9 AISLES

o C,.""A ...
A..Sles.Cranes 1-9

• CraneP!ck-Up
8uHers P'-P9

Q C,aneDepos<'
Buffers D1-09

o P,cJo:SputsSl-S7 o 2791'1053TermmaIsTl-T3

o 2797Termlna+ST4-TlO

o 1053 TenmnalS T11-T13

Figure 8-Schematic of areas under computer control

Automatic Storage and Retrieval System Control 597

Conveyor Area
• As shown in Figure 8, :Mainline Conveyor (::,\1) handles

pallets going to and coming from the cranes. It carries
input and output pallets simultaneously.

• Pick Area :Mainline Conveyor (R) carries the pallets
to the pick spurs.

• Input Buffers (PI-P9) are conveyor spurs, one for each
aisle/crane, that handles pallets going into a crane/
aisle. Each buffer has capacity for three pallets going to
the aisle. The position furthest from the Mainline Con
veyor (M) is the pickup position for a pallet to be
stored by the crane. The mainline and input/output
buffers are level with the vertical midpoint of the rack
structure at the front of the ASRS.

• Output Buffers (DI-D9) are conveyor spurs, one for
each aisle/crane, that handle pallets coming out of an
aisle/crane. Each buffer has capacity for three pallets.
The' position furthest from the Mainline Conveyor CVI)
is the deposit position for a pallet retrieved by the crane.
The conveyors operate at a rate of 45 feet per minute.

Stacker crane area
• Stacker Cranes (1-9) transport (store and retrieve) the

pallets \vithin the storage-rack structure. There is one
crane for each aisle. The crane can be communicated
with anywhere in the aisle upon completion of the previ
ous command; there is no home base. The crane travels
on rails at a maximum horizontal rate of 300 feet per
minute. The shuttle, which carries the pallet, travels
vertically at 45 feet per minute.

• The rack structure contains the slots for storage of the
pallets. There are 18 rovvs of racks, \vith each crane
servicing two rows: one row to the right and one row to
the left of the crane aisle. Each row is 78 bays long. The
racks on Aisles 1 through 7 have 12 tiers. They accom
modate pallets 52 inches long by 40 inches wide. Slot
heights are 30 inches, 43 inches, and 79 inches, with
each horizontal level having the same height. The racks
on Aisles 8 and 9 have eight tiers accommodating pallets
62 inches long by 40 inches wide. Slot heights are 62
inches and 89 inches. The' weight limitation is 2000
pounds per pallet.

CO:MPUTER CONTROL---GENERAL

The basic functions of the computer-control system are to
direct the conveyor-flow, storage, and retrieval of pallets
and to maintain a status of the pallets in terms of contents
and location. All controlling and data keeping are done
relative to unique pallet numbers.

The first functions of directing pallet flow, storage, and
retrieval involve the monitoring and controlling of conveyors
and cranes by the computer. This controlling of physical
devices requires communication between the computer and
the physical devices. * There are approximately 350 sensors

* All hardware/computer communication is in the form of Process
Interrupt, Digital Input, and Digital Output. These can be viewed as
signals containing one bit of information (on/off, yes/no).

598 National Computer Conference, 1974

Figure 9-IBM 2791 area station

(switches and photocells) throughout the ASRS and con
veyor network. When a pallet activates a sensor (by breaking
a light beam, for example), a signal is sent to the computer.
The computer analyzes the signal and determines what
event has occurred. When the computer wants a device to
perform a task, it sends out a signal that causes a physical
action, such as raising a pallet stop or causing the pallet to
divert onto another conveyor spur.

Signals representing commands are sent to the cranes, the
logic circuitry of which interpret and perform the commands.
In turn, the cranes send signals to the computer to report
what has been accomplished. Simple signals form the com
munication means of monitoring and controlling the physical
devices.

:l\1aintaining the status of pallets in the system requires
data files that identify the parts on a pallet and document
where they are stored and the quantities on each pallet.
Activity affecting the status (picking of parts, change of
location, or entering of new parts) must be captured to up
date the status. To use the cranes and conveyors to meet
the varied warehousing tasks effectively in the dynamic
ASRS, current data must be continually available. To do
this, the files are online to the computer on disk drives.

The updating of the disk files is done online in real-time
through the use of terminals. IB:vI 2791, 2797, and 1053
terminals are used to communicate data between the workers
and the computer. The 2791 (Figure 9) accepts badge,
punched-card, and keyed-in data. The 2797 (Figure 10)
accepts badge and keyed-in data. The 2791s and 2797s are
used by the people in the input and pick areas to report
a.ctivity on the pa..1letR. The 1 OFi~R are typewriter terminals

Figure lO-IBM 2797 data entry unit

$-

Figure II-Input operator enterLl1g data into the 2791

used to print messages that provide guidance in reporting
activities and identifying errors. The placement of the 14
terminals is shown in Figure 8. Online files and update not
only substantially improve the physical operation but also
improve the integrity of data by immediate reporting and
auditing of activity. The need for data integrity is much
greater in a stacker-crane system than in conventional ware
housing since it is impossible to make an easy visual scan of
the storage area.

An IBM 1800 Data Acquisition and Control System pro
vides control and information; it communicates with the
physical devices, the terminals, and the files.

Use of a realtime information system to dynamically drive
the system controlling the cranes and conveyors is the key
to making the ASRS meet the varying warehouse needs.
The tendency has been to limit warehouse flexibility in order
to simplify the control system. It should be noted that many
of the features of the system that will be described do not
bear directly on the relatively simple problem of sending
commands to the cranes and conveyors. Instead, these fea
tures are aimed at dynamic development of control deci
sions, to increase the productivity of warehouse operating
and management personnel.

SYSTEM OPERATION-IKPUT

Pallet selection

Pallets arrive for input to the ASRS on the New Pallet
Spur (A, Figure 8) via the lift from the first floor and on
the Recycle Spur (B). The operator stationed at the 2791
Terminal T1 selects the next pallet to be processed from
either Spur A or Spur B.

Pallet identification

The operator removes the badge from the pallet and inserts
it into the 2791 (Figure 11). This identifies the pallet being
processed.

Part identification

For pallets entering the system with a load not previously
stored (normally from Spur A), the operator removes an
80-column punched card or cards from the pallet. The cards
identify the parts on the pallet by part number. Two part
numbers are allowed on new, non-inspect shipments. Docu
ments accompanying the cards indicate the quantities of
each part and the type of load. These documents are in the
form of a two-part card. One part stays at the input station
for keying in data and for later auditing of the input trans
action after the working shift. The second portion remains
·with the pallet for identification of the parts during picking.

Automatic Storage and Retrieval System Control 599

Transaction selection

The operator then enters the type of transaction. This
indicates the data to be expected, the audits to be performed
on the data, how the data are to be processed, and which files
are to be updated.

• New receipt: This pallet contains par.ts of one or two
part numbers to be stored in the system and is available
for retrieval as soon as desired.

• Parent: The pallet is to be stored in the system but is
to be "bin-locked" (made unavailable for retrieval) until
the sample has passed inspection and shipment has been
accepted. The bin-lock of the pallet is done under the
part number and purchase order number, found in the
punched card identifying the part, and the keyed-in
shipment number.

• Sample: This pallet contains a sample that has been
accepted. It is to be stored in the system, and any pallets
previously locked under that same purchase-order num
ber and shipment number are to be unlocked.

• Recycle: This pallet is returning from the pick area for
reentry into the system. Because the files have been
previously updated, no other data except from the
badge is needed for this transaction.

• Reject: The operator wants to reject the pallet for some
noticeable error condition, such as absence of paper
work or a load that appears unstable. He also keys in a
reason code for the rejection.

Data entry

For New Receipt, Parent, or Sample, the operator enters
the punched card(s) (receiving document) into the 2791.
The part number and qualifiers are read from the card;
for samples and parents, the purchase order number is also
read. The operator keys in the part-number quantity on the
pallet. For parents and samples, the shipment number is
also keyed in.

Data audit

At this point the system knows what pallet, what parts,
what quantity, and how to process the data. The system
does a preliminary audit on the transaction, posing queries
such as:

Is this a valid ASRS part number?
Is it a valid recycle?
Has all data been entered?
Do data fit the limits?

If the transaction fails, the system may request a repeat of
the transaction or may set up a rejection of the pallet.

600 National Computer Conference, 1974

Figure 12-Size sense station

Transaction completion

At the completion of the transaction, the operator re
places the badge and presses a button next to the spur
holding the pallet (either A or B). This signals the system
that the operator is physically finished with the pallet and
indicates which spUl' the pallet is on.

Pallet movement

When the transfer Jeading to Size Sense Station (C) is
empty, the computer signals either Conveyor A or B to
move a pallet. This pallet will move from the transfer area
as soon as there is no pallet in the size sense station.

Size sensing

In the size sense station (Figure 12), the physical char
acteristics of the load are determined. By analyzing the
photocell beams that are broken by the load, the computer
determines the length of the pallet (52 inches or 62 inches)
and the height (including over-height). Signals detecting
load overhang on any side of the pallet or overweight (over
2000 pounds) are sent to the computer. The system now

knows the physical size of the load and any out-of-limit
conditions.

Pallet re.iection

Entry of the pallet will not be allowed into the system for
storage if a physical characteristic is 'out of limits, or if the
transaction failed the audit, or if the operator chose to reject.
The computer then causes the pallet to be diverted onto
the Reject Spur, (D), and onto the Pick Spur (S7), and a
message is printed by the 1053 Terminal servicing S7. This
reports the pallet number rejected and the cause for rejection.
The pallet is then either removed from the system or the
problem corrected and entered again via Recycle Spur (B).

A isle selection

If the pallet is accepted for storage, the location is dy
namically selected from all available slots. There is no perma
nent tie between the physical slots and either pallets or
part numbers. Each time a pallet enters the system, a new
-location which is best for system operation at this tiIheis
chosen (recycles will probably not return to their previous
slots). To select the location, a number of steps are performed
to progressively eliminate aisles from consideration. Some
of the steps are:

• For 52-inch-Iong pallets, Aisles 1 through 7 are con
sidered; 62-inch-Iong pallets can only be stored in Aisles
8 and 9.

• If a crane is offline, it is eliminated from consideration.
• One of the three input-buffer positions must be free.
• The percentage of proper-height slots still available in

the various aisles is also evaluated against certain limits.
• If another pallet holding the same part number is al

ready stored in the system, an attempt is made to put
the new pallet into a different aisle. This is done to
reduce the risk of parts being unavailable because of
crane downtime.

• If more than one aisle satisfies the conditions, a cyclic
selection of an aisle is made.

At this point, an aisle has been selected with at least one
slot of the requited size free. The actual slot will be dy
namically selected at the time of storage.

File update

The data files are updated from the information in the
transaction. * For newly entering pallets:

• The pallet file i:::; updated with the part numbers, quanti
ties, and status, such as bin-lock and in-transit.

• The pallet is added to the chain of pallets already in the
ASRS under the part number only, or under the part
number, purchase order, and shipment number (for
inspect-locked items).

* See Appendix for details of files.

• The total of pallet quantities in the part-number file is
incremented, and indicators are changed to reflect the
addition of a new pallet.

• Parent file indicators are changed to reflect the addition
of a new inspection bin-locked pallet.

Transaction records

Throughout the various areas whenever a file is modified
or an error or potential error is encountered, a magnetic
tape record is written. This allows files to be rebuilt if they
are destroyed during live operation. The tape is also used
to produce batch reports, particularly for auditing.

SYSTEM OPERATION-PICK AREA

Pick-area tasks

Two major functions are performed in the pick area:

• Picking of parts (requisition filling)
• Counting (rotating inventory counts-RIC)

RIC is done in place of a once-a-year total physical in
ventory in the warehouse. Parts are periodically counted,
depending on their dollar value and activity, so that the
physical counting is spread throughout the year.

Two minor functions are performed in the pick area:

• Auditing of errors or potential errors found in the actual
operation of the stacker-crane system.

• Retrieval of inspect bin-lock items for reinspection by
Quality.

Requisition and count requests

Two groups of punched cards are received daily from
other systems in the plant:

• Requisitions. Each requisition is for one specific part
number and quantity. There can be several requisitions
with the same part number but with different depart
ments; these will be on separate requisitions.

• Requests for counts. Each card contains a part number
that is to be counted in its entirety. The counts will
later be compared against the book record contained
in other inventory systems.

Batches

The two groups of cards are kept separate. The requisitions
are sorted by part number so that all requisitions for a given
part number fall together and will be fined at the same time
to minimize pallet traffic. Each group is then separated into

Automatic Storage and Retrieval System Control 601

small batches, each batch containing what is estimated to
be one to two hours' worth of work at a pick station.

By the use of these batches, the pick area management is
able to spread the ,vork and balance the ,york load across
pick spurs. These batches will be assigned to various spurs
throughout the day. This is done rather than building up
total work for a given spur before starting, and thus possibly
resulting in one spur with ten hours' ,vorth of ,york and a
second spur with six hours' ,vorth of work.

Preparation for live operation

Prior to starting daily operations, the batches of requisi
tions and count cards are processed by the 1800 against the
pallet and part-inventory files. Crane commands for retrieval
are not formatted at this point.

For each batch, a small disk file is built. The disk file for
each batch contains the same part numbers as found in the
cards within the batch. However, the disk-file records are
summary records. For instance, if there were five requisitions
calling for Part A, each having a quantity of 10 "vithin a
given batch, the disk-file record for Part A would occur only
once ,vith a total quantity of 50 needed to fill all requisitions.

For RIC batches, the disk file contains the part numbers
and the number of the pallets to be counted for each part
number. Pallets to be counted are RIC bin-locked.

These disk files will be used during live operation to deter
mine what pallets must be brought out to fill the requisitions
or to satisfy the request for counting. The pallets will be
determined" dynamically at the time the ,vork is to be done,
and the crane commands will be generated at that point.

As the batches are processed against the files, any requi
sitions that do not have available parts in the system are
separated out for the back-order file.

A report for the pick-area technician is produced showing:

• For each batch the pallets that are anticipated for re
trieval. They mayor may not be the pallets that come
out as a result of the changing status of the system
during operation.

• Requisitions that may be only partially filled because
of lack of parts in the system.

• Conflicts between counting and picking. From this, the
technician will attempt to do the counting batch early
in the day and the picking late in the day, so that the
same part number can be both counted and picked in
one day.

• A summary of anticipated crane usage for each batch.
The technician uses this data to keep from assigning a
number of batches that use one or two cranes heavily,
thereby slowing down the system.

The report is used to guide the technician in assigning and
balancing work over the seven pick spurs. The data is not
used by the pickers or counters in performing their work.
They use the actual request-far-count and requisition cards
in doing the work.

602 National Computer Conference, 1974

Batch assignment

The system is now ready for live operation. The pick
technician assigns batches of work to the various spurs as
follows:

• He hands Batch 20 (a pack of requisitions or count
requests) to the worker on 8pur #4.

• Through a 2791 terminal, he tells the computer that the
punched cards for Batch 20 are a Pick 8pur #4.

• The computer searches the disk file for Batch 20 and
knows the part numbers and quantities needed to fill
the requisitions at spur #4. This information will be
used to select and retrieve pallets to satisfy the requisi
tions.

• The technician may suspend a batch and reassign it to
another pick spur in order to balance the work load.

• He may also assign a batch in a pending mode. In this
way, when the current batch is finished, the computer
will automatically begin allocating work from the pend
ing batch.

By using the. above methods, he is able to balance the
work and have various numbers of spurs working at different
times during the day.

General pick-area operation

The operations performed in the pick area consist of filling
requisitions and counting parts.

The operator in a spur works off the first and only the
first pallet in the spur (81-87, Figure 8). He then reports
the activity on the first pallet. If he reports on any pallet
other than the first one, the transaction will not be accepted
by the system. Until he has completed transactions associated
with a pallet and it is physically removed from the spur, he
cannot report on the next pallet. This is done to maintain
integrity and to smooth the flow in the system. Tremendous
peaks and valleys could be created if reporting were to be
done on a number of pallets within a spur and then released
in a short period of time.

When the man has finished on the pallet, he reports on
the 2797 terminal that he has completed pallet processing.
At this point, the files are updated with the data he has
reported. Once this is done, a signal is sent to drop a physical
gate that separates spur position 1 and slip sheet position;
this allows the man to remove the pallet. Until he has re
ported completely on a pallet, he is not able to physically
remove the pallet. This substantially aids the integrity of
reporting on work completed.

When the gate is dropped, the man physically pushes the
pallet out of the spur and onto conveyor segment V (Figure
8) for delivery to either sort and accumulate (if the full load
has been picked), or to return the unpicked portion of a
pallet to the system via segment B.

As the pallet is pushed out of Position 1, a signal is sent
1-..,.. 1_ .L _ .1..1_ _ _ .. J oo,. , .. ,1" .. ,.....
U/:l,l;1\. 1M lille CUIllpuwr HlUlcaLmg tnere IS now a posItIOn tree

on the spur for another pallet. This signal is essentially a
request for the computer to select and retrieve another pallet.
Until the first pallet has been physically removed, the new
pallet will not be allocated. This is done so that if the man
leaves the spur for any reason after finishing reporting on a
pallet, another pallet will not be sent to a full spur, causing
a jam on the conveyor.

Full pick spur

In each spur, there are seven positions for pallets. When
the request for another pallet is initiated, it is really for a
pallet seven ahead of where the man is now working. The
system attempts to keep each spur as full as possible to
smooth the variation in picking time over different pallets.
To do this, seven pallets will be allocated to a spur, as long
as work is assigned to that spur. The seven will be:

• Physically in the spur
• On ::\1ainline Conveyors R or M leading to the spur

(Figure 8)
• In course of being serviced by the crane
• Waiting to be serviced by the crane

Pallet selection

When the signal indicating the release of the pallet is
received, the computer goes through the process to allocate
another pallet. It relates the signal from a specific spur to
the current batch assigned to that spur. Through the disk
file for each batch, it determines where in the file it last
allocated a pallet. It looks at the summary record of the part
number for the previously allocated pallet to determine
whether that part-number request has been satisfied. If not,
it will look for another pallet with that part number in the
system and request retrieval for it. Each time a request for
another pallet comes in, it will continue to look for another
pallet under that part number until:

• The total quantity for requisitions has been satisfied.
• All the pallets needed for a valid RIC have been re

trieved.
• None are left in the system.

If the previous part number request has been completed,
the system will look to see if any emergency requests are
pending for the spur. If no emergencies are pending, the
system goes on to the next part number in the disk file for
the batch.

If this Wa.8 the last part number in the batch, it v.·ill
automatically go on to the first part number in the next
batch assigned to the spur. Once the next pallet has been
selected, the appropriate data are passed to the crane control
programs, which will set up the appropriate commands to
retrieve the pallet.

It should be noted that even if multiple pallets are re
quired to satisfy the total quantity needed, the pallets are

selected and requested one at a time as a space becomes
available on the spur.

Smallest quantities first

Pallets retrieved for picking are selected in the sequence
of smallest quantity first. For instance, if a total quantity of
100 was needed to fill all requisitions for the part number
and there were two pallets in the system, one with 50 and a
second with 150 parts, the pallet with 50 would be requested
first and the pallet with 150 would be requested second.
This is done to empty pallets and conserve space. To can
out only the pallet with 150 parts would cause two partially
full pallets to be in the system. This pulling of pallets con
taining the smallest quantity first also eliminates the need
to marry parents and samples that have been stored at
different times. The sample, normally occupying a small
portion of the pallet, is stored later than the parent. How
ever, because of pulling by smallest quantity first, it will be
retrieved first and emptied. Thus for a short period of time
some storage utilization is lost, but in return, the unproduc
tive and costly work of retrieving the parent to marry with
the sample is eliminated. If multiple pallets are retrieved,
all will empty with the possible exception of the last.

Partial sequencing

When more than one pallet is being retrieved to satisfy
the requisitions for a part number, sequencing is needed. If
both the pallet with 50 and the pallet with 150 are called
out, the pallet with 50 must arrive first, or the reasons for
bringing out both will be defeated. Under these conditions,
the pallets must arrive in the sequence they were requested.
When single pallets are requested for parts, it is immaterial
whether the first pallet requested arrives before the second
pallet requested. Sequencing is also done on RIC pallets to
make sure that all pallets for a part number arrive together.

Hence, the system performs partial sequencing. The use
of partial sequencing, rather than total sequencing, sub
stantially reduces the loss of effective capacity throughout
the system. For instance, 50 percent sequencing has only 25
percent of the impact of full sequencing in loss of flow through
the conveyor network. This sequencing data is also passed
along with the crane commands for use in the conveyor
tracking.

Advantages of dynamic retrieval selection

The pallets and the commands are selected dynamically
as the parts are worked on, rather than preformatted at the
beginning of the day. This provides for better operation in
the system; for example:

• Suppose the crane on the aisle containing the pallet
that would be first selected is down (out-of-service).
If the commands were preformatted, they would be by-

Automatic Storage and Retrieval System Control 603

passed. By dynamically selecting, the system auto
matically looks for any other pallets that are in the
system and withdraws any required to satisfy the req
uisitions.

• Requisitions may be scheduled to be only partially filled
because of the number of parts and pallets in the system
at the beginning of the day. If new pallets are received
and/or released from inspection bin-lock, they will be
dynamically allocated, eliminating the partially filled
req uisitions.

• RIC-locked pallets may be picked from, provided the
count is done before picking.

• The effect of emergency requisitions on normal picking
can be minimized. If an emergency has been filled from
a pallet early in the day, the pallet may no longer have
enough parts to fill the planned requisitions. If the
commands were preformatted, the planned requisitions
would be only partially filled. However, with dynamic
selection, the system picks up this condition and allo
cates additional pallets to fill all the requisit~ons.

Reporting in the pick area

As an operator works on a pallet, he reports the activity
he has completed to the system. He does this by placing
the pallet badge in the 2797 terminal and entering type of
transaction he has performed. He also fills out the requisition
card or count card with the correct data.

For requisition filling the sequence is as follows:

• As an operator fills each requisition, he enters the quan
tity pulled in the 2797 (Figure 13). A running total of
the quantities reported on a pallet is accumulated.

• When he has finished processing the pallet, the operator
may find one of two conditions exists: (1) he has un
satisfied requisitions with no corresponding parts on the
pallet (the pallet mayor may not have another type of
part on it) or (2) he has filled the requisitions but there
are extra parts of the same kind on the pallet. In the
first case he enters a "zero part" transaction. This indi
cates to the system that he is finished with the pallet
and there are no more parts. If the system records show
there should still be parts on the pallet, the transaction
is questioned by a message on the 1053 Printer. If the
operator repeats the "zero parts" transaction, it is ac
cepted. In the second case, he enters a "finished-pallet"
transaction. If the system records show that it should
be zero, the transaction is questioned. If he reenters a
finished-pallet transaction, a dummy quantity of one
(1) is placed in the pallet record and the pallet marked
for audit by warehouse personnel.

• At the end of a reporting on a pallet, quantities reported
are used to update the pallet and part-number inven
tories.

• If the operator has unfilled requisitions for a part num
ber, but the next pallet does not contain that part
number, he knows they will remain unfilled since all

604 National Computer Conference, 1974

Figure 13-Pick area operation and reporting

pallets with the same part number would have come out
together. He puts these aside and works on the requisi
tions that match the part number on the pallet.

For RIC counting the sequence is as follows:

• The operator enters the pallet badge and the total count
for the pallet.

• This is accepted by the system, and file quantities are
updated.

• During counting, pallets can be merged by zero-counting
one pallet, and incrementing the count on a second
pallet containing the merged parts.

• If one Or mote of the pallets required for a complete
count are unavailable, the system cancels the count ac
tivity for the part number via a message to the counter.

The operators also enter two other transactions. The first
is a "no action" transaction: the operator recognizes the
part number but he is not going to do any work on it. For
instance, it is the end of the day, and there are one or two
pallets he wants to remove from the spur so that it is empty.
The second is an "unexpected" transaction. This essentially
means that he does not have requisitions or count cards to
cover the partes) on this pallet. This mayor may not be
recognizable by the system. The pallet may have been
erroneously diverted into the spur because of hardware
failure. The system knows this and knows the operator has
no matching requisition. In another case, the system recog-

nizes the pallet number as being legitimate but the pallet
obviously does not contain the part recorded in the file;
this is marked for audit.

When a transaction is incorrect or questioned by the
system, a light is turned on next to the 2797 terminal to
get the worker's attention. A message is printed on the 1053
and the worker takes the proper action.

The pick area technician has a number of 2791 transactions
by which he can control the operation in the system and
override or add to the planned retrieval of pallets.

• Batch Assign/Suspend. This has been previously dis
cussed.

• Emergencies. He can enter requests to retrieve pallets
to fill emergency requisitions, assigning these to any
spur that is working on requisitions. The requests for
emergency pallets take priority over the planned pick
ing.

• :Management Bin-Lock/Unlock. This allows locking or
unlocking under 15 separate codes of specific pallets or
an pallets under a part number by management direc
tive.

• Inspect. This retrieves inspecti~n bin-locked pallets,
which cannot be normally withdrawn, for return to
vendor or resampling by quality personnel.

• Retrieve by Part or Pallet. A single pallet or all pallets

Figure 14-Pallets moving on main line conveyor

containing a part number can be retrieved. This is used
to perform auditing of problems or potential problems
trapped by the system .

• Inquiry. Inquiry can be made to any of the files on the
system.

SYSTEM OPERATION-CONVEYOR CONTROL

Simultaneous input/output flow

The Mainline Conveyor (Figure 8) (M) handles both pal
lets entering the system for storage and pallets retrieved
from the system going to the pick area. Pick Area Mainline
Conveyor (R) delivers pallets to pick spurs. Conveyors M
and R can be physically vie\ved as one continuous, moving
conveyor.

Data zones

Mainline Conveyors ~f and R are artificially or logically
broken up into 24 segments or data zones. Physically, there
is no break or independent control of the zones, but they are
logically used by the computer to map and control the move
ment of pallets through the conveyor network. The zones
are delineated by sensing devices, either photocells or switches.
A map of the zones is kept in the computer. If a pallet is
in one of the zones, the corresponding entry in the computer
map contains the associated data for the pallet-pallet num
ber and destination (for input, aisle number; for output,
pick spur number). Both the input and output buffers for
each aisle have the three positions delineated by sensors for
mapping in the computer.

Pallet tracking and mapping

As a pallet moves from one zone to the next, the sensing
device is activated and a signal is sent to the computer.
The computer determines from the signal which zones are
involved and, also, the associated pallet and map entry.
The computer updates the map by moving the pallet data
from the zone (map entry) the pallet is leaving to the zone
(map entry) the pallet is entering. By this means, the com
puter tracks the physical movement of the pallet through
the network and knows the relative position of all the pallets
on the conveyor. The relative positioning by zones occupied
by the pallets is a key to the control scheme. Zone lengths
average about 10 feet, with variations depending on physical
characteristics of the conveyor. The computer knows to
within a few feet the actual physical position of the pallet
by knowing ,vhich zone it is in.

Movement from size sense

When processing of a pallet is complete at the size sense
station, control is passed to the conveyor tracking programs

Automatic Storage and Retrieval System Control 605

Figure I5-Cranes transporting a pallet

along with the pallet number and destination. The computer
sends a signal to release the pallet from the size station. If
the pallet is marked for reject, a second signal is sent to
divert the pallet onto the Reject Conveyor (D); the com
puter releases the pallet onto Spur S7 when there is a free
space and when no conflict exists with pallets on conveyor
R going to S7. The arrival sequence of the pallets is recorded
in the map for Spur S7.

Accepted input pallets move into the system to flow on
Mainline Conveyor (M). The pallets are tracked as they
move through the zones.

Input-pallet diverting (Figure 14)

As an input pallet enters the zone containing the input
buffer transfer, the pallet data is checked to see if the destina
tion matches the aisle being approached. If a match is
found, the computer sends a signal to raise the pallet stop
on the input-buffer transfer. When the pallet hits the stop,
the chain transfer raises and moves the pallet into the first
pallet position. Signals indicating start and completion of
transfers are sent to the computer; these are used to deter
mine failure conditions and to aid in control during merging
of output pallets.

I nput-bujJer movement

As the pallets are indexed through the input-buffer spur
positions, the pallet data is also tracked within the computer.
When a pallet reaches the pickup position, a signal is sent
to the system that the pallet is ready to be stored, and the

606 National Computer Conference, 1974

pallet data IS passed on to the programs controlling the
cranes.

Output-buffer movement

The cranes retrieve pallets from storage and deposit them
on the output buffer. When a pallet is placed on the deposit
station of the buffer, a signal is received and the crane control
programs pass data (pallet number, pick-spur destination,
and sequence data) to the conveyor programs.

The pallet indexes and maps through the buffer positions
toward the mainline conveyor as the positions become free.
When the pallet is in the position closest to the mainline, it is
ready for merging.

Output-pallet merging

The computer scans the map entries for the zones both
upstream and downstream on the mainline from the merge
point (output buffer) to determine whether there is enough
free space on the mainline. Pallets are not merged if a pallet
collision would occur. This is also true of subsequent trans
fers from segment M to segment R (Figure 8). The zones
may be physically empty or "logically" empty.

A zone may physically contain a pallet that has started to
divert into an input buffer, but it can be considered logically
empty since the divert will be completed before the merge
of the outbound pallet takes place. The use of logically empty
zones effectively raises the capacity of the conveyor in pallets
per hour.

'Vhen the needed free space is found, the computer sends
a signal to start the merge. A signal is returned when the
merge is complete; the data is then moved to the mainline
map. The outgoing pallets on the mainline are tracked in
the same manner as incoming pallets.

As pallets divert into aisles, free· space is created, which is
used by pallets merging out. This replacement basically
allows the same rates of pallets in and out on a single con
veyor as would be accomplished using separate conveyors
for input and output, at the same speed of conveyor move-

. ment. Some loss of capacity occu.rs, however, over short
periods of time with a single conveyor when the input and
output distributions across aisles do not match, thus pre
venting total replacement.

Sequence control

Under certain circumstances, it is necessary for pallets
to arrive at a pick spur in a certain sequence, that is, pallet
136 must arrive before pallet 35 in Spur S3. The pallets are
requested one at a time sequentially for a pick spur. How
ever, because of the physical nature of the system, they may
not always arrive in the sequence requested without inter
vention. For instance, the first pallet requested may be on
an aisle that has five output requests already pending (re-

quests for a given aisle are serviced in the order received);
the second request (perhaps generated two minutes later)
is to an aisle that has no output commands pending. The
second pallet will probably be serviced first and arrive at the
pick spur first. A second example of this is when the first
pallet requested is on Aisle #1 and the second is on Aisle #9.

When a pallet is ready to merge, a check on required
sequencing is made. If sequencing is needed (another pallet
must precede this pallet to the pick spur), the preceding
pallet must have previously entered the mainline and be
downstream of the merge point. If this condition is not met,
merging is held until the condition is satisfied.

Pick-area tracking and diverting

Outgoing pallets are tracked along Mainline Conveyors
M and R (Figure 8). As a pallet approaches the zone con
taining the transfer into a pick spur, the spur number is
matched against the destination of the pallet. If a match is
found, a signal is sent to divert the pallet into that pick
spur. A signal is received when the pallet has completed. the
transfer into the spur, and the map of actual arrival sequence
is updated. The actual sequence of arrival is used to control
reporting in the pick area.

Conveyor rejects

If a pallet takes the wrong divert or misses a divert-as in
the case of a stuck relay-the pallet is rerouted by the com
puter. If a crane goes down while a pallet is on the way to it,
the pallet is also redirected. If these conditions occur on the
crane buffers or on the mainline, they are routed to Pick
Spur S7. Spur S7 handles the rejects from both the input
and the mainline as well as pallets for picking. For any
reject pallet going to S7, an appropriate message for the
operator is printed on the 1053 next to the spur.

Failure trapping and recovery

Control of the conveyors is accomplished by monitoring
events involving positive action, such as a pallet tripping a
limit switch or breaking a photocell beam. Timing is not
directly used in controlling the movement on the conveyors.
However, timing is used to trap problems, and more im
portantly, potential problems on the conveyor. For instance,
if it normally takes 12 seconds for a pallet to travel the
length of a given zone and the signal of the {JaUet entering
the next zone is not received in 15 seconds, a malfunction is
assumed and the conveyor stopped. A flashing red light is
turned on in the computer room, and a message is printed
describing the type of failure and the location. These prob
lems are checked and corrected by, for example, clearing a
pallet jam or replacing a burned-out photocell. An appro
priate physical recovery procedure is followed, such as mov
ing the jammed pallet to the next photocell. The associated

recovery code is then entered into a 2791, and the system
restarts from the point where it stopped.

Immediate stoppage of the conveyor is intended to avoid
major problems, such as would be caused by several pallets
piling up behind a jammed pallet. This allO\vs easier physical
correction and makes logical recovery (ensuring that the
physical condition matches the computer map) possible with
out the lengthy and costly procedures required to flush the
pallets from the mainline, to ensure integrity of the system.
:;\10st failures can be corrected in five minutes; whereas, a
flush of the mainline and restart of the system requires about
one hour.

The detection of failure is done on the mainline, on all
transfers, on the size sense station, and on input/output
buffers.

Command selection

After successful completion of the previous crane com
mand, the next command is selected if there is either a pallet
for storage in the pick-up station or a request pending to
retrieve a pallet. If only one of these commands exists, it is
done next. If both exist. a selection must be made to either
store or retrieve next. The requests for retrieval are placed
in a list for each crane as they occur and are serviced in the
same order. Communication \vith cranes can take place any
where in the aisle once the previous command has been
completed. The crane remains at the position of completion
of the last command.

Thus, the last command has a considerable influence on
the selection of the next command because of the position
of the crane. If the last command was a retrieve, the crane is
at the head of the aisle as a result of dropping off the pallet;
a store wiII probably be done next since it does not involve
crane movement to pick up the pallet. If the last command
was a store, the next will probably be a retrieve, since the
crane is already down the aisle. In this manner, the normal
operation will consist of alternate stores and retrieves, the
stores/retrieves being effectively paired. This limits unneces
sary, unproductive movements of the crane, that is, move
ment when the crane is not carrying a pallet (time is really
the factor limited).

This pairing is logical. Commands are sent individually;
"dual" commands (where both the store and retrieve com
mands are physically sent to the crane at the same time) are
not used. Dual commands make practical error recovery
impossible, lessen flexibility, and do not gain any advantage
in capacity \vhen the crane can be communicated with any
where in the aisle.

Under certain circumstances, this pairing may be over
ridden. For instance, the last command may have been a
store just several bays down the aisle. A retrieve just re
quested may be at the end of the aisle. If a pallet is waiting
for storage, another store command is given; this will further
limit unnecessary movement. If a large number of retrieves
are pending and there are only a few stores, the retrieves
will be given priority to help balance the system.

Automatic Storage and Retrieval System Control 607

Slot selection

If the command selected is a store, the actual location
must be selected. This selection is dependent on the height of
the load. The aisle \vas chosen at the input. If no retrieves
are pending, the slot closest to the front of the system is
selected to minimize the time required for the command.

Since vertical and horizontal motions are performed at
different rates, each portion of the command must be con
sidered and balanced to select the best slot. For instance, a
slot one vertical level above and five horizontal bays from
the pickup station is closer in terms of time than one five
vertical levels above and one horizontal bay from the pickup
station. The horizontal and vertical motions and the associ
ated times are the key elements in minimizing total time from
the present or future anticipated points.

If there is a retrieve command pending, the store slot is
chosen relative to the retrieve slot. Ideally, the store slot
would be selected exactly opposite the slot for the next
retrieve, so that unnecessary motion and time \vould be
totally eliminated This elimination has more significance
than may be anticipated. The movements in the last ten
feet and in the final positioning are slow compared to the
rest of the motion and comprise a large percentage of the
total command time. For example, if the distance is doubled
from 100 to 200 feet, the travel time is increased by only
20 percent.

Elimination of the final positioning on one of the commands
substantially reduces the total time for both commands.
Selection of a storage slot exactly opposite the slot for the
next retrieve is, of course, impossible most of the time, but
the correct choice can minimize the unproductive time. The
empty slot that minimizes movement time relative to the
retrieve location is therefore chosen.

This elimination and minimization substantially raises the
effective capacity of the cranes over the nominal capacity
obtained by random selection of the storage location. It also
increases the response and improves the balancing of the
system and aids in overcoming do\vntime of the cranes.

Command transmissions and execution

Once the command has been selected, it is formatted and
sent to the crane. The command describes crane number,
type of command (store, retrieve), and location (horizontal,
vertical, left/right). Once the crane accepts a command, it
is no longer under direct control of the computer. The local
logic on the crane directs the crane until it completes the
command or detects an error.

Command completion

When the command is successfully completed a signal is
sent to the computer, and the location file is updated to
show whether the slot is full or empty. The panet file is also
updated to show the pallet is in transit to the pick area or is
in storage, with the new location.

608 National Computer Conference, 1974

Error detection and recovery

If an error is detected, an error-alert signal is sent to the
computer. The computer, in turn, formats a special sense
command and sends it to the crane. This causes the crane to
return status data to the computer. The status data describes
the error(s) detected and indicates whether the pallet is on
board the crane. From this data, it can be determined whether
the error is recoverable. If it is recoverable, a new command
to finish the operation is formatted and sent to the crane.
This new command is based on the previous command,
load-on-board data, and where the failure occurred in the
command.

This may be the same or a different command. When a
retrieve is being performed and the error indicates that no
pallet is on board, the pallet has not yet been removed from
the slot and the retrieve command is reissued. If the pallet
i,s on board, it has been removed from the slot. The command
is then changed to a store, designating the deposit station on
the output buffer as its store address.

If the error is not recoverable, as in the case of an over
hanging load, the flashing red light is turned on, and a mes
sage describing the problem isprinted.-- ... -------------

The computer takes the crane logically offline to prevent
further use until corrective action has been performed. The
pending requests for output are cancelled so that output is
not totally stopped while waiting for a sequenced pallet
from the crane that is not operating.

When the problem is corrected, the crane is reactivated to
the system via a 2791 transaction.

At the end of the daily one-shift picking operation, the
picking area is cleared and all pallets are returned to storage.
Approximately 20 minutes before the end of the shift all of
the active batches are terminated by the pick-area technician
so that no new work is generated by the system. Just before
the end of the shift, the workers release the pallets for re
storage. Any unfilled requisitions are included in the batches
for the next day.

SYSTEM OPERATION-BATCH REPORT

A number of reports in various categories are produced
to aid in monitoring and mahaging the system. Some of the
major reports are discussed below.

Physical activity

Crane & Conveyor Activity-Several reports are produced
showing stores and retrieves done by each crane, the number
of good commands and number of errors by type, the number
of offline conditions by crane, and the total time each crane
is inoperable during the period covered by the report. The
conveyor reports cover all malfunctions on the conveyor by
device for both errors which stopped the conveyor and errors
filtered by the software. The total up time is reported.

Pick-.. A....rea and Input-Area Activity-These daily reports

show the number of pallets passing the input station by tape
such as new, recycle, parent, and sample. The number of
pallets processed in each pick spur are shown by type such
as count, requisition, no-action, and unexpected. These re
ports are not used to measure people, but rather to show
activity trends that may reveal potential problems.

Storage Utilization-Periodically a report showing a per
centage of slots used by size, by aisle, and by total system is
produced. This is used to predict either over- or under
utilization of the system storage.

Inventory status

Part-Number Inventory
Pallet Inventory
Pallet Inventory in Slot Sequence
Aisle and Part-Number Inventory

This provides a listing for specified part numbers for all
the pallets in slot sequence. This is used to audit and count
part numbers that have many pallets in the system, rather
th_~~ r~tJ:'!eve t:b.~_parts fqr counting. This is done partiCUlarly
with part numbers where each pallet contains a quantity of
one.

A uditing and tracing

Daily Pallets In and Out-This records all pallets that
are new to the system for the day and those that have
physically left the system (zeroed out). This provides addi
tional tracing of movement of any particular pallet.

Pallet in Transit-As pallets move through the system
(from input to storage, in storage, from storage to pick,
from pick back to input for recycle), the transit status is
changed. Since the conveyor network is cleared at the end
of the working shift, no pallets should appear on the in
transit report. They should be either physically out of the
system or be in storage. Any pallets on the report are flagged
as errors, and a physical check of the warehouse areas is
made to find them.

ASRS Audit-The receiving documents, requisitions, and
count cards are compared to the transactions that have been
keyed In through the terminals; any discrepancies are noted
and investigated. This makes it possible to correct common
errors such as keying in the quantity 90 instead of 9.

System Error-This report shows all potential errors or
errors trapped during realtime operation such as unexpected
full bins, unexpected empty bins, or quantity discrepancies
discovered in the picking area. Each item is audited by the
warehouse personnel.

Inventory activity/management

Bin-Lock-This is a report of all pallets that are bin
locked, under either inspection or management lock, showing
the number of days they have been locked.

Part-Number Activity-This report lists all part numbers
and shows the number of times each part number has been
accessed during that reporting period.

Inactive Part Number and Pallet-This shows any part
number and/or pallet that has not been accessed during a
management-specified period of time. This, in conjunction
with a part-number activity report, is used to determine
whether the correct parts are stored in the stacker-crane
system.

File recovery

A set of programs rebuilds the files to the current status
using the transaction-tape records and previous disk files so
that the data is not lost if files are accidentally destroyed
during realtime operation.

CONTROL SYSTEM-MAJOR FEATURES

The following is a recapitulation of the major features in
the system:

• Control of nine individual cranes
• Closed-loop conveyor system
• Total pallet tracking throughout the conveyor network
• Handling of both inbound and outbound pallets on the

same conveyor
• Partial sequencing of outbound pallets
• Ability to handle up to 133 pallets in and 133 pallets

out per hour
• Detection of crane/conveyor malfunctions, with dy-

namic restart capability
• Automatic size sensing
• Storage of variable-size loads in five different-size slots
• Both dynamic selection of slots for storage and selection

of pallets for retrieval
• Storage and accounting of pallets in 15,600 individual

slots
• Accounting for 8,000 part numbers
• Handling of multiple pallets for a part number
• Handling of two parts per pallet
• Ability to perform partial- and full-load picking
• Recycling of partially picked pallets
• Ability to perform counting functions
• Operator guidance for all man/macpjne interfaces
• Dynamic recording of all activity on the pallets and

parts, with realtime update of data ·with appropriate
auditing

• Ability to logically lock pallets for inspection, counting,
or management review

• Emergency requests for parts for picking or resample
• Dynamic assignment and reassignment of pick-area work
• Tape backup for disk-file updates and file-rebuild cap

abilities

Automatic Storage and Retrieval System Control 609

Benefits oj computer control

Total computer control of the ASRS with the 1800, is
the most technically feasible and most economical control
system available, considering the volume and complexity of
operation. The online 1800 control system was compared
with two other possible methods:

• Manual Control-all control done by people in the sys
tem; this includes manual recording and updating of
data.

• Semiautomated--extensive vendor control logic to aid
people in controlling the hardware, with data main
tained offline on a small disk computer.

Online control is economically superior to either of the
other alternatives in both initial investment and continuing
operating cost. The major advantage in initial investment is
realized in the reduction of vendor-provided control hardware.

Some of the major benefits derived from total computer
control of the ASRS are briefly discussed in this section.

• High-Volume Handling-The ability to handle a high
flow of pallets in the conveyor neh·vork and on the
cranes. Better handling of peaks of activity, which are
natural in an ASRSenvironment.

• Reduced Hardware Investment-Reduction of vendor-
provided hardware, especially for control, such as:

Card readers on the cranes
Shift-registers on the conveyors
Separate conveyors for input and output to the ASRS
(this also eliminated construction costs)

• Improved Efficiency-Significant improvements in effi
ciency, particularly in control, data recording, and audit
ing.

• Improved Space Utilization-Accomplished by:
Dynamic update of ,slots being freed for immediate
reuse
Easy handling of multiple parts per pallet
Resizing and reselection on recycles
Pulling smallest quantity first

• System Integrity-Reduction of exposure to "lost" loads
and data errors as a result of:

Elimination of many repetitive manual decisions
Elimination or reduction of data recording and tran
scription
Forced total reporting
Online auditing of data

• Better Exception Handling and Increased Flexibility
Increased ability to dynamically meet changing require
ments of the warehouse, in order to meet their customer
needs \vithout wasted effort, by easily handling:

Emergency requests
Bin-locking
Hardware failures
Changes in work assignment

• Effective System Usage-Smoother and more effective
use of the system and the hardware as a result of:

610 National Computer Conference, 1974

Control decisions made from a total-system viewpoint
Matching of crane commands and slot selection
Immediate trapping of potential hardware problems,
with dynamic recovery

APPENDIX I

Disk files

In order to utilize and support the use of automated cranes
and conveyors, it is necessary to maintain a current picture
of all inventory in the system. This is done by updating the
status of a pallet, part number, slot location, or request for
output, as a change occurs. To accomplish this, it is necessary
to maintain six basic files: the pallet file, part number, loca
tion, parent, requisition work queue and work queue direc
tory.

The part number file contains records defining an inven
tory in the system. Each part number authorized to be
stored in the ASRS has one unique record which summarizes
the total quantity and status of that part. Also included are
-pointers to pallet records, which contaiIl additional informa
tion about the associated part number. Part-number history
and statistics are also accumulated on the record, such as
the date of last activity against the part number and a
counter of the number of requests for pallets containing the
part number.

Each physical ASRS pallet has a unique corresponding
pallet record. Pallet records are not created or deleted when
pallets enter or leave the ASRS. instead the status is updated
to reflect its current location and availability. Pallet records
are used to describe the specific characteristics and status of
the parts on the pallet. This includes actual location, quan
tity, part number(s), current status (in-storage, empty, in
transit, etc), and pointers to other pallets that contain
the same part number. In this way, pallet records of like

part numbers are chained together, with pointers of the first
and last pallets in the chain contained in the part-number
record.

The location file provides an indication of which slots are
full/empty. It does not include which pallets or part numbers
are stored in a particular slot. The file is organized by
aisle, level, and size of slot to provide easy access to available
information.

The parent file, like the part-number file, points to chains
of pallet records. All pallets in the chain contain parts that
are currently being inspected. That is, a sample is taken
from newly received parts and inspected, while the balance
of the parts (the parent) are stored in the ASRS unavailable
for requisition filling until the sample has passed inspection.
When the accepted sample enters the ASRS, the associated
chain of parent pallet records is added to the part-number
chain. The part-number record is then updated to reflect
the availability of the accepted parts. Purchase-order number
and shipment number are also used as qualifiers, to link
samples and parents of like part numbers. In this way, a
sample will only release those parts that were contained in
the original shipment. _-

The requisition work queue (REQWQ) provides a sum
mary record (macro) of the total requirements against a
part number for a given day. All normal requisitions to be
filled are sorted by part number and the gross quantity re
quirements are maintained on a REQWQ record. The record
is then assigned a unique sequential number-the macro
number. These macros will then be exploded into specific
requests for pallets when needed. In this manner, changes
in the real time environment will be taken into account.

A second file, the work-queue directory (WKQDR), in
dexes the REQWQ macros and groups them into "batches
of work." Each work-queue directory record has a starting
and ending macro number, and the number of the next
macro to be "worked on." The pick-area technician can now
assign or activate any given "batch of work" and the macros

Basic Operating Files

Name

Pallet (PALET)

Part Number (PART #)

Location File (LOCFL)

Parent File (PARFL)

Requisition Work Queue
(REQWQ)

Work Queue Directory
CWKQDR)

Size

REC/File

20,020

10,440

9

1,050

1,050

80

Words/Rec Organization

24 DIRECT-Sequential by
Pallet Number

11 Index Sequential By Part
Number

320 Sequential by aisle number

9 Indexed Sequential by PO
& Ship & PIN

9 Sequential by Part
Number

4 Sequential by Batch
Number

Infonnation

Pallet number, status, location, part number,
P /N status quantity, date of entry, date of
last transaction, next pallet pointer, previous
pallet pointer, entries for 2nd part number.

Part number, status, quantity first pallet pointer,
last pallet pointer, date of last transaction
activity counter.

Aisle number, number oi iuli locs for size, num
ber of locs Size N, SLOT status (empty or
full), error log by crane number.

Part number, purchase order number, shipment
number, first pallet pointer, last pallet pointer.

Macro number, part number, quantity, first
pallet, RIC count, status.

Starting macro number, ending macro number,
status, next macro pointer

associated will be processed by the computer. This, in turn,
will generate specific requests for pallets until the macro is
completely satisfied or all existing parts in the ASRS are
exhausted.

IBM 1800 software

Multiprogram Executive Operating System (MPX Version
3) is used unmodified for the 1800 computer operating system.
This system provides all of the non-application software sup
port. It has the required capabilities to service:

• Interrupts
• Multiprogramming Levels and Priorities
• 2790/1053 Terminals
• Disk and Tape Files

The application programs are written in both 1800 Assem
bler, Fortran, and 2790 Macro Languages. These are mixed

Automatic Storage and Retrieval System Control 611

within modules and individual programs. The crane and
conveyor control programs are predominately Assembler.
The other areas are predominately Fortran and 2790 Macro.
The number of installed programs by area are shown below:

Real Time

Conveyor Control
Crane Control
Pick Area
Input Area
File Support
Miscellaneous

Batch

Total

22
12
31
32
18

4
42

161

Additionally, over 60 uninstalled programs were written
for test purposes.

Supporting government cost planning of industrial wastewater
treatment

by EDWARD H. PECHA~, RALPH A. LUKE~ and JACOB E. MENDELSSOHN

u.s. Environmental Protection Agency
Washington, D.C.

INTRODUCTION

The 1972 Federal Water Pollution Control Act Amend
ments established a series of national goals with the purpose
of reducing and eliminating water borne pollution in the
United States. One of these goals requires the implementation
of best practicable control technology by all industrial dis
chargers by 1977.

The purpose of this paper is to describe a computer based
system designed to estimate the costs of achieving these
Federal Standards on non-thermal discharges by industry.
The costs are estimated for each of 250,000 establishments in
14 major industry groups affected by the new standards. The
computer system can then aggregate these results to the de
sired level of detail, supporting management decisions at
federal, regional, and state levels for any of the 14 industry
groups or their subsets.

A major purpose of the development of the Industrial Cost
Model is to produce national cost estimates by industry for
inclusion in the 1973 Economics of Clean Water report to
Congress. Thus, one goal of the models developed was to at
tempt to achieve as high a level of compatibility as possible
with previous Economics of Clean Water reports. The other
goals of the model and the constraints under which it was
developed are discussed in more detail in a later section of
this paper.

The model was developed by EPA Headquarters in Wash
ington' D. C. However, the information from the model is
available to state and local government institutions as well
as to selected private sector organizations. It is hoped that
the full utility of the system can be taken advantage of.

Later sections of the paper discuss the concepts under
lying the model development, an overview of the model itself
and some summary data and suggested applications for the
model results.

CONCEPT OF THE l\10DEL

Some of the basic outward features of the Industriall\lodel
were mentioned briefly in the introduction. It is the purpose

613

of this section to discuss the development of the model from
the standpoint of the goals to be achieved by the model and
the information and resources available to support the model's
development.

Model goals

The major goals of the model as seen during its planning
stages were as follows:

• To produce information on the cost impact of 1977
Federal standards on industry, by industry type, for
publication in 1973 Economics of Clean Water.

• The most current available data on water use, in
... dustrial plants, and costs of control alternatives were to

be used.
• To support economic impact analyses to be made by

industry type.
• To produce cost summary reports in breakdowns other

than major industry type* including EPA region** and
state, as aggregates or by major or minor industry type.

• To achieve compatibility where possible with the pre
vious versions of Economics of Clean Water, particularly
the 1972 edition.

• All of the existing industrial sources in those industries
under study were to be represented in the total cost
figures developed. ***

While the goals above refer to specific information outputs,
it is important to realize that the study focused on producing
results which would be meaningful as management tools.
Some examples of how the model results can be used at various
levels of government and by the private sector are discussed
in a later section.

* Reference to major industry type or industry type is to 2 digit Standard
Industrial Classification (SIC) code. Minor industry type refers to 3 or
4 digit SIC code.
** The 10 EPA regions are shown in Figure l.
*** This ruled out use of the EPA Refuse Act Permit Program (RAPP)
system and successor which has detailed information on industrial
sources but contains only a small fraction of the total number of sources.

614 National Computer Conference, 1974

UNITED ST ATES
ENVIRONMENTAL PROTECTION AGENCY

Figure 1-EP A regions

Model constraints

The resources available for the project were limited con
sidering the scope of the goals to be achieved by the project.
The effort was restricted to using information and data cur
rently available to the Agency; there was not adequate time
to undertake any sort of large data collection effort.

Some software was available from the Industrial ::\Todel
developed for the 1972 Report but it had been developed for a
different computer system. In addition, the formats and
contents of the input files had to be changed significantly.
Thus although the existing programs were available, those
which were used had to be almost completely rewritten.

The time constraint primarily served to limit the number of
detailed reports which were produced by the system and the
thorough analysis of those which were. The computer runs
for the project were being made during a time of both hard
ware and software difficulties by the Agency computer
services contractor. Most of the major runs had a large time
requirement and were submitted for overnight turnaround.
However, the various computer difficulties often dictated
more than one attempt at each run.

Overall the project team was· able to· meet the final dead..,; , .
lines for production and analysis of the model and Its out-
puts. In addition to the summary information published in
Economics of Clean Water, there is a variety of other more
detailed information which could be useful to management
and planners at state and local levels.

MODEL OVERVIEW

Several steps are required to achieve the desired calculation
of costs of meeting Federal standards in 1977. The steps re
quired are shown below:

1. Compute the cost of abatement facilities to meet 1977
standards on the current stock of plants (i.e., retrofit
costs) .

2. Apply growth factors to compute the costs of the 1977
standards on the plants to be built between now and
1977.

3. Compute the replacement cost of all abatement facili
ties adequate to meet 1977 standards on existing
plants.

The costs represented by calculation 1 are the total invest
ment required for existing plants. The costs represented by
the difference of 1 and 3 represent the new retrofit investment
required by 1977. Finally, the costs represented by calcula
tions 1 plus 2 minus 3 is the total to be invested by 1977
including new plants.

In addition to the capital (or fixed) costs required, the
annual operation~ and maintenance (O&M) costs for the
facilities is also computed. Knowing capital and 0 &M costs,
a "total annual cost" (TAC) can be computed assuming an
annualizing factor to convert capital cost to an annual
charge.

The industries covered by the study (by 2 digit SIC code)
are shown below:

SIC

20
22
24
26
28
29
30
31
32
33
34
35
36
37

Industry

Food and Kindred Products
Textile Mill Products
Lumber and Wood Products
Paper and Allied Products
Chemicals and Allied Products
Petroleum and Coal Products
Rubber and Plastic Products
Leather and Leather Products
Stone, Clay, and Glass
Primary Metals
Fabricated Metals
N on-Electric :Machinery
Electric Machinery
Transportation

Figure 2 shows the overall flow of the industrial cost model
system. This series of program and files is executed for com-

(}

' 6 Added '~O
~ ')~'T Indust

n~H Convert

7 ~!-------. ~ I ~:?
(Cost i I CO,,"omp I I roef;;;;en" i I ,- (:~~~s)

12' ~

~-Sm31ldatafile o -Jar~e,.jat.'lfilp

I::l
l-----.J

Figure 2-Industrial cost model flowchart

Supporting Government Cost Planning of Industrial Wastewater Treatment 615

putations 1 and 3 given above. Computation 2 and the
various difference calculations are performed by hand.

The blocks of Figure 2 are explained below. All programs
were written in FORTRAN IV.

1. Water Use Data. This is basic data taken from the rEi
port Water Use in M anfuacturin(J* which indicates the water
used by minor industry types in 20 water use regions. **
Table II from Water Use in Manufacturing provided the
following detail required for the model. ***

-Water intake by purpose, Gross Water Used, and Water
Discharged: 1968
A-Industry Group and Industries

employees
water intake
process water intake
gross water used
total water discharged

-Water intake by purpose, Gross Water Used, and Water
Discharged: 1968
B-Water Use Regions, J\lIajor Industry Groups, and

Industries
employees
water intake
process water intake
gross water used
total water discharged

2. WU SE Program. This program converts the basic data
from W aier Use in Manufacturing to data by minor industry
type and water use region. The model operates as follows:t

The model forms ratios of regional to national totals to
define variability between major classes of manufacturers
geographically and also looks at the variability between in
dustrial classes within a major manufacturing class. The
water use per employee values define the process water per
employee coming into contact with the product stream as
follows:

WP4 WU4
WT4R(e)+ -- XWP2R'XWU2R'x WI

E4 4

Where the process water to be treated is constrained to be no
greater than the total amount of water discharged.

The parameters are defined as follows:

E-employment
WI-water intake
WP-water intake specifically used in product process

ing

* Water Use in Manufacturing, A report from the 1967 Census of Manu
facturers, U. S. Department of Commerce Report No. MC67[11-7,
Data are for 1968.
** Only seventeen regions are used in the model. Cumberland is confined
with Tennessee, Alaska with Pacific Northwest, and Hawaii with Cali
fornia.
*** From The Ecorwmics of Clean Water, Volume II, Environmental
Protection Agency, 1972.
t From The Economics of Clean Water, op cit.

WD-water discharged
WU-water used (gross used in plant including recircu

tion and reuse)
WT -total water in contact \vith product stream

Also,.

4-four-digit SIC Code
2-two-digit SIC Code
R-water use region designator-elf no R exists

the parameter is assumed to be a national value)
(e) -designates a per employee value

primes-represent ratios calculated between regional
and national values

The following calculations are performed to yield. the re
sult above:

(a) process '\-vater per employee ratio; regional defined
ratio at the major industrial class level

W R' _ WP2R/E2R
P2 - WP2/E2

(b) recirculation ratio; regionally defined ratio at the
major industrial class level

~ , WU2R/WI2R
WU2R = 'VU2/WI2

(c) water discharged per employee: represents the maxi
mum water to be treated per employee for each in
dustrial category, regionally defined

WD R _ WD4 WD2R/E2R
4 (e) - E4 X WD2/E2

(d) process water per employee coming into contact with
the product stream defined by industrial category and
region

WP4 , W R' WU4
WT4R(e)= E4 XWP2R X U2 X WI4

Where:

WT4R(e) = WD4R(e)

If:

WD4R(e) <WT4R(e)

Since the computations above were based on data which
represented water use policies of some time ago (1968), the
program produced six different water use scenarios based on
different improvements in water use efficiency. The details
of these scenarios is not repeated here. * One scenario was
selected as most appropriate and used in mos~ computations.
Outputs from other scenarios are available to test model
sensitivity and validity.

3. Water use per employee. This file contains the water to

* See The Economics of Clean Water, Environmental Protection Agency,
1973.

616 National Computer Conference, 1974

be treated per manufacturing employee by major and minor
industry type and by 17 water use regions.

4. Duns Market I ndicators* Extract. The following data
elements were extracted from the Dun's Market Indicators
(DMI) file for each of the approximately 250,000 establish
ments with the desired SIC codes.

• SIC code
• manufacturing employment
• state code
• county code
• S::\1SA code

5. Convert Program. The convert program was used to add
two fields to the D::\lI extract. The fields added were:

• water use region (based on state and county codes)
• EPA region (based on state code)

6. Added DMI. The D::\lI extract file that contains the
new fields discussed above.

7. Cost Data. The basic cost data were determined for the
following twelve types of treatment

Oil Separation
Equalization
Coagulation
Neutralization
Air Flotation
Sedimentation

Aeration
Natural Stabilization
Chlorination
Evaporation
Incineration
Activated Sludge

The basic cost data were taken primarily from a report by
an EPA contractor. ** Three or four points were available for
each treatment type based on the costs for different water
flows.

8. COSTCOMP. The cost points were converted to coef
ficients of equations of the form

LOG (COST) =A +B[LOG(FLOW) J+C[LOG(FLOW) J2

where

LOG= base 10 logarithim
COST = cost in millions of dollars

FLOW = flow in millions of gallons per day
A,B,C = coefficients from COSTCOMP program

Both linear (coefficient C = 0) and quadratic (coefficient
C non 0) regressions were run on the basic cost data. The
type of equation with the highest F test value was selected.
In some cases, the curve was divided into separate equations
based on level of flO\v.

9. Cost Coefficients. The values of A,B, and C for each of

* Computer file maintained by Dun and Bradstreet Inc. and available
to EPA under contract.
** Associated Water and Air Resources Engineers, Inc., "Estimating
Wa.ter Pollution Control Costs fron1. Selected 1vlauufacLuring Industries
in the U.S., 1973-1977", Part I, June, 1973.

the twelve treatment types (and segments) for both capital
(fixed) and operating and maintenance costs.

10. INDUST, Cost Calculator Model. This is the key pro
gram in the system. It operates on each of the establishments
from block 6 and, using files from blocks 3 and 9 and other
data described below, produces the treated water flow and
capital and O&M cost requirements in 1972 dollars for each
of the twelve treatment types which may be imposed. In
addition, a filter is applied which eliminates all establish
ments with less than one million gallons per year of treatable
wastewater since these establishments are undoubtedly either
using municipal facilities or applying wastes to land; 100,000
establishments were rejected in this way.

The inputs are:

• water use per employee (block 3)
• list of establishments to model (block 6)
• cost coefficient (A,B, and C) of the form:

--

LOG (COST) =A+B[LOG(FLOW)J+C

[LOG(FLOW)J2
(block 9)

• factors for accommodating differences in 0&::\1 costs for
each state

• factors for estimating the capital cost differences for
each water use region.

• the percentage of plant water use that is treated by each
of the various treatment processes. This information was
compiled for each SIC code considered.

• average operating days per year for each SIC.
• waste strength scale factor relative to municipal wastes

of the form SF=0.4+0.6X (waste strength relative to
municipal waste)

• where SF is greater than or equal to 1.0
• a factor for accommodating differences in the cost of the

same effluent treatment process in different SIC in
dustries.

11. Establishments with Cost. This file consists of a subset
of the added DMI file (block 6). The subset is all establish
ments with a computed water usage greater than one million
gallons per year (equivalent to the domestic waste from
thirty people). The file contains all of the elements from
block 6 and the following additions

• the annual process water requiring some type of treat
ment

• the capital cost of treatment facilities for each of t.he
twelve treatment types

• the operating and maintenance costs for each of the
twelve treatment types.

12. Output Program. This program performs data aggrega
tions and computes summary statistics for the aggregated
groups. Before running Lhe program, the output file from
block 11 is sorted on the appropriate fields. The following

Supporting Government Cost Planning of Industrial Wastewater Treatment 617

EPA REGION 2
REGIONAL REPORT BASED ON AT LEAST ~~DIAN 1968 FLOWS

1968 EIOIe! CONDITIONS (1972 DO! 1 ARS!

TCTAL NUMGER OF MANUFACTURING PLA~TS ••• 18079

MA~UFACTURING EMPLQY~ENT
________ E.LlliL 1;>:f,'LJ ______________ _

TCHL CAPITAL COST
TOTAL ANNUAL O&M COST

___ ILIAL ANNU1lL __ LD.5.I __

MAX rMUM
8000.

11460

8604835.
758996.

1341 676

MINIMUM
1.

3278.
254.

3092

AVERAGE
83.
33

63655.
10079.
18159

TOTAL
1506917.

599670
1150825980.

182214976.
328293888

S.D.
300.
239

200920.
12349.
33147

ANN!!AI COST DE WASTE TREATMENT

C&M REPLAC~MENT INTEREST TOTAL

! 82214976 57541280 88613552 378369664.

DISII<IBIITIClN IIF OPE-RATTeN AND MAINTENANCE COST
CCST RANGE
> 5ClOOCO.
1COQuOL._ID

50()') C. TO
10000. Til

_ D. __ L.I

5.0ill1ili1.. ________ _
lOOOOO.
50000.
.100011......-___ _

MAXIMUM MINIMUM
158996. 758996.
4361>88

96494.
49790.

9995

104813.
50244.
10099.

254

AVERAGE
758996.
210022.

68462.
16037.

2585

TOTAL
758996.

4200437.
2875384.

152403056.
220Q3632

S.D.
o.

113971.
13087.
4202.
1406

NUMBER
1.

20.
42.

9503 •
8513

DISTRIBUTICN CF INVESTMENT REQUIREMENTS
CCSL BA~,G_E_
> 5COOOOO.

MAX I ,..UM
1161t530.

4<;226<;8.

MI~~~~~11. --~AuV~~~~~~;~;~9~2-.--------~6~:~~~~~~~~3-6-.-----------24~;~~~~~;-2-. __ ~N~U~M~::~R~ __

1000000. TO 5000000.
500~O. ro IljOoa~O.
100000. TO 50000C.

1020886. 1958778. 233094592. 899251. 119.

O. T8 100000.
4<;9110.

99969.

502355
luOll8.

3934.

__ ~7u.o~2~2fL4 J,-.1 ~ ______ ----J.-J J,-.1 7'-"9U7J>b-::L56I)jO.4-__________ ___l1~4~1 .!i>Q61)j0.4-___ ---1.6.B.-_____ ._
182318.
37792.

460900864.
576547584.

81895.
20046.

2528.
15256.

DISTRIBUTIUN OF TOTAL CAPITAL COST FCR TREATMENT ($ 1000)

4 ~ _____ ~ _________ --"-3-L--__ ------'l~---- *6* *7* tH* *9*

'lAX
MIN
AVE
T!:T
SJ

2006.
0.- -

31.
:';0437.

bJ..

4373. 304. 684. 1276. 2241. 25. 1308. 2790. 2965. 550. 1081.
0 0 0] 0 ____ ------1.------- ___ -0..--- 0 0 Q

37. 13. 7. 62. 23. 2. 8. 11. 1628. 124. 160.
:'56432. 29867. 57515. 3904. 219937. 11062. 93235. 137512. 4885. 1112. 5267.

99 JI 1B] 66 73 __ --2.h-.- ____ :>-'54"--____ ~'_"4__----_1__C>_.--------.l.-ti-_--___IL.bb~ ____ __f_.4_ ______ _L._... ____ ~1 ..1.3 H..82~ ____ ___l1.b6c!i9 _____ L7 5::u64-__ _

OISTRTBIITIQN OF ANNUAl OEM TREATMENT COSTS '5 10o0l

q~- *2* *3* *4* * 5* *6* *7* *8* *9* *10* *11* *12*
------- -- -------

"'AX 56. 56. 5. O. 3. 42. 34. 151. O. 435. 641. 73.
MIN O. O. O. O. o. O. O. 10. O. O. O. O.
AVE -1.-- -- --------1.--- ______ ----1-.-- ° 5 6 J] 0 193 280 18
TJT 10b8. 10748. 10351. 5239. 2274. 36280. 404. 105967. 176. 578. 2522. 602.
SD 3. 1. 1. O. 1. 3. 5. 4. O. 210. 167. 15.

SO UP S.D. REPRESENTS STANDARD DEVIATION. THE DATA DISTRIBUTION US~D IS HIGHLY SKEWED.

Figure 3-8ample output report

types of aggregations may be generated

• state
• EPA region
• industry type (2,3, or 4 digit SIC)

The third category, industry type, can be generated by itself
(for national totals) or in conjunction with state or regional
breakdowns (for industry within state or region).

Based on the aggregation level chosen, the number of en
tries, maximum value, minimum value, average, total, and
standard deviation are produced for the foliO\ving values:

• manufacturing employment
• basic total treatable flow
• total capital cost for structural cost (not including

land)
• total annual operations and maintenance cost (O&M)
• total annual cost including 0&1\1, interest, and replace

ment of capital
• annual O&:M costs for five groupings of cost
• capital costs for five groupings of cost

• annual 0&::\1 costs for each of the twelve treatment type
• capital costs for each of the twelve treatment types

Also, total annual costs are broken down into O&M,
capital replacement, and interest charges.

12. Output Reports. Figure 3 shows one page from an out
put report as described in block II.

To compute the value of facilities in place, the Added
DMI file (block 6) is replaced by a summary of plants with
facilities derived from Water Use Manufacturing. The output
is supplemented with data from an annual survey of poilution
control expenditures. *

l\fODEL APPLICATIONS

This section discusses the variety of potential applications
at federal, state, and local levels for the information produced

* McGraw-Hill Publication Company's Survey of Pollution Control
Expenditures.

618 National Computer Conference, 1974

TABLE I-Percentage of National Totals by States

Capital Annual
cost of Total cost of Value

industrial industrial industrial added by
water capital ex- water Manu-

State treatment* penditurest treatment* facturert

(Percent) (Percent) (Percent) (Percent)

Alabama 1.8 1.7 1.8 1.4
Alaska .2 .1 .4 .0
Arizona .4 .5 .2 .4
Arkansas .8 .8 .9 .7
California 7.6 7.7 5.7 8.9
Colorado .7 .7 .8 .6
Connecticut 1.1 1.7 1.2 2.4
Delaware .4 .3 .3 .4
District of Columbia .0 .0 .1 .1
Florida 2.2 1.4 2.2 1.4
Georgia 2.3 2.3 2.4 1.8
Hawaii .3 .1 .3 . 1
Idaho .5 .2 .6 .2
Illinois 6.4 6.7 6.2 7.4
Indiana 2.8 5.2 2.6 3.9
Iowa .9 1.2 1.1 1.2
Kansas .6 .5 .7 .8
Kentucky 1.1 1.5 1.1 1.4
Louisiana 3.2 2.5 2.8 1.1
Maine 1.0 .5 1.0 .4
Maryland 1.0 1.4 1.1 1.4
Massachusetts 2.2 2.2 2.6 3.1
Michigan 4.9 6.2 4.9 6.6
Minnesota 1.3 1.4 1.6 1.6
Mississippi 1.0 .8 1.0 .6
Missouri 1.6 1.3 2.0 2.2
Montana .5 .1 .6 .1
Nebraska .4 .4 .5 . 5
Nevada .1 .1 .1 .1
New Hampshire .5 .4 .5 .3
New Jersey 4.2 4.2 4.3 4.7
New Mexico .3 .1 . 3 .1
New York 6.1 7.2 7.4 9.3
North Carolina 2.5 3.4 2.6 2.7
North Dakota .1 .1 .2 .1
Ohio 6.9 8.9 6.3 7.9
Oklahoma .6 .6 .8 .5
Pennsylvania 7.8 6.9 7.2 7.3
Rhode Island .5 .4 .6 .5
South Carolina 1.4 1.6 1.3 1.2
South Dakota .1 .0 .1 .1
Tennessee 1.7 2.4 1.7 2.0
Texas 9.0 6.3 6.9 4.2
Utah .5 .2 .5 .3
Vermont .2 .2 .2 .2
Virginia 1.4 1.7 1.5 1.6
Washington 2.9 1.4 3.4 1.7
West Virginia .7 .9 .8 .8
Wisconsin 2.6 2.1 3.0 2.7
Wyoming .2 .0 .3 .1

* From 1973 Economics of Clean Water.
t Statistical Abstract of the United States. Department of Commerce.
1972 (1969 values).

by the Industrial Cost Model. The section is divided into
two parts, the first discusses some of the applications to
which the model can be put, the second presents an example
of how the model outputs were used to perform a relative im
pact analysis for states and EPA regions.

Potential applications

One of the benefits from the methodology used in develop
ing the Industrial Cost Model is the variety of aggregations
which can be performed. The flexibility of uses for the model
outputs are considerably enhanced by this capability of the
model. At the present time, aggregations have been pro
duced by EPA region, state, and major industry type. The
model can easily produce additional aggregation by minor
industry type, SMSA, or counties. Of course, the less aggre
gated the analysis is, the more likely that it may vary from
the actual situations .

The mechanisms used in producing the control cost esti
mates are designed to account for the specific differences in
control costs for each plant based on such factors as manu
facturing plant type, water use, state difference,for opera
tions and maintenance costs, and regional differences for
capital costs. However, each plant has a certain amount of
latitude in controlling water pollution. For example, there is
considerable flexibility in the specific set of treatment types
which are possible and there are additional tradeoffs between
capital costs and operations and maintenance costs. The
model outputs are based on estimations of the most likely
overall abatement measures to be adopted; however, these
measures will not necessarily apply to each specific plant .
Thus, discrepancies between the model estimates and actual
occurrences are more likely to be noticed at 100,r level aggrega
tions. Conclusions based on specific model outputs may be
affected by this phenomenon .

TABLE II-Percentage of National Totals by EPA Region

Capital cost Annual cost
of industrial of industrial

EPA water Total industrial water Value added by
Region treatment* capital cost treatment .. manufacturert

(Percent) (Percent) (Percent) (Percent)

I 5.5 5.4 6.1 6.9
II 10.3 11.4 11.7 14.0

III 11.3 11.2 11.0 11.6
IV 14.0 15.1 14.1 12.5
V 24.9 30.5 24.6 30.1

VI 13.9 10.3 11*7 6.6
VII 3.5 3.4 4.3 4.7

VIII 2.1 1.1 2.5 1.3
IX 8.4 8.4 6.3 9.5
X 6.0 2.8 7.3 2.7

* From 1973 Economics of Clean Water
t Statistical Abstract of the United States, Department of Commerce,
1972.

Supporting Government Cost Planning of Industrial Wastewater Treatment 619

Some of the potential applications which would be meaning
ful at national, regional, state, and local levels are discussed
below.

• The specific areal requirements which include the num
ber and size of plants affected as well as the required
outlays can aid government officials in evaluating spe
cific plant by plant implementation plans in light of
overall requirements.

• The alternative water use scenarios produce information
which can be used to determine overall and average cost
savings possible through greater water recycling or
process changes. These savings vary greatly in the
various geographical areas due to differing hydraulic
efficiencies.

• Local cost data could be used to validate the model out
puts for a particular geographic area. Also, differing types
of treatment can be modeled if they apply in a specific
area.

• Relating model outputs to other economic indicators can
support analysis of relative impacts in different geo
graphic areas or industrial subcategories.

• Much industrial wastewater is currently not treated at
all. In some parts of the country, publicly owned treat
ment facilities may provide some of the required treat
ment. The model outputs can help aid local planning of
industrial loading of publicly owned treatment works.

Sample application

One of the requirements of the Economics of Clean Water
is the analysis of relative impacts of industrial water pollu
tion control costs in states and EPA regions. To develop
this impact, the capital requirements for water pollution
control were compared with total capital expenditures and
annual costs of water pollution control were compared to
value added by manufacturing.

The percentage of the national requirement in each state
and region for both capital and annual industrial wastewater
treatment costs are based primarily on both the size and type
of industry found in the state. The geographically-determined
capital cost factor also makes a difference. The range by state
is from less than 0.1 percent to 9.0 percent of total capital
requirements and from less than 0.1 percent to 8.9 percent of
total annual costs. Regional values for the former range from
2.1 percent to 24.9 percent and from 2.5 percent to 24.6 per
cent for the latter. Table I contains the percentages by state
and Table II contains them by EPA region.

The relative share of.industrial capital invested in a state or
region is based on the growth rate for the area, the type of
industry (capital intensive or not), and the age of existing
facilities. Also reflected in the total capital expenditures are
those expenditures for pollution control. The relative share of
value added is also based on the size and type of industry.

While no direct relationship necessarily exists, it would
seem that those areas with a larger share of capital require-

ments for pollution control than of capital expenses in general
might encounter a greater burden in diverting capital to the
construction of pollution control facilities. Examples of areas
\",ith this characteristic are Regions VIII and X and the
following states:

Alaska
Hawaii
Idaho
::\rlaine
::\r1ontana

Kew::\lexico
Oregon
South Dakota
Vermont
Washington

Other areas might encounter less of a burden in diverting
capital to construction of pollution control facilities given the
capital cost and overall level of investment. Regions II, IV,
and V fall into this category as well as the follmving states:

Arizona
Connecticut
Indiana
Iowa
Kentucky
:Maryland

Michigan
Xew York
X orth Carolina
Ohio
Tennessee
Virginia

A similar comparison can be made between annual costs of
pollution control and value added by industry. In those areas
with relatively higher annual pollution control costs than
value added, there may be greater changes in wages, prices,
and dividends than in other areas. Areas with relatively high
annual pollution control in comparison to value added are
Regions VI, VIII, and X and the following states:

Alaska
Hawaii
Idaho
Louisiana
::\rlaine

Montana
Kew::\1exico
Oregon
Washington
Wyoming

Those with relatively high value added in comparison with
annual costs are Regions II, V, and IX and the following
states:

Arizona
California
Connecticut
Delaware
Indiana
Kentucky

~1aryland

11assachusetts
::\Echigan
Xe\y York
Ohio
Tennessee

While no detailed set of effects by State or region can be
developed from the data presented in Tables I and II, it is
clear that significant differences are present between pollu
tion control capital requirements and capital expended and
between annual pollution control costs and value added. In
fact, the two sets of measures generally reinforce each other

620 National Computer Conference, 1974

which strengthens the hypothesis that there will be a dif
ferential burden.

CONCLUSIONS

The information made available by the Industrial Cost Model
is useful to the Federal government in its planning and
evaluation roles. In addition, it has potential applications at

regional, state, and local levels of government and in the pri
vate sector. These other potential applications would pri
marily fall into the realms of planning and management.

The data and manpower resources required to develop the
Industrial model are generally not available to state or local
government. Thus, the development of the system by the
Federal government and its being made available to other
users present smaller units of government with a tool other
wise unavailable to them.

The hase-data-cluster concept-A cooperative metropolitan
approach to computer utilization

by LEOXARD STITELMAN

Wayne State University
Detroit, Michigan

BACKGROUND

Metropolitan areas across the nation are devoting more
attention to the general lack of current and detailed infor
mation so necessary for increasingly complex regional and
local decision-making by public agencies. In the metropolitan
Detroit, Michigan, region several groups have been involved
in the attempt to develop a coordinated but voluntary ap
proach to computer utilization which could serve as a model
for other multi-jurisdiction metropolitan regions. It is known
as the Base-Data-Cluster Information System.

The four million citizens of the six-county Detroit region,
encompassing 4,000 square miles, are served by nearly 400
local political jurisdictions. These include counties, town
ships, municipalities, villages, school districts, and several
types of special districts. The development of a regional
cooperative computer plan initially came from public and
private leadership in Southeast Michigan through the Metro
politan Fund, Inc., a nonprofit research corporation, which
on a regional scale is similar in purpose and practice to many
national foundations. The Fund's objective is to accomplish,
through research, the physical and social goals for a better
metropolitan way of life. The leadership for the Fund is
provided by a 65 member Board of Trustees which includes
the principal leaders of the educational, industrial, commer
cial, labor, and governmental segments of the community.
Working closely with the Metropolitan Fund is the Southeast
Michigan Council of Governments (SEMCOG), which shares
similar objectives.

Two basic goals undergird the approach which was recom
mended for the local governments in the Detroit region:

1. The improvement of local government services and
functions;

2. The development of a comprehensive routinely up
dated regional information-decision making network.

INITIAL DEVELOPMENT

In 1967 the Metropolitan Fund's first study on automation
was published. It contained basic data on the extent of
computer use by local governments, analyzed the effective
ness and impact of existing and proposed computer systems,

621

and developed recommendations for the orderly and efficient
use of automated equipment based on the principle of volun
tary intergovernmental cooperation.

The 1967 survey revealed that comparatively few local
governments had installed computers, and that such systems
were usually not fully and effectively employed. The major
problems were the shortage of qualified personnel and the
limited individual government applications which did not
utilize the EDP equipment for the minimum rental time.

In 1968 the Metropolitan Fund, in cooperation with
SEMCOG and the Michigan Municipal League, sponsored
a unique series of four educational Computer Forums, each
held in a different county in the Detroit region. Every
government jurisdiction with a computer system made a
presentation which described its applications. These Forums,
with total attendance of over 400 public officials, served as
an extremely effective platform for the exchange of EDP
information among both existing and potential users.

THE FEASIBILITY STUDY

In 1968, the Southern Wayne County Mayors Association
(SWCMA) requested that the Metropolitan Fund conduct
a study on the feasibility of their 18 communities joining
in a cooperative computer service effort. The SWCMA, a
voluntary aid group, consists of municipalities and townships
in southern and western 'Wayne County, near the city of
Detroit. Their total population is 507,000, with a range of
1,200 to 78,700.

While several communities are older, established ones,
there are many currently experiencing the rapid residential
and commercial expansion so common to suburban areas of
metropolitan regions around the country. The member cities
and townships of the SWCMA are a natural geographical
and political grouping. Only one city, Wyandotte, with a
population of 45,000, had a computer system, and several of
its employees played a key role in the feasibility stage.

It was decided to analyze in depth four activities performed
in all communities. These functions would serve as a model
for determining the economic feasibility of the cooperative
concept. Those selected were utility billing and maintenance,
payroll, voter registration and maintenance, and property

622 National Computer Conference, 1974

tax billing and collection. Seventy on-site interviews were
conducted, with over 200 employees involved in these fact
finding sessions.

The project data was developed in two basic parts. The
first was the preparation of an Information Study for each
community. This was a detailed systems analysis and evalu
ation of the four applications. For each application there
was a work flow, cost, personnel, and statistical analysis,
and a general evaluation with recommendations for im
proving existing procedures, without regard to potential
computer systems.

With this arrangement, the data privacy of each com
munity was protected, and its relative effectiveness, or lack
of it, as revealed in the comparative statistics, was made
known' only to the elected officials and their top staff.
Valuable basic data on operations and procedures was thus
secured, and for some communities this was the first time
that their activities had ever been subjected to systems
analysis. This information also provided the very crucial
basis for comparing ongoing operating costs with futurf'
service bureau bids.

The second stage of the research project involved the
preparation ofaGeneral Report, which contained the overall
analyses, evaluations, and recommendations. Titled Regional
Cooperative Computer Plan, it included the following major
conclusions and recommendations:

(a) The sharing of a central computer system to service
a group of local governments on a multi-jurisdiction,
multi-application basis is technically sound and eco
nomically feasible.

(b) A cooperative computer service would provide sig
nificant improvements over present methods of infor
mation handling, and would definitely assist the com
munities in their, administrative, managerial, and
service functions.

(c) A decision by each community to seek computer
capabilities on an independent basis would result in
a substantial waste of tax dollars. Equal but separate
computer facilities for each community would increase
costs considerably and provide less service.

(d) A shared computer need not lead to conflicts in the
scheduling services.

-(e) Essential elements of privacy of data which each
community may desire can be achieved.

(f) Implementation should be considered on an incre
mental basis-a short-range phased conversion to

- EDP using an established computer center, ",-it-h future
planning for an installation controlled or operated by
the local governments being serviced. It was antici
pated thai such a center 'v'lould expand to neVv~ appli
cations, and that additional cities would join the
cooperative.

ALTERNATIVE COOPERATIVE SYSTEMS

Local governments in the Detroit region Imve a long
record in the use of contracts to perform elements of their

services and functions. The Michigan State Constitution
(Article VII, Section 28) permits counties, townships, cities,
districts, or any combination thereof to:

(a) Contract with one another or with the state for the
joint administration of their respective functions or
powers;

(b) Share their costs and responsibilities of functions and
services with one another and with the state;

(c) Transfer functions or responsibilities to one another
with the consent of each unit involved:

(d) Cooperate with one another and with state govern
ment; and

(e) Lend their credit to one another in connection with
any authorized publicly-owned undertaking.

With this very liberal basis for cooperation, the report
proposed the follmving alternative systems:

(1) Nonprofit corporation or independent authority under
the direct supervision of the participating communities.

Advantages:

(a) Direct control by elected local officials who would
participate equally in all policy decisions.

(b) Staff directly responsible to governmental units.

Disadvantages:

(a) High start-up and implementation costs of com
puter service center.

(b) Large number of communities necessary to secure
optimum benefits of equipment.

(2) Single government unit acting as a service center.

Advantages:

(a) City operating service center can test programs
and procedures internally before implementation
in other units.

Disadvantages:

(a) Fear or ather communities that the one performing
as a service center might receive favored treat
ment.

(b) Privacy of data fears.
(c) Contract for services not as desirable as direct

policy oversight.

(3) Commercial service bureau.

Advantages:

(a) Commonly utilized arrangement.
(b) Commercial service bureau has already made its

major investments in equipment and personnel.
(c) High start-up and developmental expenditures by

local governments would be largely avoided.

The Base-Data-Cluster Concept-A Cooperative Metropolitan Approach to Computer Utilization 623

Disadvantages:

(a) Concern of governments regarding assurances that
their needs vvill be given the highest priority.

(b) Possibility of canned all-purpose programs which
are not designed for special needs of governments.

(4) County level government.

Advantages:

(a) Base of cooperation broadened to additional gov
ernment units and applications.

(b) Encourage additional coordination in non-com
puter functions because of increased contact on
computer applications of communities.

Disadvantage:

(a) Civil service structure often limits development
of appropriate staff.

ALTERNATIVE COST ESTIMATES

1. Continuation of existing procedures.

Average government expenditures have generally been
rising at a rate of five to ten percent annually. For purposes
of illustrating the impact of this alternative, the most con
servative projection of a five percent increase was chosen.
Any government agency, performing the identical function
with the identical staff year after year, will show a rise in
expenditures. Other typical factors, such as pay increases,
also raise costs, so the five percent is a very modest projection.
Here is how the governments in the study would be affected
for the four applications under analysis:

Year Annual Cost Increase

1970 (current data) $2,500,000
1971 (projected) 2,625,000 $125,000
1972 (projected) 2,756,000 131,000
1973 (projected) 2,894,000 138,000
1974 (projected) 3,039,000 145,000
1975 (projected) 3,191,000 152,000
1976 (projected) 3,351,000 160,000
1977 (projected) 3,519,000 168,000

The projected budget increase is over one million dollars
for just four applications on a five percent rise per year.
I t is important to note that future computer system costs
must be compared with future manual system costs, and not
with current budget expenditures. If, with a computer system,
we can reduce the rate of increase, in addition to other non
cost benefits, a major breakthrough will be achieved.

This position of continuing with existing manual pro
cedures offers no alternative to the spiraling increases in
public expenditures.

2. Independent approach to computer utilization.

What would be the cost impact of the go-it-alone approach
to data processing? Let us assume that only the twelve
cities of over 10,000 population decide to utilize computers,
and that the others are too small. Let us also assume that
each city utilizes a computer service bureau and hires a
basic systems staff.

Utilizing figures developed by the Municipal Information
Technology Program of the University of Connecticut, the
result was a per capita cost of $2.82.

3. Cooperative approach to computer utilization.

Using the twelve cities in the example above, let us
assume a decision to use a computer cooperatively. Data
was developed for batch and real time processing, and com
parative expenditures are as follows:

Alternative

Independent (service bureau)
Cooperative

(batch processing)
Cooperative

(real time processing)

Annual Cost

$1,348,000
$ 596,000

$ 766,000

Per Capita
Cost

$2.82
$1.25

$1.60

The question of cost of a cooperative computer service
center is the crucial determinant as to whether such a center
is established. We must not fall into the trap of comparing
today's non-computer, manual operations budget against
tomorrow's computer based budget. Today's costs do not
remain the same for tomorrow. Budgets are increasing at a
rate of five to 10 percent a year with no corresponding in
crease in services or operations. Automated systems offer
the alternative of reducing the rate of increase.

THE BASE-DATA-CLUSTER CONCEPT

The major significance of this study did not lie in the con
clusion that cooperation is beneficial to local governments.
Although this fact cannot be emphasized too strongly, and
the report documents the savings factors, the basic contri
bution of this study is to provide a workable prototype for
the creation of a comprehensive regional information-de
cision-making system with automatic updating features. This
prototype, the base data-cluster concept, utilizes two es
sential elements:

1. Tie the information base to the most elemental origination
point available. The production of a water bill, a pay
check, or a property tax bill inherently includes much
of the data which eventually finds its way into even
the most sophisticated MIS. In addition, an infor
mation system is meaningless unless it is timely
updated quickly, regularly, and economically. Such a
network plugged into the source of data origination
in the city results in an automatic by-product. Thus,

624 National Computer Conference, 1974

•
by concentrating our energies on the "nuts and bolts"
of providing basic government services, there comes
the assurance of the political support necessary for a
functioning regional system. This is the key to the
realistic implementation of such a system-it will be
approved more for its internal service value than for
its comprehensive information system.

2. Build upon groupings or clusters of local governments
utilizing subregional computer service centers on a co
operative basis. Without the cluster concept the base
data principle is umvorkable. If each community
adopted the "go-it-alone" philosophy, we would have
hundreds of computer inputs to a regional computer
center, an overwhelming organizational problem. The
other extreme, the huge central computer with termi
nals in every community, was rejected as politically
impractical. Thus, we have the cluster approach in
which voluntary multi-jurisdictions EDP service cen
ters are formed based primarily on geography and
political compatibility. While we are keenly aware
that this approach presents some problems, the al
ternatives (go-it-alone and one-giant computer) would
be financially disastrous· and/ or unworkable.

This concept of computer utilization in our metropolitan
regions, while easy to describe, is very difficult to implement.
Positive inputs from other government levels would facilitate
the objectives stated above. The Federal government, par
ticularly through the grant mechanism, should be actively
encouraging cooperative arrangements, since such contacts
also serve to break down other barriers among local juris
dictions; cooperating on a computer inevitably leads to
cooperation on other mutual problems. Washington has
funded the development of vertical municipal information
systems, which, viewed in the context of metropolitan goals,
is a negative influence. However, it should be noted that
several years ago, an HEW grant stimulated an outstanding
example of voluntarism and clustering. It resulted in a
computer service center operated by the Oakland County
Intermediate School District, north of Detroit. Securing the
voluntary approval of 28 local school districts, the Inter
mediate District has developed a wide range of adminis
trative and education computer applications. It has provided
considerable encouragement to our thesis that voluntary
cooperation is practical.

State governments must also play a larger role. Some
have assisted this cooperation concept through the passage
of legislation to standardize requirements, such as uniform
accounting records. More of this is needed, not to stifle local

initiative, but to bring sound procedures to all local juris
dictions, thereby enhancing their ability to cooperate volun
tarily.

Of great relevance for the future of the base-data-cluster
approach is the increasing importance of regional councils of
governments (COGs). When several subregional clusters are
established in a metropolitan area, it is possible that the
COG might serve as the link which brings together the
centers' data and other federal, state, regional, and private
sector information. The COG could also serve as the stimulus
for the approval of computer clusters by member com
munities.

CONCLUSION

The strength of the base-data-cluster theory is that it does
not attempt to superimpose preconceived ideas on the de
velopment of the clusters. They must be built on the strength
of geography, politics, and personalities, in whatever combi
nation is workable. This will not result in a neatly defined
complex of centers; machine interface will pose a serious
problem.

Nevertheless, the positive indirect results must be empha
sized. Cooperation with respect to automation can lead to
other cooperative activities by local governments. A demon
stration of mutual benefits involving computers cannot help
but reduce distrust and misunderstanding on other issues
which must be handled through voluntary cooperation.

As the population of our metropolitan regions increases,
resulting in a corresponding pressure for government services,
and the information requirements become more critical,
computer utilization becomes as inevitable as the conversion
from the pen to the typewriter. Basically, the issue is not
'whether-but how. The "how" will influence metropolitan
politics in many ways for many years. And unless local
governments do join together in cooperative arrangements,
they will not receive the benefits and advantages which
today's computer technology offers.

SOURCES

Stitelman, L., Automation in Government: A Computer Survey of the
Detroit Metropolitan Region, November 1967: Metropolitan Fund,
Inc., Detroit, Michigan.

Stitelman, L. and Dennis Little (editors), Proceedings of Southeast
Michigan Detroit Region Computer Forums, July 1969; Metropolitan
Fund, Inc., Detroit, Michigan.

Stitelman, L., Regional Cooperative Computer Plan, February 1970:
Metropolitan Fund, Inc., Detroit, Michigan.

Efficiency in generalized pipeline networks*

by c. v. RAMAMOORTHY and H. F. LI

University of California
Berkeley, California

INTRODUCTION

A common architecture of most of today's super machines
revolves around parallel or pipeline processing. Typical
examples of such machines are the CDC STAR-lOO, TI-ASC,
PEPE, IBM 360/91, 360/195, and CDC 6600, 7600, etc.1- 4

They all have distinct pipeline processing capabilities, either
in the form of internally pipelined arithmetic functional
units or in the form of a pipeline of special purpose func
tional units. The principal idea behind pipelining is to create
as much overlap as possible in the operations of the different
facilities, for example, memory fetch unit, decoding units,
adders, and multipliers. Concurrency of different operations
increases the system utilization. As an important consequence
of concurrency, the execution speed of most jobs are ac
celerated considerably as is evidenced in systems like 360/195
and TI-ASC. Ideally, in a pipelined machine, instead of
obtaining one output per major cycle from the system, a rate
of one output per minor cycle may be achievable. A typical
linear pipeline is as drawn in Figure 1 (a).

The functioning of a pipeline can be illustrated as that of a
water-pipe. In the ideal case where all the facilities ,have the
same speed, the analogous water-pipe has a uniform cross
section (Figure 1 (b)). On the other hand, when some of the
facilities are slower, the corresponding cross-sections in the
water-pipe are narrower as drawn in Figure 1(c). From the
figures, it is intuitively obvious that the facilities of a pipeline
should be chosen so that their speeds are about the same, in
order to achieve maximum efficiency.

In this paper, the pipelining concept is generalized. In the
generalization, instead of having only one pipeline in the
system, a network of pipelines crossing at certain points
(facilities) are installed. In this respect, another interesting
analogous example can be given. A network of pipelines can
be viewed as a traffic network. The faciiities shared by
different pipelines (or paths) are the junctions in the traffic.
With this picture in mind, several immediate observations can
be obtained. Everyone realizes the importance of traffic lights
in a busy traffic. They have the responsibility of regulating

* Research sponsored by the National Science Foundation, Grant GJ-
35839, and the U.S. Army Research Office-Durham, Grant DA-ARO
D-31-124-73-G157.

625

the various roads (analogous to pipelines) so that maximum
throughputs are attainable. Then the roads are said to be
well-utilized. The same reasoning holds for a pipeline net
work. The traffic light at the entrance of a pipeline is actually
the sequencer while a traffic light inside the network is a de
centralized control containing the necessary buffers. This
remarkable similarity between a pipeline network and
traffic network is extremely useful for visualizing and de
signing a modern, advanced computer system. As a practical
example, the TI-ASC computer has a multi-pipeline feature
as shown in Figure 2.

In this paper, an efficiency measure is formulated to justify
the design of shared resource pipeline network. The design
of the network and the sequence control will be discussed.
Particular attention is paid to the overhead associated with
optimal sequencing. In order to reduce the overhead, local
optimization in the static case is proposed. Results of this
study reveal several directions for future investigation, and
they will also be discussed.

EFFICIENCY ANALYSIS OF PIPELINES OF VARIOUS
CONFIGURATIONS

The linear (straight-line) pipeline system

In Reference 6, the author proposes to view the efficiency
of a linear pipeline system to be the ratio of the total space
time span of the jobs to the total space-time span of the
facilities (processing stations) concerned. A simple efficiency
measure was suggested under the assumption that the
execution times of the stations are the same so that no
buffering or particular bottleneck exists inside the pipeline
(the slowest facility of the linear pipeline is called the
bottleneck) .

To further generalize this useful measure of efficiency, one
can naturally consider also the cost and speed associated
with each facility. This is especially important because in
practice various facilities have different speeds (or cycle
times). As is almost universally accepted, if a designer is
willing to pay more, he may find a faster facility to be in
stalled in the system at a higher cost. Hence a unit of idle
time in some fast facility should be counted more costly than

626 National Computer Conference, 1974

Figure l(a)-A typical linear pipeline

--3l> ~
~ ________ F_lo_w_in_W_at_er_p_iP_e_~_t_h_cO_~_ta_nt_C_rO_88_-s_e_ct_io_n ________ ~

Figure l(b)-Analogous Waterpipe when Tl =T2=Ta=T(

~----~,------l----~-7
~----~L-______ ~

Figure l(c)-Analogous Water Pipe when Tl~T2~Ta~T4

that of a slower one. This implies that an appropriate
weighing factor should be attached to the space-time span of
each facility in analyzing the efficiency of the system.

At the same time, in the case of a linear pipeline, it can be
shown that additional internal buffering is quite unnecessary
even when the facilities have different execution times.
Instead, a buffer of suitable size located at the entrance of
the linear pipeline may serve very well in regulating the
pump-in rate of the data or tasks to be processed. This idea
can best be illustrated with an example. In Figure 3(a), the
system has large enough buffers (intermediate storages
between facilities) to hold all intermediate information to be
transferred, and in Figure 3 (b), buffering is not inserted
anywhere inside the pipeline, except at the entrance. It can
be observed directly from the figures that in both cases, the
system has the same response time, throughput rate and
efficiency. (Notice that all operations are assumed to be
synchronous) .

FACT: In a linear pipeline system, the throughput rate is
determined by the speed of the slowest facility in the pipeline
(the bottleneck) ; whereas the response time is given by the
sum of the time spent in all of the facilities in the pipeline.

From the example in Figure 3 (b), the throughput rate
depends entirely on the speed (Tj) of facility Sj and hence the
maximum throughput rate of the system is l/Tj. From this,
one can observe that removal of cDmparatively slow bottle
necks will be of vital importance in pipeline designs.

Weare now ready to define the efficiency of a linear pipeline
system according to space, time, cost and speed.

Let Tj=speed of the bottleneck
T i = speed of the ith facility in the pipeline
(Xi = weight attached to the space-time span of the ith

facility as determined by the cost and speed of
the facility, for example, cost X speed product.

L = number of tasks pumped into the pipeline in a
certain period of time. For maximum efficiency,
it will be assumed that the tasks are pumped in
continuously, that is, the buffer at the entrance
A+ +hn Y\;'t'"\t"\l;nn ;et T'lton.,..,.,... ,... +,.,..
V..I. l/.1...L\.J p..l.p'-'.1.1....I...I.'-' .10 .1.~\.J V \:.;~ V~J.J.l-' 11,J •

n = number of facilities in the pipeline.

FLOATING ADD FIXED MULT.
J

RECEIVER
REGISTER

EXPONENT
SUBTRACT

ALIGN

----l
I
I
I
I
I
I
J

I
I
J

J

I
I
I
I
I
I

,...=-.o....;.;......o....;.;......_\I7.L...;,-.-......,- - - -

MULTIPLY

ADD

NORMALIZE

2

J

I
I

ACCUMULATE J

OUTPUT

'V
RESULT

I
~

____ J

Figure 2-Pipelined arithmetic unit in TIASC-An example

Facility
_ber

Same time as in Fig. 3b.

Figure 3(a)-Gantt chart for a pipeline with infinite intermediate
buffering

Then

total weighted space-time span of L tasks
Efficiency

total weighted space-time span of n facilities

I.e.

1/=
n n

L aieL Ti+ (L-1)Tj)

(1)

The individual terms in the above measure, as indicated in
Figure 4, are easily comprehensible because they include
important parameters such as cost, speed, and space-time.
In the ideal situation where all facilities have the same speed,
the equation simplifies into

L
1/=----

n+(L-1)

so that when L approaches infinity, the efficiency approaches
unity. In all other cases, as L approaches infinity, the effi
ciency approaches

---<1.

Bottleneck removal

Following the analysis in the previous section, a natural
question arises: if an identical facility is connected in parallel

Same tim~ a. in fig. lao -~

Figure 3(b)-Gantt of same system without intermediate buffers

Efficiency in Generalized Pipeline Networks 627

Facility
Number snl~~ ________ ~rr,/~J. _______ ~L~

I /
/ I

, "

(L-l) 'j ----* I 1.J
·1·i_j+l1''}

Figure 4-Efficiency of a linear pipeline

TIllE

across the bottleneck Sj, what kind of performance improve
ment may be achieved? In what way will the efficiency be
affected?

For the simple linear pipeline, the situation is not difficult
to analyze. Intuitively, when two identical units operate in
parallel to serve input requests, the speed of the combined
unit may become halved (that is, Ti/2), provided that the
input rate is suitably regulated. As a result of this observa
tion, the combined parallel unit in the new system will
remain to be the bottleneck under the following condition.
Lemma

The two parallel facilities treated as a combined unit
remains to be the bottleneck of the system if and only if for all

i~j, 2Ti~Tj (or Ti~Tj/2).
Proof

This assertion can be visualized using a Gantt chart as
drawn in Figure 5. Referring to the figure,

(1) for i~j, 2Ti+T=Tj+r==}Tj~2Ti

and

(2) for k~j, T1+Tj+d+Tk~2Tj+d==?Tj~2Tk Q.E.D.

)

Figure 5-Two identical parallel stations remain bottleneck

628 National Computer Conference, 1974

n outputs
~ ______ ~A~ ________ ~

1lllJ' , , I I 1 rate lh j

s'
j

~ ~~,~,.
l rate IITj

I~

Combined outputs from J 1
(S j aud S.i) being 'I I I I I 1 1 I I I

regulated. at a rate ~ ~ ~ ~ ~
acceptable to the next
portion of the pipeline.

rate lIT

~------~v~--------~

(_) outputs (A c011Iplete period)

Figure 6-Buffer control for 2 parallel units

If the previous condition is satisfied, the throughput rate
of the system can be regulated to (2/Tj)-twice the through
put obtained before the addition of the facility S/. A design
option becomes apparent; it may be desirable to insert a
buffering control between th~ c<?rnbined faci~i~y (Sj and S/)
and the next facility S1+1 so that the outputs from the com
bined unit can be buffered and transmitted to the next
portion of the pipeline at a regular speed. This may also be
accomplished externally at the entrance of the pipeline, but
the decentralized control inside the system will serve a very
useful purpose later when more complicated pipeline con
figurations are involved.

The efficiency of the new system when the combined unit
remains to be the bottleneck is given by:

n n

(L ai+aj) (71+ L Ti+ L/2Tj)
i~j

r1' =

When L becomes very big,

n

2:: a i T i

if L is even

if L is odd

rl' ~ ~21l as defined in eq. (1)
n

(2:: ai+aj) (T;/2)

On the other hand. when the condition in the Lemma is not
satisfied, a new bottleneck is created. By applying the same
analysis as discussed earlier) the efficiency of the new system

becomes:

11'= ------------------------ (2)
n n

(2:: ai+aj) (L Ti+ (L-1)Tk)

where Tk = the speed of the new bottleneck.
A few observations can be made concerning the previous

analysis. First, efficiency is not always improved. If there
exists a new bottleneck whose speed Tk ~Th then equation (2)
indicates that 11' < 11 while the throughput rate is not much
improved, (being 1/ Tk)' Second, if the new bottleneck has
a speed Tk«Tj/2, then the new facility S/ need not operate
as fast as Sj. This initiates our next investigation.

Parallel facilities with different execution speeds

The problem to be solved here is to choose a suitable
facility to be connected across a bottleneck in order to fulfill
a certain maximum throughput requirement at a cost-effec
tive manner. This is a common problem faced in many
practical designs. F-orexample, suppose the bottleneck
identified is a multiplier, and the designer has the option of
introducing one or more multipliers to operate in parallel
with the original one. Then the multipliers may be chosen
from a set of available candidates, some microprogrammed I
and some hardwired (fast but expensive).

If l/T is the throughput rate desired for the design, and the
present bottleneck has a rate of l/T}, intuitively the speed
requirement (T/) on the parallel facility S/ to be connected
in parallel with Sj is that 1/T=1/T1+1/T/. Yet there lies
behind the bushes a problem not to be overlooked. Because
the two facilities Sj and S/ have different speeds, their
outputs will be out of phase for most of the time. In fact,
their outputs may collide or may be asynchronous to the
extent that the maximum combined output is not periodic
without proper control. This situation can be described as
drawn in Figure 6.

Referring to Figure 6, the buffer control after the combined
unit (Sj and S/) is responsible for receiving the outputs from
the latter and send them to the next portion of the pipeline at
an acceptable rate. Whether this can be done at a constant
period depends on finding the integer solution (n, m) for the

Pipeline A

-1 ~u-:--0~~r
~
J '

~,_,u,,~~ .~u_ ~ L.
I I 'I~. ____ ~I /

Pipeline B

Figure 7-1':.. shared resource pipeline

equation nTj+mr! = (n+m)T, given the values of T, Tj, and
T/. If no such integer solution exists (as may occur), either
the combined output rate T or the speed T/ of S/ must be
adjusted. Fortunately it can be shown that the size of the
additional buffer to regulate this output rate need not be very
big. In fact, a single stage buffer is capable of doing the job
as proved in the following.
Proof

Assume at time t=O, the facility Sj receives the input task
flowing in. For any integer k, then (see Figure 6) :

[~] =mo,

[k:] +1 =ml=maximum number of outputs generated
T] from S/ in the interval.

But, mo+ml~k if none of the bracketed values is an exact
integer (which is true within the nT interval used to describe
a complete period of the combined output). Hence a single
stage buffer control may accomplish the task of regulating
the output as no catch-up is possible for the outputs from
Sj and S/. Q.E.D.

In order that this scheme of regulated output is imple
mented properly, the different tasks or data to flow into the
pipe must carry with themselves identification tags; other
wise, when the output order differs from the input order,
erroneous results are obtained. Hence, this decentralized
control involves some additional overhead, and its imple
mentation should be considered very carefully.

Shared resource pipeline

In a linear pipeline where the facilities have different
speeds, efficiency is rather low as explained earlier. To im
prove utilization (increase the overlap of operations and
decrease the idle time of existing expensive units), shared
resource pipeline design is a solution. The term 'shared
resource pipeline' refers to two (or multiple) pipelines sharing
an expensive (but fast) facility. For example, suppose a
facility Sm in a linear pipeline A has a speed of Tm~r/2, where •
T is the maximum speed of excitation of pipeline A (A pipe
line is said to be excited when a task is admitted into the
pipeline). Then the expensive facility Sm can be shared (via
multiplexing) by some other pipeline B which also requires
this facility as shown in Figure 7. This may be viewed as the
dual of the previous case where more than one parallel facility
are serving one task stream.

Under this design configuration, some local control must
be installed at the entrance of the shared facility (compared
to that ·with the buffer control in the previous section) so as to
resolve conflict and utilize the resource efficiently. In this
respect, two alternatives could be classified: (1) the tasks
could be scheduled before entering the pipeline so that no
conflict will result, or (2) a local control is set up at the
shared facility as illustrated. The design strategies and

Efficiency in Generalized Pipeline Networks 629

Ready task queue

A node = A facility

Figure 8-A generalized pipeline system

sequencing disciplines will be explored in detail in the next
section.

Coming back to the system dra"\vn in Figure 7, the effi
ciency of the combined system, assuming that Sm is not a
bottleneck, is given by:

n n'

L(L: aiTi) +L'(L: a/r/)
~'~ ---

n n n' n'

L: ai(L: Ti+(L-1)Tj)+ L: a/(L: T/+(L'-l)T/)
i~m

>~

for the case where Sm is duplicated.
However, if Sm becomes the bottleneck of the combined

system, it may be disastrous (especially when the maximum
throughput rate then cannot be achieved). In such a case,
proper scheduling becomes extremely important for resolving
conflicts. Perhaps, the shared facility Sm should also be
duplicated eventually.

GENERALIZED PIPELIXE XETWORK

General discussion

Subject to the previous type of analysis, a system con
sisting of several sequential and parallel facilities can be
interconnected in almost any possible configuration, as long
as the throughput and efficiency analyses suggest it is the

630 National Computer Conference, 1974

['Il
tI2 ~2~ T = t2I t22 s

0 t32 t33

R3 = (~ :]

Figure 9(a)-An example system with collision matrix Ts and the rela
tion Ri.

optimal way to do so. Going one step beyond, each of these
facilities could be a giant functional unit, for example, a
minicomputer in a network of computers. Hence the problem
that will be dealt with in this section may be of paramount
importance in future advances in computer architecture. I6

Before going further, it is appropriate at this point to
define some terms that will be often used. A set of data or
instructions allowed to enter a pipeline to be processed as a
group will be called a task. This definition agrees with the
conventional definition of the term task (which is often
stated as a part of a program which once initiated can be
executed to completion without further input). On the other
hand, when a task tries to enter a facility which is busy
serving some other task, a collision occurs, and the only
remedy is to buffer the task at the entrance of the facility or
the pipeline. Figure 8 illustrates an example of a generaijzed
pipeline system. From it, one can realize that such a gen
eralized system can Qe modelled as a directed graph. A node
in the graph represents a facility and an arc represents a
possible transition. Hence each feasible path in the graph
represents a pipeline and parallel processing is intrinsically
introduced into the model-a hybrid mode of operation
results.

The problems associated with such a design can be sum
marized into the following:

(1) Blocking and unblocking paths at the correct moment
(it will be assumed that each task carries with it an
itientification tag)._

(2) Resolving or avoiding collisions by proper buffering
control as described before.

(3) Increasing the throughput of the system by proper
sequencing.

(4) Developing some strategies for controlling loops in
the pipeline graph.

(5) Improving the execution time of some particular

Model

program graphs by proper pre-scheduling. However,
this topic will be out of the scope of this paper.

In this section, the design of a generalized pipeline system
or network will be discussed. For the time being, it will be
assumed that there is no maximally strongly connected sub
graphs in the pipeline graph (that is; there is no loop in the
system). This assumption will be removed after the basic
concepts have been presented.

From the pipeline graph, the different paths of the system
are known. Each path in the graph represents a pipeline
which can operate in parallel with the other pipelines in the
system, sharing particular facilities wherever appropriate.
For the convenience of discussion, each feasible path is
labelled Pi (ith pipeline). From these paths and the speeds
of the facilities, a simplified collision matrix for the system
can be constructed. The matrix T. has its entry tij representing
the time after the initiation of a task in Pi such that another
task can be admitted into Pi without any collision. Obviously
when i\ and P j do not share any facilities, the entries
tij=tji=O. With this matrix, the tasks to be distributed
among the various pipelines may be sequenced such that no
collision occurs and hence no intermediate storage within the
pipeline system will be necessary. Hence this design option
avoids collision at the expense of efficiency.

Even in this simple case, one complication has to be
resolved. A graph may contain some nodes with multiple
(or single) entry and multiple-exit arcs. In some cases, some
of the exit arcs are not legal for some of the entry arcs of the
node simply because those permutations are not desirable in
the original design. Therefore, for such a node k, a relation
matrix must be set up to map these arcs correctly. The Rk
matrix so defined contains entries

r ij = {I if inward arc i can go to outward arc j

o otherwise.

A simple example to illustrate these ideas is shown in
Figure 9(a). As a practical counterpart, assuming each
facility takes the same -time, the matrices for the TIASC
example given in Figure 2 are constructed as shown in
Figure 9 (b) .

In addition, in order to control the flow of a task from an
inward arc to a correct outward arc when there are more
than one choice (which is indicated by more than a single 1
in the row corresponding to that inward arc in the Rk matrix) J

RAnD

Figure 9(b)-The matrices for the TI-ASC example in Figure 2, assum
ing each facility has the same speed of 1 unit of time

Inward arcs

Outward arcs

From the tag and R matrix,
decide the correct outward
arc

Figure lO-A multiple-entry multiple exit node

a tag must be associated with the task to indicate which
particular path to follow as illustrated in Figure 10.

Under these simplified conditions, the control mechanisms
of the pipeline network can be easily implemented. Globally,
to avoid collision anywhere inside the pipeline system, the
designer only has to setup counters at the entrance of the
system, one for each path. For the example in Figure 9 (a) ,
three counters are necessary. Counter 1 will be initiated to
up-count from zero when Pl is excited, and similarly for
counters 2 and 3. Counter i will stop counting when it has
reached the ceiling equal to the maximum entry in the ith
row of the simplified collision matrix (Ts). This signifies that
from that time on, any task to be admitted into the system
will not create any collision in Pi. Hence, a state of the
pipeline system can be conveniently defined using the con
tents of these counters. If the content of counter i is repre
sented by Gi , the state~ (Gl , G2, ••• , Gi , •.. ,Gn) where n
represents the number of pipelines in the system.

Figure l1Ca)-An example system

Efficiency in Generalized Pipeline Networks 631

Facility
Number

7
6
5
4
3
2

1

1\

1~ 1
I PI ~

I PI I
I P1 I
I P2 11'3 I

IP2 I
11'2 1"3 1"1 1

18 units

Figure l1Cb)-FRFS schedule

A Simple Admission Strategy:

" TIME

If a task is waiting to be admitted to pipeline Pi, it will be
allowed to enter if and only if for all j, G':~tji. This merely
means that it has no conflict with any previous tasks being
processed in the system.

Evaluation:

A few characteristics of the previous scheme must be
evaluated. First, the scheduling strategy used is identical to
the FRFS (First Ready First Served) scheme commonly
used in time sharing systems. However, FRFS is by no means
optimaL A simple counter example is set up in Figure 11a
where the system has three paths PI, P2, and P 3• For sim
plicity, assume that all facilities have the same speed, say
3 units of time. At time t=O, P2 is excited, and at t=3, a
task for P3 is ready. If P3 is excited at t = 3 without considering
the arrival of a task for PI at t=4, the resulting schedule is
drawn in Figure 11 (b). However, if PI is allowed to be
excited before P3 (thus between 3~t~4, the first facility is
idle), the resulting schedule is as drawn in Figure 11 (c) .
From these schedules, it can be concluded that FRFS is not
optimal; for the example, the FRFS schedule takes 2 units of
time more, and efficiency is diminished.

This example exposes the important effects of sequencing
in a general pipeline system, similar to other multiprocessor
systems. But unfortunately, simple, non-enumerative optimal
algorithms for the general case have not been found. Improved
sequencing disciplines will be the subject of the remaining
part of this paper.

A second observation is that the simplified collision matrix
only describes the earliest times after which a corresponding

Facility !f\
Number

7 LPl~
6 iPl I
5 I PI r
4 1 P3 1

I P2 I I P3 .1
2 1 PI I
1 P2 I I PI ~ P3 L " TIME

k-
I

16 units ~
I

Figure llCc)-Better schedule

632 National Computer Conference, 1974

T PI I Pl
PI I PI I

P, I
Poor schedule I P2

T P, I p P I
I Pz I

P2 I
/

TIME

Facility If..
Number I

, PI I PI I
PI I T?I I

I Pz I
T P,

I p, 1 P, I PI

I P, I
Pz 1 ...

./
TIME

Figure 12-Schedules for system in Figure 9(a)

excitation of a pipeline will not produce any collision inside.
I t does not describe the earliest possible times to initiate a
task in which collisions are avoided. This may seem to be a
strange assertion but can be illustrated using the example
graph in Figure 9. In this system, assume all facilities have
the same execution speed, say 1 unit of time, and PI and P2

collide at facility Si. If at time t = 0-, P2 is excited, but at
time t = 0+, two tasks request for admission into Pl. From the
simplified collision matrix, t21 = 2 so that PI will not be
excited until t = 2. Consequently a poor schedule is obtained
as compared to the optimal one as in Figure 12.

In order to obtain the optimal schedule, more sophisticated
global control must be installed at the entrance of the system.
In particular, each entry in the collision matrix will not be
single-valued; instead, each entry is described by a m-tuple of
the form of tij = ((tiP, tiP), ... , (tirl, tir2)). For example,
(tiP, tiP) represents the first interval of time between which
P j can be excited without colliding with Pi (assuming that at
time t = 0, Pi is excited). The implementation becomes more
complicated because more hardware will be needed to keep
track of these time intervals. Nonetheless, the previous idea
of counter control may be similarly exploited and the details
will not be given here. Notice that in the latter implementa
tion, multiple collisions between two pipelines Pi and P j are
also tolerable (a multiple collision occurs when two paths
cross at more than one node as indicated in Figure 13).

An alternative implementation for situations where
multiple collisions occur should be mentioned. Control buffers
can be inserted at shared facilities to accommodate un
expected multiple collisions. However, then the beauty of
global control may be spoiled while throughput is not guar
anteed to improve (the additional hardware and expensive
logic-including duplication of buffers at every shared
facility-should not be overlooked). For purposes of this
paper, such trade-off criteria '\yill not be discussed.

Sequencing to increase efficiency and throughput

A major design objective in pipeline systems, quite con
trary to that of parallel processing (which is to minimize the
execution time of particular programs), is to increase the

system utilization and throughput as much as possible. The
example in the previous section reveals that FRFS is not
optimal in many cases and proper sequencing must be adopted
in order to reach the goal. The implementation of a se
quencing strategy can be treated as an additional facility
to be placed at the entrance of the pipeline system; thus the
overhead of sequencing is overlapped with the other opera
tions in the pipelines. As a result, throughput may be im
proved while response time is at most slightly affected,
depending on the complexity of the sequencing facility.

However, unfortunately, the problems of optimal sched
uling facing a general pipeline system are even more difficult
to solve than that facing ordinary multiprocessor systems .
The reasons are twofold. First, there are many different
pipelines in the system interconnected in any fashion, unlike
the identical processors in most parallel processing systems.
Second, since there are shared facilities in the system,
collisions must be avoided (even in the case where buffers
reside inside the system, excess collisions are intolerable
because buffers must have finite sizes).

There are two kinds of sequencing environments, namely,
dynamic and static. In this paper, the term dynamic se
quencing refers to the condition under which the arrival of
the tasks will be random and their exact paths are not known.
Obviously, in such a situation, nothing much could be done
without creating too much overhead; and heuristics such as
FRFS or modified FRFS (mixed with some dynamic priority
scheme) may be adopted. Hence, dynamic sequencing will
not be of particular interest here.

In the static case, it is assumed that a set of ready tasks are
waiting at the input queue to be admitted into the system.
So the sequencer is responsible for sequencing them in a
proper order to be admitted by looking into a subset of the
tasks in the queue. Sequencing is of utmost importance in a

P.
1

First Collision

Figure i3-A mUltiple collision situation

p.
J

general pipeline system because by developing a proper
strategy, the efficiency and throughput of the system may be
greatly improved. To further emphasize this concept, suppose
the pipeline system has four different paths (hence four
parallel pipelines). By statically analyzing the superiority of
some sequences of a certain fixed length L, a priority scheme
can be established. Then the sequencer only has to look
ahead into the queue for L tasks and sequence them according
to the result of the static analysis done before. This analysis
is a fixed cost of the system-no run time overhead is in
volved. The result of the analysis may be stored in an
associative table. This scheme will be explained in more
detail later.

Simple as this approach may appear, there does not exist
any non-exhaustive algorithm which can generate the optimal
priority listing for the L tasks being considered (supposing
the sequencer looks ahead L tasks at a time). The problem
for this local optimization "vill be formulated as follows:

Let S be an ordered sequence = (Ul, ... ,Uk) representing
the indices of the paths that the k tasks to be sequenced will
travel.

Then, t,Ij ... ui=the minimum elapsed time before path PUi
can be excited if the pipelines are excited in
the order (Ul, ... , Ui).

= Max {tul ... Uj+IUjUi}
Vj~i

and E (S) = the execution time of the sequence S
= :Max {E(Ul, ... ,Ui-l); tu1 ... Ui+E(Ui)}

Observe that this recursive equation takes into account all
possible cases, including those where some tasks are subsumed
by others (a task is said to be subsumed by some other tasks
if its execution phase is completely overlapped with the
latter. This relation of subsumption is not transitive).

The optimal sequence for the set of tasks to be scheduled
corresponds to the sequence whose execution time E(S) is
minimum. By asserting this condition, obviously both
efficiency and throughput rate are improved. A branch-and
bound solution for the situation where no subsumption of
tasks exists can be found in Reference 14. But in general if
some tasks are subsumed by others (which frequently occur),
an almost exhaustive approach seems inevitable. Another
difficulty in solving this problem lies in the fact that tu1 ... ui

for all possible permutations of the set S cannot be obtained
easily. It involves solving the longest path problem between
all pairs of nodes (obeying each sequence ordering concerned)
of an associated graph containing positive cycles. The nodes
in this associated graph represent the pipelines to be excited
(observe that a pipeline can be excited more than once, in
which case, a node will be duplicated), plus a sink node as
shown in Figure 14. An arc leading from node i to node j has
a value of tij representing the minimum time elapsed between
the excitation of Pi and that of Pj. An arc from a node to the
sink has a value equal to the execution time of the pipeline
Pi. In Figure 14, it has been assumed that all four pipelines
are to be excited.

Efficiency in Generalized Pipeline Networks 633

T s = [3~ ~~ :~ ~]
1 21 15 20

Associa ted Graph

Figure 14-The associated graph of an example system

The presence of cycles in the associated graph inhibits the
use of some iterative algorithms (for example, Floyd's
algorithm for shortest paths) for finding the longest paths
between all pairs of nodes. Instead, the individual subgraphs
(containing no loops) corresponding to certain orderings are
extracted and analyzed for the longest paths. Tragically,
because of this, some useful sequence dominance criteria
cannot be established.
. But when the pipeline system has very few pipelines, for

example, 4 pipelines, it is still desirable to apply static se
quencing to produce some locally optimal sequences. With a
look-ahead set of 4 tasks, the objective can be accomplished.
The procedure of optimization can be illustrated as follows.

Step 1:
For the set of tasks being looked ahead, say Ul, U2, Us, and
U4 belonging to {l, 2, 3, 4} corresponding to each path in
the system in Figure 14, choose an ordering, for example
(Ul, U2, Us, U4). Extract from the associated graph those
permissible transitions. Find the longest path ""hich leads
from Ul to the sink. If the longest path does not go through
all the intermediate nodes in the isolated subgraph, con
clude that E (Ul, U2, Us, U4) :::;, E (Ul, Us, U2, U4). This is a
sequence dominance criterion which holds only for the case
of four tasks (because there are only two permutations for
the t"yO intermediate nodes). In the example, the result is
shown in Figure 15.

Step 2:
Repeat Step 1 for all ordered sequences of the set

634 National Computer Conference, 1974

E(l) = 36 and

E(l,2,3,4) = 61 ~ E{1,2,3,4) by the dominance rule

Figure 15(a)-Extracted subgraph for the ordering (1,2,3,4)

- 48 61

8] GV- 42 Longest path matrix. L =
48 42 48

57 52 42

an optimal ordering for {1,2,3,4} is (2,3,4,1)

m

f(m, x) = ~1(m-i, x-I)
i=O

for m~n, x~n.
The initial conditions for the above recursive equation are:

1(p, 1) =1(0, q) =1

for all p and q~n.
From this equation, it can be found that in a four-pipeline

system, the number of entries in the map is 31. This means a
considerable reduction compared to 252. In the case of a
five-pipeline system, the corresponding figure is 121, which is
still a tolerable figure in practice.

The major difficulty in deriving the value of E(S) is
because the associated graph contains positive cycles so that
finding the longest paths between some nodes and the sink
could not be done iteratively. Consequently, no simple
dominance criteria could be found to eliminate some inferior
permutations of the look-ahead set.

In any case, this type of local optimization can be applied
to any kind of generalized pipeline system because the over
head is negligibly small-an associative search and then the
appropriate ordering. Throughput is improved by proper
sequencing as ill-qstrated and response time in the worst case
is only slightly degraded.

Figure 15(b)-The longest path matrix Further application

lUI, U2, Ua, U4} unless the particular sequence has been
dominated. A longest path matrix can be constructed. The
P ij entry in this L matrix contains the minimum execution
time for the sequence starting with Ui and ending with Uj.

For the example, the L matrix is drawn also in Figure 15.
Step 3:

Choose the entry in the L matrix containing the minimum
value compared to the rest. This corresponds to the locally
optimal sequence for the set of tasks considered. For the
example, the sequence (2,3,4, 1) or (2,3, 1,4) can be
chosen.

If local optimization is performed for all different sets of
tasks containing 4 elements, a table could be set up for the
optimal sequences for these sets. For example, the sets may
be II, 1, 1, 2}, II, 2, 2, 3} etc., and hence there are 44 - 4 = 252
entries in the table. An associative search could be adopted to
sequence the four tasks in the look-ahead set.

The size of the associative map can be further reduced by
recognizing the different permutations of the same combina
tion of tasks, for example, {I, 2, 3,11 is the same as {I, 2,1,3}
as well as many others. If only distinct combinations of the
tasks are considered by proper addressing, the general expres
sion which yields the size of the associative map needed for a
n-pipe system can be represented by g (n) where

g(n) =f(n, n)-n

The sequencing strategy just described can also be ex
tended and applied to tasks which have different execution
time requirements on the facilities, as occurring in the case of
computer network. Obviously, in order that the overhead
pays off, the execution times of the tasks must be long com
pared to the overhead of sequencing. This is easily justified
if we have separate jobs to be processed through a network of
computers. The latter can be modelled as a generalized pipe
line system whose facilities have variable speeds. Thus local
optimization must be done dynamically with different sets of
tasks being looked ahead.

In this situation, the sequencer has to analyze the collision
matrix and derive the optimal sequence according to the
same technique described in the previous section. When the
overhead is intolerable, then simple heuristics could be used.
A simple rule might be as follows: from the set of tasks,
choose the task to enter Pi such that the smallest entry in the
ith row of the collision matrix is also minimum among the set.
This rule merely asserts that then it will be more probabh~ for
some other task to be initiated at the earliest possible moment
after the excitation of Pi. In any case, it is strongly felt that
sequencing heuristics in this area have to be further studied in
future because they will be of significant usage in computer
networks.

Finally, if a loop exists in the system, a feasible strategy is
to break the loop so that the task is sent back to the ready

queue to be sequenced again. This may improve the system
utilization, because proper sequencing can be applied,
though the execution speed of that particular loop may be
delayed. If delay for some task is undesirable, the task may
be given a high dynamic priority so that the sequencer will
admit it as soon as no collision will occur.

CONCLUSION

In the preceding sections, the concept of pipeline has been
generalized to a network of facilities. Both feasibility and
suitability of such a pipeline design have been discussed,
based on an efficiency measure which considers all important
system parameters such as cost, speed, space-time span and
desirable goal of throughput. For a complicated shared
resource pipeline, its efficiency can be deduced from the
efficiencies of the various paths (pipes) of the system, em
ploying the analysis presented in this paper. But it should be
pointed out that in such a case, each individual efficiency
must be appropriatelv weighted according to its usage fre
quency statistically.

A lot of non-trivial problems have been discovered and
they have to be solved before such a generalized system can
be well-utilized. Among these problems are the buffering
control and sequencing strategy. The different ideas presented
in this paper by no means represent the end of the investiga
tion. In fact, they may well mark the beginning. More future
efforts should be spent to develop better sequence dominance
criteria or heuristics in particular systems for sequencing so
as to reduce the overhead involved, especially in the case
where it has to be performed dynamically (in a computer
network). The static look-ahead sequencer described in this
paper may be used in most systems, because it involves very
little overhead.

There are some advantages of a generalized pipeline system
which must be mentioned. A generalized pipeline system (or
network) can be reconfigured dynamically subject to the
change in system environment. Furthermore, the reliability

Efficiency in Generalized Pipeline Networks 635

and availability of the system may be better because of its
network nature. These latter aspects, together with the pre
scheduling of program graphs and dynamic priority assign
ment for particular tasks, are well worth looking into in
future.

REFERENCES

1. Hintz, R. G., and D. P. Tate, "Control Data STAR-100 Processor
Design," Compcon 1972.

2. Watson, W. J., "The TI-ASC-A Highly Modular and Flexible
Super Computer Architecture," AFIPS, FJCC, 1972, pp. 221-2:30.

3. Anderson, D. W., F. J. Sparacio, and R. M. Tomasulo, "The IBM
System/360 Model 91: Machine Philosophy and Instruction
Handling," IBM Journal of Res. and Dev., Vol. 11, No.1, Jan. 1967,
pp.8-24.

4. Thornton, J., "Parallel operation in the Control Data 6600,"
AFIPS Proc., FJCC, Vol. 26, pp. 33-40, 1964.

5. Chen, T. C., "Distributed Intelligence for "Gser-Oriented Comput
ings," AFIPS Proc., FJCC, 1972, pp. 1049-1056.

6. Chen, T. C., "Parallelism, Pipelining, and Computer Efficiency,"
Computer Design, Jan. 1971, pp. 69-74.

7. Flynn, M., and A. Podvin, "Shared Resource Multiprocessing,"
Computer, March/April 1972, pp. 20-28.

8. Flynn, M., "Some Computer Organizations and Their Effective
ness," IEEETC, Vol. c-21, No.9, Sept. 1972, pp. 948-960.

9. Graham, R., "The parallel and the pipeline computers," Datama
tion, Vol. 16, April 1970, pp. 68-71.

10. Baer, J. L., "A survey of some theoretical aspects of multiprocess
ing," Computing Survey, Vol. 5, No.1, March 1973.

11. Cotton, L. W., "Maximum rate pipeline systems," Proceedings
SJCC, 1969, pp. 581-586.

12. Conway, R., Theory of Scheduling, Addison Wesley, Reading Mass.
1967.

13. Reddi, S. S., and C. V. Ramamoorthy, "Some Aspects of Flow
Shop Sequencing Problems," Sixth Princeton Conference on In
formation Sciences and Systems, Princeton, N.J. March 1972.

14. Reddi, S. S. and C. V. Ramamoorthy, Sequencing Strategies in Pipe
line Computer Systems, Technical Report No. 154, Electronic Re
search Center, the University of Texas at Austin, August 1972.

15. Davidson, E., The Design and Control of Pipeline Function Genera
tors, Stanford Report, 1972.

16. Ramamoorthy, C. V. and K. H. Kim. "Pipelining: The Generalized
Concept and Sequencing Strategies," Proc. NCC, 1974.

An approach to the design of highly reliable alld
fail-safe digital systems*

by HEKRY Y. H. CHUANG

University of Pittsburgh
Pittsburgh, Pennsylvania

and

SANTANU DAS

North Electric Com pan y
Delaware, Ohio

INTRODUCTION

Recent progress in electronic technology has resulted in
extensive use of electronic digital or logical systems in many
complex control processes where weight or size as well as
reliability and safety is important. Typical examples are, to
name a few, nuclear reactor control, missile guidance systems,
"fly-by-wire" systems in aircraft or spaceship control, and
electronic telephone switching systems (ESS). In such
applications" if the system is not well protected, some failure
could result in a catastrophic accident or unacceptable loss
in terms of lives and resources. For the system to be safe and
reliable, not only the computers or digital systems in the
control loop have to be reliable, but also the sub-systems
which take part in the data acquisition or control should be
fail-safe and reliable. In order to lessen the chance of system
breakdown and unsafe failures in applications of this nature,
many protective methods have been proposed and studied.
Generally, the methods can be classified as: (1) fault-masking
approach,I-9 where the emphasis is on achieving higher
reliability by using redundancy to mask failures, and (2)
fail-safe approach10-14 where attention is directed to the design
of systems in such a way that they take a predetermined safe
state whenever failures occur.

Although reliability and fail-safety are both vital in many
applications, a design technique which can have the merits of
both the fault-masking approach and the fail-safe approach
has been strikingly lacking. By properly combining the two
redundancy methods (in particular, the NMR and the
N-fail-safe logic), we have obtained a design approach for
realizing reliable and fail-safe systems which can also have
several significant advantages. These include excellent
degradability, good testability, design flexibility and sim-

* This work was supported by X ational Science Foundation under
Grant GJ-35569.

637

plicity, as well as real-time error indication. In this article the
authors expand and generalize the concepts presented in
their previous' short paper,15 and try to throw light on its
many advantages.

THE NEW FAULT-RESTORATION" METHOD

The new fault-restoration scheme is shown in Figure 1.
Here the individual logic blocks have two levels of failure. 15 .16

In the first level, which we call the "safe output" level, the
output is not correct but its value is something different from
normal operating values of the output of the logic blocks. In
the second level of failure, the output is neither "correct" nor
"safe", and the value it takes up is one of the normal operating
values (but which is not what it is supposed to have). The
restorer's function is to give correct output as long as there
are more copies having correct outputs than those having
incorrect output, no matter how many copies have safe
output. In case there are as many copies with correct output
as with incorrect output (again no matter how many other
copies have safe output), then the restorer output would be a
safe value. The restorer function for a three-copy scheme is
shown in Table I for elucidating the principle of this scheme.
Here each of the three-copies, named A, B, and C, can have
three distinct output states, R (right or correct), W (wrong
or incorrect) and S (safe). It is assumed that in each logic
block, the probability of getting the safe output S is higher
than that of having an incorrect output. In other words,
more internal failures are required to result in an incorrect
output than a safe output. This safe output S can be used to
indicate the necessity of outside intervention and, depending
on the application, provisions could be made for either
manual or automatic corrective measures (say replacement
of the faulty unit). Thus unlike the majority voting1.4 or
other fault-restoration schemes, tl-Iis scheme will have two
levels of failure. The result is that the system would have a

638 National Computer Conference, 1974

---r- ---- LOGIC WITH TWO

N:~~~_
I
I LEVELS OF ~ ,

7f
FAILURE R

E
I S I

OUTPlf I T I
T

I 0
: R
I

i E
I R
I I...--- LOGIC WITH TWO
L ________

I ~

L_
, LEVELS OF

FAILURE

Figure I-Fault-restoration using multiple copies of identical logic
blocks (each logic block having two levels of failure)

high correct output reliability and still higher safe output
reliability, and so reliability and fail-safety can be achieved
simultaneously.

To realize such a system, ideally each individual copy in
Figure 1 would be made of such logic primitives as will
produce safe output S in case of failure, and the failures in the
primitives would tend to manifest themselves at the outputs
·of the copies by driving them to S. Most of the common
logical components do not exhibit such failure characteristics.
In addition, since most available logical components are
two-valued, we have to resort to some sort of coding to build
the system we have envisioned, using available electronic
technology. One practical solution is to use the N-fail-safe
logicl3 •14 to realize the individual copies of logic. In the next
section a short overview of N -fail-safe logic would be given.

N-FAIL-SAFE LOGIC

The truth table for minimal information IOSSI3.14 N-fail-safe
NOT, OR, and AND are given in Table II; and Figure

(a) N-fail-safe OR. (b) N-fail-safe NOT.

ee) N-fail-safe AND.

Figure 2·-N"-Fail-safe prinlitives

TABLE I-Restorer Function of a Three-Copy Scheme

A B C Output

S S R R
S R R R
R R R R
W R R R
S S S S
W S R S
W W S W
W S S W
W W W W
W W R W

2 (a-c) shows their double-rail realizations. By interchanging
the two output terminals of OR and AND, we have NOR or
NAND respectively. These are called N-fail-safe primitives.
In this figure, the variable x is coded by (Xl, X2), y by (YI, Y2),
and f by (fo, it). Logical 0 and 1 are represented by (0, 1)
and (1,0) respectively, and N is represented by either (0,0)
or (1,1).* One way to synthesize an N-fail-safe logic circuit
of a given Boolean function is to first synthesize a non"-fail
safe circuit and then replace each gate by its corresponding
N-fail-safe primitive. Obviously the circuits synthesized by
this replacement method contain at most twice as many
components as needed by their non-fail-safe versions.

It is to be noted that, in such OR and AND primitives, one
or both of the gates failing in the same direction (i.e., both
fail to 1 or both to 0) will result in an N output even if there
is an N input, provided it is also due to a fault in the same
direction. Therefore, in an N-fail-safe logic system, single
fault or multiple faults all in the same direction will always
result in N output, while multiple faults not all in the same
direction may result in an erroneous 0 or 1 output. Thus, if
the N-fail-safe logic is built of ideal asymmetrical components
then it will function perfectly. In our method, the N-fail-safe
logic is applied in such a way that even if non-asymmetrical
components are used the system would still have very high
reliability and fail-safety.

TABLE II-Truth Table for Minimum Information Loss N-Fail-S~fe
NOT, OR, and· ARt>

Variables NOT OR AND
x y i x+y x·y

0 0 I 0 0
0 I I I 0
I 0 0 0
I I 0 1 1
0 N I N 0
N 0 N N 0
I N 0 I N
N I N I N
N N N N N

* Takaoka assumed only 0 -+ I failure and therefore N is (1, 1) in his
case.

An Approach to the Design of Highly Reliable and Fail-Safe Digital Systems 639

I

fa fb

fa,

2A 18

OUTPUT

Figure 3a-Fault-restoration using two copies of N-fail-safe logic

REALIZATION OF FAULT-RESTORATION

The implementation of our fault-restoration method using
the double-rail N-fail-safe logic is best elucidated by using a
simple example. Figure 3a shows a possible scheme for
restoration using two copies of N -fail-safe logic. The network
fa and fb are identical copies of N-fail-safe logic realizing a
function f. The restorer produces output according to the
combinations shown in Table III. In the table, columns A
and B list outputs of the two copies and the "output" column
gives the restorer output. N (which corresponds to safe

TABLE III-Restorer Output For Two-Copy System

A B Output

R R R
N R R
R N R
N N N
N W W
W N W
W W W
R W N
W R N

fa fa 1 2

2
(N) eN)
00 01 11 10

(N) 00 N 01 N 10

01 01 01 01 N

(N) 11 N 01 N 10

10 10 N 10 10

(b) Map for Restorer

fa f 1 a2
fb1fb 2

00 01 11 10

00 11 01 00 10

01 01 01 01 00

11 00 01 11 10

10 10' 00 10 10

(c) Map for the Restorer Circuit 0:

Figure 3b and c

state "S") denotes either (0,0) or (1, 1), R the correct
output, and W the incorrect output.

Figure 3b shows the map for the restorer function. For
realization, the N entries in the map are replaced arbitrarily
by either (0,0) or (1, 1).

Figure 3c gives the specific assignment used for the restorer
shown in Figure 3a. It is to be noted that this restorer is also
fail-safe.

640 National Computer Conference, 1974

.05 .O~ 'np'

Figure 4-Failure probability curves versus "np"

FAILURE PROBABILITIES

Unlike the other redundancy schemes, the scheme described
here has two levels of failure: (1) restoration failure (when
the output is not correct), and (2) catastrophic failure (when
the output is neither correct nor N). Since each N-fail-safe
primitive has at most two gates, if a Boolean function needs
n gates in its realization, its N -fail-safe version will need at
most 2n gates. In the following we first derive the failure
probability formulas for our two-copy system of Figure 3
and then generalize them.

(1) Probability of N Output

Let p = s+t be the failure probability of a gate, where s
and t denote the probabilities of failing to 0 and to 1 respec
tively. The system can fail to correct faults and produce N
output in two different ways: (1) one (or more) gate in each
copy fails in the same direction (all fail to 0 or all fail to 1),
and as a result both the copies give output N, which is passed
on to the final output by the restorer, and (2) two (or more)
gates fail in opposite directions in one of the copies, thus
giving rise to a W value at the output of that copy. In the
latter case, even if the other copy is working correctly, the
restorer output will be N.

The probability of case 1 can be approximated by that of
two gates failing in two separate copies, and is given by*

Ql = [2np (1- p) 2n-l]2~4n2p2

The probability of case 2 can be approximated by that of two
gates failing in opposite directions in a copy, which is

12n\

Q, ~ 2 \ 2) X 28t X (1-p),n-'""Sn'st

The maximum value of st is p2/4. Thus

Q2~8n2p2 / 4 = 2n2p2

* This product np is small in practice (usually «1). So, higher order
terms are negligible.

The total probability of N output in a two-copy system is
thus given by

QN(2) =Ql+Q2=4n2p2+2n2p2=6n2p2

(2) Probability of W Output

An output W will occur if, because of some faults, one of
the copies gives W output while the other copy has an output
N. (We can ignore the case when both copies have W output
as that probability is very small.) If it is assumed that any
two gates failing in different directions in one copy give rise
to a W output, while a single gate failure in another copy
gives rise to N at its output, then the probability of W
output for a two-copy system is

Qw(2) ~2X2npX c:) X28t(l-p)'n-'(I-p)"'-'

""'4np X 4n2 X p2/ 4 = 4n3p3

(3) Restoration and Catastrophic Failure Probabilities

The restoration failure occurs when the output is either N
or W, while the catastrophic failure occurs when the output is
W. Therefore the restoration failure probability Qr(2) is

Qr(2) =QN(2) +Qw(2) =6n2p2+4n3p3~6n2p2

and the catastrophic failure probability Qc(2) is simply
. Qw(2) =4n3p3.

These are the worst case failure probabilities, as the afore
mentioned assumption may not result in these faults and as it
has been assumed that each N-fail-safe primitive has hvo
gates which actually is not the case for the NOT primitive.
Moreover, the actual value of st will be far less than p2/4
because most electronic components have asymmetric failure
characteristics (i.e., sr'=t). When ideal asymmetrical elements
are used,

and

Detailed comparison between our scheme and the other
popular redundancy schemes are given in Reference 16.

(4) Generalization

As mentioned earlier, the restoration strategy can be
extended to systems using any number of copies, odd or even.
Let P s , P w, and P r be the probabilities of a copy to have
"safe", "wrong", and "right" output respectively and if x is
the number of copies, then it can be shown16 that the proba
bility of N output for an x-copy system is:

[x/2] xl
QN(X) = E (x-2k) !kIk! (Ps)x-2k(Pw)k(Pr)k,

and that of w output for an x-copy system is:

Where [U] denotes the largest integer ~U. As before, the

An Approach to the DE;)sign of Highly Reliable and Fail-Safe Digital Systems 641

probability ofw output is really the catastrophic failure
probability; while the sum of the probabilities of w output
and ~ output is the restoration failure probability. Hence,

Qr(X) =QN(X) +Qw(x)
and

When double-rail N-fail-safe logic is used for realization, good
estimations of P s , Pr , and P w, as explained earlier, are given
by:

Pr~ (1_p)2n~1

P8~ (1_p)2n-I2np~2np

p.= (l-p)'--' e) 2:' =n'p'

The failure probabilities for two-copy and three-copy
systems plotted along with that of the TMR (three-copy
majority voting) are shown in Figure 4.

ADVANTAGES

The new scheme of fault-restoration, we are advocating, is
superior in performance to most of the existing redundancy
schemes. Some of the important advantages are as follows.

(1) High Reliability and Fail-Safety

As shown in Figure 4, the (restoration) reliability of our
scheme is comparable to that of TMR. But, our catastrophic
failure probability is very low. Thus, our scheme can also
provide good fail-safe protection which is not available in
other fault-restoration schemes. A more comprehensive
reliability comparison with other fault-tolerant design
methods is given in Reference 16.

(2) Excellent Degradability

Our scheme has also degradability unmatched by any
other existing redundancy method. As for instance, switching
from triplex system (using three copies) to a duplex system
is very easy as one can always build the logic in such a way
that shutting off the power of one of the copies would force
its output to N. Similar switching from duplex to simplex or
for that matter from any number of copies to any smaller
number of copies is possible without changing the restorer.
This is so because our restorer for higher number of copies
always logically covers that for lower number of copies.
Among all other redundancy schemes, TMR (or ~l1\1R) is
the only scheme that is degradable. But even for TMR (or
NMR) this sort of degradability is absent as it cannot switch
from triplex to duplex, although it can switch to simplex from
triplex. To do even that one has to bypass the voter which
could be unwieldy.

(3) Trade-off Between Restoration and Catastrophic Failures

One can make trade-offs between restoration failure and
catastrophic failure probabilities by altering the restorer

Table IV - A Three-copy System with Two different Restorers

OUTPUT OUTPUT
OF RE- OF RE-

STORER STORER APPROXIMATE
A B C 1 2 PROBABILITIES

N N R R R 3(2np)2 = 12n2p2
N R R R R 3(2np)=6np
R R R R R (1-np)3~1

W R R R R 3n2p2
N N N N N (2np)3=8n3p3
W N R W N 2np X n2p2 = 2n3p3
W R N N N 2npXn2p2=2n3p3
N W R W N 2npXn2p2=2n3p3
R W N N N 2np X n2p2 = 2n3p3
N R W R N 2np X n2p2 = 2n3p3
R N W R N 2np X n2p2 = 2n3p3
W W N W W 3 (n2p2)2(2np)

=6n5p'
W N N W W 3 (n2p2)(2np)2

= 12n4p4
W W W W W (n2p2)3=n6p6

W W R W W 3 (n2p2)2 = 3n4p4

logic or the restoration strategy, keeping the number of logic
copies unchanged. As for instance, Table IV shows the
different behaviors of two restorers along with the proba
bilities for various possible output combinations of a three
copy system. From this table, we get for restorer 1 :

restoration failure probability""'16 n3p3

catastrophic failure probabiIity~ 4 n3p3,

and for restorer 2:

restoration failure probability""'20 n3p3

catastrophic failure probability""'15 n4p4.

Thus, we see that by using restorer 1 instead of restorer 2 we
can decrease the restoration failure at the cost of increasing
the catastrophic failure. Restorer 2 corresponds to the
restoration strategy based on which the generalization of
failure probability analysis is done.

One of the realizations of restorer 1 is shown in Figure 5.
Of course, one can always realize the restorer circuits in the
same way as \ve did for the 2-copy restorer of Figure 3.

(4) Amenability to Hybrid Redundancy

In situations where a very high mission life is to be achieved
spares can be used, as in the case of TMR, to obtain dynamic
or hybrid redundancy. As the safe output S indicates failures
in the network, it can be conveniently used to LTlitiate the
necessary switching of spares. Because in our system any
number of copies, odd or even, can be used, the spare
switching circuits are simpler.I6

(5) Amenability to Simple MOS IC Realization

It is well-knownI9 .20 that it is comparatively easy to realize
monotonic functions using current ~1:0S Ie tech..'1010gy.
Since functions fo and It in an N-fail-safe logical system are
both monotonic, our fault-restoration method has an edge

642 National Computer Conference, 1974

I --.-----r---i
N
p
U -i--+--l-.---l T L-__ -& __ ~

r-- - -- - - --------- --I

I I

I

I f1
I 0
I ~
I P

U
I
I f2
I

Figure 5-A three-copy system (here the restorer is composed of three
2-copy restorers as shown in Figure 3(a»

over other methods from realization point of view. Further,
it should be pointed out that even if one uses N-fail-safe
logic, it is not necessary that one has to build it by using
N-fail-safe primitives. As has been shown in Reference 13, it is
also possible to obtainfo,ft of the N-fail-safe logic from direct
realization. In such a case, two separate LSI (or MSI) chips
can be used to realize fo and ft. It is very likely that one of
these LSI chips would tnalfuhdion at a time and not both at
the same time. Thus, when a copy fails, its output will most
likely be N and not W.

(6) Good Testability

Protective redundancies might mask detectability. This is
the case for most fault-masking methods including the
quadded logic7 and interwoven logic.8 Some non-protective
redundancies such as those for obviating hazards could also
hinder fault detectability. However, the N-fail-safe logic, with
its monotonic component functions, has inherently good
testability. It has been reported17 ,18,21 that in a monotonic
logic network not only all faults are detectable but also the
minimal detection cover can be easily obtained. Further, it
can be shown16 that in an N-fail-safe logic network even the
redundancies for avoiding hazards cannot mask its fault
detectability.

CONCLUSIONS

A new design method for the realization of highly reliable and
fail-safe digital systems has been described here. The method
properly combines the fault-masking and the fail-safe ap
proaches, and thus possesses the merits of both. It also has
significant advantages, such as the excellent degradability
and two-level protection, which are not available in existing
redundancy methods.

A major disadvantage of this method could be the high
cost of realization because a copy of N -fail-safe logic might
require twice as many gates and connections to realize as
would that of conventional logic. However, it should be
noted that the N-fail-safe component functions are always

monotonic and monotonic functions generally have simpler
IC realizations. Consequently, this demerit might not be so
bad at all.

REFERENCES

1. Von Neuman, J., "Probabilistic Logics and the Synthesis of Reliable
Organisms from Unreliable Components," Annals of Mathematical
Studies, No. 34, pp. 43-98, Princeton University Press, Princeton,
New Jersey, 1956.

2. Moore, E. F., and C. E. Shannon, "Reliable Circuits Using Less
Reliable Relays," Journal of the Franklin Institute, Vol. 262, pp.
191-208, September 1965; pp. 281-297, October 1965.

3. Hamminl R. W., "Error Detecting and Error Correcting Codes,"
Bell System Technical Journal, Vol. 29, pp. 147-160, 1950 ..

4. Pierce, W. H., Failure-Tolerant Computer Design, Academic Press,
New York, 1965.

5. Knox-Seith, J. K., A Redundancy Technique for Improving the Reli
ability of Digital Systems, Stanford Electronics Laboratory, TR No.
4816-1, December 1963.

6. Teoste, R., "Digital Circuit Redundancy," IEEE Trans. on Reli
ability, Vol. R-13, pp. 42-61, June 1964.

7. Tryon, J. G., "Quadded Logic," in Redundancy Techniques for
Computing Systems, Wilcox and Mann, eds., pp. 205-228, Spartan
Books, Washingwn-,. D. C. j 1962.

8. Pierce, W. H., "Interwoven Logic," Journal of Franklin Institute,
Vol. 277, pp. 55-85, 1964.

9. Finkelstein, H. A., An Investigation into the Extension of Redundancy
Techniques, Co-ordinated Sciences Laboratory, University of Illi
nois, Report R-455, February 1970.

10. Mine, H., and Y. Koga, "Basic Properties and a Construction
Method for Fail-Safe Logical Systems," IEEE Trans. on Electronic
Computers, Vol. EC-16, No.3, pp. 282-289, June 1967.

11. Hirayama, H., Y. Urano, and T. Watanabe, "Synthesis of Fail
Safe Logic Systems," Electronics and Communication in JaPan,
Vol. 52-C, No.1, 1969.

12. Urano, Y., System Theory-On the Synthesis of Highly Reliable
Logical Systems, Ph.D. dissertation, Waseda University, Tokyo,
Japan, November 1969 (in Japanese).

13. Takaoka, T., Algebraic Theory of Automata and Its Application to
Fail-Safe Systems, Ph.D. dissertation, Dept. of Applied Math. and
Physics, Kyoto University, Kyoto, Japan, December 1970.

14. Takaoka, T., and H. Mine, "N-Fail-Safe Logical Systems," IEEE
Trans. on Computers, Vol. C-20, pp. 536-542, May 1971.

15. Das, S. and Y. H. Chuang, "Fault Restoration Using N-Fail-Safe
Logic," Proceedings of IEEE, Vol. 50, pp. 334-335, March 1972.

16. Das, S., Fault-Tolerant Digital Systems Using Fail-Safe Logic,
D.Sc. dissertation, Dept. of Electrical Engineering, Washington
University, St. Louis, August 1973.

17. Betancourt, R., "Derivation of Minimum Test Sets for Unate
Logical Circuits," IEEE Trans. Electronic Computers, Vol. C-20,
pp. 1264-1269, November 1971.

18. Dandapani, R., "Derivation of Minimal Test Sets for Monotonic
Circuits," IEEE Trans. on Computers, Vol. C-22, No.7, pp. 657-661,
July 1973.

19. Spencer, R. F., Jr., "MOS Complex Gates in Digital Systems De
sign," IEEE Computer Group News, Vol. 2, pp. 47-56, September
1969.

20. Lin, T. K., Synthesis of Logic Networks with MOS Complex Cells,
Report No. UIUCDCS-R-72-517, Department of Computer Sci
ence, University of Illinois at Urbana-Champaign, Illinois, May
1972.

21. Reddy, S. M., "Complete Test Sets for Logic Functions," Proc. of
Tenth Annual Allerton Conference on Circuit and System Theory,
University of Illinois at. Champa,ign-Urbanna; October 4-6, 1972.

A study of fault tolerance techniques for associative processors*

by BEHROOZ P ARHAMI and ALGIRDAS AVIZIENIS

University of California
Los Angeles, California

INTRODUCTION-ASSOCIATIVE PROCESSIKG

Associative processing techniques have been suggested for
numerous application areas and have been proven to be
superior to more conventional procedures for a number of
specialized applications. l Recent advances in computer tech
nology and development of new architectural concepts for
associative devices have made the design of larger and more
flexible systems possible. Such systems are extremely complex
and must be adequately protected against failures. This
paper reports on the results of a study2 which has indicated
the techniques that are applicable and difficulties that may
be encountered in the design of fault-tolerant associative
processors.

In the remainder of this section, we will briefly review the
four basic organizations for associative processors; i.e., fully
parallel, bit-serial, word-serial, and block-oriented. This dis
cussion is motivated by the fact that each of these organi
zations requires a different treatment for some fault toler
ance considerations, such as the detection of failures. This
classification is based on th~ degree of parallelism in oper
ations or, alternatively, the amount of storage associated
with each unit of processing logic. A more detailed discussion
of these concepts and a comprehensive set of references can
be found in Reference 1.

In fully parallel associative processors, processing logic is
associated with each bit of stored data. Most fully parallel
systems implement only the exact-match search operation
in hardware and use software techniques for arithmetic, logic,
and more complex searches. An associative processor has
been proposed3 in which a variety of comparison and arith
metic operations are performed in parallel on each word.

In bit-serial associative processors, processing logic is as
sociated with each word of stored data. All the words can be
processed in parallel, each in a bit-serial manner. Bit-serial
systems represent a compromise between fully parallel and
word-serial systems and can be economically implemented
with state-of-the-art technology4 since they can utilize con
ventional storage elements.

In word-serial associative processors, a single processing
unit operates serially on all the words.5 This approach es-

* This research was supported by the National Science Foundation,
Grant No. GJ 33007X.

643

sentially represents hardware implementation of a simple
program loop which is used for linear search. The elimination
of instruction fetching and decoding time and the high data
rates that can be achieved by circulating memories con
tribute to the relative efficiency of this approach as compared
to programmed linear search.

In block-oriented associative processors, one block of infor
mation is associated with a unit of processing logic. A low
cost implementation of such a system may use a head-per
track magnetic recording memory in which each block is
stored on one or more tracks.6 Block-oriented organization
is particularly suitable for applications such as information
storage and retrieval where a large storage capacity is
required.

FAULT TOLERANCE OF ASSOCIATIVE
PROCESSORS

Based on the applications that have been proposed for
associative devices, there are at least three reasons for
studying the fault-tolerance problems of such devices: (1) In
some proposed application areas for associative processors,
such as air traffic control, 7 the effect of an undetected fault
induced error may be catastrophic; (2) To be able to perform
control functions8 in a fault-tolerant computer, an associative
device must itself be fault tolerant, since, otherwise, it will
become part of the system's hard core and will contribute
heavily to its unreliability; (3) The extreme complexity of
large, general-purpose associative processors necessitates the
incorporation of fault tolerance features into their design.

It is remarkable, therefore, that the problem of fault
tolerance of associative devices has remained virtually un
touched. Ewing and Davies4 give techniques for coping with
some hardware malfunctions in a plated-wire implementation
of a particular associative processor. Furthermore, they are
only concerned with detecting such errors and disabling the
corresponding cell. Fault detection is done by performing
certain operations periodically. Proudman9 suggests that a
single error correcting code can be used in conjunction with
mismatch detectors with a threshold of 2. However, this
scheme is not valid if logic or masked write operations have
to be performed, since such operations destroy the coding.
Lipovski1o presents an associative processor architecture in

644 National Computer Conference, 1974

CONTROL
UNIT

MULTIPLE
RESPONSE
RESOLVER

ADDRESS
DECODER

Figure I-General model for an associative processor

which the processing elements are connected into a tree
structure. He contends that such a system is fail-soft since
faulty subtrees can be easily isolated from the rest of the
system. HO'wever, he does not indicate ho\v faults are de
tected.

In the remainder of this paper, we will identify and discuss
some techniques that are applicable in the design of fault
tolerant associative processors. We will concern ourselves
with hardware faults and will assume the programs to be
correct representations of intended algorithms for the speci
fied domain of operation. We may note, however, that the
simplified software of associative processors (e.g., fewer loops),
with respect to conventional systems, results in a propor
tional simplification in the problem of software fault toler
ance. A summary of the results presented h-ere has been
published elsewhere. ll

Figure 1 shows a model for an associative processor which
applies to all of the classes described in Section 1 except for
word-serial systems. Since word-serial associative processors
closely resemble conventional systems, their fault tolerance
problems can be studied separately. Each processing element
(PF,) in Figure Ij consists on one unit of processing logic
and its associated storage elements. In general, the processing
elements in the PE array communicate with each other and
the exact pattern of intercommunication is application
dependent.

A study of fault-induced errors in an associative processor
shows that they are not easily detectable since a single fault
may cause an arbitrary number of errors. This is evident for
faults in global subsystems of Figure 1, such as the input and

mask registers. For example, in a search operation a smaller,
larger, or an entirely different set may respond. 2 A single
fault in one processing element may cause errors in others
because of PE intercommunication, making concurrent fault
detection highly desirable. The problem is further com
pounded by the fact that each PE performs logic and selective
write operations on individual data bits which as we know
are not easily checkable without a high level of redundancy. 12

The selection of applicable redundancy techniques is the
most important step in the design of fault-tolerant digital
systems. The first basic choice is between static (masking)
and dynamic (replacement) schemes. The advantages of
dynamic redundancy schemes over static ones are well
known. 13 For associative processors, there are at least two
other advantages to the dynamic redundancy approach:
(1) The high degree of internal complexity makes the imple
mentation of a statically redundant associative processor
very costly and inconvenient; (2) The highly regular structure
of a major part of an associative processor (PE array) lends
itself naturally to modularization. Such modules can be
made identical in structure and can share spare modules.

L~t usa~sum~ .thatthe associative processor of Figure 1 is
divided into M modules, each consisting of P processing
elements. Figure 2 shows a possible structure for each module
if the decoding and multiple response resolution functions
are distributed among the modules. As shown in Figure 2,
the information regarding the responses is passed serially
through the modules. Clearly fully parallel and mixed series
parallel schemes can be used in much the same way as carry-

RESPONSE
BUS

FROM MODULE I • 1

~
MULTIPLE DISABLE
RESPONSES

TO MODULE I + 1

DATA COMMUNICATION
WITH OTHER MODULES

Figure 2-0rganization of a module in a modular associative processor

A Study of Fault Tolerance Techniques for Associative Processors 645

lookahead circuits for adders. Figure 3 shows the modules
and their interconnections. One-dimensional intercommuni
cation between modules will be assumed for simplicity~

Given a modular associative device as shmvn in Figures
2 and 3, it can be made fault tolerant by the follmving steps:
(1) Incorporating internal failure detection ability within
each module; (2) Adding S spare modules; and (3) Designing
switching mechanisms and corresponding algorithms for re
configuration. We will assume that the M +S operating and
spare modules are permanently connected to the main data
buses and that special isolating circuits exist between each
module and the data buses. Therefore, reconfiguration takes
place by "power switching" and by providing alternate
intercommunication paths between modules.

ERROR DETECTION TECHNIQUES

As noted earlier, the problem of error detection in as
sociative processors is a difficult one and conventional coding
techniques are generally not applicable. However, there are
special cases where low-redundancy coding techniques can
be used. We now discuss some such special cases with respect
to the four classes of associative processors mentioned earlier.
This discussion will be followed by a brief introduction to
the self-checking design technique which is applicable in all
cases.

A fully parallel associative memory with only "exact
match" search operation and without masking capability
can be protected by using a code with a minimum distance
of d. 'With this scheme, if conventional mismatch detectors
are used, stored words containing d-l or fewer errors will
never respond to a search operation (there is always at
least one mismatch signal) and are effectively isolated from
the rest of the system until periodic diagnosis routines detect
their failure. On the other hand, if mismatch detectors with
a threshold of d-72 are used, up to k=id-72l-1 bit errors
can be masked by the search logic; i.e., a word containing k
or fewer errors will still match its original value (k or fewer
mismatch signals) and will not match any other value (k+ 1
or more mismatch signals). The difficulty is that such an

MODULE

o

CONTROL
UNIT

2

DATA
BUSES

MODULE

M-1

Figure 3-Module intercommunication in a modular associative
processor

l
r-- - -- ---- - r--

r-- -- ----- ---
P-S S-ENCODED
TRANSLATOR DATA WORDS · AND CHECKER

~ · · · · ·
1--- ~- ----- --

~
SELF-CHECKING
PROCESSING LOGIC S-P
AND CONTROL TRANSLATOR

P-ENCODED AND CHECKER
DATA WORDS

Figure 4-A fault-tolerant word-serial associative processor

associative device ,vill have no application besides simple
table look-up. For most other applications, masking capa
bility and more complex search types are essential. Also, in
associative processors, arithmetic and logic operations need
to be performed. Clearly, low-redundancy codes are not
applicable for such operations.

Considerations for bit-serial systems are similar to those
for fully parallel systems. One advantage ,vhich exists here
is the serial processing of bits in each word. This allows us
to artificially extend each operation to the entire word by
performing "null" operation on bit positions not originally
specified. Now, since all the bits of each word are processed
serially, codes with low-cost serial encoding and decoding
can be used to protect against storage errors. Simple parity
checking is particularly attractive because of the small
amount of additional circuitry required for encoding and
checking. It should be noted, however, that if operations on
small fields within the words are to be performed frequently,
the above scheme may result in a significant reduction in
speed. Also, operations on multiple fields within the same
word (e.g., adding two fields and storing the sum in a third
field) do not lend themselves to this approach unless a
complete circulation is used for each bit operation, resulting
in an almost intolerable speed reduction.

As noted earlier, because processing is performed serially
in a word-serial system, protection against failures becomes
relatively simple. Low-redundancy coding can be used to
protect against storage errors. Failures in the processing
logic may be detected through self -checking14 design. Self
checking translators may be needed to convert the storage
encoding (S-encoding) to an encoding suitable for processing
(P-encoding). The main requirement on the P and S en
codings is that fast (parallel) translation between the two
must be possible. This is true since the data rates achieved
by circulating memory devices are very high (bit rates of

646 National Computer Conference, 1974

12

INPUT TESTABILITY OF LINES
PATTERNS S-A-l, S-A-O~ OR NONE

1 1 1
1 234 5 6 1 234 5 6 7 8 901 2

------------~------------------------
o 1 0 1 0 1 1 1 1 0
o 1 0 1 1 0 1 0 1 1 1 0
o 1 1 0 o 1 1 0 1 0 1 1 0 1 0
o 1 1 0 1 0 1 0 0 1 0 1 0 1 1 0 1
1 0 0 1 0 1 1 0 1 1 1 0
1 0 0 1 1 0 1 1 1 0
1 0 1 0 o 1 0 1 0 1 1 0 0 1 1 0 1
1 0 1 0 1 0 0 1 0 1 1 1 0 1 0

Figure 5-A two-level realization of two-rail masked comparison and its
testability with code-space inputs

10-100 MHz). Figure 4 shows a possible configuration for a
fault-tolerant, word-serial associative processor. Since during
each operation cycle, the entire memory content is circulated
through the processing logic, 2-dimensional codes may be
used for additional protection against storage errors1 if
desired. .

One favorable property of block-oriented systems with
respect to fault tolerance is that during each operation cycle
a processing element operates on the entire block of infor
mation assigned to it. This enables the use of block codes
which result in relatively low redundancy and have simple
serial checking algorithms. The simplest possible scheme is
to use a parity bit per block of information which detects
all single errors. However, if mechanical storage devices are
used, error bursts become very probable due to dust particles,
minute scratches, or defects in the oxide coating. It has been
noted that low-cost arithmetic error codes are very effective
for coping with such burst errors. IS The checking algorithm
for these codes is very simple and requires little additional
hardware if an adder is already present in each PE.6

As can be seen from the previous discussion, low-redun
dancy coding techniques are applicable only in special cases.
Design of logic circuits in self-checking and self-testing form l4

(i.e., in a way that internal circuit failures manifest them
selves on the circuit's output and such that each failure is
detected by the circuit's normal inputs) particularly if I-out
of-2 encoding is used appears to be promising. However,
because of the relatively higher complexity of the self
checking design approach as compared to low-redundancy
coding techniques, this approach should be used when others
fail or for protecting the system's hard core.

A detailed discussion of self-checking design concepts is
beyond the scope of this paper. Instead, we present as an
example a self-checking circuit for masked comparison of
two bits. Denoting the mask bit by m, data bit by x and
the stored bit by s, the mismatch result z is defined as

z=m-(xffis);

i.e., we have a mismatch if the given bit position is not
masked (m = 1) and the data bit x does not equal (match)
the stored bit s. Figure 5 shows a two-level, self-checking.
and self-testing realizati-on withtwo-rail-encoding- of the
variables; i.e., a variable y is represented by a pair (yl, yO)
with yl = Y and yO = fj during error-free operation. It is easy
to show that any single-line failure results in the correct
output or one of the "illegal" combinations (0,0) or (1,1)
on the output. Hence, the circuit is self-checking. The fact
that the circuit is self-testing is vprified by applying an
APL/36016 program called TESTDETECT17 to it. The table
given in Figure 5 is the output of the TESTDETECT
program applied to a description of the given circuit. An
entry of 1(0) in this table indicates that the corresponding
input pattern detects s-a-I (s-a-O) failure of the given line
by producing on the circuit's output one of the "illegal"
combinations (0,0) or (1,1). Figure 5 indicates that each line
in the given circuit is tested for both s-a-l and s-a-O failures
during normal operation.

RECONFIGURATION TECHNIQUES

For a modular associative device to tolerate module fail
ures, the module interconnections should hot be rigid as
shown in Figure 3._Rather, the modules should be inter
connected through specially designed switching circuits which
prevent a system failure as a result of the failure of a module.
The setting of these switching mechanisms determines the

BASIC CELL CROSSED MODE BENT MODE

Figure 6-A two-state switching cell

A Study of Fault Tolerance Techniques for Associative Processors 647

system configuration and can be changed by a central
monitor if required. If a module error is indicated and the
existence of a permanent failure is determined, reconfigur
ation procedures must be initiated to establish a new working
configuration. In general, data transfers between modules
and correction of fault-induced errors is needed as part of
the reconfiguration process.

As will be seen the additional complexity introduced by
the modularization overhead and reconfiguration switching
mechanism is an increasing function of the total number of
modules M +S. Therefore, improving the reliability by in
creasing M and S is possible only to a certain point. There
fore, the optimal module size, in terms of the number of
processing elements it contains, and the number of spare
modules must be determined for each application through
tradeoff studies involving reliability improvement and the
corresponding increase in cost.

In the remainder of this section, we will assume only uni
directional (left to right) data flow between the modules in
Figure 3. The generalization of the results to bidirectional
data exchange is straightforward. Mter detecting the exist
ence of a faulty module, the following steps must be taken
before normal operation can resume: (1) Locating the faulty
module; (2) Determining a new working configuration;
(3) Initiating appropriate data transfers; and (4) Effecting
reconfiguration through switching. The criteria that should
be used in evaluating each scheme include: (1) The amount
of data transfers needed; (2) The complexity of the recon
figuration algorithms; (3) The number of spares S needed
for tolerating f module failures; and (4) The complexity of
additional switching circuitry.

A straightforward solution is the use of a "permutation

UNIT

(al M + S MODULES CONNECTED TO A SHORTING NETWORK

SPARE

(b) NORMAL OPERATION WITH ONE SPA.RE

{el OPERATION AFTER THE FAILURE OF MODULE NUMBER 2

Figure 7-Reconfiguration with a shorting network

CONTROL
UNIT

V INPUT

, r

HINPUT .. MODULE . - i - H OUTPUT

"
V OUTPUT

Figure 8-Basic module for distributed reconfiguration

network"18 which can interconnect the modules in any order.
Such a permutation network can be implemented as a cellular
array19 of two-state basic modules shown in Figure 6. Since
the complexity of such a cellular permutation network is
roughly proportional to the square of the number of modules,
its use can be justified only if a relatively small number of
modules are involved.

The basic module of Figure 6 can be used in a different
way to form a "shorting network."18 As shown in Figure 7,
such a shorting network can be used to route data around
the faulty and spare modules. One disadvantage of these
schemes, particularly as shown in FigUre 7, is the excessive
amount of data transfers needed in the case of a failure. The
number of transfers needed can be reduced by optimal
placement of the spare modules. It can be shown2 that data
transfers are minimized if the kth spare module is in position

for k=l, 2, ... , S. For example, with M=6 and S=3 and
the modules numbered 1, 2, ... , 9, the spares should be in
positions 2,5, and 8. Intuitively, this corresponds to dividing
the string of M+S modules into S roughly equal groups and
placing a spare in the middle of each group. Reference 2
also contains APL/360 algorithms for and examples of recon
figuration with shorting networks.

Another approach to the reconfiguration problem is the
use of a distributed switching mechanism; i.e., distributing
the switching function among the modules. This can be done
by pro·viding each moduli with a set of input and output
lines instead of one as shown in Figure 3. Then, if a successor
module connected to one module output fails, a module
connected to another output can act as its successor. The
simplest case, which will be discussed here, is when each
module has two sets of inputs and two sets of outputs. As
shown in Figure 8, the two inputs and two outputs are
distinguished by the letters H and V (horizontal and vertical).
The module has four states denoted by HH, HV, VH, and
VV, depending on whether the H or V input is used and
whether the output is generated on the H or V output.

648 National Computer Conference, 1974

FROM CONTROL
UNIT

lal MODULE INTERCONNECTION PATTERN

TO CONTROL
UNIT

r------------ --,

-----------~---------- !
,SPARE I

r- - - - - .,. - - - - 4- - - - '"'1- - - , I
HH HH HH HH HH I ,

I
I

L_ -- - ... --- -_. _____ ~---~ _____ J

Ibl NORMAL OPERATION WITH M = 5

leI OPERATION AFTER THE FAILURE OF MODULE NUMBER 3

Figure 9-Distributed reconfiguration with simple sparing

Figure 9 shows how modules of Figure 8 can be inter
connected in a simple sparing scheme with S = 1. The spare
module can replace anyone of the operating modules and
only one module's data need to be transferred in the event
of a failure. For S> 1, this scheme can be used if the M
operating modules are divided into S groups each having
one spare. The disadvantages of this scheme are: (1) only
one module failure can be tolerated in each group; (2) If a
faulty module is not reliably powered off, it may produce
meaningless data on the common connection to the spare
module.

Figure 10 shows a two-dimensional arrangement of the
basic modules. It can be seen in Figure 10 that all 9 modules
can be connected into a string similar to Figure 3 by ap
propriate selection of module states. If any single module
fails, the remaining 8 can continue their operation. Double
module failures 1,;,rilllea"ve at least 6 usable modules. Hence,
with M = 8 and S = 1, this scheme can tolerate all single
module failures. With M = 6 and S = 3, all double failures
can also be tolerated as well as some triple failures. Note
that if both successors of a module fail, it cannot be used.
Hence the tolerance of two module failures requires three
spare modules. Two interesting and equivalent unsolved
problems exist for the two-dimensional arrangement of

modules: (1) Given M+S modules with M required to be
operating, how should one interconnect them to tolerate the
maximum number f of failures? (2) Given the requirement
for M operating modules and tolerance of f failures, what is
the minimum number S of spares required and the corre
sponding interconnection pattern?

The basic advantage of this scheme is that the switching
mechanism is not part of the system's hard core since a
failure in the switching circuits is equivalent to a module
failure. The working configuration is supported solely by the
non-failed modules. The only place where interference from
failed modules may result is on the output bus. This can be
avoided by using an output selector circuit to isolate the
modules from the bus. The main disadvantages of this
scheme are the complexity of the reconfiguration algorithm,
excessive data transfers, and tolerance of fewer than S
failures. APL/360 algorithms have been written for the
reconfiguration process.2

It is interesting to note that in a rectangular two-dimen
sional configuration (Figure 10) with r rows and c columns,
one can obtain bounds on the number of modules in various
states. Let us denote-by nHH the number of modules which

FROM TO
CONTROL --....... --1 .. H-...... ---. CONTROL
UNIT UNIT

lal THE INTERCONNECTION PATTERN

HV VH HV

xx o
SPARE

Ibl NORMAL OPERATION WITH ONE SPARE

leI OPERATION AFTER THE FAILURE OF MODULE NUMBER 2

Figure lO-A two-dimensional arrangement of basic modules

A Study of Fault Tolerance Techniques for Associative Processors 649

are in state HH. Similarly, define nHV, nVH, and nvv. It
can be shown that if M is the number of operating modules,
then:2

nHH~ (rXc-M) -;- (r-l)(M -c) -;- (r-l)

~nHV=nVH~c M-2cX

~nvv

~(M-c) X (r-2) -;- (r-l)

Such bounds are useful in verifying the correctness of a given
configuration.

A FAULT-TOLERANT ASSOCIATIVE PROCESSOR

In this section, we illustrate the applicability of some of
the techniques discussed previously by presenting the design
and evaluation of a fault-tolerant associative processor called
SPARE (inverse acronym for Error-tolerant and Recon
figurable Associative Processor 'with Self-repair). SPARE is
essentially a fault-tolerant version of an associative processor
which has been described previously.4 Figure 11 sho'ws a
block diagram of the non-redundant system. The random
access memory is used for storing instructions and constants
and consists of 4096 24-bit words. The associative memory
contains 512 96-bit words. External data can be transferred
directly to either one of the memories under automatic
interrupt control.

The non-redundant associative processor of Figure 11 can
be divided into two parts: (1) The associative (parallel)
section, which consists of the associative memory array, bit
column selection logic, and word logic; (2) The control and

INPUTI
OUTPuT

Figure ll-Block diagram of the non-redundant associative processor

N
ERROR
INDICATIO
AND STAT
SIGNALS

US

~7

ASSOCIATIVE
(PARALLEL)
SECTION

J. ~. .. ~ ~.i!

OR
~
COUNTER

GATE INPUTS
OUTPUT

7
./ 1

CONTROL
LINES

6

CONTROL AND SEQUENCING
(SEQUENTIAL) SECTION

~.

TE
RE

ST INPUTS AND
CONFIGURATION
NTROL LINES CO

Figure 12-The parallel and sequential sections of SPARE and their
interface

sequencing (sequential) section, which contains all other
subsystems of Figure 11. Figure 12 shows the parallel and
sequential sections of SPARE and their interface require
ments. The sequential section uses the status signals and
test inputs for monitoring the operation of the parallel
section. We now briefly discuss the three main features of
SPARE; i.e., error tolerance, reconfigurability, and self
repair.

To achieve error tolerance, the parallel section of SP ARE
is divided into M indentical modules. S spare modules are
shared by the operating modules. Each module has internal
failure detection capability which is provided by self-checking
design of its circuitry using two-rail encoding of logic vari
ables. When a module error is indicated to the sequential
section, the recovery mode is entered and the final result
may be the replacement of the faulty module by a spare
module. The sequential section of SPARE resembles a small
general-purpose computer and can, therefore, be made fault
tolerant by conventional techniques.

One of the very important properties of associative
processors is simple modular growth. The size of an associ
ative processor can grow without a need to alter its algorithms.
This suggests that if additional processing capability is re
quired, the redundant processing logic in SPARE can be
utilized. Even the t\VO channels of the two-rail circuits can
be used independently to double the processing capability if
certain design criteria are met.2 Specifically, we postulate
the following operation strategy for SPARE: (1) During
normal operation the system works in redundant mode with
a number of spare modules; (2) If a module failure occurs
or additional processing capability is needed and if a sufficient
number of spares are available, they are s\\>1.tched in; (3) If
a module failure occurs or additional processing capability
is needed and spare modules are not available, the system

650

II. o
o

7

8

National Computer Conference, 1974

t= 4 F"'--__
<C a::

3

2 ~--~----~----~ __ ~ ______ ~ __ ~ ____ L-____ ~

0.01 0.02 0.05 0.1 0.2 0.5

COMPLEXITY CONSTANT (K)

Figure 13-Relative complexity of SPARE as a function of K

reconfigures into simplex mode by utilizing the two channels
of the two-rail circuits independently.

Of the reconfiguration techniques discussed earlier, the
one using a permutation network seems to be suitable for
SPARE since only one intercommunication line (two in self
checking design) exists between modules and the number of
modules is expected to be small (M=4 or 8, for example).
The self-repair process will then essentially consist of com
puting and setting of a new state for the permutation net
work. This process must be followed by a recovery procedure
to transfer the data stored in the failed module to the one
which replaces it. The permutation network has a two-rail
self-checking design but no spare is provided for it.

The detailed design of SP ARE2 shows that if K is the
relative complexity of one storage bit with respect to a logic
gate, the hardware complexity (cost) of various designs, in
terms of gate equivalents, are as follows:

Non-redundant system

Permutation network

NRC= 15872+49152XK

PNC= -31+25X(M+S)2

Each self-checking module MC= 512X(IIO+192X
K)+M

Redundant system RC = PNC + (M: + S)
XMC

The value of K is technology-dependent and has been chosen
as a parameter for generality. Figure 13 shows the ratio of
complexity for the redundant and non-redundant designs as
a function of K for several configurations of SPARE. In
computing the complexity factors, we have only considered

the parallel section of SPARE and have ignored the se
quential part.

To compute the reliability of SPARE, we will assume that
the coverage factor C includes the reliability of the permu
tation network. Using the reliability modeling technique of
Bouricius et al.,20 we find the following reliability equations
directly

Rnr(T) =exp(-AnrX T)

R,(T) ~ exp(- M X)'" X T) t (M +ii -1)

X {C[I-exp(-AmXT)JI i

where T is the mission time, Anr and Am denote the failure
rates for the non-redundant system and a self-checking
module, and Rnr and Rr denote the non-redundant and
redundant reliabilities, respectively. Figure 14 shows the
reliability improvement factor defined as [I-Rnr(T)J+
[I - R,.(T)] as a function of mission time T for several
configurations of SPARE.

From the preceding discussions we conclude that for mis
sion times which ate short compared to the MTBF for the
non-redundant system, a significant increase in reliability is
possible with a relatively small number of spare modules. A
more detailed study of the effect of mission time T, coverage
factor C, and complexity constant K on the optimal con
figuration of SPARE is being carried out. (For a given set of
values for T, C, and K, an optimal configuration is defined

...
EE
a:
o
I-

~

30

!z 20
w
a:l
~
a: co.
~
>
I-
:::i
iii
<C

iii a: 10

100 1000 10,000 so,ooo
TIME (HOURS)

Figure 14--Reliability improvement for various configurations of
SPARE with respect to the non-redundant system (K=o.l, C=O.99)

A Study of Fault Tolerance Techniques for Associative Processors 651

as a pair of values for M and S which result in a lower system
cost than all other pairs with the same or higher reliabilities.)

CONCLUSION

In this paper, we have presented the results of a study on the
fault-tolerance of associative processors. Our main conclu
sions are as follows:

(1) Dynamic redundancy is to be preferred over static
approach because associative processors lend them
selves naturally to modularization and since spares
can be shared by a number of identical modules;

(2) Low-redundancy coding techniques are applicable for
error detection in associative processors but only in
special cases. In particular, the use of arithmetic
error codes for block-oriented systems appears to be
promising;

(3) Application of self-checking circuit design techniques
seems to be an attractive alternative for error de
tection in associative devices;

(4) Complex switching mechanisms and algorithms need
to be devised to enable the sharing of spares by a
collection of identical modules which communicate
with each other.

Further research is needed in two equally important areas.
The first area is the design of completely checked digital
circuits. Systematic techniques need to be developed to aid
the designers in choosing suitable input and output encodings
and producing a self-checking design when presented with a
non-redundant circuit or its functional behavior. Cost and
effectiveness studies are also needed for the self-checking
design approach to determine the increase in complexity
over non-redundant designs and the actual error detection
coverage which it provides.

The second area is general techniques for reconfiguration
in array processors. Extension and generalization of the
results presented here. are possible in two directions. First,
one can conceive of other interconnection schemes for the
case where one-dimensional intercommunication exists be
tween modules. For example, we may consider a three
dimensional interconnection pattern in which there are three
choices for each of the left and right neighbors for a module.
Second, one may seek generalizations to the cases where
multi-dimensional module intercommunication is used. This
is a considerably more complex problem. As an example, it
may be possible to embed a two-dimensional intercommuni
cation pattern into a three-dimensional or four-dimensional
matrix of interconnected modules. Then, each module can
choose its left, right, upper, and lower neighbors in the same
manner as a module could select its left and right neighbors
in the case of one-dimensional intercommunication.

Also, we have not considered the testing aspects of associ
ative processors. This is an important area for future investi
gation since the design of a fault-tolerant associative processor
must be initially verified through testing. In addition, for an

associative processor which is dedicated to a certain task,
there is frequently some idle time which can be utilized by
periodic diagnostic routines.

REFERENCES

1. Parhami, B., "Associative Memories and Processors: An Overview
and Selected BiUiography," Proceedings of the IEEE, Vol. 61, No.
6, pp. 722-730, June 1973.

2. Parhami, B., "Design Techniques for Associative Memories and
Processors," Technical Report UCLA-ENG-7321, Computer Science
Department, University of California, Los Angeles, March 1972.
(Also published as a Ph.D. dissertation.)

3. Shore, J. E. and F. A. Polkinghorn, A General-Purpose Associative
Processor, Naval Research Lab. Report, Washington, D.C., March
1969.

4. Ewing, R. G. and P. M. Davies, "An Associative Processor,"
AFIPS Conference Proceedings, Vol. 26 (1964 Fall Joint Computer
Conference), Spartan Books, Baltimore, Maryland, 1964, pp. 147-
158.

5. Crofut, W. A. and M. R. Sottile, "Design Techniques of a Delay
Line Content-Addressed Memory," IEEE Transactions on Electronic
Computers, Vol. EC-15, No.4, pp. 529-534, August 1966.

6. Parhami, B., "A Highly Parallel Computing System for Informa
tion Retrieval," AFIPS Conference Proceedings, Vol. 41 (1972 Fall
Joint Computer Conference), AFIPS Press, Montvale, New
Jersey, 1972, pp. 681-690.

7. Thurber, K. J., "An Associative Processor for Air Traffic Control,"
AFIPS Conference Proceedings, Vol. 38 (1971 Spring Joint Com
puter Conference), AFIPS Press, Montvale, New Jersey, 1971,
pp.49-59.

8. Berg, R. O. and M. D. Johnson, "An Associative Memory for Exec
utive Control Functions in an Advanced Avionics Computer Sys
tem," Proceedings of IEEE International Computer Group Con
ference, June 1970, pp. 336-342.

9. Proudman, A., "Bulk Associative Memory with Error Correction,"
IBM Technical Disclosure Bulletin, Vol. 12, No.7, pp. 1076-1077,
December 1969.

10. Lipovski, G. J., "The Architecture of a Large Associative Pro
cessor," AFIPS Conference Proceedings, Vol. 36 (1970 Spring Joint
Computer Conference), AFIPS Press, Montvale, New Jersey,
1970, pp. 385-396.

11. Parhami, B. and A. Avizienis, "Design of Fault-Tolerant Associative
Processors," Proceedings of the First Annual Symposium on Com
puter Architecture, Gainesville, Florida, December 1973, pp. 141-145.

12. Peterson, W. W., and M. O. Rabin, "On Codes for Checking Logical
Operations," IBM Journal of Research and Development, Vol. 3,
No.2, pp. 163-168, April 1959.

13. Avizienis, A., "Design of Fault-Tolerant Computers," AFIPS
Conference Proceedings, Vol. 31, (1967 Fall Joint Computer Con
ference), Thompson Books, Washington, D. C., 1967, pp. 733-743,

14. Carter, W. C. and P. R. Schneider, "Design of Dynamically Checked
Computers," Information Processing 68, (Proceedings of IFIP
Congress, Edinburgh, Scotland, August 1968), North Holland Pub
lishing Company, A..rnsterdam, 1969, pp. 878-883.

15. Parhami, B. and A. Avizienis, "Application of Arithmetic Error
Codes for Checking of Mass Memories," Digest of International
Symposium on Fault-Tolerant Computing, Palp Alto, California,
June 1973, pp. 47-51.

16. Falkoff, A. D. and K. E. Iverson, APLj360 User's Manual, IBM
Thomas J. Watson Research Center, Yorktown Heights, New York,
August 1968.

17. Bouricius, W. G., W. C. Carter, K. A. Duke, J. P. Roth and P. R.
Schneider, "Interactive Design of Self-Testing Circuitry·," Proceed~
ings of Purdue Centennial Year Symposium on Information Process
ing, Lafayette, Indiana, April 1969, pp. 73-80.

652 National Computer Conference, 1974

18. Levitt, K. N., M. W. Green, and J. Goldberg, "A Study of Data
Commutation Problems in a Self-Repairable Multiprocessor,"
AFIPS Conference Proceedings, Vol. 32 (1968 Spring Joint Com
puter Conference) Thompson Book Company, Washington, D.C.,
1968, pp. 515-527.

19. Kautz, W. H., K. N. Levitt, and A. Waksman, "Cellular Inter-

connection Arrays," IEEE Transactions on Computers, Vol. C-17,
No.5, pp. 443-451, May 1968.

20. Bouricius, W. G., W. C. Carter, and P. R. Schneider, "Reliability
Modeling Techniques for Self-Repairing Computer Systems,"
Proceedings of the 24th National Conference of ACM, San Francisco,
California, August 1969, pp. 295-309.

Toward the development of machine-independent systems
programming languages*

by KEN ::\lAGEL, ANDRIES VAN DAM and MARTIN MICHEL

Braum University
Providence, Rhode Island

IXTRODUCTIO~

One of the reasons for developing high level languages has
been the desire for program portability from one type of
machine to another. To achieve the high degree of machine
independence necessary for program portability, these
languages have included general features such as arithmetic
expressions, arrays, and subroutine calls which can be
implemented on many machines. Facilities such as the
interrupt mechanism, program status word, and device
dependent input/output ,vhich are available to the assembly
language programmer are hidden from the high level pro
grammer. Unfortunately, the code generated.by compilers for
these high level languages is often very inefficient compared to
that produced by experienced assembly language program
mers. ** However, the added expressiveness and the ability to
leave details to the compiler usually offset the inefficiency of
generated code, particularly for non-systems applications. For
such applications, the facilities which the high level pro
grammer cannot use are not needed anyway.

Systems programming, on the other hand, is one area in
which the inefficiency of generated code and the inability to
access some features of the machine or operating system make
the use of high level languages for entire systems currently
extremely difficult. Yet, if a machine and operating system
independent systems programming language could be de
veloped which permitted the user to access all the facilities of
each machine in a natural manner, systems programs could be
transported easily from one environment to another. For
example, dispatchers, scheduling algorithms, and resource
allocation routines could be developed on one machine and
then moved to others instead of having to be redeveloped for
each environment. Furthermore, systems written in such a

* The research described in this paper is supported by the National
Science Foundation, Grant GJ-28401X, the Office of Naval Research,
Contract NOOOl4-67-A-0191-OO23, and the Brown University Division
of Applied Mathematics.
** Very sophisticated and complex optimizing compilers can sometimes
partially improve the quality of generated code; in addition, machines
designed specifically for high level languages can somewhat reduce the
disparity.

653

la~guage could be studied, and perhaps even debugged
wIthout knowing the intricacies and idiosyncrasies of the
h.ardware: Previously developed high level languages espe
CIally desIgned for systems programming such as ECPV and
BLISS2 only partially remove these liabilities. The user still
cannot access all the facilities of the hardware in a' natural
machine independent manner. Lower level languages such a~
PL/360 do not solve the problem either because they are too
tied to the architecture of one machine. Macro generators
such as STAGE23 do solve the problem, but require a
complete rewrite of each macro when moving from one
environment to another. Also optimization across macros
which might be possible in some environments cannot be
performed. t

This paper describes various approaches which have been
ta~en to developing machine independent systems program
mmg languages. It then explains ,yhy none of these provides
the full answer. As an example of each approach, certain
features of the language for Systems Development,4,5,6
a PL/I derivative with improved control and data structures
basing modifiers, and string operations, are described. LSD i~
expre~sly designed for implementing operating systems,
complIers, and other system programs, as well as for large
general purpose applications. A prototype compiler for a
large subset of the language has been in use for more than two
years and generates very efficient code.t Presently the full
language is being implemented with code generation facilities
for the IBM /360-67, /370-168, and two user micropro
grammed minicomputers with very different instruction sets
(DSC Meta 4's-one programmed as a general purpose
machine and the other as a graphics processor). All four
machines have specialized features which must be utilized in
writing efficient operating systems and in certain other
applications.

t Very sophisticated and costly macro generators can do some cross
macro optimizations by saving needed information in global variables.
t Between 10 percent and 140 percent worse than very carefully hand
coded assembly language depending on the application. These results are
from a benchmark study done for the Safeguard Systems Command in
1971.7 Even the prototype implementation without any sophisticated
optimization performed considerably better than either IBM's PL/I-F
or Fortran IV H.

654 National Computer Conference, 1974

PREVIOUS APPROACHES

Traditionally, two general approaches have been taken to
the problem of providing access to all of the facilities available
in assembly language, but within a high level language : (1) the
inclusion of assembly language code for a specific machine
within the source program, and (2) the design of high level
facilities which are sufficiently general to be meaningful on
many machines, but which can be efficiently implemented on
each target machine. Although both methods were provided
in the first version of LSD, each had serious liabilities.

The ability to include assembly language code within
source programs is provided in LSD by two constructs:
Code/Endcode for the inclusion of instructions, and Datal
Enddata for the inclusion of static data and variables. Items
within Data/Enddata are allocated by the compiler in the
area generated for static variables of the enclosing block
(Begin or Proc) whereas statements within Code/Endcode
are placed in the compiler output at a point corresponding to
where they appear in the source program. A number of aids
are provided by the compiler as illustrated in the example
below. For instance, the user may ask the ~<?mpiler to supply
registers in instructions, and he may use names longer than
those permitted by the assembler. Qualified names may be
used within the assembly code when referring to variables
within structures, and array subscripts (constants only) may
be used to refer to specific elements of arrays. Code placed
within Code/Endcode goes through the full compiler optimi
zation phase* while Data/Enddata is not optimized. Variables
used within either of these constructs can be local to the
constructs or the same as those referenced in normal LSD
statements. An example of the assembler code a programmer
could write would be:**

CODE:
L R?1, T! (2)
A R?1, A.B

ENDCODE:

place T(2) in a register
add B to T(2)

where T is an array of full words, and B is a full word
subelement of a structure named A. A. B is a qualified
reference to B, indicating that B is a part of a structure A.
The ! is used before the subscript (2) to distinguish the
subscript from an index or basing part of the instruction's
second operand. The R?1 indicates that the compiler should
supply a general purpose register. The number after the
question mark is used in determining which uses of question
mark registers are meant to be the same register. Given the
availability of general register 3, the compiler would treat the
above code as if it were

L
A

R3, T + 4
R3, A + 12

place T(2) in a register
add B to T(2)

if twelve were the displacement into the structure A of the
substructure B.

* Unless the user specifies that this is not desirable.
** Those unfamiliar with 08/360 assembly language should consult the
Appendix.

The inclusion of (even enhanced) assembly language for
each machine is tantamount to admitting the impossibility of
using high level constructs for all programming. In certain
critical portions of the code, the user is forced to program and
to think in terms of the low level facilities typical of assembly
languages. If the program or the system of which it is a part is
to be moved to another machine, the portions of programs
which consist of embedded assembly language must be
located and rewritten. Often these sections cannot be
translated efficiently from one machine's assembly language
to another. What is really needed is a rewrite of larger
portions of each program.

If there were not some uses which seem to require the
Code/Endcode and Data/Enddata constructs, we would
eliminate them. However, as will be seen from the discussion
of the Convention's statement below, now we do restrict
assembly language to macros whose definitions are separate
from the program itself.

The other approach is to design general facilities which can
be mapped into the special features of the various machines.
The design of high level facilities which can incorporate
special features of arbitrary machines in a natural manner is
extremely· difficuit, if not impossibie. A very s-ophisticated
compiler must be used to try to map general constructs into
specific instructions of the target machine and/or specific
features of the operating system. For example, IBl\f System/
360 machines have a number of privileged instructions to
permit the authorized assembly language programmer to
manipUlate the program status \vord, the storage protect
keys, and the hardware I/O mechanisms. The first version of
LSD included fourteen statements, one for each of these
special instructions.8 These statements could not be imple
mented for other machines. There seemed no way to provide
general high level constructs which captured the power of
these instructions in an easily understood manner. In
addition, the general constructs should not provide facilities
which cannot be provided easily on a System/360. The
fourteen statements have been removed from LSD.

THE CURRENT LSD APPROACH

Since neither of the traditional approaches seemed to
satisfy our need for an environment independent systems
programming language, a different approach seemed neces
sary. If the code containing environment dependent features
could be easily isolated, it could be included within macros.
The macros would have to be rewritten for each environment,
but if their use were suitably constrained, movement from one
environment to another would involve little rewriting and
would not affect the appearance and logic of any of the
programs. To guarantee that all the environment dependent
code was in the macros, the user would have to be able to
prevent the compiler from generating any environment
dependent code for other constructs. A general macro
replacement facility was not developed because it left the
decision as to what code would be environment dependent to
the individual programmer when he was writing the individual

Towards the Development of Machine-Independent Systems Programming Languages 655

routine. These decisions should be controlled by the project
manager or the project design (see the discussion of ad
vantages below).

Accordingly a small number of high level constructs which
are present in almost all programming languages were
selected. Knowledgeable users can specify alternative imple
mentations for each of the selected constructs. Users can then
indicate where each alternative implementation should be
used.

The user supplies these alternatives by writing macros
which expand into either LSD statements, the assembly
language of the machine for which implementation is in
tended, or a combination of the two. The compiler provides
defaults for all of the constructs. *

There are three major areas in the implementation of high
level languages where the compiler-generated code must
interface ·with the machine and the operating system. These
are input/output, module linkages, and dynamic storage
allocation. LSD provides only the most rudimentary input/
output. ** The high level constructs involved in module linkage
are procedure entering, exiting, and returning. Those involved
in dynamic storage allocation and release are block (PROC
and BEGIN) entry and exit, and the management of based
variables (the Allocate and Free statements). Procedure'
entering, exiting, and calling and the allocation and release of
based variables were selected as the subset for \vhich the
knowledgeable user will be able to supply alternative
implementations. A major advantage of including procedure
exit and entry is that anything which could conceivably
involve special features of a machine or operating system can
be logically programmed as a procedure call. Note that the
alternative code which the user supplies can do the function
inline, if desired.

THE LSD IMPLEMENTATION

The Conventions statement is used to specify alternative
implementations of the linkage and storage management
constructs. The syntax is basically that of a macro. The
traditional macro facility has two parts: a definition of the
macro, and an invocation. Our method involves three parts:
(1) the Conventions statement which defines the macro, (2)
declarations of the procedures or variables involved which
indicate which macros, if any, are to be applied, and (3) the
Call or Allocate and Free statements which actually invoke
the relevant macro.

The Conventions statement has a labeled header giving the
symbolic parameters, followed by a list of parameterized LSD
or assembly statements and an End statement. The label on
the header is the name of the Conventions statement. As

* We could have used an extensibility mechanism to provide "new"
constructs which would be defined differently in each environment. This
is the approach taken by SPECL.9 Our macro facility is almost identical
to Udin's. In our case, however, the decision on when to invoke the
macro is not made at the point of invocation.
** All I/O will probably be done in other languages with the LSD routines .
calling these other routines. I/O is not included in LSD because it is so
closely tied to the environment in which a program runs.

many Conventions statements as desired may be included in
a program.

The user specifies where he wants the statement list to be
used instead of code normally generated by the compilert by
using the Conventions option on Procedure or Declaration
statements.t For example, to have the Conventions code
generated instead of that normally generated for Procedure
entry, a Procedure statement of the following form would be
used:§

ADDTC:PROC(LIST, ELE:\1EXT) CONV(TRANS);

Here ADDTO is the name of the procedure, LIST and
ELEMENT are parameters, and TRANS is the name of a
Conventions statement.

To also have different Conventions code generated instead
of the normal returning code from this procedure, the
following statement would be used:

ADDTC:PROC(LIST, ELEMENT) CONV(TRANS)
RETURN (CONV(BACK»:

TRANS is the name of a Conventions statement which
would be used in generating the entrance code for ADDTO.
BACK is the name of a Conventions statement which would
be used in generating the exit code for ADDTO. In a proce
dure calling ADDTO a declaration of ADDTO could be used
to specify Conventions for calling and after the return from
ADDTO:

DCL ADDTO ENTRY CONV(GOIN) RETURN
(CCKV(CUT» ;

The keyword ENTRY indicates that ADDTO is the name of
a procedure or entry point. When ADDTO is called, the
statement list in GODJ will be used instead of normal calling
code. Immediately following this code will appear the code for
the statement list in OUT. As an example consider the
following:

RAKD: PROC;
DCI Z ENTRY CCNV(CONE);

CALL Z(B, C, D);
COKE: CONY P(Q, R, S, T);

IFQ> R
THEK R = R + S;

IFS> T
THEK T = T + S;

t The statement list is substituted during the syntactic phase of the
compiler. The substituted code thus goes through all the compiler op
timization phases.
t Conventions invocations cannot be nested so use of calls or allocates
and frees of based variables within the statement list generates the de
fault compiler code in all cases.
§ The syntax of the LSD Procedure statement is almost identical to the
corresponding PL/I syntax. The Appendix gives a brief discussion of the
portion of LSD used in t.his paper.

656 National Computer Conference, 1974

CODE;
L R3,Q
L R4,R
L R5,S
L R6,T
LR R2, R13
LA R13, SAVM
L Rl, = Yep)
BALRR14, R1

ENDCODE;
END; "END of CONVENTIONS"

The call of Z above
CALL Z(B, C, D);

would be replaced by
IFB>C

THEN C = C + D;
CODE;

L R3, B
L R4, C
L R5,D
LR R2, R13
LA . ~,1~, S~yM.
t Rl, = V(Z)
BALR R14, Rl.

ENDCODE;

Notice that any statements involving parameters of the
Conventions statement which are not present in the call
(T in the example) are not generated. One Conventions
statement may be used for any number of different procedure
calls by using the name of the Conventions statement in
CCNY options on the entry declarations within the calling
procedures of the procedures being called.

LSD provides a number of compile-time facilities to aid in
writing Conventions statements. The omission of any state
ments in the statement list which involve parameters not
present in the invocation of the Conventions statement (the
Call statement) generalizes to the omission of an entire
IF-THEN-ELSE, if any part of it uses a parameter which is
not present, and to the elimination of entire Dc loops if an
absent parameter is mentioned in the Do header. Compiler
generated temporaries may be explicitly referenced by &Tn
whBre n . is a positive integBr,· The compiler . will generate a
temporary for each &Tn appearing in the expansion of the
Conventions statement. &Tn's using the same n will refer to
the same temporary. Special compile-time functions are
available for using a variable's length, data type and storage
alignment to control what code is generated. For example a
compile-time IF, written %IF, can be used to indicate that
t.he code wit.hin t.he THEN clause should be generated only
if the length of the variable is a full word and the alignment is
at least a half word boundary.

The Conventions construct can also be used for allocating
and releasing based variables. For this purpose, any of four
options may be specified on the declaration statement for a
variable. The ALLOC and FREE options specify Conven
tions statements which are to be used inskad of normal

allocating or releasing code when the variable is used in an
Allocate or Free statement. The ALLCCIN and FREEIN
options can be used on declarations of area variables. These
indicate Conventions statements which are to be used
whenever a variable is allocated or released within the area.
Whenever more than one of these options applies (for example
when allocating a variable with an ALLOC option in an area
with an ALLOCIN), the ALLOCIN or FREEIN is used. If a
list of variables is allocated or released in a single statement,
the Conventions code is used once for each variable to which
it is applicable. Normal compiler allocating or releasing code
is used for other variables in the list. The parameters on
Conventions statements used for based variables are the area
and its basing parameters followed by the variable and its
basing parameters.

Conventions statements for based variable management
are used primarily in interfacing with the dynamic storage
management routines. The next section deals only with the
Conventions statements used with procedures since the use of
Conventions statements with based variables is very similar.

THE ADVANTAGES

Using the Conventions statement the programmer is able
to completely specify the environment in which his program
operates. If he wishes, he may leave some of the environment
to the compiler and specify only what is necessary for his
program to interface with either the operating system or
other portions of the system he is implementing. A system
manager can, by placing Conventions statements and declara
tions in Include files* syntax insure that system conventions
are observed. This is one of the advantages of having the
decision when and which Conventions to apply at a different
place (declarations of variables or procedures) than the
actual use.

Conventions statements can be used to supply debugging
information and parameter checking which can easily be
removed when no longer needed. Coroutines, multitasking,
backtracking, and even more general control paths can easily
be implemented in an operating system independent manner.
Top down implementations in the Dijkstra sense can use
Conventions statements to have calls to lower level routines
or functions initrally generate messages and parameter
checks. When the lower level routines become available, the
Conventions statements can be removed from the declarations
of the routines (in which case the Call statement actually does
a call) or changed to macros which perform the functions
in line. Functions can be selected logically and a decision to
implement them as subroutines or as inline code can be
dcluJrcd until later. The statement lists "\vithin the Conven
tions statements can be tailored to idiosyncrasies of the
machine or operating system.

Using these facilities, some degree of portability can be
achieved. Those functions which on a particular machine or

* Include files are external program-segments which the compiler will
insert (logically) at requested points in a program before syntax analysis.

Towards the Development of Machine-Independent Systems Programming Languages 657

under a particular operating system use special facilities do so
only through Conventions statements. Experienced pro
grammers can design, code, and debug Conventions state
ments for each such function. The programs being written for
the system then use Calls to "routines" to perform the
functions (thereby invoking the associated Convention state
ments instead of the normal calling code). The Conventions
statement either links to Cor calls) a routine to perform the
function or does the function inline.

SO~IE COKCLUSIONS

The Conventions facility in LSD isolates the environment
dependent code. When movement to another environment is
considered, the Conventions statements and the declarations
indicating where they are used can be examined to determine
if the movement is possible and how difficult it will be. The
user, if he wishes, can, by specifying Conventions, prevent
the compiler from generating any environment dependent
code of its own.

We have not been able to eliminate assembly language
altogether, but we have moved it out of the programs and
into macros \vithin Include files. The logic and flow of a
program can be studied and understood without recourse to
any environment dependent code.

I t is still something of an art to determine which features
should be implemented by Conventions statements. The
main advantage of the LSD approach is that decisions on
·what these features should be need not be made until system
implementation time and can be made differently for each
system. A user ,vanting to use a program or system imple
mented for one machine or operating system in a different
environment can examine the Conventions associated with
the system to determine if transport to his environment is
feasible.

The multi-machine implementation of LSD should be
available sometime in 1974. We shall then test the practi
cality of system portability, possibly by trying to move an
interactive graphics system implemented under CP-67/GMS
on the /360-67 to one of the minicomputers.

APPENDIX-OS/360 ASSEMBLY LANGUAGE

The general form of a statement is

(opt label) (opcode) (first operand), (second operand)
(opt comment)

Opt indicates that the field is optional. The label, if one is
present, must begin in column one. One or more blanks must
separate the label, opcode, operands, and comment from
each other, and no blanks can appear within the operands
except in character string literals. Each operand has the
general form:

(name)C (opt base register), (opt index register»)

If the base and index registers are not present, the paren-

theses and the comma do not appear. When an operand is a
register; neither the base nor the index can be specified.

The instructions used in the examples are:

A (first operand), (second operand)

The first operand must be a register and the second a main
storage location. The second operand's contents are added
to the first operand.

L (register), (second operand)

The second operand must be a storage location. Its contents
are placed in the register.

LR (register), (register)

The second operand's contents are placed in the first operand.

LA (register), (second operand)

The address of the second operand IS placed in the first
operand.

BALR (register), (register)

The first register is loaded with the address of the next
instruction following the BALR, and control is transferred
to the address in the second register.

LSD

The procedure statement has the following general form:

(proc name): PROC (opt parameter list)
(opt modifiers):

where the BNF for the portions used in this paper is:

(parameter list) : : = (parm Jist))
(parm Jist) :: = variable I variable, (parm Jist)
(convention modifier) :: = CO~V((name of

Conventions))
(return modifier) :: = RETURX(COKV((name of

Conventions»))

The Declare statement has the following form:

DCL (variable name) (opt attribute Jist);

The BXF for the only option used in this paper is:

(entry attribute) :: = E~TRY (opt parameter list)

The call statement has the foUmving form:

CALL (procedure or entry point name) (opt call list);

The (call list) is the same as a parameter list except that
each parameter can be an arbitrary expression.

The Conventions statement has a header of the form:

(conventions name): CCXV (routine parm)
(opt argument parms);

658 National Computer Conference, 1974

where (routine parm) is a simple variable, and (argument
parms) is a parameter list.

For a description of the entire language, see Reference 3.

REFERENCES

1. Richards, M., "BCPL: A Tool for Compiler Writing and System
Programming," Spring Joint Computer Conference 34, May, 1969.

2. Wulf, W. A., D. B. Russell and A. N. Habernann, "BLISS: A
Language for Systems Programming," CACM 13, December, 1971.

3. Newey, M. C., P. C. Poole and W. M. Waite, "Abstract Machine
Modelling to Produce Portable Software-A Review and Evalua
tion," Software-Practice and Experience 2 2 1972.

4. Magel, K. LSD Constructs, Version 15, Center for Computer and
Information Sciences, Brown University, December, 1973.

5. micky, C. and K. Magel, Language for Systems Development, Ver
sion III, Center for Computer and Information Science, Brown
University, August, 1973.

6. van Dam, A., R. D. Bergeron, J. D. Gannon and J. V. Guttag,
"Programming Language Comparison Study," Brown University,
September, 1971.

7. Henrikson, J. 0., and R. E. Merwin, "Programming Language
Efficiency in Real-time Software Systems," Spring Joint Computer
Conference, 40, 1972.

8. Bergeron, R. D., J. D. Gannon, D. Shecter, F. Tompa and A. van
Dam, "Systems Programming Languages," Advances in Computers
12, M. Rubinoff and F. Alt (eds.), Academic Press, October, 1972.

9. Udin, D. "SPECL: A System Programming Dialect of ECL,"
Sigplan Notices, September, 1973.

10. Wirth, N., "PL/360, A Programming Language for the 360 Com
puter," Journal of the ACM, January, 1968.

LPL-A generalized list processing language

by BILLY G. CLAYBROOK

Virginia Polytechnic Institute & State University
Blacksburg, Virginia

INTRODUCTION

Many programming applications, e.g., symbolic and algebraic
manipulation applications and artificial intelligence applica
tions, require the use of list structures. Several list processing
languages or languages that provide for list processing have
been developed, e.g. LISP 1.5,5 LISP 2/ SLIP/ PL/l,8
ALGOL 68,6 etc. With the exception of ALGOL 68 and
LISP 2, none of these languages provide the user with the
capability to define the cell size and/or the configuration of
the list cell at runtime (PL/l attempts to do this with
BASED structures but falls short because only one com
ponent in a BASED structure can have its dimension altered
at runtime). ALGOL 68 has the disadvantage that it is not
yet readily available for most users, and it suffers from list
tracing complexities during garbage collection. LISP 2 was
an attempt to allow variable cell configurations, but the
project was aborted.

The language (LPL) described in this paper is an attempt:
(1) to provide a generalized list processing language available
to a wide range of users, (2) to provide the user with the
capability to define cells with varying characteristics that
are natural for his applications, (3) to allow garbage collection
to proceed easily without the complexities associated with
list tracing inherent in list structures with cells having a
variable number of links, and (4) to provide the user with a
set of statements, e.g., COPY, REMOVE, etc., that perform
operations for which the user normally has to generate the
code. Anyone who has tried to use LISP 1.5 or SLIP to pro
gram solutions to problems whose data are not homogeneous
in size and format knows the importance of the existence of
languages with the capabilities of LPL and ALGOL 68.
Fenichel2 describes the importance of allowing multiple cell
types in list structures. LPL allows the user to concentrate
on ideas and avoid the clumsiness of trying to determine a
way to represent a structure in a less flexible language. LPL
is designed for ease of use and ease of implementation. It is
an attempt to exploit the advent of virtual memory systems.

Cells in LPL can be members of many lists; thus, when a
cell is inserted (deleted) into (from) a list, a knowledge of
which pointers to modify is required. Insertion, deletion, and
list tracing are the most difficult problems to handle in lan
guages allowing multiple cell structures. The next section
gives an overview of LPL. We discuss the solutions to these

659

problems and give a complete description of the LPL data
organization, data types, and statement forms in the third
section of this paper.

OVERVIEW OF LPL

An LPL program consists of a sequence of statements
separated by semi-colons. The initial implementation of LPL
is in PL/l as an extension to PL/1. Programs written in
LPL are scanned during a preprocessor pass, translated into
a PL/l program, and compiled by the PL/l compiler. LPL
requires the use of dynamic storage allocation so the choice
of PL/l was natural for an initial implementation (this im
plementation in PL/l was possible only after some imagina
tive uses of BASED structures).

The existing LPL implementation allows any PL/l state
ment to be included in an LPL program. Current design of a
second implementation does not include any existing lan
guage as'a base language, i.e., LPL will exist as an individual
processor with the capability to perform arithmetic opera
tions, conditional transfers, etc., in addition to the list pro
cessing capabilities described in this paper.

Each LPL cell has certain fields in common that reduce
the problems inherent in copying recursive lists, garbage
collection, etc. LPL uses a "super list" to hold all nodes
allocated by the user and a reference count system for gar
bage collection; hence, simplifying list tracing considerably
and eliminating the marking phase of garbage collection.
The use of the super list for garbage collection is explained
fully in the next section of this paper.

LPL allows the user to invoke the garbage collector or to
release cells individually. One might wonder why we allow
the user to do this since LPL basically uses a reference count
approach to freeing inactive cells. Kormally, in systems using
the reference count method, the storage for a cell is released
as soon as its reference count becomes zero. When a cell in
LPL is removed from all lists by the RE:vrOVE statement, its
reference count becomes zero. However, it is possible that
the user may want to insert this cell into another list that
it was not a member of when the REMOVE statement was
executed. In order to allow this flexibility and to allow the
user to develop his own garbage collection scheme, if he
desires, we simply consider the cell to be inactive until its

660 National Computer Conference, 1974

7
RL II REAL Values

Word 1
Word 2
Word 3
Word 4
Word 5
Word 6
Word 7
Word 8

IT II INTEGER Values
AL II ALPHA Values
ID II IDENT Fields
RF II RFCNT Fields
LK /I POINTER Fields
KY # KEY Fields

Figure 1-Template structure

storage is released by execution of the RELEASE or COL
LECT statements.

DESCRIPTION OF LPL

LPL allows any number of cell types to be defined by the
user. Each cell type has a template associated with it to
describe its characteristics. LPL allows considerable flexibility
in erel1ting list structures since it: (1}allowsthe designer to
define any cell type he desires, (2) allows an arbitrary number
of pointers per cell, (3) allows multiple types of values per
cell, and (4) provides the user the capability to implement
cells with identifier (as in SLIp7) and reference count fields
(the user identifier and reference count fields are not to be
confused with the SYSID and SYSRC fields described below).

Data organization in LP L

Each cell allocated in LPL has the following fields in com
mon:

(1) a type field (TYPE) that contains a pointer to the
template describing this type of cell,

(2) a copy bit (COPY) for use in copying lists, especiaJly,
recursive lists,

(3) a system reference count field (SYSRC),
(4) a system identifier field (SYSID), and
(5) two link fields, MLP and ::\1RP, that link all cells

allocated by the user into a doubly-linked "super
list" for use by the garbage collector.

The user cannot access directly any of the five fields listed
above.

A description of each of the common fields in a cell is
necessary to establish the basic concepts of LPL data or
ganization. The TYPE field points to the template. The
template gives the number of components and their type in a
cell. Fig. 1 gives an example of the format of templates
(the format is similar to that of FenicheF). Besides the com
mon entries ((1)-(5) above) in each cell, the user can select
up to seven other types of entries (see next section). Each
template consists of a variable number of words (at least
two) with the contents of each word, except the first, giving
the type and the quantity of that type of entry. vVord 1
always contains the number of components in a cell (the

number of arguments in the DEFINE statement minus one
for the type is the contents of word 1); therefore, the contents
of word 1 plus one gives the number of words allocated for
the template. Codes in the first half of each word except the
first indicate the type of entry (the codes are given in Figure
1). Entries in a template can appear in any order (they actual
ly appear in the order they appear in the DEFINE state
ment). Templates are not duplicated in LPL.

The COPY bit is used to mark records during the copy
process. One problem associated -with list processors is gar
bage collection. We have tried to minimize this problem in
LPL by using the system reference count (SYSRC) and the
super list. The number of lists in which a cell is a member is
maintained by the LPL system in the SYSRC field of the
cell. As long as the SYSRC is greater than zero, the corre
sponding cell is active and is a member of one or more lists
(not counting the super list). During garbage collection the
super list is traversed and the storage occupied by inactive
cells is released. The super list is maintained: (1) to alleviate
the system from maintaining a record of pointers to all
accessible lists created by the user, (2) to avoid the process
of tracing all accessible lists during garbage collection and
avoiditigthe marking phase, -and-C3r t6siiriplif:Y"the- imple
mentation of certain functions, such as those performed by
the REMOVE and REPLACE statements. List tracing2 in
list structures having cells with an arbitrary number of link
fields per cell is a problem to be avoided if possible.

LPL allows the user: (1) to release the storage occupied
by cells using the RELEASE statement (provided the
SYSRC of the cell is zero), or (2) to invoke the garbage
collector by executing the COLLECT statement. The gar
bage collector is also automatically invoked by the LPL sys
tem when about 95 percent of the working space available
for allocating cells is depleted. Note that garbage collection
in LPL does not require any additional working space and
is a very simple process when compared to other garbage
collection schemes.3

Finally, the SYSID field is used to specify the pointer
structure in a cell. This field requires only three bits to
specify whether the pointer structure "in the cell is singly
linked (SYSID = 0), doubly-linked (SYSID = 1), left-right
linked (SYSID = 2), multi-linked (SYSID = 3), or key-linked
(SYSID=4). Knowledge of the pointer structure by the
INSERT and DELETE statements is necessary for each
cell because LPL allows any mixture of the five pointer
structures to exist in a single list. Thus, the INSERT and
DELETE statements need only to access the SYSID field
in each cell, instead of interrogating a template, to determine
the pointer structure of the cell. One of the main distinctions
between other list processors and LPL is that its INSERT
and DELETE statements are provided with the capability
to handle any of the four distinct pointer structures auto
matically.

One assumption is made with respect to the pointer struc
ture in LPL cells. For cells with doubly-linked or left-right
linked structures, LPL assumes the first pointer is the back
ward or left poinier, and the second pointer is the forward or
right pointer. If the user feels restricted with these simple

assumptions inherent in the INSERT and DELETE state
ments, then he has the capability to develop his own pro
cedures to replace them.

It is more difficult to provide generalized insert and de
lete operations for lists with cells having multi-linked pointer
structures. The problem presented by multi-linked cells oc
curs because there is no automatic way to determine which
pointers to modify during insertion and deletion unless
specific facilities are provided by the list processor language.
The easiest solution to this problem is to let the user develop
his own insert and delete procedures and define any con
straints that he desires. Another solution used by imple
menters of multilist file organizations,4 is to associate a
key ",-jth each pointer. Therefore, when tracing a list with
multi-linked cells, the user can specify, by presenting a key,
which pointers to access. LPL provides the user with a choice
of either solution. With cells having the key-linked structure,
the INSERT and DELETE statements assume the first
key is associated with the first pointer, etc. The KEY
attribute (discussed in next section) is used for identifying
keys in a cell.

Data types and attributes

The language includes the data types REAL, I~TEGER,
ALPHA (equivalent to PL/1 CHARACTER), POINTER,
LIST, STACK, and QUEUE. LPL has attributes NODE
TYPE, IDENT, RFCNT, and KEY. The declaration

DCL ITYP
ID
RC
KY

INTEGER
INTEGER
INTEGER
ALPHA(5)

NODETYPE,
IDE~T,

RFCNT,
KEY;

declares ITYP to be an INTEGER variable indicating the
type of cell, ID to be an INTEGER variable having the
identification attribute (i.e., ID represents an ID field like
that in a SLIp7 cell), RC to be an INTEGER variable
having the reference count attribute, and KY to be a five
character key. The meaning of each of these attributes will
be described further in the next section in the discussion
of the DEFINE statement.

Definition of cell structure

The DEFINE statement provides the facility for the user
to describe the structure of the cells that he desires for an
application. Each time the DEFINE statement is executed
it sets up a template (unless one already exists) describing
that cell type. Suppose we have the declaration statement:

DCL ITYP
RV
IV
CV
LK
ID
RC
KY

INTEGER NODETYPE,
REAL,
INTEGER,
ALPHA (20) ,
POINTER,
INTEGER IDENT,
INTEGER RFCNT,
ALPHA(5) KEY;

LPL-A Generalized List Processing Language 661

Word 1
Word 2
Word 3
Word 4

AL
LK
IT

3
3
2
2

Figure 2-Template structure for cell with three types of fields

The mode of the variables in this declaration statement
indicate to the DEFINE statement the types of fields to be
included in a cell. Multiple entries of each type can be
present in the DEFINE statement (this will be reflected in
the template); thus, allowing freedom in naming fields in a
cell structure. The format of the DEFINE statement is
illustrated in the example:

DEFINE CELL (ITYP, RV(H), IV(I), CV(J), ID(K),
RC(L), KY(:\I), LK(N»);

The variables in the argument list must appear in a declara
tion statement preceding the DEFINE statement. The H, I,
J, K, L, ::\1, and N INTEGER quantities (they could also
be INTEGER constants) indicate how many entries of each
type are in a cell. Each cell can have four types of values:
REAL, INTEGER, ALPHA, and POINTER. The IDENT
and RFCNT entries in a cell allow the user to have his own
identifier and reference count fields. These two types of en
tries increase the flexibility of LPL by allowing the user to
develop any list structure format that he desires. We expect
that only one identifier and one reference count field will
be included in a cell, but the facility exists for more than
one of each. Not all variables must appear in the DEFINE
statement. The statement

DEFIKE CELL (ITYP, CV(3), LK(2), IV(2))

describes a cell of type ITYP with three alphanumeric values
(with 20 characters each), two pointer fields, and two integer
values. Figure 2 shows the template corresponding to the
above cell structure. W"hen a variable with the KEY attri
bute is included in the DEFIKE statement, this implies the
cell has a key-linked pointer structure. The number of keys
and pointers must be the same. A KEY variable can be any
of REAL, INTEGER, or ALPHA data types. The argu
ments in the DEFI~E statement can appear in any order.

LP L data manipulation statements"

We provide LPL \vith enough high level manipulation
statements to save the user time in writing programs, but
we also give him the full capability of a list processor to
program at a lower level. The tokens in each LPL statement
are separated by commas with a blank following each key
word. LPL has the following data manipulation statements
(a cell pointed to by POI~TER variable P is designated as
cell P; and [] indicates the contents are optional):

1. GET P,I; - Allocates a cell P of type 1.
2. DELETE P,T[(KEY)] [,R]; - Deletes cell P from

list T, cell P follows cell R (op
tional); if key KEY (optional) is

662 National Computer Conference, 1974

specified then only pointers associ
ated with KEY are modified.

3. INSERT P,T[(KEY)],R; - Same as DELETE ex
cept cell P is inserted in list T after
cell R (KEY is again optional).

4. RELEASE P; - Frees the storage occupied by cell
P. The SYSRC for cell P must be
zero.

5. ENTER exp, T; - Enters the value of exp into T
(T must be a STACK or QUEUE
and the mode of the value of exp
must agree with that indicated in
the CREATE statement for T).

6. TAKE X, T; - Removes an entry from T (T must
be a STACK or QUEUE) and

7. RV(N),P
place it in X.

exp; - Sets the Nth REAL,
INTEGER, ALPHA, POINTER,
IDENT, RFCNT, or KEY field
in cell P to the value of expo

8. X = RV(N),P; - X becomes the Nth value of one
of the fields in cell P.

9. COPY-S,T; - Copies-list S into list-To
10. P = N, T[(KEY)]; - P is the pointer (optionally

associated with key KEY) to the
Nth cell in list T.

11. SPLIT T [(KEY)],P; - Split list T at cell P. The
use of KEY is optional like in the
DELETE statement.

12. CON CAT S[(KEY)], T; - Concatenates lists Sand

13. COLLECT;-
14. ERASE T; -

T in the order given.
Invokes the garbage collector.
Erases list T (cells are deleted from
T).

15. P, (SINGLY I
DOUBLY I
L-R h-Declares cell P to have one of the
MULTI J five pointer structures indicated.
KEY

16. CREATE T{STACKI{SINGLY ~{REAL } I DOUBLY INTEGER'-
QUEUE r JSINGL Y ALPHA '

I'LDOUBL Y POINTER

lLIST Jj/SINGLY I
DOUBLY I
L-R r
:\1ULTI J

lKEY
Declares T to be a pointer to a
specific structure. The data types
REAL, INTEGER, ALPHA, and
POINTER apply only to
STACKS and QUEUES.

17. REMOVE P; - Removes cell P from all lists of
which it is a member.

18. REPLACE P,R[,T[(KEY)]]; - Removes cell Pfrom
all lists or from a single list T and

replaces it with cell R. Only the
pointers associated with KEY may
be changed (optional).

A few of the LPL statements require a more detailed
description; however, some such as COPY, CON CAT, etc.
a:-e self-explanatory and need no further discussion (algo
flthms for COPY, CONCAT, etc. are either well-known or
trivial and are not discussed). The GET statement allocates
a cell of a specific type. During the allocation of this cell
the template for this cell type is interrogated to determin~
the cell's structure. Statement #15 above is required to fix
the pointer structure of cells in a list not created by the
CREATE statement. Failure to do this results in a cell
ha~ing a .singly-linked pointer structure automatically
assIgned to It. The INSERT statement increases the SYSRC
by one for each execution, and the DELETE statement
automatically decreases the SYSRC by one (other informa
tion about these two statements has been discussed in detail
in an earlier section). Statement #7 is important because it
allows the user to place values in the respective fields of
cell P.

The ENTER and .TAB:E stl:\,tements operate on STACK
and QUEUE structures defined by the CREATE statement.
Before discussing these two statements it is necessary to
describe the CREATE statement. The CREATE statement
allows the user to set up LIST, STACK, or QUEUE struc
tures ",ith a homogeneous pointer structure. The variable T
in the CREATE statement is of type POINTER and points
to a descriptor. The CREATE statement clearly describes
the format of the defined structure. The user does not have
to set the pointer structure using statement #15 in each
cell for these structures.

At compile time the code is generated to allocate and ini
tialize each descriptor. Descriptor pointer fields are set to
NULL. The format of these descriptors is given in Figure 3.
The first word in each descriptor indicates the type of struc
ture being described (actually the first word is not an alpha
numeric string as indicated but is an integer identifier).
The second word describes the pointer structure. The third
word in both the STACK and QUEUE descriptors indicates

LIST Descriptor

T~---7 I $ STACK I
SINGLY
REAL
TOP

STACK Descriptor

T-----71 $QUEUE I
DOUBLY
REAL
FRONT
REAR

QUEUE Descriptor

Figlln~ ~-LTST; STACK, nnd QUE1}E descriptors

the mode, e.g., REAL, of the values in the structure. The
last word (or words) of each descriptor point to the structure.

At runtime the pointer entries in Figure 3 are updated
and modified as the structures are manipulated. As items
are entered (removed) into (from) STACKs and QUEUEs,
the pointers TOP, FRONT, and REAR are updated. Associ
ated with STACK structures is a function TOP(T) that
returns as its value the pointer to the top of stack T.
FRONT(T) and REAR(T) are functions ,vhose values are
pointers to the front and rear, respectively, of QUEUE T.
HEAD(T) is a function associated with LISTs. Its value is
the pointer (LISTPTR) to the first cell in the list. These
functions can only be used with structures declared in the
CREATE statement unless the user sets up his own descrip
tors with the same format at LPL.

The ENTER and TAKE statements enter (remove) in
formation into (from) the stacks and queues. The pointers
to the TOP, FRONT, and REAR of the defined structures
are automatically updated by the ENTER and TAKE state
ments.

The only other statements that we discuss are the
REMOVE and REPLACE statements. Both are basically
the same with the exception that REPLACE inserts another
cell in place of the one removed. These statements 'perform
several operations that would otherwise require a consider
able amount of coding on the part of the user. At a given time
there is no way to know in which lists cell P is a member
(unless some very expensive, 'with respect to storage, book
keeping tasks are carried out). But we do now the number
of lists in which cell P is a member (by using the SYSRC
value). There are two ways to attack this problem. The first
way is to begin tracing the user created lists and determine
in which lists cell P is a member. But as we have stated
before, list tracing in lists with cells having a variable number
of pointers is difficult and time consuming. Also storage is
required to save pointers during the tracing. The second way
(done by the REMOVE and REPLACE statements) is to
trace the super list and determine which cells contain pointers
to P. The examination of cells in the super list ceases when
LPL locates the number of cells (containing pointers to
cell P) given by the value of the SYSRC field in cell P. In
general, we expect less time to be consumed in tracing the
super list (because of its simple pointer structure) than other
user created lists; and no extra storage is required to save
pointers.

SUMMARY

LPL is an attempt at providing programming convenience
for the user. LPL is different from most other list processing

LPL-A Generalized List Processing Language 663

languages because it allows the user to define multiple cell
structures and cell sizes at runtime, thereby allowing list
structures with multiple cell-types. LPL allows the user
much flexibility in defining list structures. This capability
proves useful when the user's data are not homogeneous.
It also allows the user to represent structures in a more
natural manner. While LPL is a flexible language that can
be tailored to the user's requirements, it provides the com
plete and convenient programming facilities of a ready-made
system.

List tracing is the primary obstacle, especially during
garbage collection, to implementation of list processing sys
tems allowing multiple cell types. LPL uses a super list con
taining all cells previously allocated and a reference count
scheme to make garbage collection trivial. No marking phase
is required; hence, complex list tracing is avoided. One of
the primary design features of LPL is to avoid list tracing
as much as possible.

LPL statements provide for handling the normal list pro
cessing operations, e.g., copying recursive lists, erasing lists,
splitting lists, concatenating lists, garbage collection, etc.
Other operations such as removing a cell from some or all
of the lists of which it is a member (and possibly replacing
it with another cell) are performed automatically by the
execution of a single statement. All LPL statements can
directly handle singly-linked, doubly-linked, left-right-linked,
and key-linked pointer structures. Special facilities are pro
vided for the creation of stacks and queues.

Finally, LPL has been used by the author in artificial
intelligence problems and in polynomial manipulations. These
two problem areas require the use of several cell types.

REFERENCES

1. Abrahams, Paul W., "The LISP 2 Programming Language and
System," AFIPS, 1966, FJCC, Vol. 29, Spartan Books, N.Y., pp.
661-676.

2. Fenichel, Robert R., "List Tracing in Systems Allowing Multiple
Cell-Types," CACM, Vol. 14, August, 1971, pp. 522-526.

3. Knuth, D. E., The Art of Computer Programming, Vol. 1, Addison
Wesley, Reading, Mass., 1968.

4. Lefkovitz, David, File Structures for On-Line Systems, Spartan
Books, New York, 1969.

5. McCarthy, John, et aI., LISP 1.5 Programmer's Manual, MIT
Press, Cambridge, Mass., 1965.

6. Peck, J. E. L. (ed.), ALGOL 68 Implementation, North-Holland
Publishing Company, Amsterdam, 1971.

7. Weizenbaum, J., "Symmetric List Processor," CACM, Vol. 6,
September, 1963, pp. 524-544.

8. IBM System/360 PL/1(F) Language Reference Manual, GC28-
8201-4.

Generalized structured programming

by JOHANNES J. MARTIN

Virginia Polytechnic Institute and State University
Blacksburg, Virginia

INTRODUCTION

Structured Programming as defined by Dijkstra 4 produces
programs whose flow can be described by one of the basic
flow graphs shown in Figure l.

Each square box in such a flow graph represents either a
primitive operation or another well structured program.
Thus, Structured Programs are recursively decomposable
with respect to these basic flow graphs. As a main char
acteristic each basic flow graph has only one entry point
and one exit.

B6hm and Jacopini2 who have investigated a very similar
set of flow graphs have demonstrated that their set, which
is even slightly simpler than Dijkstra's, is sufficient for de
fining all algorithms. ~Iany Programming Languages include
control constructs (e.g., the if-then-else or the while construct
in ALGOL 60 and PL/l) that support, to some extent, the
use of the basic flow structures of Structured Programming.
Wirth's languages PASCAL,ll an ALGOL derivative, pro
vides control constructs for all flow graphs needed in Struc
tured Programming (Table I) and no additional ones.

Because PASCAL matches the demands of Structured
Programming so completely, the notational extensions sug
gested in this paper will be stated as extensions of PASCAL.

The main assets of Structured Programs are their clarity
and relative simplicity. In particular, the method of Struc
tured Programming encourages top down analysis9 of prob
lems or the development of algorithms by step\vise refine
ment. 10 Programs developed in this manner are automatically
modular; hence, Structured Programming provides a sys
tematic \vay of modularizing. Furthermore, as Dijkstra3,4

has pointed out, structured programs display a simple relation
bet\veen the progress of the computation and the progress
through the program text. As a result, the amount of informa
tion needed for determining the computational progress ac
complished at some point in a program does not depend on
the length of the program (since one does not need a trace)
but only on the depth of loop nesting and the depth of sub
program referencing at the point of interruption. All these
points clearly enhance the transparency of a program.

.l\ evertheless, many programmers feel that the method of
Structured Programming is too restrictive. In particular,
since loops can have only one exit (Figure 1) some simple
and very common program structures are outlawed. The

665

classic example is the search 100p.6 The search loop either
finds the item wanted, in which case some action A should
be taken, or it does not find the item, in which case an alter
native action B should be executed. Such a search loop can
obviously be interpreted as a program segment that com
putes a condition and, by virtue of its two exits, selects one
of two consequent actions. Thus, such a loop could logically
replace a decision box in a flow chart. However, the rules of
Structured Programming require that decision nodes are prim
itive; the substitution of a decision node by a program seg
ment is not permitted since the flow of such a program
segment would not conform with any of the four basic flow
graphs. Thus, Structured Programming, in effect, classifies
conditions which are used to control the flo"v of a program
into two categories:

(a) Simple conditions that can be specified in condition
boxes because they can be computed by a single
expression, and

(b) Complex conditions that must be computed in a pro
gram segment that precedes the test which ultimately
makes the selection because they cannot be computed
by a single expression.

This distinction causes programming steps that are motivated
solely by structural restrictions imposed by rules of style
rather than by the inherent logic of the problem to be solved.
At this point, the generally beneficial rules of Structured
Programming definitely lower the understandability of a pro
gram.

Shortcomings of Structured Programming have been dis
cussed in the literature, especially in some articles concerned
\vith the elimination of the goto-statement. 5, 7,13 However, to
my knO\vledge the problem has never been stated as a prob
lem of discrimination among simple and complex conditions,
although it seems to be this discrimination that causes the
alleged inconveniences of gOio-less or Structured Program
ming.

In this paper \ve shall suggest a set of generalized flo\v
structures as a basis for structuring programs. The main
idea is to have basic flow graphs with multiple exits so that
not only action nodes (square boxes) but also decision nodes
can be replaced by program segments. As a result the arti
ficial distinction bet'.veen simple and complex conditions will
disappear.

666 National Computer Conference, 1974

Figure I-Primitives of structured programming

Allen and Cockel have developed a method for analyzing
flow graphs which they call interval decomposition. With this
method, one can reduce flow graphs that do not contain
multiple entry loops to a single node. We shall be able to
show that our set of basic flow structures permits the con
struction of exactly these flow graphs.

We shall further explain why the advantages claimed for
the original system of Structured Programming are main
tained by the generalized version suggested. Finally, we shall
suggest a set of new control constructs (as an extension of
PASCAL) \vhichsupporfs our g€mera,lized set cir -basic flow
graphs.

GENERALIZED STRUCTURED PROGRAMMING

We define a well-structured flO\v graph as a graph that
can be described by one of the structures shown in Figure 2
where the nodes represent either primitive operations or
well-structured flow graphs. The flow graphs shown in Figure
2 contain only two types of nodes: nodes with several entry
points and one exit (later referred to as collector nodes)
and nodes with one entry point and several exits (later
referred to as action nodes).

Collector nodes do not correspond to any computational
action; their function is comparable with that of labels in
programming languages. Hence, collector nodes are not fur
ther decomposable.

Action nodes have k21 exits and, thus, may occur as
decision nodes as well as single-exit action nodes.

Our structures show some resemblance to Dijkstra's se
quential (2a), selective (2b) , and iterative (2c) modes of
operation. However, they are less restrictive since the set
of graphs which they generate contains the set generated by
Dijkstra's structures as a proper subset. Later we shall refer

TABLE I

if (expression)then (statement)[else (statement) J

case (expression)of (const): (statement)[; (const): (statement) J* end

while (expression)do (statement)

repeat (statement)[; (statement) J* until (expression)

for (var.): = (expression) (sep.) (expression)do (statement)

(sep.) :: = tol downto

A \ 1/ \ ...
t ~

a b c
Figure 2-Primitives of generalized structured programming

to our structures as forms 2a-2c; we shall further use the term
decomposable (reducible) restrictively for graphs that are
decomposable (reducible) with respect to our system_

PROPERTIES OF DECOMPOSABLE FLOW GRAPHS

First we shall show that a graph is decomposable if it
does not contain multiple entry loops.

1. -Wesnall-consider ohly flei,,," graphs with" exactly one
entry point. The node R by which a flow graph is
entered will be called its root.

2. We postulate that in all flow graphs considered, there
is a path R-N for every node N of the graph.

3. Definition: A loop (or strongly connected region) is a
set S of nodes such that for each pair of N,~1 E S there
is a directed path N-.M.

4. Lemma: A flo\v graph that does not contain loops
can be reduced to an action node by the forms 2a
and 2b.
(Proof by induction based on 1. and 2. using the fact
that the nodes in a loop-free graph (3.) are partially
ordered.)

5. Definition: Flow graphs are _ equivalent, if they can
be transformed into each other by collapsing adjacent
collector nodes or, reversely, by splitting a collector
node into two adjacent ones. *

6. Definition: A collector node C is a selection collector if
there is a node D such that every directed path C-C
contains D and there is a simple path D-C for every
arc entering C.

7. Definition: A collector node that is not a selection
collector is called a loop head.

8. Lemma: Every loop contains a loop head. (Follows
from 2., 3., 6., 7.)

9. Definition: A loop head L is the head of an S-loop
(single entry loop) if there exist paths L-L that are

* Since collector nodes do not represent any action, this transforma
tion trivially does not change any essential property of the flow graph
(it is equivalent to the introduction of an additional label for an already
labeled point in a program). However, it facilitates the creation of flow
graphs for which collector nodes can be classified into (a) selection
collectors; (b) loop heads for single entry loops; (c) loop heads for
multiple entry loop;;.

disjoined from all paths R-L except for the node L.
Nodes belong to the S-loop if they are contained in
such a path L-L. Other loops are called M-loops
(multiple entry loops)

10. By splitting the loop head (.5.), if necessary, we shall
ahvays make sure that all arcs but one entering the
head of an S-loop participate in the S-loop. Thus, we
shall make sure that only one arc enters an S-loop
from the outside.

11. Lemma: If an S-loop Ll contains the head of an
other S-loop L2, all nodes of L2 are also nodes of L1•

(Follows from 9.)
Note 1: Definition 9. assures that the converse of II.

is not true, i.e., there are nodes in Ll that
are not nodes of L2.

Note 2: It follows from 11. that an S-loop is not
necessarily a proper nest of loops, say, in the
FORTRAN sense. Figure 3 gives an example.

12. Definition: The rump of an S-loop is the graph that
consists of all nodes of the S-loop but the head.

13. Lemma: The rump of an S-loop is a graph with one
entry point and one or more exits. (Follows from 12.
and 9.)

14. Lemma: An S-loop that does not contain any loop,
can be reduced to an action node.
(Proof: The rump is a loop free graph with one entry
point (13.) and,hence, reducible because of 4. The
loop head can then be attached by form 2c to form a
graph with one entry point and one or more exits
because of 9. and 10.)

15. Lemma: S-loops that do not contain :Vl-Ioops can be
reduced to an action node.
(Proof: by induction based on 14., partial ordering is
assured by 11.)

16. Theorem: Flow graphs that do not contain M-Ioops
are well structured with respect to the forms 2a-2c.
(Proof: follows from 4. and 15.)

Because the set of flow graphs that can be constructed
with the forms 2a-2c is considerably larger than the set
that can be generated from Dijkstra's primitives, one might
suspect that some of the advantages of the original set are
lost. We believe that this is not the case. The advantages of
Structured Programming seem to be based on the decom
posability of the . programs created and on the fact that
textual progress and computational progress are related in a
simple way. Both properties are maintained in our system.

(1) By definition, programs are decomposable with respect
to our basic control structures. The functions of these
structures are clearly not any more difficult to under
stand than the functions of Dijkstra's primitives:
Form 2a and 2b can be understood by enumerative
reasoning' whereas 2c, i.e. the loop, can be analyzed
by inductive reasoning. If formal program verifica
tion is persued, we shall need to determine one asser
tion for every exit of such a basic structure; whereas,
for Dijkstra's primitives only one assertion is needed

Generalized Structured Programming 667

Figure 3-Example of an S-loop

(since there is only one exit). On the other hand, the
assertions needed for our structures will frequently be
slightly simpler since we shall not need control vari-

. abIes that keep track of computed conditions.
(2) The relation between textual and computational prog

ress is similarly simple in both systems.
Loop free single entry graphs have a fixed and,

thus, trivial relation between computational progress
and textual progress.

Further, all loops are entered only at the loop head
for every turn through the loop. Hence, a counter
incremented when the loop head is passed, can keep
track of a loop in progress. The rump of a loop is
again either a loop free single entry graph or it con
tains other single entry loops. The number of active
counters depends, as in Dijkstra's system, only on
the depth of loop nestings.

We conclude that our set of primitives leads to similarly
transparent programs as do Dijkstra's.

There is, however, one major difference that makes man
ipUlating our flow graphs somewhat more difficult. Structured
Programs in Dijkstra's sense are unambiguously decom
posable if one ignores the fact that the order in which con
catenated actions are associated is arbitrary. This ambiguity
does not matter at all because it does not cause any un
certainty since the actions are fully ordered.

For our system, this very ambiguity causes somewhat of a
problem: Because we concatenate multiple exit nodes rather
than single exit nodes, the structure created by repeated
concatenation is only partially ordered. Thus, the way in
which the parts are put together makes a structural differ
ence. Nevertheless, if suitable language notations are pro
vided that permit the realization of the primitives as pro
gram text, the programmer can (and must) indicate how he
wants the operations to be grouped. The programmer's
wishes are lost, though, after the program is compiled.
However, this fact cannot be counted too heavily against our
system since the clarity of source programs and not that of
object programs is the main goal.

668 National Computer Conference, 1974

NEW CONTROL CONSTRUCTS

Before introducing the new control constructs, we should
note that there are at least two known constructs that sup
port, to some extent, our system:

(1) Wulf's leave feature in his programming language
BLISS/2 and

(2) The exit feature as available in ALGOL 68. 8

These features are particularly effective because in both
languages statement compounds may deliver values. Hence,
statements may be inserted into conditional statements. The
leave (exit) statement facilitates the termination (completion)
of the inserted statement at any point within this statement.

Although both constructs provide quite flexible mech
anisms for dealing -with complex conditions, none of them
fully supports the general loop structure (form 2c); further,
the exit construct only permits transferring control to the
next higher block level. Contrarily, the new constructs sug
gested fully support our system; also, they do not require
that statements possess values.

Two types of control constructs are considered; the first
type (A) is a generalization of-existingconsttticts. It has -
been designed to facilitate the definition of arbitrary condi
tions within conditional statements. The second construct
(B) has been added in order to completely support form 2c.

(A) As an extension of Wirth's programming language
PASCAL, we suggest the notion of a group, i.e. a
compound statement with potentially multiple exits.
These exits are exploited by inserting the group into
a conditional statement in the place of the usual
expression. Therefore, a group should behave like an
expression, i.e. it should possess a value. A group is
formed by the brackets

begin-succeeds,
begin-fails, or
begin-group.

The first two forms are used to denote boolean groups, i.e.
groups that can be used instead of boolean expressions. The
last form is non-boolean and can be used in the case con
struct.

Examples:
(1) while begin (statement)succeeds

do (statement)
(2) case begin (statement)group of

L1: (statement)
L2: (statement)

end
The value of a group is determined by the statements

success,
failure, or
case (const).

The statements success and failure are used in boolean
groups, and thA statement case <canst) is used in non-boulean

groups. These statements transfer control to the end of the
group and assign the group the value true (success-succeeds,
failure--fails), false (success-fails, failure--succeeds), or the
value of (const).

Example:
begin repeat (statement)

un til begin repeat if (condl)then success
until (cond2); failure

fails
end

In the compiled program, the values defined by a group
would usually not materialize; instead, each branch to the
end of the group would be extended to the program part to
be executed next. Since transfer of control goes to the end of
a group and since the group brackets can be set arbitrarily,
it is possible to specify loop terminations that bridge across
several loop levels.

(B) As a second structure, a new loop construct is sug
gested that combines the case and the while state
ment. Its form is

repeaicase <expression)of
L1: (statement)
L2: (statement)

exit on
M1: (statement)
M2: (statement)

end

This statement executes the statement labeled by L1 (L2,
L3, etc.) repeatedly while (expression) yields L1 (L2, L3,
etc.), and it terminates the loop executing the statement
labeled by M1 (M2, M3, etc.) when (expression) yields
M1 (M2, M3, etc.).

SUMMARY

The set of basic flow structures identified in this paper
permits the construction of all flow graphs that do not con
tainrn,llltipl~:::~Jltry loops. These are -the same graphs -as
those that can be fully reduced by Allen and Cocke's method
of interval reduction. It has been pointed out that programs
based on the described system have most, if not all, of the
positive characteristics of Structured Programs. Further, by
extending Wirth's language PASCAL, a set of new control
constructs has been suggested that support the proposed set
of flow structures. We might add that PASCAL extended in
this way, should not anymore contain the goto-statement.

REFERENCES

1. Allen, F. E. and J. Cocke, "Graph-theoretical Constructs for Pro
gram Control Flow Analysis," IBM~ Researr:h Report RC3923,
July 1972.

2. Bohm and Jacopini, "Flow diagrams, Turing machines, and
languages with only two formation rules" CACM 9,5, May 1966.

3. Dijkstra, E. W., "Goto Statement Considered Harmful," Letter to
the Editor, CACM, 11, 3, March 1968.

4. Dijkstra, E. W., Notes on Structured Programming, August 1969.
5. Hopkins, M. E., "A case for the GOTO," ACM Annual Confer

ence 1972.
6. Knuth, Floyd, Notes on avoiding 'GOTO' Statements, Technical

Report CS 148, Stanford University, January 1970.
7. Leavenworth, B. M., "Programming With(out) the GOTO,"

ACM Annual Conference 1972.
8. Lindsey, C. H. and S. G. Van Der Meulen, Informal introduction to

ALGOL 68, North-Holland Publishing Co,. Amsterdam, London,
1971.

9. Mills, H., "Top down programming in large systems," Debugging

Generalized Structured Programming 669

Techniques in Large Systems (Ed. Rustin Randall) Prentice-Hall,
Englewood Cliffs, N.J. 1971.

10. Wirth, N., "Program development by stepwise refinement," CACM
14, April 1971.

11. Wirth, N., "The programming language Pascal," Acta Informatica,
1,35-63.

12. Wulf, et aI., "Bliss: a language for systems programming," CACM,
December 1971.

13. Wulf, W. A., "A case against the GOTO," ACM Annual Conference
1972.

14. Wegner, Eberhard, "Tree-structured programs," CACM, 16, 11,
November 1973.

15. Kosaraju, S. Rao, "Analysis of structured programs," Proc. of 5th
Annual ACM Symp. on Theory of Computing, May 1973.

Computer performance analysis in mixed
on-line jhatch workloads

by JO ANN LOCKETT

The Rand Corporation
Santa Monica, California

INTRODUCTION

Analysts may measure and analyze a mixed-workload system
for a variety of reasons. As a first example, it may be neces
sary to cut costs by reducing equipment. Before arbitrarily
removing some piece of equipment, management should de
termine how the on-line and batch systems will be affected.
If problem areas can be identified prior to equipment re
moval, action can be taken to reduce any negative impact.
The next decision may then involve the selection of equip
ment to remove. This decision could best be made if com
parative data on the performance of the various configura
tions were obtainable.

A second motivation might be to determine whether the
present system can accommodate more terminals. Tests could
be conducted to determine the performance of the system
with the current configuration and its degredation as the
on-line load is increased.

A third motivation might be to determine whether a system
can perform some function within a specific time interval.
In this circumstance it is important to be able to identify
the maximum load (or number of terminals) the system can
support and still be able to perform the critical functions.

As a final example, an installation may need to identify
the specific causes of saturation. If the system resources
which contribute most strongly to saturation are known,
management can limit the use of those elements by several
means including, (1) raising the cost of using the resource,
(2) making it difficult for the user to obtain the resource,
and (3) scheduling the use of the resource. With this kind of
information adverse situations can be avoided.

The importance of computer performance evaluation has
been recognized for some time.1 ,2,3 However, the most mean
ingful measurements for analysis and evaluation of batch
systems are often difficult to obtain. Many problems occur
in measurement of multiprogramming and multiprocessing
systems, usually because of the complexity of current operat
ing systems. Ideally, measurements are conducted in a con
trolled environment, but this approach of total control is
not always feasible due to critical processing requirements or
simple cost considerations. Furthermore, results from a con
trolled environment may be applicable to the artificial load-

671

ing situation only. Data gathered from a system with a
realistic workload is often necessary. Even more problems
surface in on-line and mixed-workload systems. More com
plexities are imposed on the system as services such as
swapping and time-slicing are introduced. In a batch shop,
scheduling can be controlled by the operator; in a mixed
workload environment most of the control is lost and loads
are generated randomly. The need for realistic performance
data, however, is at least as large in this mixed-workload
environment as in the simpler batch-only or on-line only
systems.

REDUCING ME:;\10RY AT RAND

The techniques described in this paper were tested on a
specific, real system. They appear generally applicable to a
wide variety of situations like those previously described.

At The Rand Corporation the problem of measuring a
mixed workload was addressed when one of the on-line sys
tems, Conversational Programming System (CPS), was re
ceiving very little use. CPS required 648K bytes of dedicated
core storage on an IBM 360/65. The Rand Computation
Center was interested in reducing costs and therefore in
vestigated the removal of CPS and one megabyte of bulk
storage from the system. This reduction of resources would
be performed only if users would not be adversely affected
by the reduction of resources.

Reports showed that CPS use at Rand had been low for
some time. Many changes had occurred both in the Rand
workload and in the system since CPS had initially been
introduced. One addition to the system, WYLBUR,4 is a
text editor ·with remote job entry capabilities. Many CPS
users had converted to WYLBUR. Because CPS usage was
so low, questions were raised regarding the removal of CPS
and its supporting (and costly) resources from the system.

CPS required the dedicated use of 648K bytes of core
storage on the IBl\1 360/65 operating OS/MVT. To sup
port CPS, we leased one megabyte of Ampex Extended Core
Memory (ECM). The remaining 376K bytes were used for
other general purposes. Determini..'1g the functional e...ffects
of removing the portion of core dedicated to CPS was sim-

672 National Computer Conference, 1974

pie; CPS users were asked whether CPS removal would
adversely impact their research. Determining the perform
ance effect of removing the remaining core was not so simple;
we had no idea of the role it played in the system. There
would be less core for batch jobs so many functions would
be running in slower, IB::\f-supplied Large Core Storage
(LCS).

The system at the time included an IBM 360/65 running
OSjMVT. The system was configured with a good deal of
foreign (non-1MB) equipment. Storage consisted of 512K
bytes of highspeed core, one megabyte of IR\1 Large Core
Storage (LCS), and one megabyte of Ampex Extended Core
Memory (ECM). Analyses were conducted assuming that if
core were returned, it would be the Ampex core. This was
for two reasons. First, due to certain lease arrangements, it
appeared to be infeasible to return the LCS. Secondly, by
assuming a worst case for the study (keeping the slowest
core), we would not have to repeat the tests if the LCS could
be returned.

TEST DESIGN

The most effective way of determining the effects of a
modification is often to try it. In this case we could try the
proposed system modification by removing memory. The
AMPEX ECM was not physically removed for the tests.
Since IB::\f machines are able to run with less core than is
actually present, a simulated removal of the EC:Vf was
achieved by loading the system (through an IPL) to run
with only one and one-half megabytes of storage. In this
way the EC:VI, which resided in the highest locations, was
effectively removed.

Data were collected for a three-\veek period. The full two
and one-half megabyte configuration was used during the
first and third weeks. The proposed one and one-half mega
byte configuration was used during the second week. The
first week was treated as a control week but its purpose was
to insure that the tests were adequate, that the procedures
and data collection did not adversely affect either the users
or the system, and to allow time to solve any problems which
might be encountered prior to the actual test weeks. The
second week was the true test week during which time the
smaller configuration was run. The third week was the control
week. During this week data were collected on the normal
configuration. Data collected during this week would provide
a basis for comparison "",ith data collected during the test
week.

To evaluate the effect to the system of removing CPS
and one megabyte of bulk core, we first had to identify the
areas of performance by which the service of the computer
could be judged. Then we needed specific metrics and decision
criteria to specify acceptable levels of service prior to the
evaluation. Otherwise we could fall into the trap of collecting
data without purpose and subsequently making an arbitrary
decision. We felt that four items~ each likely to be affA~t.ed

by the removal of the ECM, would reflect the general level
of service provided. The four user-related variables were
selected because we were specifically trying to determine the
effect of the change on the users. The four items were

• CPU utilization
• batch turnaround
• WYLBUR response time,
• BIOMOD availability

To assure uniform collection of data, forms were designed
and reproduced for use in the on-line tests. We found forms
to be quite useful because both BIOMOD and WYLBUR
tests 'were conducted by several people. The forms assured
that the same data were collected each time.

CPU UTILIZATIO~

Software monitors are tools frequently used to evaluate
computer performance. The Boole and Babbage monitor,
Computer Utilization Evaluator (CUE) can provide a large
amount of . data, depending 'on user selected parameters.
CUE was run for an hour, twice each day for the three-v leek
test period. Although overhead required to run CUE is not
prohibitive, parameters were selected to furnish required
data with minimum impact to the system. This was to main
tain an environment for testing as close to normal as possible.
Data on CPU utilization and device and channel activity
were collected at half-second intervals. CUE was always run
in 14K bytes of high-speed storage.

We measured CPU utilization because the proposed
system configuration had the master scheduler, linkpack
area, and readers residing in slower core. These modules,
executing in slower core, could increase CPU utilization to
saturation. A saturated processor would limit future system
modifications, so any tendency toward this condition should
be detected during the test. Elimination (or severe reduction)
of excess capacity could be adequate reasons for rejection of
the core reduction; our decision criterion was to allow a 50
percent reduction in idle time of the processor.

BATCH TURNAROUND

Normal batch turnaround for jobs run during the day had
averaged 30 minutes for quite some time. Users queried
regarding acceptable limits of turnaround seemed to willingly
accept batch turnaround up to one hour without feeling in
convenienced; extension of turnaround time beyond one hour
would constitute an unacceptable situation. (However, we
were only concerned with jobs run during the day shift.
Priority was given during the day to small jobs requiring
64K to 104K bytes of storage and executing in less than 200
CPU seconds. Turnaround during the night shift was not
considered critical since most users waited until morning
to get their output.)

Computer Performance Analysis in Mixed On-Line/Batch Workloads 673

WYLBUR

WYLBUR is an on-line text-editor and has remote job
entry functions similar to those performed by the remote
job entry functions of CPS. WYLBUR is used to create,
store, retrieve, and modify text. This is by far the most
popular of the online systems at Rand and is used for many
things including preparation of reports, entry to the ARPA
network of computers, and the coding and execution of com
puter programs. Due to its popularity, there is concern for
maintaining both reliability and acceptable response time
of the system.

TABLE I-CPU Utilization

WEEK 1
CPU UTILIZATION

DAY TIME (Percent)

Monday 3:23- 4:27 PM 86.63

Tuesday 9:07- 9:42 AM 50.97
2:14- 3:16 PM 45.75

Wednesday 10:09-11:10 AM 65.81
Thursday 2:27- 3:27 PM 47.33

4:37- 5:38 PM 61.47
Friday 9:31-10:32 AM 72.54

1:30- 2:30 PM 62.68

MEAN CPU UTILIZATION =61.65 Percent
STANDARD DEVIATION =12.91 Percent

WEEK 2
CPU UTILIZATION

DAY TIME (Percent)

Monday 10:56-11:58 AM 73.89
3:20- 4:20 PM 73.64

Tuesday 2:11- 3:11 PM 55.65
Wednesday 10:02-11 :03 AM 73.10

3:26- 4:26 PM 81.51
Thursday 2:27- 3:27 PM 69.53

4:27- 5:28 PM 62.83
Friday 9:42-10:43 AM 64.64

1:28- 2:29 PM 58.17

MEAN CPU UTILIZATION =68.11 Percent
STANDARD DEVIATION = 8.40 Percent

WEEK 3
CPU UTILIZATION

DAY TIME (Percent)

Monday 10:42-11:42 AM 72.74
3:04- 4:04 PM 86.58

Tuesday 2:01- 3:01 PM 53.72
4:03- 5:03 PM 78.53

Wednesday 9:56-10:56 AM 51.44
3:28- 4:28 PM 57.64

Thursday 2:27- 3:27 PM 62.22
4:22- 5:22 PM 53.92

Friday 9:30-10:30 AM 64.08
1:37- 2:37 PM 67.22

MEAN CPU UTILIZATION =64.81 Percent
STANDARD DEVIATION =11.00 Percent

Because of the heavy use made of vVYLBUR, it was im
portant to determine the effect of the planned system modi
fication on it. The competition of higher-priority tasks (in
cluding I/O operations) running in slow core could adversely
affect WYLBUR response time. Experience indicates a per
son using WYLBUR will be intolerant of consistently long
response times for frequently used commands and of fre
quent lockouts (excessive response times). If WYLBUR were
adversely effected, removal of the core would not be con
sidered. We quantified this into the criterion that a difference
in mean response times for the tests and the control weeks
of more than twice the pooled standard deviation would
constitute an unacceptable situation.

BIOMOD

BIOMOD is an on-line system with full vector graphics
capabilities.5 It is a highly interactive system and, due to
its flexible, model structuring capabilities, can be very effec
tive in studying models of dynamic systems. BIOMOD
utilizes a graphics console composed of a television screen,
data tablet, and keyboard and is active for fairly long periods
of time (15 minutes to several hours). It requires 228K
bytes of core and is usually run in a fixed partition in ECM
since running in high-speed core would interfere ,vith the
ability of batch users even to obtain core space. BIOl\rIOD's
real-time recognition of hand printed requires rapid process
ing of tablet data, and this speed can be achieved more
easily in ECM than LCS. Running BIOMOD in the slower
LCS could result in too much tablet data being lost, and the
system would become useless. The criteria for BIOMOD
was that the general performance not be severely degraded.

A test was constructed to evaluate both the interactive
and non-interactive features of BIOMOD. The testing of
BIOMOD was the weakest part of the evaluation as a result
of including subjective measures in the test because the actual
performance of BIOMOD under the proposed configuration
was not important as long as it remained usable.

SPECIAL OK-LINE TESTING PROCEDURES

A session on WYLBUR usually involves the use of several
types of commands. These commands can be categorized as
text input (collect command), file activity (use and save
commands), and text editing (modify, change, and align
commands). To measure WYLBUR response, it is not neces
sary to emulate a "typical script" but rather to measure
response of each of the various commands which are used to
make up a script~ The commands selected for measurement
were those most frequently used. To ensure that each itera
tion of the test would be identical, permanent test data files
were created and the test designed so that input data sets
were never disturbed.

A stopwatch was used to clock the time between the mes
sage being sent and the response. Part of the on-line testing
employed artificial stimulation of the system, using a special

674 National Computer Conference, 1974

TABLE II-Turnaround Statistics

Average Turnaround Time (hours) All Classes L A B Other*

Week 1
Mean 0.51 0.28 0.43 0.67 0.68
Standard deviation 0.078 0.029 0.046 0.157 0.164

Week 2 (without ECM)
Mean 0.72 0.50 0.58 1.11 0.48
Standard deviation 0.092 0.129 0.055 0.183 0.695

Week 3
Mean 0.54 0.33 0.48 0.80 0.95
Standard deviation 0.16 0.052 0.12 0.40 0.44

Number of Jobs Completed

Week 1
Mean 188.75 17.50 95.50 64.00 11.75
Standard deviation 11.52 7.76 10.87 6.67 3.90

Week 2 (without ECM)
Mean 188.75 18.25 112.00 56.00 2.50
Standard deviation 15.66 7.50 14.88 4.64 3.28

Week 3
Mean 203.75 28.25 116.75 48.25 10.50
Standard deviation 17.37 4.82 12.83 12.26 2.29

* Job class determines job. priority and is used to provide balance between I/O and CPU jobs.
MaxIDllim -region size (or Class L Jobs IS 64K.--Ciass A jobs may run in 65-104K and class B in 105-
228K. All three classes are restricted to 150 pages, 500 punched cards, and a total of 10,000 I/O
operations.

hardware device. (This device has been previously referred
to as a surrogate keyboard. 6) The hardware device was
used to transmit commands to the IBM 360/65 at maximum
rate; a stopwatch was used to measure the time between a
message being sent from a terminal (carriage return) and the
returned response. Each command of part 1 of the WYLBUR
test was processed five times. The collect command was
tested in part two of the test. We recorded the number of
lines collected in each of thirty-six five-second intervals.
WYLBUR system status information was recorded several
times during the test. The tests, each requiring 40 to 50
minutes, were run twice each day during the system's busiest
hours. The WYLBUR tests were conducted by several people
since they proved to be rather tedious.

The BIOMOD tests were conducted by threeBIOMOD
users. These tests were run each day during the control and
test weeks. Tablet performance was measured by counting
unrecognized characters and by subjective evaluation of cer
tain specified vector-graphic operations. Elapsed times re
quired for model retrieval and simulation, and for construc
tion of displays, was used to evaluate the non-interactive
features of BIOMOD.

TEST RESULTS

The CPU utilization determined by CUE runs during the
three-week test period is shown in Table I. Each run was
scheduled for an hour during one of the system's heavy-use
intervals (9:30-11 :30 a.m. and 1 :30-.5:30 p.m.). Various
0pBra.t.ional problems pre,rented some runs from being made

according to schedule. The difference between CPU utiliza
tion with and without ECM was not significantly different.

The average turnaround time for the various job classes is
summarized by week in Table II. Turnaround for this report
is defined as the elapsed time between a job being submitted
until the output is available. The average tur~around time
for jobs run during the prime shift (8:00 a.m. to 6:00 p.m.)
increased from 30 minutes to 43 minutes when ECM was
removed. Since we had previously decided to allow average
turnaround time to increase up to one hour, the data showed
that we could remove EGl\! and still meet our performance
goals for turnaround time.

A summary of WYLBUR response times fur the various
commands tested is shown in Table III. The data do not
show any correlation between response time and the removal
of storage. Examination of individual tests showed more
correlation with the time of day and the number of WYLBUR
users than with the presence of ECM.

Degradation did occur in BIOMOD as shown in Table IV.
Times required for model retrieval, display construction, and
plotting increased significantly. Pen data was nl:t signifi
cantly affected, although some pen up/down data was lost
when ECM -was not used. Hov;cvcr, the system did remain
usable.

CONCLUSIONS

The test procedures allowed us to determine the effects of
the proposed system modification. The results showed we
could easily remove CPS and one megabyte (either LeS or

Computer Performance Analysis in Mixed On-Line/Batch Workloads 675

TABLE III - WYLBUR Response Time

Week 2
(without

Week 1 ECM) Week 3

USE
Mean 11.50 13.49 14.14
Standard deviation 1.17 1.47 2.56
Average number of users 3.6 4.0 5.5

ALIGN
Mean 48.78 64.34 70.35
Standard deviation 4.70 11.09 16.02
Average number of users 3.6 4.0 5.5

SAVE
Mean 27.48 32.63 34.86
Standard deviation 2.62 4.14 4.76
Average number of users 3.6 4.0 5.5

CHANGE (with replacement)
Mean 29.18 27.90 29.97
Standard deviation 7.01 4.12 5.83
Average number of users 4.05 4.3 5.5

CHANGE (scan only)
Mean 23.12 20.51 22.98
Standard deviation 10.57 3.20 3.37
Average number of users 4.05 4.55 5.25

LIST
Mean 46.40 51.23 56.98
Standard deviation 8.52 11.89 17.53
Average number of users 4.15 4.2 4.95

COLLECT
Mean! 16.63 17.09 17.96
Standard deviation 3.27 2.05 1. 72
Average number of users 4.2 4.05 4.4

COLLECT
Mean2 18.34 16.91 17.94
Standard deviation 2.34 1.40 1.02
Average number of users 3.9 4.4 4.0

COLLECT
Mean3 18.89 16.93 16.45
Standard Deviation 1.63 2.26 2.15
Average number of users 4.2 4.3 4.0

ECM) wi.thout causing a major impact to our operations.
The approach used for measuring the on-line systems was
very simple and direct, but provided some insights into the
problem of analyzing computers with combined on-line and
batch systems. The suggestions below describe some of these
insights that appear applicable to most such computer per
formance analyses.

• Complete test planning and pilot testing are extremely
valuable. Allowing extra time, prior to actual testing,
to tryout the testing and data collection procedures
will assure that tests provide adequate and meaningful
data on which to base important decisions.

• Metrics should be chosen prior to test design. Tests can
can then be structured to gather information specifically
needed for analysis and to avoid collection of lli"lneCessary
data. Metrics should reflect the goals of the evaluation.

TABLE IV-Summary of BIOMOD Test

Week 1 Week 2
(with Ampex) (without Ampex)

Misrecognized characters
Mean 4.18 4.67
Standard deviation 1.27 2.06

Pen-tracking grade*
Mean 2.77 2.47
Standard deviation 0.88 0.74

Model Retrieval Time
Mean 13.09 sec. 17.83 sec.
Standard deviation 2.64 sec. 3.02 sec.

Display Construction Time
Mean 6.00 sec. 12.17 sec.
Standard deviation 1.28 sec. 1.46 sec.

Construction-Phase Grade*
Mean 3.03 2.02
Standard deviation 0.60 1.01

Plot Time
Mean 14.75 sec. 22.50 sec.
Standard deviation 7.14 3.86

Simulation-Phase Grade*
Mean 2.87 2.40
Standard deviation 0.52 0.52

Overall System Grade*
Mean 3.01 2.06
Standard deviation 0.406 0.98

* These values were obtained by converting subjectively assigned grades
to the values A=4, B=3, C=2, D=1, and F=O.

For example, user-directed metrics should be employed
if the intent is to measure the impact on users.

• Decision criteria should be chosen prior to data collec
tion. The data can be collected in a -form which will
reduce time spent on analysis. Prior definition of these
criteria force the analyst into defining his goals without
being biased by the results of data collection.

• Useful measurement of on-line systems is possible and
can be done without expensive equipment.

We found that although simple measurements can be use
ful, we need a method by which large amounts of data can
be collected. Since many responses are highly sensitive to
the system load and number of users, large sample sizes are
required for analysis. A different method of collecting data
may be appropriate for use in analyzing on-line systems. It
appears that "average" response time is not a meaningful
measure. Thresholds may exist for which the actual values
of outliers are not meaningful. For example, when using a
specific command, a person at a terminal may not be able
to distinguish between a response time of .01 second and
another of .1 second. He may also require enough "think
time" that a response less than one minute is sufficient and
system improvement to achieve a better response time would
be wasted. At the other extreme, a person may tolerate bad
response, but only to a point. If response is continually too

676 National Computer Conference, 1974

slow, the user will stop using the terminal. The relative
response times are not important if they are too slow. The
important data are the responses that users desire and those
they will tolerate. A performance goal of an on-line system
should be to consistently maintain response time between the
two critical thresholds. Mean response time, \vhich will
include outlying values does not provide an adequate meas
ure. A better measure may be simple counts of the number of
responses between and on either side of the thresholds.

REFERENCES

1. Boehm, B. W., Computer Systems Analysis Methodology: Studies in
Measuring, Evaluating, and Simulating Computer Systems, The
Rand Corporation, R-520-NASA, September 1970.

2. Bell, T. E., B. W. Boehm, and R. A. Watson, "Framework and
Initial Phases for Computer Performance Improvement," AFIPS
Conference Proceedings, Vol. 41, Fall Joint Computer Conference
1972, pp. 1141-1154.

3. Bell, T. E., Computer Performance Analysis: Measurement Objec
tives and Tools, The Rand Corporation, R-584-NASAjPR, Febru
ary 1971.

4. Fajman, R., and J. Borgelt, "WYLBUR: An Interactive Text
Editing and Remote Job Entry System," Comm. of ACM, Vol. 16,
No.5, May 1973, pp. 314-322.

5. Groner, G. F., R. L. Clark, R. A. Berman, and E. C. DeLand,
"BIOMOD: An Interactive Computer Graphics System for Model
ing," AFIPS Conference Proceedings, Vol. 39, Fall Joint Computer
Conference 1971, pp. 369-378.

6. Bell, T. E., Computer Performance Analysis: Minicomputer-based
Hardware Monitoring," The Rand Corporation, R-696-PR, June
1972.

Systems performancejmeasurements-A quantitative hase for
management of computer systems

by PAUL MALICK

United Air Lines
San Francisco, California

INTRODUCTION

Systems Performance/Measurements is a new area of com
puter technology which provides a quantitative base for
management of data processing systems. This function has
generated high interest due to increasing emphasis on cost
effective management of these data processing systems.

The people, the tools used and results obtained are the
subject of this paper.

SYSTEMS PERFORMANCE/MEASUREMENTS
AT UAL

A irline industry problems

The airline industry has a unique set of problems to solve.
They are:

• High Capital Investment
• Large Maintenance Requirement
• Highly Service Oriented
• Highly Regulated
• Highly Unionized
• Geographically Spread Out
• Highly Competitive Route Structure
• Stringent Security Requirements

Because of these problems, United Air Lines has been, and
is, a pioneer in computing. The early systems were primarily
batch; however, as the technology became available, the
on-line systems were brought into being by working closely
with vendors to develop the required systems. Newer, faster,
more powerful and reliable systems are being developed as
their need can be economically justified.

U AL computer organization

United has formed the Computer and Communication
Services Division to effectively manage the large investment
in resources, both machines and people.

Figure 1 shows the United Air Lines Computer Centers,
equipment, major users and interaction.

677

United Air Lines has four computer centers, located in
three cities, as well as a data communications network
serving all cities throughout the airline's system and con
nected to other airlines. Non-polled networks or links connect
the four centers. These centers serve a diverse group of major
users, including: Finance, Marketing, Maintenance and
Operations. There are a large group of medium and smaller
sized users including Corporate Planning, Food Services,
Personnel, Industrial Engineering, etc.

Planning/measurements cycle

Effective management of a large capital investment in
computer systems requires a quantitative base which must
relate to the division planning. Figure 2 depicts the planning/
measurements cycle which relates system performance to
division planning .•

Resource measurements indicate where we are now. The
measurements are used as:

• Input to Planning
• The basis of chargeback to users for resources used.

The resource areas measured are: central site hardware,
application software, systems software and network/remote
hardware.

The plan indicates where we are going and when we will
get there. Plans can be separated into three time periods as
follows:

• Near term-days, weeks
• Short term-up to a year
• Long term-greater than a year

The near term problem is usually solved using measurements
directly. Modeling and simulation using measurements as
input are often required to provide the quantitative base of
the plan for the short and long term.

A very important part of the planning process is to compare
the planned vs. actual and feed the result back into the
plan. The objectives of the feedback are to highlight mistakes
so they can be corrected and serve as a basis for improving
the planning mechanism.

678 National Computer Conference, 1974

FINANCE

• (2,) IBM 370 1155'S
• SA TCH I CICS I RJE
• CHICAGO, ILLINOIS

OPERATIONS MAINTENANCE

.(2,) IBM 3E0/65'S
.(3) UNIVAC 1108'S I ------.,.~I.BATCH/RJE
.ON-LINE/BATCH • SAN FRANCISCO,
.CHICAGO, ILLINOIS CALIFORNIA

Figure I-United Air Lines computer centers, equipment, major users
and interaction

Systems performance/measurements groups

The Systems Performance Measurement groups at United
Air Lines provide most of the quantitative base for manage
ment of the computer systems. The groups answer the
following basic questions:

1. How much of and how well are we utilizing the
current resources, quantitatively?

2. What impact will hardware, software and applications
changes and/or additions have on systems resource
utilization, quantitatively?

The answering of these questions requires the use of the
appropriate tools. In the case of question number one, the
tools would primarily be software and hardware monitors.
The tools for answering question two are a combination of
software and hardware monitoring as well as simulation and
modeling.

The results of the use of the tools along with analysis,
are systems performance reports and recommendations. The
report with the largest impact is the "Planning and Capacity
Report" for each resource center. This report is used by
division management as the prime quantitative input to
planning.

The personnel in the Systems Performance area are all
experienced. computer people and tend toward the· senior
level. Each tends to have a systems viewpoint, be highly
analytical, and work well with various people.

Planning and capacity reports

A planning and capacity report for a particular computer
center contains the following:

1. Resource utilization, by resource, for each of the next
five years. The on-line system resource utilization is
broken out by user application.

2. Prediction of system bind points by resource and year .

.. A ... ll resource utilizations include changes and additions of
hardware, software and applications at the time predicted.

RESOURCES MANAGED AND TOOLS USED

Several tools are used to provide the quantitative base for
management of resources. The tools are measurement, simu
lation and modeling. The tools provide data for answering
the two basic systems performance questions.

Resources managed

Figure 3 depicts the five computer resource areas to
manage. These areas are managed as a system as opposed
to separate entities. It should be noted, an on-line system
contains all five areas while a batch system does not have a
data communications network to manage. It is interesting
to note that an on-line system is primarily self-scheduled
and a batch system is primarily manually scheduled.

The central processing unit executes instructions, thus the
most important parameters are:

• CPU activity (which is broken into):
-operating system
-application or problem program

• Average Instruction Execution Time (AIET)

The memory module holds programs and data. The prime
parameters are:

• Memory Utilization (by whom)
• Memory Contention (multi-processor systems only)
• High Speed Buffer Hits/Misses

The Input/Output channels transfer data to and from
peripheral devices and memory. The prime parameters are:

• Channel Utilization (peripherals)
• Channel Utilization (computer-to-computer)

The peripheral devices input, output and/or store data.
The major parameters are:

• Control Unit Utilization
• Device Utilization
• Average Access Time
• N umber of Accesses

"-,.~ :
~v ,
~ i

, fCENTRAL SITE HARDWARE

tAPPLICATIONS SOFTWARE

RESOURCES • SYSTEMS SOFTWARE

• NETWORK AND REMOTE
HARDWARE

!

Figure 2-Planning/measurements cycle

Systems Performance/Measurements-A Quantitative Base for Management of Computer Systems 679

The data communications network provides a data path to
and from devices which are remote from the computer.
The network can be envisioned as a peripheral device which
is more complicated than any other. The prime parameters
are:

• Data Communications Line Loading
• Number of Messages
• Number of Characters Per Message

There are various system parameters which are important
because they provide data which show quantitatively the
relationships between the parts. These are:

• Number of file accesses
• Queue levels
• Job/Step Log
• Number of concurrently active channels
• Number of jobs or transactions concurrently active.
• Amount of time instruction execution is overlapped

with channel activity.
• Job transaction elapsed time
• Remote device response time

System optimization is concerned with the "balance" of all
the parameters identified.

Measurements

Basic questions answered by :measure:ments

There are three basic questions answered by measurements:

a. What percent of the resources are being used now?
b. Who is using what percent of the resources?
c. What are the specific device characteristics for the

system being measured (AIET, average access time,
etc.)?

The answer to the first question indicates the capacity of
the resource being used, thus the reserve capacity can be
calculated. The answer to the second question indicates who
is consuming the resources. The data obtained by answering
the third question is used as input to the simulation/modeling
process. The measurement tools used are hardware and soft
ware monitoring.

Hardware monitoring

Unique characteristics

A hardware monitor has a set of unique characteristics as
a measurement tool:

a. It is transparent to (no-load on) the system being
measured.

b. It can capture 100 percent of the samples.
c. It captures data not available by any other method

(such as Average Access Time, Average Instruction
Execution Time, etc.)

CENTRAL
PROcESSING
UNlT(S)AND
SOFTWARE

MEMORY
MODlLE
UNrr(S)

DATA COMMUNICATIONS
NETWORK

AND
REMOTE EQUIPMENT

Figure 3-Five computer resource areas to manage

The first characteristic indicates that no distortion is
placed upon the system measurements. The second character
istic denotes the degree of confidence that the measurements
taken are representative of the period measured. The third
characteristic means that the key data required for modeling
is available and accurate.

Choosing a hardware :monitor

United Air Lines owns a triplex Comress D-79oo hardware
monitor system. The choice of this particular system was
made based upon the follo"ing prime characteristics.

a. Number of Counters-determines how many functions
or events can be accumulated separately (example:
monitoring all storage activity).

b. Plugboard Logic Capacity-<ietermines how much
signal combination and translation can take place
simultaneously (example: core utilization).

c. Maximum Counting Rate-the counters should count
at a rate equal to the speed of the signal being mea
sured so 100 percent of the signals can be captured.
Note: this can sometimes be accomplished using plug
board logic. However, the logic is then unavailable
for other purposes and plugboard logic is a critical
resource.

d. Built-in Signal Simulator-is used to check out plug
board logic before the monitor is connected to the
system. Without this capability, checkout of plug
board logic is difficult, time-consuming and often
inaccurate. This feature is a must!

e. Modular, Reliable and shipped easily-the system
must be capable of being broken into smaller elements
for shipping. Modularity helps this situation greatly.
Reliable units are a must to develop confidence in
the results.

Using a hardware :monitor

The use of a hardware monitor follows a very definite
pattern which is shown in Figure 4, Hardware Monitor Use
Flow.

The first step is to set up a test plan. The question to ask
is: "What are the results I want to obtain?" Once the ob-

680 National Computer Conference, 1974

*Rm~ .. 1AST TIMIE OtLY

Figure 4-Hardware monitor use flow

jecti"ve is established, the necessary effort can be expended
to plan toward and reach that objective.

Researching the probe points has been necessary in many
cases because the probe points are not available in any
probe point library. This usually doesn't reflect probe point
library inadequacy, only that the problem probably hasn't
been solved before. Most of the standard measurement probe
points are in the library, however. It is important to docu
ment the test plan, probe points and logic so they can be
used again with a minimum of effort.

Validation of the resulting data with whatever other data
available is necessary to develop confidence in the results.
A direct comparison 'with software measurements is ideal.
However, ,vhen these are not available, trends and relation
ships with other measurements or simulation can be ,used.

Writing a final report solves several problems. First, an
historical record is available to indicate the results whenever
they are needed. Second, the report provides the starting
point for the next time the tests are run. Finally, organizing
the results into report form often uncovers problems with
the tests which can either be corrected immediately or the
next time the test is run.

Measurenlents obtained using the hardware
nlonitor

Hardware Monitor measurements obtained include the
following:

• CPU Utilization
• Channel Utilization
• Core U Lilization
• Memory Contention (on a multi-processor system)
• High Speed Buffer Hits
• Computer to Computer Channel Utilization
• Average Instruction Execution Time (AIET)
• Peripheral & Peripheral Control Unit Utilization (Disk,

Drum, Printer, Tape, etc)
• Drum & Disk Average Access Time
• Data Communications Network Characters transferred.

These measurements were obtained on various United
Air Lines computer systems including: IBM 360/50, 65,
370/155 and UNIVAC 1108, plus an IBM 2969 (Programmed
Terminal Interface). It should be noted that most of these
measurements would be of equal interest for either an on-line
or batch system. Only the values and their relationships
change.

Hardware monitor measurements represent a composite
of all individual times or events. Thus, another measurement
method is normally required to reconstruct the components
which make up the total. This method is software monitoring.

Software monitoring

Unique characteristics

A software monitor has a set of unique characteristics as
a measurement tool:

a. The counter mechanism is connected directly into the
system software thus the counter and collection mecha
nism bias the results.

b. Data collection is done on a sampling basis because
of the bias mentioned above.

c. It captures only data available internally in the
computer.

The last characteristic means that this measurement tool
can be used to capture transaction, program, job and file
data. Software monitors are normally continuously resident
in the computer. Thus, they can be turned on at will for
diagnostic or other purposes without delay. It should be
noted the sample rate must be carefully chosen to balance
the mechanism bias on the results with the validity of the
sample.

Software nlonitors used

The following software monitors are used at United Air
Lines.

a. Systems Management Facility (SMF)-Is a standard
IBM OS system measurement package. In addition
to standard data reduction, Mark IV file management
package (from Informatics) is used to easily reduce
the data for special purposes.

b. MFKEYS-Is a data collection and reduction package
developed by U AL used to capture CPU and drum
subsystem utilization as well as key system parameters
from the operational computer system.

n ~A.Lpollo Data Collection and Reduction-Is a IT _~L
developed. package used to measure the Apollo reser
vation system utilization. The measurements include
CPU, File, Message Mix, Program and transaction
activities.

d. Compool Snap-Is a U AL developed data collection
and reduction package for the operational computer
system which is used to capture message and program
hand-off data.

Systems Performance/Measurements-A Quantitative Base for Management of Computer Systems 681

e. PTI Data Collection-Is a vendor developed data
collection and reduction program used to collect core
utilization, data communication line and message data
in the IBM 2969 Programmed Terminal Interface
system for the Apollo reservations system.

Each software data collection package is used for a specific
area as identified. It is necessary to have tools to quantify
the activity in each resource area so a full picture can be
developed.

Measurements obtained using software monitors

The following measurements have been obtained using
software measurements:

• CPU Utilization (total, by job or transaction)
• Channel Utilization
• Core Utilization
• Peripheral Unit Utilization
• File accesses by File (Data Set) by Job and Step
• Job and Job Step Log, Start, End
• N umber of Operating System Requests
• Queue Levels
• Number of Transactions by Transaction Type
• Program/Job/Step Execution Time
• # Messages
• Length of Message

These measurements ·were obtained on various United
Air Lines computer systems as previously noted under hard
ware monitoring.

Simulation/modeling

Basic questions answered by simulation &
m.odeling

Simulation and Modeling are the tools used to predict
the future in terms of resources. The basic questions answered
are:

1. What impact ·will various changes and/or additions
have on the system quantitatively?

2. When and at what level will the system saturate?
3. What are the system bind points?

The answers to these questions become the basis for a
Planning and Capacity Report. It should be noted that
correct predictions are made on the basis of an accurate
picture of the present. This accurate picture of the present
is based upon actual measurements.

Modeling description

There are two parts to the modeling process. They are the
model mechanism and the model input.

The model mechanism represents the system being
modeled. The total computer system model consists of the

system software (operating system), the system hardware
and their interaction. The dynamic interaction of these parts
are simulated by the use of various algorithms and proba
bility distributions within a logical flow of events.

The model inputs provide the data base to be operated
upon and the stimulus for the model mechanism. For ex
ample, the total system model inputs are the descriptions of
applications, programs, files and messages along with the
time of day and frequency the jobs or transactions are run.

Validation of the model mechanism and inputs are neces
sary both individually and as a whole. The objective is to
increase the confidence in the results so they can become
accepted and relied upon. The results are only as good as
that which goes into the modeling process. Validation, where
possible, should be with actual data.

Models have variable inaccuracies because:

• The model is not a complete representation of the
system (the system itself is).

• The mechanism may have inaccuracies.
• The inputs may be incomplete and/or incorrect.

Thus, a model output which is correct to ±5 percent is
often considered very accurate.

Modeling is a time and energy consuming task. Thus, it
is not always justified economically.

Models used

Where possible, existing models are used· either directly
or with modifications. Normally, however, an existing model
has not been av~ilable. Therefore, United Air Lines has made
a considerable investment in building models.

The following are the primary models used at United Air
Lines:

a. Systems Analysis Machine (SAM)-Is a model de
veloped by Applied Data Research, primarily for IBM
batch systems; however, any system may be modeled.
The vendor has made a large addition to the model
for United Air Lines, which allows modeling of a job
stream without detailed descriptions of each job and
job step. This feature is a must to obtain data for
preparation of a Planning and Capacity Report. The
outputs from the model are CPU, channel, device
and program activity statistics. Much of the detailed
testing and validation of the model addition was per
formed by United Air Lines.

b. Operations System Planning Ivlodel-Is a model, de
veloped by United Air Lines, of the Operational
Computer System which is used to obtain the basic
Planning and Capacity Report data including CPU,
channel and message activity. This model is written
in GPSS.

c. United Systems Simulation Model (USSM)-Is a
model developed by United Air Lines in G"RSS, which
is used for obtaining the basic Apollo Reservations
System Planning and Capacity Report data. Thus, it
predicts CPU, channel and message activity.

682 National Computer Conference, 1974

The following special purpose models have been developed:

• Apollo Network Model
• Operational Computer Network Model
• Average Instruction Execution Time CAIET) Model
• IBM 3330 Disk Model
• Programmed Terminal Interface System Model

Each model serves or has served. a specific purpose. The
network models are used for data communications network
management. The AIET model was used to verify the oper
ational computer system average instruction execution time.
AIET is a key input to any system model and the Hardware
Monitor was not available to capture the actual value at the
time. The IBM 3330 Disk Model was developed to simulate
the operation of 3330's on the Apollo reservation computer
system.

Special purpose models are developed as the need arises
to quantify the dynamic impact of system changes before
they are approved and implemented.

The magnitude of the expenditures, the possible impact
upon service to our users and the risk of implementation are
all factors in any· decision to build a particular· modeL

USE OF TOOLS

The most significant and important use of the Systems
Performance tools has been to provide a quantitative base
for decision-making. Decisions have been made, using the
quantitative base, on major changes to each of the four
computing centers.

Operational computer system

The decision was made to postpone the acquisition of one
million dollars of mass storage drums for a minimum of
two years based upon actual measurements of average access
time. The actual average access time was found, with the
hardware monitor, to be 30 percent less than the manu
facturer's specification. The difference was due to the amount
of storage used and the data placement on the drums for
the U AL application mix.

Marketing (reservations) computer system

The decision was made to upgrade to the largest capacity
computer available based upon predicted resource utilization.
The predictions showed the life of the new computer to be
approximately five years. Thus, a costly interim conversion
was avoided.

A decision was made, also, to sign contracts for computer
services with several outside firms due to the availability of
predicted excess capacity for the length of the contracts.
Thus! revenue is being produced by using the excess capacity.

Financial computer system

The decision was made to not upgrade from a pair of
370/155 to a pair of 370/168 computers to meet Summer of
1973 peak resource requirements. Measurements indicated
the peak CPU load build up was very high. Using these
measurements as a base, it was predicted that the peak
load would be at or near system saturation, causing great
disservice to our users. System optimization and offloading
of jobs to the back-up computer for the marketing system
reduced the peak CPU activity by ten percentage points
below the predicted peak. Thus, considerable investment in
hardware and manpower were postponed for at least a year.

Maintenance computer system

The decision was made to convert this computer center to
primarily a remote job entry (RJE) system, based upon pre
dicted resource requirements and the availability of adequate
capacity in the back-up computer for the marketing system.
Expansion of this system will not be necessary for at least
a year;

It is felt, at United Air Lines, the Systems Performance
groups continuously pay for themselves by providing a
quantitative base to:

• Make correct decisions
• Avoid costly mistakes

Direct cost savings, such as cost avoidance or postponement,
can be calculated. Indirect cost savings, such as lost time
due to mistakes, are difficult to measure.

It must be remembered that people must ultimately make
the final decisions, but a quantitative base can, if used cor
rectly, greatly assist the process.

ACKNOWLEDGMENTS

I wish to acknowledge the contributions of my fellow
Systems Performance people at United Air Lines, ",-hose
efforts produced many of the tools and techniques shown in
this paper. I also wish to thank the persons who reviewed
this paper and made various helpful suggestions and, finally,
I wish to thank United Air Lines for the opportunity to
prepare and present this paper.

REFERENCES

1. Comress Dynaprobe-7900 Users Manual, Comress, Inc., Two Re
search Court, RockviHe, Maryiand 20850.

2. Olson, R. H. and W. T. White, Unimatic Planning and Capacity
Report, Internal United Air Lines Report, January 1973.

3. Helm, H. L., Financial System Planning and Capacity Report, In
ternal United Airlines Report, March 1973.

4. Malick, P. D., IBM 360/370 System Hardware Performance Mon
itoring and Analysis, Internal United Air Lines Paper, January 31,
1972.

Two hat management-Project management with a difference

by ROGER W. KLEFFMAN

United A ir Lines
Englewood, Colorado

INTRODUCTION

The on-line systems of the sixties were marked by an
exuberant and dynamic environment of continual system
implementations. X ew hardware, new operating systems,
application growth outstripping system capacity-all led to
large projects with dedicated manpovver and hardware
resources trying to achieve superhuman development sched
ules. The seventies are a different environment. New hardware
and operating systems are introduced, providing increased
capacity not only for application growth, but also for
implementing new applications within the system.

The new environment was present at United Air Lines after
cutover of an on-line airline reservation system in early 1971.
The software ,vas stable, and there was excess system
capacity for new applications. All system and application
program segments, on-line and off-line, were designated as
specific responsibilities of first line program managers, who in
turn managed programmer/analysts. There were no addi
tional programming resources in any staff areas-the line had
responsibility and accountability for all programming work
effort.

Within this organization structure, three types of work
would be done; correction of software errors, modification to
existing coded functions, and major enhancements or develop
ment of new software products. The latter item would be
carried out by means of projects. The projects would be of
temporary duration; lasting only long enough to implement
the new software. Upper management foresaw several
problems:

• Dedicated resources for a project would be more costly
than utilizing line talent on an 'as needed' basis.

• Illogical lines of management when programmers work
for some period of time for a project manager, then revert
back to the line manager for performance review.

• The need for technical personnel development as the old,
reliable and talented people are committed to the choice
projects, while new people are relegated to maintenance
assignments.

• The requirement for line involvement in project planning,
leading to line commitment to achieve project goals.

• The need for managerial development in maintenance
and low software development activity areas.

683

This paper presents the solution United Air Lines developed
to answer these problems; Two Hat Management, with a first
line manager playing two different roles; a line manager
controlling manpower resources and responsible for specific
functions; and project leader, planning and coordinating the
activity of several areas to achieve project goals.

Denver was the location where Two Hat Management was
developed and implemented. This facility has a PARS
system (programmed airline reservation system) under the
ACP (Airline Control Program) operating system on a
IBM 360/195. The current application and software systems
include more than 500,000 instructions and more than 120
programmer / analysts maintaining and adding to the system
by means of projects. Software projects generally exceed six
calendar months and either add or modify 50,000 instructions
annually. These conditions meet the criteria for large software
system projects advocated by Aron. 1

The paper is organized into four sections to develop and
present the material. The first section introduces the environ
ment and scope of the paper. The second section presents the
organization structure and functional line management
responsibilities. The third section discusses the formal pro
cedures used to implement Two Hat Management in this
organization structure. The fourth section summarizes the
results of Two Hat Management in the work environment of
the last two years.

ORGANIZATION

This section briefly presents the organization structure
encompassing Two Hat Management.

Data processing services are provided to many departments
and divisions of UAL, Inc., the parent organization of United
Air Lines. The divisional organization concept with related
profit accountability is the primary method of organization.
The Computer and Communication Services Division [CCS]
is responsible for almost all data processing activity within
UAL. Figure 1 presents the CCS Division organization. The
division is headed by a President with a very small supporting
staff. There are four line functions reporting to the president:
communications and technical services, computer service
coordination, resource center and computer services. The
latter two include almost all the division personnel and

684 National Computer Conference, 1974

PIIESIDENT
CHIEF EXECUTIVE

O"",Cf"

Figure l-CCS division organization

resources. Appendix A presents a more detailed description of
the organization management and functional responsitilities.
The resource center organization is responsible for the
computing hardw-are and system software at four computer
sites. Consolidation of resources into a single computer center
supported by remote sites is the long-range aim of the
resource center, and is reflected in its organization. The
computer services organization performs application pro
gramming for internal UAL users by means of five application
programming centers. A summary of the location, equipment
and applications is presented in Table I.

The application centers are in close proximity to the user
groups, thus promoting decentralized development, while
achieving the benefits of centralized resources, though along
somewhat different lihes than those described by Tom
aszewski.2

This organization is characterized by strong first and
second line management, accountability for results, with
check-and-balance functions incorporated in upper manage
ment levels. This is the contrast to check and balance by
separation of responsibilities advocated by Smith-3 The most
critical arcas arc those of interfacing and coordinating. There
are three levels of interface and coordination: between first
line functions within a department (e.g., first line functions in
the resource center), among major departments (e.g., the
resource center, the communications and technical services
and all computer services' departments), and the CCS
division with other VAL divisions (e.g., representing CCS
with Flight Operations). This is a responsibility of the Project

Support group, which provides project coordination and
training services to the line organization. Without strong
lines of communication, this particular organizational struc
ture is vulnerable to project discontinuity resulting from lack
of coordination. The means of accomplishing this coordination
through formal procedures is the major element of this paper.

PROJECT L\IPLEMENTATION PROCEDURE

This section presents the procedure used to implement the
Two Hat Management concept. It features the meshing of
the management organization with checks and balances es
tablished by formal procedure.

First line management and 'Work authorization

As emphasized previously, the first line manager has
functional responsibility for designated software. Only the
first line manager can direct work on thE software. The work
environment has three types of work; with H reporting
system to track progress.

(1) Error Correction-defined by a discrepancy between
the expected result (defined by documentation) and
the actual result. An FPL (functional problem log) is
originated to authorize work.

(2) Modifi~fl.tion to existing functions-representing an
extension of a current function. A MER (modification

Two Hat Management-Project Management with a Difference 685

evaluation report) is originated to identify work effort
and track implementation, if authorized.

(3) Projects or large modifications-usually a new function
to be added to the system. Projects are assigned
unique account numbers, and tasks identify work
units.

Project management and implementation cycle

The project leader does not control resources or authorize
work, he is responsible for managing the project: planning,
scheduling, coordinating and reporting progress. Deficiencies
and problems are reported to his immediate manager (second
line manager), and resolutions are obtained from control
group decisions.

The control group is composed of second level and higher
department management. The control group reviews project
status on a weekly basis, and is responsible for short- and
long-term departmental planning and objectives.

The project follows a cycle of definition, planning, imple
mentation and maintenance as illustrated by Figure 2.
A Project Workbook is originated and is the repository of all
project information.

(1) Project Definition

A project leader is authorized by the control group.
Assisted by a project coordinator from the Project
Support Group, the project objectives and scope are
prepared for control group review and approval.
Objectives are the specific goals that the project will
achieve, and are used to measure results. The scope
is primarily a definition of planning effort required to
size the project effort, a plan for producing the
project plan. Included in the scope are:

• General statement of project definition.

TABLE I-Resource Center and Application Summary

Operating Type of
Location Equipment System System

Chicago GNIV AC 1108 EXEC 8 On-line

IBM 370/155 IBM OS MVT On-line,
Batch

Denver IBM 360/195 IBM ACP* On-line

IBM 360/195 IBM OS MVT On-line
Batch

San Fran- IBM 360/65
cisco

IBM OS MVT Batch

* IBM ACP is the Airline Control Program.

Applications

Flight Opera-
tions

Finance

Marketing,
Food Serv
ices, Hotels

Time-sharing
Option
(TSO), Re
mote Job
Entry (RJE)
for internal
VAL users
and external
customers

~faintenance

Operations

Figure 2-Project cycle

• Investigate requirements to clarify or establish informa
tion needed for detail project plan.

• Schedule for producing the detail plan of the project.
• Planning resource requirements, in terms of manpower

and computer and related resource requirements.
• Basic approach to performing the project in terms of

controls and reporting.

Five types of projects are recognized in this system:

(1) Study project-its objectives are to define the
economic justification, relevance and impact of the
proposed service on the CCS resources. The end
product is a proposal recommending the next course of
action to the control group.

(2) Planning project-A planning project is the pre
liminary step to a very large development and
implementation projects. The planning scope of effort
and resource requirement is sufficiently large to
require a separate project whose products lead to
identification and authorization of the main project.

(3) Design project-produces the design development and
documentation necessary to support the implementa
tion of a requested service.

(4) Implementation project-includes all work necessary
to make the requested service available. Programming,
testing, performance measurement, hardware installa
tion: all are valid tasks within this project.

(5) }1aintenance projects-a phase which includes main
tenance and growth workloads and resource alloca
tions. All workloads of this type are organized into
three categories:
• System maintenance
• System growth
• System performance and measurement predictions

It is important to emphasize that planning, design and
implementation projects are separated into individual projects
based on the control group's estimate of the size, complexity
and controls required to perform these phases of the develop
ment cycle. When appropriate, these three phases are
combined into a single project.

686 National Computer Conference, 1974

(2) Detail Plan Development
A detailed specification of tasks, resources and schedule of

the project is prepared by the project leader for review and
approval of the control group. The project leader chairs
planning meetings attended by the line managers and/or
their technicians. These meetings review the project objectives
and scope against the line functions to identify all the tasks
and dependencies of the project. Each line area is responsible
for identifying and specifying all tasks in their respective
areas, and the resources needed to accomplish the task.
A functional specification developed by the user is the basis of
all planning and resource estimates in the detail plan. In turn,
the detail plan provides the developmental and recurring costs
which will be charged back to the user.

Plann development is iterative in nature. An overall
network is produced first, with subsequent requirements
added in. Investigative tasks may be undertaken in order to
clearly identify project tasks. The output of the detail plan
includes:

.• Task definitions-produced by the line area which will
have the responsibility for later acconlplishment. The
line involvement in the planning· phase provides the
means for strong line confidence and commitment for
the project objectives. Appendix B presents the basic
task document.

• Dependency network which identifies the sequence of
task performance. A PERT chart is another name for
this charlo

• Resource requirements for accomplishing tasks. Since
these are generated by line areas which will accomplish
them, there is no later distrust and disavowal of the
estimates.

• A schedule of the task in terms of elapsed time and
desired completion date to accomplish the project. The
schedule reflects the timing as if there were no other
project, with priority conflicts resolved later.

• Major project milestones, which are applied to network
and schedule.

Specifically included in the schedule are several critical
control points which furnish opportunities for technical
review and thorough check-out of the application system
produCt. These iIiclude: ,

• IT" __ "al Reviews-these are scheduled on an as needed
basis. As a minimum there is a review or audit of the
detail plan itself. The detail plan is presented to the
entire line management for review and comment,
including those areas seemingly not impacted by the
project. Depending on scope and complexity of the
project, additional reviews may be scheduled to review
timing, events and dependencies associated with cutover.

• System Test-an integrated test of the coding under
regulated and low volume conditions. Scripts which
identify inputs and responses are generated by the line
area responsible for the code.

• Pre-operational Test-a test of the procedures and

actions required by the operations group. This milestone
is an acceptance test by operations of the code. Without
it, operations will not accept responsibility for production
runs. The program documentation is the script, and
conditions are created which exercise the documentation.

• Operations Test-a volume test of the code. Its function
is to provide the widest possible exposure to the total
environment. Again, scripts with inputs and responses
are generated by the line area responsible for the code.

• Functional Demonstration-this is an option by the users
to conduct a systematic test and check out of the code
against the user procedures. The common denominator
here is the user-generated functional specification. From
it programming develops the programs which is the
computer solution of the specification; while the users
generate their procedure manual. This insures correspon
dence between code and user functions.

• Cutover-this is the loading of the code into the system
and marks acceptance by the user and completion of the
project. Hereafter, all work will be performed on the
basis of FPL/MER rather than project.

The detail plan is presented to the control group, along
with information relating to the project priority and schedule
impact. The control group resolves known conflicts and
authorizes the project leader to proceed.

The project leader reconvenes a meeting with the first line
managers, identifies the project priority, and requests com
mitment by the line. The line managers factor the tasks into
their work schedules and respond with a completion date for
each task. This is the line commitment. If there are differences
betl\Teen the commitment date and desired schedule date
which impact the project, the first recourse for resolution is
the project priorities. Where this does not resolve the
problem, the project leader refers it to the control group \vho
will authorize either a higher task priority, or, accept a later
project completion.

These task commitments then become measures of line
performance as the project is implemented.

(3) Project Implementation
Project implementation is conducted in an environment

where the project leader maintains and coordinates the
project. He will report project progress to his immediate
manager, but has commitment to the project objectives,
irrespective of any line resources he may control. On the
other hand, tasks are implemented under line organization
control. Programmer/analysts report to their immediate
supervisor, and their performance is measured and reviewed
in this context. Programmers can work on several tasks
and/or other work (MER, FPL).

Higher priority work received by the line manager can
impact project work. The line manager reports progress and
problems to his immediate manager in terms of task date and
manpower commitments. The project leader reports in terms
of project orientation and milestones, surfacing problems for
control group resolution as requiff~d. Independently, the
project coordinator furnishes a report of progress to his

Two Hat Management-Project Management with a Difference 687

immediate supervisor, as a check and balance. (A part of the
function of the manager of Project Support is that of Devil's
Advocate !)

Several major actions occur during this phase:

• Additional tasks may be required for a variety of
reasons.

• Extended events may require new priorities-handled,
as before, through the control group.

• Modifications to tasks may be required, created by users
with the task amendment form (similar to the task
description form).

• Reporting of task completion, accumulation of resource
expenditures, and accumulation of products as defined in
task descriptions.

As testing begins. (systems, pre-ops, operations and func
tional demo), errors are tracked on special FPL reports and
fixed on priority basis. Simultaneously, user requests for
modifications are evaluated and either deferred until after
cutover, or incorporated into the existing schedule and
implemented, with schedule adjustments as necessary.

In terms of charge-back, the user will be charged the
planned development cost, regardless of actual cost. This, too,
becomes a measure of performance. both for the CCS
Division, as well as the project leader.

(4) Project Maintenance
The maintenance phase is entered after cutover. Upon

reaching this phase, no further ,york can be charged to the
project. All work is either FPL or MER. At this point, the
project leader produces a project report, which reviews the
project in terms of schedule, resources used and objectives.
There is also a critique of the project in terms of items which
the project leader feels are important for subsequent projects.
The critique can contain suggestions or advice, referencing
procedural problems, recognition of work performed or
general counsel in the area of leadership.

SUMMARY AND CONCLUSION

With longer-lived computer systems possessing sufficient
capacity for the addition of new application software systems,
project implementation enters a new phase. Systems con
tinually grow larger, and the organization structure must be
able to accommodate both normal system activity (bug fixing
and enhancements) as well as development and implementa
tion of new application systems. Implementing new projects
in this environment must be done without interposing project
organization between the line organization and the ongoing
system. The management method described in this paper
seeks to incorporate project task activity with the line
responsibility for accomplishing the work.

The procedure has been successfully used at the Denver
site for more than two years and a dozen completed projects
(additional projects are in operation but not completed). The
procedure works in the defined enviroll..TIlent and has provided
four tangible benefits. J\1anagement acceptance, enthusiastic

endorsement and application of these benefits provide the
substantiation for their results.

(1) Better utilization of scarce programmer resources.
Programmers coding in assembly language for a real-time

applications environment are scarce. Using the two hat
method, first line managers schedule programmer/analysts
for a variety of work, including project tasks, without
dedicating programmers to projects. In this way, a program
mer is busy with FPL (fixing errors) and MER (modifications
and enhancements) work while also working on a six-man
week project task spread over 12 weeks, for example. The
manager will also adjust work schedules dynamically to
include new, higher priority work.

(2) Increased technical development of programmers.
Under this system, new people start on FPL work, then

working on MERs and later project tasks. In projects, the
progression includes modification to existing code and, later,
coding of entirely new program segments. Participation in the
various test phases provides additional valuable experience.
Progression is not sequential; programmers are scheduled for
several concurrent work efforts (FPL, MER, tasks) of
comparable complexity.

(3) Better software quality control.
The progressive series of tests described in Section 3,

provide three to four levels of check-out of actual system
quality against the specified requirements. These result in an
application system which is stable and user accepted.

(4) Conducive environment for management development.
Twelve out of fourteen first line managers (86 percent)

currently are project leaders of significant projects. Of thirteen
projects reported in on this paper, there were ten different
project leaders. A first line manager always has tasks from
other projects to implement, and sooner or later a first line
manager will get one (or more) projects of his own to handle.
There is no escape from the demanding requirements of
project leadership and its attendant interaction with higher
management and user levels, as well as with other first line
managers. Practical situations abound for management
development through experience.

Results

Thirteen projects undertaken between 1970-1973 form the
basis of the results reported in this section.

• Work Mix
To put the results in perspective, and to emphasize that the

environment is an on-going system, a typical work :mix of
more than 60 applications programming analysts includes:

Training and non-production time 16 percent
Modifications and error fixing 37 percent
Project development activity 47 percent
Currently, project development activity exceeds 70 percent

of planned efforts.
Often the programmers were involved in concurrent types

of work (both development and non-development work), and
many existi..'lg program segments were subject to multiple

688 National Computer Conference, 1974

TABLE II-Distribution of Project Sizes

Man years of actual
work effort

i-I
1-2
2-3
3-4
4-5

More than 5

Number of Projects

5
3
2

1

concurrent changes. C:Vlodification to one part of the program
while fixing an error in another part of the program).

• Project Descriptions
The thirteen projects included two pure study projects. The

distribution of project sizes is presented in Table II. Note
that the project size is measured by actual man days of work
effort, excluding any time spent in overhead activity. In order
to put the figures into equivalent people requirements, an
increase of 15 percent for overhead activity should be
supplied. This additional 15 percent includes categories such
as training, sick time, vacation and related items.

Two projects were mainly in the resource center area,
seven were in the application center area, and one was a
special software development project.

The special project was both the study and implementation
of a high level language compiler. During the project, the
scope, objectives and resources were increased beyond the
original plan. The project was later deferred indefinitely at a
point where resource expenditures reached 90 percent of the
original estimate and 72 percent of the revised estimate.

In the main, the projects were concerned with implementing
new application functions in less than a calendar year, were
of moderate size and required tasks from almost all line areas.
One significant exception to this was a resource center
project converting the system from a 360/6.5 to a 360/19.5
main frame, with some significant hardware additions. This
project was of such magnitude (requiring more than 17 man
years of effort) that it significantly impacted the combined
statistical results of all projects. Consequently the results are
presented both with and without the impact of this project to
avoid distortion and provide comparisons.

• Project Results
The results do not include the special compiler development

project which was deferred prior to completion. The two study
projects are also excluded because studies (following Parkin
son's Law) seem to take all the time allocated for them.

Of the ten implementation projects; eight were on-time
(80 percent):

4 were within budget One was Y2 man years, two were
almm;t, 1 m~,n year~ and one was
more than 4 man years of effort.

3 exceeded budget One was 4 percent more than a
two-man year estimate, one took
42 percent more than the 165 man
day estimate, and the other took
71 percent more than a 2 man year
effort.

An average of 58 lines of source code per man day for 132
days, resulting in 7,800 lines of code, are typical of project
results.

Two projects were late, both resource center projects. The
major one (main frame replacement) took more than 17 man
years versus eight man-year estimate.

Included in the main frame replacement project objectives
were:

• replacement of an IBM 360/65 with a 360/195
• installation of a new communication system (front-end

processor and software operating system) .
• a new communications line control unit (teJephone line

patch panel)
• modified system software and record type (enlarged

control block and modification to a system-sensitive
application record)

• conversion of support system hardware (from DOS to
OS)

• addition of two new application systems

While the resource overage was more than 200 percent
(17 man years of effort versus 8 man years planned), this
project was only 3 calendar weeks late. This is a testimonial to
the intense involvement by line personnel, reSUlting from
their participation in building the detail plan and commit
ment to achieving the project objectives. Major problems
contributing to the overrun included shortage of skilled
manpower, inefficient test vehicles, and lack of coordination
and control involving complex, interrelated tasks.

The other late resource center project was a complete
reorganization to the on-line files, including increasing the
number of disks from 112 to 120. This project took slightly
more than twice the estimated 81 mandays. The primary
contribution to overrun resulted from extra testing re
quirements. The impact of test requirements from both
projects provide some additional concurrence with the results
reported by Boehm. 4

The main frame replacement project significantly impacted
the reported results combining all projects. Table III
presents the ratio of actual work efforts experienced on the
projects to the planned effort resulting from the detail plan .
The figures presented include the results from the resource
center, the application center, and the combined result for
both organizations. Data is summarized for two conditions:
for all projects together, and excluding the results from the
main frame replacement project because of its heavy weight.

To interpret these results, note that the resource center
actually spent more than twice (2.3 = 230 percent) the

TABLE III-Actual versus Planned Efforts by Center and Organization

Resource Center
Application Center

Total Organization

All Projects

2.3
1.]

1.6

Main Frame Project
Exclusion

1.3
1.0

1.1

Two Hat Management-Project Management with a Difference 689

resources they had planned, including the results from all
projects. Excluding the main frame replacement project, the
resource center spent only 30 percent more effort than
planned.

The results show that the resource center experienced the
greater problems and posed greater potential impact on the
system (larger actual experience to planned effort ratios),
while the application center work contribution had the
dominant effort on overall results (there was more application
work effort than resource center).

In conclusion, Two Hat Management works. in the
specified environment, and the anticipated benefits were
achieved. These results were achieved during a period of
moderate development work, allowing time for orderly
development and fine tuning of the procedures. Weare now
about to enter a period of heavy software development,
which should provide a final test for this management
method.

REFERE~CES

1. Aron, J. D., Estimating Resources for Large Programming Systems,
KATO Conference Software Engineering Report Conference, 1969,
pp.68-79.

2. Tomaszewski, L. A., "Decentralized Development," Datamation
Kovember, 1972, p. 6l.

3. Smith, Don, "An Organization for Successful Project Management,"
AFIPS Conference Proceedings, Volume 40, 1972, pp. 129-139.

4. Boehm, Barry W., "Software and Its Impact: A Quantitative As
sessment," Datamation May, 1973, p. 52.

ACKN0WLEDGMENTS

The author would like to recognize A. C. Edmunds of IBy[
and L. F. McGrane of UAL, as the fathers of the Two Hat
Management concept.

APPEXDIX A-UNITED AIR LINES COMPUTER
AND COMMUNICATION SERVICES DIVISION
ORGANIZATION AND FUNCTIONS

Division organization

The organization chart is as shown in Figure 1. The
Computer and Communication Service Division is organized
as a profit center with accountability to the parent organiza
tion. The internal structure is organized to facilitate the
delegation of profit accountability along functional lines.

The division has minimal staff support. There is a control
ler, responsible for the internal division profit plan and
charge-back system for all computer and communications
services provided to internal and external customers. The
other staff function is a special assistant to the president,
providing technical expertise, internal consulting services,
and external marketing. There are four line executives: the
Director of Resource Centers, the Director of Computer
Services, the Director of Communications and Technical

Services, and the Manager of Computer Services Coordina
tion who provides liaison between the CCS Division and
other UAL organizations: the primary customers of the
services.

The resource center is responsible for providing the central
site computer resources: the hardware (CPU, memory, files,
tape drives) and its operation, the system software (including
communication programming), monitoring the use of re
sources and accumulating data for four computer sites at
three locations (Chicago, Denver and San Francisco).

The Director of Computer Services is primarily responsible
for providing application programming for intp.rnfl.l ~1l"tom8r
services, by groups called Application Development Centers.
Currently there are five Application Development Centers.
Two in Chicago, one providing application programming for
finance, the other supporting the flight operations functions.
Two in Denver; one servicing the airline marketing applica
tions, the other supporting Hotels and Foods Services
systems. The last center is in San Francisco and services the
aircraft maintenance group.

The Director of Communications and Technical Services
has responsibility for the communication lines and interface
with AT&T. This includes more than 40 high-speed (2400
baud, or higher) dedicated, leased lines for on-line terminals,
an intercompany nationwide telephone network and the
installation and servicing of remote site terminals and
communications interface equipment.

Division control and policy is set by means of periodic
(usually monthly) control meetings with the president and
directors, supported and assisted, as necessary by the staff
and lower level line management. The purpose of these
meetings are for coordination of planning and policy, priority
resolutions, review of major project plans and action responsi
bility for problems. This approach is mirrored in the line
organization. Each director holds a weekly control meeting
with his staff. The primary difference between the division
and department meetings is one of detail. The departments
monitor all projects status on a weekly basis, and authorize
and review all expenditures of line manpower, with no
exceptions.

Resource center organization

The long-range aim of this function is consolidation into
a single resource center supported by remote, auxiliary sites
as required. The organization structure reflects this approach.

There are second level managers (managers to whom first
level managers report) at each of the current resource sites,
with second level managers responsible for each remaining
function. These are summarized below:

• ::\·1anager of Operations-responsible for the central site
hardware operations. There are two first line managers,
one responsible for the daily operations of the hard"vare
and communications, the other responsible for the
support functions of job submissions, scheduling, pro
cedures and operator training.

690 National Computer Conference, 1974

• Manager of Systems Programming-responsible for all
systems and communications programming. There are
first line programming managers (managers to whom
supervisors, programmer/analysts and technicians re
port) for each system-one for all OS systems, and for
the ACP system, one for the UNIVAC system and one
for the Communications Control system in the ACP
area.

• Manager of System Support-this responsibility includes
all the OS utilities, the ACP utilities, file maintenance,
and system performance and measurement (capturing
and data reduction of resource utilization), each with its
respective first line manager.

• Manager of Operational Programming-the functions of
coverage programming (responsibility for keeping the
on-line systems up and operating, monitoring and
testing new and modified software into the on-line
system), data base entry (integrity of data in on-line
files) and schedule change data entry (schedule change
data for the airline reservations system). Coverage is
headed by a first line manager, the other functions are
. currently led by supervisors.

• Manager of Quality Control-this responsibility includes
two functions: the test system and the library. The test
system controls and maintains the test tools used in
program and system check-out, from initial program unit
test in an off-line, single thread environment, up through
a volume test of the entire applications and systems. illl
programs complete strict testing requirements through a
series of increasing integrated testing.

• The library provides the control function for tracking the
current state of the system. It insures correspondences
between program code and documentation. No programs
enter the system without authorization from this check
point. The library also is responsible for the preparation,
editing, classification, recording and filing of system
documentation and maintenance of the technical refer
ence library.

• Manager of Project Support-This responsibility is
present in both the resource center and the applications
development center, but each is responsible to their
respective director. By analogy, if the resource center is
the bone, the application development center the muscle,
then the project support function is the connective
tissue tying everything together. Project support pro
vides the interface between and among organization
elements, project planning and monitoring service (the

IBM Project Management System (PMS) is utilized),
project coordination (assisting project leader by prepar
ing project papers, planning, status, meetings and
reports) and programmer training.

A pplication development center organization

This function provides all application programming for
UAL user affinity groups. Each application development
group is headed by a second level manager and several first
line managers. First line managers are responsible for
functionally related programs. All errors, modification or new
programs are developed under the control of the first line
manager. The programmer/analyst is accountable only to the
first line manager, including all work performed on projects.

As with the resource center, there is a manager of project
support, with similar responsibilities. In addition, there are
project support managers reporting to the manager of
application development, with the same responsibilities
previously described. Here, the project support concept has
been extended to a lower level to insure that needed functions
and coordination will be accomplished.

APPENDIX B-PROJECT TASK DEFINITION FORM

This form describes the work to be performed as a part of
the project. In order to assure that adequate planning has
been accomplished, tasks must be defined in sufficient detail
to allow its assignment and to establish its priority within the
framework of established workload. The organizational
philosophy requires that the task be defined such that it is
assignable to a specific first line manager.

The task sheet has four basic parts:

1. Project identification and description-prepared by
the project leader, assisted by the project coordinator
with input from the first line manager.

2. Resource requirements-completed by the first line
manager with his estimates of the workload.

3. Attachments-completed by project leader, used to
include supporting material.

4. Task responsibility.

This form exists for the life of the project, first defining the
work effort, later recording the actual work performed, and
finally, providing a history of completed work and product in
the Project Workbook.

Two Hat Management-Project Management with a Difference 691

COMPUTER SERVICES -~NITED ,.~ AIR LINES

PASSENGER SERVICE SYSTEMS I FORM ... SO R 12/16111

TASK DEFINITION COVER SHEET

PREPARED BY : _____ _

PROdECT INDEX: __________ _ DATE:·~~~ __________ _

PROdECT NAME: ___ __

TASK INDEX: ___ ___

TASK NAME: __ ___

TASK DESCRIPTION (ATTACH ADDITIONAL SHEETS AS REQUIRED)

RESOURCE REQUIREMENTS
I. TASK COMPLETION DATE DESIRED: _____________ _

2. RESOURCE ESTIMATES: MAN DAYS ____ MACHINE HOURS __ _
3. TASK COMPLETION COMMITMENT DATE: ___________ _

4. ACTUAL TASK COMPLETION DATE: _____________ _

RESOURCES USED: MAN DAYS ____ MACHINI: HOURS ____ _

ATTACHMENTS:

__ I. ADDITIONAL TASK DESCRIPTION (CONTINUED FROM ABOVE)

__ 2. END PRODUCT LIST AND DESCRIPTION

_ 3. DEPENDENCY ICONSTRAINTS DESCRIPTION (DATES. OTHER TASKS, ETC.)

ASSIINED TASK MANA8ER ________ PftO"ECT IIANAIER ___ _

8EE 8-00-28 FOR DESCRIPTION OF fORM

Controlled testing for computer performance evaluation

by A. C. SHETLER

The Rand Corporation
Santa Monica, California

INTRODUCTION

Because computer systems are still major investments, it is
appropriate that effort be directed to",-ard verifying and
improving their performance. Previous documents, such as
R-549 , * recommend an overall framework for addressing com
puter performance improvements through the use of the
scientific method. This paper expands on that base, describ
ing a specific procedure for implementing particular investi
gations through the technique of controlled testing. **

Though current computer system documentation describes
how the different systems function, performance aspects are
usually described only in the sales literature and in very
general terms. The complexity of these systems make selec
tion, sizing, tuning, and workload characterization a task
that is exceedingly-and unnecessarily-risky. Controlled
testing can expose information about the execution char
acteristics of a computer system, permitting the analyst to
deal effectively with the assurance that performance predic
tion and improvement are not random processes.

Controlled computer performance testing is the process of
selectively limiting the inputs and operating conditions of a
computer system to assist an analyst in discovering and
verifying execution characteristics of that system. Controlled
testing is necessary because present operating systems con
tain complex performance-determining variables and rela
tionships that confound the isolation of these relationships
when tests are executed in an uncontrolled (normal) en
vironment. The profusion of variables also makes statistical
analysis difficult; because their quantity is unknown, un
identified variables can invalidate the conclusions of a testing
effort. Controlled testing for computer performance analysis
can reduce the variables by explicitly defining the test jobs
and the environment in which these tests are executed. By
limiting the activities on a computer system, the analyst
can isolate and test the performance relationships on that
system.

Controlling the environment involves identifying, monitor
ing, and isolating system activities that are concurrent with
test jobs being executed, while ensuring system hardware
and software are consistent among tests. The execution

* See Bibliography for references.
** This controlled testing procedure is addressed in more detail in R-
1436. The concepts described in this paper are elaborated in the Report.

693

characteristics of the computer system being investigated
must be identified: hardware, soft\vare, interactions, and the
restrictions on user and system activity.

Controlling the workload includes specifying the execution
characteristics of the test jobs in detail. These jobs are often
designed with specific execution characteristics, written for
examining specific performance relationships.

WHY CO~TROLLED TESTING?

The selection of controlled testing over other performance
measurement techniques should be based on the appropriate
ness of the method to accomplish the purpose of the investiga
tion with the resources available. Because performance analy
sis usually involves conclusions about millions of dollars
\vorth of equipment and labor, errors can be expensive and
the most appropriate cost-effective method should be
selected. While controlled testing may not always be the
appropriate data collection mechanism, some of the reasons
for selecting controlled testing are:

• The reduced side effects of normal system execution.
• The reduced statistical variability of normal system

execution.
• The reduced cost, in terms of training, for an analyst.

Controlled testing should be orderly, proceeding within an
established framework. Figure 1 depicts the activities of
controlled testing.

The activities identified in Figure 1 need expansion for
clarification. While many of the activities are relevant to all
well designed testing efforts, some are particularly pertinent
to testing efforts using controlled testing as the data collec
tion vehicle; the context should reflect this.

ESTABLISH OBJECTIVES/EXPECTED VALUE
OF TESTING

The objectives of a controlled test must be appropriate to
the scope of the problem(s) being examined and must specify
the boundaries of the effort. In addition, some estimate of
the value to be received should be documented. The definition
of the objectives and expected value is· critical; otherwise

694 National Computer Conference, 1974

Figure I-Controlled testing procedure

testing efforts, although interesting, become expensive and
futile.

Since the objectives of a controlled testing effort determine
the direction for the investigation, they must be established
early and with management concurr~nce. If an investigation
has multiple objectives, they should be assigned priorities.
Enthusiastic analysts often begin data collection before ob
jectives are clearly defined, only to discover that the data
are not appropriate for the investigation.

When defining the objectives, the expected cost and value
received must be clearly identified so the cost of the in
vestigation can be balanced against the expected results.
Critical resources must be established: the personnel; the
machine time; the investigative tools (such as simulators,
hardware and software monitors, statistical analysis pack
ages, etc.); and the disruption to operations.

One performance investigation had an objective of estab
lishing the feasibility of removing a core module in terms
of the effect of on-line system response time and batch turn
around time. The expected savings in rental for the core
module was approximately $90,OOO/year if the investigation
proved feasible in terms of maintaining an acceptable level
of user service. Simply removing the module to see what
happened was not an acceptable solution to the management
(in terms of the lost capacity, user dissatisfaction and the
$1,000 reinstallation fee). But the expected value of the in
vestigation was sufficient to allocate a performance analyst,
systems programmer, and some blocks of computer time to
investigate the problem (costing less than one month's rental
of the core module). Once the economic benefits of the situa
tion were established, the resources could be intelligently
allocated.

GENERATE HYPOTHESES

Once the objectives of a testing effort have been defined
and determined to be economically worthwhile, specific hy
potheses should be developed as indicated in Figure 1. These
hypotheses will, when tested, become the medium for achiev
ing the objectives.

The complexity of an objective usually determines the
extent of hypothesis generation. The important point is not
that some specific number of hypotheses be generated, but
that the hypotheses that address the objectives be testable.
Without testable hypotheses, an effort may simply continue
until funding is exhuasted. Without testable hypotheses,
analysis will likely be nebulous, and conclusions cannot be
supported without a resort to cries for faith in the analyst's
integrity.

The analyst should strive for simple hypotheses that are
easily tested. Where possible, multipJe simple hypotheses
should substitute for a single complex one. The relationship
between each hypothesis and the objective should be stated
and documented, even when it may appear obvious. Other
wise the hypotheses may be investigated that are irrelevant
to the objective. Explicit assumptions should be examined
to be sure they are not, in reality, hypotheses for testing.

The following information is necessary for documenting
hypotheses:

• Hypothesis: What the analyst proposes to test.
• Relationship: The relationship between what is being

tested and the objectives of the performance evaluation.
• Assumptions: The explicit and implicit assumptions

about the hypothesis being tested.
• Analysis: The information (data) and processing to

validate the hypothesis.
• Data: Description of the collection mechanism.
• Alternate Hypothesis: What the analyst believes is true

if the hypothesis is rejected.

TEST DESIGN

The types of analysis to be employed in test evaluation
must be defined and documented along with a detailed
description of data required for validating hypotheses. Then
the analyst can define the tests for gathering the data. The
analysis should include tests for an invalid hypothesis; with
out considering this, a series of tests could be executed which
do not generate conclusive evidence that a hypothesis is
either valid or invalid.

Generating a test design cal1s for ingenuity if testing is to
be performed efficiently. Properly designed tests may over
lap and collect data for evaluating several hypotheses. The
environment-both system and workload-must be specified
during the test design. The details of both hardware and
software must be documented before the analyst moves on
to specifying assumptions, variables, and a detailed operating
procedure.

A configuration diagram of the hardware most clearly
identifies the system hardware. The devices not required for
testing should be shaded to aid visual identification of the
test equipment. Obviously, the operating system and its
version must be identified. In addition, descriptions of in
stallation variations from the unmodified version of the
operating system are appropriate. These may include:

• A description of resident vs non-resident portions of the
monitor.

Controlled Testing for Computer Performance Evaluation 695

• A description of installation modifications to the stand
ard system, and how these may affect the testing.

• A list of subsystems, special security monitors, bulk
media conversion routines, etc., that will affect the test
ing.

• The dimensions of resident systems (such as time-shar-
ing) that will be active during the test.

If possible, a mechanical description of the system state at
initialization of the testing should be included (i.e., an
operator's log display that lists the supported and existing
devices).

All assumptions relating to the testing effort should be
listed explicitly. This list will aid in evaluating the testing
procedure. Assumptions might be identified that relate to
the hypotheses, the analyses, the hardware, the software,
the tests, or the testing environment.

The analyst should explicitly identify the variables that
are expected to change during execution of the testing pro
cedure. The relative significance of each variable may not
be easily determined and many of them may seem trivial.
However, they must be spelled out because a presumably
trivial variable can, in particular situations, have a non
trivial impact on testing results or on subsequent analysis.
Without initially listing the possible variables, the analyst
could waste time during the test execution and analysis
detecting these variables after side effects have been en
countered.

Develop detailed operational procedure

An operational procedure sets forth in a document the
planned activities that operators and analysts will execute.
This "cook book" for executing the tests is included as part
of the test design. Without such a document, a test can
deviate in subtle but significant ways from the analyst's
intended course. Time is always limited during test execution
and haste can result in skipping a critical step in system set
up or test execution if the operational procedure is not
carefully specified.

Before a test, the order of operations can be reviewed to
ensure the procedure. Where appropriate, the operational
procedure can be modified to reflect corrected assumptions.
The detailed operational procedure can take the form of a
checklist to be used during test execution to verify the
planned activities. Using this detailed procedure reduces the
time used to mentally verify that generally stated conditions
have been met.

Variahility

When designing tests, the analyst should assume that
statistics will usually vary in test results. The variability is
currently unavoidable, but is not an insuperable handicap.
Variability can be identified and quantified in the following
way:

• Execute the tests several times to identify the extent to

which standard system variability affects the data col
lected by the test set.

• Examine the test environment for variability factors
(i.e., scheduling, spooling, resource allocation). Once
such factors are detected, the test procedure can be
examined for ways to reduce variability.

PILOT TESTING

As Figure 1 indicates, once the analyst completes his test
design, he should conduct a pilot test. This permits a valida
tion of the design before he attempts an actual test. The ob
jective of pilot testing is to discover the problems with the
procedure; the analyst is seldom disappointed by finding the
procedure perfect.

If possible, the analyst should do all debugging prior to
stand-alone pilot test time. Programs, control cards, and
input parameters should not be debugged during stand-alone
time; these tasks are not time-critical and can usually be
performed more easily in the working environment. All jobs
should be completely tested, ready for use prior to pilot
testing.

The analyst should verify that the system state (environ
ment) is constant. This is particularly important when the
test will be executed in more than one session; without it,
unexpected conditions may add new variables and confound
any conclusions. This constant system base should be estab
lished prior to actual test execution (that is, during pilot
testing). The operational procedure should include steps to
verify the base state.

Redesign experiment

Pilot testing of the experiments usually results in redesign
of some of those experiments or the procedures. Because
several pilot test sessions may be necessary, all output should
be kept until the experiment redesign is complete. In this
way, all information is available for reviewing the revised
design. As indicated in Figure 1, pilot testing should be
repeated as often as necessary to refine the total experiment.

Minor modification of the assumptions stated in the initial
test design are occasionally a result of pilot testing, but the
analyst should expect the revisions to the detailed procedures
to be extensive. Mter executing a pilot test, the analyst
should document the revised detailed functional and opera
tional procedures. Included in this documentation should be
modifications to the assumptions (based now on experience
with the environment) and an identification of the critical
variables with a projection of their expected impact.

TEST EXECUTION

When an analyst completes the pilot tests and arrives at
the final design, a reasonably precise description of this test
procedure is already in hand. To ensure that the operational
procedure is closely followed, the analyst must be present

696 National Computer Conference, 1974

during the test execution as an active participant rather
than an observer. Ideally, the analyst performs all opera
tions-mounting tapes, operating the console, feeding cards,
etc. An inability to perform these functions may indicate a
critical lack of understanding about the system. (Experience
indicates that a few hours with a senior operator is usually
sufficient to acquaint an analyst with the essentials of operat
ing any system for controlled testing.) For example, lack of
familiarity with console commands might indicate the analyst
is unaware of which system parameters are subject to modi
fication and are important to performance determination.

Some analysis of performance data must parallel the test
execution. This allows the detection of "unexpected" events.
In addition, the test results can be monitored for indications
that the tests are proceeding as expecLed.

Time should be reserved for reruns and correcting errors
in procedures. Problems are unavoidable in even the most
carefully prepared efforts and the analyst must plan for
them. The amount of time for rerun and error correction
should be increased as (1) the elapsed time between pilot
testing and actual test execution increases, and (2) the num
ber. Qf.un~Qntrolled variables increases. For example, using
one system to prepare for the test effort and another to
execute the final tests will dramatically increase the prob
ability of errors (e.g., where all the preparation is done on a
system at the user's installation, and another system-a new
one-in a vendor machine room is used to run a test stream).

ANALYZE TEST RESULTS

The data produced during testing should be analyzed on
an informal level as the test is being executed. Thorough
analysis of the test results should begin, if possible, within
24 hours of the test period. This leaves the t('~ting experi
ence clear in the mind of the analyst; although notes are
generated during the experiment, the details will fade with
time. The test results should be examined with particular
emphasis on the following:

• A desired level of control was specified in the testing
procedure; the t('~t results should indicate the level of
control attained and the status of the critical variables.

• The system components suppo;edJy being held constant
should be examined to determine whether they have
been changed.

• The system components being compared, tested, or both,
should be examined to determine the test's applicability.

The validity of the original hypotheses can be determined
onl:r b}T a careful anal:rsis of the actual test results. This
analysis may be extensive and part of it may take place long
after the test. However, each hypothesis should be examined
in some detail immediately, because a long analysis may be
required for one or more of the other hypotheses. More
thorough analysis can be done after the immediate analysis
where the special conditions requiring further work are identi
fied.

The results of the analysis of the test data should be
documented in terms of the hypotheses being tested. The
implications of these results to the objectives of the per
formance investigation should also be documented. As indi
cated in Figure 1, results may be incomplete because some
hypotheses are invalid or the test execution revealed addi
tional questions and additional analysis is required to deter
mine the additional testing to complete the investigation.

DETERMINE INCREMENTAL TESTING

Analysts should expect some hypotheses to be untrue;
when this is so, it may be appropriate to generate new
hvn()t,hpI'lPI'l. Tn l'Innit,i()n t,hp t,p.;:t, nl"A(>~l1l"P TYHnr t.lll"n Allt, tA
--.JJ.-~----'--.-. --- ---- - ,, l"" o..J -., ~ J v '-..J'\,.A.V VV

have been inadequate (regardless of the most exhaustive
preparation). The test procedure, or experiments, may re
quire redesign, but the analyst should only attempt to rede
sign the tests if the expected value exceeds the expected cost
with respect to the original-or a revised-objective.

An evaluation of new hypotheses must include the collec
tion of new data. However, a hypothesis generated to match
a particular set 01 data can beproved·only with new data. *
Otherwise, the "hypotheses" are merely descriptions of ex
isting data.

NOTE

F~ure 1 describes the procedure for implementing con
trolled testing, there are two related special topics that re
quire expansion, Testing Processing Environment and Test
Stimulation. These topics are addressed specifically in Appen
dix A and B, respectively. The explanations in these appen
dices should add clarity to the test design phase for imple
menting the controlled testing procedure.

BIBLIOGRAPHY

Bell, T. E., B. W. Boehm, and R. A. Watson, Computer Performance
Analysis: Framework and Initial Phases for a Performance Improve
ment Effort, The Rand Corp., R-549-1-PR, November, 1972.

Bell, T. E.,Computer Measurement and Evaluation-Artistry, or Science?
The Rand Corp., P-4888, August, 1972.

Bell, T. E., Computer Performance Analysis: Measurement Objectives and
Tools, The Rand Corp., R-584-NASAjPR, February, 1971.

Boehm, B. W., Computer System Analysis Methodology: Studies in Mea
suring, Evaluating, and Simulating Computer Systems, The Rand Corp.,
R-520-NASA, September, 1970.

Bookman, P. G., B. A. Brotman, and K. L. Schmitt, "Measurement
Engineering Tunes Systems," Computer Decisions, Vol. 4, No. 14,
J.-\.pril, 1972, pp. 28-30.

Kolence, K. W., "A Software View of Measurement Tools," Datamation,
Vol. 17, No.1, January 1, 1971, pp. 32-38.

Lockett, J. A., A. R. White, Controlhd Testsfor Performance Evaluation,
The Rand Corp., P-5028, June 1973.

* If a new hypothesis is generated from examining existing data, the
anal~,rst may be able to reject it based on an analysis of these datu, but
he cannot accept it.

Controlled Testing for Computer Performance Evaluation 697

Mayo, E., The Human Problems of an Industrialized Civilization, Mac
millan. New York, 1933.

Roethlisberger, F. J., and W. J. Dickson, Management and the Worker,
Cambridge, Mass., Harvard University Press, 1939.

Seven, M. J., B. W. Boehm, and R. A. Watson, A Study of User Be
havior in Problem Solving with an Interactive Computer, The Rand
Corp., R-513-NASA, April, 1971. . _. .

Sharpe, William F., Economics of Computing, ColumbIa UmversIty
Press, 1969.

Shetler, A. C. and T. E. Bell, Computer Performance Analysis: Controlled
Testing, The Rand Corp., R-1436-DCA, 1974. .

Shetler, A. C., Human Factors in Computer Performance Analys?'s, The
Rand Corporation, P-5128, 1974.

Warner, D. W., "Monitoring: A Key to Cost Efficiency," Datamation,
Vol. 17, No.1, January 1, 1971, pp. 40-42ff.

Watson, R. A., Computer Performance Analysis: Applications of Account
ing Data, The Rand Corp., R-573-PR, May, 197].

Watson, R. A., The Use of Computer System Accounting Data to Measure
the Effects of a System Modification, The Rand Corp., P-4536-1, March,
1971.

APPEXDIX A-TESTING PROCESSIN"G
EKVIROK::\1ENT

While controlled testing can reduce the number of variables
that confuse analysis, total control divorces an experiment
from the workload characteristics of the real job stream.
Experiments can be designed to combine tests in a totally
controlled environment with tests in a partially controlled
environment to assure relevance of the results to the current
workload on a system, when this relevance is a requirement.

Performance investigations that combine partially and
totally controlled testing environments can provide assurance
of the relevance of test results for objectives that are difficult
to prove in other ways. An effective procedure for testing an
objective requiring applicability to a specific system has
been to apply two varieties of specific hypotheses: those
postulating abstract relationships between hard"\vare and
soft\vare and those postulating the effects of these relation
ships on 'processing the usual workload. The results of testing
the former under a controlled environment can direct testing
the latter hypotheses under the system environment to ensure
applicability of the results to the current environment.

Tests with both partial and total control are pursued in
the same basic framework, using the same techniques, and
observing the same caveats. However, some special considera
tions apply to tests in each environment.

Partially controlled workload environment

When the analyst must use the normal workload environ
ment for an experiment, unpredictable elements must be
addressed including the operators, users, and shifting \vork
load. If these are ignored, the results may be more indicative
of unpredictable human reactions than of the effects being
investigated.

If the users or operators are aware of experiments in
progress, they may respond by changing their behavior and
create an uncharacteristic environment (often referred to as

the Hawthorne effect). Spurious workload changes can also
invalidate experimental results. If a testing period coincides
\vith a particular event, such as annual accounting and re
ports, the results can be deceiving "vhen applied to the stand
ard working environment. Normal fluctuations in workload
over short periods (one or two days) can create the same
effect. The analyst must remember that a computer system
\vorkload seldom reaches a "steady state." The human be
havior and \vorkload characteristics of a system during a
short test period must be compared with characteristics over
a longer period. A formal comparison period with appropriate
controls should be used to reduce the probability of invalid
results caused by autonomous changes.

Totally controlled environment

Specifying and generating the desired environment is criti
cal in an experiment with total control. If the objective of
an experiment is to examine specific system interactions, a
relationship between the artificial and real workload need not
be established.

A cooperative effort between performance analysts and
system maintenance personnel is more than desirable; it
c~n be imperative for controlled tests to be productive.
When a hypothesis involves system-related interaction, im
plicit and explicit assumptions and conclusions that are
consistent with the system's operational characteristics can
be assured. HO\vever, the analyst must view all untested
statements about performance characteristics with skep
ticism; systems are subjected to continual change, so opinions
about performance characteristics may be no more than
strongly-stated computer folklore.

Selection of a "background" workload may be necessary
for some controlled workload experiments. A background
workload consists of jobs designed to create some degree of
system activity. The activity created by these jobs is im
portant to the controlled test, but the specific job charac
teristics are considered unimportant. Background alterna
tives include:

• No background. Only the tests are executed.
• Background spooling.
• Activating an on-line system through artificial stimula

tion.
• Activating background jobs with specified execution

characteristics.

Detailed considerations

After selecting the general approach for the degree of
workload control the analyst must choose the details of the
processing envir;nment. The follo"",ing must be included in
the considerations for both partial and total control:

• The hardware and software configuration.
• The system state (including the activity level of system

698 National Computer Conference, 1974

functions and sub-systems such as spooling concurrent
with test execution).

• File placement on peripheral devices.

In addition, the availability of computer time, the work
schedule, the purpose of the experiment, and the quality of
the data being collected to validate hypotheses will influence
the environment selection.

APPENDIX B-TEST STIMULATION

Test stimulation involves loading a computer by imposing
programmed activity that has specific resource utilization
characteristics. When an anal:yst is perforrring controlled
testing, the loading stimulates well-defined system functions
in specific ways. The total spectrum of test stimulation in
cludes not only conventional batch benchmark jobstreams
that have been used for equipment procurement, but scripts
used for stimulating on-line systems.

BATCH-STIMULATION

Batch stimulation can consist of (1) a job stream selected
from an actual installation workload to represent that work
load (usually called benchmarks); (2) a job stream selected
to generate a sample of work, not intended to represent the
workload realistically; or (3) a synthetic job stream that
generates desired execution characteristics but does not at
tempt to replicate an installation workload. Each type of job
stream has a different, but valid, purpose.

Representative job stream (benchmark)

When a subset of the normal workload (with the same
average component utilizations) is desired, the accounting
data generated by the benchmark should be examined to
determine that these data are approximately equivalent to
the normal job stream accounting data. Once the objectives,
hypotheses, and procedures for an experiment are clearly
defined, many of the accounting statistics may be irrelevant
and can be ignored, or additional statistics may be added.
However, reports resulting from an investigation using a
benchmark-type job stream must include adequate caveats
about not extending the results beyond the workload of the
system being tested although they may have applicability to
other systems processing similar workloads.

Specialized job stream

Specialized job streams are often used to investigate un
usual phenomena that are observed. A job stream selected
to generate a sample of the workload does not permit the
same analysis and the results cannot apply specifically to any

computer system workload. A non proportional job stream
should not be an excuse for analysts to do sloppy work;
valuable results can be produced if these job streams are
correctly used. A specialized job stream is used in establish
ing system behavior patterns when a nonrepresentative,
abnormal subset of jobs are run (for analysis of very special
ized relationships). For example, an investigation to deter
mine the effectiveness of an internal operating system modi
fication required a specialized job stream to validate the
implementation of the modification.

Synthetic job streams

Synthetic jobs are designed to stimulate the system to
exercise specific components in well defined ways. Some ad
vantages of using a synthetic job stream are:

• The synthetic job can be designed with execution char
acteristics that are totally specified and understood.

• Internal data collection and data reduction can be de
signed into a synthetic job; it can serve as both the
stimlllatQr lind the monitor.

• Compatability between machines and vendors can be
insured for the bulk of the job, and the analyst can
perform comparison studies.

ON-LINE STIMULATION

Generating test stimulation for on-line systems is difficult,
and the development of procedures for this activity has been
minimal. One of the primary causes for this situation is lack
of information about norma] input (command sequences from
on-line sessions with associated "think-time" gaps) to facil
itate duplication for on-line stimulation. This lack means
that on-line test stimuli are usually generated by scripts
specifically designed to test whether certain functional char
acteristics are present, rather than to test a richer variety
of performance related activities of on-line systems. Such
script are usually created without even the crudest measured
data and stored on punched paper tape or printed for manual
transcription during experimentation. They are costly in
terms of the time to produce and execute.

In addition to these crude techniques for script input,
sometimes a system is tested- with another computer system
as a stimulator. The stimulator generates input from one or
more scripts and inputs this to the computer system under
test, replicating multiple terminal activity. The initial appeal
of such schemes is placed into perspective once the design,
implementation, and application costs have been determined.

Script consideration

Crude techniques should be used initially in an investiga
tion. The analyst can usually devise a minimum set of on
line commands, manually use them, and then expand the
simple scripts as experience dictates. For a context-dependent

Controlled Testing for Computer Performance Evaluation 699

system, the analyst should initially determine the minimum
number of steps that can be meaningful, based on the in
dependence of the script's performance from potential com
mands before and after it. In context-independent portions
of a system, single-line scripts are desirable because they
make analysis easy.

Some simple data collection for existing systems can be
implemented without resorting to sophisticated tests. Since
users of on-line systems are accustomed to people in the
immediate vicinity of the terminals, they can be observed
without disrupting their activities or altering the situation
being observed. Some of the items to observe are:

• The incidence of using each subsystem (command mode),
• The relative incidence of each command,
• The rate of command submission,
• The rate of typing,

• The evenness of input (whether activity occurs in bursts
or is relatively constant through time), and

• The incidence of active but idle terminals.

When better information is needed, automatic data collec
tion facilities are often available for aggregate information
to reveal loading. Combining the data from an automatic
collection facility and personal observation of users may be
necessary when a data collection facility is not available to
obtain more detailed data.

A very basic rule has proved important in on-line stimula
tion: always begin with a very simple stimulation, even when
a complex type is clearly required. The initial stimulation
must be· simple enough that the analyst can explain each
response of the system to it. On-line systems are complex
and understanding them is difficult; the danger of complex
scripts is that they lead to incorrect conclusions.

Installing an on-line information
system in a manufacturing environment

by THO:YIAS J. ARCHBOLD

International Harvester Company
Hinsdale, Illinois

The Construction Equipment Division of International
Harvester Company in 1971 developed a broad program to
dramatically improve the material scheduling and shop floor
control functions at the Melrose Park plant. The basic ob
jectives were to improve efficiency and to be more responsive
to customer demands for our construction equipment. The
system that existed then provided manufacturing with data
that could be from several days to several weeks old. An
up-to-the-minute current status of material availability
within the plant was not available. Discrepancies and error
conditions of all types were extremely difficult to resolve
because of this time delay. Changes to our manufacturing
schedules to meet sales requirements were further compli
cated by the lack of current information.

The program that was designed to resolve these and many
other manufacturing problems is called MICS, Manufactur
ing Information and Control Systems.

The primary objective of MICS is to generate realistic
and economic manufacturing schedules for the machining,
fabrication and assembly departments. In order to accomplish
this objective, accurate and timely data must be available
on the status of each part and assembly as they move
through the 120,000 manufacturing operations to final as
sembly. This requirement dictated a system that would
collect, analyze and record quickly changes in the status of
material as it moves through the plant. The overall stock
status of all parts and assemblies would have to be accessible
to manufacturing personnel on request. The system must
minimize the clerical work performed by plant supervisory
personnel and maximize the manufacturing information
available to them as required.

The major portions of this comprehensive system are in
operation at the Melrose Park l Illinois, plant of the Con
struction EquIpment Division. There are more than 100
data collection devices, typewriters and other terminals online
or interacting with a remote computer 20 hours a day, six
days a week. The remote computer is located at International
Harvester's Corporate Computer Center, Hinsdale, Illinois,
approximately 10 miles away.

A brief overview of the manufacturing facilities and the
products manufactured ",ill provide an insight into the com
plexity of this manufacturing requirement. The facility is

701

located on a 125 acre site in Melrose Park, Illinois. There
are 2.4 million square feet of manufacturing floor -space.
The plant has 70 interdependent departments, 2,200 pro
duction machine tools, approximately 4,000 employees, 40,000
purchased and manufactured parts and 120,000 manufactur
ing operations. A complete line of heavy construction cra\vler
tractors and diesel engines are manufactured and distributed
worldwide. Each end product has a wide variety of custom
izing internal and external attachments. The value and com
plexity of the product coupled with the wide range of sig
nificant attachments available on each product, add ad
ditional dimensions to the overall material management and
manufacturing requirements. Manufacturing must be flexible
and responsive to changes in production schedules as may
be predicated on approval of major highway or other con
struction projects. Our ability to deliver the specific custom
ized product required on a specific date, in many cases
determines whether or not IHC obtains the order. Our recent
order with the Soviet Union for our TD25C Crawler Tractor
reqtlired special Arctic insulating and lubricating equipment
so that these tractors would work at temperatures from a
minus 60° to over 100°.

Before MICS, the computerized material management
system that had been systematically developed since the
late 1950's had been relatively effective and in many aspects
a vanguard in many of the material control disciplines.
However, the total system was oriented to either weekly or
monthly shop and end product schedules.

Why develop a new system? In 1968, divisional manage
ment expressed a strong desire to improve the accuracy of
manufacturing data and also the responsiveness of manu
facturing to react to relatively short notice market needs.
Extensive investigation by a five-man functional task group
recommended a pilot MICS program be installed in a large
complex machining department at Melrose Park. This "lab
oratory" was designed to evaluate many aspects of shop
floor control and overall material management concepts. The
pilot system which monitors 120 work stations has been
successfully in operation for over two years. This system
provides instant communication between the worker, foreman
and a centrai control room. It mechanically collects pro
duction counts for the material control and incentive payroll

702 National Computer Conference, 1974

syste~s. Machine downtime, setups, teardowns and other
allowance conditions are accurately monitored by the com
puter. The integration of this pilot machine monitoring
program into the overall MICS program will be discussed
later.

The positive results gained in the machine monitoring
pilot program and the continuing requirement for more
accurate data throughout the plant resulted in the develop
ment of a plantwide total material management program.

What are the objectives of MICS? The primary objective
of MICS is to develop economical manufacturing schedules
for the 70 interdependent machining, fabricating and as
sembling departments. Effective scheduling in a dynamic
environment required more timely information on the lo
cation and avai!abilit~,r of all parts, assemblies and ra"r
material. The investment in MICS was made to do the
following:

1. Parts tracking is accomplished by accurately moni
toring the availability of the 40,000 manufacturing
and purchased parts in the production stores and
manufacturing departments. Total parts availability
is determined by exploding dally the produced cravder
tractors and engines and reducing the availability of
these assemblies for further manufacturing. The low
level assemblies are exploded into their simple parts
as each worker reports his production through data
collection units.

2. Job order loading on individual machine tools or
machining centers will be scheduled on the basis of
setup costs and compared to carrying costs. Job order
loading \\'ill provide the vehicle where EMQ can be
effectively introduced onto the manufacturing floor.
Job order loading of machine centers will also improve
the predictable parts availability to meet production
schedules.

3. The availability of assemblies and/or the simple parts
will be predetermined at the time the order is received
for that assembly. MICS will determine shortages by
each customer's specific build ticket. Expediting and
parts chasing will be reduced considerably.

4. Mechanized requisition of parts and raw material
from production stores or the machining departments
is now possible. The specific start of each machine
operation is now predictable.

5. Based on the works approved end product forecast,
attachments are currently being mechanically fore
casted. This program is a major system in itself and
will not be discussed in this paper. It is an integral
part of the total MICS system.

6. The capacity planning phase of MICS will convert
the end product forecast into machine tool and man
power loads for each department by weeks for a
13-month period.

7. The order entry system will generate a customer order
and build ticket in machine readable form. The order,
with its attachments, "ill be compared to the iore-

casted schedule for finished machines and attach
ments, and the most _economical production slot in
relationship with the customer's order date will be
established. Reslotting of customer orders will be
mechanically accomplished as schedules are changed.

How was this feasibility developed, presented and finally
approved by top management? The above objectives were
specifically delineated by the task group to executive man
agement. A preliminary feasibility detailing the overall con
cept of MICS with estimated costs and savings was presented
to executive management. The acceptance of MICS as a
viable project was conditioned on specific resources being
spent in areas that may be either overlooked or understated
in feasibility proposals. These conditions were:

1. That a consulting training firm be called upon to
develop and implement a training program.

2. That 20 stock status specialists be hired to analyze
and correct production discrepancy conditions im
mediately as they occurred.

3. That a MICS Project Manager be assigned full time
and report directly to the Divisional Vice President
of Manufacturing.

In depth, strategic planning on all phases of this enormous
project began with executive approval in November of 1971.
Current manufacturing techniques played an important part
in developing the implementation program. Because material
moves through l\tlelrose Park plant on a continuous flow
basis, each department functions somewhat independently.
There is a complex interaction on material movement, ma
terial requisitioning and material scheduling. This environ
ment necessitated that each aspect or phase of MICS be
implemf'nted over the entire plant in as short a period of
time as possible. Functions that could be separated were
split into three phases. This basic approach allowed us to
monitor the reliability and the results of each phase as well
as receive the benefits of each phase, and because of the
interrelationship of the various phases, any changes that
were required during the parallel or implementation time
period could be more economically reprogrammed.

What are the MICS phases? MICS Phase I provides the
data base and datacommunication.s capability to enable
management to maintain complete control over all purchased
and manufactured parts, from the basic castings and forgings
through lower level assemblies to the end products. Phase
II extends MICS capabilities to enable the system to slot
and reslot customer orders, to establish uniform assembly
line sequences, and to predetermine the availability of parts
for scheduled assemblies. Phase III further refines the ~yRtf'm
to calculate economic manufacturing lots at all levels,
schedule production, sequence jobs, requisition the necessary
parts and components, and recommend piece part production
start and stop dates.

The MICS project spans a two-year period. Each phase
was designed to overlap certain activities in urder that
maximum utiiization of manufacturing and systems personnel

Installing an On-Line Information System in a Manufacturing Environment 703

was attained. Although the overall concept was approved,
a major planning effort remained. All levels of manufacturing
personnel had to be motivated to change-to accept this
new technique of manufacturing control. We developed, with
the training consultant, Wilding Incorporated, Division of
Bell and Howell, a 30-minute video film with key manu
facturing management as the actors. The reasons for MICS,
what MICS would do, and the functions of various computer
equipment were addressed in this film. The film was directed
to the foremen or first line manufacturing management.
After viewing the film, there were buzz sessions with small
groups of foremen conducted by industrial psychologists.
Some of the recommendations from these sessions were in
corporated into MICS. Training and systems manuals were
prepared. Techniques were developed to train the thousands
of plant personnel who would be using the system.

Now that the forward momentum had been established,
detailed activities and implementation schedules would have
to be developed to support each phase. Such questions as
What type of inquiries?-What are the error condition
parameters?-What specific audit trails are required?-What
aspects of the total system require backup or redundancy?
This definition would then be converted to programming
estimates, training requirements, and equipment installation
dates and all other related tasks. Critical resources such as
systems expertise could then move from one phase to another
when they completed their portion of an earlier phase.

Each major area, such as systems development, pro
gramming, training and equipment installation, were divided
into sub-tasks which were manually perted. Progress in all
areas was reviewed weekly, and management was apprised
of the progress through an exception report.

Throughout all phases of MICS, special computer analyses
were designed and programmed to evaluate various aspects of
the manufacturing data base. Simulations were used to de
termine online response and offline processing times. The
"one-time" effort in analyzing data and alternate processing
techniques is more prevalent in all our systems design today.
This kind of analysis is almost essential in the development
of online systems because of their hardware/software com
plexity and generally high cost. Special programs were de
veloped to assist the user in his conversion from the old to
the new system. For example, data from the new and the
old were displayed on the same report for ease of comparison.

Because Melrose Park plant operates under continuous
material flow concept and each work area is depending on
others for materials movement, requisition, scheduling, etc.,
the implementation of MICS was difficult.

In order to maintain the integrity of the manufacturing
data, implementation of each phase would have to be ac
complished in the shortest period of time. Any installation
delays would create an excessive hardship on the Stock
Status Investigators in resolving any discrepancies between
the MICS information and the current system at that time.

The primary objective of Phase I is to collect and maintain
availability information on all purchased and manufactured
simple parts and assemblies. This data includes all castings,

forgings, purchased finished simple parts and assemblies, and
manufactured assemblies.

During Phase I, data collection procedures were introduced.
During this department-by-department installation, the pre
punched job assignment card system would be running in
parallel. Duplicate employee earnings and production analysis
statements were prepared and analyzed to insure accuracy
of the new system. In order to maintain good employee
morale, this duplicate reporting time period had to be as
short as possible. Prior to the actual department parallel,
an extensive training effort was made to assist the foremen
and expediters in that department. A flexible front end
program was used to move a department from the old system
to a combination of the new and the old processing and
finally to the new program. This flexibility was maintained
so that a department could be put back on the old system
if unforeseen difficulties arose.

Each machine tool schedule is keyed to the component
parts required to fulfill its schedule. Component availability
quantities and locations on any assembly or part is available
on inquiry on 32 MICS typewriters located throughout the
plant. In order to maintain reliable data, all simple parts
and assemblies must be carefully tracked through their
various phases of processing. This further reinforces the
requirement to install the data collection and the type
writer/punch units as quickly as possible.

As a simple part or assembly is completed and then
reported by the employee through the data collection station,
the next department is determined from the routing file data
base and an authority to receive card with the quantity
made is punched out in this department. When the material
is received, it is verified against the quantity on the card
and the card is inserted into the data collection device to
complete that portion of its routing through the shop. For
example, the reporting cycle for a rough water pump impeller
begins when it is received in the castings yard. The system
shows the impeller as being available for any part that
requires such a casting. A requisition to the casting yard for
the impeller and notification of its receipt in the requisitioning
department changes the impeller's location on the central
data base. However, after the initial production operation is
performed by the first production department, the raw
casting will be no longer available in the system for other
part numbers that might use this stock. It will be available
only for subsequent operation of this particular impeller
part number.

When the final production operation is completed, the
impeller will be shown as available to the next higher level
of a particular water pump assembly. When the impeller
is assembled into the water pump assembly, it loses its
identity and availability as an impeller part number. The
system will continue to track the impeller or water pump
from department to department, showing the availability of
the total water pump. All other parts and materials used in
this finished product are tracked in a similar fashion. The
level-by-Ievel component tracking provides answers at any
time to inquiries on the availability and location of raw

704 National Computer Conference, 1974

castings, forgings, purchased finished parts and assemblies,
and manufactured assemblies.

A foreman, expediter or plant manager can use the 32
typewriter inquiry terminals to ask such questions as:

What is the availability of the finished components for a
given part number?

What is the finished inventory of a given part number?
What is the in-process inventory?
What is the date and quantity of the last made figures?
What is the production schedule for a given part number?
What is the opening inventory or accumulated scrap of a

given part number and operation?
When and how many adjustments have been made to the

given part number and operation?

These and a variety of other questions concerning various
fixed information about a part number such as its routing
and process time are available on request 20 hours a day,
six days a week.

When MICS indicates that stock is available, it reflects
all actual usages. Simple parts that are already used in

-higher assembliesare-- shown--as--unavailable. -Raw stock---
availability is reduced as the raw castings are requisitioned
from the storage yard. Availability of parts is maintained
by a series of unloading stages. Simple parts disappear as
they are assembled into a higher level sub-assembly by
exploding the Bill of Material the moment the employee
reports the made quantity in the data collection unit. This
unloading technique is also used when parts or assemblies
are moved.

Parts and components that are used on the a..'3sembly line
are unloaded by exploding the finished engines and tractors
daily.

The processing points that require unloading and reducing
the availability of material are:

1. In the warehouse when purchased or rough castings
are moved.

2. In a machining or fabricated department after the
first operation is completed.

3. In a department when finished parts have been re
ceived from another department.

4. On the assembly line when the end product is com
plete.

5. In the shipping department when service parts, col
laterals or help-outs are shipped.

6. In various plant locations when scrap, substitution or
loss is reported.

The primary objective of MICS Phase II is to reduce
parts shortages on the assembly line. MICS will also drasti
cally reduce the expediting activity immediately before a
tractor is threaded on the assembly line.

In the current -semi-mechanical system, build tickets are
examined the day before line thread by assembly line expe
diters. Because each tractor requires over 1,000 separate
simple parts and assemblies on the line to complete its as
sembly, only the major units can be effectively analyzed by

the expediter. Shortages on simple parts are sometimes diffi
cult to determine. If shortages are discovered on major
components, the production department must either re
shuffle their build schedule or make an attempt to expedite
within a few days the parts that are required.

Phase II of MICS compares the slotted order to the manu
facturing authority build schedule. This will insure that all
the materials have been ordered. When the slotted orders
are within two to three weeks of the line thread date, the
slotted order will then look ahead ten to fifteen working
days to determine if finished components are available to
build the planned machines. The projected parts shortages
will be identified by their assembly line location. The short
ages then can be expedited or the planned build schedule
can be logically rearranged. This nO'.Xf allows considerably
more lead time than existed prior to MICS.

A requirement to reslot a particular order can be easily
analyzed. Then if this unit can be reslotted, the effect it will
have on the other units, either in the pipeline or on the
assembly line can be determined. Status of each specific
order will be available to the Order and Distribution depart
ment which will provide better information for our Sales
-department ancl,-of course, the customer. --

The order slotting phase of MICS provides a considerable
improvement in assembling the final machine. The logic of
comparing the slotted build schedule against the availability
of the simple parts and components would be almost value
less if the data provided in the first phase of MICS was
unreliable.

MICS Phase III has three major sub-tasks-scheduling,
order releasing and shop floor control. This phase adds new
dimensions to our current system. Many of the techniques
and business philosophies that have been built into our
current batch material management system are being used
in the new scheduling program. However, a radical departure
from the old system is to base our orders on vendors and
our manufacturing facilities on the available quantities
shown on the stock status inventory generated in Phase 1.
The absolute necessity of reliable data is obvious.

The primary objectives of Phase III are:

to develop economic manufacturing quantities on all jobs
released to the Melrose Park plant,

to reduce and even more important, to more appropriately
allocate work-in-process inventories.

to reduce the amount of decision making by the first line
supervision and replace these decisions with system
generated schedules based on the broader scope of the
total data, and

to improve the performance evaluation capability of the
manufacturing departments.

In developing the concepts that will be used in this phase,
extensive simulations and analyses of the data were made.
The EMQ is developed at the high level assembly and
works down to the simple parts. Therefore, because the
lower level assembly is dependent on each subsequent as
sembly level, there are definite programming difficulties
created in the calculation of EMQ's to fit at the various

Installing an On-Line Information System in a Manufacturing Environment 705

assembly levels. In many industries the cost of setup for
assembly is low. However, in our case, this is not true. For
example, major track weldments, rear frames and welded
assemblies have significant setup costs. These setups com
bined 'with the low cost setups significantly complicate the
programming logic when there is a schedule change.

In order to reduce the expediting required on a schedule
change, a de-lotting routine was developed to minimize the
effect of this change on our suppliers. Manufacturing can
code a particular part as being critical. Tolerances will be
established on this particular part number which coupled
with the previous orders to that supplier will provide the
necessary data for the system to adjust the order to the
quantity to meet current production. This may be a non
EMQ quantity.

Phase III of MICS will develop infinite loading on all
manufacturing facilities. This infinite machine load will reflect
the total machine tool requirements but "will not reshuffle
or manipulate any overloaded conditions in the plant. This
finite loading technique is being studied and will be developed
in the future.

Extensive design and programming has been built into
the system in an attempt to account for any changes made
by de-lotting economic lots. This effort, however, "vill make
the formal system more complete and, therefore, should
eliminate the need for an informal or hot list system to
circumvent the unreasonable demands for material.

A major requirement necessary for any online system is
to have reliable data base files resident on a disc for access.
Various techniques are available today for organizing data
files on discs for rapid retrieval. Our experience started with
the IBM Bill of Material Processor, then we tested ex
tensively an IBM Users Bill of Material Processor, and
finally decided to use the IBM Chained File Management
System (CFMS).

The conversion of our data processing files to disc was
complicated by the extensive integration of all our batch
systems. Because we had developed major material manage
ment systems in the late '50s, file maintenance and report
requirements were ingrained into these applications, and the
extraction of portions or certain functions such as the file
maintenance updating "vas, to say the least, extremely diffi
cult. In many cases, these major applications had to be
reprogrammed, or certain interfaces or bridges had to be
constructed to support both the new and the old system.
As time then would permit to redesign the application, these
bridges then "vould be dissolved. The current manufacturing
data base contains the following files: Product Structure,
Piece Parts Master, The Bill of Material, Labor or Operation
Routings, Work Center or Machine Tool File, a Location
File, Employee File, Machine Asset File.

As a direct result of the MICS online data files and inquiry
terminals, numerous other information files and sub-systems
are being added presently or are being planned for the im
mediate future. For example, these include Assembly Error
Analysis, Purchase Order Follmv-U p System, Machine Order
Processing System, Manufacturing Process Sheet System,
and an expanded Man Data Base System.

Our confidence to go on-line through a remote processor
was also based on the success we had with the IBM 370/155
under a multiprogramming environment. There are currently
four high speed R.J.E. terminals operating in a HASP en
vironment for data input, programmer testing and engineering
testing. This computer is also used for the Corporate Message
Switching System which has over one hundred terminals
throughout the United States. A heavy load of divisional
and plant batch applications are also processed. The I.B.M.
370/155 is also processing a similar on-line system for our
Hough Plant 20 hours per day, six days a week.

Although the data collection control computer at Melrose
Park, the IBM 2715, would be on-line 20 hours per day with
the host computer at C.C.C., some buffering capability was
essential in order to collect data during the off-line processing
and during any unscheduled downtime. The IBM 2790
system, with its internal disk, would be able to buffer any
telephone line or remote computer difficulty that would
occur. The decision to go on-line to a remote computer \vas
the determining factor on how the machine monitoring pilot
department would be integrated into MICS.

The machine status and piece count data are collected by
the IBM Systems 7. The IBM 1031 data collection units
were replaced by the IBM 2791 units. All this data is con
solidated in the host processor and, of course, is available
for inquiry. The selection of the Systems 7 to replace the
IBM 1800 was based on economics and its capability to
expand the machine monitoring aspect of MICS throughout
Melrose Park.

The overall system must be tailored to accomplish as
many manufacturing objectives as possible. Then the hard
ware specifications can be written based on the performance
parameter established in the original concept. If for reasons
of cost or capability the equipment is not acceptable, the
system must be restudied. This process will continue until
an acceptable compromise between the objectives, costs and
savings is achieved. The initial system design should never
be centered around computer equipment. .

Reliability and service support from the computer manu
facturer were important considerations. The terminal units
had to be able to interface easily with the host computer
at C.C.C. Available computer software at the remote pro
cessor and the plant control computer were also major
considerations.

The data collection units had to have some "intelligent"
capability. This means, that the worker is led through his
transaction by a series of lighted panels with verbal descrip
tions. If he enters an error, the terminal displays the error
and "locks up" until he re-enters that step of the transaction.
This step-by-step correction capability of the 2790 system
considerably reduced the training and installation time. This
overall capability of the data collection system was essential
if the tight installation target dates were to be met.

Although the economics favored the IBM 2790 and 1050
systems, the advantages of having the same vendor's equip
ment at the plant and Computer Center are obvious. The
complexities of installing an on-line manufacturing system
would have been intensified if there were multiple vendors'

706 National Computer Conference, 1974

hardware to install and evaluate during the installation
period. Questions like, "Whose equipment or software caused
the failure?" "Was the failure in the telephone line, modem
or computer control unit?" would result in unnecessary
delays. The vendor, IBM, assumed full equipment and soft
ware responsibilities as long as the entire MICS application
from terminal to host computer was IBM equipment. This
overall responsibility was a major consideration in our de
cision on equipment selection.

In the original design of MICS, every reasonable effort
was made to solidify as many facets as possible in order to
insure maximum reliability and rapid installation of the
system. More sophisticated hardware and/or software tech
nology that may have been desirable but not necessarily
t:>QQt:>nt:i", 1 urt:>l"P C/pfpl"l"PC/ t.{) TY\{)l"P C/pnpnC/", hlp ",nC/ nl"{)vpn t.pf'h_
~~~~ •• V'~' .. ~. ~ -~. ~ •• ~- ,~ ••• ~. ~ -~r-"~"--~'~ _ •• - r-'" ~ • ~ •• ,~-•• 

niques. For example, although the 2790 system computer 
was not as flexible as the Systems 7, the Systems 7 software 
and hardware interface to the 2790 data collection units was 
not as well developed as it was for the 2790 control computer. 
Before the 2790 system was selected, programs were compiled 
and tested for the 2790 system computer. This early confi
dence in the 2790 system was later substantiated as this 
phase of the MICS program was installed and in production 
with absolutely no difficulties. 

The initial feasibility called for IBM 1050 and 2740 type
writers rather than cathode ray tubes (CRT's) for several 
reasons. Although a CRT would considerably enhance the 
system to the user, the 1050 systems were considerably less 
expensive. However, the primary reason was the anticipated 
difficulties with the software to support the CRT's at that 
time. 

A major decision without which the MICS system \yould 
not have been installed in such a short period of time was to 
program the entire on-line system in Cobol. Although many 
on-line systems are programmed in an assembler computer 
language to reduce core utilization and for generally more 
efficient processing, th~ development of the on-line programs 
in Cobol offered some distinctive advantages. Programming 
is considerably easier in Cobol than in Assembler. Cobol 
programmers are more readily available in the market and 
considerably easier to train. Our programming staff had been 
writing exclusively in Cobol since the mid-1960s. This in
house capability coupled with our projection of as many as 
thirty programmers required over certain time periods, 
clearly dictated that MICS be written in Cobol. Also, the 
plausibility of retraining our personnel in an assembler 
language for this project was questionable. The other ad
vantages of less core utilization and faster throughput were 
generally neutralized by the relative low cost of computer 
memory on the IBM 370 computers and the low computer 
cycle utilization projected for our on-line programs. 

The coordination for the installation of the communication 
lines and modems required at Melrose Park and C.C.C. was 
developed in detail with Illinois Bell Telephone. IBT pro
vided special support and assistance in the final design of the 
communication network. 

During an phases of lVIleS and particularly during the 
installation of the typewriters and data collection units 

during Phase I, in-depth planning and close coordination 
between Manufacturing, C.C.C. and Systems was paramount. 
Problem areas, regardless as to whose responsibility, had to 
be quickly resolved. Once MICS was in production in one 
department, any programming changes or equipment modifi
cations had to be tested "off line" which generally meant 
Saturday or Sunday. This limited repair time reinforces the 
overall requirement to be as complete as possible in the 
detail system design. Because the Corporate Center operates 
24 hours a day, seven days a week, any time required to 
physically install new equipment and make the necessary 
electrical changes had to be carefully scheduled, alternate 
plans had to be developed in the event the computer would 
not be functional on schedule. 

department went on data collection, each employee had to be 
given a new badge with his picture and pre-punched clock 
number. This, too, was a major coordinating effort. Special 
photographic equipment and badge materials had to be 
purchased. 

The physical installation of the equipment and telephone 
lines and modems required extensive planning and coordi
nation. The physical layout of the data collection lines in 
the plant had to be designed for backup if one unit in a de
partment failed and also for easy installation and testing. 
The possible addition or movement of a terminal had to be 
anticipated. 

The location of some of the typewriters/punch systems 
created physical problems because these units would not fit 
into many of the foremen's offices. They were either placed 
outside the office in a protected area or a special enclosure 
had to be fabricated to protect these units. 

N ow that the system has been in production for eighteen 
months, what are our plans to improve or strengthen MICS? 
Conceptually, the original design of the system has not 
changed. However, \ve are addressing hardware improve
ments designed to strengthen the up-time reliability and 
improved performance for the user. The 2715 control com
puter will be replaced by twin Systems 7's. Systems 7 'will 
provide additional backup support, and also the capability 
of processing the machine monitoring phase of MICS. The 
division of the data collection loops between the two Systems 
7'8 will provide additional backup within each department 
if one of the loops and/or Systems 7's should malfunction. 
The high speed printer and inquiry device in the MICS 
Control Room will be replaced by an IBM 3270 with a side 
printer. This will provide faster response to inquiries and 
give the option of printing to the individual making the 
inquiry. The 1050 inquiry typewriters will be buffered into 
the Systems 7. In the event the lines or computer mal
functions, the Systems 7 will determine this malfunction and 
message each terminal that the computer or telephone lines 
are not functioning and that their inquiries will be logged 
by the internal disk on the Systems 7 for transmission later. 
Also, several major systems will be changed to provide 
direct updating of the data base files used by MICS through 
IB:M 3270 eRTs. 

Obviously, there are many tasks that must be continuously 



Installing an On-Line Information System in a Manufacturing Environment 707 

monitored to insure the successful implementation of a manu
facturing on-line system like MICS. Whether using a me
chanical PERT or manual control system, some control 
mechanism must be employed. Not necessarily in order of 
importance, the following is a list of some of the more im
portant aspects that must be addressed: 

1. The system concepts must be developed by manu
facturing personnel and supported totally by executive 
management. 

2. A project manager must be assigned and should report 
directly to the highest level of manufacturing manage
ment in the division or works. 

3. The database should be anaJyzed in depth to de
termine its reliability before the project is approved. 

4. A training program must include all levels of manu
facturing personnel. 

5. Computer equipment should be selected after the 
system is designed and not vice versa. 

6. Equipment installation must be coordinated between 
the telephone company, computer vendor and the 
plant engineers. 

MANUFACTURING 
MITTED TO THE 
INVOLVED. 

r€LROS[PARKPlNil 
STOCK STATUS 
IBM HAROOftRE SCHErlATlC 

)050 

MUST BE 
PROJECT 

1050 10SO 
LOOP 

Figure 1 

TOTALLY 
AND MUST 

COM
GET 

1050 
LOOP 

1050 
LOOP 

• ~~~~~ER~I~~PU'! 
.!('I52TERP':I~./!l 

.1058 CARD RD/P"' 

1050 
LOOP 

HELROSEPARKPLANT 
FtrTURESTOCKSTATUS 
IBM HARDWARE SOiEMAlIC 

Figure 2 

Figure 3 

MELROSE PAR< PLANT 
2791 AREA STATION 
LOOP LAYOUT 

_ SEGMENT A 
_SEGMENTB 

- SEGMENT C 
- SEGMENT D 

ONE 2791 AREP. 
STATION 

~ 1052 TERMINAL 
.IOS€eARDRO/PUN 

.IOS2T£RHINAL 

2791 
LOOP 

2791 
LOO' 

2791 
LOO' 

2791 
LOOP 

2791 
LOOP 

·"--.... 2791 
LOOP 





Remote data collection case study-Telephone Order Processing 
System (TOPS) 

by M. H. RESNICK 

Forman Brothers, Inc. 
Washington, D.C. 

INTRODUCTION 

The IBM System/7 touch-tone order/entry inventory allo
cation system has been installed at Forman Bros. since 
January 1973. While the system is a Field Developed Pro
gram (F.D.P.) we at Forman Bros. feel we had a great deal 
to do with its development and implementation. The F.D.P. 
has been modified in the past year to fit our business require
ments. 

Early in 1972 we discussed the possibility of such a system 
with one of IBM's system engineers. From that point on, 
discussions became more lengthy and more serious. The 
F.D.P., which is now available, is a culmination of nearly 
nine months of systems and programming effort. We feel 
that it is a system which has wide applicability in the distri
bution industry. 

We have prepared this brochure so that others may have 
an inside view as to how we justified needing the system, 
how we went about implementing the system, and how we 
justified its cost. We invite your comments and questions on 
our presentation and hope that this document will represent 
some helpful hints on how to use the system profitably. 

FORMAN'S USE OF TOPS 

In the District of Columbia, one of the nation's largest 
markets for the liquor distribution business, a slow answer 
about stock can result in the loss of a delivery day or the 
loss of a \vhole order. 

With gross sales in excess of $28 million for the last fiscal 
year-a 45 percent increase since 1968-Forman Brothers 
found itself in need of a new way of processing its increasingly 
high volume of orders. Salesmen were calling their orders 
in to a tape recorder-telephone answering device, (Edison 
Phone System), but it took two hours after all of the orders 
were in for employees to keypunch, verify and edit them. 
There was also high keypuncher turnover and numerous 
keypunching errors. 

Forman Brothers met the problem head-on by eliminating 

709 

entirely its keypunching of salesman orders. Beginning in 
January 1973, it switched to a System/7 Order Entry / 
Inventory Allocation System. Each of the company's 42 
salesmen were equipped with pocket-sized adapters for con
verting dial phones anywhere into Touch-Tone phones. 
Simply by keying in a customer code number and a product 
code, the salesmen communicate directly with the in-house 
System/7 as it allocates the inventory to each order and, 
just as fast, updates the inventory. At the end of each day, 
the disk pack from the System/7 is put into the company's 
general-purpose System/3 Model lO, which sorts the orders, 
produces invoices, and prints out management reports. 

The salesmen can use all the time they can get. Forman 
Brothers serves some 1,200 retail outlets-including liquor 
stores, hotels, bars, restaurants, grocery stores, and markets
with a line of more than 3,000 different whiskeys, spirits, 
cordials, and wines. Invoices average 600 a day and it takes 
eight to 30 trucks daily to get the orders out. We average 
about 50,000 line items a month. 

The System/7 knows, even to the last few bottles, what is 
on hand. If, for instance, an order comes in for a rare bottle 
of 1949 Lafite Rothschild wine, the computer will find it. 
Most of all, the retailers are happy because they now know 
exactly what they will be receiving. 

Previously, the retailers did not know of any out of stocks 
until the trucks actually arrived the next morning. 

The System/7 and System/3 go well together. For ex
ample, it makes no difference to the Model lO when the 
System/7 receives an order. If two orders come in from the 
same customer during the day, the ModellO will consolidate 
the order and produce a single invoice-and even will produce 
a route sequence for the trucks to follow in delivering the 
products. 

Apart from the basic benefits of rapid and error-free order 
entry and inventory allocations, Forman's total system is 
being used to produce a number of reports of value to sales 
and company managers. Among these are sales reports 
showing what each salesman sold compared to quota, stock 
status reports, aged trial balances, and summarized ware
house location· reports that are used to take a physical 
inventory of the company's entire stock. 



710 National Computer Conference, 1974 

WHAT IS T.O.P.S.? 

TOPS is the most modern order processing system avail
able in this country today. The computer hardware for 
TOPS is an I.B.M. System/7 Computer. The software con
sists of a set of programs developed by I.B.M., in conjunction 
with Forman Bros., to convert this System/7 Computer to 
an on-line, real-time, order processing system. 

The system requires that salesmen enter their orders via 
a touch-tone telephone. In Washington, D.C. like most other 
areas, touch-tone telephones are not readily available in 
retail outlets or in public telephones. This is easily over-come 
by the use of a small, inexpensive, battery powered touch
tone adapter. The model we use is manufactured by Inter
face Technology, Inc., St. Louis, IvIissouri. 

The system receives the orders from the salesman and 
does the following: 

1. Edits the data entered by the salesman to determine 
that it is correct. That is to say, the salesman number, 
product number or customer number exists in our 
system. If this is the case, the computer will generate 

-atone -to-IndIcate thIS to the saiesman. If,on the 
other hand, this data has been entered incorrectly, 
the computer will generate an error tone, indicating 
the salesman should re-enter the data correctly. 

2. The computer automatically allocates inventory to 
each order as it is received, provided there is inventory 
available. If the order can be filled as requested, the 
computer so indicates to the salesman. If, on the 
other hand, there is an insufficient inventory condition 
existing, the salesman is informed and is given a 
choice as to what future action we should take. That 
is, cancel the order, back-order the entire order, or 
ship whatever is available. 

3. The system has the ability to check each order against 
a pre-determined credit limit. If an order causes a 
customer to exceed this credit limit, the salesman is 
immediately informed of the situation. 

At Forman Bros., we do not use this feature of the 
system. Market conditions and credit regulations here 
are such that the value of this feature is too limited. 

4. The system offers the salesman the ltD::ury of an 
inquiry capability. That is, if a customer should ask 
"Do you have so many cases of a particular item?", 
the salesman can use the system to obtain an im
mediate answer. At the time he gets this response, 
he then has the option of cancelling the order or 
processing it. This allows our salesmen to offer a type 
of service never before available in our industry. 

5. The system offers our management the most expedient 
means of contacting our salesmen. By placing an 
indicator in the salesman's file, he will be informed 
at the time he places his next order that he should 
call the office at the conclusion of his call. 

6. The ability of this system to edit orders as they are 
received has had a major impact on our Data Pro
cessing Department. 

The very fact that the computer, working with the 
salesmen, has edited each order as it is received is a 
tremendous advantage in error reduction and/ or elimi
nation. We no longer have to key-punch orders at 
5:00 p.m., key-verify them, edit them, correct them, 
and run the risk of making errors in the process of 
trying to correct errors. When a salesman completes 
his call, the order has been edited; it is correct; and it 
is in a form which can be immediately transferred to 
our billing process. There is no longer any inter
mediate steps or people required to prepare this order 
for invoicing. • 

This error reduction benefit is such a tremendous 
time saving advantage, that we have extended the 
hours in ,vhieh an order may be called in by t .. vo 
hours per day. We estimate that this is the time we 
have saved by not having to key-punch, key verify, 
and edit these orders. 

To summarize TOPS: the salesman keys in orders through 
the telephone into the system. It, in turn, edits the orders, 
allocates inventory, checks for credit, and responds to the 
salesman telling him all he needs- to know -about his order. 
The system then prepares these orders for billing. 

TOPS IMPLEMENTATION 

In order to insure an effective, smooth, and error free 
implementation of the Telephone Order Processing System 
(TOPS), properly planned implementation is extremely im
portant. At Forman Bros., we experimented with several 
different means. The following is a brief summary of the 
combined techniques we used to effect the kind of implemen
tation which we desired. 

The First Phase of implementation is to be done strictly 
by the Data Processing Department. In this phase, the 
Department must become completely familiar with the 
F.D.P., the way it works on the System/7, and the way the 
System/7 must interface with their host computer. In this 
phase, they must write and test those programs required to 
create the data files from the host computer and those 
programs required to take the data from the System/7 and 
read it back into the host computer. They must also check 
out all the additional management reports which are going 
to be required. 

Within this phase, the Data Processing Department should 
also install the System/7, test all its programs, and be assured 
that all systems work as they are supposed to. It is extremely 
important, in this system as in any other, that the Data 
ProceRRing Department have confidence in the system they 
are working with. 

The Second Phase can begin mid-way through the first 
phase. This phase will require a close working relationship 
between sales management and the Data Processing Depart
ment. It is in this phase that the training technique for the 
Sales Department as well as the follow up in this training 
must be outlined and the details worked out. 

In the Third Phase of the implementation, we divided all 



Remote Data Collection Case Study-Telephone Order Processing (TOPS) 711 

of our salesmen into small groups of 6 or 7 for the purposes 
of training. We also made a single group out of our sales 
managers. We then scheduled meetings with every Sales 
Department in two hour sessions for the purposes of in
doctrinating them into TOPS. We chose to work with our 
sales managers first so that they would all knmv what was 
going on well before their salesmen did. 

Having done this, we started with that group of salesmen 
who we thought would be the easiest to train, and then the 
next easiest, and so forth until we had scheduled all the 
various sales groups through the session. 

In the first section of the training session, ,ve gave the 
salesmen an historical background on the Telephone Order 
Entry Systems at Forman Bros. and the added benefits 
each one had over the previous one, until we finally were at 
the discussion of TOPS. The discussion of TOPS was merely 
an over-view at this point. 

In the second section of the training session, we gave the 
salesmen a detailed, step by step instruction on how to use 
TOPS and what they should expect at each point along the 
way. We found visual displays and salesman involvement 
extremely helpful during this phase. The visuals enabled 
the salesmen to see what an order should look like, while 
their involvement helped overcome their fear and gain their 
interest. At the end of this session, we had a practice session 
for all salesmen supervised by people who were well qualified 
to answer all questions. 

At the end of that session, each salesman was given a 
hand book with guide lines on TOPS explaining each field 
of data they would have to enter and each response they 
might receive at any point along the way. 

The Fourth Phase was to be done by the salesmen on their 
own. This phase included numerous practice sessions which 
they could do in their spare time. When the system was not 
being used for teaching, we left it open for the salesmen who 
had been through the training sessions to use and practice 
on until they became confident that they could use the system 
quickly and easily. This training session was culminated 
with a quiz consisting of fill in the blank questions and short 
answer questions covering the general principles of the use 
of TOPS. 

Having completed the quiz and being assured that we 
were on the right track, we were ready to begin our parallel 
operation of Phase Five. For this parallel operation, we took 
that group of salesmen which had performed best during our 
training sessions and had scored the highest on the quiz and 
picked two medium to heavy days of billing. We asked that 
these salesmen call their orders in both to the new system 
and the old system. We picked two days which would end on 
a Friday so that we would have the week-end to bill these 
orders, check them, and be sure that all systems were working 
properly. 

Having done this, we began Phase Six, which was a slow 
but steady implementation of the new system by those 
salesmen who were qualified to use it. We started with small 
groups and had them use the system for all of their orders. 
We felt it was important to use small groups of people so 
we could monitor them closely and be sure that nothing 

went astray. We were concerned about both bugs in the 
system and errors that the salesmen might make. 

This final implementation phase required a total of six 
weeks to complete. While most of the salesmen were ready 
and using the system three weeks after we started, we took 
it very slowly with those salesmen who were resisting the 
system for whatever their reasons. Finally, at the end of 
five weeks we held a final class and review session for these 
people and told them that at the end of the week, the old 
system would no longer be used. 

Today, all of our salesmen use the TOPS System as their 
means of entering orders for next days deliveries (See 
Appendix A). 

OPERATION NARRATIVE 

Operation introduction 

As the salesmen enter their orders through a 12-key touch
tone telephone or the TOPS adapter, they are guided through 
the order entry process. The system is open for the next 
day's deliveries between 8:00 am and 7:00 pm. The data is 
transmitted through a 403E6 data set into the System/7 
disk for validation and subsequently, transferred to an order 
file located on both the fixed and removable disk packs. 

Each day, the disk pack on the computer is initialized 
with an up-to-date inventory status. After the salesman has 
dialed the telephone number to connect him with the com
puter, he puts in a salesman security code, customer number, 
and delivery code to indicate when and where (front door, 
back door, side door, etc.) the delivery is to be made. He 
then enters the product number, quantity, and such addi
tional information as special pricing and discount. For every 
field of data entered, the System/7 returns a "good" or 
"bad" beep tone. No invalid numbers will be accepted. If 
there is not enough inventory in the warehouse, a two-beep 
out-of-stock tone is given. 

The end of an order is signaled to the computer by the 
salesman keying in a special action code. He can also tell 
the System/7 to accept a back order if there is an insufficient 
quantity on hand. 

The order file, when placed at the end of the day on the 
System/3, ·will go through a detailed edit and reformatting 
procedure. The customer and product files are located in 
the same location but different disk drives. This shortens 
the seek time through reducing the arm movement of the 
disk. 

In addition to the salesman placing orders, TOPS is used 
for entering credits and offers many inquiry capabilities. 

Features and functions 

There are many features incorporated in TOPS that allow 
the salesman inventory information, quantity limit warnings, 
backorder capabilities, field verification, end-of-order warn
ings, bottles greater than bottles per case entry warnings, no 
split case entry warnings, and zero quantity entry warnings. 



712 National Computer Conference, 1974 

Also included are displayed messages on the 5028 console 
indicating errors, out-of-stock conditions, and total quantity 
of orders entered. 

The following are functions and tone generations: 

01* END OF LINE ITEM 
Sends you back to the product number 

02* WHERE AM I? 
This entry may be used at any time. A generation of 
tones will point to the next field of data to be entered. 

03* ANY IN STOCK? 
This may be used after a product number has been 
entered. It will let one know whether we have 
inventory or we don't. 

04* ACCEPT PARTIAL BACKORDER ORDER 
05* TEST 

No files are updated-used for salesman training. 
06* BACK ORDER E~TIRE QUANTITY 
07* END OF LINE ITEM 

Sends you back to the product number. 
08* CANCEL ENTRY 

An entire line item can be cancelled providing an 01 * 
hadn't been entered.-

09* END OF ORDER 
Sends you back to the salesman field. 

Operation 

The following sequence must be followed in order to place 
a salesman's order: 

Section 1 Field I-Salesman 

Salesman security number is entered and checked for 
verification on the removable disk pack. An invalid security 
number immediately disconnects him from the system. 

Section 1 Field 2-Customer 

The customer number is entered and scanned for verifi
cation on the removable disk pack. An invalid customer 
number will generate an error tone. If three errors occur, a 
rekey tone is generated and the salesman is disconnected 
from the system. 

Section 1 Field 3-Delivery Override 

Permanent delivery instructions are incorporated in the 
customer master file and would be used if there were no 
overriding instructions. The delivery overrides are contained 
in a table lookup with up to 99 entries. This is a two-digit 
number and any entry exceeding this will generate an error 
tone. 

Section 2 Field I-Product 

The 2-5 digit product number is scanned for verification 
located on the fixed disk pack. If 3 errors occur a rekey tone 
is generated and the salesman is disconnected from the system. 
Each product number represents an individual size of a 
given brand. 

Section 2 Field 2 and Field 3-Cases and Bottles 

The case field may be skipped if bottles are to be ordered. 
Out-of-stock condition tones will be generated enabling the 
salesman to reply: cancellation 08*, partial order 04*, or 
full backorder 06*. Upon receipt of merchandise all back
orders will be filled on a first-come-first-serve basis. Exceeding 
the quantity limit tone will be generated if quantities are 
greater than 10 cases. An exception table representing our 
fast moving and high volume brands does not generate a 
warning tone unless the limit exceeds 40 cases. 

Section 2 Field 4-Discount Code or Amount 

The discount field is optional. Standard discounts auto
matically apply to a product unless a discount code or amount 
is entered. 

SYSTEM/3 PROGRAMS AND 
MANAGEMENT REPORTS 

The System/3 programs needed for the interface of the 
System/7-are-written in- RPGn Language: The Joll6Wihg 
programs are: 

Load-This program formats the customer, product, and 
salesman file. Loaded are the current customer credit 
limit and balance, inventory balance, price per case, 
bottles per case, salesman sales number and security 
number. Exception tables for all files are loaded out to 
disk. Examples are: Salesman that are no longer with 
the company aren't loaded into the file. Customers that 
have changed ownership, but the salesman hasn't been 
notified, aren't loaded into the file. Products that we 
want to reserve for future sales aren't loaded into the file. 
Products that we don't split cases on are specially 
loaded into the file. 

Edit-This program reformats and lists the System/7 files 
back into a readable format for the System/3 and 
proceeds through a more detailed edit check. Back
orders are updated into the backorder file. Errors that 
weren't picked up from TOPS are denoted on the listing 
and a printed card of the error is produced and given to 
the salesman. 

List-This program lists the order file in a convenient 
format, for use by the control clerk. 

Salesman U sage-This program lists by salesman number 
all orders placed, the time, and how many line- items 
and cases were called in. This is used by TOP manage
ment to analyze a days business by a salesman. 

Backorder-This program lists all backorders that carl be 
filled or partially filled. It will only automatically fill 
the backorder upon receipt of merchandise if there is an 
existing order going to that account. If not, the back
order is given to our customer service department for 
further processing. 

Billing-The invoice denotes whether or not the order was 
placed by a salesman, customer service department 
representative, or by a computer filled backorder. 



Remote Data Collection Case Study-Telephone Order Processing (TOPS) 713 

Sales Report-This daily report is given to each salesman 
showing him what orders were both placed by our 
customer service department or from TOPS. It shows 
every detailed line item invoiced or backordered (See 
Appendix B). 

OPTIONAL INQUIRIES 

QNT 

Anytime one wishes to know total cases and bottles ordered 
through that time. Warehouse uses this for estimating the 
number of trucks. 

ITM 

Used for inquiring to the Product Master File located on 
the fixed disk, and used to alter any of the following fields: 

CST 

Item Number 
Inventory On Hand In Bottles 
Order For The Day In Bottles 
Backorders For The Day In Bottles 
Bottles Per Case 
Price Per Case 
Case Quantity Limit 

Used for inquiring to the Customer Master File located 
on the removable disk, and used to alter any of the following 
fields: 

Customer Number 
Credit Limit 
Balance In His Account 

SLM 

Used for inquiring to the Salesman File located in core, 
or used to alter any of the following fields: 

Salesman Security Number 
Set A Call In Tone By Setting Bit On 
Salesman Sales Number 

DMP 

U sed to dump certain blocks of information. 

$UDPAT 

Used to patch instructions on to disk. 

PAT 

Used to patch instructions into core. 

BENEFITS AND JUSTIFICATION 

Orders are processed in such a way as to insure fewer 
errors. The salesman is the only person involved in processing 

his order through the computer. There is no key-punch 
operator who is subject to making mistakes. There is no 
editing that may result in incorrectly correcting an error. 
It is the salesman's responsibility to see to it that the infor
mation given the computer is correct. We feel that this 
combination of putting the responsibility on the salesman, 
while at the same time eliminating all other people from the 
process, results in fewer errors. 

The system provides up-to-the-minute inventory infor
mation. This allows the salesman to inform his customer 
specifically of what quantity of merchandise is available of 
any given item, at any particular point in time. He can, at 
the same time, assure the customer of delivery. The system, 
you will recall, allocates inventory for each order processed 
and, therefore, each salesman is entering orders against the 
most current inventory available. 

Existing out-of-stock conditions are known at the time 
the salesman places an order. He can immediately recommend 
alternatives to his customer or take alternative steps on his 
own. 

Our salesmen's ability to pass on immediate out-of
stock information to a customer results in a better customer / 
salesman relationship. Customers no longer are disappointed, 
having ordered a particular item only to find, at the time 
of delivery the next day, that it is out-of-stock. They know 
that unfortunate condition at the time the order is placed 
and will be able to consider alternatives and make their 
plans accordingly. 

This current inventory information can help our cus
tomers better service their customers. In the case of spe
cialty items, they can know, at the time they place an order, 
whether or not it can be filled. At the same time, in general, 
they are able to insure a better selection of products to 
their customers. 

Under our old system we spent approximately two hours 
after 5 0' clock key-punching, key verifying, and editing 
orders in preparation of running invoices. This involved 
process was eliminated by this system. The orders, once 
received by TOPS, are in a form which can be directly 
passed'into the computer. There is no key-punching, no 
key verifying, and no editing. 

This benefit allowed us to extend our business hours by 
a minimum of two hours each day. Instead of cutting off 
orders for next day delivery at 5 o'clock, we extended that 
time to 7 o'clock. We feel that the salesman's ability to 
offer this last-minute service to our customers is a great 
benefit to all. The salesman is able to promise orders for 
next day delivery more often to more customers. At the 
same time, he can eliminate those will-takes which are now 
required to insure that kind of service. Over all, we have 
fewer exception type invoices than we did before. 

We can put a message on the system requesting that a 
particular salesman call the office at the end of that particu
lar call. 

As indicated earlier, the system was designed to be used 
by the salesman, in the field. Through experience, our 
salesmen found that this technique is not always the most 
desirable. 



714 National Computer Conference, 1974 

Many of our salesmen prefer to work through the entire 
day and call their orders in at the end of the day. They 
feel that working in this way increases their efficiency and 
gives them more selling time. (This does not interfere with 
our scheduling because the System/7 eliminates key-punch
ing log jams 100 percent.) 

The above represents those areas which we see as major 
benefits. There are, of course, other benefits to be had from 
the system but they will vary considerably from one company 
to another. 

In the same way, justification will vary considerably from 
one company to another. We will, therefore, merely highlight 
the most important areas to be considered. 

The first consideration is the cost of the system. Costs 
ma:{ "'flary from one location to another, so ",\l'C "\-vill refrain 
from quoting specific dollar figures. Your list should, however, 
include the following items: 

1. Rental of IBM System/7. 
2. Rental/Purchase of the IBM Order Entry/Inventory 

Allocation Program. 
3. Rental of all necessary telephone equipment. 
4. Purchase -of--telephone-adapters-if-neccssary. 

While this list of monthly expenditures may represent a 
considerable amount of money, the system does offer the 
potential for a considerable reduction of current costs. The 
following areas represent potential cost savings: 

1. The number of people on the key punch staff who 
are currently required to key punch and key verify 
those orders written and called in by salesmen may 
be eliminated. (Retain those people required to process 
other kinds of orders and other kinds of work.) 

2. Depending on the individual company's procedure, it 
may be possible to significantly reduce current ex
penditures in the order processing department. People 
who are used primarily for coding orders or scan 
sheets ,,,ill not be required. 

3. Further cost reductions -will be realized through the 
elimination of key punch machines and other order 
processing equipment. 

Overall, a company using an IBM System/3 Model 10 
will realize a true cost saving if they can eliminat-e two (2) 
key punch operators and two (2) key punch machines. 

In addition to the potential of a true dollar savings, the 
system offers important money saving and/or profit making 
opportunities in the areas of: 

1. Increased salesman selling time. 
2. Reduced warehouse shipping time (invoices can be 

avaiiable sooner). 
3. The value of the other benefits already mentioned. 

IDENTIFY ANY SIDE EFFECTS OF THIS SYSTEM 
AND SHOW HOW TO TAKE ADVANTAGE OF THElVI 

There are severai areas where side benefits could be at
tained from this system. First is the potential use of the 

System/7 in other areas. Among these are warehouse control 
and accounts payable. These two areas are currently being 
investigated by Marty Resnick. 

Secondly, the very concept of using an order entry system 
which offers response to the salesmen, will build their confi
dence. Under this system, they will not be completely in the 
dark as to whether or not the system is working and receiving 
their orders properly. The system, as you ,vill recall, gives 
a response to everything the salesman does-right or wrong. 
He always knows that the system is working and has received 
his order. He will not, of course, be talking to an individual, 
but he will have a better feeling than he does today talking 
to a tape recorder. 

Another side benefit in error reduction will be the elimi
nation of records. The records we eunenLly Wle in our Edison 
Phone System, can be handled improperly and hence, errors 
can result. A record can be put on an Edison machine and 
be recorded on twice, as well as being entered into the com
puter twice. Clearly, we take steps to avoid this, but also, 
we must be aware that it can happen. The fact that the 
computer retains the orders internally eliminates this po-

_ tenti_al<J,~llger ar~ll" 
Finally, and perhaps most importantly as a side benefit is 

the potential this system offers for notoriety for Forman 
Bros. It is IBM's intention to market this system on a 
nationwide basis. As such, we -will be the first working 
installation. We have already received calls from many 
people around the country. 

At the same time, it will be in our best interest to show 
this system to suppliers when they come to visit, letting 
them know how advanced we are. We feel that everyone 
will be impressed by the use of this system as a sales tool. 
We know, from what little experience we've had, that people 
who are sales oriented are quick to appreciate the benefits 
of this system. 

HISTORICAL BACKGROUND 

Pre-Code-a-Phone 

Prior to 1965, our order processing system was operated 
without the aid of any electronic devices. Most orders were 
brought back to the office by the salesmen late in the after
noon. If this was not possible, the salesmen would call orders 
into an order taker. 

Listed are the 7 steps needed to process the order: 

- I Order Taker 1 
I ----'~ ..... 1 Salesman - _ 

~-------- Office ~--------------~ 
Order processing 

~--------~I ~I ------------------~I rl----------~ 

~_I_n_v_o_i_c_e __ l-.:r Visua 1 Check .. l __ cu_s_t_o_m_e_r __ ...... _ _ and Verification _ 



Remote Data Collection Case Study-Telephone Order Processing (TOPS) 715 

Code-a-Phone 

About 1965, we introduced our first electronic aid to order 
taking. The code-a-phone allowed the salesmen to call their 
orders into the office at any during the day up to 4:00 pm. 

The salesman was freed of the burden of bringing orders 
back to the office. At the same time, the order takers had 
more time to spend with customers. 

One major draw-back, however, was that many people 
had to handle the order. This created many opportunities 
for error. 

Listed are the 7 steps needed to process the order: 

salesman I~ 1 Code-A-phone I~I Transcriber J 
Key Punch) -oJ ( Verification 1.-:, ""1_I_n_v_o_ic_e...,-..... 

Customer 

Edison Phone System 

In 1970, we took the next step toward refining our order 
processing system. The Edison Phone System allowed us to 
by-pass the transcription step in order processing. By key 
punching directly from the salesman's record order, we ac
complished two important goals: 

1. We eliminated one area in which errors could be made. 
2. We realized a time savings that allowed us to extend 

the time in which orders could be called in by 5:00 pm. 

Listed are 6 steps needed to process an order: 

Salesman I .... Edison 
Phone System --'t I Key punch 

Verification I-I Invoice ) ~I Customer 

Telephone Order Processing System (TOPS) 

We have now completed the next step in the process of 
refining our order entry system. TOPS will speed order 
processing, eliminate unnecessary errors, and provide the 
salesmen with more information about inventory availability. 

Listed are 3 steps to process an order: 

{ Salesmen I ~, TOPS I~I Invoice I 
For the first time since we introduced electronic order 

taking aids, the salesman will get feed-back, through the 
system, to advise and guide him in placing an order. 

FILES 

SALESMAN-contains 99 records 
CUSTOMER-contains 10,000 records 
INVENTORY (ITEM)-contains 10,000 records 
ORDER-contains 25,000 records 
Every order produces: 

1. Regular Record 
2. Statistics (Time, total errors and line items) 
3. End of order record 
4. Dummy record 

TRANSACTIONS 

01* END OF LINE ITEM 
02* WHERE AM I? 
03* ANY IN STOCK? 
04* ACCEPT PARTIAL ORDER 
05* TEST-NO FILE WRITE 
06* BACK ORDER ALL 
07* END OF LINE ITEM 
08* CANCEL ENTRY 
09* END OF ORDER 

FIELDS 

1. SALESMAN SECURITY NUMBER 
2. CUSTOMER NUMBER 
3. DELIVERY OVER-RIDE 
4. ITEM NUMBER 
5. CASES 
6. BOTTLES 
7. DISCOUNT 
8. INVOICE NUMBER 
9. SPECIAL PROMOTION NUMBER 

10. OPTIONAL 
11. OPTIONAL 
12. OPTIONAL 



716 National Computer Conference, 1974 

APPENDIX A-ORDER FLOW 

08 
C 0 H P U·T E R 

CO~!PUTER 

SALESHEl'l "'ILL USE A TOUCH - TONE 

TELEPHONE TO ~y ORDERS INTO THE 

CO}!PUTER. 
THE CO~·!PUTEJl 111LL CHECK THE OROERS 

AGAINST TilE Tlin!:E }[ASTER FILES. 

08 
COMPUTER 

IF. ERlWnS AP..E DETECTED, THE 

Sl.LES'·~".>: '·!]"LL BE NOTIFIED BY 

1.'HE CO:·tPUTEH. 



Remote Data Collection Case Study-Telephone Order Processing (TOPS) 717 

00 
COMPUTER 

AT TllE END OF THE DAY, THE OIIDERS 08 ARE PROCESSED BY THE ~!PUTER 

AND lNVOlCES Am; PRn;TED OUT. 

CONPUTE~ 

IF NO ERIWRS APJ!; DETECTED, THE CO}lPUTER 

WILL UPDATE THE APPROPRIATE FILES AND 

RECOlW THE ORDER IN THE ORDER FILE. 



718 National Computer Conference, 1974 

APPENDIX B 

S\'502 HIT (IHERS .IINC CREe I1S 12112113 

CLST SlS,..t\ CS eCT PRCCtl (lCCE C/A"T CEAL CS BOl AflT I~VCICEII 
13112 37 1 ~257 3 2.5C 
1 ~C05 03 5 127 3 15.5C 
13112 37 1 ~l1e 3 2.5C 
160C5 03 5 141 3 4.f3 
13112 37 1 ~226 3 2.5C 
13112 37 1 t314 :3 2.5C 
1eeC5 03 1 33158 
13112 37 2 13875 
16C05 03 i gS3 ~ :;.It:: 
13112 37 1 138E2 
13112 37 1 139C<; 
1~OC5 03 4 118H: 
13112 31 1 51408 

5313 31 1 15C13t 
1~CC5 C3 1 24 

5373 31 1 17175 
I~OC5 03 6 55CC 3 5.25 

5313 31 162C5 
16005 03 6 ,5555 :3 . 5 ~·2·~ 

5313 31 2 13815 1 
1 ~C05 C3 6 5117<; :3 5.25 

5373 37 2 139CC; 1 
5313 31 1 131<; 

160C5 03 6 5854 3 .25 
5313 31 1 l3et 
5313 31 2 148q 

1 ~C05 03 2 518~8 3 5.5C 
5373 37 1 14g6 
5373 31 1 12<;0 

1~CC5 03 1 QC;8eC Yltl B.e6 
05373 001 coe 834C1 e~CK CReER 
1~CC5 03 1 9'1880 V33 I.CO 60315 
16C05 03 5 QC;8EO V2<; 5 1.50 51562 
16C05 C3 5 gc;eec \'2<; 5 2.CO 51562 
16005 03 1 99880 V4I 1 11. Cl 
SCOC2 000 006 B031 e~cl< CReER 
see02 55 6 73031 
8ce02 55 3 C;H9 
8(CC2 55 1 9621 
8(OC2 55 2 213 
S(CC2 55 1 22C 
S(CC2 55 1 237 
BCC02 55 12 3<;17 
464C4 55 2C235 
464C4 55 H2C5 
464C4 55 2 14173 
464C4 55 2 2Ct: 1 
4l:4C4 55 1 213 1 
4l:404 55 1 22C 1 
4l:4C4 55 2 231 1 

31C6 55 6 2C417 
426C6 55 1 13C75 
42606 55 1 13044 
4t:404 31 1 1164 
426C6 55 1 73051 



Remote Data Collection Case Study-Telephone Order Processing (TOPS) 719 

OEFDP GL ·~493 0. 16iJ as 
OEFD? 52 22639 34719 141 
OEFDP CL 
OEFDP CL 24930. 62374 
OEFDP CL 
OEFDP 42 21834 69L15 0. 99770 
OEFDP 42 21834 69450. 99770 
OEFDP CL 24930 29203 
OEFDP 10. 77 
OEFDP CL 23630 69656 
OEFDP 42 21834 69450 99770 
OEFDP CL 22639 34719 99770 
OEFDP CL 23630. 48808 
OEFDP CL 21834 69450 99770 
OEFDP 62 21834 36560. 804 
fJEFDP CL 22639 6880. 6 
OEFDP CL 21834 36560. 31 
OEFDP 62 21834 6780.5 354 
OEFDP 52 23630 370.59 4925 
OEFDP 52 22639 69508 141 
OEFDP 42 21834 67805 141 
OEFDP 40 22639 6950.8 3315 
OEFDP 52 21834 6780.5 141 
OEFDP CL 23630. 37059 
OEFDP 53 24631 6604 80332 
OEFDP CL 24631 6604 
OEFDP 40 22.639 69508 97793 
OEFDP CL ~363o. 24356 
OEFDP CL 24631 73707 

OR1 :Q~T 
1.087 CASES 970 BOTTLES 

OR1 :OFF 
OEFDP CL 
OEFDP CL 22639 6950.8 99770 
OEFDP CL 21834 67805 69230. 
OEFDP CI:. 22639 7221"8 
OEFDP 10. 226399 
OEFDP 52 24631 1790.3 574 
OEFDP 52 21834 6960. 1 141 
OEFDP 52 21834 69601 16593 
OEFDP 52 24631 1790.3 141 

OR1:QNT 
1176 CASES 1040 BOTTLES 

OEFDP 89 24631 17903 
OEFDP 62 21834 69601 8228 
OEFDP CL 21834 6960. 1 99770 
OE:FDP 10 77 
OEFDP CL 24631 1790.3 
OEFDP 52 24631 52203 33282 
OEFDP 52 24631 52203 33309 
OEFDP CL 24631 5220.3 

f"JR1 :QNT 
1220. CASES 1116 BOTTLES 

OEFDP CL 24631 58601 
OEFDP CL 24631 4260. 6 
OEFDP GL 24631 62501 
OEFDP GL 2/463 ! 55220 
OEFDP 52 24631 460-33 574 
OEFD~ CL 21JE31 46033 
OEFDP 10 77 

1252 CASES 1136 BOTTLES 
SYSTE:-1 IS SH~lT Dm":J 

TIY.E 17: 1 f:. 



720 National Computer Conference, 1974 

12112113 CRCER FILE lIS TI NG ft 

------------ CEAlS ------------ -:-TlfoIE-
SlS CLST PRCO. -CRCER- -eK CRC ---CISC----- ~C INVNC CS BCT AMT CC ~ ,., S 

CS ECT CS eOT C[ AfoIT 
60 19400 684 24 1~-~6-12 
sa 68831 181 3 lS-46-13 
S8 68831 512 3 15'-46.;.-10 
S8 68831 START 151-4~fo'24S ENC 151-4tfol2CS ITE",S 6 ERRCRS 1 TCTH ~"'T 

60 19400 81883 1 3 <i.Ee 15-~6~--ZO 

60 19400 START 15HSfoIS<iS ENC lSI-4tfol2CS ITEMS 2 ERRCRS TCTR ~"'T 

S8 17880 512 3 ~%~ 
60 17996 20084 t 15-46-38 
S8 11880 4105 15-46-41 
8a 17880 START lS1-4tfo'22S ENC 15P46fo143S llEt'S 2 EPRCRS T-C-f~ 

60 17996 206 15-46-4~ 
60 17996 220 2 1"5-%-tt<; 
60 11996 237 2 15-46-55 
sa 11093 172 :3 s.cc 15-47-00 
88 11093 134 E 1 r-"tt"t=()"S 
88 11093 START 151-4tM45S ENC ISI-41"'C5S ITEMS 2 ERRCRS TCTAl 'MT 

60- ---17996- -1-510-1 3 --- 3.5€- ----15~r_n 

60 17996 75259 2 3 1.15 15-47-21 
60 17996 20118 1 15-47-U 
6C 11996 9346 1 :3 1.5t l"'~ 
60 17996 16823 1 :3 1.5C 15-47-45 
f::0 17996 START 151-4tfol2:3S ENC 15H7fo1SCjS ITEMS c; ERRORS 2 TCTH ~"'T 

60 1551 69735 2 3 5.2C 15-48-15 
to 7557 41120 2 :3 5.2C 15-48-22 
60 7551 20118 I ~-tre--ze 
60 7551 10243 2 :3 <;.9S 15-48-41 
to 7551 660 2 15-48-48 
60 75151 677 1 1~;..tt!--s-tt 

60 7551 213 2 15-49-00 
to 1551 220 2 IS-4C;-Ct 
29 4105 163 t5--ttq--0I 
60 7551 237 2 15-49-12 
29 4705 251 1 :3 12.49 15-49-14 
6C 1551 196 1 15.;.;~-q--.;1-a 

29 4705 215 t 15-49-21 
60 7557 206 15-49-24 
54 70801 220 2 1 ~-1f1;;;;;31 
60 7551 9951 3 3 S.H 15-49-32 
29 4105 543 1 15-4«3-34 
54 70801 677 12 15-4~-~E 

to 7551 82174 c; 15-4<;-39 
to 7551 9944 3 t.SC 15-49-46 
54 108U7 S1144 t 15-4~-~ 
60 7557 99170 1.7C 264 1 15-4«3-56 
54 10801 START 15t-4C;,.,C1S ENC 15t-"C;foIS7S IlE,.,S 3 ERRCRS TCTH ~"T 

29 4705 121 :3 15. SC 15-49-SS 
60 7557 <;Q170 2.tS H4 9 15-50-CS 
(:0 7557 START 151-4SfoIC3S ENC ISI-SCflCSS I TEP' S It ERRCRS TeT .Ill ~"'T 1 .5' 



Remote Data Collection Case Study-Telephone Order Processing (TOPS) 721 

DATE 12/12/73 SAlES~AN S USAce OF TOPS 

CtJSTCMER 
Hc:t.Ul,V llGUCR 
lCO CABIN llQ STORE 
OCEAN vie_ lIQUQR 
SHIPLEY BEVERAGES 
SC~tH CAPITOL lIQUC~S $". llGUQRS 

lG1Al custOMERS 6 

O~TE 12/12113 
PRCC. CESC. 

OC141 J & e SCOTCH 
0'0141 
OC141 
00141 
OC't41 
00141 
00141 
-0-014'1 
OC354 BBN SUPREME 
00354 
-0-035'4 
OC354 
OC354 
-o-c-3'5'4 
00354 
00354 
o C'4S-S . .,EECWCOO 100 
00488 
0048S 
'01)7fS-S 
00488 
00488 
'U0488 
00488 
00488 
~.' 

OC512 DRA.,eUIE 
OC512 
UU51Z 
OC512 
OC512 
0'05'1'2 
OC512 
00512 
OC'512 
OC512 
OC512 

'Orr512 

lIME 
16-58 
16-'4 
16-55 
16-59 
16-56 
11-01 

EACKCRCER SlATtJS 
CUST CO .CS eCl --DISC--

22323 CO CC7 CC7 3 4.63 
Cl~92 CC o lC- CCC :3 4.63 
41605 CO COS ((C C 
3411q CO 015 CCC 3 4.63 
69508 CC CC4 cec 1 
67E05 CO 003 cec C 
69601 CO 005 CCC C 
17-;03 co OIC cec 1 
52203 CO cce C39 1 
f5193 ec ccc C12 C 
~22C3 CC 001 eec c 
4745C CO CCC (12 C 
01692 ec OC1 (CC 0 
34711j CO 002 CCC 1 
61E05 CO CCO C12 0 
21504 CO eel CCC C 
20EIC; CO CCC C23 C 
18300 CO eOl cce C 
C1692 CC COl (CC C 
59114 co COl ecc C 
20448 CO OCI CCO C 
18513 CO CCI CCO C 
217CO ec Co-t CCC 1 
f9f25 CO 001 cec c 
46538 CO CCO e12 e 
06'202 '~C OCl CCO C 
1901<; co CCI CCC C 
80112 00 CCl CCC 0 
23403 CC tce eC2 c 
101C4 CO CCI (CC 6 
24<;23 C5 ecc (C3 C 
2110f C5 eCI cec c 
5080<; eo CCO CC3 C 
1221f OC CCC CC6 f 
C1764 cc eec CCt 5 
14807 CC C22 (CC 3 13.CS 
1915C CO ece eel c 
~ge35 cc COl eec c 

Nfl OF llEIIS , 
a 
2 

18 
12 
32 

lCTAl 11 

CAlE STAf\CIr.-G 

12/12/73 .. **** FIttED **** .. 
12/12/73 .. **** f 'l'tt'f-e- ***** 
12/12/73 .. * .. ** FILLED .. **** 
12/12113 .. * .. ** FILLED ••••• 
12/12/73 ***** F I'tt,f'C '***,** 
12/12/73 ***** FILLED .** •• 
12/12113 ***** FItLED ***** 
12/12/73 ***** F I-tt y-e- ***** 
12/11/13 .**** FILLED ***.* 
12/11/73 .* •• * FILLED •• **. 
12/11/73 ***** flttc-f) * .. *** 
12/12/73 ...... * FILLED ... *.* 
12/12113 * •••• FILLED * ..... 
12/12/73 ***** f1ttff ***** 
12/12113 ...... FILLED * ••• * 
12/11113 ••••• FILLED ••••• 
12/C4/73 ***** F--ttttt ............. 
12/C5/73 ••••• FILLED ••••• 
12/12/73 ••••• FILLED ••••• 
12/12/73 .*.** f1ttifr '*** ...... 
12/05/73 ••• *. FItLED •••• * 
12/05/13 ••••• FILLED .... *t 
12/C5173 .*.** F Itt"f C '****'* 
12/05/13 • *.** FILLED ... * •• 
12/Cf/73 ••••• FILLED .** •• 
12/CE/73 ***** ft'tt'f1} t't'*** 
12/11/73 •••• * FILLED *.*** 
12/11/73 ••• *. FILLED * .. * •• 
12/11/73 ***** f'1tttt ~ 
12/11113 * •••• FILLED ••••• 
12/11/73 ••• *. FILLED ••••• 
12/11/73 ***** F'IttC1J ~ 
12/11/73 * •••• FILLED •• *.lI 
12/11/13 ••••• FILLED ****lI 
12/11/73 ... *** FIttrO *~ 
12/11/73 ••••• FILLED "li:9:9~ 

12/11/73 .. * ••• FILLED .... ~ 
12/11/73 ***** Fttt.--CO .. ~ 



722 National Computer Conference, 1974 

01960 CCR~ STILLBRCCK C1764 CO CCO CC5 0 121C7/73 ••••• FI,LLED ••••• 
04925 KAHLUA ~9217 Cl 001 CCO 0 12/C7113 ••••• 'FILLEO ••••• 
04925 29454 ee CCI CCC C 12/C1173 ••••• fIL't-ED -. ......... 
04925 2-3104 10 010 cce 0 12/1Cl13 ••••• FILLED ••••• 
04925 23104 CO 010 CCC 5 12/1C/73 ••••• FILLED ••••• 
(17'-925 C9913 CO 003 cce 5 12/1C/73 .*.*. -r:ttttt ***** 04925 1748e CO COl CCC C 12/1CI13 ••••• FILLED ••••• 
04925 10104 CC 001 (CC 6 12/1C/73 ••••• FILLED •• * •• 
04925 2970e ce CC1 CCC 5 12/1(/73 ••••• . FIttro .~ 
04925 C6910 CC OCC (C3 C 12/1CI13 ••••• FILLED ••••• 
04925 23403 ce CCC (Cl C 12/11113 ••••• FILLED ••••• 
04925 1550~ CC CCI CCC C 12/11173 ••••• F t-L t err ****. 
04925 11505 CO CCC CC2 C 12/11/73 ••••• FILLED ••••• 
04925 17501 CO cee CC3 e 12/11/73 ••••• fILLED ••••• 
'04925 (0901 09 004 CCC C 12111/73 •••• * FILtED .~ 
04925 C09C7 c<; CC4 cce C 12/11/73 ••••• FILLED ••••• 
04925 C5313 CO COl (CC e 12/11/73 .. *~. FILLED ••••• 
04925 C6532 ec CCC CC5 C 12/11113 ••••• F]tLEO * .......... 
04925 51659 CC cec CCI 0 12/11/73 ••••• FILLED ••••• 
04925 3490e ce CCC cct: e 12/11/73 ••••• FILLED ••••• 



Remote Data Collection Case Study-Telephone Order Processing (TOPS) 723 

APPENDIX C-FORMAN BROS., INC.-"TOPS" 
(TELEPHONE ORDER PROCESSING SYSTEM)
SALESMAN TRAINING AND REFERENCE 
MANUAL 

DESCRIPTION AND USE OF THE DATA FIELDS 

Definitions 

FILE: A complete list of similar types of data. 
Ex: Customer file-All customers 

Product file-All products 
Salesman file-All salesmen 
Order file-All orders 

RECORD: All the elements of data related to a particular 
entry in a file. 

Ex: A customer record 
A product record 
A salesman record 
An order record 

FIELD: A single element of data in a record. 
Ex: In a customer record, the customer number is a 

field. 
In a product record, the price per case is a field. 
In a salesmen record, the total calls made is a field. 
In an order record, the case quantity ordered is a 

field. 

ORDER FILE 

Record ---':> I Salesman # I Custom';r # Deli ve':Y--C;;-ci.~-rp-;'Od";:ct- -#: Cases I Disk' 
R cord----,> ;Salesman # I Customer #' Delivery Code I Product 111 Cases Disk 

R:cord---,Isalesman_ # i custo~er #i Deliiery Code :~~~D1Sk 

<-- ---- > Field~~~'::''::;::::':::::---
Salesman security number 

The salesman security number' represents your salesman 
number and other incorporated numbers acting as a security 
code. 

This security number is built into the "TOPS" system to 
protect your orders. It belongs to you only, and it should 
not be given out to anyone. 

Customer number 

This number represents the account number that is as
sociated with one individual customer. 

Delivery override number 

The delivery override represents the delivery instructions 
that will override the permanent delivery instructions when 
the invoice is printed. 

The salesman has the option to ignore this field if he has 
no special delivery instructions. You then must key in an * 
to bypass the field. 

Product number 

This number represents the product number that is as
sociated -with each individual size of that brand. 

Case quantity 

This number represents the number of cases that has been 
keyed in. You may key in up to a three digit number. 
Example: 100. 

Bottle quantity 

This number represents the number of bottles that has 
been keyed in. You may key in up to a three digit number. 
Example: 180. 

Discount code or amount 

This number represents either the discount code or the 
discount amount. 

The discount codes used may be: 

A. Code I-Monthly Promotion (deal of the month) 
This should only be used if your salesman
ager has asked you to. 

B. Code 2-Standard High Discount 
This should only be used if your salesman
ager has asked you to. 

C. Code 5-N et Item 
D. Code 6-All discounts on every line item will be net. 

The discount amount should only be used if the standard 
normal discount is different, or if the discount code 1 or 2 is 
not applicable. You may key in up to a four digit number. 
Example: 1000 (which is $10.00) YOU MUST USE DOL
LARS AND CENTS! 

Deal type number 

This number represents the type of deal that is going to 
apply. "Discount Due" is now represented by the number 
"99770." "Completion of A Deal" is now represented by the 
number "99880." 

Deal cases 

This number represents the number of cases on which you 
are giving a discount. 

Deal bottles 

This number represents the number of bottles on which you 
are giving a discount. 



724 National Computer Conference, 1974 

Unit discount factor 

This number represents the discount factor that will be 
multiplied by the deal cases and/or deal bottles. 

Invoice number 

This number represents the invoice number to which refer
ence is being made as to why the discount is being applied. 
This should always accompany a discount due or completion 
of a deal. 

Deal number 

The deal number pertains to a specific product that the deal 
discount is applying. This is a two position number and 
should be used for that specific brand only. 

This must always be used when giving a "deal discount." 

ADDITIONAL SALES~1:AN 
OPERATING ENHANCEMENTS 

1. Case quantity limits are incorporated into the TOPS 
System. Should you order an item in a quantity 
greater than 10 cases (or greater than 40 cases for 
those items which have been designated as exceptions) 
you will receive a warning tone. 

When you receive this tone, you have two options 
available: 

a. If you order exceeds the limit (and you are sure 
you called it in correctly), continue as though you 
had received a proceed tone. We will accept and 
bill whatever quantity you entered. 

b. Cancel the order (08*) and re-enter the order 
correctly. 

2. A warning signal will occur if the bottle quantity 
you ordered exceeds the number of bottles per case. 
At this warning tone, you must cancel the order with 
an 08* and rekey that product with the correct bottle 
quantity. 

HIGH - -
LOW - -R. A w:l.rning !';ign:l.l will occur if yon keyed in a. hottle 

quantity that is a no-split case item. Examples of 
these items: 

Yago Santgria 
Gallo 
Wild Irish Rose 
Bartenders 

At this warning tone, you must cancel the order 

with an 08* and rekey that product with the correct 
case quantity. 

4. 07* has been added to serve the same function as 
the 01* (end of a line item). The 0, 7, and * are all 
closely accessible to each other on the telephone. An
other reason for this addition is the fact that a large 
percentage of our orders are called in units of 1, 
causing temporary confusion as to where you are. 

5. The 01*, 09*, and 07* will now generate a different 
tone. 

HIGH 

LOW 

This was added to distinctly signal the end of a 
line item or completion of a customer order. 

6. During a regular order, it IS now impossible to go 
beyond the discount field.. A call-in tone v,till be 
generated, clearing out the line item and placing you 
back at the product field. 

lIIGH 

MEDIUM 

LOW 

At the sound of this tone, it will be safer for you 
to key in your last 3 line items for that customer or 
call the Computer Department for assistance. 

7. The insufficient quantity tone has been changed so 
that you will receive only 2 tones when an order cannot 
be completely filled. 

8. The only temporary confusion you might encounter 
will be when keying in an item greater than 10 cases 
(or greater than 40 cases for those items which are 
designated as exceptions), and receiving an insuffi
cient quantity tone. After answering a 04* or 06*, you 
will receive a warning signal meaning this item has 
exc.eeded the quantity limit. 

9. The transaction code, 03*, is used to seek information 
on a product as to whether or not we have quantity 
or no quantity. If there is inventory on hand, it will 
give you a proceed tone. If there is zero inventory, 
you will be given a normal insufficient quantity tone. 

OUT-OF-STOCK 

HIGH 

~ 
! ... . I LOW 

You may use this code after a product number has 



Remote Data Collection Case Study-Telephone Order Processing (TOPS) 725 

been keyed or after you have received an insufficient 
quantity tone. In either use, TOPS will send you 
back to the product field. 

10. If you go too fast and fail to enter quantity you will 
receive a zero quantity tone. At the sound of the 
tone you will be in the product field and ready to 
reenter that item again. 

RESPONSE PROCEDURES 

Proceed tone 

This tone states that the last field keyed in was accepted 
correctly. You are now positioned at the next field. 

HIGH 

MEDIUM 

LOW 

C.O.D. 

This tone states that the customer who has an open 
account has now exceeded his credit limit. 

This tone is a "Warning Only" and acts the same as a 
proceed tone. You will receive this tone every time you 
enter data in the case or bottle quantity fields. 

HIGH 

MEDIUM 

L~ 

Call in 

This tone states that you must call the office after you've 
completed your order. You will receive this tone after you 
have keyed in your salesman security code number. This 
takes the place of a proceed tone. 

HIGH 

MEDIUM 

LOW 

Insufficient quantity 

This tone states that we cannot fill your order. You may 
get this tone either in the case and/or bottle field. 

This is an "Action" tone, stating that you must key in 
OIle of the three options! 

04* PARTIAL ORDER-Give me all that you have 
and backorder the rest. 

06* BACK ORDER-Entire quantity is backordered. 
08* CANCEL-Entire line item is cancelled. 

After responding to the backorder, be sure to continue to 
the next field, especially if you want to insert a discount or a 
discount code. 

HIGH 

MEDIUM 

L<lV ... 

Error tone 

This tone states that the last field keyed in was in error. 
You are now asked to rekey the entry again, correctly. You 
will be allowed 3 chances to correct your error. If you fail 
on the 3rd chance, you will be disconnected from the com
puter. 

An error may occur during the follo\\ing fields: 

CUSTOMER NUMBER-Bad customer number 
PRODUCT NUMBER-Bad product number 
DELIVERY OVERRIDE-Invalid delivery code 

HIGH 

MEDIUM 

100 



726 National Computer Conference, 1974 

Rekey Graphic representation of tones 

This tone states that you must rekey the last line item, 
starting back at the product number, due to a combination 
of errors that has occurred. 

HIGH 

MEDIUM 

LOW 

Recall 

This tone states that you must redial into the computer. 
The following is a list of reasons why you have been dis
connected: 

1. You have keyed in the customer number wrong
three times. 

2. You have keyed in the product number wrong
three times. 

3. The system is down. 
4. The customer file is currently in use by another 

salesman. 

HIGH 

MEDIUM 

Lay 

Busy tone 

This tone states that the product file is currently in use 
by another salesman. Proceed to another product number 
and continue your order, coming back to that "Busy" product 
number later on in that call. 

HIGH 

MEDIUM 

L<lV 

1. ERROR 

2. PROCEED AND INSTOCK (OJ*) 

J. RECALL 

'! • CALL IN F'Oi< ~ALESMAN 

TOO MANY FIELDS GOING 
BEYOND DISCOUNT 

5. SPECIAL PROCEED FOR 
01, 07, 09 

6. CUSTOMER & ITEM BUSY 

7. QUANTITY EXCEEDING 10 CASE 
LIMIT UNLESS PART OF TABLE 

8. INSUFFICIENT QUANTITY OR 
OUT-OF-STOCK 

9. REKEY LINE ITEM 

& 

£ 
GUIDELINES FOR OPERATING TOPS 

Symbols representations 

*-This is used to end a field of data. 
(There is a 60 second disconnect timer) 

This is also used to skip a field of data. 
#-This is used to cancel a field of data. 

09*-"End of customer order" 
This is used to end a customer order. It will also end 
a line item (01*) and a customer order at the same 
time. 
Every time you enter this code (09*), you will be 
back at the salesman security field. You are the~ 
ready for a. new customer order. 



Remote Data Collection Case Study-Telephone Order Processing (TOPS) 727 

01 *-"End of line item" 
This is used to end a line item. Every time you enter 
this code, you will be back at the product code field. 

08*-"Cancel line" 
This is used to cancel an entire line item. In order 
for it to be effective, you must not have entered an 
01 * or 09* for that line item. 

77*-"End of call" 
This should be used when you have completed your 
last customer order and now you are ready for 
hanging up the phone. 

Where am I? 02* 

This question is used for your benefit when you feel you 
are unsure of what field you are presently in. You may use 
this at any time, remembering that there are 2 levels of 
tones, high and low. 

The low level beep tells you that you are in Section 1. 

1 

Salesman 
2 

Customer 
3 

Delivery Override 

The high level beep tells you that you are in Section 2. 

Order 

1 2 3 4 

Product Number Case Bottle Discount or Discount Code 

1 
Deal Type 

4 
Discount Amount 

1 
Product Number 

4 
Disc. Code or Amt. 

Regular Order 

Deal Discount 

2 
Deal Cases 

5 
Invoice Number 

Deal Order 

2 
Case 

5 
Deal Type 

3 
Deal Bottles 

6 
Deal Number 

6 

3 
Bottle 

Deal Number 

FIELD 
FIELD 
FIELD 
FIELD 
FIELD 
FIELD 
FIELD 

2. Customer Number SECTION 1 
1. Salesman-Security NUmber}) 

3. Delivery Override 
1. Product Number ) 
2. Case ~SECTION 2 

3. Bottles J 
4. Discount Code 

OR 
Discount Amount 

1. Monthly Promotion 
2. High Discount 
5. Net 
6. Entire Order is Net 



728 National Computer Conference, 1974 

REGULAR ORDER 

Fleld-# 

A. 

1. Salesman Proceed 

2. Recall 

3. Call in 

4. Disconnect 

B. 

1. Customer Proceed 

2. Error 

3. Recall 

4. Re-key 

C. 

1. Delivery over-ride Proceed 

2. Error 

D. 

1. Product Proceed 

2. Error 

3. Recall 

4. Re-key 

5. Busy 

Reason for Tone Action to be taken 

A good salesman security Continue to the next field 
code has been keyed in. and enter the customer 

number. 

System is temporarily 
down. 

There is a message for 
you to call the office. 

There is no tone ass-
ociated with this. You 
have entered an invalid 
salesman security #. 

A valid customer # has 
been entered 

An invalid customer # 
has been entered 

Three bad customer 
HIS have been keyed 
in. 

Customer account # 
is currently in use 
by another salesman 

Too many errors have 
been entered. 

A valid delivery over
ride instruction has 
been entered. 

A bad delivery override 
instruction has been 
entered. 

A valjd product # has 
been entered. 

A bad product # has 
been keyed in. 

1. Three bad product 
D's have been keyed in. 

Too many errors have 
been encountered. 

Product # is in use 
by another salesman. 

Re-dial 398-6100 

Continue normally with your 
order entry. Then call the 
office. 

Rc-dial 398-0100 

Continue to the next field 
and enter the delivery over
ride number. 

Re-key the customer # 

Before re-dialing 398-6100, 
make sure that you have the 
correct number or call the 
office for assistance. 

Re-enter the line item 
beginning at the salesman 
number. 

Continue to the next field 
and enter the product #-. 

Re-enter with a good 
delivery instruction. 

Proceed to the quantity 
field. 

Re-enter with a valid 
product number. 

Before re-dialing 398-6100, 
make Sure you have the 
correct number or call the 
office for assistance. 

Re-enter the line item, 
beginning at the product #. 

Continue to another product 
# and then re-try the "busy" 
product number. 



Fiold=# 

E. 

1. Case Quantity 

2. 

3. 

F. 

1. Bottle Quantity 

G. 

1. Discount Code 
or Amount 

Remote Data Collection Case Study-Telephone Order Processing (TOPS) 729 

Proceed 

C.O.D. 

Insufficient 
Quantity 

Reason for Tone 

Good entry order is 
ready to be filled. 

Good entry order is 
ready to be filled, 
but the warning tells 
you this order is 
C.O.p. 

The quantity order 
can't be filled. 

SAME AS CASE QUANTITY 

Proceed Good entry 

Action to be taken 

1. Proceed to the bottle 
field. 

2. Enter an * and then enter 
discount code or amount. 

3. End the line item 01*. 

4. End the customer order 09*. 

Same as above (line 1) 

1. 

2. 

3. 

Enter 04* 
Partial Order (fill what you 
can and back-order the rest). 

Enter 06* 
Backorder (the entire quantity 
is back-ordered). 

Enter 08* 
Cancel (the entire line em 
is cancelled). 

1. Enter 01*, ending that 
line item. 

2. Enter 09*, ending the 
customer order. 



730 National Computer Conference, 1974 

Deal Order 

Field-# Tone -# 

A. Salesman 

B. Customer 

c. Delivery Override 

D. Product 

E. Case Quantity 

F. Bottle Quantity 

G. Discount Code or 
ammount 

H. Deal Type Proceed 

I. Deal type Proceed 

Reason Action 

Same as regular order 

Same as regular order 

Same as regular order 

S.ame as. . regular p·rder 

Same as regular order 

Same as regular order 

Same as regular order 

Deal type accepted Proceed to the deal # 
field 

Deal number accepted 1. enter 01* ending that 
that line item 

2. enter 09* ending the 
customer order 



Remote Data Collection Case Study-Telephone Order Processing (TOPS) 731 

DEAL ORDER 

FIELD 1. Salesman Security No. 

FIELD 2. Customer No. SECTION 1 

FIELD 3. Delivery Override 

FIELD 1. Product No. 

FIELD 2. Case Quantity 

FIELD 3. Bottle Quantity 

SECTION 2 

FIELD 4. DISCOUNT 

FIELD 5. Deal Type 
8 W - Begin Deal 
9 X - Part of Deal 

FIELD 6. Deal No. 



732 National Computer Conference, 1974 

DEAL DISCOUNT 

FIELD 1. 

FIELD 2. 

FIELD 3. 

FIELD 1. 

FIELD 2. 

FIELD 3. 

FIELD 4. 

FIELD 5. 

FIELD 6. 

Salesman Security No. ) 

Customer No. 

Delivery Override 

Deal Type No. 

Deal Cases 

Deal Bottles 

Discount Due 
Completion 

Unit Discount Factor 

Invoice No. 

Deal No. 

SECTION 1 

9880 

SECTION 2 



Remote Data Collection Case Study-Telephone Order Processing (TOPS) 733 

Field # 

A. Salesman 

B. Customer 

C. Delivery 
Override 

D. 

1. Deal type 
number 

2. 

3. 

4. 

5. 

E. 

1. Deal Cases 
Quantity 

2. 

F. 

1. Deal Bottle 
Quantity 

G. 

Tone 

Proceed 

Error 

Recall 

Re-key 

Busy 

Proceed 

C.O.D. 

1. Deal Unit Proceed 
Discount Factor 

H. 

1. Invoice l Proceed 

I. 

1. Deal Number Proceed 

# 

DEAL DISCOUNT 

Reason 

A valid deal order # 
has been entered. 

A bad deal order # 
has been entered. 

Action 

Proceed to the deal 
quantity field. 

Re-enter with a valid 
deal order #. 

1 • Three bad entries Before re-dialing 398-6100, 
have been keyed in. make sure you have the 

2. An invalid deal order correct #, or call the 
number has been enter- of'fice for assistance. 
ed. 

Too many errors have 
been encountered. 

Deal order # is in 
use by another 
salesman. 

Good entry 

A good entry, but the 
warning tells you that 
the order is C.O.D. 

Re-enter the line item 
beginning at the product #. 

Continue to another deal 
order # and then re-try 
the "busy" deal order #. 

1. Proceed to the deal 
bottle quantity field 

2. Enter an * and then 
enter the discount 
unit amount. 

SAME AS ABOVE (lirie 1) 

SAME AS DEAL CASE QUANTITY 

Good entry 

Good entry 

Good entry 

Proceed to the next field 
and enter the invoice #. 

Proceed to the deal # 
field. 

1. Enter 01*, ending 
that line item. 

2. Enter 09*, ending 
the customer order. 



734 National Computer Conference, 1974 

8. A busy tone indicates that a customer record or product 

record is in use. What should you do if this happens? 

9. List 5 requirements for entering a discount due. 

10. What happens if you enter no quantity? What is your 

course of action? 

11. Give me 3 reasons why you would receive a warning tone 

in the field? 

12. What happens if you go beyond the discount field? 



Remote Data Collection Case Study-Telephone Order Processing (TOPS) 735 

TOPS QUIZ 

1. A is used to end a field. 

2. A can be used to cancel a field, provided 

has not already been entered. 

3. If a has been entered,. ~ 

should be used to cancel a line. When this is done, 

your next field to be entered will be 

4. To end a line, enter a This will return 

you to To end a customer order, enter a 

This will return you to 

To end a call, enter and hang up. 

5. An out-of-stock tone will only occur after you have 

entered , or You must 

respond in one of the following ways: 

___________ , or 

6. If .you have become distracted and don't know where you 

are, enter and the computer response will 

lead you to the proper field. 

7. If the computer responds with an error tone, what course 

of action is required? 





Use of a multi-programming mini-computer for real time control 
applications 

by FREDRIC C. JAYE 
Environmental Protection Agency 
Research Triangle Park, North Carolina 

and 

RONALD J. REINER 
Systems Technology Associates, Inc. 
Falls Church, Virginia 

INTRODUCTION 

During the spring of 1973, the Environmental Protection 
Agency Research Center at the Research Triangle Park, 
North Carolina, began the process of constructing a medium 
scale wind tunnel for research in stationary source air pollu
tant emissions measurement. This stationary source simula
tion facility consists of a closed loop stainless steel wind 
tunnel capable of 20 meters/second velocity and 200°C 
operation with a wide variety of gases, particulate matter, 
and other contaminates circulating in the gas stream. The 
combustion products CO2, CO, and H20 are generated by 
a million BTU Ihour combustion unit. The remaining H20 
is injected directly as steam as are the sulfur dioxide and 
nitrogen oxides. The particulate matter is suspended in a 
large fluidized bed aerosol generator and aspirated into the 
wind tunnel. 

Since manpower to operate this facility was limited, ,ve 
have attempted to automate the controls as fully as possible. 

With the introduction of the 960A computer in late 1971, 
Texas Instruments Corporation introduced a relatively 
low-cost multi-programming operating system called Pro
cess Automation Monitor (PAM). Similar capabilities 
come from Digital Equipment Company in RSX-ll, Data 
General in RTOS and Modcomp in Max II or III. 

Prior to the availability of this type of operating system 
for these 16 bit mini-computers, we could have handled the 
multi-task control system for this source simulator in one 
of three approaches: 

The traditional mini-computer technique would be one 
massive program with a number of subroutines at many 
levels to accomplish the various tasks. This program would 
be written in assembly language and offer the maximum 
efficiency in terms of memory utilization but at some cost 
in program preparation time and at considerable cost in 
agony units required for debug and later modification. 

Another approach to the problem \vould have been to 
use an existing multi-programming system, such as ::\IPX 

737 

on an IBrv11800 or RB}l (Real Time Batch ::\lonitor) on a 
XDS Sigma 2. 

The third approach would be to write our mvn mini
monitor system to handle the essential functions of the 
multi-programming system. 

The availability of relatively competent multi-program
ming operating systems for the new group of mini-computers 
has made control applications programming substantially 
easier for time flexible applications. By time flexible, we 
mean that the external event timing and required response 
were an order of magnitude, or more, longer than the operat
ing system response times for various functions. 

The utilization of the approach we will describe is always 
subject to timing constraints. However, in most real world 
applications, especially those involving large physical sys
tems, the system overhead incurred is tolerable, and the 
ease of programming and operation more than outweigh 
the system overhead penalties. 

The tasks which the source simulator data and control 
system is required to do are fourfold. 

First, Fault Checking and Alarm Indication. Built into 
the various simulator components are some 31 fault indica
tors, status warning lines, or hazzard sensing units. Typical 
of these are pressure or temperature switches to sense over 
or under limit conditions, analog output combustible mix
ture alarms, and area carbon monoxide monitoring units. 
The Data and Control System is employed to check period
ically the status of these devices, perform alarm functions, 
print operator information messages, and in some cases, 
take specific automatic corrective action. 

The second task is the supervision and control of some 
10 channels of permanently assigned instrumentation on 
the simulator. This includes CO, CO2, H20, S02, XOx , O2, 
area CO, combustible mixture alarm, temperature, and 
velocity sensors. At the beginning and end of a test (as well 
as when required during a test), the operator may request 
the Data and Control System to zero and calibrate any of 
these permanently assigned sensors. 



738 National Computer Conference, 1974 

s C 
Log Y 0 Fault 

/. "- S M ./ ...... 
Checking Task "' 

, 
T M "' (" 

E 0 
M N 

~ .... ./ .... 
"' 

, " 
, 

Wind Tunnel Operator t communication Operation 

Auxiliary 
Control 
Panel 

Figure I-System organization 

The third task involves the usual job of data acquisition 
during the test program. Here the system samples up to 27 
channels per test on selected time cycles, digitizes, converts 
to engineering units, and performs the usual storage and 
retrieval tasks. 

The fourth major function is that of integrated closed 
loop control of the temperature, velocity, water, sulfur 
dioxide, ,nitrogen oxides" and, particulate con tent _, oL_ the 
source simulator gas stream. Before a test is actually run, 
the operator inputs a table of values for each of these pa
rameters and the times at which these values are to be 
implemented. During the test, the software system cycles 
through this table, updating the actual parameters whenever 
necessary. 

SYSTE:yr ORGANIZATION 

The Texas Instruments }Iodel 960A is a 16 bit mInI
computer using 900 n sec. semiconductor memory. We have 
the maximum internal memory of 32,000 words. The unit is 
capable of external expansion to 65,000 words. The internal 
architecture uses two sets of registers, one for supervisor 
mode and one for worker mode. Each set contains 8 memory 
addressable registers. 

All the registers are general purpose and may be used 
for indexing or for computation, however; registers 4, 5, 6 
and 7 of each set supply additional services. 

Registers 4 and .5 are useful for designing reentrant pro
grams. Register 4 is hardware implemented as a default 
index register for several data reference instructions. Hence, 
it can act as base register for all data within a task. Register 
5 is a default index register for some branch instructions. So 
it can be used to index the pure procedure portion of a task. 

Register 6 serves as a base register for 'bit' reference 
instructions. Register 7 is hardware implemented to act as 
a base register for I/O processing. 

If the conventions concerning these special purpose 
registers are adhered to within a task, the task will be 
fully relocatable. This arrangement also provides for full 
reentrancy, since a pure procedure will operate on its data 
via registers 4, 6 and 7. 

The heart of the I/O processing structure in the T.I. 960 
is the Communications Register Unit (CRU). All I/O 

devices, except for those connected through the DIVIAC, 
terminate in CRU lines which are individually addressable 
with register 7 acting as a bias register. Functionally, the 
CRU can be thought of as a large I/O register (maximum 
8192 bits) which can be addressed on a bit-by-bit basis, on 
a variable field basis or on a 16 bit word basis. This structure 
allows a great deal of flexibility in terms of peripheral inter
facing. It also simplifies the necessary software drivers. 
An example of CRU processing is given in Figure 3. 

All task I/O and other program-operating system inter
actions are done by means of supervisor calls via register 3 
and switching to supervisor mode. Thus, until a worker 
program ceases to execute (suspension, I/O wait, etc.) the 
program counter and other registers are not disturbed to 
process operating system efl.118_ The supervisory structure 
provides the facilities for a task to suspend itself for a given 
time period or for one task to unsuspend another. 

The 960A supports two multi-programming operating 
systems-PAM Process Automation Monitor-an all mem
ory resident system and P Al\1/D PAM (DISC) which 
supports disc or memory resident tasks, data files and 
program overlays. The system is capable of supporting 256 
tasks' arid- 25tl" logicaTuriits. 'An 1/0 is via 'logical unit defini
tions unless directly to the CR U. 

Texas Instruments has recognized the need for high level 
language programming in process control. To this end, they 
have provided a FORTRAN superset called Process Control 
Language (PCL) which facilitates CRU and 'bit flag' pro
cessing by means of declarations within a PCL program. 
Given these capabilities, any process control application 
can be written in this extended FORTRAN. We used PCL 
for the majority of our programming effort, i.e., wherever 
space or time considerations were not critical. 

PROGRAM ORGANIZATION 

In the introductory section, we discussed the four major 
tasks involved in the operation of the source simulator. We 
have taken advantage of the multi-programming aspect of 
the P AM/D monitor to segment the programming into 
seven major tasks, all multi-programmed under the standard 
operating system. 

The Data/Control System programs are: 

Task 21 TDFLC-Time Delay Fault Check 
Task 24 Auxiliary Control Service 
Task 26 System Common (SYSCOM) 
Task 27 Fault Check Message Writer 
Task 28 Wind Tunnel Driver (WT Driver) 
Task 29 
Task 3.5 
Task 55 

Operator Communication (OPCO~I) 
Sort/Log 
Start Up/Shut Down 

Task 26-System Common 

SYSCOiVI is the task responsible for data communication 
between all the other tasks. The design considerations that 



Use of a Multi-Programming Mini-Computer for Real Time Control Applications 739 

went into implementing SYSCOIVI are very important 
since SYSCOM represents the integration effort for the 
entire system. The design chosen was quite effective. After 
the other six tasks were written and debugged indepen
dently, the actual software integration process at the STA 
facility took less than two weeks. 

Some of the features which were considered in SYSCOM 
were: 

1. It should be secure from array overruns affecting 
other data elements in the interface. • 

2. It should be flexible, so that whenever data struc
tures, change or are added, no major system revision 
is required. 

3. Since the data flow between tasks represents the 
state of the overall system, the data itself should be 
centralized to facilitate debugging during integration. 

4. SYSCO::\f should be available as a dummy interface 
while individual modules are being debugged and 
implemented. As it turns out, our system communi
cation structure 'ivas a valuable debugging aid in 
itself. 

In its final form, SYSCO::\1 is a totally passive task which 
acts as a data repository and communication area. As such, 
it meets requirements 3 and 4 above. Its internal structure, 
which is the topic of the follmving paragraphs, indicates its 
conformance to the other two requirements. 

SYSCO::VI contains a small procedure portion, 'ivhich 
serves to unconditionally suspend the task when it is loaded. 
The data portion of the task has two components, a pointer 
area and actual data storage. 

All shared data elements in the system are assigned a 
reference pointer location in the pointer area. The pointers 
are all unique, and the index of the pointer in the table 
provides a consistent means of referencing the data. 

These pointers are structured as: 

x I y I Relative Location I 
~<---l6 bi ts -------:)~ 

where x is 0 = scalar data 
1 = array data 

y = 0 = integer data 
1 = real data 

'Relative Location' is the location of the true data rela
tive to the first word of the task. The data structure for an 
array uses data word one as a true array length indicator, 
thus preventing possible overflows. 

By referencing data in this manner, we can easily change 
data array lengths, or constants, etc., without drastic re
compilation of an the other tasks. Each operating task 
contains only the data which that task and its subroutines 
actually uses. 

Communication with SYSC01VI by any operational task 
is handled by a relocatable FORTRAN subroutine 'CDAT'. 

This routine is entered by CALL CDAT (IC01\1, ITASK, 
LENG) where: 

ICO::\<1 is the system common pointer location. 
ITASK is a FORTRAN common location within the 

calling task. 

LEXG represents the number of words to transfer. Its 
sign indicates direction of transfer. If LEKG is positive, 
data will be transferred from SYSTKVI COMMON to 
FORTRAN COMMON of the task. If LENG is negative, 
data will be transferred to SYSTE::\1 CO::\1::\1ION. Upon 
return, LENG contains the actual number of words trans
ferred. 

This subroutine uses a supervisor call which returns the 
first word address of each task as actually resident in mem
ory. This address is used to compute the actual address of 
the data pointer in the system common task. 

Several of the key data structures in the task are: 

DATA WORD 1-1 word integer-system mode 
= I-initialize 
= 2-run 
= 4-pause 
= 8-reset elapsed time 
= 16-reset all data tables 

DATA WORD 29-78 word integer array 
13 time value O-xxx minutes 
13 velocity values O-xxx FPS 
13 temperature values O-xxx Degrees F 
13 sulfur dioxide values O-xxx PP::\1 
13 nitrogen oxides values O-xxx PP::\1 

DATA WORD 26-8 word integer array 
year of last log cycle 
month of last log cycle 
day of last log cycle 
hour of last log cycle 
minute of last log cycle 
second of last log cycle 
mode = 1 normal log rate 

= 2 fast log rate 

DATA WORD 32-6 word integer array (single) perma
nent data channel information 
word I-AID channel (0-40) 

2-A/D channel gain 
3-full scale value engineering 

units 
4--zero value 
5-allowable zero deviation 
6--allowable calibration 

deviation 

DATA WORD 61-3 word temporary data channel ID

formation 
1 AID channel # 
2 A ID channel gain 
3 Full scale value engineering units 



740 National Computer Conference, 1974 

CRU addresses are hardware biased by register 7. 

Example: 

Register 7 contains ' D ' (CRU card slot 13) 

SETB 2, 1 

BBNE 9, 0, not 

LDCR (4,8) ,value 

STCR (32,3) ,value 

Sets Bit #2 of card 13 

Branch to sumbol "not" if Bit 9 is set 

Load an 8 Bit wide field within 

the CRU starting at Bit 4 from 

location "value" 

Read Bits 0-2 of Card F into 

location "value" 

Field widths and bit locations may be assigned FORTRAN 

variable or assembler symbolic names. 

Figure 2-CRU addressing 

DATA WORD 76-2 word array integer 
1 test file logical unit # 
2 # of sectors in test data file 

A major problem encountered in this design stems from 
the sharing of the same data by two or more independent 
processes. If one process can change the data at any time, 
another process can never by assured of data integrity. 

The overall system design obviated any need for concern 
in most cases. The cases where it was of concern occurred 
only whenever one task set a command flag for another 
task. For example, reference pointer 6 of System Common 
is used by OPCOM to start and stop the SORT/LOG task. 
And SORT/LOG uses it to inform OPCO~'1 that it has 
completed a specified function. Judicious design is all that 
is necessary to avoid any timing conflicts in this case. 

Task 21 

Time delay fault check is used to provide different "bid" 
cycles to the true fault check task. (27) 

Task 24 

Auxiliary control panel service has been added since the 
system was put into operation and is based on a good deal 
of operating experience. The principal commands given via 
OPCOM once a test is begun are the mode commands, 
"run, pause, continue" or changes in the data log rate "fast 
or normal." Therefore, we built a small hardwired auxiliary 
control panel with a series of push buttons to signal various 
functions. All these functions are wired into a 16 in/out 
CRU board at TTL levels. A series of OR gates will gener
ate an interrupt on the same CRU module when any of 
these buttons is depressed. 

The coding for this task is shown in Figure 3. We feel 
that it illustrates several important aspects of our system 
and the programming approach we have taken. 

First, the program is implemented largely in PCL the 
high level FORTRAN for this system. Second, implementa
tion of this processor required 2 man-days to \uite, install, 

and debug. Third, it added an important capability to the 
system with minimal changes in the other operating tasks. 
In fact, the only software change made was to Task 29, 
OPCOM, to check a contact closure at the end of its loop. 
If the contact is closed, the task loops and waits for further 
TTY input, if not the task terminates via an "end of pro
gram" supervisor call. This facility allows OPCOM to 
reside on the disc when not needed. 

The important point illustrated here, however, is the 
modularity of the programming under a multi-programming 
system and the 'resulting ease of addition of maj~r processors 
or system modifications. 

It also illustrates the combination of high level and in-line 
assembly programming which is available in most mini
comput.p.f Ryst.p.ms t.oda.y. 

Task 27-Fault Check Message Writer 

As originally written, this task is loaded into memory 
and suspended. At 10 second intervals, it is unsuspended 
and bid via a supervisor call from Task 21. The task surveys 
some 18 contact closure or sensing lines which are triggered 
by various external devices. This task also samples 3 A/D 

Zl 

10 

15 

20 

30 

Z50 

Z60 

70 

75 

80 

COMMON ISTATUS, ILOGG 

DIMENSION ILOGG (8) 

DATA LON/l/, LOFF/O/, LRUN/2/, LPAUSEI/4/, LENG/8/, LOG/26/ 

LA 7, X'OFO' 

SETB 14,0 

LA 3, X'24FE' 

SBSX * SENTRY 

BBNE 1, 0, ZIO 

BBNE 2, 0, Z20 

BBNE 3, 0, Z30 

BBNE 4, 0, Z20 

BBNE 5, 0, Z50 

BBNE 6, 0, Z60 

BBNE 7, 0, Z70 

BBNE 8, 0, Z80 

ISTATUS = 1 

Set CRU Base Register 

Enable Interrupt on Line 14 

Suspend Task Waiting for Interrupt 

Initialize Mode 

Run Mode 

Pause 

Continue 

BID OPCOM 

Start Wind Tunnel 

Fast Log 

Normal Log 

CALL CDAT (LONG, LON, LON) 

GO TO 105 

ISTATUS = 2 

GO TO 15 

ISTATUS = 4 

GO TO 15 

LA 3, X'0829' BID TASK 29 OPCOM 

SBSX * SENTRY 

GO TO 105 

LA 3, X'0828' BID TASK 28 WIND TUNNEL DRIVER 

SBSX * SENTRY 

GO TO 105 

CALL CDAT (26. 2. 8) GET LOG STATUS ~~lORD8 PRa~·1 CO~·!!·1CN 

I LOGG (8) = 2 

CALL CDAT (-26, 2, 8) WRITE NEW LOG STATUS 

GO TO 105 

CALL CDAT (26, 2, 8) 

ILOGG (8) = 1 

Figure 3-Partial Fortran and assembly coding for auxiliary controi 
panei 



Use of a Multi-Programming Mini-Computer for Real Time Control Applications 741 

channels and compares the values with preset limits. An 
appropriate message is output to the operator if various 
fault, hazard or warning conditions exist. 

During normal operation, this task is disc resident waiting 
an interrupt call from Task 2l. 

During start up and combustion unit operation, the task 
is memory resident and scanning at 5 second intervals. The 
advisory type messages may be overriden via OPCOM. The 
hazard warning messages require immediate action and 
are repeated until the condition is cleared. This task uses 
the message "'Titer spool/unspooling facility available in 
the supervisor. 

Task 28-Wind Tunnel Driver 

This task is the heart of the control system for the source 
simulator. It is memory resident after the SWDT (start 
wind tunnel) command is given via Task 24 or OPCOM. 
It contains several major sections all operating serially in a 
basic 5 second time delay loop. The task is structured into 
FORTRAN subroutines for A/D reading, engineering unit 
conversion, temperature, velocity, humidity, sulfur dioxide, 
and nitrogen oxides control and velocity display. 

The A/D readings, conversion and velocity display are 
updated every 5 seconds. The control subroutines normally 
make corrections every 3rd pass or each 15 seconds. 

Task 29-0perator Communication (OPCOM) 

This task is the most complex of the system tasks. The 
main structure of the task consists of several subroutines 
to accept the command input from the console typewriter. 
These commands then enter a comparison and skip chain 
to identify the command. 

System mode commands (run, initialize, pause, continue, 
fast, norm) all change various flags in the system common 
task. The more complex commands all load various disc 
resident overlays to perform the more complex processing. 
These commands set up the different parameter tables, 
select instrumentation, perform zero and calibration func
tions and override fault messages. 

The structure of OPCOM is shown in Figure 4. As you 
can see, we have a two level overlay scheme for some of 
the set up commands. We will not discuss the command 
function further except to comment that the non-overlaid 
length of the program was 22,000 words and the overlaid 
length is about 4800 \V·ords most of which is overlay space. 

Task 35 Sort/Log 

This task performs the two major jobs implied in the 
task title. 

Upon initiation of the "run" command via OPCO"M the 
Sort/Log tasks writes a data header on the first 13 se~tors 
of the disc test file. This test file is usually 120 sectors long 

COMMAND OVERLAYS 

LEVEL ONE 

LEVEL TWO 

Figure 4-0perator communications task structure 

and is assigned by logical unit number. The complete instru
mentation and setup parameter tables are copied from 
system common .. This has two major advantages: first, a 
test file may be saved for later sorting and data analysis 
with all definitions intact and second, a test may be sus
pended and restarted with the same parameter information. 
Handling this header information is the function of the two 
overlays "OOTF" "open old test file" (and restore definitions 
into system common) and "ONTF" open new test file and 
copy definitions from system common. 

The root phase of Sort/Log acts as a dispatcher and time 
counter. Data logging intervals are obtained from system 
common and compared to .the system clock as a day, hour, 
minute, second elapsed time since last log basis. 

The log overlay calls for an A/D conversion of table 
selected channels and writes the binary result to the disc. 
Up to 26 channels may be defined per test which results in 
a 32 binary words second which is one sector. The remaining 
6 words are used for time information. 

As each sector (a record) is w.ritten, the next sector is 
set equal to -1 (HEX-'FFFF"). This is a moving "EOF" 
signal to the sorting program so that a test may be inter
rupted at any time for almost any reason which does not 
destroy the data on the disc and all the previously logged 
data will be retrievable. 

After the test is terminated, the sort overlay of this task 
is used to ask for data channels by name prior to sorting. 
We can sort up to five channels at a time. There is no 
limit to the number of times a channel may be sorted. Thus, 
the data can be sorted and printed by channel vs. time. The 
conversion to engineering units is handled during the sorting 
period. Since the output is by logical unit, it is convenient 
to assign temporary disc files to the output data and, thus, 
have it readily formatted for input to regression or other 
data analysis program.' For example, for a multiple linear 
regression program, we specify that the dependent variable 
be column 1 followed by up to 4 independent variables. 
The analysis program in this case is set to ignore the headers 
and time information. 

This concludes our exposition on the software construc
tion of our source simulator data and control system. Now 
we are ready to discuss that long and painful task of actually 
bringing the system up and interfacing with the physical 
world. 

The system was delivered from Systems Technology 
Associates to the EPA Research Center in North Carolina 



742 National Computer Conference, 1974 

on 15 August. Hardware reassembly, program loading and 
checkout was completed on the 17th of August. 

Connections between the computer system and the source 
simulator control panels were completed on Monday and 
Tuesday of the following week. Start-up and operation of 
the facility under full computer control and supervision 
was accomplished on Wednesday afternoon. To date, the 
only adjustments and changes to the programs have been 
in the area of patching various control constants in the WT 
DRIVER task and placing the fault check task under 
interrupt control. 

We attribute this extremely fortuitous situation to 
several major factors. First, the multi-programming operat
ing system made modular programming not only possible 
but very desirable. This allowed task by task checkout 
before requiring full system operation. Second, we made 
extensive use of an electronic break-board simulator to 
verify contact closures, relay outputs, A/D inputs and 
D / A outputs. Third, the task of interfacing to the external 
world was made immeasurably easier by the wide variety 
of CRU modules available from Texas Instruments and a 
CPU which was designed for this type of work. Fourth, an 
early-decision- was -made-toput--all input/output -line--i"efer
ences and control and data constants into FORTRAN 
"data" statements in each program, instead of in-line 
coding. This probably cost us some memory and efficiency 
in terms of memory reference instructions and large symbol 
tables but it made it possible to patch all the control con
stant changes usually required rather than recompiling, 

reI inking and reloading the programs. For example, the 
velocity controller required 7 volts from the D / A connect 
to deliver full power instead of the 6 volts we expected. 
The repair was accomplished by patching one integer con
stant and one "mask" in two subroutines. Fifth, the inter
facing was assisted by a rigid adherence to a set of defined 
interface rules which were worked out between the com
puter system team and the control system designers. 

In conclusion, we have discussed how we used a typical 
mUlti-programming operating system as is available on a 
number of the mini-computer systems currently in use. Our 
particular on-line control of five variables in a specialized 
wind tunnel is admittedly not a complex nor a particularly 
time critical task, however, we have not stressed the capabil
it.ies of the system in any '.vay. Our particular system hap
pens to have a primitive sort of duty cycle calculator built 
in the operating system which calculates the duty cycle for 
the last second and stores the current and maximum value 
experienced since system initialization. The maximum duty 
has been 42 percent experienced one day while running a 
full scale source simulator test and assembling another 
prograIll in the _ background~ The nor!ll-t:l,J _ duty cycle while 
66ii£i-6Ilmg-the slmliiato-r is about 26 percent. 

Thus, on the basis of our experience, we would recom
mend that in control or data acquisition situations where 
microsecond response to a stimulus is not required, that the 
design teams consider carefully the programming and 
operating advantages offered by the current mini-computers 
and their multi-prograrruning operating systems. 



A data bank for on-line process control-The synchrotron injector 

by A. DAN EELS 

CERN 
Geneva, Switzerland 

INTRODUCTION 

The need for a data bank results from the complete com
puterization of the CERN Proton Synchrotron injector 
process. This process was designed so as to allow on-line 
control of most of its variables and a complex software 
system was developed for multiple and simultaneous control. 
Emphasis was put on "interactive control" i.e. several oper
ators may control in parallel part of the synchrotron injector 
through computer-driven consoles. Conflicting control has 
to be avoided and therefore a centralized information base 
or data bank was developed. 

Broadly speaking this data bank is subdivided into two 
complementary parts: a very small one, which is permanently 
in core, and a large one (at present around 10 k), which is 
stored on disk. 

The small core-resident section contains information which 
is likely to undergo frequent changes: a few "flags" called 
"cold start" flag (to indicate which part of the process is 
under no control after a cold start of the computer) ; "BUSY 
flag" to indicate which part of the process is under control 
from the MAXI-CONSOLE; "MANUAL flag" to indicate 
which part of the process is under control from its dedicated 
MIDI-CONSOLE; the starting address of a binary matrix 
containing all "status" information, such as "ready" or 
"not ready," "on" or "off" and "polarity" status of the 
process variables. This matrix is built up of a number of 
16-bit words (so far 25 words) in which every single bit 
represents a status (ready/not ready, or on/off, or polarity). 
Random arrangement of status bits within the matrix eases 
the hardware aspect of collecting this status information 
from the various variables. This matrix is permanently in 
core as part of a surveillance program, which is imbedded 
within the MIDI-COXSOLEI program and which scans the 
various status bits at regular time intervals. 

Nothing more needs to be said about this core resident 
section of the data bank. This paper gives a detailed discus
sion of the characteristics of the disk-based section of the 
data bank. 

743 

GEKERAL 

The control of a process is in general implemented by a 
great many control variables of different types. 

To vary any control variable one needs to have some 
information at hand, as to its current control value, whether 
this variable is controlled via, for example, a stepping motor, 
what is its possible maximum value, whether it is switched 
on or off, etc. It will be shown here hmv, in general, one 
needs around twenty such pieces of information which are 
called the characteristics of every control variable. 

"Control variable" has been mentioned so far without 
indicating whether they are single control elements, or 
several control elements combined into one control vector. 
Throughout this paper distinction will be made (where 
needed) between control elements and control vectors, where 
the latter are defined as a linear combination: 

where 

n 

X=LaiXi. 
i=l 

X is the control value of a vector, 
Xi is the control value of the ith element, 
ai is a \veighting factor, 
n is the number of elements. 

(1) 

Any statement about control variables is valid for either 
elements or vectors. 

Any program controlling all or part of the process (e.g., 
on-line optimization) needs to know the characteristics of 
its control variables, which therefore should be stored, for 
example, on magnetic disk. 

A process such as the synchrotron injector has around 
500 variables each characterized by 20 pieces of information, 
hence one will need space for around 10,000 pieces of infor
mation. This plunges us into the problem of data banks, 
data structure, information retrieval and updating. 

It will be shown how a data bank for control variables 
may be given a simple structure.2 



744 National Computer Conference, 1974 

I t will also be shown how to define every control variable 
by a single code, SOFT-CODE, for retrieving its character
istics. 

Eventually a software system will be described, which 
allows easy retrieving and updating some of the character
istics without the need for direct access to the data bank. 

CHARACTERISTICS OF A CONTROL ELEMENT 

A control variable has been defined (see the .. previous 
paragraph) as either a control element or a control vector. 
This section will describe the characteristics of every single 
control element. The control vectors will be dealt with in a 
subsequent paragraph. 

Control element's name 

This is for the purpose of displaying the name of the 
control element on alphanumeric displays as, for example, 
on the MID I -CO NSO LE.l Such a name is in general a 
mnemonic indicating to which group the control element 
belongs, ·for example, a vertical steering magnet in the in
jection line of the synchrotron injector, I-DV, follO\ved by 
an item number, e.g., the 7th one. This full name is thus 

I-DV07. 

Consequently a full name will be a mnemonic of four alpha
numeric characters indicating the group followed by a 2-digit 
item number. This arrangement covers a large number of 
possible "names." 

Physical units 

Once again for displaying the measured value of a control 
variable one prefers this value to be indicated in physical 
units: for example, a current, even though measured as a 
voltage over a shunt, should be displayed in A or mA; an 
angular position, even though measured, for instance, as a 
voltage, should be indicated in mrad, etc. In general two 
characters will be sufficient for defining the physical units. 

A BUSY indicator 

Any control variable may be controlled from various places. 
This is particularly true in a multiprogramming environ
ment. To avoid conflicts one needs a centralized indication 
to tell whether a control variable is already under computer 
control or not. This indication is available ill a l(fiag" as 
part of the core-resident section of the data bank (cf. Intro
duction). 

Value of the least significant bit eLSB) at acquisition 

Suppose one measures a current. In generai this is done 
through a shunt resistor with. a fixed value so that one 

actually measures a voltage which depends "linearly" (as
sume the shunt is linear) on the value of the current. The 
ratio voltage/current depends on the value of the shunt 
resistor. The analogue value of the voltage is now converted 
into a digital value, so that going back through all the 
various conversions one finds a definition of the LSB (i.e., 
digital value = 1) as a function of the physical unit, e.g., 

LSB=44.6 mAo 

Position of the decimal point 

In previous examples, the smallest value one could measure 
corresponded to the value of the LSB (digital value = 1) at 
acquisition. Therefore, the least significant digit in physical 
units is 10 mA or 0.01 A, and consequently if the measured 
value ,vere to be displayed as a 5-digit number in A one 
would have to insert a decimal point in front of the second 
digit right justified: e.g., 

170.15 A. 

Value of the LSB at control 

Having observed the current value of the control variable, 
for example, on the display, one decides now to increase or 
to decrease this value. Therefore, one introduces a positive 
or negative increment defined in its physical units. This 
increment therefore has to be processed by the computer 
and converted into the appropriate digital value before 
sending it to the digital control register of the control vari
able: this implies that one should define the physical value 
of the LSB at control (digital control value = 1). If, for 
example, the maximum value of a power supply is 15 A and 
it is controlled by a lO-bit digital register then, of course, the 
LSB is 14.6 mAo 

11,faximum and minimum value 

This has been mentioned implicitly in the previous section. 
One needs to be safeguarded against exceeding limits which 
may not be symmetrical (e.g., unipolar supplies). 

Type of control element 

One distinguishes, in general, between three types of con
trol elements. 

(a) A-type 

This is defined as the control element whose control value 
results from the algebraic sum of its previous control value 
and an increment, for example 

(2) 

where t is the time of control. 



A Data Bank for On-Line Process Control-The Synchrotron Injector 745 

(b) S-type 

This is defined as the control element whose control value 
results from an increment only (e.g. Stepping motors) 

(Xt-l always=O). (3) 

(c) C-type 

This is in fact an A-type control variable for which there 
is no acquisition (measurement) foreseen. This applies more 
specifically to the preset counters of the synchrotron injector: 
in particular their control value includes the selection of a 
proper timing clock. 

Indication for READY-NOT READY 

Some control variables may be READY or NOT READY 
depending, for example on whether there is a power supply 
connected to it or not. This indication is supplied to the 
computer for most elements of the synchrotron injector. 

Indication ON-OFF 

This indication allows one to find out whether an element 
has been switched on or off. If it is found to be switched 
off the computer should, of course, switch it on before control 
can start. 

Indication POLARITY 

For some control elements the polarity of the measurement 
may be supplied in a different piece of information. 

RESET 

When an element is found to be NOT READY the com
puter may attempt to RESET this element. 

Acquisition and control addresses 

The process computer is connected to the process by a 
transmission system* through which measurements are ac
quired and control values sent out. In order to "multiplex" 
the transmission to or from the proper control elements, 
every element is given two addresses, one for acquisition, 
one for control. 

Current control value 

In order to avoid non-linearities between control value 
and measured value and also to avoid errors in the acquisition 
(e.g., missing bits) one may decide not to compute the new 
control value as the sum of the previous measured value and 

* The synchrotron injector uses the digital STAR system (Systeme de 
Transmission Adresse Rapide) developed by the Control Group of the 
CERN Proton Synchrotron Division. 

an increment but as the sum of the previous control value 
and an increment. This implies that the computer has 
memorized what value is actually on the digital control 
register of any control element. 

"Reference" value 

This is a control value which was found to be satisfactory 
in the past as it ensured a good working condition of the 
process. If the current control value proves to harm the 
working conditions of the process one wants to return to the 
"reference" values. 

"Buffer" 

This allows one to compare the working conditions of the 
process resulting from the "current control value,j; with the 
conditions resulting from the "reference value," without 
destroying the "current control value" which is stored in 
the "buffer." 

So far the characteristics of a control element have been 
enumerated. However, in general, some of these character
istics \vill be common to various control elements. As an 
example, all vertical steering magnets of the injection line 
of the synchrotron injector upstream to the distributor are 
called I-DV, their value is displayed in A, and they are of 
the A-type, etc. 

However, the 7th member of this group will be called 
I-DV07, and has an individual address for acquisition and 
control, etc. 

So in general one can state that the first eight characteris
tics will be common to a group of control elements, whereas 
characteristics nine through sixteen will be specific to each 
element of this group. Hence we come to a two-level data 
structure with group characteristics and individual char
acteristics. 

GROUP(J) 

IKDIV(J,2) ... INDIV(J,M) 

CHARACTERISTICS OF COKTROL VECTORS 

The control vectors have been defined previously (see the 
Introduction). A control vector is characterized by: 

(i) the number of its control elements: e.g., N, 
(ii) N codes: each defining a control element, 

(iii) N coefficients (which need not necessarily be integers): 
to weight the control value of everyone of its control 
elements. 

DATA BANK STRUCTURE ON DISK 

Control elements 

The simplest method is to store contiguously the record 
representing the characteristics of group J, then the char-



746 National Computer Conference, 1974 

VECTOR 
C/lAlUCrERIST/cs 

So 

~ 
~ 

~ .. 
I,::,:r-~ 
_.rflUTN. 

$tIFT -CODE I 

$tIFT·CDllEZ 

SIIF1'''DE l 

S/JFT."., 
COEFF: ". 

CDEFF: '" 

COEFF: '" 

CDEFF: '" 

IFFFFIFI'K1rIRIIF' 
PDlNTFR 1tINEIIT NDr_rllAli _rDFVEUrH/ 

'El.EHENr5. 

II 

So~r-----......, 

NA 

HE 

HA (lINlrsj 

IIIISY. OEI:/H POiNr 

LS.fJIT·ACtUIS. 

L.S •• ' .CfW1lIIII. 

,."NlHIIH 

Figure 1 

INDfIIIDlJAl 
C1IAII«rE1IISnCS 

SV-r-T-----, 

... .. 

CDDRD. BIT .READY. 

CtIOIlD.Bl1'-(}N.fJFF· 

~·"RESEr· 

Af)IJRESS FOR CONTROL 

CURRENTr:tlNTWJl.lIIUI 

REFERENCE VALUE 

_FER 

CWRJ.fJIT "I'OLARITY , 

II 
/I 

acteristics of all its M individuals, then the specification of 
group J + 1, etc. However the number of individuals M may 
be different from one group to another and retrieving the 
characteristics of one single control variable would require, 
in general, knowledge of two pieces of information: the ad
dress (on disk) of its group characteristics and its item 
number within this group. 

This arrangement is also rigid and would not allow, for 
example, giving different group characteristics to the same 
string of control variables (e.g., give it another name when 
various control elements of one group are combined into a 
control vector). 

Consequently, one is led to a more flexible arrangement 
by storing into two different files the group characteristics 
and the characteristics of their individuals 

... GROUP(J), GROUP(J+1), ... 

INDIV(J,3) .... INDIV(J,M); INDIV(J+1,1), ... 

Each record of group characteristics includes a pointer to 
the address on disk of the individual characteristics of the 
firtiL element of this group. 

By arranging the record of group characteristics to be of 
fixed length (10 words) one is able to code both the address 
on disk of the group record of a control element and its 
item number into one piece of information. An example of 
such a coding will be given in a subsequent section and will 
be called SOFT-CODE (Software Code) . 

Record length for group characteristics 

Characteristics one to eight inclusive have been defined as 
group characteristics. The "name" has been defined as four 
alphanumeric characters indicating the group followed by an 
item number within this group. This item number may be 
introduced in the COdf\ c:l.11p.d SOFT-CODE, which will allow 
retrieving the characteristics of the control variable. There
fore, it need not be stored on disk. Consequently, one will 
need in general two words of storage for the name of the 
group (alphanumeric characters are coded two characters 
per 16-bit word). 

Furthermore, the record of group characteristics will in
clude a pointer to the record of its first element (i.e., item 0). 

By appropriate coding of other information such as decimal 
point position, busy indicator, and value of LSB, one can 
keep the length of the group record down to ten words 
(cf. Figure 1). 

Record length for individual characteristics 

Characteristics nine to sixteen, inclusive, have been defined 
as individual specifications. The total length of this record is 
effectively of 10 'words, as is shown in Figure 1. 

Control vectors 

Control vector characteristics are imbedded within group 
characteristics of control elements. One distinguishes a vector 
from an element by its SOFT-CODE (see following para
graph). 

To preserve the lO-word modular structure a vector of 
N elements is subdivided into subsets of four elements. The 
first word contains the number of elements; then four codes, 
SOFT-CODES, define the elements followed by their corre
sponding weighting factors a. The last word points to the 
next following subset and is equal to -1 (hexadecimaljFFFF) 
in the last subset. However, so far there are no such examples 
among the synchrotron injector control vectors. 

Estimate of the number of sectors on disk 

In the particular example of the synchrotron injector, an 
IBM 1800 process controller is used, with moving search 
head magnetic disks for mass storage. Every disk has 512 K 
of 16-bit words storage capacity, subdivided into 200 cylinders 



A Data Bank for On-Line Process Control-The Synchrotron Injector 747 

of eight sectors each. Every sector has a capacity of 320 
words. Hence 32 group characteristic records may be stored 
per sector. The number of groups of control variables for 
the synchrotron injector is estimated around 256, which 
corresponds to eight sectors. Another 24 sectors store the 
individual characteristics. 

SOFT-CODE 

Every control variable is defined by a SOFT-CODE 
retrieving the record of its characteristics in the data bank. 

The IBM 1800 process controller which is used by the 
synchrotron injector is a 16-bit machine; consequently the 
SOFT-CODE is a 16-bit word which is organized as follows 

LSB 

GROUP NUl>IBER 1m! NlJl.1BER 

(G) (I) 

Vector indicator 

(i) Jjf ost significant bit, sign bit (M SB) 
This bit is set to 1 for control vectors and is set to 0 for 

control elements. 
(ii) Group number (G) 
In the case of the synchrotron injector 256 groups have 

been estimated; hence eight bits. 
(iii) Item number (/) 
The remaining seven bits indicate the item number of a 

control element within its group. 
This SOFT-CODE is effectively a pointer to the address 

on disk where the characteristics of its corresponding control 
variable are recorded. This address on disk is computed as 
follows: 

-address of the record of group characteristics = 

{GolD} {GolD} 
So+Q Ns +R Ns ' 

where 

So is starting address on disk of the data bank, 
G is the group number, 
Q is the quotient of the division between braces, 
R is the remainder, 

(4) 

N s is the number of words per sector (= 320 in the case 
of the IBM 1800); 

-address of the record of individual characteristics = 

(5) 

}~--" :..-

NOTE: 

.' 
Figure 2 

where 

P is the pointer to the first item of the group (first 
word in the group characteristics), 
I is the item number. 

DATA BANK HANDLING SOFTWARE SYSTEM 

Every process control program has to refer to the data 
bank. However, one should prevent part or all of the data 
bank from being destroyed, for example by software bugs. 
In particular, the disks on which the synchrotron injector 
data bank is stored have a moving search head and the 
average access time is around 200 msec; moving the head 
can almost not be avoided because of the data bank structure 
(four cylinders or tracks; the first one contains group specifi
cations, the remainder contains individual specifications). 
Therefore, some retrieving and updating operations need to 
be optimized to be short in time. As a general rule a pro
grammer should not have direct access to the data bank, 
but only through an appropriate software system. 

The various subroutines are written in maChh'1e language 
with FORTRAN compatible calling sequences. The error 



748 National Computer Conference, 1974 

indicator is always zero after successful termination of the 
subroutine. 

All those subroutines are modular for simple program 
structure as is shown in Figure 2. 

CONCLUSIOK 

Implementing the data bank has proved very useful, es~ 

pecially during the commissioning of the various process 
components. For example, the calibration of the components 
required frequent modification of the definition of the least 
significant bit, both for control and for acquisition. This 
could be done in a flexible way through an interactive pro-
gram displa:ying the current control v~ariable specification on 
an alphanumerical display and returning the modification 
to the data bank. 

All control programs have immediately the latest infor
mation in hand and need not to be reassembled and recom
piled. 

Furthermore only a rather small amount of information 
needs to be loaded in c()~e fo~ ~ontrolling part 5?f tllE'. process ... 

However, the two-level structure is a limitation, particu
larly when vectors using similar elements are given different 
names for display purposes and also when various process 
variables only differ because of their name whereas all other 
group specifications are identical. In this case a three-level 
structure is more flexible but requires faster disk access. 

ACKNO\VLEDG;\IENTS 

The author gratefully acknowledges the discussions he has 
had with H. Van der Beken, L. Burnod, and W. Remmer, 
which have benefited this \vork. 

REFERENCES 

1. Asseo, E., L. Burnod, A. Daneels and E. Sigaud, Systbne Midi
Console-Solution economique pour l' operation a acces rapide, via 
ordinateur, d'un processus a parametres multiples. CERN IMPS
SI/CO 71-3. 

2. Duby, J. J., "Data structures," Proc. 1970 CERN Computing and 
Data Processing School, Villa Monastero, Varenna, Italy, 30 August-
12 Septembre19}O, CERN 71~6(197J), p.335-404 .. _ . 



Design of a minicomputer network for the automatic 
determination of amino acid sequences in proteins* 

by E. L. BAATZ, B. W. JORDAN, JR., K. J. KING, W. J. LENNON and Z. Z. STROLL 

Northwestern University 
Evanston, Illinois 

BACKGROUND Hi 

A protein is a simple, nonbranching chain, where any link 
in the chain is one of approximately twenty different amino 
acids. The chemical tools available for the determination of 
the primary structure of a protein (that is, the types of 
amino acids that are in the protein and the sequence in 
which they are linked) are relatively few in number and vary 
greatly in sophistication. 

Hydrolysis, boiling a protein sample in a hydrochloric acid 
solution for roughly a day, completely breaks up the protein 
by rending every amino acid from its neighbor. By passing 
the resulting product through an amino acid analyzer, the 
relative amount of each· amino acid in the protein can be 
determined. 

Sequential degradation allows the removal of any amino 
acid from the amino end of the protein. By repeatedly apply
ing the process and determining which amino acid was re
moved at every step, it would appear that the primary 
structure of any protein could be arrived at in a very straight
forward manner. However, because the reactions used do not 
have one hundred percent yield, the sample becomes more 
contaminated after each amino acid removal. Consequently, 
the process is limited routinely to sequences of twenty to 
forty acids. Unfortunately, the typical protein of interest is 
generally larger, in the range of one to two hundred acids 
with proteins of up to 2000 acids having been reported. 

Proteins can also be fragmented into shorter chains of 
amino acids by introducing enzymes which break the amino 
acid chain only between certain pairs of acids. After sepa
rating the peptides, each may be treated as a protein in its 
own right. By fragmenting the peptides, if necessary, chains 
of sufficiently small numbers of acids can be obtained so that 
all analytical methods work welL 

The primitive techniques above generally allow the unique 
amino acid sequence of a protein to be determined by 
collocating the results of two independent experiments with 
samples of the protein. The general overall procedure follows. 

An enzyme is selected to fragment the protein into shorter 

* This research is supported by N.I.H. Grant No. l-ROI-GM20048-
Ol-COM 

749 

peptides. The individual peptides are separated using column 
chromatography techniques. Mter each sample peptide is 
judged pure by computing the stoichiometric ratios of its 
amino acids, the sequence of acids is determined by sequential 
degradation. Thus the amino acid composition of the protein 
is known as well as the amino acid sequence of individual 
component peptides. 

The second experiment is a repeat of the first using a 
different enzyme which fragments the protein into different 
peptides. A comparison of the amino acid sequences of the 
peptides obtained from both experiments generally allows 
the deduction of the complete sequence of the protein. 

At present, the above process is done almost entirely by 
hand, ""ith the aid of a machine for amino acid identification 
and sequential degradation. It is generally a long process, 
measured in terms of a few months, consisting of a myriad of 
exacting steps performed by a skilled technician. There is a 
gro\\ing need to determine protein sequences in research 
concerning virus related diseases, cell chemistry and evo
lutionary relationships. For these reasons, the repetitive 
aspects of these procedures become an obvious candidate 
for automation. 

GENERAL CONSTRAINTS AND PHILOSOPHIES 

As Figure 1 shows, the protein analyzer has been designed 
in six physically separate modules. This was done for three 
reasons. First, the chemistry and decision making procedures 
for each module are different and relatively independent. 
Second, it is desirable to press each complete module into 
service in order to gain operational experience with it as 
work continues on the remaining instruments. Finally, modu
larity seems to lead directly to great flexibility and reliability. 

Reliability of the system as a whole must be more than a 
catchword for two principal reasons. First of all, one means 
of having a machine procedure be faster than the equivalent 
human oriented procedure is to have it run around the 
clock. Such a time schedule suggests that little, if any, 
operator supervision will be available for long periods of 
time. Since the system handles a ""ide range of chemicals, 
some of them quite toxic, it should not break down in such 
a manner as to endanger an operator or its surroundings. 



750 National Computer Conference, 1974 

Amino Acid 
Analysis 

Module 

~ 
D 

Automatic Protein 
Hydrolysis Fragmentation 

Module Module 
C -- .;entral Storage ~ 

A 

Module F 
Transfer & 
Dispensing 
Module G 

J \ 
Sequence Peptide 

Determination Separation 

Module Module 
E B 

Figure I-Process flow diagram 

Second, some of the proteins of interest are rare in every 
sense of the word. The amount of the sample may be only 
a score of microliters, and another supply may not be avail
able for years, if ever. Because of these procurement and 
replacement problems, the system must not accidentally 
destroy samples. 

A system composed of so many complex machines will 
break down regardless of the amount of care taken in its 
design and construction. Therefore, it should be fault tolerant 
in both hardware and software. When something fails, it 
should fail in a nondisastrous manner. The system should 
detect the failure, isolate it from the rest of the system, and 
work around it as much as possible until it is repaired. The 
modular arrangement of Figure 1 leads to such a system, as 
shown in the succeeding sections. 

All of the decisions in the system are to be made in real 
time. Where a sample is, what the next step of the analysis 
is, whether a sample is pure, and many other questions must 
be answered within various time constraints. The two ex
tremes of the system are represented by the hydrolysis 
module and the peptide separation module. 

Hydrolysis requires activity during half an hour to load 
the samples into the module and to start the cooking process, 
followed by simple monitoring for twenty hours, finally 
followed by cooling and returning the sample to central 
storage. This is a pattern of moderate activity periods sepa
rated by long periods of little or no work. 

On the other hand, peptide separation requires continuous 
observation of the effluent of separation columns. The pres
ence of an amino acid is detected by an increase in the 
opacity of the effluent at a specific wavelength. Peak sharpen
ing must be done as well as the determination of whether or 
not the peak is actually two intermixed peaks. If a sample is 
pure, it must be determined just when to start collecting it, 
or if it is not pure, it must be diverted for further separation. 

All those critical decisions must be made against a time scale 
marked in milliseconds. 

The system should be powerful and flexible but not all 
things to all people. In particular, it is probably impossible 
to construct a machine that will analyze an arbitrary protein. 
In addition, it has been observed that even a modest amount 
of knowledge about the protein under analysis pays dividends 
in tailoring the general procedures to the particular analysis. 
The overall intelligence of the system must be high enough 
that it is capable of receiving instruction from biochemists 
about custom tailoring the analysis for a particular class of 
proteins. 

The system's initial task will be the determination of the 
amino acid sequence for varients of the protein cytochrome-c. 
The s~ystem ''',,"ill be able to take advTantage of the eAperience 
gained by Dr. Emanual Margoliash from the analysis of over 
twenty samples. When considering the analysis of another 
class of proteins, it is likely that at most two of the instrument 
modules will require modification to accommodate new pro
cedures. 

A multicomputer architecture provides a superior system 
over that of a single ~omputerunder . nearly every criteria 
mentioned. P~imariiy, it all~w~ the l~gical ~nd physical 
separation of one module from another. This allows simplified 
hardware and software to be developed, because the needs 
of a module can be handled in isolation from the rest of the 
system. Two additional benefits accrue. With the multi
plicity of processors, the system is more fault tolerant. One 

Computer 
Science 
Research 
Network 

Vogelback 
"'-----I Computing 

Center 

Display and 
Control Panel 

Printer/Plotter 

I 
Amino Acid 

-----I. Analyzer 

Figure 2-Primary network structure 



Design of a Minicomputer Network for the Automatic Determination of Amino Acid Sequences in Proteins 751 

computer failing still leaves enough intelligence in the system 
to continue operating in a degraded mode. Since each module 
has enough computing power to work in isolation from the 
rest of the system, the benefits of automation are available 
before the entire system is finished and later can be applied 
to configurations differing from that of the original system. 

HARDWARE 

The general organization of Figure 1 is realized by allo
cating a minicomputer to the control of each module, and 
having two additional minicomputers for control of devices 
concerned with the overall information flow of the system. 
Figure 2 shows this basic structure. 

The interprocessor communications are via high speed 
asynchronous serial lines that run at a rate of between 20K 
and 153K baud. This means was chosen because of the 
simplicity and reliability shown by the similar communi
cations paths used by the Northwestern Computer Science 
Research Laboratory Network.6•7 

The one process module per computer principle was 
amended by noting that the hydrolysis module is relatively 
idle for long periods of time. Therefore, it is felt that its 
control computer can easily handle activities such as transfer, 
dispensing, and central storage, which are not time critical. 

As Figure 3 shows, reliability considerations greatly compli
cate the design. All communication paths are duplicated. 
Every control computer has a watchdog timer and the 
potential to be restarted from read-only memory. More 
importantly, there is a control path from two computers to 
each module. If it is determined that a computer is bad, it 
can be switched out of the system by a processor at the next 
higher level and a secondary control computer can take over 
the affected module. Optimally the effect of the takeover is 
to have the system run as if nothing has happened. More 
realistically, the doubly burdened computer will provide 
degraded service to both modules, but service continues 
nevertheless. At the worst, one module will merely be main
tained in some safe state to avoid damaging the sample or 
the facilities. 

The idea of levels of backup is encountered many places 
in the analyzer. At the system level, the control computers 
are at the lowest level, then the central and display processors 
and finally the operator. Switching out of different parts of 
the analyzer can take effect only from the next higher level. 
Therefore, a control computer is removed only by the central 
computer, and the central computer's tasks are taken over 
by the display processor only under the direction of the 
operator. 

At the module level, backups also exist. For example, the 
control of a constant temperature bath is primarily controlled 
by a closed loop servo system but is also monitored by the 
control computer. If the computer decides that the automatic 
system is misbehaving, it can switch into direct control, 
effectively closing the system. As a last line of retreat, the 
loop can be controlled manually. 

Experience indicates that hardware fails infrequently inside 

Figure 3-Backup network structure 

a central processor. Therefore, the external logic of the 
system is very primitive, responding to registers set by a 
control computer. The complicated logic is kept where it is 
most easily accessible and most easily monitored, in the 
computer. 

SOFTWARE 

As does the hardware, the software emphasizes that no 
one part of the system be essential to the operation of the 
whole. Even though the system is configured as a star 
shaped network, the central processor does not playa promi
nent role. Instead it serves mainly as a message switcher, 
disk controller and system table interlock. The organizing 
intellect of the system is not localized to one processor, but 
instead is distributed throughout the system. 

A computer's primary responsibility is to completely main
tain and manage a particular module. Secondarily it provides 
support to the system. This is achieved by having the module 
control software determine when it is idle. The monitoring 
of the module is left to a much smaller program, and a copy 
of the system monitor is obtained from the disk. Thus 
equipped, the computer can make global decisions. Therefore, 
the coordinating intellect of the system is a potential resident 
of any machine in it, and the collapse of any particular 
computer only marginally incapacitates the effectiveness of 
the entire system. 

Whenever a control computer is not immediately con
cerned with an activity in its module, it first tests the com
munication lines to the rest of the system. Then its module's 
queue is checked for any requests from other modules. If 



752 National Computer Conference, 1974 

there are none, a system queue is checked for nonmodule 
oriented requests, such as the analysis of some data deter
mined by a module. If no such work exists, diagnostic pro
grams run, and when that is done, decisions are made about 
which step in the analysis process a sample should progress to. 

Since a control computer completely handles the intra
module manipulations, intermodule, time critical actions do 
not occur as long as queues of samples exist between modules. 
Therefore, the overall system performance can be task driven 
on a request basis. That is, if a computer wants something 
done, it places a request in a disk queue. Some time later, a 
computer capable of fulfilling that task will pick it up and do 
it, but possibly only after defining other tasks at a more 
detailed level. This introduces several levels of tasks in the 
system, each level being particularly suited to expressing 
some desired activity in meaningful terms. For example, a 
task might be a request to Transfer and Dispensing (module 
G in Figure 1) to pick up a sample from a buffer. Transfer 
and Dispensing would then break the task into more primi
tive tasks until it determined how many steps are required 
to move the transfer head to the sample. 

The entire state of the system is kept in great detail on 
the-disk Ttkeeps not only a --past history of each sample and
what should be done with it next, but also what is presently 
being done to it. This means that each control computer 
frequently sends status information to the disk, which allows 
all the pieces to be picked up if the control computer of a 
module goes down. 

CONCLUSION 

Modern techniques in computer organization promise to pro
duce a reliable, flexible, powerful tool for biochemical re
search. This system is currently under development by a 
group at the Technological Institute of Northwestern Uni
versity under the direction of Dr. Emanuel Margoliash. 

REFERENCES 

The determination of amino acid sequences: 
1. Schroeder, W. A., The Primary Structure of Proteins, Harper and 

Row, New York, 1968. 
2. Blackburn, L., Protein Sequence Determination, Methods and Tech

niques, Marcel Dekker, Inc., New York, 1970. 
3. Needleman, S. D. (Ed.), Protein Sequence Determination, Springer~ 

Verlag, New York, 1970. 
Information content of amino acid sequences: 
4. Nolan, C., and E. Margoliash, Comparative aspects of primary 

structures of proteins, Ann. Re/}. Biochem., 37, 727, 1968. 
5. Fitch, W. M., and E. Margoliash, The usefulness of amino acid and 

nucleotide sequences in evolutionary studies. In Evolutionary Biology 
(T. Dobzhansky, M. ~. Hecht.and W .. C. Steere,Eds.) Vol. 4, 
Appleton~Century-Crofts, New Yo-rk,19jO, p. 67:--- -

Computer communication: 
6. Lennon, W. J., J. T. Spies, and R. C. Barrett, A minicomputer re

search network. In Compcon 73 Digest of Papers, Institute of Elec
trical and Electronics Engineers, Inc., New York, 1973, p. 191. 

7. Barrett, R. C. and W. J. Lennon, A universal serial interface, 
Spring 1971 DECUS Symposium. 



An approach to the optimization of an ole fins plant 

by S. REITER, D. J. SVETLIK and A. M. FAYON 

Mobil Oil Corporation 
New York, New York 

INTRODUCTION 

Mobil Chemical Company has operated an olefins plant in 
Beaumont, Texas since 1960. This paper discusses the 
approach taken by Mobil Chemical Company in the 
optimization of the operation of the olefins plant. 

A linear programming (LP) model is used for long and 
short range planning purposes while open loop on line 
optimization via an 1800 process control computer is used 
by plant management for aid in the determination of day 
to day operating policies. 

The heart of the olefins plant is the pyrolysis furnaces. 
The furnaces yield, from basic feedstocks, the desired olefin 
products. The processing units downstream of the furnaces 
separate the furnace effluent stream into the desired high 
purity olefin product streams. 

The olefins plant is capable of processing a large number of 
feedstocks which range from ethane to naphtha and raffinate. 
The feeds are obtained primarily from the Mobil Oil 
refinery in Beaumont. Outside purchased stocks are also 
available for processing. Each feedstock has associated 'with 
it a yield pattern for ethylene and heavier olefins. Depending 
on market conditions and other factors, at any given time, 
feedstocks become relatively more or less desirable. Within 
the yield pattern associated with a given feedstock there is 
a specific furnace severity, defined by furnace temperature 
and pressure and hydrocarbon and steam flow, which defines 
the optimum processing conditions for a specific feedstock. 

The two questions raised here, that is; 

• what feedstock selection to make? and 
• at what conditions selected feedstocks are to be 

processed? 

led to the development and implementation of the systems 
in use today. 

The overall structure of the linear programming model 
will be reviewed with a discussion of its application to 
planning decisions. 

The hardware and software structure of the 1800 system 
will be discussed and specific functions associated with it 
reviewed. The nature of the optimization procedure employed 
and the structure of the online process model and its adaptive 
characteristics "'lll also be discussed. 

753 

OLEFINS PLANT LINEAR PROGRAMMING MODEL 

Structure 

The olefins plant LP model is an economic and process 
model. It consists of linearized representations of the opera
tions of process units "'lth explicit representations of the 
key constraints associated with these units. Most im
portantly, it contains representations of the flexibility 
associated with feedstock purchasing and product sales. A 
simplified structure of the LP model is shown in Figure 1. 

The first operation shown is purchasing. As many as six 
potential feedstocks may be available for purchase over a 
given time. Typically the furnace feedstocks available are: 
ethane, propane, n-butane, isobutane, naphtha, and raffinate. 
Each of these feedstocks has availabilities associated with 
it at various prices. In addition to furnace feeds, two addi
tional feedstock. availabilities are represented. These are 
refinery gas, a stream consisting of ethylene and lighter 
components, and a butadiene concentrate stream, consisting 
of butene and butadiene. Both these streams are introduced 
into the process downstream of the furnaces. 

The next operation shown is the pyrolysis furnaces. 
Physically 22 furnaces are available. Due to decoking opera
tions 19 furnaces are usually on-stream at anyone time. As 
many as five yield slates may be associated with a furnace 
feed stock, as required to linearize the feed stocks yield 
pattern. Although severity is a multi variable function, a 
key control parameter is temperature, and in the LP, 
furnace yields are represented as functions of temperature 
only. Associated with each feedstock is a furnace stream 
factor. The stream factor defines the normal mass flow 
associated with a given feed-stock and is used in defining 
the maximum furnace availability constraint. 

The remaining process operations shown are process gas 
compression and hot and cold train distillation. Linearized 
representations of these units are used to develop constraints 
associated with compressor horsepower requirements, and 
feed and overhead rate limits on various downstream 
distillation towers. 

The last operation shown is sales. Four olefin product 
streams, ethylene, propylene, butadiene, and butylene, at 



754 National Computer Conference, 1974 

r OBJECTIVE FUNCTION I 

r-~ru 
Fuel Costs 

I 
Purchasing Power Costs 

Refrig. Costs 

Conversion Reve nues 

Compression 

."";<;00 I 

L:J 
Figure I-Linear program model structure 

C 
o 
N 
5 
T 
R 
A 
I 
N 
T 
5 

u 
one or more pricing levels are represented as well as fuel gas 
and an. aromatics concentrate stream. 

Application 

The range of applications associated with the LP are: 
1. Profit plan and five year plan preparation. 

• Based on anticipated prices and feedstock avail
abilities a determination of the optimal way to 
operate the plant for a period of one to five years 
is developed for budget and profit plan preparation. 

• Based on the above, sales and purchase commit
ments for periods covering one to five years may 
be developed. 

2. Short Range Planning. 

• Based on predefined feed and product prices 
optimal feed slates, and product mixes are de
termined and first pass estimates of furnace severi
ties are established. 

3. Equivalent pricing of alternate feedstocks. 

Due to factors, not controllable by Mobil Chemical, 
planned feedstocks may become unavailable and an 
alternate feedstock must be selected. The LP model 
will be used to determine: 

• Which alternate feedstock should be selected; 
• The required availability and price of the alternate 

feed stock to maintain a constant profit; and 
• The desirability of purchasing outside product 

streams to meet sales commitments. 

4. Effect of debottlenecking on profit. 

The LP is used to assess the overaii desirabilit.y of 

implementing recommendations developed from off
line simulation studies aimed at debottlenecking. 

As indicated above the results of the LP solution provide 
an indication of the optimal furnace severity to be associated 
with each feed stock. This severity is a· first approximation. 
It is developed from a linearized economic model which 
provides adequate results for long and short range planning 
purposes but which leaves much to be desired in setting 
actual day-by-day operating conditions. Furnace yields 
represented in the LP are linearized for typical feedstocks. 
The effect of feed composition variation is not accounted 
for. Tower performance is represented by linearized or 
constant split factors which do not consider tower feed 
rate or composition variations. Process constraints are 
expressed as the expected or typical limitation associated 
with a given unit. Some constraints are implied rather than 
explicitly represented. As previously indicated furnace 
severity is equated to operating temperature with hydro
carbon and steam rate and pressure assumed constant. 

These approximations are valid for the planning decisions 
to which LP results are applied. For operating decisions 
aimed at maximizing plant· throughputofi a· daily of 'weeKly 
basis a more rigorous representation of the process and its 
variability or non-linearity is required. It was with the 
objective of providing such a decision tool that an online 
control computer system was installed. 

OLEFINS PLANT CONTROL COMPUTER SYSTEM 

Overview 

The justification for the installation of an online control 
computer was based on improved plant performance achiev
able through optimization. Since installation of the system 
additional benefits to operations have been achieved. 

The functions performed by the control system can be 
placed in one of four categories, these are: 

• Operations and Management Information Reporting; 
• Supervisory Control; 
• Operations Support; and 
• Optimization. 

Before reviewing each of these functions the hardware 
configuration and system software associated with the 
control computer will be discussed. 

Hardware 

Figure 2 is a simple schematic of the computer system 
hardware. The system consists of an 1800 computer with 
a 2-mu second core of 32,000-16 bIt words. Secondary storage 
is provided for by a 2-disk storage unit. Operations and 
systems support input/output facilities are serviced by an 
IBM model 10 Process Operators Console (POC) and 
three 1053 typers and a card reader/punch. 



Physically, two typers and the POC are in the Olefins 
plant control room while the main frame and remaining 
peripherals are in an adjacent computer room. 

One typer and the card reader are used primarily by the 
control group for system maintenance functions. The POC 
and remaining two typers provide the interface facilities 
for the Operating Departments' personnel. 

The system monitors 362 process input signals and exercises 
supervisory control over 113 set point stations. With feed
backs, a total of 585 process signals are interfaced with the 
control system. All input signals are multiplexed and are 
on a four minute scan cycle. Hardware comparator limit 
checking is continuously carried out for the detection of out 
of range signals. 

Software 

The system operates under TSX. Core is segmented into 
a fixed and variable core region. Fixed core is approximately 
12,000 words and consists of core resident system and control 
programs and incore tables. Variable core is 20,000 words 
and is used for applications and control programs with 
relatively low utilization frequencies. 

PROS PRO I is utilized for process I/O interface functions. 
This includes: 

• Process variable scanning; 
• Analog to digital conversions; 
• Digital to engineering units conversion; 
• Control of pulse out signals to set point stations; and, 
• Out of limits and signal rate deviation alarm message 

generation. 

POC software operates under TSX. The following func-
tions are provided for: 

• Display of selected process variables; 
• Change set point and variable min/max limit values; 
• Initiation of various log reports; and, 
• Initiation of various control system functions, such as 

the optimization system. 

TSX, PROSPRO, and the POC programs are the main 
system software programs. 

Other major software systems, related to applications, 
include: 

• The optimization and process model programs; and 
• The furnace start-up/shut-down programs. 

These will be discussed under the control system functions 
they are associated with. 

Contr;Z System Functions 

The four control system functions associated ",ith the 
olefins plant are: (1) Operations and Management Informa
tion Reporting; (2) Supervisory Control; (3) Operations 
Support; and (4) Optimization. 

An Approach to the Optimization of an Olefins Plant 755 

Olefins Unit 
Control Room 

Computer Room l 362 Process 
~-- \ Input Signals 

113 Control 
Output Signals 

Figure 2-Hardware configuration 

1. Operations and Management Information Reporting. 

Many control system installations have been justified 
on the basis of 1\i[anagement Information Reporting. What
ever the justification for a control system, the data collection 
function performed will always lead to the ability to selec
tively generate various process reports. Proper transforma
tion of this raw data can provide more useful information to 
operating personnel. 

A number of reports are generated for the operating 
department and management at the Olefins Plant. These 
include: 

• Furnace log reports; 
• Distillation Train reports; 
• Compressor logs; 
• Plant Material Balance Reports. 

The furnace log report will identify for each furnace the 
feed associated with it, the feed rate, steam to oil ratio, the 
efiluent temperature, the furnace box wall temperature and 
the quench boiler's outlet temperature. The number of days 
the furnace has been online and an indication of the degree 
of coking associated with the furnace are also provide. 
The material balance report displays the rate and composi
tion of all feed and product streams associated with the plant 
and an indication of the percent of material balance closure. 
This report can provide a four or twenty four hour plant 
material balance. 

The other reports contain raw data as well as computed 
values of key non-measurable parameters associated with 
the plant sections they are related to. All reports are either 
generated on a fixed time cycle or on demand via function 
keys available on the Process Operator's Console. 

2. Supervisory Control 

Supervisory control functions are currently carried for 
furnace mass flow compensation and internal reflux control. 



756 National Computer Conference, 1974 

Furance flow consists of both hydrocarbon and steam. 
The steam flow is ratio controlled to the hydrocarbon furnace 
feed. The flow orifice coefficient on each furnace stream is 
periodically updated. This assures that measured flows are 
accurate, and set point mass flows, which are determined 
via the control system optimization programs, are correctly 
maintained. 

Internal reflux control keeps key towers operating near 
flood conditions to maximize product recovery. 

3. Operations Support 

Several programs have been developed to aid the operating 
department in repetitive tasks. One of these is the furnace 
start-up/ shut-down program. 

The Olefins plant consist::; of 22 cracking furnaces. On 
the average 19 furnaces will be online at any time while 
the remaining three are being decoked. The length of online 
service for any furnace is a function of the feedstock it is 
associated with and its operating temperature and steam to 
oil ratio. Typically, within a given week at least one furnace 
will be taken out of service while another is brought into 
service as a replacement .. The task of smoothly shuting down 
a coked furnace and simultaneously bringing online a 
decoked furnace has been automated via a furnace start-up/ 
shut-down program. 

Several benefits have been associated with this program, 
these are: 

• Reduced downstream disturbances in process flows 
during furnace start-up operations; . 

• Relieving operators from the task of continuously 
monitoring furnace start-up operations; 

• Elimination of rapid coking during start-ups with 
resulting short furnace runs; and 

• Aid in gaining operator acceptance of the control 
system by demonstrating the system's ability to free 
them from repetitive time consuming tasks. 

4. Optimization 

a. The System 

The optimization system in use consists of two major 
programs. A Control Optimization Program, COP, which 
is an IBM developed general purpose nonlinear optimizer 
and a Fortran written process model developed by ~lobil. 

COP is an assembly language program which employs 
the method of Sectional Linear Programming to solve a 
non-linear optimization problem. To understand the struc
ture of the overall optimization system employed it is 
important to briefly I'ev--1eW the working of the optimization 
method employed by COP and its relation to any non-linear 
system model which is to be operated upon. A more detailed 
discussion of COP can be found in Reference 1. 

Given a set of independent and dependent variables which 
represent a given state of some system model, the optimiza
tion technique employed linearizes the constraints and 

objective function about this starting point. This is ac
complished by developing a differential relation between 
each dependent or constraint variable and the objective 
function with each independent or controllable variable. 
The differentials are developed by making an incremental 
change in one independent variable and using the model to 
determine the effect on each dependent variable and the 
objective function. 

These dependent variable and objective function changes 
are determined for each independent variable in the system. 

The differential set of linear relationships that are de
veloped are solved using linear programming techniques 
to determine the factor by which each independent variable 
should be incremented or decremented to improve the 
value of the objective function. 

The overall optimization is accomplished in successive 
steps which move the model from an initial position to an 
optimal position. 

Each step entails the following: 

• Linearization-i.e. The development of the differential 
relationships between independent and dependent 
variables; . 

• Formulation and solution of the differential linearized 
LP problem; 

• Calculation of the moves to be associated with each 
independent variable based on the LP solution; and 

• Linearity error correction to determine the actual model 
position. 

In practice, with the olefins plant process model, it has 
been found that 12 to 15 steps are typically required to 
move the model from an initial position to a predicted 
optimum solution. Approximately eight to twelve minutes 
are required for the completion of each step calculation with 
50 percent CPU time available for optimization. 

b. The Process :Model 

The olefins plant process model is a Fortran program 
consisting of a number of subroutines. The overall structure 
of the model is shown in Figure 3. There are one or more 
subroutines provided to stimulate the operation of each 
processing unit shown in Figure 3. 

The first unit shown is the pyrolysis furnaces. The calcula
tion of the yield for any feed stock is based on the conversion 
of that feed or an indication of conversion. For light feed
stocks, Ethane through Butane, volumetric conversion is 
developed to calculate component yields. For Naphtha and 
Raffinate, methane yield is used as a measure of conversion 
to calculate the yield of the remaining furnace effluent 
components. The feedstock conversion is a correlated function 
of furnace severity. The severity in turn isa function of 
hydrocarbon and steam flow, and the furnace exit tempera
ture and pressure. Due to volumetric changes in the pyrolysis 
furnace the conversion calculation is iterative. The yield 
curves associated with each feedstock are determined by 
furnace effluent an::l.1Y8i8. Originally, a furnaCe effluent 



sampling system was installed, however, due to continuing 
maintenance difficulties, online yield analysis never proved to 
be a workable system for updating yield relationships. 

In summary the procedure used to compute feedstock 
yields involves: 

First-the calculation of a furnace severity; 
Second-the calculation of feedstock conversion; 
Third-updating severity with calculated conversion to 

account for volumetric changes; and, 
Finally-the calculation of yields based on conversion 

for light feedstocks and methane yield for naphtha 
and raffinate. 

In addition to yields, the furnace subroutine calculates 
fuel requirements and furnace box wall temperature. Box 
wall temperature is a constraint to the overall optimization. 

The next unit shown is the quench boiler. The quench 
boiler calculation will determine the suction pressure to 
the first stage process compressor and the steam generation 
resulting from the furnace effluent. There is a maximum 
limit on the quench boiler's outlet temperature due to 
material considerations associated with downstream piping. 
This outlet temperature limit is another constraint to the 
optimization program. 

The next unit shown is the four stage process gas com
pressor. Design head capacity curves are utilized to calculate 
power requirements and discharge pressures for each stage. 
Second stage suction pressure and overall compressor 
power requirements are developed as constraints to the 
optimization. 

The fourth stage flash and prefractionator are the next 
downstream processing units. These units are extremely 
important to the operation of the hot and cold train distilla
tion towers which follow. The split of C2 and C3 Components 
and the load placed on downstream towers is determined 
by the separation occurring here. The key unit here is the 
fourth stage flash. The flash drum was initially simulated 
with a short cut calculation procedure developed 'when 
the system was initially installed. This was a highly tuned 
calculation which proved to be inadequate in time as the 
process moved away from operating conditions then in 
effect. The calculation has been subsequently replaced by a 
rigorous treatment of the equilibrium and material balance 
equations that apply. Convergence techniques applied to 
this calculation have kept the computation time down to 
a minimum. The prefactionator is simulated by a set of 
split factors which are periodically updated as process 
conditions require. 

The hot and cold train distillation towers are handled 
in one of two ways. Critical towers, such as the demethanizer 
and deethanizer are simulated based on the Fenske, Under
wood, Gilliland correlations. This procedure is employed 
to obtain a better indication of tower performance as effected 
by feed stream composition variation. Over limited ranges 
of tower operation, these correlations have given very 
satisfactory results. 

As the plant moves out of the satisfactory range associated 

An Approach to the Optimization of an Olefins Plant 757 

Purchased 
Furnace 
Feeds 

Refinery 
Gas 

Butadiene 
Concentrate 

Propane Recycle 

Ethane R Ie 

i Cold Train Distillation 

I. Demethanizer 
i. Deethanizer 
i . Toppi ng Still I. C2 - Splitter 

Debutanizer 
DeprllP.anizer 
Depentanizer 
C3 - Splitter 

Figure 3-Process model 

Ethylene 

Propylene 

Butadiene 
Butylene 

with these correlations the key component split ratios are 
adjusted to compensate for this problem. Distillation towers 
not deemed critical, are simulated by performance factors 
which are updated as required. 

The overall process model calculation is iterative. Initial 
guesses are made with regard to the ethane and propane 
recycle streams, in practice these initial estimates are 
determined from actual process flows. 

Three or four model iterations are required before overall 
convergence is achieved. The time for a model calculation 
is approximately one minute, with 50 percent CPU time 
available. The repeated model calculations required by the 
optimizer accounts for approximately 90 percent of the 
overall optimization time. 

c. Implementation Considerations 

An optimization calculation is initiated on an eight hour 
cycle or on request by operations. When an optimization 
is initiated, the first step required is the calculation of the 
plant's present position. This calculation serves two 
functions: 

First-It develops the initial set of independent and de
pendent variables required by COP; and, 

Second-It develops various tuning factors based on 
measured plant inputs to provide for adaptive tuning 
in the process model. 

The general nature of the tuning carried out is the form: 

Y = F(X) * Constant 
i.e., 

The parameter to be calculated = (a function of known 
variables) times (a constant) 

Since the control system in many cases is monitoring 
actual plant data associated ,,,ith both model dependent 
and independent variables, the actual value of the parameter 
to be calculated and its associated independent variable 



758 National Computer Conference, 1974 

!X.EFINS PLANT PROCESS 

DATA C!X.LECTION SET POI NT CONTR!X. 

CONTROL SYSTEM 

~
-~ 

X Yi, i-I, 
k n 

Model 

t I , 

I Operations Interface 

Figure 4-Applications software 

values are known. The constant term can then be determined 
as the ratio of the measured parameter to its calculated 
value. This constant term· is a tuning factor which accounts 
for process variability with time. This type of tuning is 
carried out for the following process units: 

Furnaces : Used to determine the degree of coking based on 
heat transfer calculations and is applied to the de
termination of the furnace box wall temperature. 

Quench Boilers: Adjusts clean surface heat transfer 
coefficients to take into account fouling for steam 
generation and discharge temperature calculations. In 
addition, the effect of restricted flow area on the pressure 
drop calculation is assessed. 

Compressor: Develops factors to account for errors in 
simplified compressor head-flow relations and to take 
into account degredation in compressor performance 
due to fouling. 

These adaptive coefficients are held constant throughout 
the optimization. This is an approximation of course, since 
plant conditions will change as the process is moved from 
one point of operation to another. In practice, this has 
not been found to be a difficulty since at any time only 
small process moves are made and optimizations are carried 
out on a repetitive cycle. Although analysis of tower product 
streams are made in the plant, the compositions are not 
directly available to the computer. This precludes the 
possibility of carrying out adaptive online tuning of tower 
performance. Data files containing parameters associated 
with tower calculations are accessed by operating personnel 
as required to update these parameters from laboratory 
analysis of tower product streams. 

The optimization system employed provides directional 
guidance in the setting of controllable variables to improve 
overall profit. In practice there was found to be considerable 
hesitancy on the part of the operating department's per
sonnel to except optimizer results when the absolute values 

of model and optimizer flow predictions differed with 
measured plant flows. This problem was brought about by 
material balance errors associated with the plant metering 
system and unaccounted for material losses. 

A real problem presented in the discrepancy between 
model predicted flows and measured flows was in knowing 
the correct value to set flow constraints. 

The difficulty was rectified by introducing into the model 
a furnace effiuent biasing stream. This stream was calculated 
by determining the difference in the furnace effiuent as 
determined by the plant material balance metering system 
and the effiuent predicted by the process model. This biasing 
stream was then held constant throughout the optimization. 
It achieved the objective of biasing the flow of each com
ponent leaving the fu...-rnace to the !e1lel measured b:y the 
plant metering system without affecting the slopes of the 
non-linear correlations used by the optimization program 
to develop the required differentials. 

As mentioned, some inputs required for model tuning are 
available via the control system while others must be pro
vided by plant personnel. A large number of parameters 
are associated with the Olefins plant control system that 
require frequent updating .. Only· some of these parameters 
are related to the model tuning function. In order to place 
the responsibility of maintaining data integrity with the 
Operating Department a Control Interface System was 
developed. This system allows key parameters to be stored 
in data files and provides for easy access to these files by 
operating department personnel for either inspection or 
change functions. These parameters are utilized by various 
control system programs. 

Briefly the information stored relates to: 

• Feed compositions for use in T-P-C compensation of 
furnace feeds; 

• Product stream compositions for use in material balance 
reporting; 

• Limits on the ranges of independent and dependent 
variables used in the optimization; 

• Feed, product and utility costs required for the op
timization; and 

• Furnace feed identifications for use in various plant 
reports. 

Figure 4 presents and overview of all applications software 
related to the Olefins plant control system. In summary this 
entails: 

• Management and Operations Information Reporting; 
• Supervisory Control; 
• Operations Support; and 
• Optimization. 

CONCLUSION 

In conclusion, Mobil Chemical Company has developed 
and implemented a dual approach toward the optimization 
of its olefins plant. 



A linear programming model is· used for long and short 
range planning studies. This is an economic model which 
represents the flexibility available in feed stock selection 
and in establishing product mixes. Linearized representations 
of process units are used. 

Benefits related to the use of this planning tool are as
sociated with the quantitative procedures it affords in 
evaluating alternate choices related to long and short 
range planning decisions. 

An online Control System provides for open loop op
timization; the results of the optimization provide operating 

An Approach to the Optimization of an Olefins Plant 759 

department personnel Vv;'th day to day guidance in establish
ing optimum processing conditions. Additional benefits 
attributed to the control system are associated with manage
ment and operations reporting functions, stabilization of 
plant flows and various operations support functions. 

REFERENCE 

1. 1800/1130 Control Optimization Program, User's Manual, IBM 
Application Manual H20-0351 





Computer performance variability 

by THOMAS E. BELL 

The Rand Corporation 
Santa Monica, California 

MOTIVATION FOR PERFORMANCE CO~VIPARISOXS 

During a period when computing on a network is free, 
users can be very informal about choosing the computer 
for running their jobs. Certain issues usually dominate this 
informal evaluation-the convenience of entering jobs, the 
availability of attractive services, the reliability of the 
system, and the individual user's familiarity with the 
system's conventions. These informal evaluations are usually 
qualitative, but one additional, quantitative characteristic 
is often included-response time. 

Response time, in the context of a computer network, 
may be defined as the elapsed time for responding to a 
batch-job run request as well as the more common definition 
of the elapsed time for responding to interactive requests. 
On some systems, of course, these hvo instances are blended 
together. On other systems the two are distinct, and the 
values obtained from measuring them are quite different. 
On two specific computers a user might find that one pro
vides superior batch response time while the other provides 
superior interactive response time. If everything else is 
equal and he has no problems in transferring data from one 
machine to the other, the user would choose the first for 
batch executions (e.g., running statistical evaluation pro
grams) and the second for doing interactive work (e.g., 
editing a report). 

If installations charge real money for their computing 
services, another element (money) must be included in an 
evaluation of alternative computers. Evaluations rapidly 
lose their informal nature when net,York users find that 
their choice of computer determines the amount of money 
that will remain in budgets for paying their salaries. Per
sonnel time lost due to poor response time, bad conventions, 
or inadequate services must now be traded off against the 
costs of avoiding these conditions. Computers that might 
have been unacceptable prior to charging may become 
optimal after economics has become a factor in decision
making. 

Response time is a single metric, but computer charges 
are computed from a number of different performance 
metrics. For example, a bill might be computed from the 
amount of processor time consumed, the number uf cards 
read, the number of lines printed, the number of tape l/Os 

761 

and disk I/Os performed, and the amount of core occupied. 1 

·When each type of resource is separately charged for, one 
computer may be much cheaper for one type of job but very 
expensive for another type. If the charge for I/O is rela
tively low and the charge for CPU time relatively high, the 
user would be tempted to run I/O-bound jobs on this 
computer but to submit his "number-crunehers" to another 
computer. The user without access to a network may be 
precluded from distributing his work among the available 
computers in the most economical manner, but the net,York 
user has more options to choose from-and more decisions 
to make. These economic decisions must usually consider 
each of a number of performance metrics when the rate 
fur each may be different on each of the available computers. 

In addition to potentially different rates for each resource, 
computer centers may employ different functional forms 
for their billing equations. One of the reasons for such 
differences is the variety of objectives that they may adopt. 
Published objectives usually include cost recovery and 
equitability (or reasonableness) in addition to repeatabil
ity.2,3,4 Other objectives may include limiting load grO\vth 
to avoid the need for procuring a new machine,5 biasing 
users to employ resources available in excess rather than 
those in short supply,6 and being able to separate those 
users with immediate needs (and can afford to satisfy their 
need) from those who desire cheaper, slower service. 7 The 
differences in objectives ensure that, as computer centers 
are increasingly drawn together by nehYorks, users will face 
more and more different kinds of economic situations to 
evaluate, and they will find that superficial evaluations will 
not be adequate Tor choosing the most appropriate node. 
Since computational speeds often differ behveen the ma
chines, rates themselves cannot be compared; the user 
must compare the total costs of computing through execu
tion of sample jobs. 

Either real jobs or synthetic jobs (which use resources in 
known ways but do no useful computations) can be used in 
response time and resource charge comparisons. Typically, 
a user submits a standard job to each of several computers 
to measure the response time (either interactive or batch) 
and determine the charges. After finding the values from 
each candidate node, he picks the one offering him the best 
ratio of service (response time as ,yell as other services) to 



762 National Computer Conference, 1974 

cost. This exercise is therefore critical to the user--since it 
determines the costs he will incur-and to the node-since 
it determines the amount of load the center will experience. 

REPEATABILITY AND VARIABILITY 

One of the objectives for charging systems is repeatability, 
the characteristic of producing the same charge from each 
of a number of runs of the same job. This same objective 
of zero variability between runs is often implicitly assumed 
to have been met by users performing comparisons. They 
run a single job once on each machine and assume that the 
resulting performance values accurately represent the 
machine's performance. This is equivalent to the assump
tion that there exists zero within-sample variability. There
fore, the variation within samples (e.g., several runs on the 
same computer) can be disregarded in comparison with the 
variation between samples (e.g., runs on computer A com
pared with runs on computer B). If the standard deviation 
(a measure of variability) of run times on computers A and 
B were always far smaller than the difference in run times 
on --thetwB- machines, the -within;:.sample -variability would 
clearly not be significant. 

Good repeatability would aid users in budgeting their 
funds for computing as well as help them in -making com
parisons. Gabrielle and John Wiorkmvski4 suggest that "a 
variance of no greater than 1 percent is thought to be ac
ceptable." Probably, they mean that the standard deviation 
of charges should not exceed 1 percent of the mean. This 
amount of variability is certainly so small that it would 
interfere verv little in realistic comparisons. Perhaps per
formance v~iability is unworthy of consideration; some 
indication of the problem's actual magnitude is necessary 
to evaluate its importance. 

DETERlVIINING THE ~IAGNITUDE OF THE 
PROBLEfif 

Synthetic benchmarks are being used extensively in 
performance investigations. For example, Buchholz' syn
thetic test jobS has been used by Wood and Forman9 for 
comparative performance investigations on batch systems, 
and VotelO has employed his synthetic program in evaluat
ing a time-sharing system. With their increasing use and 
their documented advantages for certain types of investiga
tions, synthetic jobs are a natural vehicle for determining 
the magnitude of variability. 

Synthetic job 

We have used a modification of the Buchholz synthetic 
test job to determine the magnitude of variability in strictly 
controlled test situations on IB}\f, Honeywell, and other 
manufadurers' equipment. The job (as modified) is written 
in FORTRAN so that it can be executed on a variety of 

computers and is structured as follows: 

1. Obtain the time that the job was given control and 
keep the time in memory, 

2. Set up for the job's execution, 
3. Set up for running a set of identical passes with an 

I/O-CPU mix as specified on a parameter card. 
4. Execute the set of identical passes and record (in 

memory) the time of each passes' start and finish, 
5. Compute some simple statistics from the resultant 

execution times and print both the times and the 
values of the statistics. 

6. If requested, return to step 3 to repeat the opera
tions for a new I/O-CPU mix, 

7. Determine the current time; print out this time and 
the initiation time. 

8. Terminate the job. 

As indicated, the job has embedded data collection in the 
form of interrogations of the system's hardware clock to 
record the elapsed time between certain major points in the 
program's execution. When appropriate, the job also deter
mines the_ acc_umulatedresource usage at each of the major 
points. The elapsed time within the job can be compared 
with the time recorded by the accounting system to deter
mine whether initiation/termination time is large enough 
to require distinguishing between these two measures of 
elapsed time. In all cases we have observed, the initiation/ 
termination time has been so large that disregarding it 
would invalidate many conclusions from performance 
investigations. 

The design of the job enables the user to identify the 
source of certain kinds of variability. Since repeated passes 
are individually timed, variability that arises from within 
the period of job execution can be identified. By running 
the job in a number of different situations other sources of 
variability can be identified. This job can be used directly 
to evaluate variability in batch systems, and can be sub
mitted remotely to evaluate variability in remote job 
environments such as the time-sharing system we investi
gated. 

Interactive responsiveness 

While a synthetic job can be used to evaluate the system's 
response to user-programmed activity, it is not adequate to 
investigate highly interactive activity like text-editing. The 
latter type of system is usually investigated by using scripts; 
the user first makes lip a, list. of commands and then deter
mines the time required for him to complete a series of 
interactions based on the list of commands. Unfortunately, 
this approach precludes identifying the source of variability 
if it arises from only a subset of the commands employed. 
In addition, the variability of human response is mixed 
with the variability in computer response. A better approach 
is to time the response of the computer to each individual 
command. 



The analyst can time these responses with a stop watch 
as done by Lockett and White,l1· but this technique fails 
when the computer's response time becomes small. In such 
situations the human's response time in operating the 
watch may exceed the computer's response time, and human 
variability dominates computer variability. In addition, 
the human often becomes sloppy when large amounts of 
data are needed because the job becomes tedious. To avoid 
these problems, we designed and implemented a hardware 
device to time responses to a resolution of one millisecond. 

A nalysis approach 

Performance can be made to vary by orders of magnitude 
if a programmer puts his mind to it. By using a computer 
with a low resolution clock and doing careful programming, 
a programmer could execute a job that was almost never 
in control at the time the computer's clock advanced. Thus 
his job would be charged for using almost no resources. 
On the other hand, the programmer could leave out the 
special timing controls and be charged for using hundreds 
of times as much processing resource. An exercise performed 
in this way would prove little since any relationship to a 
normal job stream would be tenuous. 

A more useful indication of variability's magnitude would 
be the lower limit to be expected in more normal situations. 
Our experiments were directed to this objective and there
fore involve simple situations vvhere low variability is to be 
expected. 

Ultimately, all variability could probably be explained. 
Variations in processing rate could be caused by fluctuations 
in power line frequency; differences in elapsed time for 
processing I/O-bound jobs might be explained as variations 
in the number of I/O-retries; variability in initiation time 
could sometimes be explained by slight differences in the 
length of a job control file. However, these circumstances 
are transitory and usually unknowable to the user. Our 
tests were designed to represent the best possible situation 
that a user could realistically expect. 

The simplest situation we investigated is one in which 
no jobs other than the test job are active; the system is 
initialized at the beginning of the test period to establish 
that no other jobs will interfere with the experiment. In this 
simple test the parameterized test job is set to run in either 
of two modes-as a totally CPU-bound job or as a totally 
I/O-bound job. 

The tests then increased in complexity through controlled 
multiprogramming situations to uncontrolled, normal opera
tions. Results of the tests were used in simple analyses to 
indicate the degree of variability that should be expected, 
but in this initial investigation we made no attempt to 
employ sophisticated statistical models. 

In all cases we used computers that were isolated from 
any networks, and 've usually allO\ved only controlled on-line 
activity so that unexpected loading would not occur. In 
some cases we found that physically disconnecting trans
mission lines was necessary to achieve an environment that 

Computer Performance Variability 763 

TABLE I-8tand Alone Runs-Elapsed Time~" 
(All Times in Milliseconds) 

Mean Elapsed Standard 
Type of Job Number Passes Time Deviation 

CPU 20 29135 73 
CPU 20 29135 73 
1/0 20 35165 135 
1/0 20 35300 186 

was strictly controlled. Whenever we relaxed our controls, 
loading became random and variability increased. 

E~VIPIRICAL RESULTS 

The most elementary measurement of performance is 
probably elapsed time, and it is often the one of most in
terest. Results of elapsed time investigations are therefore 
presented first, with results involving I/O and CPU metrics 
following. 

Batch elapsed time 

The phenomenon of variability in elapsed times under 
multiprogramming conditions is well-known. When a user's 
job is run with different mixtures of other jobs, differing 
amounts of resources are denied it each time it is run; thus 
the job may execute slowly one time and rapidly the next. 
One way to decrease this variability (and also decrease the 
average time) is to ensure that the job of interest is run 
with the highest priority. The interested network user 
might therefore occasionally pay to run at a very high 
priority in order to determine the performance under "best 
possible" conditions. However, an even better situation is 
to run stand-alone on the computer. We therefore executed 
the synthetic job in its simple CPU-bound and I/O-bound 
versions on an otherwise idle system. 

The elapsed time to execute the CPU-bound portion of 
this job on an IB:\1 360/65 operating under OS/~IVT at 
The Rand Corporation evidenced no variability within the 
job that was above the measurement's resolution of 32 
milliseconds. (See Table 1.) The I/O-bound portion's 
elapsed time, however, typically varied enough to result in 
standard deviations (for 20 identical executions) of about 
.5 percent of the mean (mean of about 3,) seconds). This 
small value indicates that, at least within a stand-alone 
job, variability is not impressive. 

The situation becomes less encouraging when the com
parisons are behveen separately initiated jobs. The statistics 
of interest now include initiation time, termination time, 
and average execution time of a pass through the timed 
loop for each separately-initiated job. The elapsed time 
for initiating the jobs (the time bet,,;een initiation as re
corded by the accounting system and the time control has 
passed to the job's code) averaged 8.25 seconds with a 



764 National Computer Conference, 1974 

TABLE II-8tand Alone Runs-Channel Times 
(All times in Milliseconds) 

Disk 
Run 

Number File 1 File 2 File 3 File 4 

1 34432 34274 27351 39809 
2 344.56 34283 27298 39823 
3 34429 34257 27334 39816 

Mean 34439 34271 27328 39816 

Tape 
Run 

Number File 1 File 2 File 3 File 4 

4 22356 22533 23328 23087 
5 22404 22621 2~~40 23093 
6 22350 22677 23350 23103 

Mean 22370 22610 23339 23094 

standard deviation of 6.67 percent of the mean. The elapsed 
time for termination (time user code completes executing 
until the accounting system records termination) averaged 
3.775 seconds wltn statidard deviation of 16.7 percen-tof 
the mean. 

Although our experiments provided multiple samples of 
initiation and termination, the sample size of identically 
run executions was too small for computation of meaningful 
measures of variability. In two specific instances, however, 
the average elapsed times to execute the totally CPU
bound portion differed by less than the resolution of mea
surement. The average execution time for the I/O-bound 
portion, in two instances of samples of two, changed by 
0.4 percent and 1.2 percent. (Allocation of files was done 
identically in each instance.) Although the within-sample 
variability appears small for internal portions of a job, the 
initiation and termination times vary significantly. There
fore, comparisons involving elapsed times should be designed 
recognizing that the variability of initiation and termination 
may obscure some results. 

On-line elapsed time 

An on-line system operating with low priority in a com
puter would be expected to have variable response, but 
relatively constant response is usually expected when the 
on-line system is given a priority only a little below the 
operating system itself. 'Ve ran a series of carefully designed 
tests to provide an indication of this assumption's validity 
on our WYLBUR12 test editor in Rand's normal environ
ment. A heavily I/O-bound activity (listing a file Ull a video 
terminal) experienced response time with a standard devia
tion 23.2 percent of the mean. A heavily CPU-bound ac
tivity (automatically changing selected characters) had 
reduced variability-15.6 percent of its mean. A variety of 
other editing functions experienced similar variability under 
a pair of different configurations. The standard deviations 

as percentages of means ranged from a low of 5.7 percent, 
to a typical 12 percent, to a high of 30.8 percent. These 
values were obtained with different levels of user activity 
on WYLBUR by real users (as opposed to our artificial load 
for testing), but did not include the variability often intro
duced by time-sharing systems since the 360/65 was not 
time-shared. 

We executed our standard synthetic job on a Honeywell 
615 computer under its time-sharing system to determine 
variability in this on-line system. The elapsed time to 
execute each pass through the CPU-bound portion ,vas 
recorded in order to provide an indication of the variability 
of response time during normal operation on that system. 
Each pass could be executed in about 9 seconds in a stand
alone system. However, during normal oper9.tion the average 
was occasionally as large as 597 seconds with the standard 
deviation exceeding the average. (It was 598 seconds.) 
Variability of this magnitude can produce highly anti-social 
behavior by some network users. 

I/O activity 

.--

Elapsed time is variable in all but the simplest cases, but 
perhaps the network comparison shopper can depend on 
charges from a bi11ing system to be within the 1 percent 

TABLE III-Multiprogrammed Runs-Channel Times 
(All times in Milliseconds) 

In- In-
Run File 1 Increase File 2 crease File 3 crease File 4 Increase 

Per-
Percent cent Percent Percent 

(Disk) 
1 28543 -17.1 37227 8.6 49739 82.0 44329 11.3 
1 37678 9.4 48834 42.5 46655 70.7 30638 -23.0 
2 27726 -19.5 37366 9.0 47920 75.4 43163 8.4 
2 38578 12.0 49977 45.8 45346 65.9 28613 -28.1 
3 30896 -10.3 38983 13.7 24687 -9.7 24162 -39.3 
4 30200 12.3 47346 38.2 24730 -9.5 24195 -39.2 

(Tape) 
3 22698 1.3 22908 1.4 23775 1.9 23570 2.1 
4 22873 2.2 23032 1.9 23849 2.2 23675 2.5 

Notes: 

1. Three jobs were muitiprogrammed in each case. The first job was 
CPU-bound; its results are not represented here. The other two 
jobs were I/O-bound and were paired as follows: 

Run Second Job Type Third Job Type 

Disk Disk 
2 Disk Disk 
3 Disk Tape 
4 Disk Tape 

2. All increases represent changes from the mean times indicated for 
individual files in Table II. 



suggested by the Wiorkowskis. We ran tests on two systems 
to test this. 

Repeated runs of the same stand-alone, I/O-bound job 
resulted in recorded channel times on a Honeywell Informa
tion Systems (HIS) 6050 with ranges considerably less than 
1 percent of the means. (See Table II.) When run ,vith 
one CPU-bound job and only one other I/O-bound job, the 
channel times changed from the stand-alone values by an 
average deviation of 2.0 percent for tape files, but 29.2 per
cent for disk files. (As indicated in Table III, both positive 
and negative deviations were observed.) In one case, an 82 
percent deviation ,vas observed between the charges for the 
stand-alone run and a three-job multiprogramming case. 

All these instances involved simple sequential files. Using 
this type of file several times with identical jobs usually 
results in nearly constant performance when considering 
the metric of I/O requests. I/O counts (Execute Channel 
Program requests, EXCPs) are reported in IB:\I's System 
~1anagement Facilities (S::YIF) accounting system and 
seldom vary. However, Sl\IF only reports I/O requests 
rather than actual I/O accesses. The number of actual I/O 
accesses normally exceeds the number of requests since 
channels can execute a number of accesses as a result of a 
single EXCP. The difference usually becomes dramatic in 
the Indexed Sequential Access ::\fethod (ISAl\f) where a 
single request may result in extensive examination of over
flow areas. 

Processor activity 

Processor time appears to be a straightforward metric, 
but even its definition is open to dispute; major parts of a 
job's CPU activity may not be logically associated with 
that job alone. For instance, the rate of executing instruc
tions may be reduced as a result of activity on a channel 
or another processor in the system. In addition to the defini
tional problem, accounting systems are often implemented 
in ways that users feel are illogical. These problems are 
seldom of importance when a job runs alone in the system, 
but may be critical during multiprogramming or multi
processing. Repeated runs of our test job on an IBM 360/65 
did not indicate any meaningful variability when the CP"G
bound job was run stand-alone, but the I/O bound job, in 
two cases, provided CPU times of 29.4 seconds and 28.7 
seconds (a difference of 2.4 percent of the mean). The I/O 
variability, however, does not appear critical because this 
job ran, stand-alone, for an elapsed time of approximately 
780 seconds; the difference of 0.7 seconds is therefore less 
than 0.1 percent of the elapsed time. Under multiprogram
ming results vary more. 

Although the CPU charges should not vary when the 
job is run multiprogrammed rather than stand-alone, our 
results indicate that the reported charges contained both a 
biasing element and a random element. The charges for the 
CPU-bound job went up from 583 seconds (stand-alone) to 
612 seconds (when run with the I/O-bound job) to 637 

Computer Performance Variability 765 

seconds (when run with a job causing timer interrupts 
every 16.7 milliseconds) to 673 seconds (when multipro
grammed with both the other jobs). The changes in CPU 
charges are clearly dependent on the number of interrupts 
the system handles for other jobs on the system. The largest 
CPU charge observed in this series of tests with the CP"G
bound job was 16 percent over the stand-alone charge, but 
larger biases can be obtained by running more interrupt
causing jobs simultaneously. In one particularly annoying 
case, the author observed a production job (as opposed to a 
synthetic one) whose CPU charges differed between two 
runs by an amount equal to the smaller of the two 
charges-a 100 percent variation! 

I/O-bound jobs often experience CPU charge variability 
of equal relative magnitude, and users with I/O-bound jobs 
have come to expect 30 percent variations in their charges. 
These problems are not unique to IB::'.'1 equipment. VVe 
found the same sorts of variability when running on a 
Honeywell 60.50 processor. With only a single processor 
active, ,ve observed processor times that (with two other 
jobs active) increased up to 7.2 percent over the stand-alone 
average charge. :\10re jobs and more processors increase the 
variability. 

IXTgRPRETATIOX 

The results of performance tests indicate conclusively 
that something is varying. Some of the reported variability 
is undoubtedly due to the reporting mechanisms themselves. 
For example, the CPU time reported by IB.:\1's S::\fF in an 
MVT system attributes the processing time for I/O inter
rupts to the job in control at the time of the interrupt. 
Since that job may be anyone running on the system (the 
job that caused the I/O to be executed or an unrelated 
one), CPU charges are dependent on which jobs are con
currently executing as ,veIl as the micro-level scheduling of 
these jobs. This scheme had the advantage of accounting 
for most of the CPU activity at reasonably lmv cost, but it 
often reported a number whose meaning was obscure. 
(IB::\f's new virtual system reduces the reported variability 
by not reporting the I/O interrupt-handling time.) 

The entire amount of variability cannot be attributed to 
reporting mechanisms; the basic processes are clearly subject 
to variability-causing phenomena. Some of these can be 
identified subsequent to a test and employed to design 
better-controlled tests in the future. For example, in some 
of our tests we could have reduced variability by using only 
old files. K ew files are allocated by the operating system 
in a manner that depends on previous file allocations; using 
only old files would ensure that physical file positions would 
be identical for each test run and result in reduced vari
ability. However, employing this strategy would preclude 
determining how wen the operating system performed file 
allocation. In general, the more realistic the desired test, 
the more variabiiity the analyst must accept. 

Even if a test is run with good performance reporting in 



766 National Computer Conference, 1974 

a very tightly controlled environment, performance must 
be considered a random variable. If files are allocated prior 
to testing, random I/O errors still may occur. Rotating 
devices do not possess ideally constant, known rotational 
velocities. In addition, micro-level sequencing in a processor 
is often dependent on the precise start time of user jobs 
and the entry time of system support modules. The ability 
to explain these effects after the test does not imply that 
they are knowable before the test. 

Comparisons of elapsed times or charges between com
puters on a network cannot depend on variability being 
within the desired few percent. Even in the simplified situa
tions reported in this paper the variability was often large 
enough to preclude single-sample evaluations from being 
dependable. If a user intends to do sigrificant computing 
after choosing a node, he should ensure that his evaluation 
reflects this reality. Further, he should occasionally check 
the environment on the network to see whether charges or 
response time have changed enough to justify a change in 
his workload allocation scheme. 

REFERENCES 

1. Hall, Gayle, "Development of an Adequate Accounting System," 
New York, Share, Inc., Computer Measurement and Evaluation
Selected Papers from the SHARE Project, Vol. 1, 1973, pp. 301-305. 

2. Kreitzberg, C. B. and J. H. Webb, "An Approach to Job Pricing 
in a Multi-programming Environment," Proceedings Fall Joint 
Computer Conference, 1972, pp. 115-122. 

3. Young, J. W., "Work Using Simulation and Benchmarks," New 
York, Share, Inc., Computer Measurement and Evaluation
Selected Papers from the SHARE Project, Vol. 1, 1973, pp. 286-292. 

4. Wiorkowski, G. K. and J. J. Wiorkowski, itA Cost Allocation 
Model," Datamation, Vol. 19, No.8, August 1973, pp. 60-65. 

5. Bell, T. E., B. W. Boehm, and R. A. Watson, "Computer Per
formance Analysis: Framework and Initial Phases for a Performance 
Improvement Effort," The Rand Corporation, R-549-PR, Novem
ber 1972. (Also Fall Joint Computer Conference 1972, pp. 1141-
1154.) 

6. Watson, R. A., Computer Performance Analysis: Applications of 
Accounting Data, The Rand Corporation, R-573-PR, May 1971. 

7. Nielsen, N. R., "Flexible Pricing: An Approach to the Allocation of 
Computer Resources," Proceedings Fall Joint Computer Conference, 
1968, pp. 521-531. 

8. Buchholz, W., itA Synthetic Job for Measuring System Perform
ance," IBM Systems Journal, Vol. 8, No.4, 1969, pp. 309-318. 

9. Wood, D. C., and E. H. Forman, "Throughput Measurement Using 
a Synthetic Job Stream," Proceedings Fall Joint Computer Con
ference, 1971, pp. 51-55. 

10. Vote, F. W., Multiprogramming Systems Evaluated Through Syn
thetic Programs, Lincoln Laboratories (MIT), ESD-TR-73-338, 
December 1973. 

11. LO"ckett,J. A~aiidA.R. White, -Controlled -Tests!or'Perjorrrwnce 
Evaluation, The Rand Corporation, P-5028, June 1973. 

12. Fajman, R., and J. Borgelt, "WYLBUR: An Interactive Text 
Editing and Remote Job Entry System," Communications of the 
ACM, Vol. 16, No.5, May 1973, pp. 314-322. 



On measured behavior of the ARPA network* 

by LEO~ARD KLEINROCK and WILLIAM E. NAYLOR 

University of California 
Los Angeles, California 

INTRODUCTION 

The purpose of this paper is to present and evaluate the re
sults of recent measurements of the ARPA network. We first 
discuss the tools available for performing these measurements. 
We then describe the results of a particular experiment, which 
consisted of data collection over a continuous seven day 
period. The measured quantities included input traffic, line 
traffic, and message delays. This data is discussed in terms of 
network behavior and compared to analytic models. Lastly, 
we consider some implications and tradeoffs derived from 
these measurements which provide insight regarding the 
performance of computer networks. 

The ARPANET is now more than four years old.1- 8 How
ever, the network did not become generally useable until the 
middle of 1971 when the HOST-to-HOST protocolS was 
finally implemented at most of the sites connected to the 
network at that time. Currently, the network consists of ap
proximately 40 switching computers (the IMPs and TIPs) 
and approximately 50 HOST machines attached to these 
switching computers as shown in Figure 1 (this map cor
responds to the network configuration as of 1 August 1973; 
we use this particular map since it gives the network topology 
which existed at the initiation of our experiment; a 39th 
site had just been installed in the network by BBN for test 
purposes and thus does not appear in Figure 1). We notice 
that the ARPANET spans the United States, crossing over 
to Hawaii by means of a 50 KBPS (kilobit per second) 
satellite channel and extends to Europe by means of a trans
Atlantic 7.2 KBPS satellite channel. From October of 1971, 
the traffic and use of the network has been growing exponen
tially at a phenomenal rate, slowing down a bit toward the 
end of 1973; this traffic growth is shown in Figure 2 on a log
linear scale.14 In this paper we examine the details of that 
traffic flow. 

The ARPANET began as an experimental network and 
has since grown into a powerful tool for resource sharing. 
The essence of an experiment is measurement, and it is this 

* This research was supported by the Advanced Research Projects 
Agency of the Department of Defense under Contract No. DARC-I5-
73-C-0368. 

767 

aspect of the ARP AKET which we wish to discuss herein. 
Can we, in fact, determine what is going on v\'i.thin the net
work? The answer is an emphatic yes, if we restrict ourselves 
to the behavior of the communication subnetwork which 
provides the message service for the user-HOST systems. 
Early on, during the days when the ARPANET was still a 
concept rather than a reality, we were careful to include in 
every specification of the network design the ability to moni
tor network behavior with the use of specific measurement 
tools. This paper deals with a description of those tools and 
how they have been used in a particular experiment designed 
to elucidate the behavior of traffic in the ARPAKET. 

Among the various centers in the network are two ,vhich 
are deeply concerned "lith measurements; the Network Con
trol Center (NCC), at Bolt, Beranek and Newman, Inc. 
(BBN), and the Network Measurement Center (NMC) at 
the University of California, Los Angeles (UCLA). The 
experiment we describe below was designed, conducted and 
interpreted by the UCLA-N::VrC research staff. 

At this point, it is perhaps helpful to review a few of the 
network parameters which affect traffic flow in the ARP A
NET.9 All traffic entering the network is segmented into 
messages whose maximum length is 8063 bits. These, in turn, 
are partitioned into smaller pieces called packets which are 
at most 1008 bits long (a maximum length message, there
fore, will be partitioned into eight packets, the last of which 
has a maximum length of 1007 bits). As messages enter the 
network from the HOSTs they carry with them a 32 bit 
"leader" which contains the addressing information necessary 
for delivery to the destination. Incoming messages also carry 
a small number of "padding" bits for ,vord boundary adjust
ment between the I::\IP word size of 16 bits and various 
HOST word sizes. Packets are transmitted through the net
work ,,'ith some addressing and control information ,vhich 
adds 168 bits to their transmitted length, while the packet 
overhead for storage within an I::.vIP is 176 bits. The packets 
make their way through the net,vork individually and are 
passed from IMP to DIP according to an adaptive routing 
procedure; in each IMP-to-L\1P transmission an acknowledg
ment is returned if the packet was accepted; when possible, 
these acknowledgments are piggybacked on return traffic. 
The packets of a multipacket message are reassembled at the 



768 National Computer Conference, 1974 

Figure I-Logical map of the ARPANET (August 1, 19730834 PDT) 

destination L\IP before they are delivered to the destination 
HOST. When a message proceeds in its transmission to the 
destination HOST, a specjal control message (known as a 
Request For Next ::\Iessage-RFNM) which acts as an end
to-end acknowledgment is returned from the destination 
IMP to the source HOST. The IMP itself buffers packets as 
they pass through the network and has the ability to store 
approximately 77 packets at most. Except for the channel 
connecting AMES to A:\IST (which is 230.4 KBPS) and the 
Atlantic satellite link (which is 7.2 KBPS) all lines in the 
network are 50 KBPS, full-duplex channels (as of August 
1973) . 

In the following section, we describe the network measure
ment tools. Following that, we give details of a recently per
formed experiment and present its results in graphic form. 
We also include a section in which a mathematical model for 
delay is developed and the results of that model prediction are 
compared with measured network delays. 

MEASUREMENT TOOLS 

In this section, we describe the means by which this and. 
other measurements are performed. In order to evaluate the 
performance of the network, several measurement tools (as 

•• 11 .,... 1 1 J1 TT0T ... ''''''"'!t. .rF"'l'\ • '1 ., 

ongmUllY SpeCllleu uy liue UlvLA-l'HVlvj were Imp1ementea 
as part of the first Il\IP program (and have been slightly 

modified throughout the developmental stages of the 
ARPANET). These tools, which execute in each IMP's 
"background" mode, may be used selectively at the various 
network nodes under program control. Upon request, they 
collect data regarding their node, summarize these data in 
special measurement messages, and then send these messages 
to a collection HOST (normallytJCLA-N:\IC). We have, 
therefore, developed at UCLA-NMC the capability for con
trol, collection, and analysis of the data messages. Below, we 
describe these hetvwrk measurement tools. 

Trace 

Trace is a mechanism ,vherebJT messages ma:y be "traced" 
as they pass through a sequence of IMPS. Those IMPs whose 
trace parameter has been set will generate one trace block 
for each marked packet (i.e., a packet ¥lith its trace bit set) 
which passes through that particular IMP. (An "auto-trace" 
facility exists by which every nth message entering the net
work at any node may be marked for tracing.) A trace block 
contains four time stamps which occur when: (1) the last 
bitoftne packet arrives; (2)tlie-packet 18- put on a queue; 
(3) the packet starts transmission; and (4) the acknowledg
ment is received (for store and forward packets sent to a 
neighboring IMP), or transmission is completed (for re
assembly packets sent to a HOST). (Time (1) corresponds 
to the time at which storage is actually allocated to the packet 

>-
<C c 
c:::: 
~ 
V') 
t-
UJ 
~ 
U 

cE 

106 

'V 

/ r 

105 L" 

lO.t I I I I I I I I I I I I I I I I I I I I I I I I I I I 
ONDJ FMAMJ J ASONDJ FMAMJJ ASOND 

1971 I 1972 I 1973 I 
Figure 2-Long term traffic growth 

I 

I 

I 

I 
i 
! 



rather than to the input source. Time (4) corresponds to the 
time at which the storage for the packet is returned to the 
free pool after successful transmission.) Also contained in the 
trace block are the length of the packet, an address indicating 
where the packet was sent, and the IMP header (which con
sists of the source and destination addresses and several other 
pieces of control information). 

Accumulated statistics 

The accumulated statistics message consists of several 
tables of data summarizing activity at a network node over 
an interval of time (ranging from 25.6 msec to some 14 
minutes) which is under program control. Included in the 
accumulated statistics is a summary of the sizes of messages 
entering and exiting the network at the set of real (as op
posed to fake, i.e. DiP-simulated) HOSTs connected to that 
IMP. The message size statistics include a histogram of mes
sage lengths (in packets) for multipacket messages and a 
log (base 2) histogram of packet lengths (in words) for all 
last packets (i.e., a count is recorded of those packets whose 
length, in data bits, is from 0 to 1, 2 to 3, 4 to 7, 8 to 15, 16 
to 31, or 32 to 63 IMP words in length). Also included is the 
total number of I.:\iP words in all the last packets, and the 
total number of messages from each HOST (real and fake), 
and the total number of control messages (RF~}i, etc.) to 
each HOST. 

A row of the global traffic matrix is contained in each 
IMP's round-trip statistics. These contain the number of 
round-trips (message sent and RFNM returned) sent from 
the probed site to each site, and the total time recorded for 
those round-trips. These statistics are listed for each possible 
destination from the probed site. 

For those channels connected to the probed site, we have 
the channel statistics. These consist of: (1) the number of 
hellos sent per channel (channel test signals); (2) the num
ber of data words sent per channel; (3) the number of inputs 
received per channel (all inputs: data packets, control pack
ets, acknowledgments, etc.); (4) the number of errors de
tected per channel; (5) the number of "I-heard-you" packets 
received per channel (response to hello); (6) the number of 
times the free buffer list was empty per channel; and (7) log 
(2) histograms of packet length, in data words (one histo
gram per channel). 

Snapshots 

Snapshots give an instantaneous peek at an IMP. The 
snapshot records several queue lengths as well as the I}fP's 
routing table. The HOST (real or fake) queue (normal and 
priority) lengths appear in each snapshot message. Also in
cluded is information about storage allocation: the length of 
the free storage list, the number of buffers in use for reas
sembly of messages, and the number of buffers allocated to 
reassembly (but not yet in use). Snapshots also include the 
IMP routing table and delay table. Entry i in the routing 

On Measured Behavior of the ARPA Network 769 

table contains the channel address indicating \vhere to send a 
packet destined for site i. A delay table entry consists of the 
minimum number of hops to a site, and the delay estimate to 
reach a site. 

Arhficial message generation 

In addition to the above instrumentation package built 
into each I}lP, we have the capability to generate artificial 
messages. This message generator in any IMP can send fixed 
length messages to one destination at a fixed or RFNM driven 
interdeparture time. Together with the generation facility 
there exists a discard capability in each IMP. Several mes
sage generator/acceptor pairs have been implemented for a 
subset of the HOSTs on the network as well. These are ex
tremely useful for experimentation, but we will not attempt to 
discuss them in this paper. 

Control, collection, and analysis 

The above-mentioned measurement and message genera
tion facilities are controlled by sending messages to the 
"parameter change" background program in the I:\lPs. vVe 
have constructed a set of programs \vhich, after an experi
ment is specified, automatically format and send the correct 
parameter change messages to initiate that experiment. In 
order to be able to send these messages, it was necessary to 
modify the system code in the Kep to bypass the normal 
HOST-to-HOST protocol.5 The bypass was then used as the 
means of collecting the measurement messages as well, since 
these too do not adhere to HOST-to-HOST protocol. After a 
message is received over this mechanism, it is stored in the 
file system at UCLA-:NMC. Reduction and analysis of the 
data is accomplished by supplying specific subroutines for a 
general driver program; the data analysis is currently done 
on the UCLA 360/91. 

Status reports 

In addition to the above tools, which are mainly for experi
mental use, the NCC has built into the I:\lPs a monitoring 
function called "status reports."lO Each D1P sends a status 
report to the NCC HOST once a minute. Contained in the 
status report are the following: (1) The up/down status of 
the real HOSTs and channels; (2) for each channel, a count 
of the number of hello messages which failed to arrive (during 
the last minute); (3) for each channel, a count of the number 
of packets (transmitted in the last minute) for which 
acknowledgments were received; and (4) a count of the 
number of packets entering the IMP from each real HOST. 
These status reports are continually received at the NCC and 
are processed by a minicomputer which advises the operator 
of failures in the network and creates summary statistics. 

Let us now address ourselves to the experiment itself. 



770 

V) 
Ll.J 
(!) 
« 
V) 
V) 
Ll.J 
:E 
u... 
0 
0:: 
Ll.J 
co 
:E 
=>--:z 

National Computer Conference, 1974 

108r---------__________________________ ~ 

106 

105 

12345678 

NUMBER OF PACKETS IN A MESSAGE 

Figure 3-Histogram of HOST message length in packets 

THE EXPERIMENT DESCRIPTION AND RESULTS 

Experiment description 

The purpose of this experiment was to observe the traffic 
characteristics of the operating network. These characteristics 
include: (1) message and packet size distributions; (2) mean 
round-trip delay; (3) mean traffic-weighted path length; (4) 
incest (the flow of traffic to and from HOSTs at the same 
local site); (5) most popular sites and channels; (6) favorit
ism (that property which a site demonstrates by sending 
many of its messages to one or a small number of sites) ; and 
(7) channel utilization. We consider this data to have more 
than just historical significance. In partic111Hr i there are 

several network parameters whose values were chosen prior 
to the actual network implementation and which deserve to 
be reevaluated as a result of the measurements reported here. 
Among these parameters are: packet (and therefore buffer) 
size, number of buffers, channel capacity, single/multiple 
packet message philosophy, etc. 

To observe the traffic characteristics, we gathered data 
over a continuous seven-day period from 8: 36 on 1 August 
1973 through 17:06 on 7 August 1973. The network con
figuration during this period is shown in Figure L (A tele
type-compatible network map containing similar information 
may be generated from an updatable NMC survey of the 
network.) The experiment consisted of sending accumulated 
statistics messages to UCLA-NMC from each site in the 
network at intervals of approximately seven mjnutes, The 

15 

'--"---l 
I I 

V) I I 
z I 
0 
--I 
--I 10 
:E 
z 
V) 

I--
L1J 
~ 
U 
« c.. 
u.. 
0 
e:::: 5 L1J 
CO 

:E 
:::> 
z 

[ I 

0-1 2-3 4-7 8-15 16-31 32-63 

NUMBER OF IMP WORDS IN A PACKET 

Figure 4-Histogram of packt::L length in words 



data were subsequently processed, and the general results ap
pear below. 

Measured results 

During the seven days a total of some 6.3 billion bits were 
carried through the network by some 26 million messages. 
This means that on the average the entire network was 
accepting some 47 messages per second and carrying roughly 
11500 bits per second among HOST computers. The HOST 
messages were distributed in length as shown in Figure 3, 
and from these data, we observe a mean of 1.12 packets per 
message! Moreover, the mean length of a message is 243 bits 
of data! These facts indicate not only are there very few 
multi packet messages, but also that most single packet mes
sages are quite short. This latter fact is borne out in the log 
(2) histogram of packet length for packets entering the net
work from the HOSTs as shown in Figure 4; the mean packet 
length is 218 bits of data. 

The small message size has an impact on the efficiency of 
storage utilization. This may be seen by defining the buffer 
utilization efficiency as follows: 

where 

Zp = the mean packet length, 
L = the maximum length of data in a packet, and 
H = the length of the packet storage overhead. 

Using the measured value of Zp=218 bits, and the constants 
L = 1008 bits and H = 176 bits, we have a measured buffer 
utilization efficiency of .184! 

There exists a buffer length which yields an optimal buffer 
efficiency for a given message length distribution, as shown 
by Cole;l1 this calculation assumes an exponential message 
length distribution (which we shall adopt). In the packeting 
of messages into L bit pieces we have truncated the exponen
tial message length distribution at the point L, thus giving a 
mean packet size of 

(1) 

where Z = the mean message size (exponential). This gives 
Zp=239 bits when the value of Z=243* is used in Eq. (1) and 
which in turn yields an efficiency of .202. (The fact that Zp= 
239 is greater than the measured Zp means that the actual 
distribution weights shorter messages more heavily than the 
exponential distribution.) Since Zp is significantly less than L, 
the truncation at L does not cause a large accumulation of 

* A truncation effect occurs before messages enter the ARPA network 
as well. Hence the measured mean message length is actually the mean 
taken from the actual distribution'truncated at 8063 bits (8 packets). 
Assuming that messages are exponentially distributed we may solve an 
equation similar to Eq. (1) to obtain the untruncated mean message 
le~gth; this computation yields 243 bits, the same as the truncated mean 
message length. 

On Measured Behavior of the ARPA Network 771 

packets whose length is L bits; we see this from the moderate 
number (12.9 percent) of maximum length packets in Figure 
4. 

The optimal value for buffer size Lo is obtained by solving 
the following equation: 

e-Loli[Lo+HJ-Z[l-e-LollJ =0 

Using 1=243, and H = 176 we obtain the optimal buffer size 
of Lo = 244 bits which yields a maximum efficiency of .366 for 
this overhead. Thus, based upon this particular week's 
measured data, (which is supported by previous and later 
measurements), we find that the maximum efficiency can be 
increased significantly by reducing the packet buffer size to 
roughly one-quarter of its current size. 

The measured mean round-trip* message delay for the 
seven-day period was approximately 93 milliseconds. In
deed, the network is meeting its design goal of less than 200 
milliseconds for single packet messages. Thus, as desired, the 
communication subnet is essentially transparent to the user, 
so far as delay is concerned. The principal source of delay 
seen during a user interaction comes both from his local 
HOST and from the destination HOST on which he is being 
served. ::V[ajor contributors to the small network message 
delay are the small message size and the fact that a significant 
number of messages traverse very short paths in network. 

We shall return to a discussion of delay in the next section. 
For now, let us study the traffic distribution and the source 
of short paths, incest, favoritism, etc. From Reference 12 we 
know that the mean path length (in hops-i.e., number of 
channels traversed) may be calculated by forming the ratio 
of the total channel traffic to the externally applied traffic. 
This gives a value of 3.31 hops. Moreover, we may form a 
lower bound on the average path length by assuming all 
traffic flows along shortest paths; this gives a value of 3.24 
hops, showing that indeed most of the traffic follows shortest 
paths. The (uniformly weighted) path length (average dis
tance) between node-pairs is 5.32 as can be calculated directly 
from the topology shown in Figure 1. The difference between 
these measures of path length suggests that network users 
tend to communicate with sites which are nearby. This is 
surprising since distance in the network should be invisible 
to the users! This phenomenon may be explained by examin
ing how much traffic travels over paths of a given length (in 
hops) as shown in Figure 5. Observe that a surprisingly large 
fraction (22 percent) of the traffic travels a distance of zero 
hops and is due to (incestuous) traffic between two HOSTs 
connected to the same L\lP; after all, the IMP is a very con
venient interface between local machines as well. Also note 
that 16 percent of the network traffic travels a hop distance 
of one; the major portion of this (13 percent of the total) 
is due to communication between AMST and AMES (this too 
is incestuous in spirit). This curve fails to account for the 
number of site-pairs at a given distance. For the topology 

* Round-trip delay is measured by the IMPS and is the time from when 
a message enters the network until the network's end-to-end acknowledg
ment in the form of a RFNM is returned. 



772 National Computer Conference, 1974 

50~------------------------------------------. 

I
Z 
u.J 
U 
0::: 

40 

30 

M:2O 

10 

¢ SITE-PAIRS 

o TRAFFIC 

o TRAFFIC/SITE-PAIR 

o ~~~~~~ __ ~~ __ ~~ __ L-~~~~~ __ ~-J 

o 2 4 6 8 10 12 14 

HOP DISTANCE 

Figure 5-Distance dependence of traffic 

existing during this experiment, it can be seen that the fol
lowing list of ordered pairs (x,y) provides the distribution of 
site-pair minimum distances (where x = hop distance and 
y=number* of site-pairs at this distance): (0,39), (1,86), 
(2,118), (3,148), (4,176), (5,204), (6,210), (7,218), (8,160), 
(9,102), (10,40), and (11,20). No sites are more than 11 
hops apart. This data is also plotted in Figure 5. Note that 
more sites are at a distance of 7 than any other distance (with 
the average distance equal to 5.32 as mentioned above). (In a 

100r------------------------------------------. 

80 

20 

Figure 6-Incest 

* We consider site pairs as ordered pairs; thus, the pair (MIT, UCLA) 
is distinct from (UCLA, MIT). This is natural since the traffic flow is 
not. necessarily symmetrical. The (important) special case of (SITE i, 
STTE i) counts as one "pair". 

100...----

80 

Vl 
u.J 
C.!) 

« 
Vl 
Vl60 
u.J 
~ 
LL.. 
o 
I-
Z 
~4O 
c:::: 
u.J 
c.. 

10 20 30 

n 
Figure7-Busy source-disti%ution 

I 

40 
I 

50 

network with N nodes and M full-duplex channels, the first 
two entries on the list must always be (0, N), (1, 2M).) 
W"ith this information, we may "correct" our curve by plot
ting the ratio of the number of messages sent between site
pairs at a given distance to the number of site-pairs at that 
given distance; see Figure 5 again. The ratios are normalized 
to sum to one. If the traffic were uniformly distributed in the 
network, then the resulting curve would be a horizontal line 
at the value 8.3 percent. We note that an even larger fraction 

1oor-------~~~------------------------

80 

u 
u::: 
LL.. 60 « 
0:::_ 
l-

LL.. 
0 
I-
Z 
u.J 40 u 
c:::: 
u.J c.. 

20 

J I I I 
0 ~ ~ ~ 1~ 1500 

NUMBER OF SITE-PAIRS 



U 
I..L.. 
I..L.. 
« 
0::: 
I-

I..L.. 
0 
I-
Z 
w..J 
U 
0::: 
I..LJ 
Cl.. 

100 

80 

60 

40 

20 

f 
I 
) 

°0~------~------~2~0------~~--------~40L-------~~ 

n 
Figure 9-Distribution of traffic to favorite destinations 

of the traffic is now identified with distance zero. At distances 
2, 3, ... , 9, we now see a better uniformity than earlier. The 
last effect which contributes to the remaining non-uniformity 
is the location of the large traffic users (e.g., ILL) and large 
servers (e.g., lSI). In Figure 6, we display the percent of in
cest in the network during each hour* of the experiment. 
Note that incest accounts for over 80 percent of the traffic 
during certain hours (the weekly average is 22 percent), 
peaking in the wee hours of the morning. 

100r-------------------------------------------~ 

80 

:E 
V') 

E 60 
0::: 
0 
> 
~ 
I-

~ 40 
(.) 

ffi 
a.. 

20 

0~1 ~~~~~~--~~ 
WED THU FRI SAT SUN MON TUE 

Figure lo-Percent of traffic to most favored destinations 

* This, and the other "hourly" plots show points separated by approxi
mately 56 minutes (an integral multiple of the accumulated statistics 
interval of roughly 7 minutes). The separation between the days on the 
horizontal axes occurs at midnight. 

On Measured Behavior of the ARPA Network 773 

9 

K 5 

Figure ll-Number of favored destinations required to achieve 90 
percent traffic 

A further illustration of the non-uniformity of the traffic is 
seen in Figure 7. Here, we have plotted the cumulative per
cent of messages sent from the n busiest sources. Notice that 
over 80 percent of the traffic is generated by the busiest one 
third of the sites. A similar effect is true for the busiest (most 
popular) destinations. Even more striking is Figure 8, in 
which we have plotted the cumulative percent of traffic 
between site-pairs. Notice that 90 percent of the total traffic 
is between 192 (12.6 percent) of the site-pairs. 

The interesting property of favoritism is shown in Figure 9. 
For each source, the destinations may be ordered by the fre
quency of messages to those destinations. In Figure 9, we 
show (summed over all sources) the percent of traffic to a 
source's n most favored destinations. If these orderings and 
percentages remained invariant over time (i.e., a stationary 
traffic matrix), then one could use this information in the 
topological design; hm.vcver, it can be shown4,1~ that both the 
network design and performance are relatively insensitive to 
changes in the traffic matrix (and so, a uniform requirement 
is usually assumed). Note that 44 percent of the network 
traffic goes to the most favored sites! (A uniform traffic matrix 
would give a percentage of only 1/ N = 2.56 percent). Also, 

14Or---------------------------------------____ __ 

120 

100 

80 

y 

60 

20 

TUE 

Figure 12-Arrival rate of HOST messages per second ('Y) 



774 National Computer Conference, 1974 

a~r------------------------------------------' 

Figure 13-Mean number of packets per message 

90 percent of the traffic goes to the nine most favorite sites; 
however, it is important to realize that this involves more 
than nine sites (in fact, 33 unique destinations are involved), 
since each source need not have the same set of nine most 
favorites. This favorite site effect is more dramatically dis
played in Figure 10, which shows the percent of traffic to the 
most favored destination of all sources on an hourly basis. 
l\fost of the traffic (a minimum of 40 percent and an average 
of 61 percent) was caused by conversations between the N 
sources and their favorites. There are N2 pairs in total; thus, 

~f 
0.30 

~~l 
'5 0.20 

-' ..... 
z 
:i 
G 0.15 

'~I~I WED THU FRI SAT SUN MON TUE 

Figure 14-Network-wide mean channel utilization: (A) without over
head; (B) with overhead 

0.70 

0.60 

o.~ 

Z 0.40 
0 

~ 
N 
::::; 
i= 0.30 ::l 

Figure 15A-Utilization of most heavily used channel in each hour 
(without overhead) -

on a weekly basis, the N favorites account for .44N times 
the traffic they would have generated if the traffix matrix had 
been uniform (on an hourly basis it is .61N). Note that the 
favorite site effect must increase as we shrink the time inter
val over which "favorite" is defin(d;* in fact, if we choose an 
interval comparable to a message transmission time, then the 

o.~r-----------------------------------______ __ 

0.60 

o.~ 

0.20 

0.10 

0~1 ~~~~~=-~~ __ ~~ 
WED THU FRI SAT SUN MDN TUE 

Figure 15B-Utilization of the most heavily used channel in each hour 
(with overhead) 

* We are pleased to acknowledge the assistance of Stanley Lieberson in 
explaining this effect. 



most favorite sites will account for almost 100 percent of the 
traffic, since the name of each source's favorite site will 
change dynamically to equal the name of the destination site 
for this source's traffic of the moment. Thus, the amount of 
traffic due to favorite sites has an interpretation which 
changes as the time interval changes. The weekly value of 
44 percent has two possible interpretations. The first is that 
there exists a true phenomenon of favoritism due, perhaps, 
to the existence of a few useful "server" systems. The second 
interpretation is that network users are lazy; once a user 
becomes familiar ·with some destination HOST, he continues 
to favor (and possibly encourages others to favor) that HOST 
in the future rather than experimenting with other systems, 
too. A further explanation for this phenomen is that it is not 
especially easy to use a foreign HOST at this stage of network 
development; this trend should diminish as network use be
comes more user oriented. 

Related to Figure 10 is Figure 11 in which we have plotted 
the number, K, of favored destinations necessary to sum to 
90 percent of the overall traffic on an hourly basis. This means 
that in any hour, 90 percent of the messages were sent be
tween at most N K of the total N2 = 1521 pairs in the network. 
Notice that K has a maximum hourly value of 7 (this is less 
than the weekly average of K =9 due to the smaller averaging 
interval as discussed above). Therefore, for any hour, it 
requires at most 18 percent of the site-pairs to send 90 per
cent of the messages (in the most extreme case, K = 1 and so 
for those hours at most liN or 2.56 percent of the site-pairs 
sent 90 percent of the messages) . 

Let us now discuss other global measures of the network 
behavior. In Figure 12, we show the average rate at which 
HOST messages were generated (per second) on an hourly 
basis; this gives us an indication as to when the work was 

0.70r--------------------~ 

0.60 I-

0.50 "-

§ 0.40 '-

I
..:: 
N 
::::::; 

§ 0.30-

0.20 "-

0.10 f-

r 

1 
I I 
i 4' 1 

..--.~~'~Lj 
WED THU 

4' 

~ ~ 

.J~ I 

FRI SAT SUN MON TUE 

Figure 16A-Utilization of the channel (GWCT to CASE) with the 
highest hourly average (without overhead) 

On Measured Behavior of the ARPA Network 775 

~~r---------------------. 

"'1\!~~~~~ 
WED THU FRI SAT SUN MON TUE 

Figure 16B-Utilization of the channel (HARV to ARBD) with the 
highest hourly average (with overhead) 

done on the network. There are no real surprises here: the 
curve shows a predominance of traffic during daylight hours 
and on weekdays. It is interesting that Monday had notice
ably heavier traffic than the other weekdays (were the users 
manifesting feelings of guilt or anxiety for having slowed 
down during the weekend?). Observe that a truly world
wide network with its time zones could perhaps take ad
vantage of these hourly and daily slow periods. 

Figure 13 illustrates the change in network use as a func
tion of time by showing the time behavior of the mean num
ber of packets per message. The peaks are associated with 
those hours during which file transfers dominated the inter
active traffic. These peaks in general occur during off-shift 
hours (as "With incest) . Perhaps users feel that they get better 
data rates, reliability, or HOST service late at night; or, 
perhaps the background of file transfers is continually present, 
but is noticed only when the interactive users are alseep. 

The internal traffic on channels is one measure of the ef
fectiveness of the network design and use. In Figure 14, we 
show the channel utilization averaged over the entire network 
on an hourly basis, both "With and without overhead. The 
utilization (whose weekly average was .071 if overhead is 
included or .0077 neglecting overhead) is rather low and sug
gests that the lines in the network have a great deal of excess 
capacity on the average (this excess capacity is desirable for 
peak loads). The maximum hourly line load (including over
head, and averaged over all channels) was approximately 
13.4 percent (occurring five hours before the end of the mea
surement) and corresponded to an internal network flow of 
roughly 600 KBPS; "Without overhead the maximum hourly 
average utilization was approximately 2.9 percent (129 
KBPS internal traffic). It is interesting to obesrve the heavi
est loaded line during each hour; this we plot in Figure 15 



776 National Computer Conference, 1974 

0.70r-----------------------, 

0.60 

0.50 

~ 0.40 

~ 
N 
::::; 

§ 0.30 

0.;20 

-l I .-~,~. 
WED THU FRI SAT SUN MON TUE 

Figure 17 A-U tilization of the channel (lSI to RMLT) with the highest 
weekry average (withoutoverheaa) . . 

both without (part A) and with (part B) overhead. Note 
from part B that the busiest line of any hour (HARV to 
ABRD) had a utilization of 0.48 for that hour; without 
overhead the busiest line (GW CT to CASE) had a utilization 
of 0.225 for its busiest hour. Over the seven days, these chan
nels had hourly load histories as shown in Figure 16. Note 
how bursty the traffic was on these lines (even averaged over 
an hour). Another interesting line is that one which had the 
maximum load averaged over the week. Neglecting routing 

0.70 -------.--.-----------------, 

CHANNEL UPIDOWN STATUS: 
UP 

0.60 DOWN 

0.50 

~,ro~~ 
SDATTONSAT 

~1).411 
i= 
co:: 
N 
::::; 
i= 

j h~ 
=> 0.30 

l ~ i 
0.20 ·~~I r I \ 

":r 
\ 

~ I 
I 

t I 
I .. t I 

WED THU FRI SAT SUN MON TUE 

Figure I7B-Utilization of the channel (SDAT to NSAT) with the 
highest weekly average (with overhead) 

updates and all other overhead the channel from lSI to 
RMLT had the largest weekly load (0.017), and its hourly 
behavior is shown in Figure 17 A; again we see bursty be
havior. If we include overhead then the satellite channel to 
Norway (SDAT to NSAT) had the largest utilization 
averaged over the week since it is only a 7.2 KBPS channel 
and therefore, all traffic placed almost seven (50/7.2) times 
the load on it (in this case, roughly 2KBPS, or 28 percent 
of the line, is used for routing updates alone). The hourly 
history for this channel is shown in Figure 17B. Also on this 
figure we have shown the UP/DOWN status of this line (in 
both directions).* Note that the channel was operational in 
both directions for a small fraction of the measurement 
(mainly on Monday) and only during this time was it carry
ing its own routing updates as well as responses to the NSAT 
to SDAT channel's routing updates in the form of "I heard 
you's"; this gives the 28 percent overhead mentioned above. 
This channel "vas dmvn for a large part of Friday during 
which time it carried no traffic. For the rest (most) of the 
week the NSAT to SDAT channel was down and so no "I 
heard you" traffic was recorded on the SDAT to NSAT 
cha..nnel as can be seen.in. Figure 17B. 

With few exceptions the channels in the network are fairly 
reliable. Over half of the channels reported packet error rates 
less than one in 100,000. The average packet error rate was 
one error in 12,880 packets transmitted. Of the 86 channels 
in the network 14 reported no errors during the seven days, 

~.----------------------------~ 

20 r-

V') 
-J 
LLJ 
Z 
Z 15 -
<C 
:c f---

u 
u.. 
0 
c::: 
LLJ 10 ~ co 
~ 
::::> 
z 

5-

PACKET ERROR RA IE 

Figure IS-Channel packet error behavior 

* Our measurements actually give the UP/DOWN status of the IMPs 
as seen by the NMC. When NSAT is declared down, we have displayed 
the NSAT to SDAT channel as being down in Figure I7B, and similarly, 
when SDAT is declared down we have shown the SDAT to NSAT (and 
the NSAT to SDA T) channel down. 



~~--------------------------------------~ 

Vl 
a.. 

20 

:a: 15 

u... 
o 
0::: 
UJ 
a:I 
::E 10 
;:) 
Z 

5 

o~--~--~--~--~--~--~--~--~--~--~ 
o 2 4 6 8 10 

PERCENTAGE DOWN TIME 
Figure 19-IMP failure behavior 

while six channels had packet error rates ',vorse than one in 
1000. The worst case was one in 340 packets for the channel 
from RADT to LL. While these error rates are large enough 
to warrant the inclusion of error detection hardware and 
software, they are small enough so that traffic flow through 
the network is not impaired. In Figure 18, we show the error 
behavior of these lines during the seven day measurement. 
The failure rate of the IMPs should be included here, but 
clearly the seven day measurement is insufficient for this 
purpose. For completeness, therefore, in Figure 19 we show 
the performance characteristics of the IMPs over a 19 month 
interval (June 1972 through December 1973) .14 The average 
IMP down rate was 1.64 percent, with the worst case being 
9.13 percent. 

MODEL FOR NETWORK DELAY 

In this section, we present a network delay model originally 
introduced by Kleinrock12 and which was extended by Fultz15 

and Cole.l1 We then further extend this model to fit the 
specific implementation of the ARPA network. Following the 
model formulation, we present a comparison between the pre
dicted and measured delay. 

With the assumption of negligible nodal processing delays 
and channel propagation delays, the average message delay 
T (the time to traverse the network from source to destina
tion) originally appeared as12 

On Measured Behavior of the ARPA Network 777 

where 

Ai = the mean arrival rate of messages to the ith channel, 
'Y = the mean arrival rate of messages entering the net

work, 
T i = the mean time spent waiting for and using the ith 

channel, and 
M = the number of channels in the network. 

This very general result is easily extended to include nodal 
and propagation delays as follows: 

where 

1/ p. = mean message size, 
C i = capacity of the ith channel, 
Pi = propagation delay on the ith channel, 
K = nodal processing delay, and 

Wi= T i -l/ p.C i = waiting time in queue for channel i. 

The delay analysis now simply requires that we solve for Wi. 
Perhaps the simplest (::\farkovian) assumption is16 

When the queueing delay due to control traffic is also 
considered, we have 

where 

Ai' = arrival rate of data messages and control messages 
to the ith channel, and 

1/ p.' = mean message size including control messages. 

Removing the assumption that nodal processing delay is 
constant and including the destination HOST transmission 
time we obtain the follo\ving expression for the average delay 
experienced by single packet messages. 

where 

Kz is the packet processing time at node l (l is 
the origin node of channel i), 

'Y.j=the mean departure rate of messages from 
the network to the HOSTs at site j, 

1/ P.HCHi = the mean transmission time of messages to a 
HOST at site j, and 

N = the number of nodes in the network. 

The above formulae assume unpacketed message traffic, 
while in the ARPANET, messages are divided into from 1 to 



778 National Computer Conference, 1974 

8 packets. FultzI5 and Cole,l1 therefore, extended the model to 
obtain the mean delay experienced by multi-packet messages 

where 

C = line capacity (temporarily assumed constant) 
iii = mean number of packets in a multipacket message, 

'Y;k = the arrival rate of messages from j to k, and 
T;k=mean inter-packet gap time for messages from 

source j to dcstL~ation k. 

It is difficult to measure tjk for each j,k pair in the net
work. We, therefore, introduce an approximation due to 
Cole,l1 which yields 

E[T(nhops)] p(l_p(n-I» 1C 
1-p J.I. 

The above -expression gives- the expected value"-6fT;k for nodes 
j and k which are n hops apart. It assumes that the channel 
utilizations Pi for the channels in the path from j to k are 
constant and equal to p. The path is assumed unique and 
the channel capacities are constant with value C. We will 
use the first two assumptions to obtain an approximation to 
the network-wide mean interpacket gap. Note that the aver
age path length traveled by a message is given by 

A 
ii= -

'Y 

where 

The average line utilization is 

f-¥-
i=l J.I. Ci 

p=---
M 

Where once again we let C i = capacity of the ith channel. 
The time it takes to transmit a full packet averaged over all 
channels in the network is 

where 1/ J.l.F = the length of a full packet. 
Thus, we will use the following approximation for 7: 

-(1_-(ii-1» _ 
7= P P SF 

1-p 

Removing the assumptions of constant K and C, adding the 
HOST transmission time, and assuming that the last packets 

of multipacket messages have the same mean length as the 
single packet messages, we have the average message delay 
for multipacket messages: 

+ L: ~ (iii-2) - + -M [Ao( 1 1 )] 
i=1 A J.l.FCi J.l.Ci 

~ ['Y.;( 1)] +L..J - K;+--
;=1 'Y J.l.FHC H; 

+ (iii-1)::r 

where l/J.l.FHCHj=the transmission time of a full packet to a 
HOST at site j. 

Let {3 be the fraction of the total number of messages which 
are single packet messages. We obtain the final expression for 
average message delay (from source to destination) in the 
network. 

T={3Tsp+ (1-{3) T MP 

The measure of delay which is supplied by the IMPs is 
round-trip delay. Therefore, in order to compare the model 
with the measurements we need an expression for round-trip 
delay (i.e., we need to include the average RFNM delay 
TRFNM in the model). A RFN:NI is simply another single 
packet message traveling from destination to source. Thus, it 
experiences the single packet message delay Tsp with an ap
propriate value for J.I. and A without the HOST transmission 
term as follows: 

+ i: ['Yi. Ki] 
;=1 'Y 

where 

ARi = the mean arrival rate of RFNMs to channel i, 
l/J.l.R=the length of a RFNM, and 

'Yi· = the mean departure rate of RFN:\1s from the net
work to the HOSTs at site j (= the mean arrival 
rate of messages from the HOSTs at site j to the 
network) 

The expression for mean round-trip delay TR is therefore, 

TR=T+TRFNM 

For the week-long measurement we calculated the zero-load 
value of T R and obtained T R = 69 msec; the hourly variation of 
this quantity is shown in Figure 20. The source of the varia
tion is the shift in the origin-destination traffic mix. This 
zero-load case corresponds to forcing Ai and 'Y to zero, (keep
ing the same ratio as before for each i). The zero load value 
must be less than the measured value, and compares with the 
measurements displayed in Figure 21. This emphasizes the 
fact that the network is introducing very small congestion 



~~--------------------------------------~ 

u .... 
VI 

:; 

300 

260 

>200 

~ c 
Q.. 

~15O 
c 
Z 
:::> 
o 
c::: 

100 

WEe THU FRI SAT SUN MON TUE 

Figure 20-Computed (zero load) average message delay 

effects. Furthermore, in Figure 22 we show the hourly varia
tion of TR (whose weekly average was TR=73 msec) calcu
lated for the actual load value as measured. 

The model presented above is rather complex due mainly 
to the fact that not all channels (or IMPs) need have the 
same speed. In addition, the waiting time terms complicate 
the expressions as well, and represent the part of the model 
which is most subject to question (i.e., the Markovian as
sumptions). However, from Figures 20 and 22, we see that 
the zero-load and measured load calculations are nearly the 

~------------------------------------------, 

300 

260 

8 
VI 

:; 
>200 

~ c 
Q.. 

7 150 
C 
z 
:::> 
o 
c::: 

100 

50 

WEe 

~ 
I 

j 

FR! SAT SUN !\ION ruE 

Figure 21-Measured average message delay 

g 
~ 

On Measured Behavior of the ARPA Network 779 

350~--------------------------------------~ 

300 

260 

>200 

;a 
c 
Q.. 

1¥15O 
c 
z 
:::> 
o 
c::: 

100 

~~t ~~ 
FRI SAT SUN MOIII TUE WED THU 

Figure 22-Computed (measured load) average message delay 

same. This shows that the effect of W/ is quite negligible 
and so any improvement over Markovian assumptions will 
yield negligible changes to TR • This suggests a far simpler no
load model for estimating TR as follows. 17 The expressions for 
Tsp (and TRFNM which is similar in form), may be simplified 
by dropping the W / terms, and setting all K i = K (a con
stant), all Ci=C (a constant at 50 KBPS) , and CHj=CH (a 
constant at 100 KBPS). The result is 

~ ( 1) 1 M [Ai ] Tsp=ii -- +K +K+ -C + L - Pi 
p.C P.H H i=l 'Y 

(and a similar expression for TRFNM ). Except for the last 
summation, these parameters are easily computed. For the 
sum, one must estimate (or measure) the channel traffic Ai 
and the network throughput 'Y. The propagation delays Pi are 
known constants. With these simplifications (and assuming 
{3 = 1, since the measured value of (3 = 0.96 was observed), we 
then have the approximation 

TR= Tsp+TRFNM 

Our calculation gives TR = 70 msec* which is an excellent 
approximation to the earlier stated value of TR = 69 msec 
(at zero-load) and TR=73 (at measured load)! 

On the other hand, the measured value of TR=93 msec is 
significantly larger than measured load estimate of the model 
of T R = 73 msec. This difference is due to the fact the model 
does not include: any delay by the destination HOST in ac
cepting the message; any delay due to the request for storage 
at the destination L.\IP; exact data on Pi; time variations in 

* The components for '1'1< are: n=3.31, 1/;.oC=8.2 msec, K=.75 msec, 
1/paCa =2.75 msec, the propagation sum=11.4 msec, and l/PRC= 
3.36 msec. 



780 National Computer Conference, 1974 

p finer than the hourly computations used; and non-Markov
ian assumptions. All the above omissions (except possibly 
the last) will increase the computed value of TR • 

CONCLUSIONS 

The purpose of this paper was to present results of a week
long measurement of the ARPANET traffic behavior. In 
reporting upon the results of that experiment, we have ob
served a number of quantitative relationships which suggest 
that values assigned to certain of the network parameters 
should perhaps be reexamined. For example, we observed 
that the vast majority of messages are single-packet messages 
and one wonders at the wisdom of providing within the net-
"tuA .... lr tho. "",oth.o.,. OAnh;ot~no+o...:J TY\l').nhon~oYV\o fA .... hOT"lrll~T\"" rn'f'11t;_ y, v .... u .. v ... .1.\....- .l.WVJ"..a.V.l. uvp ............ t..Ju.J..VWl.lv\,A. .,l..t.Lv\,,;.l...l.w ... J.. ... U.L..L.L1O.,) .1.V..l .J...J..U.L.l.\,A...I..L ...... o .1.J..LU..I.V.L 

packet messages. Furthermore, we observed that the single
packet messages themselves are extremely small and it may 
be possible to improve the efficiency of the network if, in 
fact, the maximum packet lengths (and, therefore, the I:\fP 
buffer length) were reduced; one source of these small packet 
lengths is the preponderance of interactive traffic which 
typically creates packets containing one or a few characters. 
The mo(fe -o{cOIumunlcati()n perhaps-itself-needs to-b(;---re-
examined in an attempt to improve the network efficiency 
while maintaining a comfortable interactive feeling and 
response time. Incest is rampant in the network and it might 
be worthwhile to investigate other means for handling such 
traffic. Favoritism is (and perhaps will remain) even more 
dominant and how one would take advantage of this effect 
is not at this point clear. The non-uniformity of the traffic is 
striking and future network designs should attempt to capi
talize upon this feature. The time variation of network use 
was discussed above and we see a fairly cyclic behavior both 
in traffic intensity and type of use. The lines themselves are 
not heavily utilized, and at the same time the network delays 
are so small as to render the network invisible to the typical 
user. We have described, in addition, a fairly extensive model 
for network delay and comparing it to our measured results it 
seems to be a fairly valid model both for single-packet and 
multi-packet messages. We also give a simplified model which 
appears adequate. 

In this paper, our major purpose has been to report the 
me2rsured results from our experiment. Secondarily, we have 
scratched the surface in attempting to evaluate and draw 
conclusions regarding the chosen values for some of the de
sign parameters. In this effort, we have avoided the depth of 
discussion required to make a meaningful evaluation of these 
parameters, but rather have discussed their values only in 
terms of the measured data. For example, the choice of IMP 
buffer size depends upon many considerationR beyond those 
we have measured (e.g., IMP processing speed, interrupt 
structure, line error rates, maximum network throughput, 
etc.); therefore, the presentation and commentary on the 
measured data given herein should certainly not be used 
alone in the selection of network parameters. The broad class 
of issues which must be included in decisions of this type are 
discussed, for example, in Kahn. izS 

The experiment described above is repeated every two 
months at the Network Measurement Center, and has so far 

produced results similar in flavor to those reported upon here. 
Numerous other experiments are currently being conducted 
and many more are in the planning stages. It is only through 
such experiments and through careful evaluation of the mea
sured data that one can gain understanding of the network 
behavior, which in turn impacts the design and growth of the 
network. 

ACKNOWLEDGMENT 

We gratefully acknowledge the contributions of Holger 
Opderbeck, Stanley Lieberson, and the remainder of the staff 
at UCLA-NMC. 

REFERENCES 

1. Roberts, L. G., and B. D. Wessler, "Computer network develop
ment to achieve resource sharing," AFIPS Conference Proceedings, 
36, pp. 543-549, SJCC, Atlantic City, N.J., 1970. 

2. Heart, F. E., R. E. Kahn, S. M. Ornstein, W. R. Crowther, and 
D. C. Walden, "The interface message processor for the ARPA 
computer network," AFIPS Conference Proceedings, 36, pp. 551-
567, SJCC, Atlantic City, N.J., 197(1. 

3. Kleinrock, L., "Analytic and simulation methods in computer net
work design ,'!--- A -F I P S- -CMfer-ence Proceedings, 36, pp. 569-579, 
SJCC, Atlantic City, ~.J., 1970. 

4. Frank, H., I. T. Frisch, and W. Chou, "Topological considerations 
in the design of the ARPA computer network," AFIPS Conference 
Proceedings, 36, pp. 581-587, SJCC, Atlantic City, N.J., 1970. 

5. McKenzie, A.A., HOST/HOST Protocol for the ARPA Network 
ARPA Network Information Center # 8246, January 1972. 

6. Ornstein, S. M., F. E. Heart, W. R. Crowther, H. K. Rising, S. B. 
Russell, and A. Michel, "The Terminal IMP for the ARPA net
work," AFIPS Conference Proceedings, 40, pp. 243-254, SJCC, 
Atlantic City, N.J., 1972. 

7. Frank, H., R. E. Kahn, and L. Kleinrock, "Computer communica
tion network design-Experience with theory and practice," 
AFIPS Conference Proceedings, 40, pp. 255-270, SJCC, Atlantic 
City, N.J., 1972. 

8. Crocker, S. D., J. F. Heafner, R. M. Metcalfe, and J. B. Postel, 
"Function-oriented protocols for the ARPA Computer Network," 
AFIPS Conference Proceedings, 40, pp. 271-279, SJCC, Atlantic 
City, N.J., 1972. 

9. Specifications for the Interconnection of a HOST and an IMP, 
Bolt, Beranek and Newman, Inc., Cambridge, Mass., Report No. 
1822 May 1969. 

10. McKenzie, A. A., B. P. Cosell, J. M. McQuillan, and M. J. Thrope, 
"The Network Control Center for the ARPA Network," Proceed
ings of the First International Conference on Computer Communica
tion, 1, pp. 185-191, Washington, D~ C., October, 1972. 

11. Cole, G. D., Computer Network Measurements: Techniques and Ex
periments, Engineering Report No. UCLA-ENG-7165, University 
of California, Los Angeles, Calif., 1971. 

12. Kleinrock, L., Communication Nets: Stochastic Message Flow and 
Delay, McGraw Hill, N.Y., 1964, reprinted by Dover, N.Y., 1972. 

13. Gerla, M., The Design of Store-and-Forward (S/F) Networks for 
Computer Communications, Engineering Report No. UCLA-ENG-
7319, University of California, Los Angeles, Calif., 1973. 

14. McKenzie, A. A., Letter to R D. Crocker, 16 January 1974. 
15. Fultz, G. L., Adaptive Routing Techniques for Message Switching 

Computer-Communication Networks, Engineering Report No. UCLA
ENG-7252, University of California, Los Angeles, Calif., 1972. 

16. Kleinrock, L., Queueing Systems, Volume I: Theory, Wiley, N.Y., 
1974. 

17. Kleinrock, L., Queueing Systems, Volume II: Computer Applica
tions, Wiley, N.Y., 1974. 

18. Kahn, R. E., "Resource-Sharing Computer Communication Net
works," Proceedings of the IEEE, 60, pp. 1397-1407, November 
1972. 



The potential role of the computer in intuition and self 
development 

by DAVID V. TIEDEMAN 

Northern Illinois University 
De Kalb, Illinois 

ORIENTATION 

From 1966-69, several colleagues and I had opportunity 
to design and implement a prototypical ISVD (Information 
System for Vocational Decisions). Dr. JoAnn Harris l has 
been good enough to record that the ISVD and several 
sister computer guidance systems forecast and piloted the 
following advances in uniting the capabilities of computers 
and the purposes of guidance: 

1. "Increased use of visuals to supplement words. 
2. "Development of programs which 'will allow coun

selees to simulate vocational educational, and 
personal-social experiences. ' 

4. "Development of languages which allow the student 
to respond to the computer in his o"\vn language. 

5. "Development of programs which will allow the 
counselee to prepare his own instructions to the 
computer and thus alter the pre-designed processes." 
(page 10) 

Of the five items Dr. Harris listed as harbingers of com
puter involvement in guidance the only one which ISVD 
lack~ was the third one, group interaction via computer 
termmals. The ISVD made no computer provision for that 
function. The ISVD planned that that function be dis
charged in its system v.ithout computer involvement. 

Today I am without my guidance computer. Neither the 
computer technology nor the educational economics of these 
days are up to the dream which I had for the ISVD. 

Dr. Martin Katz and Dr. Harris are two eminent col
leagues in the development of effective unions of computer 
capability and guidance purposes who entered the field 
about when I did but have the good fortune still to be in 
business since they gauged technological capability and 
user purse more level headedly than I did. K evertheless we 
have all continued to remain interested in the common 
problem of convincing the public that they need the adju
vant computer capability in guidance now available to them. 
My colleagues have therefore been good enough to invite 
me to participate with them in this symposium which in 

781 

its entirety will reveal the effective role which the computer 
has come to play in career guidance. 

The symposium is divided into four parts. I take my own 
function to be merely that of revealing the potential role of 
the computer in intuition and self development. Dr. Katz 
and Dr. Harris \vill then describe two operational computer 
guidance examples, SIGI (System for Interactive Guidance 
and Information) and CVIS (Computerized Vocational 
Information System) respectively. Mr. Larry Blasch con
cludes the symposium by considering computer-based career 
guidance systems of the future. 

ERIC AND THE INFOR:\lING PROCESS 

Risk is an essential condition for solving the paradox of 
intuition and development. Possibilities and progress must 
always be traded off: progress is bought at the expense of 
possibilities; possibilities at the expense of progress. The 
person comes to know this fact at increasingly more funda
mental levels of understanding as he develops himself 
hierarchically, the way in which I hypothesize that self 
development takes place.2 ,3 As the person also comes to 
know the truth in Polanyi's4 assumption that" ... we can 
know more than we can tell" (page 4), he comes to know 
at increasingly more fundamental levels of his being that 
his own intuition is the engine of his intelligence. The more 
a person risks to his intuition, the more he develops hier
archically. 

My understanding of the gaining of confidence in intuition 
through risk of the self evolved is my struggle to fashion a 
relationship between a person and a computer which has 
the purpose of self enhancement, not self contraction. I 
offer an account of that struggle in this paper in expectation 
that its revelation may harmonize with understandings 
you also have about the potential role of the computer in 
intuition and self development. 

ERIC (Educational Resources Information Center) 

Let's start v.ith ERIC, the Educational Resources In
formation Center. ERIC acquires, selects, abstracts, and 



782 National Computer Conference, 1974 

indexes documents. Abstracts and index terms of the selected 
documents are transferred to computer tapes. The selected 
documents themselves are transferred to microfiche provided 
that their authors have authorized such copying if the 
material is copyrighted. Journal articles receive similar 
treatment except that a journal article is only annotated, 
not abstracted, and journal articles are not put on microfiche. 

The computer tapes which contain citations of educational 
research and practice and associated index terms and ab
stracts or annotations in each case constitute a new adju
vant power for man's mind, a power which I believe is of 
great import. Although the system has been in existence 
only since the mid 60's, the educational resources incor
porated into ERIC since then are now fairly complete and 
quite accurately assembled in one place. Completeness and 
accuracy constitute two of the conditions which man at
tempts to approximate ever more closely with his mind. 
By letting their minds cooperate "with ERIC, users now 
prove able to achieve both conditions more fully in relation 
to educational resources assembled since the mid 60's. The 
availability of access to these resources through computer 
tap~~_giv~§ 3,. _~~~ib~litytQ_th~_u,~e9J._this __ I11~J:~ c()J!lplete 
and more accurate store than was available prior to ERIC. 
All that the user has to do is let ERIC become adjuvant 
to his mind. ERIC and its microfiche then open for every 
person new vistas of contact with educational developments 
in the United States and other parts of the world heretofore 
unavailable. 

The adjuvant relationship with ERIC is made available 
to informed inquirers on the general basis noted above. 
ERIC also engages in educating potential users so they can 
take advantage of ERIC's adjuvant capability as well. 

In order to keep a general level of contact with ERIC 
available to all, ERIC publishes Resea't'ch In Education 
and Current Index to Journals in Education on a monthly 
basis. Both of these journals essentially list currently ac
cessioned material by main entry, major subjects and author. 
The main entry includes the abstract or annotation, as the 
case may be. 

Sixteen Clearinghouses are an essential current feature 
of the ERIC network. Clearinghouses cast their nets to 
acquire documents and assume responsibility for selection, 
abstracting, and indexing of documents and journal articles. 
Clearinghouses are also responsible for information analyses 
in each of their scopes. These information analyses synthe
size the literature around current issues or problems of 
popular concern. Clearinghouses also provide individual 
service to users upon request provided that such service 
does not constitute an inordinate drain on time which must 
be husbanded for the essential accessioning tasks. 

ERIC as an information system 

Several years ago, Walz and Rich5 who both had responsi
bilities in the ERIC Clearinghouse for Counseling and Per
sonnel Services caught my imagination with their article, 
"The Impact of Information Systems on Counselor Prepara-

tion and Practice." After introducing ERIC on somewhat 
the same terms I have used above, Walz and Rich first 
listed the essential characteristics of an information system 
as follows: 

1. "The major objective of any information system is 
to organize and store information in a form which 
maximizes the user's ability to rapidly locate infor
mation which is relevant to his specific professional 
concerns. 

2. "The major processing procedure which preserves 
the capability of identifying the nature of these 
educational materials at a later time is indexing. 

3. "The primary determinate of which index terms will 
be used is the article which is being indexed. 

4. "The outcome of indexing is a list of index terms 
which have been selected because they are an accu
rate representation of the conceptual contents of 
the article. 

5. "The ERIC system, then, is collecting a large num
ber of educational materials and indexing these 
materials for storage and subsequent retrievaL ... 
This file may be searched using twoseaichstrategies. 
First a search may be conducted to identify all ma
terials which deal with anyone concept .... A 
second search strategy is to coordinate index terms 
so that the information retrieved is smaller in quan
tity but more directly relevant to the user's question. 

Walz and Rich went on to argue that an information 
system which organized and stored information so that the 
user can retrieve information pertinent to his interest and 
needs will have the following predictable outcomes: 

1. Use will come to be focused on synthesis and evalua
tion. 

2. Use will reveal gaps in the information structure. 
3. The use of impersonal information sources will in

crease because information access will be more 
commonly available. 

4. Opportunities for interprofessional interaction will 
increase because the material of one profession will 
be indexed to the different primary terms of another 
profession. 

5. Information rather than books will become the pri
mary focus for retrieval. ERIC will become the 
user's "book." 

6. Information dissemination will become broader and 
faster. 

Finally, Walz and Rich went on to propose that the edu
cation of counselors would shift as follows because of the 
new availability of the ERIC information system: 

1. Inquiry will become the primary focus of learning. 
2. A need will arise for new learning approach skills 

emphasizing retrieval and the investment of facts 
with personal meaning. 

3. Evaluation and integration will become more per
sonally essential. 



The Potential Role of the Computer in Intuition and Self Development 783 

4. The pedagogy of counselor education will shift to 
the personal absorption of information once the 
information system has begun to achieve coagulation 
of information as it ordinarily does. 

5. Counselor educators will adopt new methods of 
professional communication which will center on 
ERIC, not books and journals. 

6. Counselor educators will increase their collaborative 
efforts. 

7. The number of small esoteric information systems 
will increase. 

ERIC and the informing process 

The Walz and Rich article came to my attention shortly 
after several colleagues and I had begun to design the 
ISVD. As I will show later, the ISVD takes the inquirer 
himself into consideration thus facilitating his ability to 
turn data retrieval into information generation. I first 
proposed6 this relationship in an article in the CAPS Cap
sule, the information arm of the ERIC Clearinghouse for 
Counseling and Personnel Services. I later went on to 
describe the necessary mediation process more fully in an 
article with Robert O'Hara.7 

Frolll Illedia to Illediation 

O'Hara and I argued that mediation, not media, must 
become the central focus for education, general and voca
tional. The turning of occupational facts/data* into infor
mation is a personal and educational process. Therefore, 
the important question is the means by which media actually 
prove to mediate the personal education process. I elect to 
address in this paper the most important of our questions 
in vocational guidance: How may we better the personal 
educational process associated with vocational development? 

Several years ago I had a confirming experience with a 
recent book by McLuhan and Fiore.8 The younger of my 
sons left his copy of this book on a table in my living room 
for about a week, but I was not particularly interested in 
it because, during my early glances at it, I kept reading 
its title as The Medium Is the Message. That seemed a 
clever, though not an intriguing, title. One day it suddenly 
came to me that the book's title is The Medium Is the Mas
sage. My double-take and that realization connected then 
with my realization that this was the process of mediation 
which I develop in this subsection. Thus, a hurried turn 
to the book reinforced my recognition that, in occupational 
facts/data as well as in the generality of communication 
treated by McLuhan and Fiore, the media are not the 
message. In fact, media can never be the message; only the 

* Occupational facts/data come in two conditions, fixed and modifiable. 
We therefore elected to adopt the cumbersome term, "facts/data," to 
indicate this fact throughout our paper. Occupational facts are directly 
recoverable without mediation except for storage and later recovery. 
On the other hand, occupational data must be additionally processed 
by the numeric and/or linguistic routines of a mediation system. 

facts which media convey are the message. The media them
selves only become important in message transmission when 
they actually mediate transmission-when they actually 
massage the occupational information process as persons 
are exposed to occupational facts/data. 

Epistelllology and pedagogy in Illediation * 

The point of view I outline here is one which derives im
portant aspects of its validity from being realized again and 
again through a wide range of personal experiences with 
facts and ideas. Our "frame of reference" with regard to 
the interplay of facts, ideas, purposes, and action represents 
a form of orientation which, while it cannot be specified in 
the abstract, serves in any given context of personal en
counter to articulate immediate concerns with issues of 
broader relationship and relevance.9 Therefore, in order to 
articulate aspects of my immediate topic within a context 
of issues of broader educational concern, I address two 
assumptions which I consider to be inconsistent with crucial 
principles of educational process. It is the alternatives to 
these principles that I strive to describe here. 

The first of these assumptions pertains to the nature of 
knowing and the known. There are current applications of 
recent media developments to issues of vocational informa
tion which appear to presume that facts, data, or informa
tion consist of bits of knowledge which correspond directly 
to that presumed to be the real, the true, and the knowable. 
In brief, knowing and the known are presumed to comprise 
a direct, linear relationship both in the abstract and as we 
realize them as dimensions of particular circumstances. I 
shall show the serious limitations of this position as I show 
how the ISVD implemented our current technological 
resources in the service of personally determined career 
development. 

The second of the assumptions is in an important sense 
subordinate to the first, for it pertains to the nature of the 
relationship between acts of knowing or learning and those 
of teaching or counseling. This assumption suggests that, 
on the basis of a "correspondence" theory of knowledge, we 
can presume to select those aspects of the known and know
able which shall be most effective in determining a subse
quent course of events toward an end that we value and 
which, as "means" toward that end, we call "learning." 
In brief, the assumption is that we can determine, in ad
vance, both goals and procedures appropriate to the educa
tional process in its distinctive human immediacy and 
variability. 

These assumptions, one "epistemological" and the other 
"pedagogical," are inconsistent with what seems to be one 
of the most crucial principles of my own current work, 
namely, that both knowledge and the process of knowing 
are functions of a personal and collaborative context of 
exploration and confirmation-a context which is itself 

* I am indebted to Gordon A. Dudley for the structure and ideas of this 
subsection. 



784 National Computer Conference, 1974 

defined by a nexus of human purposes expressed both 
overtly and covertly, both tacitly and articulately. The 
alternative position from which I speak suggests that talk 
about media cannot look in one direction only. It cannot 
look solely toward facts, data, information in isolation from 
persons and processes. I hold that the reciprocal interaction 
between the knower and knmvn entails a "transactional" 
perspective and an array of procedures more aptly denoted 
by the notion of mediation. The final turn of this argument 
is that, because of the interplay of the tacit and articulate 
dimensions of knowing in the personal act of learning, the 
experience of mediation is that of a massage. In other words, 
we inevitably encounter the new ·with a habitual tensing of 
our intellectual musculature, with the result that its mean
ing takes initial form after that which we have long known 
and to which "~ie have accommodated. Only after we have 
worked with (and perhaps more importantly, been worked 
on by) a new possibility do we relax to the point of seeing 
more clearly that something new has indeed been going on 
in, as well as around, us, cf. Piaget on assimilation and 
accommodation as reported by Flavell.10 

::\iy advocated perspective is "transactional" by virtue of 
the impliciitiohthatboth processes6f teaching and learning 
are construed as individual and collaborative acts of "sam
pling," from among a ,vide range of on-going events (both 
personal and environmental), those configurations of mean
ing and implication which best serve to differentiate means 
and ends, processes of imagination and structures of knowl
edge, and acts of discovery and principles of verification. 
Within this "transactional" perspective, facts and data 
derive their significance as exemplifications of meaningful 
coherence among stable dimensions of events reflecting 
multiple principles of orderY It is this transactional per
spective regarding the interplay of information and imagina
tion ,vhich brings my ideas in harmony both with current 
developments in discovery teaching and the "new" curri
cula,12 and with the "new" self-knowledge and creative 
learning developments.13 It is a point of view from which 
I risk inviting the student to take advantage of my capacity 
to learn through his ability to teach us. 

INFORMING MACHINES 

ISVD: A computer-based information system for career 
decisions* 

In prospect for computer technology 

The intent of the ISVD was to place an inquirer in poten
tially repeated interaction with a computer-centered environ
ment programmed for his inquiry, not just for prompt 
reinforcing of stimulus-response contiguity. The contexts 
for the inquiries were education, occupation, military 

* Other principal investigators of the Information System for Vocational 
Decisions were Russell Davis, Richard Durstine, Allan Ellis, Wallace 
TIll .... .L ..... 'L. __ T7'..J_. __ ...l T .... _...J .... D ...... 1... ..... _J- ,('\'TJ _____ ..3 1\....-!,.1.. .......... 1 TIT!l"' ...... _ 
~'1t:a,\jut:a, .l!JUWi1rlU ~lloUU'y, .1.\,VUt:illr v .L.1.£1,1C;2. (i,l!U .L".1..lv.1.la.t;;l "110VlJ.. 

service, and family living. The inquirer was permitted to 
elect at will among contexts. The System was constructed 
so as to expect the inquirer to learn how to harmonize his 
goals and their consequences by means of repeated inquiries 
in these four important realms of personal activity. 

As required by the principle of mediation, the primary 
goal of the ISVD was inquiry, not reinforcement. Because 
the System put the inquirer in direct relation with his 
evolving history and intentions to the extent that such can 
be motivated and represented through the numbers, letters, 
and processing available in computer reckoning, it became 
possible to avoid one of the fears which the public has of 
using computers in guidance, namely, the fear that com
puters will determine lives by making decisions for, not 
with~ persons. The System let any inquirer experience prHC

tically the same joy and frustration which computer devotees 
daily do-the realization that the answer is in a devotee of 
computers, not in the machine. Despite our occasional 
regret upon such realizations, we know that we still per
severe. Therefore, the assumption of the ISVD was that 
any person can and will persevere through inquiry. A 
further assumption was that repeatedly-experienced failure 
to findfulls6luti6ns to questionscaii he fashioiied into 
mature capacity to proceed on inadequate bases in adult 
life as an inquirer is brought to realize the care used in 
fashioning a System which can take him down the path of, 
but never completely into, a, ... areness of the operation of 
his motivational system. 

ISVD was therefore different from systems now organized 
for computer-aided instruction or educational data process
ing. The ISVD subsumed those conceptions as intermediate 
in the condition of education for responsible career decisions. 
However, the primary professional task was to construct a 
meta-system which permitted analysis and response direction 
in terms of the majority of the variables of this expected 
responsibility. 

How was that accomplished? 

The career and choices in career development 

The context of vocational decision-making offers excellent 
opportunity for realization of my intention when the com
puter is given centrality, but necessary incompleteness, in 
the interacting system in which career development emerges. 
O'Hara and p4 define career as personally-given direction 
in developing vocational maturity. I therefore bind a career 
with expectation that the exercise of personal intention 
brings with it accountability for self-directed and corrected 
activity. Therefore, I expect that career development re
quires emergence of self-initiated and controlled activity 
for which a person permits himself to be held to account. 
\Vhen persons do so, we have opportunity to give power to 
the process of social control by encouraging the indepen
dence of freedom and the interdependence of social con
sciousness. 



The Potential Role of the Computer in Intuition and Self Development 785 

are made throughout life, in the joint contexts of education, 
vocation, military service, and family. The object, plan, 
and progress of decisions in each of these areas have their 
own characteristics which are reported in some detail in 
O'Hara and Tiedeman.7 

The system 

General framework 

The ISVD was deliberately named despite the fact that 
my connotations for its words are not presently entirely a 
matter of common parlance. My word "Information" 
connotes the placing of facts/data into the context of use. 
This use of the \yord emphasizes my belief that facts/data 
require their context of use if they are to be conceived as 
information. 

Students and workers were permitted to turn educational 
and occupational facts/data into information through the 
System. Thus the user became an explicit part of my con
notation of "System." My connotation reflects the intention 
to offer the user complete responsibility in choice of educa
tional and vocational goals. Although it is probably inevit
able that the computer will be blamed for "error," I did 
not intend to let users of the ISVD enjoy the luxury of 
that impression without contest. 

Data files 

The ISVD had a data file for each of the previously noted 
four areas of living: occupation, education, military service, 
and family. Data in each file ranged from general to specific. 
In addition, data attempted both schematically to represent 
the present and to outline the future for a decade or so, 
such outlining being in small time-increments. These specifi
cations obligated the System both to deal with local job 
markets and to incorporate data on local job vacancies 
which were helpful in placement suggestions. 

The fifth data file in the System contained inquirer char
acteristics. This file was in two parts. One part dealt with 
characteristics of inquirers in general and reported relation
ships of these characteristics with later choices and successes 
of those inquirers. This file was used both to suggest alterna
tives to users who needed wider scope for consideration and 
to subject aspiration to the test of "reality" when the user 
was in a condition of clarification of a preferred alternative. 
The other part of the inquirer characteristic data file was 
the private educational and occupational history of the 
user as portrayed in his context of developing justification 
for his preferences and their pursuit and consequences. 

Decision-making: The paradigm for choosing 

Reflection upon facts/data of the several areas was en
couraged with the expectation that the facts/data would 

be put to personal use, and the user was expected to become 
guided by the Tiedeman and O'Hara paradigm of vocational 
decision-making.14 The paradigm essentially conceives deci
sion in relation (1) to the passage of time, and (2) to the 
undertaking of the risk and activity required to achieve 
what one elects to achieve. This conception permits division 
of the time interval into a period of anticipation and a 
period of accommodation. Anticipation occurs before the 
activities of a discontinuity become required; accommoda
tion occurs after activity is required. Stages of exploration, 
crystallization, choice, and clarification are distinguished 
within the period of anticipation. Stages of induction, 
reformation, and integration become possible within the 
period of accommodation. Distinctions among these stages 
was made a central part of a MOKITOR computer routine 
in the ISVD. 

Computer routines 

Computer routines and supporting materials \vere fash
ioned to conform with expectation that this vocational 
decision paradigm both existed and could become explicit 
and useful to someone who practiced its use. The paradigm 
determined the computer routines which were developed to 
permit access to each of the data files and to provide data 
upon request. There were three primary computer routines: 
REVIEW, EXPLORATION, and CLARIFICATIOX. 

The REVIEW computer routine permitted call-up and 
comparison of a prior statement about a then future event 
both after that expected future event had occurred and 
after the user had provided indication of how his prior 
expectations were fulfilled before he sees his prior statement 
of those expectations. The procedure expected a person to 
experience insight with regard to consistency and incon
sistency available during comparison, and to learn from such 
insight that his own intuition guides his activity. The in
tended outcome of REVIEW was that the user learn from 
his history. 

The EXPLORATION computer routine allowed the 
person to rove through a data file as near randomly as 
possible. The routine encouraged use of randomness largely 
at only general levels of materials in order to conserve time 
but did not forbid specific exploration if, and when, desired. 
Furthermore, routines were developed to suggest alterna
tives on the basis of comparison of personal characteristics 
with established associations between such characteristics 
of others and their preferred alternatives. The intended 
outcome from this routine was (1) emergence of a set of 
alternatives, and (2) the bases on which the alternatives 
are preferred. I emphasize this latter point in an effort to 
increase awareness of the reasoning process that is actually 
involved in career development. 

The CLARIFICATION computer routine was available 
after specific alternatives were selected. CLARIFICATION 
took the user into queries about the depth of his knowledge 
concerning then favored alternatives and the understanding 



786 National Computer Conference, 1974 

of future alternatives which are likely linked with present 
preferences. The outcome desired was the dispelling both 
of some doubt and of some ignorance concerning the next 
step in the progress of career which the person is evolving. 
Lessening of both doubt and ignorance is likely to increase 
the user's confidence in meeting the required activities of 
his next step. 

In addition to the three primary computer routines, 
MONITOR was available as the only secondary computer 
routine. It essentially consisted of the evaluations which we 
were able to concoct to determine existence of mastery of 
stages in the paradigm of vocational decision-making. For 
this reason, it had to play back into, as well as over, the 
computer inputs which the person generated. There were 
three essential aSPects of :rvfOl'-~ITOR. The first was a proce
dure which we concocted and programmed the computer to 
provide. The second was the bases on which we caused our 
judgments to operate among the data put in by the person 
during his interaction with the computer. The third was 
the basic computer routines themselves which the person 
was taught to use if and when he desired to have them. This 
lat~_~:r_aspect made it possible f()r. the u_ser. t()w:r~~e his o~n 
monitoring bases to some extent and to have these moni
toring procedures play among his material, as ours did 
originally. I hoped through MONITOR to encourage 
mastery of the concept of feedback and to give practice and 
supervision in its application. 

Materials 

The computer routines incorporated the vocational 
decision-making paradigm. I did not expect the computer 
itself to mature fully the capacity and confidence for use 
of the decision-making paradigm. I therefore designed two 
other activities into the System in its totality. One of these 
was the simulation of decision-making. Simulation was 
available in (1) games, (2) booklets in which the concepts 
were taught, and (3) decision problems of a vocational 
nature which had to be solved in interaction with the com
puter. 

The second of our other activities, which I hoped would 
further mature the use of the paradigm of vocational deci
sion-making, was the provision of responsibility for work 
under laboratory and practice conditions. In laboratory 
practice, reality can replace imagination if there is intentful 
supervision of users as they practice. This supervision was 
of the same nature as that employed by counselors with 
users as they are engaged in the simulated activities of 
vocational decision-making during the user-computer inter
actions. 

Career: The maturation of personal responsibility through 
vocational development 

I have attempted to show that the ISVD expected choice 
and cultivated the capacity for, and confidence in, choosing 

by giving users an almost infinite possibility for the exercise 
of decision-making among data files while simultaneously 
attempting to make the processes of decision-making both 
explicit and mastered. These are elements in vocational 
development which are generally neither unified in this 
manner nor made available for practice in modes in which 
complexity is possible but time is not of the essence, at 
least not the time of persons other than the person engaged 
in the exercise. The existence of the ISVD therefore created 
a first-time physical representation of the "outside" which 
the person must first learn to bring "inside" and then to 
act toward knowing that it is there but that he need not be 
"driven" by it if he is the master of it. 

In its totality, the ISVD represented "reality" in its data 
-f:l"", ,,-I+,,~,,~ ~~"n"",,,,"" +,,~ "T,,~17;~~ -.-n;-/-l-. +nn-/-" I~n-/-n -/-h~",,~h 
J..U\....lO, V.LJ.\...O.L\....tU 'p.l.V\""\...tto:)~'-'O .LV.1. nV.LL\..LJ...1.5 n..Lta.L .1.Glr\..!lJC/ u.a,UGlT U.L.1..1.UU5.LJ. 

its primary computer routines, and provided practice 
under supervision through (1) its secondary computer 
routine, (2) its simulation of decision-making, and (3) its 
personal supervision (a) by a counselor of the person in 
interaction in the computer routine, and (b) by a vocational 
educator as the student user assumed real work responsi
bility in labora,tory and practice work si~':lations. 

Can a machine counsel? 

Allan Ellis immeasurably advanced my understanding 
of the mediational processes which had to be built into 
ISVD by seriously addressing with me the question: Can a 
machine counsel?15 The reasoning pursued in addressing 
that question led to my more certain understanding that 
it is the decisional process itself that a person must come 
to understand in vocational decision-making, not just his 
vocational decisions. Since the argument has been published 
more fully elsewhere, I merely summarize the argument 
here since I do need the summary for credibility of my 
later assertions. 

Ellis and I cannot even completely specify the procedures 
necessary to create such a machine. Therefore, either a 
counselor must counsel as he does now or students must be 
educated to live as if they counsel themselves, as we pre
ferred and advocated in that paper. 

The argument starts with the proposition first that the 
ultimate goal in counseling is to help another come to ever 
more thorough understanding of his processes of problem 
solving. Then think of counseling in relation to so called 
knowledge as if counseling is to use knowledge. In doing so, 
define counseling problems as design problems, namely prob
lems associated with the "as if" use or purpose of an opera
t.ion and it.s better understood assimilative strategies. 

Next assume that the goals of a Counseling :Machine are 
those of counselors, thereby making the goal in both enter
prises identical to that extent. If the purpose of counseling 
is to cultivate man's capacity for personal problem solving 
as then argued, then the content and the process of coun
seling must become one for the student just as Bruner16 

contends for education itself. Ergo, counseling is a paradox. 



The Potential Role of the Computer in Intuition and Self Development 787 

The principle product of counseling is the matured capacity 
to guide one's self. Counselors themselves formally attempt 
to help a student to counsel himself. Hence, there is a 
seemingly simple solution to the paradox; the helper or 
counselor must have some initiative but the student must 
maintain control. 

Next, analyze the question, "Can a machine counsel?" 
as means of specifying how the counselor might have initia
tive while the student maintains control. A machine and a 
human need neither be nor act alike to warrant belief that a 
machine can ground education in research. All that is re
quired is indication that the machine and the counselor 
have the same goals. 

Counseling and its machine have identical goals if, when 
a person has a problem related to his understanding, he 
could be equally well sent to either. Understanding is a 
time extended working out or articulation of self i...'l problem. 
The mechanism for the working out of self in problem and 
thus for the inscription of understanding, is the activity of 
deciding and the problems with which counselors really 
ought to concern themselves are, therefore, those of deciding. 
The process of deciding is distinguished by aspects of antici
pation and of accommodation with potentially notable 
steps being in each of the aspects. In enunciating the aspect 
of accommodation, one thing to which the individual must 
accommodate in decision-making is the decision process 
itself. In the most general sense, before we would be willing 
to say that a person has been counseled by machine, this 
machine would have to accomplish at least three things. 
First, it would have to reflect the elements of decision
making about self in career problem in such a way that the 
language of the process was exposed to the student. Second, 
the machine must encourage the development of awareness 
of the process of articulating the decisions in the problem 
and the relation of self to problems as viewed by that pro
cess. Finally, the machine must allow and foster the in
dividual's accommodation to the decision process both in 
terms of specific predicament and, more importantly, in 
terms of the process in general. 

The ascription in the above model of counseling of the 
capacity for something in the person to be both object and 
subject is what causes the counselor difficulty ordinarily 
one step removed from the student being counseled and, 
therefore, an even more insidious difficulty unless closely 
watched. We must, therefore, take considerable pain to 
associate counseling with this primary process in the in
dividual, not just in the "helper" or counselor. 

Can a machine X a Yin Z? 

Vistas loomed before me as I began to understand the 
power of the logic to which Ellis had introduced me. I 
began to understand that in answering a question such as, 
Can a machine X? I was not necessarily building a machine, 
merely engaging in the exercise of specifying the procedure 
I would use were I to fulfill the goals of X. And I was doing 

so sufficiently explicitly so that another could know not 
alone what I was doing, he would know what I was not 
doing in terms of what he wanted the procedure to do 
and/or accomplish. But most important of all, I "vas vvTiting 
a procedure in which a person interactively came to com
prehend X. The question, Can a machine X? therefore 
became a favored means by which I began to tackle a num
ber of vexing interactive or thought problems. 

My first extension of the question, Can a machine counsel? 
was an attack on the question, Can a machine develop a 
career?17 This paper laid out my then current thinking 
about a theory of career development. The theory was a 
lot like I have written in describing ISVD above. But the 
paper also extended the form of the question, Can a machine 
X? to that of Can a machine X a Y? The form proved up 
to extension. The issues evolved around what purposes you 
wanted the machine to fulfill. If you stated those purposes 
with care, seeing to it that you left comprehension of prob
lem forming to the interacting person himself, the problem 
still stayed that of comprehending the decisional process 
itself during times of decision, not just the decision itself. 

The next extension of the question, Can a machine coun
sel? was to the question, Can a machine admit an applicant 
to continuing education?18 That paper laid out my current 
thinking about how the admissions decision might be col
laboratively attacked by college applicant and admissions 
officer, not just unilaterally attacked by the admissions 
officer himself. This extension stretched the Can a machine 
X? question into a Can a machine X a Y to Z? question. 
New theory in measurement becomes possible within such 
a context. So does new theory in collaborative decision 
making. And the logic of Can a machine X? remained 
valid so long as I kept the focus on a decisional process 
which would itself be comprehended to the mutual satis
faction of two parties, not just applied unilaterally by one. 

In the last few years, I have extended the logic to the 
question, Can a machine ground education in research? I 
approached this question of the form, Can a machine X a 
Yin Z? in two phases. In the first phase I wrote "Research 
and an Education Machine."19 This paper adapts the logic 
of "Can a Machine Counsel?" step by step and outlines a 
so called Research Machine which would become an ISED 
(Information System for Educational Decisions). I next 
extended the argument in "An Educating Research Machine 
Game."3 This paper essentially presumes that the logic of 
the Research Machine is generally available-as it should 
have been had the John Dewey Volume come out in 1971 
as expected-and proposes that 've continue to program 
for the imaginary Educating Research Machine as a game 
if we can't get together enough financial resources to pro
gram an Educating Research :Machine itself. In both of 
these papers I proposed that an IS ED (a hypothetical In
formation System for Educational Decisions) would need 
to program the capacity to create IDM's (instructional 
decision models) within the dual capacities (a) of ERIC 
(Educational Research Inquiry Centers) in which an IDM 
could be tacitly implied from its literature, and (b) of 



788 National Computer Conference, 1974 

interactive logical analyses in which the functions of data 
construction for ID::\f testing could take place. 

A major problem in education is that of delegation, the 
freely offered and freely accepted responsibility for knowing. 
In designing the research-grounding educational machine, 
we must, therefore, carefully watch the processes by which 
a person can inform himself while making his educational 
decisions in interacting \vith an IDM programmed along 
with educational research literature and numeric data as 
well. The ISVD is an example of how this informing process 
must be further programmed as the higher order program
ming about the informed self acting upon thought-grounded 
decisions. In the ISVD example, we can more explicitly see 
the substance and functions which the research-grounded 
education machine would have to offer the student if it 
were to fulfill its assigned purpose of making the student 
an applied scientist of the art of living. These functions 
include a substance (machine capacity needed is data files) 
which could be queried and used to inform one's percepts 
(machine capacity needed is scripts) so that accommodation 
of the decision-making process in that substance (machine 
capacity needed is access routines) would ensue and be 
useawith eff6i:'tless-ease iii -tlie system---U"nachine-capacity 
needed is system programming). In relating the ISVD 
example to the research-grounding education machine, we 
should thereby partially design the latter so that it has the 
functions of the former in relation to assimilating the knmvn. 

At the present time, I am engaged with John Peatling 
in writing a monograph which we are tentatively entitling, 
"A Group Theory of Constructionist Personality Recon
struction." This monograph draws together much that 
ISVD has birthed. The monograph begins with "Research 
and an Education lVlachine." It then goes through a series 
of chapters in which John Peatling has opportunity to 
present a mathematical group theory of personality reor
ganization. In this theory, a group of 16 personality traits 
are presented which have, through empirical research, 
proved themselves to satisfy the properties of a mathemati
cal group. Furthermore, Peatling extends the framework 
of the group to show how new elements can be brought 
into the group through the self to make it a group of 32, 
64, etc. elements. The monograph concludes with the con
c~ption of hierarchical I'estructuringwhich is applied "to 
the self. The last chapter uses what has now emerged for 
me as the proven logic of the question, Can a machine X 
a Y in Z? to address the ultimate personal question, Can a 
machine ground self in personality? 

A proposal-initiate and play a life career machine game 

What currently exists as a Life Career Machine, itself is 
impressive although still relatively trivial. True, there are 
several programs for interactive career guidance and a 
proposed theory of interactive career development. There 
are several programs for interactive numerical analYRiR 
"\vhich go far in helping the educational researcher to so11le 

his problem by relating to his data in more penetrating ways. 
However, not many people have dared challenge educa
tional research in terms of its capacity to illuminate the 
problems and understandings of students so that they grow 
in self-correcting ways from the improved judgmental 
functions and structures of others. The achievement of 
that objective requires the giving of the powers of numeric 
analysis to students themselves, not just to educational 
researchers. The writing of computer programs which give 
students and citizens the capacity to conceive problems as 
educational researchers and responsible citizens do, when 
students and citizens are supposed to be in the step of in
duction in the deciding process, would go far in improving 
the education of all in an ISLD-like machine, an Informa
tion System for Life Decisions. However: the potentia.l 
would essentially have to embed an existing or revised 
computer program for computing multivariate and other 
statistics in the general linguistic decisional framework of 
an ISED. Hutchinson20 made a step in this direction when 
he programmed for the ISVD a procedure which v,,"ould 
have given students in the system opportunity to specify 
conditions which they wanted to fulfill in their choices of 
()ccupati6haIid/of educati6nandthen rep(}rted fiomvari
abIes and observations available in the system the discrimi
nating probabilities of a student's fulfilling his desires. 

Although Peatling and I obviously are far from having a 
self-grounding personality machine, we think that we have 
proposed a generally interesting possibility for career educa
tion, educational research, and self in personality through 
our analysis. The possibility is to start with a definition 
of self in personality intended simultaneously to inform the 
person being analyzed, not just the analyzer engaged in the 
investigation. Furthermore, by acting a.s if a machine could 
be constructed \vhich would ground self in personality within 
the outlined purpose, we would essentially force ourselves 
to specify as best we can and whenever we can what that 
machine would have to be like. We would thus take the 
obvious step of acting upon realization that computers are 
not one but many machines and that the writing of proce
dures is in effect specifying machines. The machines may 
not themselves exist and perhaps need never exist. We only 
ourselves need to think that they could exist when they 
satisfy the fUIlCtions outlined for them and take the forms 
programmed for them. Therefore, what we would actually 
do, which we consider of far more value, is to discipline 
ourselves to specify a procedure which might elaborate our 
understanding of giving meaning to grounding self in person
ality, thereby figuratively closing the logical gap between the two. 
As we do so, we must expose the procedure as well as the 
understanding. Understanding must be our end thought, 
procedure our means whereby. Psychology may well be our 
product, particularly an embryonic psychology of the tacit 
mechanism of comprehension-including the comprehension 
of career, counseling, educational research, and self in 
personality. 

The most fundamental premise of our argument is that 
nnnATV\"t"V\rI...:In+;.rt.Y'I At n 'Y'\n ..... i-;n'l'lln,.. rll'"\£');C'!;.....,.,.... ;'" ,.... ....... + .............. 1_ ... :J. ............ l..c 
UJVVV.1.l.J..1.1..lV\..Lav.LV.L.l V.1 UI l'ClI.l l,,'.1\...I\ •• UGliJ. u\. ... :u.lO.lvJ..L .10 l..lV l/ U111.Y ll)I::)t;11 



The Potential Role of the Computer in Intuition and Self Development 789 

possible but that accommodation of the general decision process 
in a subject and in comprehension is itself possible. Accommo
dation of the general decision process itself is a phenomenal 
feat both literally and figuratively. Accommodation of the 
decision process itself requires that one is able to comprehend 
the principles of design in purpose well enough to deal with 
them somewhat as objects while being beset on all sides 
during decision by their subjective effects. However, the 
realization of this power seems to open one to the interactive 
life which is now so much in demand and even seems so 
much more frequently present among us these days. Reason
ing ·with thought as if there ·were a machine in man seems to 
me to bring this potential of man closer to the surface than 
has heretofore been possible. However, as you determine if 
I did that or not, set your understanding as your end thought 
goal, use my procedure as your means ·whereby, and compre
hension of epigenesis in decision-making development may 
well be the synergetic product for yourself-if you interact 
privately with your doubts sufficiently to understand, of 
course. 

Some of the capabilities of computers are now nearing 
manlike proportions. Computers, of course, will never be 
men. Ho,vever, an understanding of how computers function 
may well raise for us the question of how much of a machine 
man really is. Comprehension rests in questions, not answers. 
Let ourselves question-" ... dividing in order to combine, 
combining in order to divide-and simultaneously."21 

THE ROLE OF THE CO~.vIPUTER IX IXTGITIOX 
AXD SELF DEVELOP;\IEKT 

I undertook this exercise to show you the role of the com
puter in intuition and self development. I deliberately started 
my exposition by describing the simple involvement of the 
computer in an information system we are all familiar with, . 
the ERIC information system. I then went on to note the 
effects "'hich Walz and Rich predicted that an information 
system has in general and would specifically have on counselor 
education. I next proposed that the effects Walz and Rich 
suggested for educational research in general and for counselor 
education specifically were too precious to be limited to 
researchers and counselor educators. I therefore proposed 
that 've help them to be realized by every person by arranging 
the right adjuvant relationship between persons and facts/ 
data, namely that of mediation. I proposed that the ISVD 
which I next described in its theoretic detail was an example 
of such a needed relationship. 

I took off from the relatively specific detail of the ISVD 
into realms of the mind ,vhich can be conjured up ,vhen you 
design a system which has the purpose of facilitating the 
comprehension of the decisional process itself during times 
of decision. I suggested that you could advance from con
sidering the question, Can a machine X? to the question, 
Can a Machine X a Y in Z? without invalidating the logic 
of the paper, "Can a Machine Counsel?" I proposed that 
my current extension of that question was to compre-

hension of the machine which is in each of us and can 
with appropriate programming bring about a grounding of 
self in personality. 

I have obviously left the practical realm far behind me by 
nmv. It therefore remains for Katz, Harris, and Blasch to 
return you to the realm of reality. Katz ,vill do so by treating 
his SIGI as an example. Harris will do so by treating her 
CVIS as a second example. Both of these systems have 
compatibility with the design of the intended ISVD. They 
therefore remain as operating illustrations of the rudimentary 
circumstances which ISVD was designed to bring about. 
Blasch concludes by considering computer-based computer 
systems of the future. I trust he mentions Discover as a ne,,," 
system in that future potential. Discover is the offspring of 
CVIS which comes closer than any other system to approxi
mating the extensiveness of ISVD. In doing so it will also 
come closer than other systems to facilitating the compre
hensions of the decisional process while helping another with 
his decisions. This is the condition needed to cause compre
hension of the value of intuition in self development. 

REFEREKCES 

1. Harris, JoAnn (ed.), Tested Practices: Computer Assisted Guidance 
Systems, National Vocational Guidance Association, Washington, 
D.C., 1972. 

2. Tiedeman, D. V., "Self and Hierarchical Hestructuring or Harmoniz
ing the Information Process and Self," Character Potential, 1973, 6, 
pp. 149-162. 

3. Tiedeman,D. V. and A. L. Miller, "An Educating Research Ma
chine Game," in Handy, R., (ed.), Education and the Behavioral 
Sciences, 1973, in press. 

4. Polanyi, Michael, The Tacit Dimension, Doubleday, Garden City, 
N.Y., 1966. 

5. Walz, G. R. and J. V. Rich, "The Impact of Information Systems on 
Counselor Preparation and Practice," Counselor Education and 
Supervision, May 1967. 

6. Tiedemann, D. V., "Information Generation: From Data Retrieval 
to the ISVD," CAPS Capsule, Spring 1968, 1, 1- and 10. 

7. O'Hara, R. P. and D. V. Tiedeman, "Occupational Facts and their 
Use: Mediation and the Generation of Occupational Information," 
in Somers, G. G. and Kenneth J. Little (eds.), Vocational 
Education: Today and Tomorrow, Center for Studies in Vocational 
and Technical Education, University of Wisconsin, Madison, Wise., 
1971, pp. 63-97. 

8. McLuhan, M. and Q. Fiore, The Medium is the Massage, Bantam 
Books, New York, 1967. 

9. Polanyi, M., The Study of Man, Phoenix Books, University of 
Chicago Press, Chicago, 1958. 

10. Flavell, J. H., The Developmental Psychology of Jean Piaget, Van 
Nostrand, New York, 1963. 

11. ~';eisser, U., "The ~fultiplicity~ of Thought," British Journal of 
Psychology, 54:1, pp. 1-14. 

12. Bruner, J. S., Toward a Theory of Instruction, Harvard University 
Press, Cambridge, Massachusetts, 1966. 

13. Kubie, L. S., Neurotic Distortion of the Creative Process, Kansas 
University Press, Lawrence, 1958. 

14. Tiedeman, D. V. and R. P. O'Hara, Career Development: Choice and 
Adjustment, College Entrance Examination Board, New York, 1963. 

15. Ellis, A. B. and D. V. Tiedeman, "Can a Machine Counsel?", in 
Holtzman, W. H. (00.), Compuler-AsS'i:sted !-;uslrudion, Testing and 
Guidance, Harper and Row, New York, 1970, pp. 345-372. 



790 National Computer Conference, 1974 

16. Bruner, J. S., On Krwwing, Harvard University Press, Cambridge, 
Massachusetts, 1962. 

17. Tiedeman, D. V., "Can a Machine Develop a Career? A Structure 
for the Epigenesis of Self-Realization in Career Development," 
in Whiteley, J. M. and Resnikoff, A., Perspectives on Vocational 
Development, American Personnel and Guidance Association, 
Washington, D.C., 1972, pp. 83-104. 

18. Tiedeman, D. V., "Can a Machine Admit an Applicant to Contin
uing Education?" in Commission on Tests, Report of the Commission 
on Tests. II. Briefs, College Entrance Examination Board, 1970, 
pp. 161-182. 

19. Tiedeman, D. V., "Research and an Education Machine," (to have 

been in Hedges, W. D. (ed.), Education and the New Techrwlogy, 
(the 1970 Yearbook of the John Dewey Society for the Study of 
Education), a project which was finally aborted in 1973). The author, 
Northern Illinois University, College of Education, DeKalb, Illinois, 
1971. 

20. Hutchinson, T. E., Level of Aspiration and Statistical Models Ap
plicable to the Problem of Refining Choice Bases for Career Develop
ment, unpublished doctoral dissertation, Harvard Graduate School 
of Education, Cambridge, Massachusetts, 1968. 

21. Richards, I. A., Speculative Instruments, Harcourt, Brace and World, 
New York, 1955. 



Use of computer in relation to critical guidance factors 

by RUSSELL N. CASSEL 

University of Wisconsin 
Milwaukee, Wisconsin 

The single most critical of all guidance factors must of 
necessity deal directly with manpower national resources, 
and this always means getting the right man in the right 
job.1,2 Indeed, the productivity of a nation's manpower 
derives alone from such a consideration. Much more im
portant than productivity is the morale of people, but which 
derives directly from their own personal efficiency in pro
ductivity, and which under the principles of humanistic 
psychology leads to their own self-actualization. Then too, 
the most cherished possession of men everywhere remains 
human freedom, and the only real freedom that man ever 
knows is the degree to which he becomes self actualized, or 
the degree to which he makes use of his own full potential 
for productivity. 

As a nation progresses from a typical agrarian economy to 
a characteristic industrial economy, the number and com
plexity of job career areas necessary increases significantly. 
As the number and complexity of job career areas increases, 
the need for more effective career guidance of individuals 
becomes the more critical. Today The United States De
partment of Labor Dictionary of Occupational Titles lists 
approximately 65,000 different job areas. No guidance coun
selor could conceivably remember precise details of even a 
small fraction -of that colossal listing. The computer, on the 
other hand, is able in the most precise manner possible to 
retain an unlimited number of job area requirements, with 
the most current up-dating possible. 

Curricular offerings in both the elementary and secondary 
schools of our nation can be relevant in the minds of students 
only to the degree to which they perceive such activities as 
useful in their personal and social living. The single using 
agencies of the schools remain the employers who hire the 
student graduates, and the worth of an employee must in 
the final analysis be measured in terms of the marketable 
skills possessed. Thus, the expected outcomes of effective 
vocational guidance must be measured in terms of the number 
and quality of marketable skills possessed by student 
graduates. 

At the beginning of the 12th grade in the U.S. character
istically more than about 80 percent of the students vow that 
they will go on to college, but typically fewer than half that 
number matriculate in educational pursuit beyond high 
school the following year.l More than half of those who 
actually matriculate in post-high school educational pursuit 

791 

even a year later have no clear idea of their career goals 
being prepared for. At the end of the first year after high 
school one out of every three students insist that their 
career goals established while in high school were no longer 
acceptable.3 These are the kind of facts that the U.S. Com
missioner of Education, Sidney P. Marland, Jr. is referring 
to when he maintains, "We are embarrassed by many ugly 
statistics."4 

CRITICAL GUIDANCE FACTORS 

Vocational career guidance is not something that exists 
independent of either the curricular offerings in a school, or 
of the students involved in the learning process and activity. 
Rather, it is something that is intimately related to both of 
these phenomena. 

Humanistic psychology 

The principles of humanistic psychology establish the con
text in which effective career guidance alone can emerge; 
for at the near center of the guidance process there is a very 
unique human being that makes a difference. 5 ,6,7 Each of 
these principles serves to set the stage and establish perim
eters, and to violate anyone of them serves only to ·weaken 
the career guidance process. This is not intended as a dis
course on humanistic psychology, but the basic principles 
are highly germane as critical guidance dynamics: 

(1) Feelings Critical-feelings are paramount and derive 
largely from hidden communications of people. 

(2) Focus on Purpose-all human activities are designed 
to achieve well established goals or needs based on 
personal satisfactions. 

(3) Need Hierarchy-more basic needs in man must be 
reasonably well met before one is able to deal with 
cognitive and social areas. 

(4) Intrinsic Value of Activity-activity must be an "end" 
with "intrinsic" value; not a "means" with "extrinsic" 
value. 

(5) Personal Grmvth-Iearning must lead to personal 
growth of the individual and serve to increase personal 
welfare of individual. 



792 National Computer Conference, 1974 

(6) Autonomous-man is a "free will" agent, but com
petency in decision process alone can insure this 
status. 

(7) Love of Knowledge- permits individual to unfold, 
become undressed, and scrutable both psychologically 
and spiritually. 

(8) Gaming Spirit-seeks to capture the play spirit of the 
child with all of its characteristic spontaneity and 
sincerity of purpose. 

(9) Identification with Men-strong and enduring interest 
in the continued improvement of man's welfare. 

(10) Strong Democratic Values-rich and poor, black and 
white, old and young all are alike, and the group 
determines the rules for play. 

(11) Fresh Appreciation of People and World-people not 
dulled with feeling that each new experience is same 
old hat, but stimulating and new. 

(12) Self-Actualization-man is truly himself only when 
he is making full utilization of every potential for 
own self destiny. 

(13) Transcendental Meditation-man is able to utilize 
new levels of reality and capable of mind control 
through biofeedback techniques. 

(14) Competency Learning-"mastery" deals with "knowl
edge about" but "competency learning" proceeds to 
"experience with." 

(15) Human Freedom-ranges on scale from "freedom from 
want" through self-actualization to space for freedom 
of movement with self-awareness. 

Decision making competency 

Until and unless an individual has developed decision 
making competency one cannot be expected to deliberate 
on career planning; any more than one could be expected to 
render a concert 'without the development of musical skills. 
Failures in vocational guidance must be attributed directly 
to competency in decision making of the individual; for this 
is the vehicle alone that generates; not the notions of one's 
parents or the guidance counselor. 

It is not mere coincidence that drug abuse, delinquency, 
and crime have been increasing in somewhat the same degree 
as the complexity of jobs have increased. There is every 
evidence to suggest that such atypical behavior is a symptom 
of real and progressively increases in failures of career guid
ance in our schools; that the 70,000 guidance counselors are 
not without blame in this regards. If we are to deal with 
accountability in this regards we can be assured that persons 
lost in the activities of gainful productivity are not likely 
victims of drug abuse, uelinquency, and crime. 

Precisely the same decision competency that is a necessary 
requisite for effective career planning is equally a necessary 
requisite for the prevention of drug abuse, delinquency, and 
crime. The continued progressive increase in atypical behavior 
(drug abuse, delinquency, and crime) attests boldly to the 
real empirical absence of decision mfl.king competency on the 
part of individuals, and one cannot psychologically expect 

such behavior to be changed even a mite without improved 
competency in decision making. The "Back to religion" 
movement, so characteristic of a Christian nation like the 
United States, can only serve as a temporary relief; for it 
promises the individual that someone outside of the indi
vidual will be responsible for control. It 'was Christ \vho took 
the single talent from the lady who failed to use it, and 
gave additional talents to the one with the many talents 
who used them. 

Decision making is learned behavior, not unlike every other 
psychological process, and it is somewhat akin to similar 
mathematical processes typically learned in the school. The 
decision making competencies of individuals may be im
proved through systematically organized "mastery" and 
"competency" activities and experiences; not unlike that of 
every other human competency. It is the most critical of all 
human learning, for it serves as the fulcrum on which human 
freedom is attained and achieved. It is the single vehicle 
by which man must seek to gratify his higher needs and 
achieve self-actualization; there can be no substitute. 

Career guidance/unction 

Individuals in a Democracy have a right to the oppor
tunity to be able to discover and identify their strong and 
weak talents, and to be able to relate such discoveries to 
meaningful career planning. Each and every citizen of a 
Democracy has the right to expect to consider the full 
repertoire of job careers available in the narrowing of career 
planning choices. This, then, is the nature of career guidance 
we have come to know as a professional and scientific 
discipline. 

Where the relevancy of curricular offerings are challenged 
by large numbers of students it must be considered to repre
sent a failure in career planning and guidance. Whenever 
the concept of relevancy of curricular offerings is raised, 
there must be career guidance to resolve the issue. No other 
logic will suffice. This, to be sure, does not mean that avo
cational skills and avocational pursuits are unrelated to 
marketable skills; for anything that pertains to the welfare 
of the individual contributes directly to his own personal 
productivity. 

If, as Jung maintained, back of every successful man 
there is a woman, and back of every successful woman there 
is a man (each the personal image of an ideal mate); so back 
of every successful and happy family there is a successful 
job. Not unlike drug abuse, delinqueney, and crime the 
progressive increase in divorce is just another symptom of 
our failure in career guidance. The problem of relating 
personal interests, aptitudes, and values to job requirement.s 
constitutes the process of career guidance as we know it in 
the present state of the art. Computer based programs 
promise to improve this process immeasurably. 

Educational guidance function 

In an indu:sLrial ecunomy where complexity progresses 
uninhibited the educational guidanee follows logically to 



Use of Computer in Relation to Critical Guidance Factors 793 

career planning. Indeed, the one cannot be conceived inde
pendent of the other. It is becoming increasingly obvious 
from the work of Benjamin Bloom and Kenneth B. Clark 
that educational opportunity in the past has established a 
myth of "individual differences" in the intelligence of indi
viduals of alarming proportions. 8 If, as Bloom and Clark 
attest, every healthy normal individual is capable of perfect 
mastery in learning situations, where teachers know how to 
teach them, the concept of educational guidance takes on 
new and unheard of dimensions. More and more we come to 
realize from emerging research3 that the social climate, atti
tude, and context in which behavior occurs is far more 
important as a causative dynamic of success or failure than 
what has been traditionally attributed to intellectual capa
bility of individuals. 

Human relations 

Last, but not least, a critical factor in career guidance is 
the human relations of people. The great mass of promotions 
in both industry and government are based largely on how 
well one gets along with others; not on how competent one 
is technically. This, to be sure, is as one would expect under 
the principles of humanistic psychology. The heart of human 
relations, must deal with first understanding what causes 
people to like each other, and the usual consequence of such 
behavior. Second, \vhat causes people to dislike each other, 
and the consequence of such behavior. Indeed, human re
lations must be considered to be another indispensable 
marketable skill that is developed; not unlike that of decision 
competency. We have not placed too much emphasis on 
academic barriers in the past, but we have failed to place 
enough emphasis on aspects of personal development, and 
have too often failed to go beyond mastery learning (knowl
edge about) to competency learning (experience 'with) in 
relation to much of what is important in the life space of 
individuals. 

DEDEV 

The Computerized Decision Development System (DEDEV) 
is designed as a means for developing decision competency 
in individuals. It is comprised of 14 regular modules and 
six supplementary modules for use as a credit course in 
high schools or college. Each separate module is an inde
pendently organized program of experiences dealing with 
different dimensions involved in the decision making process. 

1-iodule I-Introduction to DEDEV. 
Module II-Humanistic Psychology. 
Module III-Locus of Control. 
Module IV-Functions of the Ego. 
Module V-Models of Excellence. 
Module VI -Systems Analysis. 
Module VII-Vector and Valence Analysis. 
Module VIII-Conscience and Ego-Ideal Development. 
Module IX-Deliberation Literacy Hierarchy. 

Module X-Group Leader Decision Pattern. 
Module XI-Power and Decision Making. 
Module XII-Organizational Climate and Management. 
Module XIII-Decision Counseling in Helping Relation-

ships. 
Module XIV-Dynamics of Human Freedom. 
Module XV-Levels of Human Freedom. 
Module XVI-Functions of Human Brain. 
Module XVII-Steps in Transcendental Meditation and 

Mind Control. 

"O-P-A-H-U-D-E" method utilized 

The method utilized for implementation of DEDEV makes 
use of a technique referred to by the acronym "O-P-A-H
U-D-E," with each letter in the acronym representing a 
separate aspect of the procedure. The method makes use of 
both a conventional and an nonconventional approach. 

Conventional approach-This aspect makes use of the first 
four letters in "O-P-A-H-U-D-E," and with the letters 
standing for the following activities: 

o-Orientation-\vhere individuals are informed as to 
expected outcomes, and where the stage is set for 
such outcomes to emerge. 

P-Presentation-where a half hour video tape by an 
authoritative person presents the theoretical dis
cussion of MODULE. 

A-Assimilation-where teacher or paraprofessional dis
cusses theory presented for relating it to experience 
of subjects. 

H-Humanization-where theory is related to persons 
through the experiences of the participants. 

N onconventional approach-This aspect makes use of the 
last three letters of "O-P-A-H-U-D-E" and with the letters 
standing for the following experiences and activities: 

U-Utilization-where computer-based gaming and 
simulation assigns individuals to surrogate roles at 
cutting edge of confrontation with "meaty" social 
problems. 

D-Differentiation-where participants are assigned 
similar surrogate roles in precisely same social 
meaty problems, but this time as confronters or 
exploiters. 

E-Evaluation-where the computer provides immedi
ate kno\vledge of progress or success with kno\vledge 
of degree of such success. 

J.11 astery to competency 

Typically, the conventional approach utilized in O-P-A-H
U-D-E is expected to yield information about, or mastery 
of theory in relation to the various dimensions or ~fODULES 
of DEDEV. The nonconventional approach seeks to provide 
empirical experience in the utilization of such newly pre-



794 National Computer Conference, 1974 

sen ted theory in a variety of contexts, and ranging from 
use of confrontation to being confronted. A "meaty" social 
problem for purposes of DEDEV is defined as an exaggeration 
of the typical conditions, and representing situations that 
can and do happen, but that would be expected to be the 
exception to the rule. Range of choices provided always 
include positions of (1) conformity, (2) antithesis of con
formity, and (3) middle-of-road. In addition, there are two 
other choices representing varying degrees of referenced 
continuum. For every choice both hazards and consequences 
are programmed into the computer. Always, hazards repre
sent future risks that are external to individual; while likely 
consequences represent past tense with impact present on 
individual. Correct answers programmed into computer range 
from normative base for corresponding persons (typical 
persons 12 to 18 years of age), to theoretically assigned 
correct responses based on theory involved, i.e., BASPAT 
assigned each of four answers as being (1) autocratic sub
missive, (2) democratic parliamentarian, (3) autocratic ag
gressive, or (4) laissez faire, and depending on the definition 
given by Lewin in his now famous Iowa studies.9 

Evaluation of DEDEV 

A number of different evaluative studies have been ac
complished on DEDEV, some of which are still in progress. lO •n 

The first important evaluation was of an informal type ac
complished by American Institutes for Research. 12 This study 
was very favorable and suggested that DEDEVbecome th'e 
nucleus of a doctoral program in the helping relationships 
area. The second study was accomplished by The Far West 
Research Laboratory and was equally positive in findings and 
it was of the same observational type as was the AIR st~dy.13 
Next came the Kim Wyman informal assessment where he 
asked to use these programs for a group of colleges in Aus
tralia, and where he suggested that DEDEV was one of two 
such programs in the United States that were ready for 
school in his written report. DEDEV was a portion of treat
ment provided approximately 250 parolees in 1968-69 'with 
recitivism being reduced from high in the 60's percentages to 
low in the 20's percentages. 14 A formal study was accomplished 
making use of ROTC students at The University o(\Viscon
sin-Milwaukee, and it was equally positive in findings for 
support of DEDEV.15 Two separate doctoral dissertations 
now under way-one with high school students and the other 
with college students-deal squarely with formal aspects of 
an evaluation of DEDEV.27.l1 

Computer soft-ware 

The computer program for driving DEDEV has been 
written in a number of different higher level computer 
languages: (1) FORTRAN IV, (2) FORTRAN V, (3) BASIC, 
(4) ALGOL, and (5) ASSEIvIBLER for the PDP-8. 

VOCGUYD 

The Milwaukee Computerized Vocational Guidance System 
(VOCGUYD) was developed jointly by Professor Cassel of 
The University of Wisconsin-Milwaukee and persons in the 
Guidance Department of The Milwaukee Public Schools 
(Terry Mehail, Alfred Thurner, and Ralph Onerheim). 

Career choice field 

All 293 job career areas listed in the U.S. Department of 
Labor Occupational Outlook Handbook, 1970-71 Edition with 
their primary "shredouts" (instead of one nurse, several 
nurses of different specialties; instead of one college oro
fessor, several college professors of different specialties; in
stead of one physician, several physicians of different special
ties; etc.) were included. This represents a total of 1,187 job 
career areas, covering the entire range of the DOT (Dictionary 
of Occupational Titles) 22 Job Skill Requirement Areas. This 
included, for example, 47 jobs in art, 30 in business relations, 
85 in clerical, 41 in counseling and social work, 92 in crafts, 
37· in education and training, 47 in elemental wofk, 59 in 
engi~eering, 36 in entertainment, 43 in farming and fishing, 
189 III machine work, etc. 

Search and screening criteria 

Seventeen different "search and screening" criteria are 
included in VOCGUYD in four different areas of concern: 
(1) Personal Interest of Participant, (2) School Success, 
(3) Special Aptitude, and (4) ·Work Values. 

Personal interest-Here six different criteria are available 
each one dealing with a different aspect of personal interes~ 
of the individual, but with a great deal of overlap among 
some of them: (1) Kuder Occupational Interest Inventory 
areas, (2) Social levels of Goodenough Socio-economic Hier
archy, (3) Data, persons, or things from DOT; (4) school 
l(lvel desired to attain for entry into job, (5) DOT Job Skill 
Requirement Areas, and (6) Ohio Interest Survey scores. A 
participant may request to search and screen from among 
the 1,087 jobs by use of either of these six criteria. If an 
individual, for example, selects the Kuder, the computer 
promptly displays the 10 different areas of the Kuder (out
door, mechanical, computational, scientific, persuasive ar
tistic, literary, musical, social service, and clerical), and 'asks 
which of them is of interest for the narrowing of career 
choices. The same general procedure would be followed if 
one of the other six criteria were selected. 

School success- This criterion ma.kes use of the individuaFs 
Grade Point Average (GPA), and is merely used to determine 
if an individual's past school success warrants inclusion of 
semi-professional and professional job areas. 

Special aptitudes-This was designed to make use of 
multiple aptitude test scores for the narrowing of career 
choices, and includes six of the areas from The Diffemntill,] 
Aptitude Test Battery: (1) Verbal Ability, (2) Numeric~i 



Use of Computer in Relation to Critical Guidance Factors 795 

Ability, (3) Abstract Reasoning, (4) Clerical Speed and 
Accuracy, (5) Mechanical Reasoning, and (6) Space Re
lations. These may be used as the basis for search and 
screening, or as a means to check one's special aptitude 
against an interest area selected. If one of the six personal 
interest criteria are used for search and screening, critical 
special aptitudes are depicted for jobs selected (meaning 
that aT-score of 50 or better is generally suggested for 
success in that area of aptitude). 

W ork values-The four factor areas of the Super Wark 
Values Inventory are used for this area: (1) Material, (2) 
Goodness of Life, (3) Self-Expression, and (4) Behavior 
Control. These four areas may be used precisely as described 
for the special aptitude areas. 

Interrogation function 

Generally, five questions critical to each of the separate 
1,187 job career areas are programmed into the computer. 
These questions have been compiled by approximately 100 
Career Advisory Board Members to the Milwaukee Public 
Schools; ·with persons from specific job skill requirement 
areas writing the questions for their own areas of competence. 
Each of the questions is weighted in terms of importance to 
success in the job area. The purpose of questions is to make 
use of the computer to relate the participant's personal 
interest, school success, aptitude, or work values to the 
specific job requirements. After a computer interrogation 
for a particular job, a Career Success Index (CSI) is pro
vided depicting degree of agreement between the interests 
expressed by the participant and the job requirements. 

Career success index 

Individuals are expected to proceed with the VODGUYD 
search and screening until a minimum of from three to five 
CSI's of average or better are obtained. Such job areas are 
then the subject of a more intense and concentrated investi
gation with the assistance of a Vocational Guidance Coun
selor. VOCGUYD is not intended to replace the counselor, 
but to supplement such services. 

Fostering career maturity 

Where individuals are not concerned with identifying spe
cific career job areas, but rather with the development of 
"Career Maturity/' as is typically the case for the junior 
high school student, or with elementary school age students, 
from five to eight individuals may work ·with a single teletype 
or Cathode Ray Tube (CRT) as an "1-0" Station to the 
computer. 

A uxiliary programs 

A whole series of career related Computer Assisted In
struction (CAl) programs are included with VOCGUYD. 

For example, each of the 17 search and screening criteria 
are the subject of such an auxiliary program. Individuals 
desiring information on such criteria may ask computer for 
such a CAl program. Similarly, tests typically associated 
with career planning are also the subject of such CAl units, 
i.e., GATB, NATB, DAT, etc. Other subjects, for example, 
include: women, economics, job satisfaction, etc. 

EDGUYD 

The Milwaukee Computerized Edu,cational Guidance System 
(EDGUYD) was developed jointly by Terry Mehail of the 
Milwaukee Public Schools, and Professor Russell Cassel of 
The University of Wisconsin-Milwaukee. VOCGUYD and 
EDGUYD are considered to be intimately related programs. 
Indeed, EDGUYD functions much the same as was de
scribed for VOCGUYD. Instead of job career areas for 
EDGUYD, four year post-high school educational facilities 
are the subject matter and concern. For ·Wisconsin, not only 
four year colleges, but all post-high school facilities of any 
type are included. EDGUYD includes 1,811 post-high school 
facilities, with 130 being from Wisconsin. States like Alaska, 
Wyoming, Guam, and Virgin Islands only have one or two 
schools; ·while states like California and New York each have 
more than 100 (103 and 151, respectively). 

Search and screening criteria 

There are 12 different search and screening criteria, each 
one based on a three digit number: (1) State or Location, 
(2) Type of School, (3) Type of Student Body, (4) Insti
tutional Control, (5) Admissions Policy, (6) Enrollment, 
(7) Cost, (8) Type of Community, (9) Special Considerations, 
(10) Type of Degrees Conferred, (11) School Term, and 
(12) Proximity to Milwaukee. 

Interrogation function 

Five or more questions have been programmed into the 
computer for each of the 1,811 schools included. Where an 
individual selects a school of interest, the computer begins 
the interrogation along the same lines as for VOCGUYD. 
Here the objective is to narrow choices from the total avail
able schools to a few for more intense study with the aid 
of a guidance counselor. The interrogation by the computer 
is designed to relate the interests of the individual with 
specific school requirements. Again, each of the interrogation 
questions is assigned a percentage value or index, with all 
questions for a particular school always adding up to 100 
percent. At the end of each such interrogation, the computer 
provides an Educational Success Index (ESI) that depicts 
degree of agreement between personal interest of subject in 
relation to school requirements. 



796 National Computer Conference, 1974 

Educational success index 

As with the case of VOCGUYD participants are expected 
to proceed with the EDGUYD program until they have 
produced from three to five CSI's of "Average" or better 
as a basis for more intense and concentrated research and 
study, and for purpose of working with the Guidance Coun
selor. Again, the EDGUYD program is not intended as a 
substitute for the counselor, but rather a supplement. 

A uxiliary programs 

A number of typical CAl programs related to educational 
guidance have been programmed into the computer, and may 
be used in connection with EDGUYD. These CAl programs, 
for example, include tests dealing with education such as: 
(1) DAT, (2) Iowa Tests of Educational Development, 
(3) Meaning of I.Q., (4) Preliminary Aptitude Test Battery, 
(5) Scholastic Aptitude Test Battery, etc. It includes the 
"Mastery Learning" concept of Bloom, the "Critical De
velopment Levels" of Havighurst, and a series of programs 
d~_:;tJing withE;ec:uring finances for a post-high _ schooL edu-:
cational pursuit. 

Fostering career maturity 

Just as with VOCGUYD from five to eight persons can 
work at a single console with EDGUYD for purposes of 
developing career maturity. This 'would be the characteristic 
manner for use of EDGUYD by junior high school and 
elementary age students. 

HUMRELAT 

The -Computerized Human Relations Program (HUMRE
LAT) was designed as a means for developing human re
lations positive skills in individuals. It is planned as a three 
credit course for a lower division college program, and may 
be profitably used by high school students for credit, as 
well. Eight different MODULES are included in HUM
RELAT, each designed for a two week period of intensive 
study and experiences: 

Module I-Social Climate. 
Module II-Scientific Decision Process. 
Module III-Interpersonal Attraction. 
Module IV-Interpersonal Rejection. 
Module V-Confrontation and Crisis. 
Module VI-Group Process and Balancing. 
:Module VII-Disadvantaged. 
Module VIII-World Social Problems. 

Based on research findings 

HUMRELAT represents the "end product" of a careful 
reYiey~· and study of course descriptions of the 17 diITerent 

technical institutes in Wisconsin. The teachers of human 
relation courses in each of the 17 technical colleges were 
asked to indicate their specific preference for inclusion in 
such a course from a questionnaire. l6 The questionnaire in
cluded 21 major topic headings with 84 subtopical ones. It 
was compiled from the existing courses in human relations 
presently features at the 17 colleges. 

The eight different modules contained in HUMRELAT 
are those clusters of related subtopics from the questionnaire 
receiving the highest ratings by the faculty at the 17 technical 
colleges. The sequencing of the modules was based on psycho
logical continuity. 

"O-P-A-H-U-D-E" method utilized 

The "O-P-A-H-U-D-E" described under DEDEV is used 
with HUMRELAT. Both the conventional and noncon
ventional aspects are included. Half hour video tapes are 
available for presentation of each of the modules by an 
authoritative figure. The development of positively orien
tated human relation skills is deemed as the most important 
expected outcome, .. arHl-which are considered to be indis
pensable marketable skills in relation to manpower resources 
of a nation. 

CASTY 

The UWM Computerized Case Study Analysis (CASTY) 
is a program designed for use in the "School Psychology 
Practicum," but may be appropriately used for a \vide range 
of other purposes. Here real live cases are programmed into 
the computer, and participants may engage in dialogue with 
such persons as in real life. Participants inform computer 
from what vantage questions are directed and all previously 
derived information from that respective vantage will be 
recalled on the cue of key words or phrases. When questions 
are directed at the subject, answers are in first person, viz., 
What is your name? My name is Jennienoread, or Jodifferent, 
etc. Questions directed at the psychologist, physician, teacher, 
etc., for example, are answered in third person, viz., Do you 
know the subject involved in this study (to family phy
sician) ? Yes, I have been the family physician, was present 
at her birth, and know J ennienoread well. CASTY could 
be used for empirical experience in diagnosing confrontation, 
crisis, and exploit in every conceivable arena of life. 

REFERENCES 

1. Marland, S. P., Jr., "Career education: every student headed for a 
goal," American Vocational Journal, 1972a, XLVII, pp. 34-38. 

2. Cassel, R. N. and T. Mehail, "The Milwaukee Computerized Voca
tional Guidance System (VOCGUID)," Vocational Guidance 
Quarterly, 1973a, 21, 3, pp. 206-213. 

3. Flanagan, J. C., J. T. Dailey, M. F. Shaycoft, W. A. Gorham, 
D. B. Orr, and I. Goldberg, Design for a Study of American Youth, 
New York, Houghton Mittiin Company, 1962. 



Use of Computer in Relation to Critical Guidance Factors 797 

4. ~1ar1and, S. P., Jr., "Educational communications-the future is 
now," Educa~ion, 1972b, 93, 1, pp. 3-9. 

5. Buhler, C., "Humanistic psychology as an educational program," 
American Psychologist, 1969, 24, 8, pp. 736-742. 

6. Rogers, C. R., "Some new challenges," American Psychologist, 
1973, 28, 5, pp. 379-387. 

7. Cassel, R. N., "Fundamentals of humanistic psychology," World 
Journal of Psychosynthesis, 1973a, 5, 4, pp. 21-24. 

8. Bloom, B. S., "Recent developments in mastery learning," Educa
tional Psychology, 1973, 10, 2, pp. 53-57. 

9. Barker, R. G., J. S. Kounin and H. F. Wright, Child Behavior and 
Development, New York, McGraw-Hill Book Company, 1943. 

10. Nault, J., Computer-Based Decisionmaking Learning to Foster Per
sonal Development in College Students, (Doctoral dissertation in 
progress), 1974. 

11. Heise, M., Use of Decisionmaking Learning to Foster Development in 
High School Students, (Doctoral dissertation in progress), 1974. 

12. Tiedeman, D., An Informal Assessment of The University of Wiscon
sin-Milwaukee Computerized Guidance Programs, Institute for 
Research in Education, American Institutes for Research, Palo 
Alto, California, 1972. 

13. Keyes, D., Drug Education, U.S. Department of Health, Education, 
and Welfare, National Institute of Education, PREP Report No. 
36, 1972. 

14. Mehail, T., Evaluation of The UWM Computerized Guidance Pro
grams with secondary school students, unpublished informal report, 
Milwaukee Public Schools, Milwaukee, Wisconsin, 1969-71. 

IS. Cassel, R. N., and S. D. Stroman, "Evaluation of The Computerized 
Decision Development System (DEDEV) for use with ROTC 
students," Journal of Instructional Psychology, 1973, 1(1) pp. 12-22. 

16. Cassel, R. N., J. G. Atwood and A. C. Lie, "The Computerized 
Human Relations Program (HUMRELAT)," College Student 
Journal Monograph, 1973,7,2, No.2. 

17. Brubaker, D. L., and R. H. Nelson, Jr., Introduction to Educational 
Decision Making, Dubuque, Iowa, Kendall/Hunt Publishing Com
pany,1973. 

IS. Cassel, R. N., "Computer orientation,' , Newsletter of the Association 

for Development of Instructional Systems (ADIS), September, 1971, 
pp. 11-16. 

19. Cassel, R. N., "Fundamental principles for teaching by objectives," 
Peabody Journal of Education, 1972a, 50, 1, pp. 75-S0. 

20. Cassel, R. N., "The UWM Computerized Decision Development 
Competency System (DEDEV)," Psychology, 1972b, 9, 3, pp. 40-46. 

21. Cassel, R. N., "Different types of computer-based interaction 
modes," College Student Journal, 1972c, 6, 3, pp. 74-76. 

22. Cassel, R. N., "Helping relationships and decision making compe
tency," World Journal of Psychosynthesis, 1972d, 4, 7, pp. 26-30. 

23. Cassel, R. N., The Psychology of Decision Making, North Qunicy, 
Massachusetts, The Christopher Publishing House, 1973b. 

24. Cassel, R. N., The Computerized Decision Development System 
(DEDE V), Jacksonville, Illinois, Psychologists and Educators, Inc., 
1973c. 

25. Cassel, R. N., "The UWM Computerized Case Study Analysis," 
Psychology, 1973d, 10, 2, pp. 6-14. 

26. Cassel, R. N. "Psychological aspects of human freedom. Psychol
ogy," (Pending), 1973e. 

27. Cassel, R. N.,and L. P. Blum, "The School Dropout," The Pointer, 
1970, 13 (4), 53-56. 

2S. Cassel, R. ~. and T. Mehail, "The Milwaukee Computerized Voca
tional Guidance System (VOCGUYD)," Jacksonville, Illinois, 
Psychologists and Educators, Inc., 1973b. 

29. Cassel, R. N. and T. Mehail, "The Milwaukee Computerized Edu
tional Guidance System (EDGUYD)," Education, 1973c, 94, 1, 
pp.38-43. 

30. Grayson, L. P., "Challenge to educational technology," Science, 
1972, CLXXV, pp. 1216-22. 

31. U.S. Department of Labor, Occupational Outlook Handbook, 1970-
71 Edition, Washington, D.C., 1970. 

32. U.S. Department of Labor, Dictionary of Occupational Titles. 
Washington, D.C., 1965. 

33. Wyman, K. T., "Computers and educators: some observations," 
Keynote Discussion at The Seventh Annual Conference of Association 
for Educational Data Systems, Ellenville, ~ew York, October 1-4, 
1972. 





Effective demonstration of minicomputer-based systems by a 
novel digital simulation 

by SADASHIVA S. GODBOLE 

Babcock & Wilcox Company 
Lynchburg, Virginia 

INTRODUCTION 

Minicomputer-based systems are becoming more and more 
popular. A typical system of this type consists of an industrial 
process to be controlled/monitored and a minicomputer 
connected to it through an interface. (See Figure 1.) Effective 
demonstration of such a system is often required in many 
instances. For example, it is required in industry during the 
initial phase of justification (to the management) for the 
manufacture of such a system. It is also required in education 
while teaching minicomputer-based gadgets like optimum 
controller, Luenberger observer, and Kalman filter. Normally 
this is done through the usual digital or hybrid simulation. 
However, the usual digital simulation, while capable of 
providing all the desired information, is not very appealing 
because it does not physically bring out the conversation type 
interaction between the process and the computer. This is not 
true in the case of a hybrid simulation of the system where the 
process is simulated on the analog part and the minicomputer 
is played by the digital part. The hybrid simulation, however, 
requires the availability of a hybrid computer, a fairly 
expensive equipment, and mayor may not be easy to 
implement depending on the features of the particular hybrid 
computer facility and the availability of personnel conversant 
with hybrid programming. Of course, a prototype system 
using the actual process and the proposed minicomputer is the 
most direct demonstration of the system but is generally a 

n /control 
Inputs 

Ir--------r 

Minicomputer Process 

Interface 

Figure I-A typical minicomputer-based system 

799 

quite costly approach. Thus there seems to be a lack of an 
all-digital simulation that has the same appeal as the hybrid 
simulation and which is interactive and conversational. Such 
a simulation is developed next. 

THE NEW APPROACH 

Due to its interactive and conversational natures, the new 
simulation to be developed must necessarily use teletype 
terminals connected to a, usually remote, time-shared 
computer facility. Furthermore, in order to have the same 
appeal as the hybrid simulation, the new approach should use 
two teletypes, one for the process and one for the minicom
puter, each capable of accepting the necessary parameters 

Remote Computer 

k \ ~ f(k) 
f(k) 

\ \ s"-. 
k 

x-y ~ Teletype 2 
Plotter Minicomputer 

Teletype 1 
Process 

I 

I I 
I 

l I 

Figure 2-8et-up for the example simuiation 



800 National Computer Conference, 1974 

100 C P"OGri41'" I"'I'IICO'lPUTEH.F'4 
110 C 
120 C SUBhOlHI\JE::i j{EQUlj{ED~ "IO'lE 
130 C 
140 C 
150 C 
160 C 
170 r: 
180 
190 C 
200 C 
210 C 
220 C 
230 C 
240 C 
250 
260 
270 
280 
290 
300 
310 
320 
330 
340 
350 
360 C 
370 10 
~RI) 

390 C 
400 C 
410 
420 
430 
440-
450 
460 
470 
480 
490 
500 
510 
520 1000 

, s:nr 
540 
550 
560 
570 1005 
580 
590 
600 
610 
620 
630 
640 
650 
660 
670 50 
680 
690 C 
700 100 
710 
720 
130 
740 110 
750 120 
760 130 
770 140 
780 150 
790 

F ILb !"!\,\)IPUL!\TED~ 
1. BPI4nY l'ILE KLA::iT.DAT 
2. BINARY FILE VALUE.DAT 
3. SYI"BOLIC FILE l'LAGl.DAT 
4. SYMBOLIC FILE·l'LAG2.DA', 

rlEI"AhK 
FILE::i 3 "''1D 4 CO"lTAI"l 1 HECORD EACH AND ::iHOULD 

BE I'IITIALIZED TO -11111 l'ORMATCIX.I5) BEl'OHE EXECUTIII/G 
THIS PROGHA"l. 

l'YPE 100 
PPU::iE • PAUSE TO SET PLOTTEH. PL TL' 

I'IITIALIZE THE FILE !<LAST.DIH 
K=-I 
TYPE liD 
ACCEPT 130. LAST 
OPE'I (1, 'KLA::iT. OAT'. RAII/DIO( 1 ).BI'IARY> 
wHITE (111) K 
liliI'fE (12) LAST 
CLOSE (I) 

CONTI"lUE 
!FLG!-! 

READ K. l'<K) AND PLOT. 
OPE'll O,'KLAST.DAT'. kANDIO(l).BINAHY> 
HEAD (Ill) K 
CLOSE (I) 
Il'<K.EQ.-I) GO TO 1000 
J=K+I 
OPEN (2.'VALUE.DAT'. HANDIO( I).BI"IARY> 
READ C2'J) l'lJNCT 
CLOSE (2) 
IX=K*IOO 
IY=IrIX( 4999.5*(l'U'ICI+I.0)+.S ) 
TYPE 120. IX.IY 
CONTINUE 
iWE·,j"(J,···FLAGI. DAl·;. OUTPUT, SYMBOLIC. ERR= 1000) 
"'RITE(3.150) I!'LGI 
CLOSE(3) 
Il'CK.EQ.LAST> GO TO 50 
COI'HIIIlUE 
OPEN( 4. 'FLAG2. DAT'. INPUT. SYMBOL I C. ERH= 1005) 
HEAD( 4. 150) I F"LG2 
CLOSE(4) 
Il'<IF"LG2.LT.0) GO TO 1005 
I!'LG2=-1 
OPE'\!( 4. 'l'LAG2. DAT'. OUTPUT. SYMBOL I C) 
Ilk I TE< 4.150) Il'LG2 
CLOSE(4) 
GO TO 10 
TYPE 140 
STOP 

l'OnMATe/// 
, I AM THE I"IIIIICO"lPUTEH. I hEAD THE VALUE OF' THE' 

/' PRnCFSS OUTPUT OVER A GIVE'll I'IIPUT nANGE ::iUPPLIEr,' 
3 /' BY !'IE A'IID PLOT IT •• //) 

FOHt"ATCIHO, 'UPPER LII"IT OF AHGWE'IT RA"lGE=?:',S) 
l''lHMAT C 5X. IS. 5X. I 5) 
l'OrlI"'ATC5I> 

FORMATCIH .'*** E'IID OF SIMULATIOIll *** ?LTT'///) 
rrlH"ATC IX, I 5) 
E"lD 

100 
110 
120 
130 
140 
150 
160 
170 
180 
190 
200 
210 
220 
230 
240 
250 
260 
270 
280 
290 
300 
310 
320 
330 
340 
350 
360 
370 
380 
390 
400 
410 
420 
430 
440 
450 
460 
470 
480 
490 
500 
510 
520,'" 
530 
540 
550 
560 
570 
580 
590 
600 
610 
620 
1';30 
640 
650 
660 
670 
1i80 
/\90 
700 
110 
720 
730 
740 
750 
7('0 
770 
780 
790 
800 
810 
820 
830 
840 
850 
860 

C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 

C 
10 

20 

100 

110 

120 
130 
140 
ISO 
200 
210 

PROGRAM PROCESS.F4 

SUBROUTINES CALLl:D: NO"lE 

FILES MANIPULATED: 
I. BINARY FILl: KLAST.OAT 
2. BINARY FILE VALUE.DAT 
3. S'flo<BOLIC FILE FLAGI.OAI 
4. SYMBOLIC FILE FLAG2.DAT 

REMARK 
FILES 3 AND 4 CONTAIN O'IE RECORD EACH AND SHOULD BE 
INI TIALIZED TO -1 1111 FORMATe IX. I 5) BEFO!iE EXECU'I'I"lG 
THI S PROGRAto<. 

TYPE 100 
TYPE 110 
ACCEPT 200.A 
TYPE 120 
ACCEPT 200. DT 
TYPE 130 
ACCEPT 200. W 
ADT=A*DI 
WDT="'*OT 

TYPE 140 

COIllTIflJUE 
OPEillC 3. 'FLAGI. DAT·. I'IPU1. SYMBOLIC. ERR= 10} 
READC3.210) IF"LGI 
CLOSE(3) 
IFClFLGI.LI.O) GO TO 10 
IFLGI=-I 
OPE'IIC 3. '!'LAGI. DAT'. OU1PUT. SYMBOLI C) 
ili<ITEC3.210) IF"LGI 
CLOSE(3) 

OPEN FILE KLAST.DAT 
OPEIII C I. ·KLAST. DAT'. itANDIO( I ),BIIIIARY> 
READ (III) K 
tFCK.EQ.-I> REAOC1I2) LAST 
I FCK. EQ.LAST> STOP 
K'f!H'r .- . -

WRI TE C I' I) K 
CLOSE C I) 
FK=F"LOAT<K) 
VAL = EXPC-ADT*FI{) * SINCWD'hFK) 
l'YPE 150. K. VAL 

OPEIII FILE VALUE. DAT TO IIRI TF FCI{) 
OPEl\) (2.·VALUE.OAl'. HA'JDIOCI).BINARYl 
LOC=K+I 
WHITE C2ILOC) VAL 
CLOSE (2) 

IFLG2=1 
CONTI"lUE 
OPE'\JC 4. 'FLAG2. DAT'. OUTPUI. SYMBOL I C. Ehh=20) 
wRITEC4.210) IFLG2 
CLOSE(4) 
GO TO 10 

FOP-P'!ATC//I 
• I AI" THE PKOCESS. I UPDATE THE PIiEV[OU", VALli!:. K-I' 

/. OF THE TIME ['\JDEX SUPPL[En BY THE "II1[CO"'PUH:."( A'lL 
I' COI':PUTE THE VALUE OF IHE FU"lCTI 0'1' 

4 /IOX, 'FCI{)=EXPC-A*K*DT)*::iI\,CIN*'<*DI).' 
5 /. I THEN PHIlIlT '<. FCK) AND SE'JD THE::iE ilALUE::i 1'0 "!,-,., ' 
6 /' MI'lICOMPUTErl •• //) 

FORMAT e1H • 'SPECIF'Y A. OT. IN PI FrlEE FOt/MAT'/IH , 'A=7 
FOtlMAT CIH .'uT=? '.$) 

FORMAT e1R .' 101=1 '. $) 

FORMATe IRO •• IIf"E IflJDEX K 
FORMAT e1H .3X.I3,9X.F6.3) 
FO",",AT e5E) 
FORMATe IX, I 5) 
END 

FOO'I' -----------_ 

•• ! ) 

-----') 

Figure 3-Listing of programs PROCESS and MINICOMPUTER 

and of displaying significant results. The two terminals 
should also preferably operate as independent units (like two 
main programs, not as one main program and one subroutine) 
linked only through the interface of disc files or appropriate 
device assignments. The above requirements make the new 
approach non-trivial. Such an approach, satisfying all the 
above requirements, has indeed been realized and is exempli
fied by the following simple example. 

EXAMPLE 

Suppose the process IS a device which can calculate and 
print the valucf(Tc) of an exponentially decaying sine wave at 

any desired time instant k, namely, 

f(k) = e-akflt sin(wk t:..t) 

where a, wand t:..t are the process parameters. Further 
suppose the minicomputer connected to this process dyrwmi
cally supplies the desired time instant k to the process fl.nd 
plots the function f(k) returned by the process for h[O, N]. 
Separate main programs, PROCESS and MINICOM
PUTER, were written for use on the Tymshare Inc., 
California facility to describe the respective functions. The 
communication between the two programs was established 
through disc files. These programs were then executed from 
twu Leletype terminals, the terminal playing the minicom-



Effective Demonstration of Minicomputer-Based Systems by a Novel Digital Simulation 801 

R~ MINICOMPUTEh 

I AM THE MINICOMPUTER. I READ THE VALUE OF THE 
PROCESS OUTPUT OVER A GIVEN I~PUT HANGE SUPPLIED 
BY ME AND PLOT IT. 

PAUSE TO SET PLOTTErl. PLTL 
TYPE G TO COIllTIIIIUE,X TO EXIT. 
*G 

UPPER LIMIT OF ARGUMENT hAII/GE=?: 100 

0.8 

0.6 

0.4 

0.2 
.:.t: I ;;:-

0.0 10 20 • 
40 

-0.2 

-0.4 

~::: 1 
*** E'IlD 01' SIl'WLATION *** PL 11 

so 

-R~ PROCESS 

I AM THE PROC·ESS. I UPDATE THE PH.EVIOUS VALUE K-l 
OF THE TIME INDEX SUPPLIED BY THE MINICOMPUTER AII/O 
COMPUTE THE VALUE OF THE FUII/CTION 

FCK)=EXPC-A*K*DT)*SINCW*K*DT). 
I THEN PRINT K, FCK) AND SEND THESE VALUES TO THE 
l'!INICOMPUTER. 

SPECIFY A, DT, W 1111 FREE FO~AT 
A=? 0.7 

DT=? 0.1 

W=? 2.5 

TIME INDEX K FCK) 

10 
11 

0.0110 
o.?:n 
0./117 
(l •. ~~:l 

U."-;i"
r)."-(,J 

(). f., ')~ 

11. (..,nj 

1)."1,) 

n./J1 /, 
().'~'.n 

'J. 177 

Figure 4-Terminal activity during the example simulation 

puter being connected to a Hewlett-Packard HP-7200A x-y 
plotter. The set up of this simulation is shown in Figure 2, 
the programs PROCESS and MINICOMPUTER, in Figure 3 
and the terminal activities in Figure 4. 

CONCLUSION 

In conclusion, it can be said that we have developed a new 
approach to simulate minicomputer-based systems. The 

simulation is digital, interactive and conversational. Only an 
elementary digital programming experience and moderate 
equipment are needed for such a simulation. This approach 
has potential applications in education as well as industry. 
Further, the interactive and conversational nature of the new 
simulation lends itself very well to games played through the 
computer. The players at distant locations can enter their 
moves (strategies) and receive the opponents' responses 
through their terminals. 





Twenty commandments for managing the development 
of tactical computer programs 

by JAMES A. WARD 

Naval Ordnance Systems Command 
Arlington, Virginia 

INTRODUCTION 

The million-,Yord AEGIS computer program has been 
successfully completed. 

We think that the successful development of this computer 
program has been due to a number of management decisions 
and policies used during the life of the contract. The purpose 
of this paper is to express these principles so that we can be 
sure to adhere to them during the next phase of AEGIS 
development and so that others may be able to adopt those 
applicable in their projects. Obviously many of these manage.,. 
ment ideas are used by others, but 'possibly not nearly to the 
degree as in AEGIS. 

BACKGROUND 

AEGIS is a shipborne anti-air ,yarfare system consisting 
principally of a phased array radar (AN/SPY-I), a weapon 
direction system (MK 12), a missile launcher (MK 26), Fire 
Control System (MK 99), the SM-2 missile, Control Com
mand System (MK 130), and other related components 
including a number of AN/UYK-7 computers. Under phase 1 
of the present engineering development contract ,ve are 
building a minimal system to test AEGIS feasibility. This was 
put together first at a Land Based Test Site (LBTS) in New 
Jersey and checked out against live targets. It is now being 
installed in USS NORTON SOUND for tests at sea. 

The digital computer program generated for AEGIS is a 
large and fundamental part of the system. It has always been 
anticipated that generation and integration of these programs 
would be one of the high risk technical endeavors in the 
development of the system. While there have been problems 
there has been none of any great significance. 

A very considerable computer programming effort has been 
made for EDM-l, the first engineering development model, 
for it requires four AN/UYK-7 computers, each about the 
operational equivalent of an IBM 360/65. There are well over 
a million words of code, half operational and half support. 

As this is written at the end of the test at the Land Based 
Test She, the AN/DYK-7 computers (there are now 11 
under AEGIS control) and their programs are performing 

803 

very well. However, there have been considerable difficulties 
in the past. AEGIS was the first project to receive AN/ 
UYK-7 computers. Serifils 3, 4 and 5 were delivered in the 
spring of 1970. Some 6 months later a major change 
(addendum 4) was made which changed the character of the 
computer, programming-wise. Then for the next 2 years we 
had all the infantile problems of a new computer design. The 
usual manufacturing errors and design deficiencies were 
found the hard way by the computer programers. The 
maintenance men also had to learn. 

There were more than usual initial problems with computer 
programming. Essentially the computers came bare. 

There were delivered the Ultra 32 assembler, a factory 
acceptance test, and a few utility programs (load, dump, 
decimal to octal, octal to decimal). There ,vas no compiler, no 
operating system, no executive, no standard set of utility 
programs, and not even a maintenance/fault isolation 
program. All of these had to be developed. However, the 
compiler, not developed by AEGIS, gave the most trouble. 

The compiler (now know as CMS-2Y) was scheduled to be 
delivered to the contractor as Government Furnished Equip
ment in June 1971. We needed it a year earlier, so we accepted 
as an interim compiler, the CMS-2Q, which operates on the 
642B computer to generate code for the AN/UYK-7. This 
caused some inefficiencies, but in order to meet our production 
milestones we have continued ,vith it. However we plan to 
change to the CMS-2Y for the next phase of AEGIS program 
development. 

MANAGEMENT DECISIONS AND POLICIES 

Let us nmv look at some of the management decisions and 
policies that have made the computer programming successful 
in spite of these difficulties. Noone of these is the reason for 
our success, however we feel it would be risky to drop any, or 
even let any of them deteriorate. Certain of them are sine qua 
non. These will be starred in what follows. We feel that 
continuation of all of these will assure success in developing 
the computer programs for the DG, the first AEGIS ship of 
the fleet. There is no significance in the order in which the 
following management decisions and policies are presented. 



804 National Computer Conference, 1974 

Most of them are performed by many organizations. The 
significance of our implementation is that we do each of them 
to the Nth degree. 

a. We have one prime contractor. The programming was 
done by two subcontractors under supervision and 
management of the RCA, the prime. Moreover, RCA 
is responsible for building and integrating the entire 
weapon system which greatly simplifies things. (The 
development of the MK 26 launcher and SM-2 
missile are by other primes, but RCA is responsible for 
integration. Besides, these do not involve the computer 
programming under discussion.) 

b. We use only unit computers. Four computers are used 
in operation of the first engineering development 
model, two of which are required to operate the radar. 
Many have questioned why we did not use multi
processing since a great deal of information is passed 
from computer to computer during every second of 
time. We felt in the beginning (and even more so now) 
that multiprocessing introduces a whole new set of 
problems. We have found only one pre-ANjUYK-7 
tactical .military system that uses multiprocessing, 
though many systems are planning multiprocessing 
and some are having difficulties. 

Weare not against multiprocessing. Weare planning 
memory sharing for our DG operation and ·willieave open an 
option to go to multiprocessing. However we feel that for 
tactical systems the multiprocessing problems are very real 
and very subtle. We \vould like for others to solve them. We 
have our hands full (and have been successful) making our 
computer programs for AEGIS without taking on the task of 
tactical multiprocessing. 

c. Programming-wise, \ve divided AEGIS into five auton
omous computer programs. Instead of having a single 
computer system developed by a single group of 
people \ye have five groups, relatively independent, 
each writing a separate computer program. The 
programs are: 

Radar Control 
Weapons Control 
Control Command 
ATEP (the executive) 
ORTS (Operations Readiness Test System) which 

resides in the radar and weapons control com
puters. 

Each of these was aeveloped separately from documenta
tion through test and integration. Each ,vas monitored alid 
accepted by a different group in the Navy. Reducing the 
total programming effort to five smaller homogeneous pieces 
has made it possible to "eat the elephant" even without 
indigestion. 

d. We have a Computer Program Integration Document 
(CPID). In order for the five antonoH10us programs La 
mesh several hundred times per second, all the 

interfaces must be clearly defined and enforced. The 
CPID is a working document that does just that. Each 
message from one segment to another is defined to the 
bit level and the manager of each segment must sign 
agreement. Without this document, integration would 
have been essentially impossible. CPID has been one 
of the most successful documents published in AEGIS. 
It is a living workers' document that at one period was 
changing almost every week. However, every change 
must and does carry the signature of both parties to 
the interface. 

The Navy can take no credit for CPID. It was generated 
by RCA when they saw the need early in the program. It is 
not described in the contract but is informally given to the 
Navy. It will be required in the next phase of AEGIS. 

e. We developed the AEGIS Tactical Executive Program 
(ATEP) as the common executive for use in all the 
computers. ATEP is an extremely versatile executive 
able to handle the requirements of the radar, the 
weapon system, and the control command system, and 
it handles all of them very well. It has also been very 
helpful to have only the one executive. Priorities 
originating in one segment are carried across segment 
boundaries. Intersegment interfaces are greatly simpli
fied. Programmers can be shifted from segment to 
segment with changing work loads because they all 
interface with the same executive. 

f. We placed the equipment and computer programs 
(hardware and software) under the same man in each 
segment. The computer programs that make the radar 
work are just as essential to the radar system as the 
phase shifters. Therefore, the man in charge of the 
radar development must also be the one in charge of 
development of the computer programs that control it. 
This is also true for the weapons segment, the Control 
Command segment and the ORTS segment. Each 
segment has its 0\"11 group of computer programmers 
that operate under the same overall ground rules and 
control. Each segment manager is responsible for the 
entire development of those programs from require
ments through integration. Interfaces bet\veen com
puter program and equipment are worked out at a 
very low level. Changes in interface can be made 
without making a federal case. Interpretations of 
interface descriptions are ironed out at the working 
level. The normal fingerpointing between programmers 
and equipment builders is eliminated and integration 
is much, much simpler. 

g. We have a Computer Program Development Plan. 
This has not been a one-time publication, but has been 
a living document reissued as the occasion arose or our 
procedures developed. It has not been just a document 
for show (though we are proud Of it) but a document 
that is used by the Navy and the prime. 

h. We use the "build a little, test a little, integrate a 
little~~ procedure. Instead of writing the whole program 
for a segment and then testing and then integrating 



Twenty Commandments for Managing the Development of Tactical Computer Programs 805 

with the equipment, we do it in small pieces. As small 
portions (modules and usually sub-modules) are 
completed they are tested. But it does not stop there. 
These small portions of computer programs are inte
grated with the equipment. In fact, in the radar, 
weapons, and ORTS segments, the order in which 
pieces of equipment and computer programs were 
developed was coordinated so that the program could 
be integrated with the equipment as each was being 
developed. This was possible because both were under 
the same lower level management. This was also done 
across segment lines: program modules from SPY-1 
and program modules from Control Command were 
passing messages computer to computer almost a year 
before either program was complete. These were 
informal tests and integrations. However, this has paid 
off exceedingly '.vell in the formal test and integration. 

1. We have comprehensive test plans. 'Ve realize that no 
matter what the requirements are, . you get nothing 
beyond what is required to pass tests. The testing of 
computer programs is done just as is the testing of 
equipment. We have a test plan document to describe 
how the test plans are written, how the test procedures 
are written, and how the tests are to be conducted. 
With each sub-test, pass/fail limits are specified. The 
Navy program experts responsible for each test witness 
that test and verify the results to the bit level. When 
short-falls develop the program is corrected and all 
related tests are done over. 

Another important thing about acceptance tests: all of 
them are conditional. The contract requires that the prime 
make the AEGIS system operate. Conceptually it is possible for 
RCA to pass all the individual tests and the system not 
operate. (Several years ago this happened in another service.) 
In which case the contractor would have to fix the system so 
it would work. 

j. The Navy project office has computer experts. The 
manager of each of the five segments v{ith computer 
programming either is a computer expert or has a 
consultant whom he freely uses. These experts take 
part in all reviews (formal and informal) and oversee 
the contractor down to code level. The AEGIS Project 
Manager has a computer expert on his personal staff. 
The duties of these experts are not only fiscal and 
managerial but principally technical. 

k. The Navy computer program experts visit RCA, CSC 
and Raytheon. Since the beginning of the contract 
they have averaged spending more than one working 
day in 8 at the contractor's facility. They know the 
managers and chief programmers. They follow the 
schedule and fiscal operations. They witness all the 
demonstrations and tests to the bit level. They 
reviewed the performance and design specifications. 

1. Additionally we have computer program experts in the 
Technical Representative Office. This Technical Rep
resentative Office is an extension of the Navy Project 
Office in the prime contractor's building. Both this 

office and the Project Office have a Navy expert for 
each of the five programming segments. Hence there is 
daily contact. The Technical Representative Office is 
in addition to the normal Defense Contract Adminis
tration Services Office. 

m. We held thorough design reviews. The Preliminary 
Design Reviews (PDR) and Critical Design Reviews 
(CDR) were "knock down-drag out, bloody" affairs 
that took months. Every paragraph in every specifica
tion was questioned in detail. The Navy participated 
at the same depth as the contractor. Eventually a 
step-by-step procedure for CDR's was worked out and 
published as guidance to all. Some of the specifications 
went through several iterations before acceptance. It 
was a very painful experience for the Navy, the prime, 
and the subs; but it paid off. We got excellent, 
detailed specifications that we all understood and 
interpreted the same way. 

n. Naval uniformed personnel operate the computers. 
They are given several hours each '.veek to sit at the 
consoles and operate the computers as they control the 
AEGIS equipment. They conduct all the demonstra
tions for the Navy Project Office and visitors. 

This has assured us· the console procedures and their 
computer programs fo11O\v standard Navy practice and that 
they are adequately described so that prospective users can 
actually use them. Such personnel have been most helpful in 
keeping AEGIS operating procedures in the real, practical 
world. 

o. We have made great use of simulators. The Weapons 
Control Segment has a simulator for the interface of 
the radar segment and another for the Control 
Command segment so that the Weapon program can 
operate as if the other segments are present and 
operating. Likewise the radar and C C segments 
simulate each other and the weapons segment. There 
are also simulations of the launcher, the illuminator, 
a ship's motion simulator, etc. These simulator 
computer programs are all checked out and authenti
cated. They usually (but not always) run in another 
computer. Programs are first tested against simulators 
before being tested with equipment or other programs. 

p. We have realistic scenarios for test and demonstration. 
These have enabled the Navy to gain confidence, 
besides being very useful debugging tools. 

q. We have very rigid configuration control of computer 
programs. Master tapes are kept in two places under 
lock and key. Changes in computer program are made 
only after very elaborate procedures. Since the 
programming is done by subcontractors, each change 
is separately authorized by the contracting officer at 
RCA. Current "father," and "grandfather" master 
tapes are maintained in the library. 

r. The Navy placed the computer equipment under 
configuration control. The computers and their peri
pherals were procured over a period of years. "Minor" 
manufacturing changes have been such that computer 



806 National Computer Conference, 1974 

programs would not have been interchangable except 
for the rigid configuration control of the project office. 
Likewise, the maintenance would have been different 
in the older and newer computers. 

s. The computer programming has received topside 
attention. The head of the AEGIS office has taken 
personal interest in the computer programs. "The 
computer program is as integral a part of the system as 
is the equipment." The computer program develop
ment in each segment receives full attention of top 
management and is discussed at (essentially) every 
Navy review. Problems that arise in computer pro
gramming go to the top for solution just as easily as 
those in equipment design. This support to the Navy 
personnel responsible for these programs has been 
invaluable. 

CONCLUSION 

Weare quite sure that by carrying out these management 
policies we have: 

a. reduced the high risk of computer program develop
ment. 

b. had fewer than anticipated difficulties with integration 
(e.g., the radar demonstrated computer controlled 
tracking capability in half the anticipated time). 

c. held down the cost of program development (though 
aggravated by problems with a new computer). 

Therefore to others faced with development of large 
tactical computer programs we recommend adoption of these 
management policies. 



An optimal pollution surveillance-schedule generating system 
(OPGENS)* 

by LYNN J. McKELL 

University of Minnesota 
Minneapolis, Minnesota 

and 

GORDON P. WRIGHT and DAVID G. OLSON 

Purdue University 
Lafayette, Indiana 

INTRODUCTION 

In recent years there has been a general increase in concern 
for the quality of the environment. I ,7 While this concern has 
been manifest in many different ways, considerable attention 
has focused in the area of water pollution because of the 
following factors: 

(1) A few shipping accidents have caused spectacular local 
threats to the environment. 

(2) Leaks in offshore oil well drilling operations have 
received widespread news coverage. 

(3) A rising demand for petroleum products throughout 
the world complicated by political considerations has 
produced a corresponding expansion in tanker shipping 
operations and in offshore oil operations, both of 
which increase the potential threat of pollution to 
the ocean environment. 

These factors combined with the increasing public concern 
has precipitated substantial activity in the area of pollution 
detection and deterrence. Consistent with these efforts the 
United States Coast Guard is establishing a surveillance 
system that will detect and track spillage of oil and other 
hazardous materials, and monitor changes in pollution levels. 
The basic system of surveillance within the Coast Guard 
relies on the use of Coast Guard shore units, harbor patrol 
craft, and helicopters. Currently an effort to improve this 
system is being initiated by the use of Grumman HU-16E 
aircraft equipped with infrared and ultra-violet sensors. The 
addition of these aircraft represents an effort to use advanced 
technology to improve the surveillance program. 

In this paper procedures are developed for scheduling the 
use of fixed wing aircraft in pollution surveillance patrol 
efforts. The scheduling problem of concern is a special case 

* This research was supported by a contract from the Office of Marine 
Environment and Systems, United States Coast Guard, Contract N um
ber DOT-CG-23308-A. 

807 

of the more general surveillance scheduling problem which 
need not be defined in the context of environmental protec
tion. Within the jurisdiction of the Coast Guard are a number 
of surveillance activities which are also subject to similar 
constraints and which have similar objectives. Examples of 
such activities are iceberg patrols, fishery patrols, ocean 
dumping patrols, and some types of search and rescue patrols. 
Any of these surveillance activities could be analysed using 
the procedures presented. 

The concepts developed here may also be applied to non
Coast Guard activities. For example, the scheduling of border 
patrols and United States Customs surveillance are two other 
potential applications. 

POLLUTION DETECTION AND PREVENTION 
SYSTEM 

In support of the surveillance activities to be performed 
by the HU-16E aircraft, research at Purdue University has 
focused on the development of a Pollution Detection and 
Prevention System (PDAPS). 

The PDAPS research effort has been divided into two basic 
phases. In Phase I a major analysis was conducted to examine 
the source, location, size and type of reported spill incidents. 
In addition, statistics on tanker and barge traffic as well as 
tonnages of petroleum products transported over U.S. waters 
were analyzed and regression models were developed to test 
them as pollution incident forecast models. 

A previous study by the Dillingham CorporationS examined 
a selected number of specific petroleum spill incidents and 
reported on their effect and various clean up techniques. 
However, little attention was directed at detection or pre
vention efforts, and the conclusions drawn ",ith respect to 
pollution prediction are valid only in the context of the few 
incidents examined in the Dillingham study. 

In contrast, PDAPS examines a much larger data base and 



808 National Computer Conference, 1974 

Phase I - - - -
Phase II 

I 
_...J 

Incident 
Occurring 

National, State, 
and Area 
Pollution 
Prediction 
Models 

OPGENS 

Phase II 

Model Solver Pollution 
and Schedule Surveillance 
Generator Schedules 

Figure I-Pollution detection and prevention system (PDAPS) 

focuses explicitly on the prediction, detection and prevention 
problems. 

The Coast Guard administratively is divided into several 
largegeographicciistricts; The results of Phase I of PDAPS 
were used to define geographic sectors in each of these Coast 
Guard districts where pollution incidents or potential 
polluting activities are likely to occur. These sectors are 
defined sufficiently small so that the HU-16E aircraft can 
patrol any sector in a reasonable amount of time (say 30 
minutes or less) . . 

The sectors are rectangular in shape so that patrol patterns 
can be easily specified and coverage factors and patrol times 
can be easily calculated. The exceptions to this are sectors 
defined for portions of the inland waterway system which 
may not conveniently follow a straight line path. The sectors 
defined by the PDAPS Phase I effort are generally found to 
be either areas of concentrated offshore oil well drilling 
operations or areas of high density tanker and barge move
ment such as established shipping lanes and channels, bay 
areas, port areas, and dock areas. 

The second phase of PDAPS involves the development of 
surveillance scheduling models which use some of the in
formation from Phase I as inputs and which produce as an 
output the flight schedules suitable for use in directing the 
surveillance· patrol efforts of the aircraft to the sectors as 
specified in Phase I. 

The aircraft pollution flight schedules provided by PDAPS 
for the Coast Guard are generated with two objectives in 
mind: First, the pollution flight schedules should maximize 
the expected number of pollution incidents detected. Second, 
over time these schedules should be random so as to have a 
preventive effect (deterrence) on intentional polluters. 

A general diagram of the Pollution Detection and Pre
vention System is shown in Figure 1. From this figure it is 
seen that Phase I is a major effort in collecting and analyzing 
data on activities which may be related to various forms of 
pollution incidents. In Phase II the specific needs of the 
pollution SUf,\rei!lance s~rstcm arc examined and the eOl1-

straints imposed by the implementing organization are 

considered. Information generated by the Phase I analysis is 
used as input to Phase II, and the output from the Phase II 
effort is a set of pollution surveillance schedules. 

It should be emphasized that while the surveillance 
schedules are designed for use specifically by the HU-16E 
aircraft, their use need not be restricted to this application. 
The schedules are general enough that they could also be 
used, for example, by helicopters or other fixed wing aircraft 
in directing visual surveillance efforts. The only fundamental 
difference between surveillance using these aircraft and 
surveillance using the HU-16E is in the nature of the sensing 
mechanism. Within the context of PDAPS it is possible to 
compensate for this difference by changing only one param
eter (sensor sweep width) in order to design schedules for 
specific URe by t.hese other aircraft. 

OPTIMIZATION MODELS 

The techniques used in the surveillance patrol models are 
based on work reported in the Markovian decision process 
literature. Specifically, the optimization models represent an 
extension and application of work done by Derman and 
Klein on the stochastic traveling salesman problem.4 For a 
given set of input parameters the output of the patrol models 
is a set of decision rules which give the optimal probabilities 
for going from one pollution sector to another pollution 
sector. The optimization models determine these optimal 
probabilities in a manner that maximizes the expected 
number of detections of oil and hazardous material spills 
given that there is a constraint on the number of hours 
available for a pollution patrol mission. 

In presenting the various models, reference \vill be made 
both to sectors and to states. While the difference between 
these two terms is not difficult to understand, it is important 
that the relationship between sectors and states be made 
explicit. The defined pollution sectors are geographic areas 
corresponding to ports, river and canal segments, segments 
of shipping lanes, bays, docks, and areas denoting offshore 
oil producing operations. Sectors are defined on the basis of 
PDAPS Phase I results describing the actual occurrence of 
pollution incidents or the potential occurrence of pollution 
incidents as predicted from shipping statistics. 

Prior to beginning a patrol mission, one of the parameters 
which must be specified is the amount of flight time to be 
allocated for that particular surveillance patrol effort. This 
mission flight time, M, is a constraint on the surveillance 
activity, in that no pollution surveillance schedule should be 
designed which requires more than M time units to complete. 
As a route defined by a particular schedule is· covered in a 
surveillance mission, the mission time resource is expended or 
used in two basic patrol activities. Specifically, some time is 
required in transiting from one sector to another sector and 
time is required to perform a search of a given sector accord
ing to a specific patrol pattern. Upon completion of the 
patrol pattern the aircraft is at one of the sector end points 
p:repared for transit to the next sector. 

In these models it is assumed that travel to a new sector is 



An Optimal Pollution Surveillance Schedule Generating System (OPGENS) 809 

initiated only if there is adequate time to complete the 
transit and a search pattern with enough time subsequently 
remaining for travel to the terminal air base. 

Thus a critical decision point is reached at the conclusion 
of each search pattern just prior to the next move. In these 
models a state is identified and created for every feasible 
critical decision point as described above. The state definition 
consists of a three-tuple which uniquely defines the sector, 
the sector end point, and the amount of time yet remaining 
in the mission. Let s(k; e, b) denote a state where k refers to 
a sector number, e is an end point identifier, and b refers to 
the amount of time remaining in the mission. It is important 
to realize that for any particular starting point (air base) 
and mission flight time (M), only a finite number of states 
are possible because a measurable amount of time is expanded 
for the travel and search effort in reaching any particular 
critical decision point. Several observations can be made 
about states. First note that any particular sector can be 
identified with many different states; however, the reverse is 
not true. Second, whereas a sector has only spatial dimen
sions, a state has a time dimension in addition to spatial 
dimensions so that a state represents a point in time with 
respect to the particular mission as well as a geographical 
location. In OPGENS each defined state is assigned a unique 
cardinal number which has no direct correlation with any 
element or elements of the three-tuple state identifier except 
through this arbitrary assignment. 

Suppose the current critical decision point corresponds to 
state i, then for each feasible critical decision point directly 
reachable in one move from the current position there corre
sponds a state. The set of all such feasible states directly 
reachable in one move from the current state i is called the 
successor set of i, denoted Si. 

Note that in referring to a state transition a special kind of 
"motion" is implied. Such a transition implies not just a 
travel effort but also a specific search pattern activity in the 
sector corresponding to the terminal state. It is also important 
to realize that not all state transitions are feasible. Rather a 
direct transition from state i to state j is feasible only if 
j E Si. Observe that under conceivable, albeit unusual, cir
cumstances it is possible that jE Si and jE Sk for k~i. Also 
important is the fact that even if this condition occurs, the 
corresponding state transitions may imply different search 
activities. 

PATROL PATTERN DESCRIPTION 

Each state transition implies a specific patrol activity over 
the sector corresponding to the terminal state. Depending 
upon the width of the pollution sector and the altitude of the 
patrol aircraft, a number of different surveillance patrol 
patterns may be defined for each geographic sector. Figure 2 
shows a number of alternative patrol patterns which OPG ENS 
may evaluate for a particular sector. The patterns defined in 
PDAPS and considered by OPGENS are referred to in the 
search theory literature6 as Parallel Track-Single Unit patrol 
patterns. The fraction of the sector area covered by each 

PATTERN 1 PATTERN 2 

PATTERN 3 PATTERN 4 

(I (" 

~ 

PATTERN 5 PATTERN 6 

:II 

) 
( 

( 

~ 

... 

Figure 2-Six different flight patterns for a geographical pollution sector 

pattern is an estimate of the conditional probability of a 
detection given that a spill is present in the sector during the 
surveillance search effort. This quantity is denoted as the 
coverage factor, CFij, associated with the search activity 
implied by the transition from state i to state j. Estimating 
the amount of flight time between geographic sectors and the 
amount of time required to fly a particular pattern is based on 
the appropriate ground speed at a given altitude for a good 
sensor performance. Such factors as different wind speeds 
and wind directions as well as the amount of time spent on 
detections and false alarm can cause the actual flight time 
spent in a pattern to vary from this estimate. While flight 
times are treated as known quantities, they really represent 
the best estimate of their expected values. 

As characterized, there is a benefit in terms of the expected 
probability of detecting an oil spill for a transition from one 
state to another state. There is also a cost incurred for this 
transition. The cost is the sum of the expected flight time to 
go from one geographic sector to another plus the expected 
time spent in flying the particular pattern which effects the 
transition to the successor state. The value of the remaining 
flight time b in the state i = s (k, e, b) restricts the number of 
states in the set Si. 

BASIC MODEL FORMULATION 

Let S denote the set of all states to be considered for a 
particular pollution patrol mission. Let 0 denote the home air 
station. Assume S contains N states and let Si denote the set 
of feasible successor states to state i (i = 0, 1, ... , N). 
(KotethatS=SoUS1U;;' USN.) 

Let M denote the total flight time available for the pollu
tion patrol mission. Let Tij denote the distance (in minutes) 



810 National Computer Conference, 1974 

for the aircraft to effect the transition from the exit point of 
state i to the exit point of statej. Tij= TTij+PTij where TTij 
is the distance (in minutes) from the exit point of state i to 
the entry point of the sector associated with state j and PT ii 
is the time to patrol the terminal sector according to the 
pattern associated with the transition to state j from state i. 

Let Pdij denote the probability of detecting a pollution 
incident while patrolling the sector-pattern combination 
associated with the transition from state i to state j. At 
present Pdij= (CFij ) (PCij). Where CFij is the coverage 
factor associated with the transition, PC ij is determined by 
taking the ratio of the total number of pollution incidents 
which occurred in the geographical sector associated with the 
transition to the total number of pollution incidents which 
occurred over all pollution sectors associated with all the 
states in S. This is used in the oil producing sectors in the 
Gulf. Otherwise, the fraction of all bulk cargoes of petroleum 
products traveling through the sector is used. Admittedly, it 
would be more desirable to use the a priori probability 
(APij(t» of a "pollution incident in progress" at time t, 
(the time of surveillance), instead of PC ij. However, the 
data, at present, is not available for such estimation. Hence 
PC ij is used as a-surrogate measure of-AP ij (t) . 

Let Xn denote the nth state transition upon leaving state O. 
Note X 1=(0, i), iESo and XT=(j,O), {Sj} =0, where the 
Tth transition is the last transition in a particular tour 
schedule. Next let CXn = 1 if a pollution incident is detected 
during the surveillance patrol associated with the nth transi
tion. Let CXn = 0 if no pollution incident is detected. Then 

E[Cxn I Xn= (i,j) J= I·Pdij=Pdij (1) 

for all iE S andjE Si. 
For any particular state i suppose there are m states 

(81, ... ,8m ) in Si. Thus from state i there are m possible 
actions which can be taken. Let An = (i, j) denote an effort to 
move from state i to state j (j E Si) upon completion of X n • 

We allow A n to be chosen randomly by letting 

Dia=P(An= (i, a) I Xn= (h, i) )iE Sand aE Si 

i=O,I, ... ,N (2) 

When the model is in state i, D ia represents a probability 
distribution over the set of possible actions defined by the 
successor set, Si. These Dia'S are the decisions to be deter
mined by the modela-nd satisfy the normal conditions implied 
by a probability distribution. That is 

O~Dia~l, for aE Si and L Dia=l (3) 
aESi 

Next, certain laws of aircraft movement which guarantee 
the introduction of randomness into the flight schedules are 
defined. 

Let qij(a) =P{Xn+1 = (i,j) I X n= (h, i), An= (i, a)} 

(0 if jrt Si 
I 
11- L: I(i,j, a) if a=j and a,jE Si 

/ 

jESi-{aj 

l/(i,j,a) if a¢j and a,jESi (4) 

where I( i, j, a) is a function which introduces uncertainty 
into the scheduling model. If the decision is made to go from 
state i to state a in Si, Dia = 1, then the movement is made 
with probability (1-L:jEsi-{aj/(i,j,a») instead of with 
probability 1.0 (a deterministic decision). Upon leaving state 
i the aircraft goes to state j with probability IU, j, a) 
( j ¢ a; a, j E Si). In order that the set of all feasible states, 
S, be irreducible we require that I(i, j, a) >0. 

For the models examined here, let 

I(i, j, a) = (5) 
o 

where E is a positive number O<E~I, and N(Si) is the 
number of states in the successor set Si. This definition of 
I(i,j, a) is called the UNIFORM policy because E is uni
formly distributed. The value of E is an input parameter to 
the model. 

Once the optimal decisions (denoted DiaO) are determined 
for all aE Si and iE S, then the optimal Markov transition 
probabilities are given hy 

Pil= L qij(a)DiaO for all i andjE S (6) 
aES. 

Note that P ijo = 0 for all j EE Si. 
Let R= {Dia } iES,aESj denote any set of decisions. Then the 

scheduling model can be stated as 

MODEL I: Find R to 

MAXIMIZE ER (t. CXn I Xo=O) (7) 

subject to 

ER (E TXn I Xo=O) ~M (8) 

where Xo=O denotes the initial state is 0, and 

T is the number of transitions in a schedule, and 
M is the amount of time allocated for the patrol mission. 

The objective function is the expected number of pollution 
incidents. detected while searching the sectors associated 
with the T states in the schedule defined by R. Equation (8) 
is the budget constraint where TXn is the time (in minutes) to 
effect the nth transition. 

MODEL FOR MAXIMIZING EXPECTED 
BENEFIT PER PATROL MISSION 

Let In\ 
\v) 

where 7r/s (iE S) are the steady state probabilities associated 
with the Pi/s definedin equation (6). 

Then we have 

7ri= L Xij 
jES. 

(10) 

As discussed previously Pdii is the expected benefit for 
performing the search implied by the transition from state i 



An Optimal Pollution Surveillance Schedule Generating System (OPGENS) 811 

to state j. This benefit is obtained only if we are in state i 
and make the decision to go to state j. During any arbitrary 
mission the expected number of visits to state i is given by 
1rJ1ro. This stems from the fact that the mission must begin 
at state O. Also, we know that P ij is the conditional proba
bility of going to state j given that the process is in state i. 

Therefore the objective function given in (7) can be 
reformulated as 

Find Pij(iE S,jE Si) to 

MAXIMIZE L: L: (1ri!-trO)PijPdij 
iES jESi 

Substituting the expression for P ij from (6) yields 

MAXIMIZE L: L: (1ri/1rO) L: qij(a)DiaPdij 
iES jESi aESi 

(11) 

= NIAXIMIZE (1/1ro) L: L: L: qij(a)1riDiaPdij (12) 
iES jESi aESi 

By substituting (9) and (10) into (12) the objective 
function becomes 

Find I Xia} iES ,aESi to 

MAXIMIZE (L: L: L: qij(a)xiaPdij)/L: XOj (13) 
iES jESi aESi JESo 

The budget constraint (2) can be restated as 

L: L: (1ri/1rO) ·DijTij~M (14) 
iES jESi 

where Tij is the time for the transition from state i to state j 
and M is the amount of time allocated for the patrol mission. 
Multiplying both sides of (14) by 1ro and substituting in the 
expressions for 1r/s and Dia'S from (9) and (10), then 
collecting terms results in the budget constraint 

L: XOj(Toj-M) + L: L: XijTij~O (15) 
JESo iES-{O} jESi 

To guarantee that the steady state probabilities (1r i, i E S) 
associated with the transition probability matrix P= (Pij) 

are correct the following Markov conditions must also be 
satisfied 

iES 

1rj= L: 1riP ij 
iES 

(16) 

(17) 

By substituting (10) into (16) we obtain the constraint 

L: L: Xij= 1 
iES jESi 

Substituting (6) and (10) into (17) yields 

L: L: Xia(Oij-qij(a» =0 
iES aESi 

where Oij is the Kronecker 0 defined by 

(

1 if i=j 

Oij= 

o if i~j 

Equation (19) must hold for alljE S. 

(18) 

(19) 

The constraints given by Equations (18) and (19) together 

with the budget constraint (15) and the objective function 
(13) constitute a restatement of Model I known as Model II. 

The objective function of Model II is a linear fractional 
functional in the decision variables Xij. The first and second 
constraints given by (15) and (18) both consist of a single 
equation. However, the third constraint (19) must be defined 
for every state j E S. Thus it will result in a separate equation 
for each state found in the model. 

SOLUTION TECHNIQUE FOR MODEL II 

As mentioned in the previous section, Model II has a frac
tional objective function. Problems with this structure were 
first solved by Charnes and Cooper.2 A method for obtaining 
a solution to Model II is now given. This method involves a 
transformation of variables and the addition of one con
straint to yield a linear programming model which can be 
solved using well-known techniques. 

Let 

Z ij = Xii! L: XOk 
kESo 

(20) 

for iE S andjE Si, and let 

Z=I/L: XOk (21) 
kESo 

Then by substituting (20) into (13), the Model II objec
tive function, a linear objective function in the variables Zij 

is obtained: 

Find {Zij} iES,jESito 

MAXIMIZE L: L: L: qij(a)PdijZia (22) 
iES jESi aESi 

The three constraints (15), (18), and (19) can then be put 
in a form compatible with (22) by dividing each of the three 
equations by L:kEso XOk. 

Performing this division on (19) and substituting (20) 
gives a revised budget constraint 

L: ZOj(Toj-M) + L: L: ZijTij~O (23) 
lESo iES-{O} jESi 

Perfo~ming the division on Equation (18) then substituting 
(20) and (21) and collecting terms yields 

L: L: Zij-Z=O (24) 
iES jESi 

A similar division and substitution III (19) gives the 
revised third set of constraints 

L: L: Zia(Oij-qij(a» =0 for all jE S (25) 
iES aESi 

Finally, note that the zi/s must satisfy the following 
condition 

(26) 

if the transformation is to hold true. This last equation is a 
fourth constraint. 

Together the set of constraint equations (23) to (26) with 



812 National Computer Conference, 1974 

the objective function (22) constitute a linear programming 
problem denoted as Model III. 

Solving Model III gives an optimal solution ZO and {Zd}, 
i E S, j E Si. From this the optimal solution to Model II is 
given by 

and 

Dia=Xiao/'L xil 
JEB. 

Note, however, that 

(27) 

(28) 

(29) 

Therefore the Xi/S need never be calculated explicitly. Rather 
the solution required (DirS) can be obtained directly from 
the results of Model III. 

Then the optimal transition probability matrix, po= (Pil) 
is given by (30) 

Pijo= 'L qij(a)DiaO iES,jESi (30) 
aEB. 

PDAPS also defines a Fourth model very similar to 
MODEL III except the objective function is based on 
maximizing the expected benefit per state transition. 
OPGENS has the capability of structuring the problem 
either way as the user specifies. 

STATE GENERATION METHODS 

As was mentioned in the state description, there are a 
finite number of states which are feasible for any particular 
patrol mission. The purpose of this section is to give a method 
for generating all of the states to be used in the model. 

Recall that a state, denoted by s(k, e, b), is formally 
defined by three parameters: k=the sector identifier, e=exit 
point identifier, b = amount of time remaining before the 
allotted mission patrol time has expired. For any sector there 
are virtually an infinite number of points on the perimeter 
which could conceivably be points of entry or exit. To avoid 
the complications inherent in considering a large number of 
physical entry-exit points the number of such points defined 
for each sector has been limited to two, one centered at each 
end of the sector. These are located such that the bearing 
from one point to the other defines the axis which the aircraft 
will use in flying the patrol patterns over a sector. 

The state generation procedure consists of enumerating all 
possible paths from the starting air base to the terminating 
air base which do not violate the specified patrol mission time 
constraint. Upon arrival at the terminating air base it is 
assumed that refueling occurs and that complete renewal is 
effected instantaneously. In a formal sense this implies that 
by assuming the patrol missions will go on indefinitely the 
following conditions hold: 

(1) any state is accessible from any other state (though 
not necessarily during the same patrol mission), 

(2) all states communicate with all other states, and 
(3) therefore, the set of all states, S, constitutes a single 

Markov class. 

The following definitions will be helpful in presenting the 
state generation algorithm. 

(1) For every state jE Si (iE S) the state i is called a 
predecessor state to state j. 

(2) Beginning at the air base the set of all feasible suc
cessors directly reachable in one transition from the 
air base is called the first successor generation set and 
is denoted by G(l). So G(l) = So. Then for k> 1 
G (k) is defined as 

G(k) = U Sj 
jEG(k-l) 

and is called the kth successor generation set. 
(3) For any state i, j is a feasible successor state to i only 

ifjESi. 

We require that no state h can be included in Si if the sector 
associated with h is the same sector as that associated with 
state i. This prevents repeated visits to the same sector with
out an intervening visit to at least one other sector. 

We now present an algorithm for generating all feasible 
states to be used in a model for a specific set of input param
eters defining the surveillance patrol mission. 

Procedure lA: 

1. Beginning at the air base with a specified altitude, 
speed, and patrol mission time, set the initial state 
(0) corresponding to the air base. 

2. By sequentially scanning the list of all sectors, generate 
and store each feasible state, thus creating So and 
G (1). Set the successor generation set pointer k = 1. 

3. Increment k=k+l 
4. Sequentially examine each state iEG(k-l). For 

every non-terminal state i (that is, non-air base state) 
generate and store all feasible successor states to i 
(that is, create Si). Note from definition 3 that Si 
conslstseit"her of states whIch have associated sectors 
or a single state corresponding to the terminal air base. 

5. If there were any non-air base states in G (k) go to 
3. Otherwise stop; the set of all feasible states, S, is 
complete. 

Several observations can be made about Procedure lA and 
the resulting structure of S. (a) This procedure guarantees 
that the aircraft will terminate at the destination air base. 
(b) The aircraft will travel to the air base only if there are 
no defined sectors which can be patrolled within the allotted 
time. This precludes the patrol mission from terminating 
prematurely. (c) It is possible for a state having the same 
identifiers to be generated more than once in different 
successor sets. (This, of course, assumes a finite resolution to 



An Optimal Pollution Surveillance Schedule Generating System (OPGENS) 813 

measurement of time.) (d) Procedure lA creates the feasible 
states one successor generation set at a time with each suc
cessor set being produced sequentially in the order which its 
predecessor state is found in the previous successor generation 
set. (e) Finally observe that the structure of the implied state 
transitions is in the form of a full tree network with the excep
tion that all paths terminate into a common node (the 
destination air base). 

A comparison of Procedure lA with the requirements of 
the model reveals that the principal disadvantage to the 
procedure lies in the difficulty of identifying the valid state 
transitions. Therefore the following modification is made to 
Procedure lA: after each new state is created, store the 
identifiers of both the new state and its predecessor state 
together. Procedure lA with the addition of this modification 
will be called Procedure IE. With Procedure IB it is a trivial 
matter to identify both the states and the state transitions 
for inclusion in the appropriate model. 

THE USE OF STANDARD LINEAR 
PROGRAMMING SYSTEMS 

Both of the optimization models (Model III and Model 
IV) designed for surveillance scheduling have linear objective 
functions. Hence it is possible to consider many standard 
computer programs designed to solve such models. 

In order for a linear programming computer program to 
be compatible with the OPGENS concept it should include 
many of the following desirable features. 

1. The data input format should be easy to generate. 
2. The program should be capable of handling large 

problems (at least 1600 rows and 3000 columns). 
3. The output should allow for easy extraction of the 

solution for post-optimality processing. 
4. An examination of Models III and IV reveals that 

there is only one non-zero element in the right hand 
side column. The system used should be able to handle 
this unique structure. 

5. In anticipation of future modifications to OPGEXS 
it may be desirable if the selected linear programming 
system would allow for read-in of an improved starting 
basis. 

6. The system should be efficient so that use of the 
system can be justified cost-wise. 

At Purdue University some of the linear programming 
packages available for users are MPS on IBM 360 equipment; 
LP90, OPTIMA, RADES, and VIVACE' on a CDC 6000 
series computer. Of these the one which was most compatible 
with OPGENS' requirements was OPTIMA. 3 While OPTIMA 
has various solution algorithms available, OPGEKS uses the 
option called PRIMAL which is basically a form of the re
vised simplex (RS) algorithm well-known in the mathe
matical programming literature. Theoretically, the imple
mented version of OPTIMA allows for up to 4095 rows and 

has virtually no column restrictions. The principal drawback 
to OPTIMA is its inefficiency-it is quite time consuming. 

A METHOD FOR SETTING A STARTING BASIS 
FOR THE OPTIMIZATION MODELS 

One of the major disadvantages of using the RS algorithm 
to obtain globally optimal solutions is that programs which 
implement the algorithm require extensive computational 
time. While this is generally true for most standard computer 
programs, it is particularly true of OPTIMA. One method for 
increasing the efficiency of the optimization process is to 
introduce an initial basis which is closer to the optimal basis 
than the one consisting of artificial and slack variables which 
is generated by OPTIMA (and most other systems). It can 
be shown that any optimal solution to Models III or IV will 
contain in the basis exactly one transition from each state i 
to some successor statej( jE Si). 

Therefore, the following heuristic is suggested as a simple, 
rational rule to use in selecting the transition activities to be 
included in the basis. Both Models III and IV are maximiza
tion models. For f small (say less than .5) it is not unreason
able to expect that the optimal solution basis will include 
many transition activities which have a high benefit con
tribution to the objective function. Thus the basis selection 
rule is: for each state, i, which has only one element, j, in Si, 
include that transition, Zij, in the set of starting basis ac
tivities; for each state, i, which has more than one successor 
element in Si, select the transition Zik such that Pd ik = 

MaXi {Pdiil for jE Si. The validity of using this heuristic 
depends on whether the global optimal solution basis has a 
close correlation with the results of this one-step look-ahead 
local search technique. 

OTHER SOLUTION ALGORITHMS 

Early experience using the RS algorithm to obtain solutions 
to models III and IV on some of the smallest problems 
indicated that optimal solutions were very costly. Therefore, 
concurrent with the development of the optimal pollution 
surveillance scheduling system, research was conducted to 
investigate various suboptimization approaches to obtaining 
a solution. Two of the algorithms preserve the stochastic 
nature of the model solutions. A third algorithm uses a one 
step-local search (LS) technique to produce a deterministic 
set of schedules. 

Besides the problem of computer time and costs involved in 
solving the optimization models, another problem anticipated 
from early experience focused on the size of the state set. 
While short flight times force the state set to be reasonably 
small, the combinatorics involved in the longer flight mission 
result in state sets and transition matrices sufficiently large as 
to exceed the capability of present day computers. Therefore 
a set of techniques was developed to limit the size of the state 



814 National Computer Conference, 1974 

set generated. These techniques are explained III a later 
section of this paper. 

YQ Algorithm 

The procedure for ultimately obtaining the Markov 
transition probabilities involved the post optimization use of 
the optimal solution to determine the appropriate Dirs 
which would then be used with the previously defined qij(a)'s 
to produce the pil'S. 

The YQ algorithm consists of using the basis set derived 
from the starting basis selection heuristic as the solution 
basis for use in the "post optimality" processing. The obvious 
assumption is that the starting basis so derived results in an 
objective function value sufficiently close to optimality. 

While it may appear at first that little is gained by omitting 
a few optimization iterations, the OPGENS process for 
deriving such a solution by-passes, in addition, a substantial 
amount of computing required to prepare input matrices for 
the OPTIMA system and to extract the RS algorithm's 
solution. 

In summary ,the system based on the YQ algorithm is 
conceptually very similar to the one based on using the RS 
algorithm except that the method for determining the 
solution basis does not guarantee optimality. 

NQ Algorithm 

In contrast to the YQ algorithm which still retains the 
capability of controlling uncertainty through specifying E, 

the NQ algorithm surrenders that control. In the optimization 
models and the RS and YQ algorithms the probability dis
tribution defining the state transitions were a function of E. 

In the NQ algorithm these transition probabilities are set 
according to the following rule. 

Let 

PSUMi= L Pdij for all iE S 
jESi 

then 
for all iE S 

Thus the transition probability from a given state, i, to 
any state j in Si is proportional to the size of the benefit 
associated with that state transition (relative to the benefits 
of other feasible transitions from the state). So transitions 
with larger benefits have a better chance of being selected in 
the schedule generation phase. 

One-Step Local Search (LS) Algorithm 

The RS, YQ and NQ algorithms all generate probability 
distributions which are subsequently sampled using random 
numbers to produce actual sets of transitions for the schedules. 
Thus these three algorithms preserve the randomness of the 
schedules. 

In contrast, the LS algorithm to be described directly 
selects transitions to be used in the schedules according to the 
one-step local search rule already described in the section on 
basis selection. This generation of schedules is performed 
accord~g to the following procedure. 

1. Generate all states for the first two successor genera
tions according to Procedure IE. 

2. For each state in generation G(2) define a schedule 
and include as the first two transitions in each schedule 
the two unique transitions which result in arrival at 
the corresponding state. 

3. For each non-terminated schedule select as a next 
transition (from the set of feasible state transitions) 
the one which has the largest immediate benefit. 

4. For all states whose feasible successor set is null, 
terminate the schedule by a transition to the air base. 

5. If there are yet remaining any non-terminating 
schedules go to 3. Otherwise stop. 

This algorithm has two principal drawbacks: 

1. 'rhe schedules ar~ not random. 
2. The number of schedules generated is limited to the 

number of states in the second generation, G(2). 

TECHNIQUES FOR RESTRICTING STATE 
GENERATION 

Suppose that state generation for a five-hour problem 
results in defining approximately 10 successor generations. 
Suppose further that each state in the first seven successor 
generations has only 10 successor states, and only one suc
cessor state exists for each state beyond the seventh genera
tion. Then such a model would result in N = L~=11Oi+3*107'"'-' 
(4*107) states and even more state transitions. Unfortu
nately, OPTIMA (which is generally considered capable of 
handling fairly 'large' problems) is limited to 4095 rows and 
(practically) 5000-10,000 columns. Thus the hypothetical 
problem structure defined above (which was purposefully 
made conservative) is much too large for solving with 
OPTIMA (or, for that matter, any other currently existing 
optimization system). Thus foc obtaining practical solutions 
some techniques must be used to limit the problem size to 
less than 4000 rows and about 5000 columns. Three techniques 
were incorporated into the state generation program to 
accomplish this for the described models. 

Technique 1 consists simply of limiting the sector successor 
set size. For each sector a physical observation was made to 
determine which other sectors were reasonable ca.ndidates for 
being visited next. In general the policy used was that from a 
given sector any neighboring sector reachable without flying 
over another sector should be in the successor set. The 
method of implementing this technique then is to modify 
Procedure 1B so that only neighboring sectors are considered 
when defining successor states. 

Technique 2 consists of counting unique states only once in 



An Optimal Pollution Surveillance Schedule Generating System (OPGENS) 815 

the problem even though the same state may be generated as 
a successor to many different states in several different 
successor generations. Before this technique could be imple
mented, it was necessary to define the degree of accuracy 
required in measuring time for state definition purposes. 
Because of the various factors influencing the flight of low 
speed aircraft it was decided that time measurements to the 
nearest minute were sufficiently accurate without being 
absurdly precise. 

Thus with Technique 2 the maximum number of states for 
any problem is limited to NSMAX given by 

NSMAX =2 X number of sectors X number of minutes 

So for a five-hour (300 minutes) flight in the Gulf of Mexico 
(which currently has 105 sectors defined) the maximum 
number of states which could possibly be generated is 

NSMAx =2X105X300 

=63,000 

The effect on Procedure IB of implementing this technique 
is first to specify the method for measuring time, and second 
to add the condition that once a state has been processed as a 
predecessor (by "processed" it is implied that the successor 
set has been generated), there is no need to ever again process 
it as a predecessor. A hashing scheme was used to increase 
the efficiency of this process. 

The use of these two techniques resulted in an adequate 
reduction of the problem size for short duration patrol 
schedules. However, the problems "\-'lith longer patrol mission 
times were still much too large. As a final measure, Technique 
3 consists of randomly limiting the size of the successor sets to 
insure that the problem is solvable. The algorithm which 
effectively implements this technique within the framework 
of Procedure IB is the following: 

1. For a given generation, reset the maximum number 
(m) of successors allowed in a successor set. 

2. For a given predecessor state, i, generate all successor 
states according to Procedure IB as limited by Tech
niques I and 2. 

3. If the number of successor states is less than mallow 
all of the successors to be in Si. 

4. If the number of successors exceeds m, randomly, 
select m unique states to be included in Si. 

Thus, by properly setting m, the problem size can be 
controlled. 

The principal purpose of Techniques I and 3 is to introduce 
modifications to Procedure IB which effectiveiy limit the 
number of states generated according to some rational basis. 
These methods were needed not because of any inherent 
weakness in Procedure IB, but rather because of problem 
size considerations. 

There is, however, a characteristic exhibited by schedules 
generated on the basis of Procedure IB as modified by Tech
niques 1 and 3 which may be undesirable for some applica
tions. This characteristic is a tendency for sectors scheduled 

for patrol to be clustered in the close proximity of the 
originating air base. 

This cluster effect is perhaps particularly undesirable in 
generating schedules which have a different originating and 
terminating air base. The employment of Techniques I and 
3 resulted in schedules where most surveillance was conducted 
near the originating air base, with the final transition of the 
schedule being a very long direct flight from some sector to 
the terminating air base. 

In order to eliminate this effect Technique 4 was developed 
with two different rules for two different cases. Case I is 
employed in the single air base problem: 

Case I Rule: Sectors visited should be progressively 
farther away from the originating air base. 

Obviously, this rule should be effective during only a 
portion of the mission; otherwise the final transitions would 
likely be inordinately long. In order to establish when the 
rule is effective and when it is not, the average time remaining 
(ATREM) for all non-terminal states found in the most 
recent successor generation is calculated. If ATREM is less 
than some prespecified time (say 40 percent of the total 
patrol mission time), then the Case I rule is not invoked, 
otherwise it is invoked to limit the successor set prior to the 
use of Technique 3. Obviously, an escape mechanism must be 
implemented in the event that there are no feasible states 
more distant from the air base reachable from the current 
state. The escape mechanism employed is that if such is the 
case, then the Case I rule is bypassed and is ineffective for 
that particular predecessor state. 

Case 2 is the two air base problem. In this case it is de
sirable that the schedule direct the aircraft in a general 
direction toward the terminating air base. 

The following rule is employed to accomplish this: 

Case 2 Rule: Sectors visited should be progressively 
closer to the terminating air base. 

Again provision must be made for making this rule in
effective during the latter portion of the mission. The escape 
mechanism described for Case I rule is also employed with 
the Case 2 rule. 

The previously described Case I rule and Case 2 rule con
stitute an effective method for mitigating the clustering effect 
resulting from use of Techniques I and 3. These two rules 
together are referred to as Technique 4 for modifying Pro
cedure IB. 

It should be noted that the provision to specify a time 
range when the technique is effective also allows for total 
bypass of the technique. 

THE INPUT DATA BASE 

The models developed for scheduling pollution surveillance 
require that areas of potentially high pollution activity be 
well defined and that a quantitative measure of this potential 
pollution be made for each of the defined areas. There are two 



816 National Computer Conference, 1974 

Figure 3-0ptimaI pollution surveillance schedule generating system 

principal activities which produce much of the harmful 
pollution in the navigable waterway system. These activities 
both stem primarily from the procurement of petroleum 
products to satisfy demands. 

One of these activities is the shipping of petroleum products 
in tankers and barges. In the PDAPS analysis consideration 
of shipping was limited to the routes for ocean-going vessels 
(tankers) , the intercoastal waterway system including 
relevant rivers and canals, and the Great Lakes shipping 
routes. The precise location and size of these established 
shipping routes was obtained by examining standard naviga
tional charts for the areas in question. The shipping lanes 
were divided into segments which could be patrolled in 30 
minutes or less. A segment boundary was also defined where a 
shipping lane changed directions or intersected with another 
shipping lane. Using available transportation, shipping, and 
port statistics the likely routes for shipments were determined 
and the total tonnage of petroleum material was calculated 
and tabulated for each sector. The information on sector 
location, length and width, and the tonnage shipped during 
the base period (1970 data was used for setting model 
parameters) was aggregated into a file denoted the sector 
data file. 

The second principal activity considered was that of off
shore oil-well drilling operations. In those areas where such 
activities are substantial maps were used which locate the 
fields of activity. Rectangular areas were then defined for each 
field. For these regions historical data is available describing 
the occurrence and location of reported spill incidents. 
Unfortunately data on the amount of pollutant spilled was 
either unavailable or unreliable; therefore an analysis was 
made to determine only the number of spills (not the amount) 
that occurred in each of the defined sectors for the base 
period. The sector location, dimensions, and number of spill 
incidents was also included in the sector data file. Each record 
in this file also had a sector identifier which permitted the 
method for determination of the sector surveillance-benefit 
weight to be different depending on the pollution activity 
measure. 

In addition to the sector data file, a sector successor file 
was generated which contained a list of successors which 
could be reached easily from the current sector. This file was 
constructed by examining the navigation charts to determine 
which were neighboring sectors. This file listed up to nineteen 
successors for each sector. 

OPGENS 

The models and algorithms used in PDAPS Phase II have 
been implemented in a system of procedures, computer 
programs, and communicating files which are used to produce 
actual flight schedules to be used by aircraft in performing 
pollution surveillance missions. The term OPGENS is an 
acronym for "Optimal Pollution Surveillance Schedule 
Generating System." The component parts and inter
relationships between the components of OPGENS are shown 
as a flow chart in Figure 3. 

OPGENS can be divided into four subsystems. The first 
subsystem is identified as Data Collection and Preparation. 
This subsystem is characterized by considerable manual 
work and statistical-analysis; The esseiitialactivities of this 
subsystem are listed below. 

1. Summarize Maritime Administration data for the 
region. 

2. Define sectors for the region. 
3. Determine spill data for appropriate sectors. 
4. Determine shipment data for appropriate sectors. 
5. Specify the sector successor sets. 
6. Identify all potential air bases for the region. 
7. Define the flight area. 
8. Calculate the distance and heading from every sector 

entry-exit point to the entry-exit points of every other 
sector in the flight area. 

Some data summarization is done by a computer program 
which reads the shipping data tapes, but otherwise most of 
these activities are done manually except for the distance
heading calculations which are performed in the OPGENS 
program, DISTNCE. Notice that activities 1 through 6 in 
Subsystem 1 are common to all schedules produced for a 
particular flight region. Thus, the entire Subsystem 1 Ileed be 
invoked only once for each region and activities 7 and 8 are 
invoked for each flight area within a region. The manually 
prepared data is processed, edited, and organized into 
labelled files for future use by DISTNCE. 

The second subsystem consists of three programs, 
GENERAT, GETDAT, and XFORM, and the files used for 
communicating between these programs. The primary func
tion is divided into three activities which characterize each 
of the programs. The activity performed in GENERAT is 
the generation of the states according to the modified version 
of Procedure IB. Another important activity of GENERAT 
is the defining of all sector-pattern combinations to be used in 
patrolling the defined sectors. The outputs from GENERAT 
are passed on to GETDAT where the state transitions are 



An Optimal Pollution Surveillance Schedule Generating System (OPGENS) 817 

FR~M AB M0BILE T~ AB M0BILE REGI~N GULF ...... ~ 
SCHEDULE 22 PAGE 1 f/JF 1 N ~ 
ALTITUDE = 5000 FT FLIGHT TIME = 120 MIN W·· 

SPEED = 130 KNf/JTS SENS~R WIDTH = 11900 FT ~ 
NUMBER ~F SECTf/JRS = 6 EXPECTED BENEFIT = .1771 ~ 
********************************************************* 
*********************************************************I~ 

FR~M Tf/J HDG TVLDIS TVLTIM SEQ 
TRAVEL 30-41.0 N 29-38.0 N 218 79.7 36-47 Nf/J 1 

PLAN 88-14.0 W 89-10.5 W WIDTH 
ENTRY PIVf/JT AXIS LEGDIS LEGTIM 3.00 

PATRPL 29-38.0 N 29-35.5 N 180 3.0 1-23 1 LEGS 
PLAN 89-1085 W 89-10.5 W SCTR 2]. 

STATUS.EST FLT TIME USED= 40, EST FLT TIME REQUIRED= 80 
*********************************************************;~ 

FRf/JM T0 HDG TVLDIS TVLTIM SEQ 
TRAVEL 29-35.5 N 29-23.0 N 156 13.7 6-20 N0 2 

PLAN 89-10.5 W 89- 4.0 W WIDTH 
ENTRY PIVf/JT AXIS LEGDIS LEGTIM 2.50 

PATR~L 29-23.0 N 29-23.0 N 90 4.0 1-50 2 LEGS 
PLAN 89- 4.0 W 88-58.0 W SCTR 24 

STATUS.EST FLT TIME USED= 52, EST FLT TIME REQUIRED= 68 
*********************************************************~ 

FRf/JM Tf/J HDG TVLDIS TVLTIM SEQ 
TRAVEL 29-23.0 N 29-17.5 N 162 5.8 2-39 N0 3 

PLAN 89- 4.0 W 89- 2.0 W WIDTH 
ENTRY PIVf/JT AXIS LEGDIS LEGTIM 2.50 

PATR~L 29-17.5 N 29-14.0 N 180 3.0 1-23 2 LEGS 
PLAN 89- 2.0 W 89- 2.0 W SCTR 23 

STATUS.EST FLT TIME USED= 59, EST FLT TIME REQUIRED= 61 
*********************************************************!~ 

FRf/JM If/J HDG TVLDIS TVLTIM SEQ 
TRAVEL 29-17.5 N 29-27-.0 N 25 10.4 4-49 Nf/J 4 

PLAN 89- 2.0 W 88-57.0 W WIDTH 
ENTRY PIVf/JT AXIS LEGDIS LEGTIM 2.00 

PATR~L 29-27.0 N 30- 8.0 N 48 65,.0 29-59 1 LEGS 
PLAN 88-57.0 W 88- 4.0 W SCTR 40 

STATUS.EST FLT TIME USED= 96, EST FLT TIME REQUIRED= 24 
********************************************************* 

FRf/JM Tf/J HDG TVLDIS TVLTIM SEQ 
TRAVEL 30- 8.0 N 30-33.0 N 8 25.2 11-38 Nf/J 5 

PLAN 88- 4.0 W 88- .0 W WIDTH 
ENTRY PIVf/JT AXIS LEGDIS LEGTIM 6.00 

PATR¢L 30-33.0 N 30-43.2 N 0 10.5 4-50 1 LEGS 
PLAN 88- .0 W 88- .0 W SCTR 38 

STATUS.EST FLT TIME USED= 113, EST FLT TIME REQUIRED= 7 
********************************************************* 

JO' FR0M T0 HDG TVLDIS TVLTIM SEQ 
TRAVEL 30-43.2 N 30-41.0 N 260 12.2 5-38 N¢ 

PLAN 88- .0 W 8-8-14.0 W WIDTH 
ENTRY PIV0T AXIS LEGDIS LEGTIM .00 

PATR¢L 30-41.0 N 0- .0 N 0 .0 0- 0 0 LEGS 
PLAN 88-14.0 W 0- .0 W SCTRl06 

STATUS.EST FLT TIME USED= 119, EST FLT TIME REQUIRED= 1 
*********************************************************~ 

Figure 4-Example of a flight schedule 

t""I 
o 
(') 

~ 



818 National Computer Conference, 1974 

explicitly defined and organized into a full tree state transi
tion matrix (by rows). This state transition matrix is passed 
one element (record) at a time to XFORM which transforms 
the transition matrix to a modified tree I structure and maps 
each state to a unique state number. 

The effect of these activities is to reduce the size of the 
problem and to organize the matrix into a form which can be 
easily converted to an input matrix for OPTIMA, or which 
can be conveniently processed by the suboptimization 
algorithms. 

The third subsystem in OPGENS is the schedule generator. 
Contained within it are three path options. Path 1 proceeds 
through OPTMTX, OPTIMA, DUMPOP, and SCDGEN 
where, by setting parameters, either optimization Model III 
or IV is solved using the RS algorithm and schedules are 
generated. Path 2 subjects the XFORM output to processing 
through KWIKGN which has the option of producing 
schedules according to.either the NQ or YQ algorithm. Path 3 
uses SKDGEN to produce schedules from XFORM output 
according to the LS algorithm. 

The fourth and terminal subsystem in OPGENS consists 
of one main program, DHEADR, ,vhose principal functions 
are the calculation and addition of detailed flight (naviga;.. 
tion) instructions, and the formatting and printing of the 
completed schedules. A typical schedule for the Gulf of 
Mexico is shown in Figure 4. The flight instructions are of 
two basically different types. Type I consists of instructions 
for inter-sector travel. Type II provides details to the pilot 
on how to patrol the sector under surveillance. Each step of 
the patrol mission is guided by two navigational aids. First, 
the longitude and latitude coordinates are given for the 
entry-exit points of each sector visited. Second, the distance, 
heading, and travel time is given for traveling between sectors. 
For the patrol portion of a given state transition the sector 
axis, patrol leg distance, and time to travel one leg are given. 
All of this information is given for perfect conditions. Thus, 
the pilot must make adjustments for compass deviations, 
wind speed and direction, etc. 

After all information is generated for a particular surveil
lance mission the schedule is formatted and printed by the 
GOULD 4800 electrostatic printer. The size of these schedules 
is such that they will fit conveniently on the knee boards used 
by pilots. Considerable research and investigation have gone 
into the design of the schedule format to insure that the 
schedules provide the information and instructions needed 
by pilots for both pre-flight and in-flight activities. 

Comparison of algorithms 

Three problenllS of :substantially UlITerent sizes were 
generated and solved using the four described algorithms. 
The first problem was a hypothetical example which had 66 
states, 164 state transitions and 1337 non-zero entries in the 
OPTIMA input matrix. The second problem was a two hour 
flight out of Mobile, Alabama, and had 341 states, 831 state 
transitions, and 6724 non-zero matrix entrifls. The third 

problem was for a seven hour flight from Mobile to Corpus 
Christi, Texas, and had 1565 states, 2387 state transitions, 
and 13252 non-null OPTIMA matrix entries. 

The results of the experiment conducted in solving these 
three problems using each of the four algorithms is presented 
in Table I. 

In the table note that the RS algorithm blocks contain 
two items not found in the others. The row labeled "Execution 
(w/basis)" contains the OPTIlVIA execution time when the 
optimal solution basis was read in as an initial starting basis. 
This figure is the lower bound time for using a basis generator 
as previously discussed. The row labeled "( E = .4) Model p." 

is interpreted as the value of the objective function from the 
OPTIMA Model III when .4 is the value for epsilon. The 
symbol JJ. is used because this value rflprflsflnts the true mean 
of the distribution of expected schedule benefits derived from 
this model. Also, notice that the LS algorithm sample size has 

TABLE I-Experimental Results 

Problem Sample 2HR 7 HR 
Transitions 1-&4 831 2387 

States 66 341 1565 
Time 12.3+ 141 294.0 

RS ALGORITHM 
Non-zero entries 1337 6724 13252 
Path time 117 843 8689 
Execution time 74 770 8505* 
Execution (w /basis) 53 218 690 
(E=.4) model p. 2.68 .0885 .2281 
Ave. expo benefit 2.86 .0866 .2223 
Variance .821 .00125 .0035 
Std. deviation .906 .0353 .0588 

YQ ALGORITHM 
Path time 4.3 8.65 24.21 
Execution time 2.87 7.39 22.89 
Ave. expo benefit 1.240 .0685 .190 
Variance .360 .000847 .0026 
Std. deviation .600 .0291 .0510 

NQ ALGORITHM 
Path time 4.2 7.15 22.53 
Execution time 3.02 6.12 21.15 
Ave. expo benefit 1.778 .0439 .168 
Variance .590 .000458 .0028 
Std. deviation .768 .0214 .0530 

LS ALGORITHM 
Path time 4.01 6.28 11.16 
Execution time 3.09 5.12 9.68 
Ave. expo benefit 2.14 .0566 .188 
Variance .675 .000554 .0020 
Std. deviation .822 .0235 .0449 
Sample size 50 61 40 

* This time is conservative. RS algorithm in solving the 7 hour problem 
actually took four runs (at one run a day) and about 13,000 seconds. The 
8505 seconds reported does not include the set-up time required for the 
last three of the four rU.rlS. 



An Optimal Pollution Surveillance Schedule Generation System (OPGENS) 819 

been added in those blocks. The time entry in the header 
section for each problem is the approximate computation 
time for running all parts of OPGENS except the scheduling 
subsystem. This time should be added to the time required 
by the selected scheduling approach to get the approximate 
time required to generate a set of schedules according to the 
given parameters. 

The following observations can be made from the results 
presented in Table I. 

(1) The cost of obtaining an optimal solution is signifi
cantly greater than any other method. In the sample 
problem the RS algorithm took about 25 times as 
long as the other algorithms. For the two-hour problem 
it was longer by a factor of about 100, and for the 
seven-hour problem it took over 800 times longer than 
the quickest algorithm. 

(2) Schedules resulting from OPTIMA did produce the 
highest expected benefit. The results indicate that the 
optimal solution is about 20 percent better than the 
next best approach. 

(3) While the time required for solution by each model is 
positively correlated with the problem size, the range 
of solution times required is significantly different for 
different models. PATH 1 has a very wide range, with 
the seven-hour problem requiring over 100 times more 
time than the sample problem. The YQ algorithm has 
a range ratio of about 8 to 1; the NQ algorithm about 
7 to 1; and the LS algorithm about 3 to 1. 

In order to compare the efficiency and effectiveness more 
directly let us define the following two measures. 

Efficiency (i) 

Effectiveness (i) 

Execution time of the fastest algorithm 

Execution time of algorithm i 

Expected benefit of algorithm i 

Expected benefit of RS algorithm 

Table II presents a comparison of the efficiency factors and 
is a basis for the following observations. 

(1) The RS algorithm is extremely inefficient for all 
problems. 

(2) The LS algorithm is most efficient for the two real 
data problems and performs very well on the sample 
problem. 

(3) Both the YQ and NQ algorithms perform well on the 

TABLE II-Efficiency Factors 

Problem 
Algorithm Sample 2 HR 7 HR 

RS algorithm .039 .0067 .0011 
YQ algorithm 1.0 .69 .42 
NQ algorithm .95 .84 .46 
LS algorithm .93 1.0 1.0 

TABLE III --Effectiveness Factors 

Problem 
Algorithm Sample 2 HR 

RS algorithm 1.07 .979 
YQ algorithm .463 .774 
NQ algorithm .663 .496 
LS algorithm .799 .640 

7 HR 

.974 

.832 

.737 

.823 

sample problem but decrease in relative efficiency as 
the problem size increases. 

Table III shows the effectiveness factors and is a basis for 
the following comments. 

(1) The RS algorithm is consistently better than the other 
methods by at least 20-30 percent. 

(2) The LS algorithm is consistently more effective than 
the NQ algorithm. (That is, LS dominates NQ based 
on efficiency.) 

(3) The YQ algorithm performs better on the two real 
data problems than both the NQ and LS algorithms; 
however, it is not significantly better than the LS 
algorithm. 

From the results presented in Tables I through III it 
appears that the use of the RS algorithm is not a viable 
approach to solving the surveillance scheduling problem as it 
has been defined. This conclusion is based on the efficiency 
of the method. It is apparent that the expected benefit from 
the RS algorithm is not sufficient to justify the substantially 
greater cost incurred. This appears to be a valid conclusion 
even if a near perfect basis generator could be devised. The 
reason for this latter conclusion lies in the fact that the set up 
and preparation time required by the revised simplex 
algorithm is too costly, regardless of the actual solution 
speed. Further support for this conclusion is given by two 
other experiments not reported in the tables. In one case the 
seven-hour test problem was solved using a preliminary 
version of VIVACE' which is a high speed experimental 
linear programming code being developed at Purdue. 
VIVACE' took approximately 3800 seconds to achieve 
optimality. This is still much too costly for production runs. 
A second supporting case involved the use of a special option 
in OPTIMA. Within the OPTIMA Application Control 
Language (ACL) is a verb CRASHX which calls a series of 
OPTIMA subroutines for selecting a non-trivial starting 
basis. In this experiment CRASHX was used to obtain an 
advanced basis to initiate OPTIMA. In this case the solution 
was optimal after 665 simplex iterations and 1494 central 
processor seconds. While this is a marked improvement over 
the standard OPTIMA and VIVACE' it is still too costly in 
terms of computation time. 

Of the three remaining algorithms, any of them will 
produce suitable, feasible schedules much more efficiently 
than the RS algorithm. The LS algorithm appears to out
perform the NQ algorithm in every measure except for a 



820 National Computer Conference, 1974 

slight efficiency advantage achieved by the NQ algorithm in 
solving the sample problem. 

Beyond this it appears difficult to generalize because the 
results are mixed, unless some advance knowledge is known 
about the problem size. Fortunately this is the case. The real 
problems to be investigated in PDAPS are not likely to be 
much smaller than the two-hour test problem. If considera
tion is therefore restricted to the two real data problems then 
it appears that the YQ algorithm is more effective than the 
LS algorithm, but the LS algorithm is more efficient than the 
YQ algorithm. While this does not provide a clear decision as 
to which algorithm to use, it may be appropriate to view this 
dilemma in perspective. From Table I it can be seen that 
using any of the three (NQ, YQ, LS) algorithms in the 
scheduling subsystem will not effect the total OPGENS 
schedule generation time by more than two percent. Any of 
these three algorithms represents less than seven percent of 
the OPGENS time for real data-size problems. One approach 
may be to run all three algorithms and select the results that 
are most satisfactory. Otherwise the choice appears to be 
between the YQ and LS algorithms. 

SUMMARY AND ACKNOWLEDGMENTS 

In this paper we have described a system, OPGENS, which 
has been designed to facilitate the scheduling of fixed wing 
aircraft used by the U.S. Coast Guard in pollution surveil
lance activities. The models presented structure the problem 
as a Markov decision process. The solution algorithms used 

clearly illustrate the trade-offs between efficiency and 
effectiveness. 

What we have been unable to convey is the magnitude of 
the data analysis and the human factors engineering effort 
which has been a part of this effort. We trust that the experi
enced reader will appreciate that effort. 

Finally we wish to express sincere thanks to the U.S. Coast 
Guard for its cooperati0n and to LCdr. Ed Demmuzzio and 
LCdr. Jim Butler for their contribution without which the 
results would not have been nearly so relevant. 

BIBLIOGRAPHY 

1. Baumol, William J., Environmental Protection, International Spill
overs and Trade, Wicksel Lectures (1971). Stockholm, Almquvist and 
Wicksell, 1971. 

2. Charnes, A. and W. E. Cooper, "Programming with Fractional 
Functionals: I, Linear Fractional Programming," Naval Research 
Logistics Quarterly, V. 9 N. 3 and 4, pp. 181-186, (1962). 

3. Control Data Corporation, Computer Systems OPTIMA Version 
3.0 Reference Manual, Publication No. 60207000 Rev. B, Minne
apolis, Minnesota, (1968). 

4. Derman, C. and M. Klein, "Surveillance of Multi-Component 
Systems: A Stochastic Travelling -Salesman Problem, " Naval 
Research Logistics Quarterly, V. 13, pp. 103-111, (1966). 

5. Dillingham Corporation, Applied Oceanography Division, Analysis 
of Oil Spills, La Jolla, California, 1970. 

6. National Search and Rescue Manual, ACC 124/3, FM 20-150, 
NWP 37(A), AFM 64-2, CG 308, July 1, 1959. 

7. United Nations, Food and Agricultural Organization, Pollution: 
An International Problem for Fisheries, Rome, (1971). Especially 
pp.I5-21. 



Use of a micro-computer in a missile simulator 

by JAMES A. ROSE and JAMES V. LEONARD 

McDonnell-Douglas Astronautics Company-East 
St. Louis, Missouri 

and 

HERBERT A. CROSBY 

University of Missouri 
Rolla, Missouri 

INTRODUCTION 

In 1971 ~fcDonnen Douglas Corporation was awarded a 
contract by the Department of the Navy to develop a new 
weapon system. The weapon system is comprised of an 
advanced missile, several Control and Launch Subsystems 
(CLS) and the support equipment required to test and 
maintain the missile and CLS. 

In a complex advanced missile system the need for some 
type of missile simulator is obvious. Missile simulators can 
range in complexity from small, rather simple, manually 
operated, limited capability devices to major pieces of auto
matic test equipment capable of simulating the missile and 
isolating CLS malfunctions to the lowest replaceable com
ponentlevel. 

The primary requirement for a missile simulator is to 
"look like" a missile so that all the Launch System cir
cuitry can be verified quickly and safely. Another desirable 
characteristic is to provide the capability of simulating a 
missile "NO-GO" condition to the CLS so that CLS opera
tors can be trained to respond properly to possibly dangerous 
missile or launcher malfunctions. 

MISSILE SYSTEM DESCRIPTION 

The types of missile systems "\vhich interface directly 
with the CLS, and therefore must be simulated are, (1) the 
electrical power system, (2) the discrete command/response 
system and (3) the digital command/response system. The 
power system consists of 400 and 60 Hz AC power circuits 
and several 26 or 28 v-de circuits. The discrete command/ 
response system consists of the circuits required to process 
individual 26 v-dc signals which activate missile subsystems 
and generate the discrete on/otT responses which indicate 
system activation or status. The digital command/response 
system consists of the digital circuits required to receive 
and process information in digital form. This information 
is used to update the missile guidance system and to control 

821 

all the automatic functions required to launch the missile 
rapidly and accurately. 

The missile digital system interfaces directly with the 
Missile Data Processor (MDP) in the CLS. The MDP is a 
digital computer with an 8,000 word memory capability. Its 
output to the missile consists of three distinct signal types. 
These are (1) Data Enable, (2) Clock strobe and (3) Digital 
Data. The timing diagrams for data transmission are shown 
in Figure 1 and are based on the MDP specification per 
Reference 2. 

Because of the 100 kilobit/second rate of data transmis
sion, a method to verify the accuracy of the received infor
mation is required. In this system, odd parity and checksum 
methods are used to validate all transmitted digital data. 

The missile system is capable of producing only two 
responses to the MDP. These are the "Good Data" word 
and the ":Missile Status" word. If a checksum comparison 
exists and the parity is valid a "Good Data" response is 
returned to the MDP. Upon command from the :;VIDP the 
missile runs through a built-in-test (BIT) routine and re
sponds with a "Missile Status" word. Each bit is the GO / 
KO-GO status of a particular missile system or subsystem. 

SI~IULATOR DESIG~ CRITERIA 

Early in 1973 the requirement for an improved missile 
simulator was recognized and a contract was given to design 
and build a limited number of development test units. The 
new simulator ,vas to be called the Missile Simulator/Test 
Set (S/TS). Prior to starting the detailed design of the 
SITS, a set of design criteria \vere established utilizing the 
most desirable characteristics of the previous simulator and 
doing a"way with the least desirable characteristics. These 
are: 

1. The S /TS shall be portable. 
2. The SITS shall be a self-contained unit requiring no 

external power source. 



822 National Computer Conference, 1974 

I) DATA FROM MIS5ILE SHIULATOR TO MIS:)lLE LATA PROCESSOR nIDP) 

DATA ENABLE ---;$J J; L 
5 TO 10 p9 -I I- -l 1-5~1 I'S -40;:11'1-

CLOCK STROBE ~~~OL-

DATA FROM MISSILE 
SIMULATOR TO MOP 

II) iJATA nO~! ~IDP TO MB:iILE :iIMUUTOR 

Figure I-Missile signal timing 

3. The SjTS shall have a load bank circuit which simu
lates the missile electrical loads on a time shared 
basis. 

4. The SjTS shall be capable of automatic response to 
selected discrete commands. 

5. The SjTS shall be capable of providing a "NO-GO" 
condition on the discrete output lines by inhibiting 
the automatic command response at the operator's 
discretion. 

6. The SjTS shall be capable of automatic response to 
all digital inputs. 

7. The SjTS shall have circuitry to validate incoming 

Figure 2-SjTS control panel 

digital data utilizing the parity and checksum meth
ods. 

8. The SjTS shall be capable of simulated "NO-GO" 
digital responses to the MDP in the following manner: 
(a) by inhibiting the "Good Data" word output at 

the operator's discretion. 
(b) by simulating a missile subsystem NO-GO 

condition in the "Status" word at the operator's 
discretion. 

9. The SjTS digital system receivers, drivers, and 
timing shall be identical to that of the missile digital 
system. 

10. The SjTS shall have a built-in-test (BIT) capability 
to test the internal loadbank, discrete and digital 
circuitry. 

The SjTS Control Panel is shown in Figure 2. 

POWER SYSTEM SIMULATION 

In simulating the missile power loads, the SjTS does not 
use .. t4~ .GQDy~n~iQIl~L fixe4 v~l:t~_eL.higll p()'Y~r:- .4i~13!pa~i<2J:.l, 
resistor load approach. It was considered adequate to load 
the CLS power output circuitry periodically for short spans 
of time to verify its capability to supply the required current 
at the stipulated voltage levels. This allows derating the 
load resistor power ratings as much as three orders of magni
tude, depending on required sample duty cycle. This in 
turn greatly reduces the load bank size and heat dissipation 
requirements but increases its complexity. It was decided 
that size and weight were of major concern, hence this 
approach was adopted for the SjTS. 

DISCRETE SYSTEM SIMULATION 

In order to alleviate the necessity for a simulator operator 
to be present for every test, the SjTS was designed to auto
matically generate the required responses to all discrete 
commands. This is accomplished by simulating the missile 
relay loads with electronic relays which are used to control 

d~-
l
~ . .:., -, ,-,.. I 

1!~·-

TI'I. 
~ 

Fig-UTe 3-Digital8y8L6Ill Llock diagraIH. 



activation of the response signal. Each discrete response 
can be faulted (i.e., inhibited) by depressing a panel switch 
indicator. This approach is somewhat more complicated 
and the hardware more expensive than that of the original 
simulator but was considered a better simulation of the 
missile discrete command and response system. 

DIGITAL SYSTEM SIMULATION 

The shortcomings of the original simulator digital com
mand/response system were eliminated by a complete 
redesign of the digital section for the SITS. The basis of 
the new design is the MCS-4 micro-computer set with 
additional 256 word, programmable - read - only - memory 
(PROM). A block diagram of the SITS digital section is 
shown in Figure 3. 

There is a considerable amount of peripheral logic cir
cuitry required to perform the input/output functions for 
the micro-computer set. One of the first steps in designing 
the peripheral logic and generating a workable program for 
the micro-computer is to prepare a logic tree and from 
that, a flow chart. 

Because of certain format characteristics of the input 
command words, the logic tree can be made rather simple. 
(Reference Figure 4.) Each input command word is 16 bits 
in length and is to be analyzed in bytes of 4 bits each. (Byte 
1 is the least significant 4 bits.) The acceptable input com
mand words are one of the following forms: 

(a) (UOOOh6 
(b) (OVOO)I6 
(c) (OOWW)16 
(d) (OOXY)I6 

NOTE: 

Request MSL Status 
Reinitiate 
Reset I/O 
Data Group Identifier. 

(a) The above command word forms are shown using 
base 16 format. 

(b) For reasons of security, the actual values of "UI6", 
"VI6", "WI6", "XI6", and HYI6" are not given. 

LOGIC TREE DESCRIPTION 

As can be seen from the above and in Figure 4, if byte 1 
is zero, the received word must be of form a) or b) and, 

Figure 4---Digital system logic tree 

Use of a Micro-Computer in a Missile Simulator 823 

Figure 5-Digital system flow chart 

byte 2 must also be zero or an input error exists. If byte 1 
and 2 ~re both zero, only hvo possibilities exist for bytes 3 
and 4; either byte 3 is zero and byte 4 has value "U", indi
cating a Request BIT Status word has been received or byte 
3 has value "V" and byte 4 is zero, indicating the Reinitiate 
word has been received. All other possibilities are invalid 
and result in a digital error. 

If byte 1 is non-zero, the received word must be of form 
c) or d), hence byte 2 must also be non-zero. If this is true, 
then bytes 3 and 4 must be identically equal to zero or a 
digital input error exists. If bytes 1 and 2 are both of value 
"w" a Reset I/O word input is indicated. This is because 
there is no other valid command word which is identically 
equal in value to (OOWW)16. If byte 1 and/or byte 2 is a dif
ferent value than "W", a Data Group Identifier word of form 
(OOXY)16 is indicated. The value "Y" for byte 1 is a code 
indicating a specific block of data is being transferred and 
the value "X" for byte 2 is the number of \vords to follow, 
including the checksum word. 

FLOW CHART DESCRIPTION 

The following is a description of the SITS Digital System 
Flow Chart with explanations as to how some of the func
tions are to be implemented. As is seen in Figure 5, there 
are four data processor "modes" mentioned. These are 



824 National Computer Conference, 1974 

defined as follows: 

Mode 1. The data processor program is "set" to expect, 
and accept, only the "Reset I/O" command 
word; i.e., (OOWW)16, which is required to 
initialize· the system. Any other input word will 
indicate a Digital Error (Note: the "Reset I/O" 
command is required prior to every input 
command word). 

Mode 2. A "Reset I/O" has been received and the Data 
processor is "set" to except any command word. 
(Including "Reset I/O") 

Mode 3. A valid command word has been received. If it 
is of form (OOXY)16, set the data processor to 
expect XIo-l data words. 

:Mode 4. The last data word (XI6-1) has been received. 
the data processor is set to except the checksum 
word as the next transmission. 

In Figure 5 it can be seen that initially the processor is 
set to mode 1. A Data Input Enable command is generated 
in the Processor Output Command Channel. The system 
rema!n~jIl.this stll&~waitillgJQ.I'I1"pl1tl1;Enaple" fr:()!fi the 
lVIDP. With receipt of a "Data Enable," the accompanying 
input data is clocked serially, least significant bit (LSB) 
first, into the Input Buffer (I/O register). As the first four 
bits enter the register, they are read out in parallel "on
the-fly". If byte 1 does not equal zero, it is stored and bytes 
2 and 3 are read and stored. (Reading the data in bytes as 
it is being clocked in instead of storing each byte and then 
going back to recall it, read it, and re-store it saves con
siderable processing time and I/O hardware.) 

The fact that byte 1 does not equal zero indicates that 
the incoming word is a "Reset I/O" command word, 
(OOWWI6), a "Data Group Identifier" word, (OOXY)10, or 
some invalid command word. The "Reset I/O" and "Identi
fier" words both require that bytes 3 and 4 be equal to 
zero. If byte 3 is zero, byte 4 is read and stored. If byte 4 
is also zero a parity check is made of the word. If the parity 
is even a Digital Error exists. If it is odd, byte 2 is recalled 
and read. If byte 2 is non-zero, bytes 1 and 2 are then 
checked to see if they each equal "W". If so, a Good Data" 
word response is generated and clocked out to the MDP. 
The S ITS processor program is then set to mode 2. If bytes 
1 and/or 2 are not equal to "VV", the processor mode would 
be checked. If the processor is in mode 1; i.e., expecting a 
"Reset I/O" command, a digital error is indicated. If the 
word preceding the incoming command word had been a 
valid "Reset I/O" command, the processor would now be 
in mode 2, hence the incoming word must be a "Data Group 
Identifier" ~yord. 

The "Identifier" word "Y" value is evaluated and com
pared to a listing of acceptable Y values. The "X" value 
is evaluated and a Data Word Index Counter is initialized 
to the value (XI6-1). A partial checksum consisting of the 
"value" of the Identifier word is jam transferred from the 
I/O register into a parallel adder. (Note: this type of adder 
is such that each sum is retained and the next addend is 

added to it, keeping a running total). After the Data Word 
Counter is initialized and the partial checksum loaded the 
processor program is set to mode 3. 

Assume that the next input word received has byte 1 
equal to zero. Since the processor is not in mode 1 or 2, the 
received word is assumed to be a data word and all four 
bytes are read "on-the-fly" and stored in the I/O register. 
Odd parity of the input word is verified and the processor 
mode is rechecked. If even parity exists or the processor 
had been in mode 1 or 2, a digital error is indicated. With 
the processor in mode 3, the Data Word Counter is decre
mented by one, and the data word "value" is jam trans
ferred into the checksum adder. If the Data Word Counter 
has not been decremented to zero, the last data word has 
nul, been received and the processor remains in mode 3. 

The remaining· data words in the Data Group can be of 
any "value" hence, bytes 1, 2, 3, and 4 mayor may not 
equal zero. If byte 1 does not equal zero the same path in 
the Flow Chart as was followed for the "Reset I/O" or 
"Identifier" word inputs is again followed. The difference 
is that if bytes 3 or 4 do not equal zero, or byte 2 does equal 
zero.,. the Jogic. flow is laterally_.transferred to. a like func
tionallocation on the path followed by the first Data Word. 

When the Data Word Counter is decremented to zero, 
the last data word has been received and the processor 
program is set to mode 4. The next word received, therefore, 
should be the checksum word. The checksum can, obviously 
have any "value", hence can follO\v anyone of the logic 
flow paths described previously, eventually getting to the 
mode 3 check in the lower center of the flow chart. Since 
the processor is no longer in mode 3, a checksum compari
son is made. To make the checksum comparison the received 
checksum is clocked into the I/O Register, the register is 
complemented and the checksum complement is jammed 
into the adder. If the adder sum is all "Is" a valid checksum 
is indicated and a "Good Data" response is generated and 
clocked out to the MDP. 

Assume byte 1 equaled zero and the processor was in 
mode 2. It is obvious that only two valid command words 
exist under these conditions. These are the "Reinitiate" 
command, (OVOO) 16, and the "Request Bit Status" word, 
(UOOO)16. For both of these words, byte 2 must also equal 
zero or a digital error is indicated. If byte 3 equals zero, 
byte 4 must equal "u" or a digital error exists. Parity is 
checked on the received word and if it is valid the "BIT 
Status" word is generated and clocked out to the MDP. 

If byte 3 does not equal zero, then byte 4 must equal 
zero or a digital error is indicated. After the parity check, 
byte 3 is compared to the value "V". If they are equal a 
"Good Data" ,vord is generated, a 50 msec InpuL Data 
Lockout is initiated and the processor is reset to mode 1 to 
await a "Reset I/O" command.' 

The digital system design and micro-computer program 
dictated by the Logic Flow has been simulated on the 
:McDonnell-Douglas Automation Company SIGMA 47 
computer. The chart just discussed is the result of two 
previous flow chart simulations which pointed out several 



timing and sequencing problems. Use of the micro-computer 
and the results of the simulations make the SITS Engineers 
confident the unit has been designed to make maximum use 
of available hardware and will accurately simulate the 
missilp.. 

SUMMARY 

In 1971 McDonnell-Douglas was awarded a contract for a 
new missile system. The missile power, discrete command I 
response, and digital systems were described with emphasis 
on the digital data format, error detection and timing. A 
missile simulator, the SITS, was briefly described showing 
how the shortcomings of a previous simulator were elimi
nated. A listing of the SITS design criteria was given and 
the design logic based on utilization of a micro-computer 
was described. 

Use of a Micro-Computer in a Missile Simulator 825 

ACKXOWLEDG::\1EXTS 

The authors wish to express their appreciation to ::.vIr. Bruce 
V. Savage and William G. Kull, who ,vere given the detail 
design responsibility for the SITS circuitry and micro
programming, for their advice in preparing the figures used 
in this paper. Also the authors wish to recognize ::\1r. James 
E. Moore of McDonnell Douglas and ::\1r. Lowell Noxin 
of the Naval Air Systems Command for their help in estab
lishing the basic design criteria for the SITS. 

REFEREXCES 

1. Robinson, C. A., Jr., "Harpoon Slated for Prime Anti-ship Roll," 
Aviation Week and Space Techrwlogy, May 7, 1973. 

2. Kropiunik, F. J., Harpoon Data Processor, Specification jor:, Mc
Donnell Douglas, September 1971. 

3. Rose, J. A., Harpoon Mis.sile Simulator/Test Set, Critical Design 
Specificationjor:, McDonnell Douglas, January 1974. 





Charge-coupled devices for computer memories 

by J. E. CARNES and W. F. KOSONOCKY 

RCA Laboratories 
Princeton, New Jersey 

and 

J. M. CHAMBERS and D. J. SAUER 

RCA Laboratories 
Van N uys, California 

INTRODUCTION 

The charge-coupled device (CCD)1 is an analog shift register 
which is based upon MOS (metal-oxide semiconductor) 
technology and is capable of large scale integration. As an 
analog device it offers exciting and unique capabilities as 
an image sensor and in a variety of signal processing and 
filtering applications. 

The CCD can also be utilized as a digital serial memory 
where it offers potential cost, size, and power advantages. 
All of these CCD advantages arise from the fact that only 
two or three MOS capacitors are required to store one bit 
of information. Area packing densities of 106 bits per square 
inch seem to be possible along with single chips having 
32,000 or more bits of storage. 

This paper is intended to review the basic operation of 
the CCD, the types of memory systems which have been 
considered to date, and the expected performance of CCD 
memories including the fundamental design trade-offs 
possible. 

THE BASIC CCD SHIFT REGISTER 

MOS capacitor 

Since a CCD is physically just a linear array of closely
spaced -:\10S capacitors, it is important to understand the 
:;\10S capacitor and how the surface potential, Vs (the 
potential at the Si-Si02 interface relative to the potential 
in the bulk of the silicon), depends upon the various pa
rameters involved. 

Figure 1 shO\vs a cross-sectional view of an MOS capacitor 
with a p-type silicon substrate. When a positive step voltage 
is applied to the gate of such a structure, the majority 
carriers, holes, are repelled and respond within the dielectric 
relaxation time. This results in a depletion region of nega
tively-charged acceptor states near the surface of the silicon. 
Just after the step voltage is applied to the gate, the silicon 

827 

conduction band at the surface is well below the equilibrium 
Fermi level and electrons, the minority carriers, will tend to 
gather there. Ho",~ever, it takes a rather long period of time 
for thermally-generated minority carriers to accumulate in 
sufficient numbers to return the system to thermal equilib
rium. Thermal relaxation times for MOS capacitors rang
ing from 1 to 100 seconds have been measured. When 
minority carriers do accumulate at the surface, they start 
to create an inversion layer which resides within 100A of 
the interface. This negative charge tends to reduce the 
surface potential, V s. When V s goes to zero, no more charge 
can be accumulated or stored in the potential \vell. The 
capacitance of the potential well, Cwell , consists of two 
capacitances in parallel: the fixed oxide capacitance and 
the capacitance associated with the depletion layer of the 
silicon. Thus, the following fluid model of the ::\10S ca
pacitor emerges: a potential well for minority carriers can 
be created by applying a step voltage to the gate and this 
well will take a relatively long period of time to accumulate 
charge thermally. For times much shorter than this thermal 
relaxation time, a potential well exists at the surface, and 
the depth of this well can be altered by changing the gate 
voltage. When minority carriers are introduced as signal 
charge in the potential well, they tend to reduce the depth 
of the well according to Qsig/Cwell so they tend to fill up the 
well much like fluid in a container. 

Basic charge-transfer action 

A three-phase CCD is just a line of these -:\110S capacitors 
spaced very close together ,vith every third one connected 
to the same gate, or clock voltage as shown in Figure 2(a). 
If a higher positive voltage is applied to the CPl clock line 
than c/J2 and CP3, the surface potential variation along the 
interface will be similar to Figure 2(b). If the device is 
illuminated by light, charge will accumulate in these wells. 
Charge can also be introduced electrically at one end of the 
line of capacitors from a source diffusion controlled by an 



828 National Computer Conference, 1974 

~ 
,,..... .......... _--, FIELD 

1,000; 
3POOA 

CPs (t::O) \'----"""! 

OXIDE. 
10.000 A 

t 
(0 ) 

REGION 

(c) 

Figure l-(a) Cross-sectional view of an MOS capacitor representing 
element for charge-coupled circuit; (b) Surface potential profile just 
after application of step voltage V G. (c) Surface potential profile with 

charge signal qs in the potential well 

input gate. To transfer this charge to the right to the position 
under the ¢2 electrodes, a positive voltage is applied to the 
¢2 line. The potential well there initially goes deeper than 
that under a ¢l electrode, which is storing charge, and the 
charge tends to move over under the ¢2 electrodes. Clearly, 
the capacitors have to be close enough so that the depletion 
layers overlap strongly, and the surface potential in the gap 
region is a smooth transition from the one region to the 
other. Next, the positive voltage on the ¢l line is removed to 
a small positive DC level, enough to maintain a small deple
tion region, increasing the surface potential under the ¢l 
gates in the process. Kmv the ¢2 wells are deeper, and any 
charge remaining under ¢l gates spills into the ¢2 wells. The 
charge, at least most of it, now resides one-third of a stage to 
the right under ¢2 gates. The charge is prevented from mov
ing to the left by the barrier under the ¢3 gates. A similar 
process moves it from ¢2 to ¢a and then from ¢a to ¢l. After 
one complete cycle of a given clock voltage, the charge pat
tern moves one stage (three gates) to the right. No significant 
amount of thermal charge accumulates in a particular well 
because it is continually being swept out by the charge trans
fer }l,d,ion. The charge being transferred is eventually trans
ferred into a reversed-biased drain diffusion and from there 
it is returned to the substrate. The charging current required 
once each cycle to maintain the drain diffusion as a fixed 
potential can be measured to determine the signal magnitude 
(current-sensing) or a re-settable floating diffusion which 
controls the potential of a MOSFET gate can be employed 
(voitage-sensing).2 One can visualize a CCD shift register as 
a multi-gate ?\lOSFET in which the charge signal is moved 

as charge packets from the source diffusion to the drain 
diffusion under the control of phase clock voltages applied to 
the gates. 

Limitations on speed and efficiency 

Clearly, 100 percent of the charge cannot move instan
taneously from one potential well to another. Also some of 
the charge gets trapped in fast interface states at each site 
and cannot move at all. Therefore, in a given clock period 
not quite all of the charge is transferred from one well to 
the next. The fraction of the total that is transferred (per 
gate) is called the transfer efficiency, 11. The fraction left 
behind is the loss per transfer; or tram,fer inefficiency: 
denoted E, so that 11 + E = 1. Because 11 determines how 
many transfers can be made before the signal is seriously 
distorted and delayed, it is a very important figure of merit 
for a CCD. If a single charge pulse within initial amplitude 
Po is transferred down a CCD register, after n transfers 
the amplitude P n will be: 

(for small E) (1) 

Clearly, E must be very small if a large number of transfers 
are required. If we allow an nE product of 0.1, an overall 
loss of 10 percent, then a 3¢, 330 stage shift register requires 
E ~ 10-4, or a transfer efficiency of 99.99 percent. 

The maximum achievable value for 11 is limited by how 
fast the free charge can transfer between adjacent gates8 

and how much of the charge gets trapped at each gate 
location by fast interface states.9 

Several physical mechanisms cause charge motion from 
one potential well to an adjacent deeper well, including 

i~ f~ -U--------- ¢, 
't's L s min 

(b) 

t -{ + +J ; + + +r----
~s fZmZ1~ [).~s lz:.nI. t: I, 

~t:'2 
~1:t3 
~

+++ +++ 

[).~ I:~ 
1" 't's '" • 

(e) 

(d 1 

Figure 2-0peration of a 3-phase charge coupled shift register: (a) 
Cross section of the structure along the channel oxide; (b) Surface po
tential profile for q,,= -V, q,2=O, q,3=O forming a potential well under 
the phase-l electrode; (c) Transfer of charge from the potential wells 
under the phase-l electrode to the potential wells under the phase-2 
electrode illustrated by the profiles of surface potential at times shown 

in (d); Cd) Waveforms of the phase voltages 



charge repulsion,3 thermal diffusion,4 and drift under the 
influence of fringing fields induced by the gate voltages.5 

The rate of transfer depends mainly upon the gate length 
along the direction of charge movement. It also depends 
to a lesser degree upon substrate doping, clock waveforms 
and other structural parameters. Computer simulations 
indicate that conventional surface channel devices with 10 
JLm gate lengths are capable of efficient operation at 5-10 
MHz.6 Experimental devices with 7.5 JLm gate lengths have 
been operated at 20 MHz with transfer inefficiencies of 
10-3. 

Charges can be lost from the signal into fast interface 
states because, while the filling rate of these states is pro
portional to the number of free carriers, emptying rate 
depends only upon the energy level of the interface state. 
Thus, even though a roughly equal amount of time is avail
able for filling as for emptying, many of the interface states 
can fill much faster than they can empty, and thus retain 
some of the signal charge and release· it into trailing signal 
packets.7 This type of loss can be minimized by continually 
propagating a small zero-level charge or "fat zero" through 
the device. This tends to keep the surface states fined so 
they do not have to be filled by the signal charge. 

Buried channel CCD's 

The transfer loss due to interface state trapping and the 
subsequent requirement for fat zero charge can be eliminated 
if the potential well could be moved away from the Si-Si02 

interface. This is done in the buried channel CCD by in
cluding a thin layer of conductivity type opposite to that 
of the substrate as shown in Figure 3(a). When this layer is 
completely depleted of majority carriers by applying the 
appropriate potential to the drain diffusions, the depleted 
layer results in a parabolic potential well as seen in Figure 
3(c). This well can store and transfer charge as described 
earlier. 

METAL 
GATE 

N 

P- TYPE Si SUBSTRATE 

(0) 

P 

-----::-=----

(b) 

Si~ 

Figure 3-Buried-Channel CCD: (a) Crossection of the device; (b) 
Energy-band diagram in thermal equilibrium; (c) Energy-band diagram 

where the n-type layer is depleted 

Charge-Coupled Devices for Computer Memories 829 

to) SINGLE METAL CCD 

(b) POLY-Si-ALUMINUM 

(e) POLY- Si 

(d) ANODIZED ALUMINUM 

(e) CONDUCTIVELY COUPLED 
(C4D) 

-...j ~3fLm ALUMINUM ___ ~L 0 

siozfE····'.:·:·':::·::·: .. ·:.::9-fQOO-2.000 A 

AL. POLY-Si 

~,;o, 
Si 

DOPED POLY-Si UNDOPED POLY-Si 

~
NSULATING 

.......... ·.· ... ~OXIDE 

.:' ... :.:--: .... :........ CHANNEL OXIDE 

Si 

ALUMINUM A~ 0 

~,;:: 
Si 

Figure 4-Charge-coupling structures 

standard silicon gate processing. The main limitation of 
this approach is the RC time delay in long gates due to the 
high resistivity of the polysilicon.12 

Since the signal charge is then no longer subjected to fast 
interface state trapping, there is no requirement for fat 
zero. In addition the carrier mobility is higher since the 
charge transport occurs in the bulk rather than at the 
surface, and fringing fields are higher since the electrodes 
are further away. Thus buried channel devices should be 
faster,9 not require fat'zero, and not suffer from edge effect 
trapping. 

On the other hand, buried channel devices involve some
what more complex processing and more critical operation. 
They also have reduced signal handling capability because 
the well capacitance is smaller. Bulk trapping states may 
also affect buried channel operation at certain resonant 
frequencies. 

CCD technologies 

In order to fabricate a CCD one must decide upon: 

(1) type of charge-coupling gate structure, 
(2) means for channel confinement, 
(3) surface vs. buried channel, and 
(4) substrate resistivity. 

Figure 4 shows five different types of gate structures. Figure 
4(a) shows a single level metal (three-phase) structure 
where the gaps between electrodes are determined by the 
etching process. While this structure was used to make 
early CCD'S,1O the instabilities caused by the exposed gap 
make its use in future devices, especially memories,' unlikely. 

Figure 4(b) shows a two-phase polysilicon aluminum gate 
structure \vhich has self-aligned gaps and no exposed oxide 
to cause instability,u-12 Standard layout rules (.2 mil etch, 
.1 alignment) results in 1.2 mil center-to-center spacing 
between CCD stages. This structure employs essentially 



830 National Computer Conference, 1974 

6-1 <1>-14>-2 0-1 

G-I G-2 G-3 G-4 

CHANNEL WIDTH = S.smiis 

--- ~-

~2B STAGE SHIFT REGISTER 

Figure 5-Cross-sectional view and labeled photograph of 128-stage 
2-phase shift register 

A means ofavuidingthe exposed-gap probl-em associated 
with the single level metal approach is shown in Figure 4(c). 
A layer of polysilicon is doped in the gate regions and is 
left undoped in the gap regions. I:! 

Another multi-level structure is shown in Figure 4(d). 
Here both gates are aluminum with the insulator being a . 
wet-anodized aluminum oxide.14 This approach has the 
advantage of being free of clock phase delay and attenua
tion. Finally, a fifth approach which is potentially useful 
for memories is the conductively-connected charge-coupled 
device C4D (Figure 4(d» which obviates the need for 
narrO\v gaps by ion implanting a conducting layer in the 

OUTPUT INVERTER 

SOD STAGE SHIFT REGISTER 

Figure 6-Cross-sectional view and labeled photograph of SOO-stage 
2-phase shift register 

W 
I« 
C) 

n:: 
w 
0.. 

(J) 
(J) 

g 
.J 
« 
Z 
o 
~ 
o « 
n:: 
II.. 

,6----~-----r----._----.---~ 
(A) CCD5-3-21 

0.5 mil CHANNEL " 

(B) CCD5-3-10 
1.0 mil CHANNEL 

(C) CCD5-2-3 
5 mil CHANNEL 

.~ f= I MHf 

• _________ • ________ A ____ ~.~_ 

o~ B 

-'-------O'~C~ ________ ~ 

10-5L-----~~----~------~0~3~----0~4~---;0~.5 
0.1 0.2 . . 

FAT ZERO ( F~ACTIPN._OF FULL WELL) 

Figure 7-Fractional loss per transfer (transfer inefficiency) versus 
amount of fat zero for 0.5, 1.0, and S.O mil wide 128-stage 2-phase 
registers. These devices were made on 1.0 ohm-em n-type silicon 

substrates with (100) orientation 

gap region. 15 Thus a single level metal with standard .2 mil 
gaps can be used. 

The various approaches possible for channel confinement 
include thick oxide, diffused channel stop, and polysilicon 
field shield. The thick oxide approach is most useful for 
p-channel devices, but can cause problems with fine line 
definition in subsequent processing steps since mask contact 
cannot be made with the wafer surface. Diffused channel 
stops avoid this problem, but requirc more area in output 
circuits since a minimum separation bet,,·cen source-drain 
diffusions and channel stops must be maintained. Polysilicon 
field shield permits close spacing in output circuits and can 
be used with both p- and n-channel devices. Regardless of 
the approach used, channel stop widths of .2 mil are suffi
cient to prevent spillage of charge between _ adjac~'nt ehan
nels. 12 

The choice between surface channel and buried channel 
for memories is not clear at present. Surface channel offers 
high charge capacity per unit area but requires a fat zero 
for efficient operation. The buried channel device basically 
does not need fat zero but has lower capacity. 

The choice of substrate resistivity for surface channel 
devices involves a trade-off between higher speed and larger 
transfer loss for high resistivity substrates vs. lower speed 
and lower transfer loss for low resistivity. This trade-off is 
illustrated further in the experimental results section. The 
choice of substrate resistivity is also important in achieving 
proper operation of tv{()-phase devices using two-thicknesses 
of oxide to achieve directionality.1G 

The appropriate choice of the various options depends 



c:.. ___ -::ii- ~ 

~o,-

CLOCK FREQUENCY (H~I 

Figure 8-Fractional transfer loss per gate (transfer inefficiency) for 
500-stage 2-phase registers operated with 30 percent of fat zero 

to a great extent upon the fabrication capabilities one has 
at his disposal. For those possessing standard silicon gate 
processing capability, the polysilicon-aluminum gate two
phase device appears to be a particularly advantageous 
approach-especially for memory structures where phase 
delay problems associated ·with rather high sheet resistance 
of polysilicon are not significant. 

EXPERIMENTAL RESULTS 

A wide variety of CCD's have been built and results 
reported.9, 10, 12,14,17-19 In this section, typical surface channel 
device performance will be illustrated using the two-phase 
polysilicon-aluminum gate device12 as an example. A num
ber of different configurations have been built including 
128- and 500-stage registers, p- and n-channel, various sub
strate resistivities and ch.annel widths. Figure 5 shows a 
cross-sectional view of the 128-stage device \vhich has 1.2 
mil center-to-center spacing while Figure 6 shows a similar 
view of the 500-stage device which has .8 mil spacing. 

Figure 7 shows the importance of fat zero for efficient 
operation of surface channel devices. Also apparent in this 
figure is the edge effect,20 illustrated by the fact that the 
narrower channels do not achieve as low a transfer loss as 
the wider channel devices. Figure 8 illustrates the transfer 
inefficiency as a function of clock frequency for the 500 
stage device with fat zero. The higher resistivity substrates 
provide higher speed but the lower resistivity substrates 
achieve lower transfer loss at lower frequencies. This experi
mental data shows that transfer inefficiencies of 10-4 can be 
achieved "vith surface channel devices with fat zero charge 
present. Buried channel devices are, in principle, capable of 
such operation without fat zero. More performance data 
on buried channel operation will be available in the near 
future. 

CCD ME:;'vIORY SYSTEMS 

Charge-coupled shift registers are basically analog devices 
with no signal gain mechanism. To use these devices for the 

Charge-Coupled Devices for Computer Memories 831 

storage of digital signals, it is necessary to periodically 
refresh or to regenerate the charge signal. In principle, simple 
charge regeneration stages, such as shown in Figure 9, are 
possible and have been experimentally demonstrated.2,1l 

Floating diffusion or floating gate sensing can be used. A 
simple direct-coupled stage will not, however, be sufficient 
in actual operating memory devices. ::V[ore complicated 
regeneration stages are necessary to provide for the intro
duction of fat zero, to provide for gain and to shift d.c. 
voltage levels. Experiments using stages similar to that 
shown in Figure 9 indicate that the operation of such a stage 
is predictable on the basis of the various capacitances shown. 
Design of more involved stages can therefore follow con
ventional MOS circuit design procedures. The importance 
of gain in the regeneration stage increases as the unit cell 
area and its associated capacitance becomes small compared 
to the interconnect capacitances associated \vith the ro
generation stage. Care must be taken not to degrade the 
inherently high signal-to-noise ratio of the CCD shift 
register in the regeneration stage. 

Various system organizations have been considered for 
the construction of charge-coupled memories. The choice of 
the system organization-depends on the desired system 
performance. Two types of systems which can be used to 
form the basic memory loop are illustrated in Figure 10. As 
is shown, the signal flow in system A follows a serpentine 
pattern and has signal refreshing stages at each corner. In 
this serpentine system, all bits traverse the same path 
through the loop at the same frequency. Each bit passes 
through every storage site in one trip around the loop. The 
number of bits between refresh stages is determined either 
by transfer efficiency or the lowest operating frequency 
desired in the standby or idle mode of operation. The num-

4>n_1 

Figure g-Schematic diagram of a charge regeneration (refreshing) stage 
illustrating the significant capacitances associating with the floating 

diffusion used for voltage sensing of the output 



832 National Computer Conference, 1974 

SIGNAL REGENERATION STAGES 
~ \ 

OUT IN 

SYSTEM A 

SYSTEM B 

OUT 

IN 

SIGNAL 
REG ENERATION 
AMPLIFIER 

regeneration. stage can support a larger number of bits 
than is possible in the serpentine system. 

The SPS system can also be built with a vertical channel 
for each phase of the horizontal serial registers with every 
other vertical channel being loaded during alternate read-ins 
of the serial register. For a two-phase system, the first 
horizontal line would be stopped under phase-one electrodes 
and transferred into every other vertical channel. The second 
line would be stopped on phase-two electrodes and trans
ferred into the remaining vertical channels. The full line 
would then be transferred down one stage and the proce
dure repeated. This "interlace" mode would result in twice 
the packing density possible with a standard SPS structure 
with one vertical channel per horizontal stage. 

Collins et al. have proposed another CCD-like structure 
for increasing the effective packing density of charge trans
fer memories.21 Using a conventional CCD shift register, 
one bit of storage in a two phase system requires two storage 
wells for each bit. Thus, one-half of the potential storage 
wells are unoccupied at all times. All storage sites but one 
could be occupied if each site had its own clock and, start
iIl~ a~ the ... g':!~I!~~_~_.~_~~~~.~t __ :'Yas traIlsf~r!~4 sequ.~~~i111Jy 
into the empty slot. The empty slot would appear to move 
from the output toward the input. This is called the elec
trode per bit (E/B) scheme. A similar structure called the 
multiplexed electrode per bit CCD (::\IE/B) reduces the 
required number of clocks and increases the data rate 
possible with the E/B approach. No knmvn devices of this 
type have been fabricated. 

Figure 10--CCD Memory systems: (a) Serpentine; (b) Series-Parallel- Si021;:J4~~~~~~~~~~~;;~~~~ 
Series (SPS) 

ber of stages between I/O stages determines the average 
access time. 

Figure 11 show-s a possible layout using a multi-level 
gate technology for such a serpentine structure. The direc
tion of charge motion alterna.tes from one horizontal channel 
to the next. 

System B in Figure 10, on the other hand, is in the form 
of two serial and one large multi-channel parallel shift 
registers. The data string is introduced serially into the top 
serial high speed register. Once loaded, it is transferred in 
parallel into the middle register. Ail of the vertical parallel 
channels in the middle area are clocked together at a lower 
frequency. At the output the process is reversed, the lower 
high speed serial register is loaded in parallel and read-out 
serially to a regeneration and I/O stage. In this series
parallel-series (SPS) system, all of the bits do not traverse 
the same path. If there are N x bits across and Ny bits down, 
then each bit is transferred through N x + Ny stages and 
Ny of them are at a lower clock frequency. Thus a single 

POLY-Si 

------..J..-..J -~ 
THIN OXIDE ¢2 

(b) 

.Figure ll-One possible layout for 2-phase, serpentine, CCD memory 



CCD's have also been considered for use with ::\1XOS 
structures as static, non-volatile memories. 22 The presently 
reported data suggest that the combination of the CCD 
and X:\IOS technology for the construction of such read
mostly memories very ,veIl may turn-out to be a marriage 
of inconvenience. 

EXPERI::\IEXTAL CCD JIE:VI0RY ARRAY 

An experimental CCD memory chip employing the SPS 
configuration is shown in Figure 12. It is constructed using 
the tv,·o-phase aluminum-polysilicon gate structure. 12 The 
chip is comprised of five independent 1024 bit SPS seg
ments, each having 16 bit serial input and output registers, 
64 bit parallel registers, and a regenerate amplifier. Several 
additional test features are also included on the chip. Figure 
13 shO\vs the detected output waveforms from two of the 
1024 bit cells connected serially by means of a signal re
generation stage. The operating frequency is 1 :MHz and 
fat zero operation is used. 

CCD :ME:\10RY PERFORMANCE 

Cost, packing density, and chip size 

The main interest in CCD memories is their potential 
for low cost per bit. These ]o'wer costs are expected to be 
achieved by putting more bits on a chip ,vhile maintaining 
reasonable manufacturing yields. The CCD memory should 
result in more bits per chip due to two separate factors. 
First is the smaller area required per bit. Second is the 
simpler processing which does not require a large number 
of contact openings or diffusions. The simpler processing 

Figure 12-Photomicrograph of an experimental CCD memory array 

Charge-Coupled Devices for Computer Memories 833 

Figure 13-Detected waveforms for two 1024 bit memory ~ell connected 
in series by means of an on-the-chip signal regeneration stage 

should permit acceptable yield on larger chip sizes than is 
possible with conventional MOS LSI. 

The packing density of CCD memories can be high 
because only a few MOS capacitors are required to store 
one bit. For example, using two-phase polysilicon-aluminum 
gate structures with "standard" layout rules (.2 mil gap, 
.1 mil alignment), and 1.0 mil wide channels, areas per bit 
of 1.2 mil2 are possible. This offers an advantage of 2 to 4 
over present dynamic MOS memories. 15 However, smaller 
areas per bit are likely. Wegener has discussed probable 
areas per bit for various CCD technologies assuming .5 mil 
\vide channels and line widths of .2 mil, gaps of .2 mil and 
alignment of .05 mil,23 'With these assumptions, areas per 
bit range behveen .3 and .8 mi12, depending upon the tech
nology used, with .5 mil2/bit achievable ,vith four different 
CCD technologies. 

Augusta and Harroun point out that for a four-phase 
serpentine structure the area per bit can be expressed as 
15.4W2 where W is the minimal line width.24 They also 
predict that line widths of .15 mil will be possible on a 
production basis in the late seventies resulting in a CCD 
area per bit of .35 mil2• 

These predictions all assume essentially conventional 
photolithographic processing, which is the factor which 
limits cell size. However, CCD's appear capable of going 
to lovver areas before signal-to-noise ratios become too 
small for practical operation and therefore the exploitation 
of high resolution electron beam definition in CCD fabrica
tion may result in even lower areas per bit. 

The practicality of going to larger chip sizes because of 
simpler CCD processing is difficult to assess. The full poten
tial of charge-coupled imagers will only be achieved \vith 
chip sizes approaching 500 mils on a side. A large industry
wide effort is being directed-and rather successfully-to 
this end. It is therefore reasonable to expect that CCD 
memories can also achieve larger chip sizes than 150 mil. 
Assuming a 250 mil chip and .5 mil2 area per bit, 125,000 
bits per chip should eventually be possible. 

This larger number of bits per chip \vill result in lo\ver 
cost per bit. At present CCD memories can probably be 
manufactured for O.l¢/bit. To achieve a more attractive 
cost of 0.02¢/bit or less, the full potential of CCD memories 



834 National Computer Conference, 1974 

for high packing density and large area chips must be demon
strated with high yield. 

Data rate 

The analysis of the transfer of the free charge indicates 
that the maximum bit rate for surface channel CCD serial 
memories ""\Till be approximately 107 bits/so The chip selec
tion and other signal switching may, however, impose a 
practical upper limit on the bit rate in the range between 
106 to 107 bits/so The achievement of a high overall bit 
rate may be achieved, of course, by a suitable multiplexing 
arrangement. 

Power requirements 

The power consumed in a CCD memory (aside from 
regeneration and I/O stages) is essentially that required to 
charge the storage capacitances. This power will be dissi
pated mostly in the clock drivers-not on the CCD chip 
itself. Each bit requires CV2f power. Thus the total power 
riecessary-Toi-a .... serpentine system-lviUoe ... CV2f~N b-,vhere 
N b is the total number of bits. The data rate per loop would 
be fe bits/sec. Clearly, the power consumption could be 
reduced by reducing fe. All unselected loops could be op
erated at a lower idle frequency with a large reduction in 
power. Consider, for example, the case of a million bit 
memory with capacitance per bit of .05 pF (.5 mil2 at .1 
pF per mil2) and clock voltages of 5 V. The total power 
required at fe = 10 ::\11Hz would be 12.5 watts. If the memory 
\,yere idled at 10 KHz, the CV2f power required would be 
12.5 milliwatts. The lowest practical idle frequency is 
limited by thermal generation during the time a particular 
bit spends between regeneration stages. The time between 
regeneration stages should be less than .1 to 1 second at 
room temperature. Thus the lowest idle frequency is related 
to the number of stages between regeneration (N R) accord
ing to: 

fe, idle ~ .1 NR (2) 

This is appropriate at room temperature. A factor of two 
increase ii'j required for every 10°C a})9ve room tempeI'ature. 
Since frequent rege~eration implies Imv idle frequency and 
low standby power but decreases the number of storage 
sites per chip, a basic design trade-off involving power 
and cost is involved in the selection of the number of stages 
between regeneration. 

The power required for the SPS memory loop is lower 
than the serpentine system because most of the gates in an 
SPS system operate at a reduced frequency. For an SPS 
system with N x bits across and Ny bits down, the power 
required is: 

(3) 

Comparing this \yith the serpentine loop, assuming a million 

bit memory made up of SPS loops with N x = Ny = 50, the 
total power required (at a read-out rate of 10 MHz) would 
be .75 watts (vs. 12.5 watts for the serpentine equivalent). 
Only one regeneration stage would be required for every 
2500 bits, but each bit would only be transferred 100 times 
between regenerations. While the CCD memory is a dy
namic device and is therefore volatile, the low power re
quired per bit, especially in a standby mode, indicates that 
rather large memories can be supported on battery power 
for reasonably long periods of time in the event of primary 
power failure. 

Access time 

One drawback of a CCD memory is its serial nature with 
the associated long access time. The average access time to 
a random bit is determined by the number of bits between 
I/O stages and the clock frequency. 

NI/0 
Taccess = 2fc (4) 

This trade-off between access time and number of bits 
between I/O stages is the most significant decision involved 
in designing a CCD memory. Short access times ("-'10 ILsec) 
can be obtained only at the expense of many I/O stages, 
significant on-chip address decoding and high power con
sumption because of high clock frequency. The serpentine 
structure would be required to achieve these low access 
times. The packing density advantage of CCD memory 
would be compromised. 

At the other extreme, one could utilize only one I/O to a 
chip minimizing overhead circuitry. Assuming 50,000 bits 
on a chip and a clock frequency of 10 MHz, the average 
access time would be 2.5 millisec. A rather wide latitude 
in access time is possible and no particular structure is 
optimum for all applications. 

Error rate 

Since the CCD memory operates by continually trans
ferring charge around a loop,. there. is some concern about 
the error rate of such a device. However, analytical25-27 and 
experimental28-29 studies show that the CCD is inherently a 
low-noise device. When charge transfer is very efficient, 
little uncertainty can be introduced as to the amount of 
charge transferred. For long surface channel devices, inter
face state trapping will limit signal-to-noise ratio, but in 
memories with a limited number of transfers between refresh~ 
the most important noise source is likely to be associated 
with the introduction of charge into the first potential well 
and the sensing and refreshing of the signal. The signal may 
have shot noise unless special precautions are taken to 
introduce a low noise signal28 with only kTC noise. Even if 
the signal has shot noise, a 0.3 mil2 gate can store about 
106 carriers pel" well which results in a signal power to noise 



power ratio of 60 db. The error rate introduced with this 
signal-to-noise ratio would be infinitesimal. 

Thus the CCD in itself introduces no special error rate 
problems-at least not for the size device presently con
templated. Eventually, of course, temporal noise sources 
may limit the maximum possible packing density. 

The error rate of CCD memories will most likely be de
termined by the characteristics of the refresh stage. Special 
dynamic detection schemes have been proposed30 to mini
mize the error rates at refresh stages due to transfer ineffi
ciency. Other problems which may lead to errors are dark 
current non-uniformities and threshold variations. The 
resulting error rates are not expected to be any more serious 
than those encountered in conventional MOS memory. But 
because of the serial nature of the CCD memory, such 
memory systems should be designed with some provisions 
for error correction.24 

Typical designs 

Agusta and Harroun have presented the conceptual 
design of an eight megabyte high performance CCD storage 
device intended for head per track disk replacement.24 

Average access times of 0.5 msec and data transfer rates of 
3 X 106 bytes/sec were desired. A serpentine structure 
with 32,769 bits per chip, with 64 bits between regeneration, 
256 bits between I/O (128 on a chip) and a clock frequency 
of 500 KHz was chosen. The total operating power was 
expected to be 237 watts with about 43 watts required 
during standby. An overall volume including control and 
logic circuitry but not power supplies, of 2.9 cubic feet is 
anticipated. 

Other designs involving SPS loops rather than serpertine 
loops and fewer I/O stages per chip will result in the lower 
power requirements and longer access times. For example 
a chip with sixteen 32 X 64 SPS loops would also result in 
32,768 bits per chip. If the read-out frequency were 2 MHz, 
the average access time would be .5 msec. On-chip access 
decoding would be simpler (16 I/O stages per chip vs. 
128). Also, the power requirements would be lower, espe
cially if an idle mode were also incorporated within the 
SPS memory. 

DISCUSSION AND CO:NCL USIONS 

CCD's are at the stage of development where a memory 
system can be designed-all of the necessary design informa
tion is available. HO\vever, the question as to whether such 
CCD memories, if built, would find wide-spread use in 
general computing machinery depends upon whether they 
'will be cheap enough to compete with existing alternatives
drums or discs and other semiconductor memories. For 
some applications where the longer access time is of no 
consequence and certain special features, such as low power 
dissipation, are very important, CCD memories will very 
likely be used. 

Charge-Coupled Devices for Computer Memories 835 

Certainly, CCD memories must show a clear-cut cost 
advantage over more conventional high packing density 
semiconductor memories, such as the one-transistor-per-bit 
store, to be seriously considered for widespread memory 
system use. 

However, the optimism behind the development of CCD 
memories is based upon their inherent capability for achiev
ing high packing density and good yield on large areas of 
silicon which should lead to a much lower cost per bit than 
other semiconductor memories. 

REFERENCES 

1. Boyle, W. S. and G. E. Smith, "Charge-Coupled Semiconductor 
De"\;ces," Bell System Tech. J., 587, 1970. 

2. Kosonocky, W. F. and J. E. Carnes, "Charge-Coupled Digital 
Circuits," IEEE J. Solid-State Circuits, SC-6, 314, 1971. 

3. Engeler, W. E., J. J. Tiemann, and R. D. Baertsch, "Surface Charge 
Transport in Silicon," Appl. Phys. Letters 17, 469, 1970. 

4. Kim, C. K. and M. Lenzlinger, "Charge Transfer in Charge
Coupled Devices," J. Appl. Phys., 42, 3586, 1971. 

5. Carnes, J. E., W. F. Kosonocky and E. G. Ramberg, "Drift-Aiding 
Fringing Fields in Charge-Coupled Devices," IEEE J. Solid State 
Circuits SC-6, 322, 1971. 

6. Carnes, J. E., W. F. Kosonocky and E. G. Ramberg, "Free Charge 
Transfer in Charge-Coupled Devices," IEEE Trans. on Electron 
Devices, ED-19, No.6, June 1972, p. 798. 

7. Carnes, J. E. and W. F. Kosonocky, "Fast Interface States Losses in 
Charge-Coupled Devices," Appl. Phys. Ltrs. 20, 7, April 1, 1972, 
p.261. 

8. Walden, R. H., R. H. Krambeck, R. J. Strain, J. McKenna, N. L. 
Schryer, and G. E. Smith, "The Buried Channel Charge-Coupled 
Device," Bell Syst. Tech. Journal, 51, 1635, 1972. 

9. Esser, L. J. M., "The Peristaltic Charge-Coupled Device," paper 
presented at the Charge-Coupled Device Applications Conference, 
Sept. 1973, San Diego, California. 

10. Amelio, G. F., M. F. Tompsett and G. E. Smith, "Experimental 
Verification of the Charge Coupled Device Concept," Bell System 
Tech. Jour., Briefs, p. 593, April 1970. 

11. Kosonocky, W. F., and J. E. Carnes, "Charge-Coupled Digital 
Circuits," Digest of Technical Papers IEEE Solid State Circuit 
Conference, p. 162, Feb. 19, 1971. 

12. Kosonocky, W. F. and J. E. Carnes, "Two-Phase Charge-Coupled 
Devices with Overlapping Polysilicon and Aluminum Gates," 
RCA Review, 34, No.1, p. 164, March 1973. 

13. Kim, C-K. and E. H. Snow, "P-channel Charge-Coupled Device 
with Resistive Gate Structure," Appl. Phys. Ltrs., 20, 514, 1972. 

14. Collins, D. R., S. R. Shortes, W. R. McMahon, T. C. Penn, and 
R. C. Bracken, "Double Level Anodized Aluminum CCD," Paper 
presented at IEEE Int'lElectron Devices Meeting, Washington, D.C., 
Dec. 1972. 

15. Krambeck, R. H., R. J. Strain, G. E. Smith, and K. A. Pickar, "A 
Conductively Connected Charge-Coupled Device," Paper presented 
at IEEE Int'l. Electron Devices Meeting, Washington, D.C., De-
cember 1972. . 

16. Kosonocky, W. F. and J. E. Carnes, "Design and Performance of 
Two-Phase Charge-Coupled Devices with Overlapping P~lysilicon 
and Aluminum Gates," 1973 International Electron Devices Meeting 
Technical Digest, p. 123, Washington, D.C. 

17. Krambeck, R. H., R. H. Walden and K. A. Pickar, "Implanted 
Barrier Two-Phase CCD," International Electron Devices Meeting, 
Washington, D.C., October 11-13, 1971. 

18. Gunsagar, K. C., C. K. Kim, and J. D. Phillips, "Performance and 



836 National Computer Conference, 1974 

Operation of Buried Channel Charge-Coupled Devices," 1973 
IEEE Int'l. Electron Devices Meeting Technical Digest, p. 21, Wash
ington, D.C. 

19. Erb, D. M., W. Kotyczka, S. C. Su, C. Wang, and G. Clough, "An 
Overlapping Electrode Buried Channel CCD," 1973 IEEE Int'l. 
Electron Devices Meeting Technical Digest, p. 24, Washington, D. C. 

20. Tompsett, M. F., "The Quantitative Effects of Interface States on 
the Performance of CCD's," IEEE Trans. on Electron Devices, 
ED-20, No.1, 45, 1973. 

21. Collins, D. R., J. B. Barton, D. D. Buss, A. R. Kmetz and J. E. 
Schroeder, "CCD Memory Options," 1973 IEEE Int'l. Solid-State 
Circuits Conference, Digest of Technical Papers, p. 136, Philadelphia, 
Pa. 

22. Chan, Y. T., B. T. French and R. A. Dugmundsen, "Charge
coupled-memory device," Appl. Phys. Lett., 22, 1973. 

23. Wegener, H. A. R., "Appraisal of Charge Transfer Technologies for 
Peripheral Memory Applications," CCD Applications Conference 
Proceedings, p. 43, San Diego, California, September 1973. 

24. AgllSta, B. and T. V. Harroun, "Conceptual Design of an Eight
Megabyte High Performance Charge-Coupled Storage Device," 
CCD Applications Conference Proceedings, p. 55, San Diego, 
California, Sept. 1973. 

25. Barbe, D. F., "Noise and Distortion Consideration in CCD's," 
Electronic Letters, 8, 207, 1972. 

26. Carnes, J. E., and W. F. Kosonocky, "Noise Sources in Charge
Coupled Devices," RCA Review, 2, 327, 1972. 

27. Thornber, K. K., "Noise Suppression in Charge-Transfer Devices," 
Proc. IEEE 60, 1113, 1972. 

28. Carnes, J. E., W. F. Kosonocky, and P. A. Levine, "Measurements 
of Noise in Charge-Coupled Devices," RCA Review, 34, 4, December 
1973. 

29. Emmons, S. P. and D. D. Buss, "The Performance of CCD's in 
Signal Processing at Low Signal Levels," CCD Applications Con
ference Proceedings, p. 189, San Diego, California, September 1973. 

30. Thornber, K. K., "Operational Limitations of Charge Transfer 
Devices," Bell System Tech. J., 52, 9, p. 1453, November 1973. 



Block-oriented random access MNOS memory 

by J. E. BREWER 

Westinghouse Electric Corporation 
Baltimore, Maryland 

and 

D. R. HADDEN, JR. 

US Army ECOM 

INTRODUCTION 

MXOS storage elements have been used to realize a block
oriented all electronic secondary memory module. This 
nonvolatile storage unit offers lO-microsecond data access 
and reliable error free operation. BORAM modules provide 
an immediately available cost effective alternative to electro
mechanical storage in severe environment applications. The 
text below describes an 18-million-bit advanced develop
ment model of a BORA~1 module and briefly outlines the 
growth potential of MNOS BORAM systems. 

BORAlVI CONCEPT 

The acronym BORAM and the concept of a block-oriented 
memory were originated at ECOM in June of 1963. Moti
vated by frustration with the characteristics of available 
secondary storage, ECOM personnel drew up a set of desired 
performance goals. It was reasoned that if data were manip
ulated in blocks, significant simplification in addressing and 
control circuitry could be achieved. BORAM was con
strained to an all electronic implementation, but otherwise 
no particular storage technology was specified. 

During the next ten years ECOM diligent1y sought a 
practical realization of the BORAM. The Electronics 
Command worked with several contractors to explore the 
feasibility of magneto-sonics, ferro-electrics, traveling do
main walls, magnetic wires, bubbles, electron beams, and 
~1NOS. Of these options only the MNOS approach was 
confirmed to be currently ready for production. 

A BORAM module can be configured for many different 
data structures. In the advanced development model infor
mation to be stored is processed in bytes consisting of 8 
data bits and 1 parity bit. A block is defined to be a se
quentially ordered set of 2048 bytes. The BORA..\'[ module 
can store 1024 blocks. Any block can be addressed and 

837 

\\<Titten or read. An operation (read or write) will always 
begin with the first byte of the addressed block, and then 
will proceed to the higher order bytes in sequence. 

MODULE FUNCTIONAL STRUCTURE 

Figure 1 identifies the six functional parts of the BORAM 
module. The storage section provides nonvolatile read/ 
write storage for 18,874,368 bits. It contains MNOS memory 
chips, associated drivers and buffers, and power switching 
circuitry. 

The I/O section performs all communication with the 
external controller. It accepts control signals and data, and 
outputs status signals and data. Internal to the module it 
issues commands to the data buffer and control section, 
and transmits the block address to the block selection 
section. 

An important aspect of the module design is that it can 
be used with different computer systems simply by insertion 
of a different I/O card. At the heart of the I/O section is a 
small microprogrammed controller. Changes in micropro
gram customize the I/O logic for a particular installation. 
Other custom elements such as the line drivers and re
ceivers also appear on this card. 

A small data buffer and the module control circuitry are 
located on one PC card. The control circuitry responds to 
requests from the I/O section and provides signals to op
erate the storage section and the data buffer. This circuitry 
also generates all timing signals and data bits for error 
detection purposes. 

Dynamic shift registers are employed within the BORAM 
storage chips for data input and output. Synchronous 
transfer of data between the buffer and the storage section 
avoids any possible loss of data. Transfers between the 
buffer and I/O are asynchronous and long delays may be 
tolerated. The buffer also performs a data format conversion 



838 National Computer Conference, 1974 

.. FOIMAnn.eus 
tOoll,TA6'ARnV! 

STORAGE 
SECTION 

""U"'" >510' SOURCE 

"" ..... 
""V SECTICiN 

_3:l\/-2
JV 

GROUtiO 

Figure I-BORAM module functional block diagram 

function. Data enters the BORAl\f module in 9-bit bytes 
and is converted to an I8-bit format as it enters the storage 
section. 

The block selection section accepts a block address from 
the I/O section and generates the signals which enable the 
appropriate drivers and memory chips in the storage section. 

Self-test electronics are powered down during normal 
module operation. A front panel switch and readout allow 
manual confirmation of the module performance. 

PHYSICAL STRUCTURE 

The BORA:\f module is intended to be a general purpose 
storage unit for military applications. Ground fixed, airborne 
inhabited, and ground mobile operating, environments are 
specified. The operating ambient temperature range is 
-46°C to + 52°C. Storage temperatures can vary from 
-57°C to +71°C. 

As shown in Figure 2 the module is housed in a rugged 
case. It can be mounted and used in the case, or the rear 
portion of the case can be removed and the module can be 
mounted on chassis slides. 

The front panel fin structure serves to transfer heat to 
the external environment and also provides a mounting 
surface for the module controls and indicators. As indicated 
in Table I, the unit weighs 120 pounds and occupies 4 cubic 
feet. 

STORAGE ELEMENT 

The BORAM storage element is a drain-source protected 
J\1NOS memory transistor (see Reference 1). This Westing
house proprietary transistor structure avoids the read 
window closure degradation that is characteristic of non
protected MNOS transistor designs. 

N onprotected memory transistors generally become un
usable after about 106 clear/write cycles. Tests on drain
source protected transistors are still in progress and have 
exceeded 1012 clear/write cycles. No significant read window 
closure has been observed. 

Eliminatiun uf degradation ii5 an essential prerequisite 
for application of MNOS in BORA::\l systems. Figure 3 

I 

~ 6 
r 0 
~ R 
1ft. 
It-i 
I 

Figure 2-BORAM module housed in transit case 

shows the wide range of cycling which can be experienced 
by a memory transistor within a BORA::\1. The plot assumes 
the operating parameters specified for the advanced develop
ment model, and operating time is defined as the actual 
time the module is engaged in a read or write operation. 
Obviously a 106 cycle limitation could not provide a satis
factory system operating life. 

STORAGE SECTION 

Data is stored in memory chips which have been desig
nated as "BORAM 6000" integrated circuits (see Reference 

TABLE I-BORAM Module Characteristics 

CHARACTERISTIC MAGNITUDE UNITS 

STORAGE CAPACITY 18,874,368 BITS 

I 
I 

READ ACCESS TIME 10 MICROSECONDS I 

2Xl06 
I 

DATA TRANSFER RATE BYTES/SEC i 
MODULE POWER 100 WATIS I 
VOLUME CUBIC FEET I 
WEIGHT 120 POUNDS I 



0.1 

BORAM OPERATING TIME 
YEARS 

10 

Figure 3-Clear/write cycle accumulation for a memory transistor in a 
BORAM 6000 chip under normal BORAM module operating conditions 

2). Each chip provides 2048 bits of nonvolatile, nondestruc
tive readout storage. The chip contains a fully decoded 
RA~1 organized as 64 words by 32 bits, and two 16-bit 
two-phase dynamic shift registers. All data I/O takes place 
serially via the shift registers. This scheme considerably 
reduces the operating speed requirements imposed on the 
RAM. 

The memory chip features a read access time of about 5 
microseconds and a register shift rate of 3.3 megahertz over 
the operating temperature range. For the BORAM module 
use conditions retention time exceeds 4000 hours. 

C> 
z 
0 
c..> 
w 

102 

101 

100 

10-1 

10-2 

10-3 

10-4 

10-5 

10-6 

10-7 

MAGNETIC TAPE 

MOVABLE 
HEAD DISCS 

GROWTH Of PRACTICAL MODULE 
SIZE AS BIT DENSITY PER CHIP 

~-.....----""'" INCREASES 

10.a It:04==IL05--1-l:06:---1-l:07:----.i,oB=-----.i'0-;;-9 -...l.10-;-;;10-~10-;-;-1l--::10';;'2--:-:1O'3 
SINGLE UNIT STORAGE CAPACITY 

BITS 

Figure 4-Approximate access time and capacity for various classifica
tions of storage 

Block-Oriented Random Access MNOS Memory 839 

TABLE II-Typical 1974 Military System Secondary Storage 
Technology Options 

ACCESS DATA VOLUME WEIGHT POWER SYSTEM 
TIME RATE PRICE 

TECHNOLOGY Microseconds !i!.IIIIIIml ~ KiIm!ilL ~ ~ 
Soc Cubic Inch Pound Bit Bit 

PLATED 
WIRE 0.4 2.6 645 24 20 8 

MAGNETIC 
CORE 1.2 1.4 503 25 55 3 

BORAM 
(MNOS) 10 2.0 2730 157 5 2 

fiXED HEAD 
DRUM OR DISC 9Xl03 0.2 671 42 18 0.5 

MOVABLE 
HEAD DISK 2Xl05 0.08 1956 153 7 0.1 

The primary building block of the storage section is a 
hybrid microcircuit which contains 16 of the BORAM 
6000 chips. This package will store 32,768 bits. Nine micro
circuits are placed on a printed circuit card \vith associated 
driver, buffer, and power switching circuitry. 

Power switching is particularly effective in the storage 
section. When the section is engaged in a read or write, 
approximately 10 watts are dissipated. When the module 
is active, but the storage section is not engaged in a read or 
write, about 1.7 watts «0.1 microwatts/bit) are dissipated. 
The bulk of module power is required for functions outside 
the storage section. 

NONVOLATILE TECHXOLOGY CO~IPARISON 

Because MNOS BORA.:.\1 is a new technology, it seems 
worthwhile to try to position it approximately within the 
context of other technology options. Figure 4 shows that 
BORAM offers about three orders of magnitude improve
ment in access time over fixed head drums and discs. At 
present it appears practical to build BORAM modules as 
large as 108 bits. This exceeds the capacity of fixed head 
systems and encroaches on many moving head designs. 

Table II contrasts the characteristics of some specific 
existing military storage systems against the BORAM 
advanced development models. Obviously these systems 
constitute only one sample of what a technology can achieve, 
and this data should be treated accordingly. Parameter 
computations encompassed total operating configuration 
including such items as drives, controllers and power sup
plies. 

Slow versions of plated wire and core can be used to 
configure secondary storage with faster access time than the 
BORAM; but serious penalties would be incurred in cost, 
volume, weight, and pO\ver. In every category except cost 
the BORAM offers advantages over fixed head drum and 
disc configurations. The moving head system enjoys more 
than an order of magnitude cost advantage, but the BORA:\1 
has equivalent or better characteristics in the other cate
gories. 

Comparison of the reliability of these alternatives is a 
more complex task. Reliability is a function of the use en
vironment. For rugged environments like the ground mobile 
application electromechanical systems should be avoided. 



840 National Computer Conference, 1974 

10.0 
j:: 

~ 
I-

~ 
~ 
.~ 

0 
u 

1.0 w 
-' 
:::> 
c 
0 
:;: 
:;: 
c( 
a: 
g 
CI) 

0 
z 0.1 
:;: 

0.01 

1974 1976 1978 1980 1982 1984 1986 1988 1990 

TIME (YEARS) 

Figure 5-Expected cost trend for BORAM modules 

Here BORAl\1 is the most cost effective all electronic imple-
mentation. option ..... . 

In mild environments the BORAM is expected to have 
about twice the l\1TBF of a high reliability fixed head 
system of the same capacity. Because of the newness of. the 
MNOS BORAM this expectation has not yet been verIfied 
by actual test. 

MNOS BORAM GROWTH POTENTIAL 

i\.s the MNOS technology matures significant reductions 
will occur in cost/bit, and the storage capacity of a single 
BORAM module will increase. These changes wiII be brought 
about by the usual "learning curve" improvements asso
ciated with integrated circuits and by the introduction of 
new memory chips with higher bit density. 

Figure 5 presents a conservative projection of the trend 
for module selling prices. By 1978 MNOS BORA:\1 modules 
will have a cost advantage over fixed head disc/drum 
systems for military applications. Eventually the MNOS 
BORAM will become cost competitive with militarized 
moving head disc systems. 

From reliability considerations it can be shown that a 
practical limit to BORAM module size is 10,000 to 30,000 
memory chips. If error correction and/or redundancy is 
incorporated in the module, even larger configurations 
become practical. The nonvolatility of the memory chip 
allows the bulk of the system to remain powered down, and 
thm; the ~hip fa.ilure rat.e IS reduced t.o t.hat. of a nonoperat.
ing chip. 

Figure 6 shows how the expected increases in bit density 
per chip will affect module storage capacity. In 1974 a 4K 

109 

108 

UJ 

107 ...J 
::::::l 

16K 

C 
C 4K 
~ 
en 

106 t:: 
r::c 

105 

104 

102 

BITS/CHIP 

Figure 6--Practical BORAM module capacity without error correction 
and/or redundancy as a function of chip bit density 

chip will be available, and l00-megabit modules will be 
feasible. Eventual growth to WOO-megabit modules is 
within the capability of the technology. 

SUMMARY 

Block-oriented random access memory has evolved from its 
initial conception at ECO~1 as a set of idealized performance 
requirements to a practical working model. This 18-megabit 
module was implemented using ~INOS memory chips de
signed especially for the BORAM application. Module 
organization and circuit design has achieved a flexible high 
utility configuration suitable for use in rugged environ
ments. 

:\fNOS BORAM provides advantages in access time, size, 
weight, power and reliability when compared against fixed 
head electromechanical systems. At present MNOS BORAM 
is a cost effective alternative to electromechanical memories 
in severe environment applications. In the near future 
BORAM:' will compete with a large class of eiectromechani
cal memories on a direct cost basis. 

REFERENCES 

1. Cricchi, J. R., F. C. Blaha and M. D. Fitzpatrick, "The Drain 
Source Protected MNOS Memory Device and Memory Endurance," 
IEEE Interrw,tional Electron Devices Meeting, December 1973. 

2. Cricchi, J. R., J. E. Brewer, D. W. Williams, F. Blaha and M. D. 
Fitzpatrick, "Nonvolatile Block Oriented Random Access Mem
ory," IEEE 1974-Solid State C1:rcuits Conference. 



DOT memory systems 

by R. J. SPAIN, H. 1. JAUVTIS and F. T. DUBEN 

Cambridge Memories, Inc. 
Newton, Massachusetts 

INTRODUCTION 

New developments in memory technology are attempting to 
fill the void between main and secondary storage by providing 
alternatives to rotating storage devices with considerable 
performance advantages over the latter and at far less cost 
than main memory. The greater emphasis being placed on the 
use of virtual storage techniques in data processing systems 
has reaffirmed the need for fast, reliable, low cost memory 
devices with much reduced page swapping times. A principal 
developmental effort in this area is the development of moving 
magnetic domain techniques. The DOT, or Domain Tip, 
storage technology has an intrinsic capability for providing 
non-volatile, fast access, block or page-oriented memory 
systems. The relatively few steps required to manufacture 
DOT devices and the simple planar packages used offer the 
potential of low manufacturing cost. The memory medium, 
insensitive to temperature and to shock and vibration, is 
electronically passive with no connections being required 
between the storage medium and the drive or sense electronics. 
These factors suggest the capability of the DOT of providing 
highly reliable solid state memory. 

In principle, the DOT stores and retrieves information in a 
manner similar to that of rotating magnetic storage media, 
that is, by storing information in the form of a moving pattern 
of magnetic domains. However, by not having the mechanical 
constraints of a disk or drum, significant advantages are 
possible .. For one, the data tracks are easily segmented into 
minor storage loops so as to reduce the transport time for 
retrieving or storing data. By being able to organize the 
memory such that pages of data are electronically accessed, 
extremely short latency times can be provided. This same 
block organization, in addition to the ability of the DOT to 
provide extremely high signal to noise ratio, assures that the 
associated system electronics is minimal in a..mOllnt and in 
cost. 

This paper will review the DOT technology and describe 
the devices and memory substrate organizations suitable for 
two specific mass memory systems. The first is a 2.5 million 
bit prototype memory system having a data rate of 240 
kilowords per second. The second is a larger capacity paging 
store having a total capacity of 24 million bits and a data rate 
of 1 megabyte per second. The smaller memory has been 
built and lifetested. The second, larger one is presently under 

841 

construction. The characteristics of these two systems are 
described and the tests results obtained to date are presented. 

DOT TECHNOLOGY 

The DOT makes use of a magnetic storage medium within 
which highly mobile, information-bearing magnetic domains 
can be electronically shifted along a prescribed set of batch
fabricatable channels or tracks. Information is entered into a 
DOT memory substrate, shifted along the channels and 
recirculated or read out by a combination of magnetic fields 
produced by an associated conductor pattern and drive 
currents. 

The DOT propagation channels are produced by construct
ing a memory substrate such that at all points external to 
these channels a particularly high threshold field for domain 
wall motion exists. A significantly lower threshold field is 
retained only within the narrow propagation channels. In 
this manner, application of the magnetic drive fields which 
operate the DOT device can cause domain wall motion only 
within the channels; no s-witching of the magnetization 
occurring elsewhere. The narrowness of the channels and the 
intrinsic magnetic anisotropy of the storage material make it 
possible to move domain walls within the channels at fields 
which are far less than that required to spontaneously create 
new domains. As a result, only those domains expressly 
introduced into the channel pattern for the purpose of storing 
or processing digital information will be retained or propa
gated in the course of operating the device. 

In order to achieve the channel and magnetic film proper
ties described _above, several fabrication methods have been 
developed which make use of an under or over-layer to the 
magnetic storage film for selectively producing the desired 
variations in domain wall coercive force in a manner compati
ble with conventional photolithographic techniques. A pre
ferred technique uses an underlayer of aluminum in the form 
of a thin, superficially rough film. This film is photoetched so 
as to leave aluminum only at points external to what are to 
become the propagation channels once the memory substrate 
is completed. At present bit densities, a 0.0015" wide channel 
is defined at this point. Completion of the memory substrate, 
follU\\ing this photoetching step, requires depositing the 
magnetic storage layer as a uniform, continuous film across 
the entire memory plane surface. 



842 National Computer Conference, 1974 

BlOCK 
LINE 

2. 

BlOCK 
liNE 

1 

BLOCK 
LINE 

2 

BLOCK 
LINE 

1 

Figure 1-Domain pattern during shift cycle in blocking type shift 
register 

The channel structure outlined above requires very few 
steps in its manufacture, making it possible to achieve high 
device yield and very low cost. The aluminum and magnetic 
layers are deposited by vacuum deposition, the aluminum 
film to a thickness of approximately 3001 and the magnetic 
film to a thickness of roughly 10001. The latter is a NiFeCo 
laye_r1_the Co contento_of which allows_a large magnetic 
anisotropy and consequentially a high domain nucleation 
threshold to be obtained. The NiFe ratio is chosen such as to 
assure stress insensitivity. This condition keeps the domain 
wall coercive force within the channel relatively low and 
eliminates any stress-induced changes in the device from 
occurring either in the course of device assembly or during 
operation under conditions of shock and vibration. 

DOT SHIFT REGISTER DEVICES 

Information, in the form of a sequence of magnetic 
domains, can be propagated through the DOT channel paths 
in several different ways. One technique uses a zigzag channel 
pattern and the dependence of the angle of tip propagation on 
the angle of the applied field to cause the unidirectional 
motion of the stored domain pattern. A second technique uses 
a DOT magnetic diode element to accomplish the same result. 
A third and preferred technique and the one which has been 
used in all recent DOT memory systems is the Blocking 
Type shift register. 

The basic device consists of a DOT memory substrate 
positioned on a control conductor pattern and contained 
within a fiat, wrap-around solenoidal drive coil. Information, 
in the form of a sequence of domains of reversed magnetiza
tion, is entered into the channel structure of the DOT 
memory substrate by means of an input conductor which is 
used to create new domains at an input location. These 
domains are shifted through the channels by a sequence of 
uniform drive and local control fields and readout at the 
device output by a sense conductor into which a signal is 
induced by the passage of the output domain. The motion of 
domains through the pattern of channels resembles the 
movement of a group of inchworms in that the dorr.ains are 
made to periodically 6;"'pand and contract, expansion being 
greatest at the leading tip of the domain and contraction 

being greatest at the trailing tip. Expansion and contraction 
are produced by the propagation and erase fields generated 
by the wrap-around drive coil. 

The blocking type shift register utilizes a simple pattern of 
straight channels within which domain expansion is controlled 
by the magnetic fields produced by a set of conductors called 
block lines. The channel merely functions as the information 
transport medium while the direction of domain propagation 
is determined by the spatially varying resultant of the uniform 
propagate and local blocking fields. Hence, the operating 
margins of the shift register are relatively independent of 
variations in channel geometry and film properties, making 
high fabrication yields possible. Substrate yields of thirty 
percent are typical and yields of over ninety percent have 
been obtained. 

The operation of the blocking type shift register is 
illustrated in Figure 1 which depicts the domain pattern 
during the shifting sequence. The hold conductor, whose 
intersections with the channels define the local storage 
locations, runs perpendicular to the channels and alternates 
its direction across the pattern. The two block lines, block 1 
and block 2, _ are contained on a second _ condu<?~or layer ang 
carry curren-fTn -the same directIon at all points where they 
intersect the channels. These lines are configured in a manner 
which makes it possible to alternate the direction of domain 
propagation from channel to channel. This allows the 
propagation paths to be folded back and forth and configured 
in whatever manner is desired. 

The shift sequence takes place as follows: The initial state 
of the magnetization is shown in Figure 1a with a domain 
stored at location A. The cycle starts with propagate and 
block 1 pulses occurring simulataneously. The propagate 
field is applied uniformly over the entire memory substrate in 
the direction shown while the field from block line 1 opposes 
propagation field at points B, C and E. Since the block field is 
adjusted to cancel the propagate field, domain expansion is 
inhibited at these points. New information is seen entering the 
left channel at D. An erase and hold operation occurs next 
and domains of reversed magnetization are stored at locations 
F and G while all other channels are erased as illustrated in 
part C of the figure. The third step in the sequence is another 
propagate pulse during which the block line 2 is energized. 
As a result, the domain tip at F is blocked at H and the one 
at G comes to rest at I and at J as shown. The shifting 
sequence is completed by a second erase and hold operation 
with the polarity of the hold current reversed. Domain 
contraction now occurs about points K and L which become 
the storage locations at the end of the shift cycle. 

Either interchanging the block lines or reversing the 
polarity of the hold pulses will reverse the direction of 
information propagation. This feature can be used to reduce 
the access time to a particular location in the case of a closed 
loop, magnetically recirculating channel path. 

Typical operating margins are relatively large. In general, 
variations in all drive currents of plus and minus twenty 
percent are allowable, providing sufficient operating margin 
for ease of system design and construction. 

Current bit densities for use in DOT systems have not yet 



exceeded 6000 bits per square inch in order to assure high 
device yield and to minimize mechanical problems in device 
test and plane assembly. Shift registers of this type, at 
densities of 32000 bits per square inch have been operated as 
well but the tighter mechanical tolerances involved and the 
reduced substrate yield have, to date, discouraged their use 
to any large extent in actual operating systems. 

The velocity of domain tip propagation is a function of the 
applied magnetic field strength, increasing as the second or 
third power of the field. In the range from 5.5 to 8.5 oe., the 
normal allowable propagation field variation, the velocity of 
propagation lies between 10 and 20 mils per microsecond. At 
a density of 6000 bits per square. inch the total distance a 
domain must travel is approximat~ly 30 mils. At 15 mils per 
microsecond a total propagation time of 2 microseconds is 
necessary. Domain erasure is much more rapid. 

While a 2 microsecond cycle time and consequently a 
1 megacycle chaimel data rate is achievable and while, by 
increasing drive field strength or longitudinal bit density, 
even shorter cycle times are possible, these frequencies of 
operation are not conveniently attained at a system level 
using current packaging techniques and signal level require
ments. Firstly, domain expansion for flux amplification at the 
readout location can take up to 10 microseconds in some of 
the designs used to date. Whereas extremely small and higher 
speed magneto-resistance DOT readout elements have 
already been developed, the simplicity of assembly and the 
greater potential reliability of an inductive sensing approach 
have discouraged the introduction of this sensing technique. 
Secondly, the relatively large inductance (6 microhenries) of 
each wrap-around drive coil and the requirement for overlap 
of certain drive currents limits the frequency of device 
operation for purely electronic reasons. Providing rise and 
fall times of one microsecond and allowing ample separation 
between edges of overlapping currents to eliminate precise 
control over pulse timing result in cycle times of 20 micro
seconds. Eventually, use of non-inductive sensing techniques 
and a more advanced package with lower inductance drive 
lines will permit the intrinsic speed of the magnetic element to 
be more closely approached. For the moment, high data 
transfer rates can nevertheless be obtained by the use of 
simple multiplexing techniques, parallelism or a combination 
of both. 

::\![EMORY SUBSTRATE ORGANIZATION 

Simple magnetic selection methods make it possible to 
straightforwardly multiplex a multiplicity of relatively short 
DOT memory loops onto a common input or output data line. 
An important part of memory system design is to be able to 
reduce the length of the longest data path of a propagated 
domain through the memory while simultaneously retaining 
a large number of data bits per sense and digit line. Designing 
the memory substrate such that several memory loops can be 
controllably coupled and decoupled to a single data line can 
be done in a variety of ways. 

One method which has been implemented in a 2.5 million 

4 

DOT Memory Systems 843 

MEMORY LOOP 
OUTPUT CHANNELS 

3 

SELECTOR 1 

SENSE LINE 

'------SELECTOR 2 
'----------SELECTOR 3 

'---------------SELECTOR 4 

(a) 

Figure 2-Time multiplexing principle (a) Output domain from memory 
track 2 is shown approaching sense line following turn off of selector 
2 current, track 1 has already been read; outputs from tracks 3 and 
4 have moved one position closer to readout (b) Multiplexed output 

signals (500 ns per div.) 

bit prototype system and which appears particularly suited 
for a memory system in this capacity range is to time 
multiplex in rapid sequential fashion the input and output 
signals of a number of magnetic memory loops. All memory 
loops under the general drive coil undergo domain shifting 
simultaneously. By producing the blocking of domain tip 
propagation at the output channel of all such memory loops 
with the aid of a series of blocking or selector lines, all 
memory loops become uncoupled from the sense line. This is 
shown in Figure 2a. Turning the current off in a first selector 
line allows the output domain from one of the memory loops 



844 National Computer Conference, 1974 

4 3 2 
~----~n---+r~--~~~rl--------BLOCK 1 

-----SELECTOR 1 

BLOCK 2 
SELECTOR 2 

~---SELECTOR 3 
I------BLOCK 1 
t-----SELECTOR 4 

t-----BLOCK 2 

Figure 3-Page multiplexing principle. Output domains from loops 
1, 3, 4 are shown inhibited from propagating from A to B by current in 
selector line 2. Selectors 1 and 2, like block 1, are used during first half 
of shift cycle; selectors 3 and 4, like block 2, are used during second half 

of shift cycle 

to propagate into the readout area and induce an output 
signal on the sense line. All output domains from the remain
ing memory loops move one position ahead. Turning current 
off in a second selector line allows a second output signal to be 
read and again advances the remaining output domains. 
This process continues until signals have been read from all 
memory loops. This multiplexing process is equally applicable 
to the inputting of domains. Inputting is done in a correspond
ing sequential manner by loading a "one" (domain) into the 
input channel of all memory loops. An identical arrangement 
of selector lines makes it possible for an inhibit conductor to 
sequentially inhibit the propagation of the loaded domains 
past each of the selector lines depending upon the state of the 
inhibit line, i.e., whether it carries current or not at the 
moment the appropriate selector line carries no current. The 
state of the inhibit line at this time is gated by the input data 
as would be the case in a typical core memory. If magnetically 
recirculating memory loops are used, the selection and inhibit 
lines must include the recirculating portion of the memory 
loops as well. 

Time multiplexing in this manner increases the effective 
data rate by allowing several signals to be read or written in 
a cycle only slightly longer than the basic shifting cycle. 
Figure 2b shows output signals being read at a one megacycle 
rate. 

In larger capacity DOT memory systems a different type 
of multiplexing appears more appropriate. In the organization 
described above, each memory loop had assigned to it a 
separate readout area, although all readout areas of the 
multiplexed loops are in common with the single input output 
line. If, instead, all multiplexed loops are connected to a 
co~mon readout area, much larger output signals can be 
obtained. This, of course, allows a larger number of sense 
lines to be grouped in ::series so as to Iurther reduce sense 

electronics cost and also mInImIZeS the problems of noise 
cancellation within the stack. 

In the previously described substrate memory loop organi
zation, the multiplexed memory loops form part of a single 
block of data. In the organization now presented each 
memory loop must correspond to a different data block. That 
is, as one memory loop is accessed in the process of reading or 
writing a block of data, data stored in the remaining memory 
loops must be magnetically recirculated entirely uncoupled 
from the readout area. 

In this case, the added effective throughput that was 
obtained in the previous multiplex organization no longer 
exists. However, in the larger capacity system, the pre
amplifier electronics which forms part of each memory stack 
can be used to advantage to obtain sufficiently high through
put on the basis of a much wider word. The advantages of 
obtaining higher output signal become apparent when one 
considers the 8 millivolt signal currently obtained with 
substrates organized in this fashion as compared to the 2 
millivolt signals obtained in the prototype system of the 
former design. 

Figure -3 depicts the layout of TIl~m()ry loops corresponding 
to the situatIon of several magnetic tracks multiplexing onto 
a common readout area. Again, only the output portion of the 
selection network is shown, although the same principle can 
be extended to domain inputting. 

Several dummy bits exist between the output leg of the 
shift register loops and the readout area. It is during these 
dummy shift cycles that the selection of the appropriate 
magnetic stack is made. The output selection lines serve the 
purpose of uncoupling all unaddressed memory loops while 
allowing the output domains from the selected loop to proceed 
on into the readout area. At the input of the memory loops, 
the input selectors serve the functions of allowing all un
selected loops to continue magnetically recirculating the data 
without interference, inhibiting magnetic recirculation in the 
selected memory loop, and allowing the newly inputted data 
to enter only the addressed memory loop. Additional dummy 
bits are used at the end of the data block to ensure completion 
of this writing function. 

SYSTEM ORGANIZATION AND ELECTRONICS 

In order to evaluate the feasibility of applying the DOT 
technology to bulk storage a 2.5 million bit DOT memory 
system was designed. The system was organized in the form 
of 64 blocks of data, each block consisting of 2048 words with 
18 bits per word. Of the 18 bit wide word, 16 bits are used for 
da.ta; one for word parity and another for a marker bit which 
denotes the end of the data block. This organization was 
realized using stacks of 16 memory planes, the latter each 
containing 9,216 bits. Sixteen such stacks complete the 
system. 

The system was designed around the time-sequential 
multiplexing techniques described in the preceeding section. 
The memory substrates are configured as three sets of four 256 



bit recirculating memory loops, the four loops multiplexed 
onto a common data line by means of four separate selector 
lines. Three substrates are used per memory plane so as to 
obtain nine separate data lines. The 18 bit word is the result 
of driving two memory planes in parallel. 

The organization described above permits 2048 word data 
blocks to be entered into or retrieved from memory at a 
maximum data rate of 240 kilowords per second, i.e., over 
4 megabits per second. Due to the static nature of the DOT, 
this data rate can of course be reduced by any amount or 
stopped or started as required. Access to the first word of any 
block takes only 7 microseconds. At the maximum data rate 
the average word access time is 4.2 milliseconds. Mechani
cally, the system is housed in a 1072" rack-mountable 
enclosure which contains the 16 stacks and memory drives, 
timing and sense circuits. System cooling is provided by six 
high pressure fans located directly under the enclosure. 

The electronic drive circuits for all drive currents are 
identical in design and are built from a matrixed arrangement 
of sources and sinks utilizing a common current source. 
Variations from circuit to circuit is minimized since there is 
only one current source for each drive current. By turning the 
current source on last and off first and by allowing all selected 
lines to settle after selection by source and sink, all control of 
the waveform is established by the current source. All 
memory drive currents are between 500 and 800 rna, depend
ing upon the function. Total system power dissipation is 
nearly linear with data rate, reaching 250 watts for the worst 
case data pattern at maximum data rate. 

The sense lines consist of short photo etched conductor 
loops which are in close proximity to the readout areas of the 

Figure 4-DOT memory components 

DOT Memory Systems 845 

substrate. Sixteen sense loops in each stack are wired in series 
for a total of 16K bits per sense line. The output signal from 
the magnetic film is a bell-shaped 2.5 millivolt signal approxi
mately 0.5 microseconds wide at a half amplitude level. 
A sense amplifier was designed which is predominantly a dc 
coupled system so as to minimize the effect of variations in 
noise recovery resulting from either electrical variations from 
memory plane to memory plane or due to changes in repeti
tion rate. 

This system was constructed and lifetested for well over six 
months during which time it was possible to verify the 
fundamental soundness of the magnetic and mechanical 
design and reliability of the devices. Data, in the form of a 
worst case repeated 1-0-1-0 pattern, were magnetically 
recirculated through the memory loops at maximum data rate 
throughout this period. Temperature of the input air to the 
system was varied between _10° and +50°C. It was con
firmed that no degradation in properties of the magnetic 
elements or package occurred during this lifetesting. The 
duration of this test allmved error rates of nearly all of the 
memory loops to be established as less than one error in 1012 

cycles. 
Based upon the results obtained with the prototype DOT 

memory system described above, a fast access memory for 
page swapping applications of considerably greater bit 
capacity was designed. The total system capacity exceeds two 
megabytes. 

The system is designed to make the DOT memory plug 
compatible with 360/370 processing systems. Organized 
around a 2K byte page'of data, the expected performance is 
a page access time of 0.2 milliseconds and an effective page 
transfer time of 2.25 milliseconds. This corresponds to the 
transfer of 440 kilopages per second. 

The storage unit of the system contains 24 memory 
modules accessed in parallel. Each memory module is 
complete with drive and sense electronics and four 32K by 10 
bit memory stacks. The 20K bits of each memory plane are 

'made using memory substrates configured using the second 
multiplexing technique described. Eight recirculating 
magnetic memory loops (or portions of pages) are multiplexed 
onto a common readout area. This organization results in 
output signals of 8 mv with nine sense lines per stack and 32K 
bits per sense line. The first storage modules and interface 
electronics of this memory system are currently being 
fabricated and tested. 

The memory substrates, planes and stacks of which these 
systems are constructed, are sho"\\'TI in Figure 4. In the 
background of the figure can be seen the memory module into 
which the stacks are inserted as well as an enlarged portion 
of a portion of a typical DOT channel pattern. 

CONCLUSION 

The technical feasibility of the DOT storage technology has 
been demonstrated by means of constructing and lifetesting 
several prototype memory systems, the largest of which is 



846 National Computer Conference, 1974 

a 2.5 million bit memory. At present, a prototype system 
nearly 10 times this capacity is being fabricated. Experience 
with the smaller system has shown that the DOT can provide 
highly reliable, fast access storage. The experience obtained 
on substrates yield and the mechanical packaging techniques 
developed suggest that this performance can be accompanied 
by low manufacturing costs. The 24 million bit memory 
presently under construction will serve to demonstrate what 
system performance advantages can be achieved using 
memories of this type. Specifically, in a virtual storage 
environment the requirement for rapid swapping of pages of 
data back and forth between secondary and main memory 
should make the short access time and rapid transport of data 
in the DOT memory system extremely desirable features. 

The first prototype system utilized DOT memory planes 
having a capacity of 9 kilobits; the system presently under 
construction utilizes memory planes which have a bit 
capacity of 20 kilobits. Still higher capacity memory planes 
are being designed. The simplicity of manufacturing of the 
storage medium itself and the ease and connection-free 
assembly of memory substrates to drive conductors promises 
to keep production costs of these memories low and reliability 
hlgn~ We expect to be able to demonstrate significant i~prove~ 

ments in data processing performance using memories of this 
type. We hope by this to show that non-volatile, electronically 
addressable page-oriented DOT memory systems are a 
desirable substitute for rotating storage, particularly in the 
case of memory hierarchies where the differences between 
access times of main and secondary memory become in
tolerably great. 

BIBLIOGRAPHY 

1. Spain, R. J. and H. I. Jauvtis, "Controlled Domain Tip Propaga
tion," J. Appl. Phy., Vol. 37, No.7, pp. 2572-2583, June 1966. 

2. Spain, R. J., "Domain Tip Propagation Logic, IEEE Trans. on 
Magnetics, Vol. MAG-2, No.3, pp. 347-351, September, 1966. 

3. Jauvtis, H. I. and R. J. Spain, DTPL All-Magnetic Logic Networks, 
presented at the 1968 International Conference on Magnetics, 
Washington, D.C., April 1968. 

4. Spain, R. J. and M. Marino, "Magnetic Film Domain Wall Motion 
Devices, IEEE Trans. on Magnetics, Vol. MAG-6, No.3, pp. 451-
463, September 1970. 

5. Jauvtis, H. I., The DOT Technique of Magnetic Storage and Logic, 
presented at 1970 NEREM, Boston, Massachusetts, November. 

6. Spain, R. J. and H. I. Jauvtis, High Performance Sequential Mem
ories .. Using-theDOT Technique; presented at 1971 NEREM, Boston, 
Massachusetts, November. 



Capabilities of the bubble technology 

by HSU CHANG 

I EM Thomas J. Watson Research Center 
Yorktown Heights, New York 

INTRODUCTION 

This paper aims at a technology forecast for magnetic bub
bles. The approach is not to extrapolate the past rate of pro
gress into the future, but to examtne the rich varieties of 
current studies so as to bring attention to what can be 
evolved to enhance the basic capabilities of the bubble tech
nology. 

Superior capabilities are predicted for the magnetic bubble 
technology-up to 109 to 1010 bit/in2 density, less than 1 ms 
access time even for large files, and versatile switch and logic 
functions. It should be emphasized that all of these are 
considered feasible in the context of the laws of physics and 
desirable in the perspective of competing technologies; but 
some of these are aspirations rather than accomplishments. 

At present, densities of 106 and 108 bits/in2 have been 
realized in packaged memory chipsl,2 and in experimental 
devices3 respectively. Bubble memory chips containing up to 
20,510 bits per chip were reported by Bell Laboratories,! 
which have been exercised through transfer-read-transfer
circulate cycles in good loops at 100 KHz data rate up to 16 
hours. (6.5 X 109 rotating field cycles). Moreover, detailed 
descriptions have also been given on wafer preparation, 
uniformity control of epitaxial-film deposition from run to 
run,4 circuit element design,5,6 chip processing/,8 and module 
design. 1 The design and fabrication of a 1024-bit bubble 
memory chip under test at 100 to 500 KHz were reported 
by IBM,2 with accompanying papers on overlay fabrication,9 
drive coil design,lO packaging considerations,!1 bias magnet 
configuration,12 and magnetoresistive sensor characteristics.13 

There has been substantial progress in the preparation of 
liquid-phase-epitaxy garnet films, as reflected by reports on 
the methods of Czochralski gro"\\'-th of high-quality rare
earth gallium-garnets for substrates,14 the growth of large
area films by liquid phase epitaxy,!5 the effects of growth 
conditions on film composition,16 and on the magnetic prop
erties of substituted rare-earth iron-garnets.17 Film growth 
kinetics have been the subject of several recent studies18 

where notable progress has been demonstrated toward under
standing the liquid-phase-epitaxy process fundamentals. 
Departing dramatically from the single-crystal approach, 
sputtered amorphous films of GdCo and GdFe have been 
reported,19 which exhibit perpendicular anisotropy and sus
tain mobile bubbles. 

847 

Most of the efforts on improving speed have been directed 
to increasing mobility in materials, the prevention of hard 
bubbles and dynamic conversion,20 and permalloy pattern 
optimization. Although the ingredients of circuit techniques 
and memory organizations are available in the literature, 
their relevance to access and latency times has not been dis
cussed explicitly. As to functional capabilities, many circuit 
components are described in the patent literature, but critical 
evaluations and syntheses have been lacking. This paper 
cannot be claimed as a comprehensive study of all these 
aspects, but it makes an effort to place them in perspective. 

STORAGE DENSITY 

The storage density is determined by three factors: bubble 
size, bubble spacing and lithography capability. The bubble 
size is primarily determined by the storage-medium charac
teristics. The bubble spacing is determined by the degree of 
flux closure provided by the device structure. Moreover, the 
device structure has associated with it a ratio of overlay line
width to bubble diameter. With a given lithography capabil
ity, some device structures can utilize much smaller bubbles 
(hence higher densities) than the others. 

As is well-knmvn, the bubble diameter is given by d = 81 
in a film of optimum thickness 41 (1 = characteristic length = 
uw/4'lrMs2= 4(AK) 1/2/4'lrMs2, uw=wall energy, A=exchange 
constant, K = uniaxial anisotropy constant, and 4'lr ~1s = 
saturation magnetization). Table I lists the storage densities 
and materials characteristics of severalliquid-phase-epitaxy 
single-crystal garnet films and sputtered amorphous GdCo 
films. Several industrial laboratories have produced 6 IL bub
ble diameter materials yielding lOS bit/in2 storage density. 
Hu et aJ.3 have reported operating a 100-bit T-bar shift 
register at 100 KHz in a material which sustains 0.8 ILm 

diameter bubbles giving a 6.7X107 bit/in2 storage density. 
The high density is made possible by the high magnetization, 
4'lrMs= 1500 Gauss, in (Eu2Yl) Fe5012; and also by very 
narrow 'width for permalloy bars (4000 A) prepared by elec
tron-beam lithography. Smaller bubbles have been observed 
in materials with higher-magnetization materials: for ex
ample, 0.43 ILm diameter in LPE (EuIY~)Fe5012 films,21 and 
0.08 jL.i'U (Q= Hk/41r:.\i{s< 1 at present) to 0.8 J.Lffi (Q> 1) 
diameter bubbles in amorphous GdCo filmS.19 Since the prac-



J 

I 

:~ 
1.\ 
1 

\ 
i 
) 
j 

i 

I , 

848 National Computer Conference, 1974 

TABLE 1-8torage Densities and Materials Characteristics for Single-Crystal Garnet and Amorphous GdCo Films 

MAGNETIC BUBBLE MATERIALS 

(S~.5Y2.5) 

(Ga1.2 Fe3.8)012 

(Eu. 6Y2 • 4) 

(GaLl Fe 3• 9)012 

GdCo 

GdCo 

* 

THICKNESS 

(\.1m) 

7.4 

1.8 

0.52 

1.7 

to 3 

1.3 

to 2.2 

T-bar devices (d = 2w) 

STRIPWIDTH 
OR DIAMETER 

(\.1m) 

6.7 

5.0 

0.8 

0.43 

1.5 

to 2.5 

0.8 

CHAR. 41TM A 
s 

LENGTH 
(\.1m) (Gauss) (ergs/em) 

.6 192 

.55 175 3 x 10-7 

.06 1500 4 x 10-7 

.045 1600 4 x 10-7 

.16 1200 "'10 x 10
7 

to .25 to 2000 

.039 '" 4000 

to .064 

Bonyhard and Geusic (BTL), Ref. 5. 

* K ,\/41™s DENSITY COMMENTS 

(ergs/em) (bits/in2) 

6.0 10
6 20K-bit chip (1) 

6 x 10
3 6.0 1.6 x 106 1K-bit chip (2) 

3.5 x 10
5 3.4 6.7 x 107 100-bit S.R.(3) 

2.3 x 10
5 2.27 0.4 ]JIn bubble garnet (3) 

"'10 x 10
5 1.5 107 lOO-bit S.R. (4) 

to 4.0 

> 1 0.8 ]..1m bubble GdCo(4) 

Bubble dia. = d 

(1) 

(2) 

(3) 

(4) 

Bosch et a1. (IBM), Ref. 2. 

Bubble spacing 4d 

Bit size = 16 d2 
= 

Plaskett et a1. (IBM), Ref. 21. 

Hu et al. (IBM), Ref. 3. 

tical limit for electron beam lithography is about 4000 A at 
present, the density for bubble devices is not limited by 
bubble diameter (a materials characteristics), but rather by 
lithography because the bar width and gap \vidth in T -bar 
devices must be .Y2 to ~ the bubble diameter. 

While the conventional devices (T-bar, Y-bar, X-bar, 
chevron, etc.) employ narrow magnetic bars to manipulate 
large bubbles, it is conceivable to have devices employing 
wide magnetic patterns to manipulate small bubbles. As an 
example, Wolfe et aJ.22 have ion-implanted contiguous disks* 
into the surface of garnet films to propagate bubbles. In such 
a configuration, the diameter of the disk patterns is four 
times the bubble diameter. Wolfe's devices have 106 bit/in2 
density with 25 #Lm diameter disk patterns manipulating 
6 JLm bubbles. However, if the disk pattern is extrapolated to 
a diameter of 0.4 #Lm, the bubble diameter would become 
0.1 #Lm which could yield a density of 4 X 109 bits/in2

• The 
potential structure density capability exceeds the bubble 
density capability of the present garnet materials, and 
matches that of the amorphous materials. 

An isolated bubble is an open-flux configuration which 
seeks flux closure through its surrounding. W"ith permalloy 
propagation patterns on one side of the storage medium, the 
flux closure is improved. With ion-implantation, it is con-

* The devices are certainly very exploratory in nature, particularly in 
comparison with the well-developed T-bar devices. However, the con
tiguous disks illustrate how to overcome the lithography limitation. It is 
also important to deYclop 1l.ccess,wriLe, and read compollt:uUs consistent 
with the requirement of manipulating skinny bubbles by fat patterns. 

ceivable to have magnetic propagation patterns on both sides 
of the garnet film. Moreover, useful amorphous films seem to 
require smooth substrates, but do not depend on the sub
strate material. One may produce device structures with 
permalloy patterns sandwiching an amorphous film. The 
two-sided structures should result in steeper field gradient to 
facilitate propagation and better flux closure to improve 
density. 

In Figure 1, the density vs bubble diameter curves are 
shown for three different device structures. The upper limits 
are set by the electron-beam lithography (horizontal bars 
corresponding to w = 0.4 #Lm). Note that \vhile the conven
tional T-bar devices offer densities as high as 108 bits/in2, 
structures such as the contiguous disks could provide densities 
close to 1010 bits/in2. 

For a desired density, the necessary bubble diameter and 
linewidth for each device structure can be read from the 
curves. For comparison, both the experimentally achieved 
and theoretically predicted semiconductor device densities 
are marked on the righthand side. (Refer to the section on 
Comparison with Semiconductors) . 

The quest for high storagp (if~nl;;it,y 18 accompanied by 
several engineering tradeoffs. 

1. Bias field alignment: As high magnetization is used to 
achieve high density (d=8(AK)1I2/1rMs2), spurious 
nucleation by the self demagnetizing field must be 
prevented by high anisotropy field (Hk /41rMs > 1) 
"\vhich in turn results in high bias field (Hbias ,--" Ilk/4). 
In the meantime, low-coercivity is maintained to limit 



the planar drive field. Thus, a slight misalignment of 
the bias field would considerably offset the planar ro
tating field. 

2. Planar field amplitude: Larger rotating fields are re
quired for smaller-bubble materials in order to over
come the higher-magnetization bubble-permalloy mag
netostatic coupling in jumping gaps. 

3. Small signals: Small bubbles result in small signals. 
Techniques for enhancing the signals by magnetic 
means will be described in the section on Speed. 

4. Fabrication considerations: Although flux closure can 
be improved by two-sided structures, such structures 
will add problems in mask alignment. 

5. Large capacity at high density: The economy of 
integrated circuits can be accrued only when high 
density is accompanied by high storage capacity. As 
an example, $100 can buy 1()6 bits at 10-2 ¢/bit. At 
10-3 ¢/bit, it is more reasonable to buy 107 bits with 
$100, than 106 bits at $10. Large capacity per chip 
will dictate more functions on the chip so as to limit 
interconnections and peripheral circuits. 

SPEED 

The speed of a bubble memory, as measured in terms of 
data rate, access time, and latency time, can be improved by: 
(1) storage-medium properties, (2) device structures, (3) 
electrical propagation of signals, and (4) memory organiza
tions. While the data rate is primarily a fur{ction of the 

N 
Z 

...... 
rn 
I-
m 

- LlNEWIDTH LlMITATIONe E-BEAM: 0.4,.m (w) 
w_ 

® ,k 
d 

~~ 
IJJO 
IJJ:::C IJJGl r-o c~ 
nl I IJJ:::C o IJJZ 

c rnl 
(J) nl-i 

~ 
10 

~~D }PREDICTIONS 
(0.4run LINE) 

(Hoenelsen 
CMOS and Mead, 

1972) 

MOSFET 0,. LINE) 
(Yu et 01., 

1973) 

Figure 1-8torage density as a function of bubble diameter, bubble 
spacing, and lithography capability 

Capabilities of the Bubble Technology 849 

!., ~ " ~ : ~ "r
TPUT 

!!i:~-~T~T~T " y I 

SIGNAL IDLER BUBBLES 
BUBBLE 

Figure 2-Device structures to amplify signal while maintaining data 
rate 

storage-medium properties, the access and latency times are 
significantly influenced by the other factors. 

(1) Storage-medium properties 

For optimumly designed propagation structures, the 
bubble velocity is limited by wall-motion velocity, which is 
determined by materials characteristics. The bubble velocity 
is linearly related to the field differential across the bubble at 
low drive, and limited at a peak value resulting from distor
tion in wall configuration at high drive. The magnetic 
parameters, when adjusted to achieve smaller bubbles and 
higher densities, will also lead to lower mobilities (slopes of 
velocity vs field curves). 

where ,u=mobility, LlH=field differential across a bubble, 
He = coercivity, 'Y = gyromagnetic ratio, a = damping con
stant. As a result, the data rate (velocity/bit separation) at 
low drive remains constant even when the bit size is reduced. 
The wall-distortion determined peak velocity appears inde
pendent of bubble diameter 

lip = 7.1 'YA/hK1/2 

where A = exchange constant, h = film thickness, and K = 
anisotropy constant. Hence the peak-velocity limited data 
rate (pp/4d) will increase with smaller bubbles. Peak veloc
ities on the order of 104 em/sec have been both predicted and 
observed, corresponding to data rate on the order of 107 

bits/sec for 2 ,u diameter bubbles. 

(2A) Device Structures to Enhance Signal 

With proper design of magnetoresistive sensors, bubbles of 
2 to 6 ,urn diameters can yield 1 to 3 m V signals.13 Although 
this is adequate for the present 106 bit/in2 density (6 ,urn 
bubble) memory modules, higher-density devices will require 
considerable magnetic amplification or more sensitive and 
expensive sense amplifiers than those in use today. 

Archer et al.23 and Bobeck et a1.6 have described structures 
which employ more and more chevrons in successive stages to 
stretch bubbles transversely while they propagate. Since 



850 National Computer Conference, 1974 

.. MULTIPLEXING 

TIME SHARING OF COMMON SENSE AMPLIFIER 

Magneto resistor 

~ 
341 

.. SUBDIVIDING ARRAY FOR MULTIPLEXING 

N -
N2 Bits lN 
M S.R. 

... r ivw 

-,-----:> ,-----:> 
N~:::- 1

1

1-----
M S.R. 

R!W 

SR 1 

2 

3 

4 

ACCESS TIME'" SN 

DATA RATE ... R 

ACCESS TIME -l.SN 

DATA RATE -4R 

Figure 3-(A) Data rate improvement by time sharing of one sense 
amplifier by four shift registers (B) Access time improvement by dividing 

an array for multiplexing 

the bubbles are elongated gradually, signal amplification is 
achieved while maintaining the same data rate. These struc
tures do add to the access time. Additional area is also needed 
to allow gradual bubble elongation and then contraction 
before return to the storage loop: (amplification)2X (area per 
bit), where the amplit./}cation is the ratio of the elongated 
domain length to the bubble diameter. However, since a 
sensor is typically shared by 104 or more bits, the added 
sensor area is an insignificant percentage of the chip area. 

In principle, the additional access time can be eliminated 
and the additional area minimized by using a different am
plification structure (private communication with Beausoleil 
and Keefe of IBM). See Figure 2. A compressor is loaded 
with bubbles, and magnetoresistors are placed adjacent to 
the idlers and connected in series. As the compressor receives 
a signal bubble at one end, all idler bubbles are induced to 
move and produce magnetoresistive signals additively. The 
signal amplification is accomplished within one field rotation 
period, and the additional area is merely (amplification) X 
(area per bit). 

Table II-Two Memory Design Examples 

DESIGN EXAMPLE 1 

16,384 BITS 
MAJOR/MINOR LOOPS 
128 S.R. EACH WITH 128 BITS 

TAcc =l28 TR 
T LAT =128 TR 

SEMICONDUCTOR 
PINS CIRCUITS 

GENERATOR (WRITE) 
ANNIHILATOR (CLEAR) 
TRANSFER (SELECT) 1 
SENSOR (READ) 2 
GROUND 

TOTAL 6 4 

DESIGN EXAMPLE 2 

GENERATOR 
ANNIHILATOR 
TRANSFER 
SENSOR 
GROUND 

TOTAL 

268,435,4,56 BITS 
COINCIDENT SELECTION FROM 16 X 16 

ARRAYS 
EACH ARRAY: MAJOR/MINOR LOOPS 

1024 S.R. EACH WITH 1024 
BITS 

TAcc =1024 TR 
T ALT =1024 TR 

PINS 

16 
16 
16 

2X16 
1 

81 

SEMICONDUCTOR 
CIRCUITS 

16 
16 
16 
16 

64 

(2B) Device Structures to Improve Data Rate 

For field-access devices, each field rotation period can be 
divided into four time phases. When signal bubbles from four 
shift registers are detected by one of four magnetoresistors at 
four different time phases and fed to one sense amplifier 
(Figure 3A), the data rate is quadrupled. 

In a memory array with N2 bits, arranged into N j 4 shift 
registers each with 4N bits, (see Figure 3B), the access time 
is proportional to 5N and the data rate is R. When the array 
is divided into four quarters with the magneto resistors located 
at the center, and each quarter consisting of N2j4 bits ar
ranged into N/4 shift registers each \vith N bits, the access 
time is proportional to l.5N and the data rate is 4R after 
time multiplexing. 

(3) Electrical Propagation of Signals 

Bubbles are both the holders and conveyors of information. 
This dual role facilitates chip organization, data manipula
tion, and logic operation. However, it is also attended by the 
disadvantage of bubble propagation delay which is roughly 
proportional to (bit capacity) 112, and becomes excessive for 
large arrays. To restrict this delay, the array size must be 



limited. For a large-capacity chip, it must be organized into a 
number of smaller arrays each accessible by electrical signals. 
The task of subdividing a chip into many arrays without 
increasing significantly the interconnections and peripheral 
circuits is made possible by memory organization techniques, 
particularly the coincident selection scheme. 

(4) Memory Organizations24 

Both the major/minor loops and on-chip decoders permit 
the organization of a large-capacity array into many short 
shift registers which share interconnections and read and 
write circuits. The short length as \-vell as the random access 
capability of the shift registers dramatically reduces the 
access and latency times. Moreover, both organizations enable 
the large-area chip to be divided into many smaller arrays 
which also share interconnections and read and write circuits. 
Signal transmission by slow bubble propagation is only 
limited within the small arrays while fast electrical-signal 
propagation is utilized outside the arrays. Circuit and inter
connection sharing is based on the property that only after 
transfer or decoding operation, can the read or write operation 
be performed, thus enabling a two-step coincident selection 
scheme. A further reduction of access time is achieved by the 

'-___ r---D 
'-___ r---D 

'-___ r---D 

'----~ 

LONG SHIFT REGISTER 

SEPARATE SHORT 
SHIFT REGISTERS 

MAJOR / MINOR LOOP 

ACCESS TIME I 
~ ______ ~r/~135 DECODER 

I.r-"--<-~-=-e>:-=-:"";;-:O-~:\ ____ --l 

7------~~ 
LATENCY ACCESS 
TIME TIME 

~~ 
i:!~ 
zoo 
i:!~ 
00 a: 
~I-

READ/WRITE 

Figure 4-Access time improvement by memory organizations 

Capabilities of the Bubble Technology 851 

C) 
Z 

1010 ~ 
I.IJ 
0 a:: 
0 

10 9 0 ~ ~ ~ < ci 

" z en CD 
N 

I~ 
>-z 

108 
0- ~. 

" I~ U) 
t- I~ § ~M~t >- 107 DISKS 
t- STRPS u; TAPES z 
I.IJ 
0 106 

:. S 

10-8 10 -6 10-2 
10 

Figure 5-Density vs. access time curves for bubble memory chips 

dynamic ordering of data which automatically makes more 
frequently used data more readily accessible. 

DESIGN EXAMPLES 

Two design examples are given in Table II to emphasize 
the salient features of memory organization techniques. In 
the first example, 16K bits are arranged into 128 minor loops, 
each with 128 bits and linked by a common major loop. 
Only 6 interconnection pins and 4 circuits are required for 
this chip due to the use of the major loop. The maximum ac
cess and latency times are both 128 TR (TR=field rotation 
period) due to the short length of the minor loops. In the 
second example, the chip contains 268 M bits. If it were ar
ranged in a single array of major/minor loops, the intercon
nections and circuits would remain 6 and 4 respectively but 
the access and latency times would be 16,384 TR (e.g., 16 ms 
for T R = 1 p,s) , which would not offer speed advantage over a 
mechanically-accessed magnetic-disk file. Therefore, the chip 
is divided into smaller arrays arranged into 16 rows and 16 
columns. Within each array of 106 bits, the bits are organized 
in major/minor loops, resulting in 1024 TR for access and 
latency times. The arrays in each column are connected by a 
single transfer line while the arrays in a row are connected 
by single sense, clear, and write lines. The interconnection 
and circuit counts are respectively 81 and 64. Thus we have 
increased the capacity by 1.6 X 104 times, with the access 
time increased only by a factor of 8, and the circuits and 
interconnections increased by a factor of 16. 

The density and speed capabilities will now be sum
marized together to provide a basis for comparison with other 



852 National Computer Conference, 1974 

technologies and to assess possible applications for the bubble 
technology. Refer to Figure 5. Possible densities for bubble 
devices range from 106 to 1010 bits/in2. In order to share the 
costs of interconnections, circuits and packaging, the chip 
capacity must be increased with the density. 

As a starting point, consider a 1 in2 area chip ",i.th 106 bits 
at 106 bit/in2 density, and 105 bit/sec. shift-register data 
rate. When organized into 103 shift registers each with 103 

bits in a major/minor loop configuration, the access time 
(maximum) is 20 ms. Now let us increase the chip capacity 
in proportion to the density, thus maintaining a constant 
area. A 100-fold increase in density or chip capacity means a 
lO-fold increase in access time, as indicated by the slanted 
line labelled "single array". However, the chip can be divided 
into many 106-bit arrays with each array in major/minor 
loops, and the arrays connected according to the coincident 
selection scheme. Then within each array the access time is 
still 20 ms, while the delay incurred from an array to an 
input/ output pin due to electrical signal propagation is 
negligible, resulting in a net access time of 20 ms regardless of 
the chip capacity (as indicated by the vertical line labelled 
modular arrays). When higher data rate (by higher mobility), 
-parallel shift registers~· -and· dynamic ordering are add~d 
successively, the access time is further reduced as shown by 
the various lines in the figure. Note that the benefit of 
dynamic ordering depends on the nature of data in storage. 
Only a modest gain of 10 is assumed in the figure. 

To allow a comparison of the bubble technology with other 
technologies, the capabilities of core and semiconductor 
memories and the mechanical files (drums, disks, strips, and 
tapes) are also indicated in Figure 5. The description is 
necessarily sketchy, but the same degree of optimism is 
exercised for all technologies. Semiconductors and bubbles at 
the same density and same chip size will offer reasonably 
comparable cost per bit. However, bubbles will offer lower 
cost due to simpler processing. Crudely speaking, the cost 
per bit for the mechanical files ,\1.11 be ten times cheaper than 
bubbles at the same storage density. 

Cores are being displaced by semiconductors in future 
products due to the increasing density and chip modularity of 
semiconductors. At densities higher than 106 bits/in2, semi
conductors are also going to displace fixed-head-file (FHF) 
disks and drums when non-volatility is nota critical issue. 
As for bubbles (a modular non-volatile memory), the applica
tion of FHF replacement perhaps provides an opportunity 
for an early-entry product. The projected very high density 
suggests that large-capacity files, which at present employ 
disks, may become a very attractive application. The short 
access time will eliminate the "file gap" problem. 

FUNCTIONAL CAPABILITIES 

In the past, magnetic memory devices such as ferrite cores 
and permalloy films have lailed to make any significant in
road in logic applications, while semiconductor devices have 
extended from logic to memory applications. This is explained 
simply by the fact that semiconductor devices offer speed as 

required by arithmetic and logic units, and both memory 
and logic capabilities to enable integration on the same chip. 
By contrast, cores and films depend on semiconductors for 
amplification as is needed in multiple-stage logic operations. 
They are functionally not self sufficient, and therefore can
not be made into truly integrated-circuit chips. 

Bubble devices, although using magnetic materials, have 
more in common with semiconductors than with cores and 
films. During each field rotation or current pulsation every 
bit has its energy replenished by the drive, and its informa
tion state re-quantized by the bias field. The bubble memory 
and logic cells are similar in structure, and therefore amenable 
to integration on the same chip and even local mixtures. 

The bubble logic is not only aesthetically appealing since 
it makes all-bubble data-processing machines possible;25 but 
also practically desirable since it makes integrated-circuit 
bubble chips realizable. The present memory chips are com
plete with storage, write, read, and access functions. With 
larger chips where defects and errors must be more effectively 
dealt with, switching and logic capabilities are needed for 
diagnostic testing and redundancy remedy, or error detection 
~nd cOrI:~cti9n~Forchips intenqed for file applications, which 
have very large capacities (108 to 1010 bits), data should be 
arranged and pre-processed before transfer to the memory 
portion of the storage system. 

Should one list a set of desirable attributes for bubble logic, 
they would include: (1) a universal element, (2) a re
writeable element, (3) multiple inputs, (4) the capability to 
perform higher level functions (e.g., adder, parity check, 
etc.) in addition to elemental logic connectives (AND, OR, 
etc.) and (5) amenability to array logic (or the use of mem
ory arrays of great regularity to perform logic functions of 
great variety). 

These requirements are not fully satisfied by several early 
bubble logic devices which include conjugate logic gates,26 
chevron 3-3 circuits,27.28 resident bubble cellular logic,29 and 
programmable cellular logic.30 Continued search has led to 
new device concepts such as symmetrical switching functions 
(SSF) 31 which appear to satisfy these requirements. SSF are 
performed by counting the number of ONE's among the in
puts. As an example, consider a three-input SSF element. An 
AND function will yield an output (ONE) if there are three 
ONE's in the inputs. An EXCLUSIVE OR function will 
yield an output if there is only a single ONE among the 
inputs. For SU::\1, there is an output if the number of input 
bubbles is odd. For CARRY, there is an output if the number 
of input bubbles is two or larger. In canonical forms: 

AND=xyz 
EXCLUSIVE OR=xyz+xyz+xyz 
S U 1\1 = xyz+ xyz+xyz+xyz 
CARRY =xyz+xyz+xyz+xyz 

A bubble device to perform the SSF can be implemented by 
executing the following steps: (1) assemble and gravitate 
input bubbles, (2) convert the number of input bubbles into 
the position of a bubble in a bubble stream, (3) personalize a 
bubble stream to define the logic function, and (4) interact 



the two bubble streams to produce the output of the logic 
function. 

Note that if simple logic connectives are used to construct 
the SUM and CARRY devices, NEGATION devices are 
needed to generate X, y, and z; AND gates (one three-input 
element or three two-input elements arranged in two stages) 
are needed to generate xyz, xyz, etc.; and OR gates are needed 
to produce sum from xyz, xyz, etc. Thus a variety of devices 
'will be needed to execute elemental functions in stages, 'with 
demand of precise path length for precise timing. 

COMPARISON WITH SEMICOKDUCTORS 

Given that both bubbles and semiconductors are inte
grated-circuit technologies, the relative complexity in device 
fabrication can be assessed in terms of the complexity in 
planar configurations (particularly in the line width w) and 
the number of processing steps (particularly the number of 
masking steps). One convenient measure of the efficiency of 
device design is to express the area of a cell in units of ,,,2: 

MOSFET 

T -bar bubble 
devices 

Contiguous-disk 
bubble devices 

Cell 
Area 

30-50 'w2 

64 w2 

w2 

Present Density 
(bits/in2) 

8 X 106 (Ref. 32) 

6.7X107 (Ref. 3) 

106 (Ref. 22) 

Potential 
Density 
(bits/in2) 

1.3X 108 

6.7X107 

4X109 

The potential densities are based on the practical limit of 
electron beam lithographies, w = 0.4 J,tm. In integrated struc
tures, the yield of the complete structure results from the 
product of the yields of the successive steps. Obviously the 
fewer the processing steps are, the higher the overall yield 
becomes. In MOSFET typically five masking steps are 
needed. By contrast, the conventional T -bar devices require 
three photoresist masking steps, and recently Bobeck et a1.6 

have evolved a one-mask overlay design. In addition, it 
should be observed that.,the structures for bubble devices are 
merely overlays, while the structures for semiconductor 
devices are integrated into the Si medium. One may conclude 
that bubble devices are intrinsically and significantly simpler 
in structure and fabrication as compared to the MOSFET 
devices. 

The potential density for semiconductor devices is con
sistent with the prediction by Hoeneisen and ::\lead.33 They 
considered the physical phenomena which "ill ultimately 
limit circuit miniaturization of MOS field-effect planar 
transistors with Si substrate and Si02 dielectric, and con
cluded that the potential densities for dynamic or comple
mentary 110S, read-only memory cells, and charge-coupled 
devices are respectively 2X 108, 6X 108 and 8X 108 devices/in2. 

Capabilities of the Bubble Technology 853 

CO::\IPARISON WITH ::\1AGNETIC DISKS 

The magnetic disks have offered large-capacity on-line 
read/write storage with attractive cost and reasonable speed. 
For fast-access fixed head disk files, the capacity is in the 
range of 107 to 108 bits, and the access time is in the range of 
5-50 ms. For large-capacity movable-head disk files, the 
capacity is in the range of 109 to 1010 bits, and the access time 
is in the range of 20 to 300 ms. From its very inception, the 
bubble technology has been heralded as a solid-state device 
to replace disk files. Note that the state-of-the-art ,bubble
memory modules functionally and cost-wise can only be com
pared with fixed-head disk files. However, the projected high
density bubble devices may indeed impact large-capacity files. 

Disk files have become the dominant large-capacity 
storage34 due to its low cost, which is achieved through the 
large number of bits in the inexpensive storage medium 
(e.g., 109 bits on 12 disks in the IB::\I 3330 disk file) sharing 
the expensive mechanical drive, servomechanisms, channel 
electronics, control units, etc. The large number of bits on 
disks mounted on the same spindle is made possible by high 
storage density. As a disk is rotated, the bits along a circum
ferential track are made accessible to the read and write 
heads. Three geometrical dimensions are crucial in determin
ing the linear recording density: the gap length of the head, 
the head-to-medium separation, and the medium thickness. 
As a rule of thumb, the three dimensions are comparable, and 
their sum is the linear bit dimension. For example, at 20,000 
bit/in linear density, the linear bit dimension is 5 X 10-5 in 
(50 J,tin, 1.27 J,tm, or 12,700 A), and approximately the gap, 
the separation, and the thickness are all only'4,230 A. Thus 
thin-film heads and disks become candidates to fulfill the 
exacting dimensional requirements; and smooth surface, 
continuous air flow, and clean ambient become essential to 
ensure a constant separation. To achieve such technical ob
jectives is no small task, which encourages more tolerant 
thoughts toward exploring competing new technologies. 

To contrast the disk storage medium and the bubble storage 
medium, the former needs only to offer its intrinsic storage 
capability and relegates the access, read and write functions 
to other components in a disk file; while the latter must 
have device structures built into the chip to provide all of 
the storage, access, read and write functions. Naturally, the 
latter \vould be more expensive to fabricate, on a per-unit
area basis. In order to compete with magnetic disks on a cost
per-bit basis, bubbles must attain higher storage density (ten 
times or more). 

In comparison with solid-state devices, mechanically
accessed magnetic disks offer satisfactorily high data rate, 
but unsatisfactorily slmv access time. At 14" disk diameter, 
20,000 bits/in, and 3000 rpm, the data rate is 42 X 106 bits/ 
sec. The rotation period or the latency time is 20 ms. To select 
a track by moving the arm carrying the slider and head, 
the access time ranges from tens to hundreds of ms. Bubble 
devices do not offer high data rate; 0.1 ::\.fHz in practical 
devices now, and potentially 10 MHz in future devices. 
However, the ability to s,,,itch data electronically from one 



854 National Computer Conference, 1974 

shift register to another permits great flexibility in memory 
organization to achieve real or effective access time as low as 
tens to hundreds of microseconds. 

If and when bubbles become competitive with disks in 
terms of cost per bit, then all of the system applications 
which require non-volatility, rewriteability, and on-line and 
off-line storage, can employ bubble files rather than disk 
files. The absence of mechanical motion will make bubble 
files more reliable. Since bubbles do not critically depend on 
extremely large module capacity for low cost per bit, bubble 
memories and storages can offer a wider range of capacities. 
Through memory organization, much faster access time is 
obtainable with bubble files. Moreover, the various parts in a 
bubble file can operate synchronously or asynchronously. 
Bubble files can have their own bubble memories, perhaps 
even integrated onto the same chips, in contrast to disk files 
employing core memories with complicated channel elec
tronics in between. The switching and logic capabilities can 
be used for data arrangement as well as pre-processing before 
transfer to a memory. 

CONCLUSIONS 

Packaged bubble memory chips offer 106 bits/in2 density. 
Experimental shift registers approach 108 bit/in2 density. 
Nloreover, simultaneous improvement in materials, device 
structure, and lithography could lead to storage density as 
high as 109 to 1010 bits/in2• Both in terms of current experi
mental devices and theoretical predictions, bubbles offer ten 
times higher density than semiconductors. In addition, 
bubbles may use only one masking step while FET devices 
require five. 

Packaged bubble memory chips operate at 105 bit/sec 
data rate or faster. Improved materials are expected to yield 
107 bit/sec data rate. l\Iemory organization techniques such 
as on-chip decoders or major/minor loops, when aided by 
dynamic ordering or coincident selection could lead to access 
time order-of-magnitude shorter than the 10 ms for the fast 
disk files. 

Semiconductors offer great functional versatility to be a 
self-sufficient technology; high speed to yield tremendous 
processing power; and integrated-circuit fabrication to permit 
low-cost, reliable, and convenient packaging. 

Bubbles do have memory, switching, and logic capabilities. 
Therefore, bubbles far surpass any other magnetic technology 
in approaching the functional versatility of semiconductors. 
Bubble logic devices so far have received little attention from 
the experimentalists. Nevertheless, the possibility of uni
versal, re-'~lriteab!e, multiple-input devices suitable for 
higher-level functions and array logic is quite obvious. Thus 
bubbles are potentially capable of reaping the full advantage 
of integrated circuits such as enjoyed by semiconductors, 
including density and speed, functional versatility, batch 
fabrication, and convenient package. 

:Magnetic disks offer non-volatility, re-writeability, and 
on-line or off-line storage. So do bubbles. The very low cost 

of disks makes very large capacity affordable (say 1010 bits). 
Actually, the other way is also true; viz. the large capacity 
makes low cost possible, by amortizing expensive peripheral 
components against many bits Magnetic bubbles require 
more expensive materials and complicated structures than 
disk devices Hence bubbles will impact disk files only when a 
density advantage of a factor of 10 or higher is achieved 
However, bubbles are modular, fast (millisecond or sub
millisecond access time), and offer large data bandwidth by 
connecting chips in parallel As the bubble technology ma
tures to impact the disk files, it may well change today's 
memory hierarchy because it can and therefore it will in
corporate memory, data manipulation, and data processing 
on the same chip. 

ACKNOWLEDGMENTS 

The author gratefully acknowledges the many stimulating 
discussions with his colleagues: C. D. Cullum, J. H. Eaton, 
G. C. Feth, H. L. Hu, G. E. Keefe, Y. S. Lin, L. L. Rosier 
and J. C. Slonczewski. 

REFERENCES 

1. Michaelis, P. and P. I. Bonyhard, IEEE Trans. on Mag., 9, No.3, 
pp. 436-39, September 1973. 

2. Bosch, L. J., et al., IEEE Trans. on Mag., 9, No.3, pp. 481-3, 
September 1973. 

3. Hu, H. L., et al., 1973 Intermag. Conf. Digests, Paper 26.5. 
4. Hewitt, B., et al., IEEE Trans. on Mag., 9, No.3, pp. 366-72, 

September 1973. 
5. Bonyhard, P. I., et al., IEEE Trans. on Mag., 9, No.3, pp. 433-5, 

September 1973. 
6. Bobeck, A. H. et al., IEEE Trans. on Mag., 9, No.3, pp. 474-80, 

September 1973. 
7. Reekstin, J. P. et al., to appear in J. Vac. Science and Technology, 

1973. 
8. Johnson, W. A. et al., 1973 Intermag. Conf. Digests, paper 26.3. 
9. Powers, J. V. and R. E. Horstman, 19731ntermag. Conf. Digests, 

paper 21.1. 
10. Kiseda, J. R., IEEE Trans. on Mag., 9, No.3, pp. 425-8, September 

1973. 
11. Rifkin, A. A., IEEE Trans. on Mag., 9, No.3, pp. 429-32, Septem-

ber 1973. 
12. Lyons, W. A., 1973 Intermag. Conf. Digests, paper 26.6. 
13. Almasi, G. S., Proc. IEEE, Vol. 61, No.4, pp. 438-444, April 1972. 
14. Brandle, C. D. and A. J. Valentino, J. Cryst. Growth, Vol. 12, pp. 

3-8, 1972. 
15. Blank, S. L., et al., AlP Conf. Proc., No. 10, Pt. 1, pp. 256-270, 1973. 
16. Giess, E. A., et al., J. Crystl. Growth, Vol. 16, pp. 36-42, 1972. 
17. Giess, E. A., et al., AlP Conf. Proc., No.5, Pt. I, pp. 110-114, 

1972. 
18. Ghez, R. and E. A. Giess, Mat. Res. Bull., Vol. 8, No.1, pp. 31-42, 

1973. 
19. Chaudhari, P., et al., IBM J. Res. and Dev., Vol. 17, No.1, pp. 66-

68, January 1973. 
20. Vella-Coleiro, G. P., AlP Conf. Proc., No. 10, Pt. I, (18th Conf. on 

Magnetism and Magnetic Materials), pp. 424-441, 1973. 
21. Plaskett, T. S., et al., AlP Conf. Proc., No. 10, Pt. I (l8th Conf. on 

Magnetism and Magnetic Materials), pp. 319-323, Hl73. 
22. Wolfe, R, et al., AlP Conf. Proc., No. 10, Pt. I, (lRth Conf. on 

Magnetism and Magnetic Materials), pp. 339-341, 1973. 



23. Archer, J. L., et al., IEEE Trans. Magnetics, Vol. MAG-8, No.3, 
pp. 695-700, September 1972. 

24. Chang, H., IEEE Trans. Magnetics, Vol. MAG-8, No.3, pp. 564-
568, September 1972. 

25. Minnick, R. C., et aI., Proc. 1972 Fall Joint Computer Conf., pp. 
1279-1298, 1972. 

26. Sandfort, R. M. and E. R. Burke, IEEE Trans. Magnetics, Vol. 
MAG-7, No.3, pp. 358-360, September 1971. 

27. Bobeck, A. H. and H. E. D. Scovil, Scientific American, Vol. 224, 
NO.6, pp. 78-90, June 1971. 

28. Minnick, R. C., et al., WESCON Proc., 8/4, pp. 1-13, 1972. 

Capabilities of the Bubble Technology 855 

29. Garey, M. R., IEEE Trans. Computers, Vol. C-21, No.4, pp. 392-
396, April 1972. 

30. Bobeck, A. H. et aI., U.S. Patent 3, 541,522, filed 8/2/67, issued 
11/17/70. 

31. Chang, H., et aI., AFIPS Conf. Proc., Vol. 42, pp. 413-420, 1973. 
32. Yu, H. N., et aI., 1973 ISSCC Digest of Technical Papers, THAM 

8.6, pp. 98-99. 
33. Hoeneisen, B. and C. A. Mead, Solid State Electronics, Vol. 15, pp. 

819 and 891, 1972. 
34. Harker, J. M. and H. Chang, Proc. Spring Joint Computer Conf., 

pp. 945-55, 1972. 





Some computer network interconnection issues* 

by A. ),1. :McKEXZIE 

Bolt Beranek and Newman Inc. 
Cambridge, Massachusetts 

During the past four years, my work at Bolt Beranek 
and Ne\vman has been devoted to the operation and use of 
the ARPA Communication Network. 1 Further, my only 
direct experience with computer communication net\vorks 
is this involvement. It would therefore be brash to present 
myself as an expert on digital communications, and I do 
not presume to do so. On the other hand, the ARPA experi
ment of constructing a communications system specifically 
tailored to the needs of computers and their users has been 
extremely successful, and at the same time has pointed out 
a number of areas where methods of computer communica
tion can stand improvement. It is this backgrcund of experi
ence which has inspired the following observations. 

I have no doubt that the problems of interconnecting 
widely dissimilar computer networks can be rapidly overcome 
as soon as there is economic or intellectual stimulus to make 
the interconnections. The most probable method, I suspect, 
is to insert a small computer between two such networks, 
so that it appears as a customer to both, and performs 
elementary transformations of data which must cross from 
one to the other. Examples of such a gateway device come 
easily to mind: the University of London would like to 
operate a gateway between the ARPA, NPL, and CY
CLADES networks; for a few days in 1972 an ARPA Net
work Terminal L\1P (TIP) served as a gateway between 
the ARPA Network and TYMKET; a TIP or an ANTS 
can be thought of as a gateway bet\veen the ARPA Network 
and the dial network provided by the common carriers. 

Since this gateway approach works adequately (if not 
elegantly), I am not bothered by a lack of standards for 
network interconnection. In fact, given the youth of the 
"packet-switching" network field, and the high probability 
that there is still much to be learned, I am greatly opposed 
to a move to standardize on some particUlar network design 
in the near future. 

In spite of what I have just said, there are real problems 
for potential users of a data network or a series of inter
connected networks. Interconnection of a series of private 
and public mail systems can and does move a letter from 
Paris to Chicago, but that does not do the recipient much 
good if the letter is written in French and he reads only 

* This work was sponsored by the Advanced Research Projects Agency 
under Contracts DAHCl5-69-~179 and F 08606-73-C-0027. 

857 

English. It is much the same with a network (or set of net
works) of heterogeneous computers: what should a DEC 
PDP-ll do with an IB-:\1 370 floating point number? I 
suppose that one can imagine another set of gateways, let 
us call this set "translators," through which data is routed 
and ·which transform from one "language" to another. (In 
the ARPA Network such a service, the "Data Reconfigura
tion Service",2 was proposed, but thus far it has proved 
more practical to invent a common language and for all to 
learn to speak it; "Esperanto" appears practical with com
puters where it is not with humans.) 

But there is an even more difficult set of problems in 
computer networks, a set which does not lend itself so well 
to human analogy. This set revolves around buffering and 
synchronization between asynchronous processes. There 
has been a great deal of discussion in the literature about 
the coordination of cooperating processes within a single 
computer system, notably· the" P and V semaphores of 
Dijkstra. 3 Such systems, however, tend to assume (1) an 
omnipotent supervisor, and (2) essentially perfect com
munication channels with zero delay. Because of these 
assumptions, I am inclined to believe that these coordination 
schemes do not extend ,vell to computer networking. 

Let me discuss, then, the issues ,vhich I believe are funda
mental to communication among dissimilar computers 
("Hosts") connected together through a series of dissimilar 
communications networks ("nets"). I ,,,ill refer to the rules 
which govern the communication as "protocols"; these 
protocols must be designed to provide solutions to the 
buffering and synchronization problems mentioned above. 

OXE PROTOCOL OR ::'\IA~Y 

I would suggest that the development of a standard set 
of protocols should not close off all the options for private 
arrangements. There should be easy methods for pairs (or 
larger groups) of customers to escape to something different. 
This is partly because I consider it unlikely that the first 
round (or first "n" rounds) of standards development ,vill 
make all the right choices, and partly because sets of identi
cal computers will probably find a specialized protocol of 
their own more efficient than any general-purpose standard. 



858 National Computer Conference, 1974 

THROUGHPUT VS. DELAY 

It has generally proved true in the past that different 
mechanisms are required for maximizing throughput and 
for minimizing delay. Computer traffic typically has both 
types of requirements; e.g., file transfer may have high 
throughput requirements while interactive users, or one 
system calling a subroutine on another system, are low 
bandwidth but low delay applications. Thus it is reasonable 
to speculate that standard protocols should provide different 
mechanisms to deal efficaciously with these very different 
types of traffic. 

"CIRCUITS" OR "LETTERS" 

The fact that a net provides service by packet switching 
(or circuit switching) has thus far had only minor influence 
on whether the Host protocols have followed a similar 
philosophy. For example, the ARPA Network is a packet
switching communication service but the Host protocolR 
are currently based on "logical circuits" ; Walden4 has 
proposed an interprocessmessage protocol which appears to 
generalize well to network or multi-network operation, but 
it has not been tested experimentally. On the other hand, 
multidrop polling systems tend to use a message-oriented 
protocol in a circuit-oriented communications environment. 
It may be that the choice is related to the throughput/ 
delay issue mentioned above; perhaps a circuit protocol is 
most suitable for large volume, high throughput use while a 
message protocol is most suitable for low volume, low delay 
applications. In this regard, the comparison of packet- and 
circuit-switching networks by Itoh and KatoS may be 
relevant. 

RETRANS:JHSSION AND ACKNOWLEDG:J1:ENT 

Any communication system has the possibility of occa
sionally losing data. Circuits suffer from burst errors, com
plex switches are susceptible to occasional failure. Thus it 
seems obvious that protocols for any communication system 
must include methods for erroneous or lost message detec
tion and correction, A message protocol might best be served 
by sequential numbering of messages, positive acknowledg
ment by the receiver, and timeout and retransmission by 
the sender. (Sender and receiver could, of course, agree to 
ignore lost or erroneous messages for some applications.) 
For circuit protocols, especially over full-duplex circuits, 
Pouzin6 has argued convincingly that the most efficient 
acknowledgment procedure is baRed on the 8ubdivision of a 
channel (logical or physical) into several independent sub
channels, each with its own independent acknowledgments. 
One chooses the number of sub channels according to the 
speeds of the sender and receiver and according to the ex
pected network delay. This scheme is in contra-distinction 
to the ISO proposal for a High-Level Data Link ControF 
and to the proposal for experimental "Protocols for Inter
network Communication" of Cerf and Kahn.s 

NETWORK TIMING 

Circuit-switching networks tend to impose some circuit 
setup delay at the beginning of a communication, but only 
a fixed and well-known propagation delay during the com
munication. Packet- and message-switching networks, on 
the other hand, impose arbitrary delays due to queueing 
and for other reasons on each element of a communication 
although there may be little or no setup time. In my opinion 
it makes little sense for two Hosts, each connected to a 
network of low delay, to attempt to communicate through 
an intermediate net of very high delay; this becomes ob
vious when. one tries to pick timeout/retransmission pa
rameters. Thus a real issue in the design of standard proto
cols is the set of nets one expects to work through; very 
different strategies should be followed depending on whether 
the· expected delays are measured in minutes (or hours or 
days as in conventional torn tape systems) or in tenths of 
a second. 

··SIMPLICITVAND TABLE SPACE 

I believe it should be possible, once internetwork proto
cols are established, to connect some customer equipment 
to some of the nets via simple hardware devices. I envision, 
for example, a hardware multiplexor which services dozens 
(or hundreds) of interactive terminals and which handles 
all of the necessary protocol. Thus I am not greatly enamored 
of protocols which require large volumes of tabular data, 
which require garbage collection of tabled data, or elaborate 
buffer management strategies to service interactive termi
nals. Similarly, I can imagine trying to connect a magnetic 
tape drive more or less directly to a net, again with a fairly 
simple interface. Here I may be willing to pay (in com
plexity) for high throughput but not be very interested in 
delay. The point is that there should probably be several 
different protocols, each no more complex than is necessary 
for a particular class of application. After all, in a computer 
communication network it is reasonable to obtain con
siderable computational power from remote systems; the 
standard protocols may only need to be sufficient to reach 
these resources. A similar approach, although at a different 
level, has been used quite successfully in the ARPA N et
work's Terminal IlVIPs.9 

COMMUNICATION EFFICIENCY VS. HOST 
PROCESSING 

Traditionally, one of the primary concerns in data com
munication has been to squeeze every possible bit out of 
the information being carried by a communication circuit. 
It is argued that with powerful communications computer8 
at each end of the circuit, the cost of processing required 
to remove and regenerate bit patterns is insignificant com-



pared to the cost of the circuits and the delay incurred by 
long messages. This argument begins to lose force, however, 
when the computers at each end of the circuit are not pri
marily concerned with communications but with other 
tasks, and as the cost of communicating is reduced. In a 
network of heterogeneous computers it is probably more 
efficient in the long run to pad out messages, or blocks, so 
that the meaningful data is easily manipulated by both 
the sender and receiver. In the ARPA Network, for example, 
the protocols call for padding the header of each message 
to 72 bits, the least common multiple of 8, 18, and 36, so 
that bit-shifting is reduced to a minimum in the concatena
tion of several messages making up a single file, regardless 
of the word lengths of the source and destination computers. 

FRAGMENTATION AT NETWORK BOUNDARIES 

When considering the interconnection of several nets, 
each of which may have some maximum permitted block or 
message size, one is forced either to permit fragmentation 
at the boundaries or to adopt, as an internetwork standard, 
a maximum block length which is no greater than the mini
mum for all the nets. Assuming that the minimum is reason
able (say 1000 bits or more), I am inclined to favor a mixed 
approach based on the throughput/delay requirements. 
Constraining low volume, low delay messages to fit within 
a single block, while permitting fragmentation of high volume 
traffic, seems a reasonable choice. Cerf and Kahn8 present 
one scheme for dealing with fragmentation problems, al
though, as previously indicated, I would prefer the separa
tion of the reordering and the acknowledgment mechanisms. 

Some Computer Network Interconnection Issues 859 

ACKNOWLEDGMENT 

My ideas on standard protocols and other network inter
connection issues are the result of continued interaction 
with colleagues physically located both at Bolt Beranek 
and Newman and at other ARPA K etwork sites. I am 
particularly indebted, however, to David C. Walden of 
BBN. 

REFERENCES 

1. Roberts, L. G. and B. D. Wessler, "Computer Network Develop
ment to Achieve Resource Sharing," AFIPS Proceedings, SJCC, 
Vol. 36, 1970. 

2. Status Report on Proposed Data Reconfiguration Service, ARPA 
Network Working Group RFC #138, NIC #6715, April 1971. 

3. Dijkstra, E. W., "Cooperating Sequential Processes," Program
ming Languages (Genuys, F., ed.), Academic Press, N.Y., 1968. 

4. Walden, D. C., "A System for Interprocess Communication in a 
Resource Sharing Computer Network," Communications of the 
ACM, Vol. 15, No.4, April 1972. 

5. Itoh, K., and T. Kato, "An Analysis of Traffic Handling Capacity 
of Packet Switched and Circuit Switched Networks," Proceedings 
of the Third Data Communications Symposium of the IEEE Computer 
Society and the ACM, 1973. 

6. Pouzin, L., Efficiency of Full-Duplex Synchronous Data Link Pro
cedures, International Network Working Group Note #35, NIC 
#18255, June 1973. 

7. Proposed Draft International Standard on Commands and Responses, 
ISO/TC 97/SC 6 (Geneva-4) 732, February 1973. 

8. Cen, V., and Kahn, R., HOST and PROCESS Level Protocols for 
Internetwork Communication, International Network Working 
Group Note #39, NIC #18764, September 1973. 

9. Mimno, et al., "Terminal Access to the ARPA Network: Experience 
and Improvements," COMPCON 73, Seventh Annual IEEE Com
puter Society International Conference, 1973. 





Step-by-step-A career structure for systematic EDP growth 

by NANCY L. AYER 

National Agricultural Library 
Beltsville, Maryland 

The mushrooming growth of data processing applications 
in the past decade has been a boon in many ways for the 
country. One of the problems, however, has been that growth 
was so rapid and so demanding that there was little time or 
manpower resources left over in which plans and standards 
or other procedures could be formalized. Only in the recent 
past has there been time to go into this area. Some frag
mented standards have appeared here and there and it is 
now time to draw these together and provide one standard 
guideline to help managers, professional EDP personnel, as 
well as those desiring to enter the EDP career area. 

In recognition of the need to fill this void, last year a 
small group in the Washington, D. C., area got together to 
approach this very important matter. Paul Oyer established 
this under the shelter of a special interest group of ACM 
and he was joined by myself plus many other idealistic 
pragmatists such as Dave Skeen, Bob Meyer, :Mary Jo Blair, 
Ken King. Our purpose was to provide a set of documentation 
to serve as a fairly comprehensive guideline for the industry. 
We recognize in advance that it will not answer the needs of 
everyone or be a be-all-to-end-all. On the other hand, as 
everyone knows, it is easier to take documentation already 
provided and change it than it is to create it in the first 
place. This project, then, is to provide one set of guidelines 
which would be presented to a Board of Review to be selected 
from experienced persons of integrity and vision from in
dustry, government, managers, supervisors, professionals in 
neither the managerial nor supervisory areas, professional 
associations, and academic institutions. The approved docu
ment will then become a recommendation for use by in
dividuals and organizations in management planning and 
individual career development planning. 

THE PLAN 

The plan as presently proposed is a five-pointer. Point 1: 
Establish a career path network for data processing personnel. 
Extensive work done previously by a consulting firm re
duced over 1700 positions to a basic 54 positions. In the 
group selected, these 54 general position descriptions in
cluded 189 variations by the addition of locally desirable 
requirements. This is, in fact, the entire thrust of the project: 
namely, to provide a basic set of guides which can be custom-

861 

ized to individual organization needs. The positions re
solved themselves into ten (10) family clusters. 

• EDP lIt! anagement-management of branches, divisions, 
and groups of divisions. 

• EDP Research and Development. 
• Technical Supervisors-support and first-line supervisors. 
• Systems Specialists-major systems development, design, 

and data base development. 
• Programming-writing and maintaining computer pro

grams. 
• Technical Specialists-computer operations analysis, 

software at the systems level, and applications system 
analysis and design (although this latter is still a matter 
of controversy). 

• Production Management-scheduling, directing, control
ling, and coordinating the operation of computer com
plexes. 

• Equipment Operations-operation of all computer com
plexes and peripheral hardware. 

• Technical Support-collection, assembling and delivery 
of materials among functional areas of EDP and pro
vision of clerical support in these areas. 

• General Support-EDP training and administrative sup
port. 

Following the identification of these positions within family 
clusters, a relative level is assigned to each. The levels 
presently utilized are those of the governmental GS (General 
Schedule) standards. 

Point 2: Establish basic descriptions of each position In

cluding: 

• Knowledge required by the job. General and specific 
tasks. 

• Responsibilities. General statement of commitments, 
supervisory control; and impact of work. 

• Difficulty of the level. Nature, complexity, scope, guide
lines provided, judgment. 

• Personal Relationships. Contacts and purpose of such 
contacts. 

• Environmental Demands. Variables depending on hard
ware, software systems, but identifiable -as pertaining 
to a specific level. 



862 National Computer Conference, 1974 

• Performance Measurement. Specific achievement require
ments. 

Point 3: For each level of position, develop achievement 
points which must be available to meet the position require
ments, and to pinpoint those which may be achieved by 
academic means as a substitute for experience. Total aca
demic credits may not be substituted, however. Some of 
these attributes are: 

• Qualifications of the position itself. 
• Employee appraisal on such matters as quantity of work 

and quality, analytical reasoning, resolution of prob
lems, initiative, oral communication, etc. 

• Test scoring if a prerequisite. 
• Experience. An example of this would be experience 

indicating skill in planning and developing machine logic, 
and program steps for preparing instructions for machine 
processing. If a total of 14 points were given to this 
item, a substitution of 7 points could be given for each 
full year of experience in a position where only two 
years experience were required. No excess over the 14 
would be allocated. 

. .. - .... 

• Training and self development. This could include a grad-
uate college degree if major areas of study have pro
vided skills and knowledge relative to the position; 
undergraduate college degree with the same provision; 
or partial credit for courses in the field being considered. 

• A 'Wards received. 
• Outside activities which indicates SIGNIFICANT par

ticipation in matters proving aptitudes and ability for 
the position. 

• Encourage certification examinations for each level of 
each position family. 

Point 4: Provide logical crossover channels between family 
clusters, and from position to position within a family. This 
is, of course, the point most desired by the EDP professional 
or would-be professional for his own advancement. An over
looked advantage, however, would also be for the manager 
or supervisor in counselling and planning upward mobility 
for his personnel. It is of immense importance to the vast 
majority of workers to have an upward goal in mind. It is 
of even more importance. for each employee to know just 
how he must proceed in order to reach the goal effectively. 
In developing logical crossover points and channels, a reason
able road map is established together with the means of 
arriving at a predetermined destination. Note on the Exhibit 
5 (sample crossover chart from the computer operator cluster 
to the programming cluster) that no transfer is permitted 
from entry level operator. It has been determined that suffi
cient responsibility must be exercised by the individual to 
complete one phase of his training before attempting to 
transfer. Therefore, the operator must complete entry level 
and be in the process of working as a non-entry level employee 
in that field before a crossover is deemed desirable. All posi
tions for which criteria are to be established must of necessity 
assume that certain basic prior l~no'\vlcdgc is inherent in 
experience at a certain level. Thus, although the experience 

of a programmer II specifies certain knowledge of EDP 
terminology, other knowledge obtained at a lower level of 
experience must be assumed. For this reason, the programmer 
II experience would not specifically designate basic hard
ware knowledge and thus must be obtained either as a pro
grammer III or computer operator II or III. 

Note the crossover chart also specifies certain courses 
which may be substituted for some experience. Exhibit 6 
shows a sample listing of course names, and Exhibit 7. con
tains a sample course description. The initial character speci
fies the family-in this case the P stands for the programmer 
family. The suffix indicates the level of instruction required: 

o = orientation 
1 = basic course 
2 = journeyman level 
3 = advanced material 
4 = specialized material 

One additional point (Point 5) which is dealt with more 
thoroughly by Bob Meyer's Group would be a compilation 
of courses within a geographic area so that each individual 
could_kno:w wh~re to Jind_th~Gourse required. 

CONCLUSION 

This then is the plan. To provide a road map by means of 
which everyone concerned would know where he stood in 
the scheme of things. It would no longer be necessary for an 
employer to guess from a resume whether or not an applicant 
was qualified. It would no longer be possible for an employee 
not to knmv his necessary experience or academic require
ments for the position of his choice. By also inserting ex
aminations (not the same thing as certifications) for each 
level of position, everyone concerned would know if a pro
fessional or his would-be counterpart were qualified for a 
specific position level. 

Such a procedure would give dignity to a profession. It 
would tend to give integrity to the professional. It would 
also give a sense of purpose and measurement for a methodical 
progression. 

It is realized that such a set of guidelines would have to 
be updated periodically, module by module. But is not this 
the basis of a progressive profession? To develop such a set 
of guidelines is not an easy matter. We have been fortunate 
to have such a good start on it, and from the interest gen
erated at all levels for the completed project (or any part of 
an interim product), there should be many interested in 
helping to carry it on. As a matter of fact, Bob Henry of the 
University of Minnesota, has already volunteered his re
sources and the Federal ADP Users Group of Washington, 
D. C., has asked us to act as a special interest group under 
their auspices. What a really great helping hand these people 
are. 

Only by having the backing of all aspects of the field will 
it be successful-academic community in planning and pro
v'iding curriculum; professional societies in encouraging ac
ceptance, testing, certification, and professionalism; man-



Step-by-Step-A Career Structure for Systematic EDP Growth 863 

agers in using it as a guide in planning and operating their 
establishments; and last but far from least, the individual 
himself. 

SELECTED BIBLIOGRAPHY 

1. Canning, Richard G., "The Upgrading of Data Processing Per
sonnel," EDP Analyzer, August 1967. 

2. Caruth, Donald L., Guidelines for Organizing a Wark Measurement 
Program, Association for Systems Management, Cleveland, Ohio, 
1971. 

3. Data Processing Career Structures and Development, Volumes I and 
II. Brandon Applied Systems, Inc., Arlington, Va., 1972. 

4. DeMaagd, Gerald, "Matrix Management" Datamation, Oct. 15, 
1970. 

5. Dickman, Robert A., Personnel Implications for Business Data 
Processing, Wiley-Interscience, 1971. 

6. Greco, Ben, The I mpartance of Career Planning Prior to Job Search, 
MBA, December 1970. 

7. Henry, Robert M., "Skills Possessed and Skills Useful for MIS 
Practioners: A Research Report," PROC of NCC '74, Volume 43. 

8. Kaye, Donald, "Career Paths in Systems and Data Processing," 
Journal of Systems Management, June 1971. 

9. Oyer, Paul D., Dorothy L. Ray, "A Systems Approach to Career 
Development: Report of Two Surveys," PROC of '74 NCC, Volume 
43. 

10. Pigors, Paul, Charles Meyers and F. T. MaIm (eds.), Management 
of Human Resources, McGraw-Hill, New York, 1969. 

11. Rigney, Joseph W., R. M. Berger and A. Gershon, Computer Per
sonnel Selection and Criterion Development: III. The Computer 
Posilion Profile," University of Southern California, Los Angeles, 
1967. 

12. Skeen, David R., "EDP Certification ... Is It Necessary?" PROC 
of '74 NCC, Volume 43. 

13. The Systems Approach to Training Development: The Career Path 
Method, Development. Systems International Corporation, Studio 
City, California, 1971. 

14. Wolfe, Jack M., "Testing for Programming Aptitude," Datamation, 
April 1969. 

Exhibit 1 

r~ 
17 

f vt 
i\i\f.N~~ -e- t .( ..... 

STEP -BY -STEP 

EDP Career Structure 

1 

IPROG~RI 
II 

I (CuDER) I 
1 
I 

.1 

o 
D 
o 

SUPERIOR SKILL IN 
JOB FMILY 

NORMl.L TOP OF JOB 
FAMILY 

EN'I'RY '1'0 JOB FA.'iILY 

D INTERMEDIATE STEP IN 
JOB FAliILY 

D ENTRY IN'I'O EDP - . 
. NO. PRIOR EXPERIENCE 

- - - - - - - PROMOTION LADDER 

17 

16 

15 

13 

12 

11 

10 



864 National Computer Conference, 1974 

Level 

8 

7 

6 

5 

13 

12 

11 

Exhibit 2 

EQUIPMENT OPERATIONS FAMILY 

Exhibit 3 

COMPUTER 
OPERATOR 

I 

COMPUTER 
OPERATOR 

II 

COMPUTER 
OPERATOR 

III 

TECHNICAL SPECIALISTS 

Computer 
Operations 
Analyst I ! 

(Lead) / 

omputer 
perations 
alyst II 

L (~~i_or) 

Software 
Specialist 

I 
Lead 

Software 
Specialist 

II 
(Senior) 

- 1-----

I 

L -- -- - ..;;j -<3-

13 

12 

11 

computer Aid 
Family 

Exhibit 4 

PROGRAMMING FAMILY 

Progranuner 
Specialist 

II 
(Journeyman) 

I 

<l - - - - - - - :- - - - - - - - - - - - ___ -1 _ _ _ _ .... 

Programmer 
I 

(Junior) 
I 

_·····-1 
I 
I 

Programmer 
II 

(Coder) 

Exhibit 5 

EXAMPLE OF TRAINING PROGRAM FOR A TYPICAL CAREER 
MOVEMENT FROM THE COMPUTER AID FAMILY (A) 

Required 
5201-1 (1st module) 

Sloiijlized 
M -

spe2ialized 
M40 -1 

Required 
EI02-2 

I Ri9tred 
E 0 -1 
E202-2 

~--~ 

computer Operator 
Family 

~i6~~~ed 
P302-2 

'---~~ ~~o2~ilized 
P203-4 

Resiiied 
P20 -
PI01-l 

~P3DI-J.. 

Programmer 
Family 

PI02-2 



Step-by-Step-A Career Structure for Systematic EDP Growth 865 

Exhibit 6 

SAMPLE CONTENTS OF THE COURSE CATALOG 

Category and 
Major Topl.c 

Programming 

Course Code and Title 

PI Methods PIOl-l Progra~~ing Standards 22 

PI02-2 Debugging Techniques 23 

PI03-3 Program Optimization Techniques 24 

P2 Application 
Languages P201-1 Computer Programming 25 

P3 Software 
Ut:ilization 

p4 Data Commun
ications 
Programming 

P202-2 Assembler Language Coding 26 

P203-4 RPG Coding 27 

P303-1 Basic Job Control 28 

P302-2 Intermediate Job Control 29 

P303-3 Advanced Job Control 30 

P304-2 EXEC 8 Control Language 31 

P305-4 I~.S - 8 32 

P401-1 Communications for Programmers 33 

P402-2 Communications Access Methods 
Programming 34 

P403-2 BTAM Workshop 35 

P404-2 QTAM Workshop 36 

P405-2 1100 Communications 37 

Course 

Achievement 
Criteria 

Prerequisites 

Course Length 

Exhibit 7 

P 201-1. Computer Programming 

Provides a thorough knowledge of hardware 
concepts, a working knowledge of programming 
in Assembler and COBOL languages, and a 
basic knowledge of Job Control language. 

1. History and Concepts of Data Processing 
2. Programming Fundamentals 
3. Introduction to S/360 and S/370* 
4. Assembler Language Coding 
5. Cobol Programming 
6. Decision Logic Tables 
7. Job Control Language* 
8. Debugging. 
9. Case Studies and Examinations 

10. Reference and Standards Manuals* 

*Separate modules for different equipment 
manufacturers 

Ability to analyze, organize, write, test 
and debug a program written in assembler 
and in ANSI COBOL. Written tests provided. 

Entrance test 

280 hours (7 weeks) 





Career development-A new approach to performance appraisal 

by WALLACE c. ANDREWS and LESTER J. SONTAG 

McDonnell Douglas Automation Company 
St. Louis, Missouri 

INTRODUCTION 

Ours has been called the age of the "knowledge worker." 
What this means is that people, especially people who work 
in high technology industries, have become dramatically 
more important to the success of those industries than ever 
before. Company executives, who have long talked about 
their people as "our most valuable asset", are beginning to 
really believe it. And that is why managers of professional 
people are becoming increasingly concerned about finding 
more effective ways to enhance the performance of these 
highly trained employes. 

It would seem to follow that performance appraisal and 
evaluation is an area loaded with potential payoffs in terms 
of getting people to do their jobs better. So it would seem. 
Letting people know where they stand, identifying improve
ment areas, and giving positive feedback in a straightfor
ward manner are intended to result in upgraded performance. 
The results, however, frequently fall disappointingly short 
of the good intentions. 

The purpose of this paper is to relate the author's experi
ence in attempting to face up to the attendant problems of 
performance appraisal in one data processing organization 
and to share an approach which places the focus on career 
development. 

We would like to say a word about our methodology. 
Much of the data upon which our development efforts are 
based has been informally gathered over a period of time. In 
some instances, it is anecdotal-individuals relating their 
own personal experiences. In other instances, we are drawing 
upon planned feedback sessions where the ideas and opinions 
of managers and supervisors were directly solicited. Through
out the process of research and experimentation we have 
relied heavily upon some of the well documented findings of 
behavioral sciences, and upon our own intuitive ideas about 
what contributes to productive human interactions. What we 
are offering is neither panacea nor an impressive set of 
statistics. Instead, we want to share an evolving process 
that points rather convincingly, from our perspective, to the 
kinds of issues that need to be considered if we are serious 
about helping people realize career goals. 

867 

DISSATISFACTIONS WITH PERFORMANCE 
APPRAISAL 

. The initiative to "do something about" improving our 
performance appraisal process started with the familiar 
dileIpma. It went something like this: "We think we should 
be conducting performance reviews, but what is happening 
often appears to be of questionable value to all concerned." 
Behavior of managers and supervisors indicated ambivalence. 
In many instances it took nothing short of edicts and not-so
veiled threats to insure that the task was getting accom
plished in some manner. Behavior of workers, on the other 
hand, was often defensive in the face of "constructive criti
cism". 

Other dissatisfactions were in evidence. The process itself 
came under fire. The supervisor would fill out a check list 
type of rating form, ranking a number of attributes on a 
scale of "poor" to "excellent". He would then sit down with 
the individual to explain or "justify" the reasons for each 
rating, and then require a signature at the bottom of the form 
to indicate the "discussion" had occurred. The expectation of 
both parties was that the points covered would tend to center 
on the negatives. From the supervisor's point of view, this 
was the way to get at better performance. But as the em
ploye saw it, any identified performance problem might 
represent a road block to a pay raise. To him it sounded 
accusative, no matter how hard the supervisor tried to put it 
in constructive terms, and he tended to become defensive or 
say very little at all. To avoid the discomfort, some super
visors opted to place most ratings on the high end of the scale 
("all my people are good performers"), or on the low end 
("you have to be a super performer to get an excellent from 
me"), or right down the middle ("everyone is about aver
age"). The result, of course, was an impersonal approach that 
elicited little commitment from either party. And ironically, 
the rating approach of the supervisor quite often revealed 
more about his management style than it did about the em
ploye he was evaluating. 

A further difficulty for the supervisor was that he was 
attempting to deal with professional people with an instru
ment that failed to take into account professional issues. 



868 National Computer Conference, 1974 

KNOWLEDGE: 

COMPLETE PICTURE: 

GOOD JUDGMENT: 

To what extent do you demon
strate a knowledge of the 
available techniques, capaci
ties and limitations of your 
job? 
To what extent are you aware 
of the full picture; how does 
what you are doing fit in with 
the total projects? 
To what extent do your de
cisions and actions tend to 
work out well? 

INTERPERSONAL COMPETENCE: How well do you think you 

INITIATIVE: 
PROFESSIONAL CURIOSITY: 

PROFESSIONAL PRIDE: 

GROWTH ORIENTATION: 

TENACITY: 

get along with people with 
whom you work? 
How self-directed are you? 
To what extent do you ap
proach things inquisitively 
and analytically? 
To what extent do you like to 
display what you have done? 
To what extent are you in
terested in growing, changing? 
To what extent are you willing 
to reexamine the subtleties of 
the problem? 

There was no built-in goal setting or career planning. There 
was no built-in stimulus to discuss the job itself or the indi
vidual's ideas or feelings about various aspects of his job. 
Instead, the supervisor found himself in the position of 
"playing God", as Douglas McGregor put it, attempting to 
judge the worth of his fellow man. Some of the criteria for 
rating related more to personality that to performance. Or, 
they had more the flavor of the production line than of 
programming. 

FIRST STEPS 

It appeared that one of the first steps was to tackle the 
rating form itself. Requests were sent out to companies all 
over the country for samples of appraisal tools currently in 
use. We asked the question, "What don't you like about the 
form you are using?" Objections were listed so that problems 
experienced by others might be avoided. One of the frequent 
problems noted was where salary discussion was linked with 
performance appraisal and development planning. We had 
already discovered that the money issue inevitably domi
nates and intefers with other concerns, so we elected to make 
it a separate discussion. 

Since we also wanted to be sure that any performance 
criteria used would relate as concretely as possible to the 
data processing professional, obviously we felt we could not 
rely totally upon the experience of others. So we addressed 
some questions to our own organization. What do top-notch, 
productive programmers have that the lesser performer does 
not have? What are the significant characteristics that would 
help you know if a programmer was a productive professional? 
These questions were raised with a cross-section of various 

experience levels and managerial levels through a series of 
individual interviews. Included in the interviews were pro
grammer trainess, veteran programmers, supervisors and 
managers of programmers, and in-house customers-persons 
who regularly utilized the services of programmers. In each 
case, the responses were recorded in unedited form. Ap
proximately 150 persons were interviewed and all responses 
were compiled to determine commonalities. From this process 
a list of nine criteria emerged (see Figure 1). 

This now reflected the thinking of persons who are pre
sumably best equipped to know the job and who are directly 
involved with programmer performance. 

We now had criteria. What more was needed? From our 
own experience, as well as from evidence reported by others, 
we knew that having valid criteria does not automatically 
eliminate the negative results that frequently grow out of 
appraisal discussions. Because of this, it was clear that serious 
consideration had to be given to the manner in which the 
appraisal process was undertaken. 

We started out with several basic assumptions about 
people. We accepted the theory that people are essentially 
growth oriented and will strive to meet this need in ways 
-tliat-maKesense to--tliem: -TheYafe-inte-fested in Work-and 
want challenge and responsibility. We also ascribed to the 
concept that people will tend to develop commitment to 
problem solutions and growth goals which they have an ac
tive role in defining. 

:MODELS OF INTERACTIO~ 

It occurred to us when we looked at the traditional ap
praisal interview in terms of a model of interaction that the 
model itself violated our own basic assumptions about 
people. In some ways it suggested a Doctor-Patient Model. 
The supervisor (doctor) was in the position of diagnosing the 
employe (patient) and then prescribing a remedy or remedies 
to correct deficiencies. As mentioned earlier, appraisal dis
cussions often centered around the things that are wrong 
(the patient's ills). And of course, the burden of responsibility 
for having good data for diagnosis and the right answer for 
remedies rested with the supervisor. In this role, he could 
understandably assume that the employe often disliked what 
he heard and resisted doing what was "good for him". 

The appraisal interview also tended to take on the charac
teristics of a Judge-Accused Model. It usually involved the 
communication of subjective judgments by a person who 
had a great deal of influence over the fate of the employe. It 
is not difficult to see why he would rise to defend himself. If 
the criticism felt .like judgment, and if that criticism was 
suspected of being biased and incomplete, then the indi
vidual's receptivity to any plan of corrective action was cor
respondingly low. Small wonder that concern about salary 
tended to dominate the appraisal discussion. 

Clearly, a more facilitative model was required. First of all, 
it should take into account the interest and desire of the indi
vidual for growth and development. His ideas, opinions and 
knowledge of the job situation must be considered as having 



Career Development-ANew Approach to Performance Appraisal 869 

validity and value. A second need was for generating more 
commitment. Since commitment comes through full partici
pation, all aspects of the appraisal process should be inter
active, culminating in a mutually agreed upon plan for 
development. And finally, while some attention must be given 
to history, what has occurred on the job, the main thrust 
should be future oriented, building the future on past identi
fied strengths. 

A Systems Model, in which the participants are viewed as 
collaborators, most closely approximates the final design. In 
this model, appraisal and development planning are not 
viewed as something one person does to or for someone else. 
Rather, it emphasizes a dynamic process of joint effort and 
shared responsibility. The focus is on movement, from where 
we are to where we want to be. And the movement is not 
based on one-sided perspective, coersion, or reaction to 
problems. On the contrary, it is goal-directed and proactive. 
A premium is placed upon clear definition of the job situation, 
data gathering, and feedback, action planning, implementa
tion and follow-up. 

The Systems Model concept provided the essential struc
ture which we attempted to incorporate in what we now call 
our Career Development Review System (CDRS). 

FIELD TEST 

To test our idea, an experimental form was introduced in a 
programming department and used for a period of about one 
year. The initial response ,vas mixed. The process repre
sented a radical departure from what people were accustomed 
to and some did not fully trust it. There was resistance to the 
amount of effort required, particularly on the part of the 
supervisor. But as the system recycled (in this case, in six 
months), favorable responses increased, and the quality of 
data generated in the review sessions improved. As people 
began to accept the stated purpose for the discussions and to 
recognize the values associated with the entire process, super
visors became more enthusiastic. At the conclusion of the 
test period, feedback indicated we were on the right track. 
After making revisions based on the trial experience, a presen
tation of the System was made to a top management team. 
It was then introduced to all managers and supervisors 
through a four-hour orientation and training session. In 
order to increase their involvement with the System, we 
asked for any ideas and suggestions they might have to im
prove the review form. Further refinements were made and 
we were ready for implementation. 

APPROACH A~D COl'\TENT OF CDRS 

The collaborative character of the CDRS begins ,vith the 
manner in which the forms are prepar~d. In traditional per
formance reviews, the employe enters the interview empty
handed. With the CDRS both the employe and the super
visor prepare identical forms, each bringing his own written 
comments to the sit-down session. The employe is expected 
to provide major input to insure information flow from both 

directions. The stated purpose of the discussion is to gain 
mutual understanding, to explore and resolve areas of dif
ference, and to generate data for effective decision-making. 
Candor is encouraged in the hope that accusative and de
fensive behavior can be reduced or avoided. 

The first issue addressed in the CDR discussion is the job 
itself. Question 1 asks, "What are your most important re
sponsibilities as you see them? Explain what your job in
volves as fully as you understand it." The question is inten
tionally personalized. What are your job tasks and how do 
you prioritize them? Formulating an answer to this question 
might be the first time an individual actually tries to define 
what he does. Through this process he may discover areas of 
uncertainty or vagueness. It may stimulate a deeper dis
cussion with his supervisor to clarify, reshape or even redesign 
the job. Part of this discussion might also deal with the vital 
question, what is your contribution. In other words, does the 
individual perceive the job as worth doing. And what does he 
feel he brings to the job that is uniquely his. 

Discussion of the job is a rewarding and a demanding exer
cise for the employe and the supervisor. Both parties layout 
their expectations. Points of disagreement become important 
areas for negotiation. In some instances, the employe's way 
of approaching the job may result in his inventing his own 
job description and the basic performance parameters relat
ing to that job. If the supervisor is flexible enough he may 
recognize that while his own views differ to some degree, he is 
willing to modify them for the sake of encouraging creativ
ity. On the other hand, he may discover that the employe 
simply does not have sufficient or accurate data. His per
spective is too narrow. The supervisor then has the ideal 
opportunity to discuss the "big picture". Or, to put it in 
different terms, he is able to perform the vital management 
function of removing obstacles which hinder performance. He 
removes the problem of limited information and enables the 
employe to take a fresh look. In the role of collaborators, both 
are working to solve a common problem. And in so doing, they 
are able to bring their views into harmony with the integrity 
of both still intact. 

The CDRS "blank page" approach to job definition does 
not resolve the issue of performance standards in the sense of 
setting a base line for everyone with a similar job title. It 
provides no ready answer for the data processing professional 
who wants descriptive guidelines on job tasks. What it does do, 
however, is offer a process whereby job tasks are defined for 
each individual situation. The advantage is flexibility. 
Changing requirements through time, as well as differing 
organizational unit and individual needs, can readily be ac
commodated. 

The second question raised in the CDRS form opens the 
door for further obstacle removal. The employe is asked, 
"What portions of the above mentioned job responsibilities 
do you not like?" At first blush, this sounds like opening 
the door to a gripe session. Every position has distasteful 
aspects and no one is totally pleased with everything he has 
to do to get his job done. So why bother? Why stir up the 
inevitable moans and grumbles? 

Let's go back to basic assumptions. We started out by 



870 National Computer Conference, 1974 

affirming that most people are interested in work and want 
challenge and responsibility. If there are dissatisfactions 
about the job, we would then assume they are likely to be 
things that make it impossible or at least very difficult to do 
work at a meaningful level of performance and accomplish
ment. In other words, what sounds like moans and grumbles 
may be more than that. Some common "dislikes" that might 
emerge are such things as unrealistic demands on schedule, 
conflicting orders (too many bosses), red tape, feelings of 
inadequacy due to lack of training. in a specific area, unco
operative fellow workers, heavy demands on elements of the 
job that seem to make little or no real contribution, inade
quate facilities, etc. Are these problems worthwhile to discuss 
or not? Do they have impact on performance and professional 
development or are they trivia? We believe they are part of 
the data gathering/fact finding step essential to a true sys
tems approach. 

To be sure the supervisor does not always have it within 
his power to remove every obstacle impinging on employe 
performance. (And it might be added, neither does the em
ploye expect him to be superperson.) On the other hand, the 
supervisor may be operating with a "skewed deck" if he is 
not frilly appreciative of how the employe perceiveshiso\vIl 
situation, whether that perception is accurate or not. It is 
conceivable that some of the obstacles may go away simply 
by exposing them. For example, what the employe sees as 
unrealistic demands on schedule may be the result of confused 
priorities which his supervisor can help straighten out. In 
some cases, the obstacle might be converted into a challenge 
by raising the question, "How can we overcome this?" Re
ceiving the support and interest of his supervisor may be all 
it takes to help the employe tackle the problem, ,vith the 
potential payoff of higher performance effort. In those cases 
where an obstacle cannot be removed or reduced, the em
polye's needs are satisfied if he knows that his supervisor ,viII 
go to bat for him on other problems that can be handled. 

The next discussion question which the CDR form con
fronts is the concern for growth and development within the 
context of the current job. "What additional responsibilities 
would you like to include with those you now have?" At 
issue here is maximizing the individual's contribution and 
utilizing as fully as possible the talents, skills and abilities 
which he brings to the job. For some it may be the oppor
tunity to "manage" more of their work. For others, it may 
be more interface with outside clients. In any event, it begins 
to focus on the career interests the individual would like to 
pursue. It also begins to suggest the kinds of developmental 
activities and plans appropriate for joint consideration. 

There is an interesting sidelight to the question on addi
tional responsibilities. It has to do with a useful distinction 
between two types of motivation. An employe may be con
sidered motivated if he wants to do a good job, at least good 
enough to stay out of trouble or to be recognized as a "steady 
performer". He manages to remain reasonably safe from 
criticism and, therefore, reasonably safe so far as job security 
is concerned. A second type of motivation is reflected in the 
indi\ridual \vho tries to accomplish beyond safe lev~els. He is a 

risk-taker, who extends himself to produce at a high level 
over a period of time. 

The CDRS attempts to cultivate a climate that reduces the 
concern for safety. If there is clear understanding of the job 
and the nature of the individual's contribution by manage
ment and the employe, serious efforts to remove obstacles to 
performance, along with exploration of ways to enhance his 
worth to himself and the organization, then there is likely to 
be more expressed interest to tackle new tasks and new chal
lenges. Employes will learn to take risks because they will see 
this as the way to goal attainment and career satisfaction. 

Questions four and five of the CDRS form turn attention to 
accomplishments and feelings about past performance. 
"What job related things have you done well?" and "What 
job related things have you done least well?" By this point 
in the development review discussion, a good foundation has 
been established for having an open exchange on identifiable 
strengths and weaknesses in the way job responsibilities have 
been carried out. It is important to note, however, that this 
"backward look" is not designed to produce a "grade" or to 
assign a rating. Rather, it is to be viewed as part of data
gathering which leads to action planning. (When we present 

--- ---the CDRS to our management people·inti-iiining sessions-, we .-
emphasize this by referring to the entire CDRS form as a 
"worksheet" to assist with career planning and goal setting.) 

Example of the kinds of questions that have grown out of 
these areas include the following: Which job related activities 
have given a special sense of accomplishment? To what extent 
was the good performance due to skills and abilities, and to 
what extent was it due to determination and hard work? In 
the case of the job related things done least well, what were 
the expectations that were not met? Are these expectations 
realistic, or should efforts be concentrated in areas more ap
propriate to the individual's interests and abilities? What 
involvements are considered important that are not listed 
among the job responsibilities? If so, should they be? 

Reference has already been made to the list of criteria 
which was developed to aid in the assessment of the way the 
data processing professional operates on a day-to-day basis. 
The CDRS form asks for commentary on each item. What, for 
example, is the behavioral evidence that demonstrates his 
interpersonal competence? Or, in what ways do his decisions 
indicate the presenccor lack of good judgment? 

It might be argued that the list of criteria are subjective 
factors for which there are no clearly definitive standards. 
The authors agree. For this reason, no numerical or adjectival 
check list appears in the form. At the same time, we believe 
the criteria point to important areas of behavior which are 
observable and which do impact work effectiveness and pro
fessionalism. Weare asking the individual to look at what he 
has accomplished and to think about what has helped with 
that accomplishment. For example, technical skills may be in 
place, but a programmer's ability to contribute is dependent 
in a significant way upon his use of interpersonal skills, initia
tive, the exercise of good judgment, etc. Conversely, we are 
asking the individual to assess those things that have blocked 
~_l-.:_;J~_~"]l-.:~ ___ l" ___ : ____ ' f't" " ________ .lL _ _____ ,_, , __ 
VI 11111UI:;1CU 111., J!lVle:::>NUUUl elleClJlVelle::;::; aIlU lJU ljUl1l:S1uer HUW 



Career Development-A New Approach to Performance Appraisal 871 

and where he wants to grow if he is to move forward in the 
attainment of his career goals. What are his development 
needs? What can he do over a period of time that will satisfy 
those needs? 

Action planning is the subject of the final section of the 
CDRS form. The question introducing this section is de
liberately phrased, "What do you plan to do to build on your 
strengths, enhance your skills or increase your effective
ness?" Emphasis, obviously, is on making the most of vvhat 
the individual has going for him. Here we concur with man
agement consultant Peter Drucker, who advocates utilizing a 
person's performance strengths and neutralizing his weak
nesses. What has he done well? What, therefore, is he likely 
to do well? And, what does he have to learn to be able to get 
full benefit from his strength? Again, we encourage proaction 
instead of reaction. 

The "what" question is asking for clearly defined goals and 
objectives. This means they should be specific, measurable, 
realistic items. All the preceding discussion concerning job 
responsibilities, obstacles to good performance, the indi
vidual's contribution, his interests, strengths, weaknesses, 
etc., has been a process of data gathering and feedback. 
With this shared information the employe and his supervisor 
should be in a position to zero in on development objectives. 
They may include such things as skill training, educational 
needs, projects designed for growth and exposure, special 
assignments, transfer to a new area, or anything else that 
would address specific growth needs. To be avoided are the 
"to get better in every way" kind of statements which sound 
good but cannot ,possibly be carried out. The form aids in 
guiding the planning discussion toward specificity by asking 
what the individual is going to do and when. A date is then 
established for a progress review at the end of a period that is 
appropriate for the particular situation. 

BY-PRODUCTS 

The CDRS has been in use in our organization for less than 
a year, so it is still early to make a conclusive analysis. We 
have, however, experienced some by-products of the system 
which we feel validate the process and strongly indicate we 
are moving in the right direction. For example, there is cur
rentlya request to expand the use of some version of the CDR 
system to hourly employes. While the content may be modi
fied, the elements of self-appraisal, collaborative problem
solving and action planning are things that have elicited 
favorable response and will be carried over. The CDRS has 
stimulated regular career development planning discussions 
between individual employes and their supervisors that were 
previously occurring sporadically, or in some cases, not at all. 
We believe that while management has some responsibility 
for stimulating career development, it is a shared responsi
bility. The individual must take an active role. The CDRS 
encourages the idea of joint ownership. Copies of action plans 

sent to our Human Resource Development Staff have an 
added payoff; they serve as a potentially important source 
of data for identifying development needs common to groups 
of people and, therefore, suggest training and development 
programs that might be offered in-house. It is our suspicion, 
though undocumented, that the CDRS is helping our manag
ers do a better job of working with their people. But we 
also readily acknowledge that it has highlighted the need 
for additional training in the skills of coaching and counsel
ing. This need was anticipated to the extent that a four-hour 
training session was a requirement for all managers and super
visors prior to implementation. But this provided primarily 
an orientation with minimal skill training. A full-blovvn coach
ing and counseling program is now in the planning stages. 

SUMMARY 

Changing conditions in business and society are demanding 
that we develop creative ways to utilize and challenge our 
people. We believe that redirecting the focus of traditional 
performance appraisal is a step in the right direction. The 
process evolving through our Career Development Review 
System recognizes several key concerns that must be ad
dressed: 

1. Individual responsibility for career development must 
be encouraged in ways that make sense to him/her. 

2. More attention needs to be given to building on 
strengths and uniquenesses as opposed to traditional 
preoccupation with overcoming weaknesses. 

3. Reaching goals and attaining career satisfaction is 
maximized when there is a climate which encourages 
risk-taking behavior. 

We'd not like to pretend that the CDRS is the full answer 
to any of these. It is not. We know that further refinements 
are needed. Some of these will come about as we gain more 
experience. But there is also the need for continuing ex
change of ideas and experiences with others· in the field. 

BIBLIOGRAPHY 

Addison-Wesley Series on Organization Development, Addison-Wesley 
Publishing Company, 1969. 

Drucker, Peter F., The Effective Executive, Harper and Row, 1967. 
Brynildsen, R. Douglas and Marian A. Kremel, "The Career Develop

ment Workshop," Paper Presented for NTL Conference on New Tech
nology in Organization Development, 1972. 

McGregor, Douglas, "An Uneasy Look at Performance Appraisal," 
Harvard Business Review, May-June 1957. 

Meyer, H. H., E. Kay, and J. R. P. French, Jr., "Split Roles in Per
formance Appraisal," Harvard Business Review, January-February 
1965. 

Thompson, Paul H. and Gene W. Dalton, "Performance Appraisal: 
Managers Beware," Harvard Business Review, January-February 
1970. 





A systems approach to career development-Report of two surveys 

by PAUL D. OYER 

U.s. Bureau of the Census 
Suitland, Maryland 

and 
DOROTHY L. RAY 

General Research Corporation 
McLean, Virginia 

I~TRODUCTION 

The so-called profession of computer data processing has 
barely reached adolescence. Like the electrical engineering 
profession of 25 years ago we have no standards for describing 
our job tasks (what we do), nor for defining job skills needed 
(how we do it), nor for defining educational needs (what 
we need to know), nor for estimating time and cost for a 
complete job (how long it takes and level of skills/knowledge 
needed). 

As a consequence we are seriously hampered in achieve
ment of cost effective use of our computers and even of our 
people's own time and energy!1 The Practicing Computer 
professional does not know where to obtain guidelines on 
what to do and to learn to assure continuing growth and 
usefulness to his chosen profession and to his employer.2,3 
Employers do not know how to define realistic expectations 
of their computer professionals,4 nor what a professional 
should know or achieve for advancement to the next level 
in his career, nor even what a reasonable career structure 
should be for computer professionals. 5 

Many published works have identified all these problems. 6 

Some have even made a little progress toward some potential 
solutions. 7,s In the educational arena, the ACM has published 
model curricula for college education in computer science 
and information analysis/systems design in CURRICULUM 
'68 and CURRICULUM '72.9,10 These have proven useful 
for certain entry level jobs in the computer field, and even 
provide a sound foundation for productivity and advance
ment. But advancement to what?l1 What is the career 
path?12 

What can we do for the practicing computer professional?13 
Can't ,ve provide him with a career structure and continuing 
career education guidelines?14 

To this end, in January 1973, a Special Interest Committee 
on Career Development was formed by the Washington, 
D. C. Chapter of ACM with an assist from ACPA.* 

* The group was merged in October 1973 with the Special Interest Group 
on Career Development of the Federal ADP Users Group (FADPUG). 

873 

The objectives of this committee are to: 

1. Collect and disseminate information on Career 
Development for Computer Personnel (including 
surveys, bibliographies, etc.). 

2. Identify and propose a model Career Structure and 
Career Guidelines for Computer Personnel. 

3. Identify and Propose Model Job Descriptions for 
the various levels of the Career Structure. 

4. Try to Identify and Propose a Model for Educational, 
Skill and Achievement Criteria Needed for Effective 
Performance at each Career Level. 

5. Identify courses and curricular models needed for 
continuing career development and determine where 
they may be studied-college, in-house or elsewhere. 

6. Determine status and usefulness of certification, 
testing and licensing of computer professionals. 

7. Submit models as proposed above, to panels of 
managers and professionals, computer societies, gov
ernment organizations, employers, college and stand
ards groups for evaluation and possible validation and 
inclusion in industry-wide standards. 

Some progress has been made toward objectives 1, 2, 5, 
and 6. In order to achieve any progress at all on objective 
4 and to form a more solid base of data for enhanced progress 
on objectives 1, 2, 5 and 6-it was decided that surveys 
were needed .While some interesting survey results have 
been reported, it was deemed essential to identify those 
most relevant to our stated objectives.15 ,16 It soon became 
evident that we must design and conduct some surveys of 
our own in order to get data which we could correlate 
directly to the objectives of our systems approach to career 
development. 17 

The first two surveys of an ongoing questionnaire survey 
program have been designed, tested and have yielded 
valuable data. They have been analyzed sufficiently to 
report on preliminary results below. We have been most 
pleased that both professionals and employers have been 
so cooperative in all our data gathering efforts. ~lany people 
seem to be interested in participating in an effort to establish 



874 National Computer Conference, 1974 

Appllcatlon/f:n.,lronlllent. 

1. eo.puter ~.ajo:nl 

Se'CftCOc los1nesa ~ 

Cgyemaent 11% 

Other lU 

p~r"'''~6% 
Syat.eae ~~ 

&~e.ent Wt.' 

11. r.armSl'lIIent/ Bllslnl'$1S Majora 

P""""-"'~~~ 
S,.tellS J55' 

J(anq;eRnt ,.'" 

III. People)'.a.jora 

Ill. Peoplel'!&Jora 

~::c'" tJ]f. I 
Conrueat 7% 

Other l"~ 
. _ ...... _-- .. __ ... ~ ... ~ ...... --

o 10 20 )0 40 50 60 70 

Prq;ra-"'~)C 
$fate.. JIl' 

.. tta~=e.llt. 4'" ___ _ 

o 10 20 )0 40 50 

r.:n:.\ of People 'ercent of People 

Exhibit 1 

our field as a true profession and to get improved performance 
from our computers and our people. 

SUMMARY OF SURVEYS 

Two extensive surveys have been conducted: 

(1) A. survey (called Survey 1) of the formal and con
tinuing educational qualifications of 509 persons 
attending a number of professional meetings of 
computer personnel. The meetings were sponsored 
by ACM, ACP A, AFIPS and a government organiza
tion. The survey identified the major disciplines 
studied in college, and the number of formal credits 
and short courses taken in six (broad) categories of 
knowledge. It sought to identify the types of sources 
of computer skills, and the percentages of job-related 
skills derived from each source-type. Several interest
ing results have been obtained. 

(2) A survey (called Survey 2) of identification of educa
tional needs of computer personnel as viewed by 
their employers. A total of 103 organizations have 
responded so far on behalf of 10,060 computer person
nel in five major job classes. The organizations 
represent small to medium non-government installa
tions and small to large government installations. 
This survey requested the employer's view of educa
tion needed for the job in areas of knowledge treated 
in 14 graduate courses and an opinion of the quality 
of their EDP employees. 

Both surveys were conducted under sponsorship of the 
SIC/CD of Washington, D. C. Chapter ACM with an 
assist from ACP A. Survey 2 was distributed to government 
organizations under the auspices of the Federal ADP Users 
Group (FADPUG). 

THE SYSTEMS APPROACH 

Results from these and other surveys and data from other 
sources will be constantly fed into the Career Structure effort 
of Nan Ayer's grouplS into the Certification and Testing 
Research of David Skeen's group19 and to the ICCP, into 
Bob Henry's MIS Research Center,20 into Bob Meyer's 
education source file, and to any other groups who want 
to unite with us to work toward our professional and career 
development objectives. 

Additional surveys may be needed to get more detailed 
data in areas already covered and to gather data in new 
areas. Weare prepared to do so, as needed. We know we 
will need to acquire task and job analysis data, but under
stand AFIPS has a publication coming out on this, based 

-on -Ray Berger's- efforts . 
We welcome help from, exchange of data and cooperation 

with, any person or group who want to work toward establish
ment of professional standards. 

SURVEY 1 

Educational profiles 

A survey called "EDP EDUCATION SURVEY" was 
designed to gather a profile on formal and continuing educa
tional backgrounds on a sizable sample of computer pro
fessionals. What better way to select professionals than 
choosing attendees at professional meetings! 

So 509 EDP people filled out one-page questionnaires 
at five meetings-sponsored by AFIPS, ACM, ACP A, and 
a large government agency-in N ew York and Washington, 
D.C. 

Most of the results have been tabulated and some of them 
are ready to report (although statistical tests of significance 
are yet to be computed). Several interesting factors were 
covered, and can lend some insight into the knowledge 
level of practicing computer professionals today. 

Of the 509 professional subjects, 84 percent have bachelors 
degrees, 47 percent have done postgraduate work, 36 percent 
have masters degrees, and 6 percent have doctorates. 

As to work environment, 47 percent are in business data 
T\"'{\~OQQ;ncr ')0 1'"l£l-r.noY'd- ;n ,-,!(liAntif1n 7 no-rnard- ;n: nrl .... nnf;nn 
,t' ..... ....,'V ................ ,L,L,Lb' -v y"-'..LVV..L..LV ~,L,L o...)V,L ......... ..LV,4.,L,LV, • y ....... ..L'VVA..A.V ~.l..l. v'\A.U\.IUV.l.VJ..l. 

and 17 percent other. Thirty-two percent are programmers, 
31 percent are in systems, 26 percent are managers, and 
11 percent other. 

For a sample of 128 attendees at the first National Com
puter Conference in New York in June 1973, 40 percent of 
the attendees responding were from New York, 22 percent 
from the greater Washington, D. C. area and 38 percent 
elsewhere. Thirty-three percent were managers, 23 percent 



A Systems Approach to Career Development-Report of Two Surveys 875 

programmers, 16 percent educators, and 25 percent systems 
people. 

Of the Educators, 19 percent had doctorates, 57 percent 
had masters and 73 percent came from out of town. Thirty
seven percent of the managers had masters degrees as 
contrasted to 24 percent of the programmers. Fifty-three 
percent of the managers were in a business DP environment 
and 21 percent were in government. Over 90 percent of all 
government attendees were managers and of the business DP 
attendees, 45 percent were managers. Of the Scientific DP at
tendees, 50 percent were programmers. 

Of the entire survey population of 509, only 8 percent 
hold the CDP (Certificate in Data Processing) and two 
percent wondered what it is! Forty percent would be in
terested in getting a CDP. As to college majors, 23 percent 
were mathematics, 14 percent computer science (or related), 
12 percent business or economics, 10 percent physics or engi
neering, 7 percent management majors, 6 percent social sci
ences, 3 percent each in psychology, education, philosophy, 
and statistics plus 16 percent other majors. 

Skills needed in technical and peopleware areas 

This survey requested credit hours and short courses 
taken in 6 major knowledge and skill areas: 

1. Computers f 
2. Systems Technical 
3. Models 
4. Organizations f 
5. People Peopleware 
6. Social & Economic Impact 

The first three areas are traditionally recognized as 
essential knowledge areas for a computer professional. 
These are areas we all struggle in to try to keep pace with 
the state-of-the-art. But what do we know in the last three 
essential areas? Apparently "very little" for most of us. 
The results of this survey by SIC/CD of 45 diversified 
computer people at a large government bureau disclosed 
that the average number of college credits in the three techni
cal areas (accumulative) was 20 credit hours (semester) as 
contrasted to only six hours in the "Peopleware" areas. 
Most of those credits were received by the most recent 
college graduates. 

An ACM/NBS technical symposium 

A special analysis was performed on 24~ survey forms 
completed by attendees at the 12th Annual One-Day Tech
nical Symposium of the Washington, D. C. Chapter ACM 
held at the National Bureau of Standards on June 21, 1973. 

Significant results noted: (See Exhibit 1) 

"Computer" majors currently work in scientific (in
cluding Government) environments 41 percent-more than 
all other majors-25 percent. 

Management and business majors tend to work in 
Business Data Processing-66 percent. 

More computer majors-40 percent-are currently 
engaged in systems jobs than other majors. Computer 
majors have more advanced degrees-79 percent masters 
and 17 percent doctorates. 

More "people" majors (including Psychology, Sociology, 
Political Science, Anthropology, Personnel, Training, and 
Philosophy) are currently engaged in programming-23 
percent-than are others. 
Other results worth noting: 

1. A high percentage 47 percent of non-mathematicians 
are interested in getting a CDP. Only 14 percent of 
math majors are interested. 

2. Most people holding a CDP already have a degree. 
3. Four times as many CDP holders are in systems as 

in programming. 
4. Almost all those who studied management, are in 

management. Most EDP managers did not study 
formal management courses in college. 

5. Of attendees with Doctoral degrees, 40 percent are in 
management, 28 percen't in systems, 20 percent in 
education. 60 percent of the doctors are in scientific 
applications, only 26 percent in business. 

6. Of attendees with no degrees, 68 percent are in 
business applications, only 29 percent are in scientific. 

7. 101 have math majors, 37 Computer Science, 30 
Physics, 22 Business, 20 EE, 16 English, 16 Chern., 
17 Management, 17 MIS, 17 Econ., 13 Social Studies, 
12 Educ., 9 Philosophy, 7 Psychs., 7 Statistics, 4 
Anthropology, etc. 

Other Highlights: 

Computer majors (at least those who attended this 
computer symposium and filled out the Survey Form) 
have a significantly high percentage of advanced degrees. 

16 percent have Doctorates 
83 percent have Masters Degrees 

For Mgt./Bus. Majors: 
57 percent have Masters but only 2 percent have 
completed Doctor's degrees (although 22 percent have 
have studied beyond the master's level). 

For "People" Majors: 
51 percent have Masters degrees and 5 percent have 
doctorates (but only 1272 percent have pursued for
mal study beyond the master's level). 

Of the 245 respondents, 51 (or 21 %) inquired about getting 
a copy of the results of the attendees' Education Profiles. 

Those who were curious enough to inquire about attendee 
EDP'ers Education backgrounds, have better formal educa
tions than the average symposium attendee! 

Inquirers 
Non-inquirers 

Masters 
Degree 

35 percent 
28 percent 

Doctorates 

11 percent 
7 percent 



876 National Computer Conference, 1974 

YEARS OF EDP EXPERIENCE 

30 

24% 
Q) 

P. 
20% 0 20 Q) n 18% Po. 

""' n 0 

+-> 13% 
!':: 
Q) 
u 10 I 9% M 
Q) I 7% Po. 

o 
:5 3 4--6 7-9 10-12 

Exhibit 2 

This may mean they are also more curious about pursuit 
of knowledge and persist until degree and other goals are 
achieved. 

Of those with management majors in MIS/EDP, 100 
percent were inquirers. Of management -majors in iion~EDP
subjects, only 4 percent were inquirers! 

Percentage of "Inquirers" for various majors: 

Major 

MIS Mgt. 
Engineering Science 
Statistics 
Biology 
Accounting 
Physics 
Business 
Management 
Economics 
MBA Degrees 

Percent 
Inquired 

100 percent 
75 percent 
42 percent 
42 percent 
40 percent 
35 percent 
32 percent 

4 percent 
o percent 
o percent 

A higher percentage of systems people (25 percent) are 
curious about EDP'ers educational profiles than are pro
grammers (13 percent) or even practicing managers (19 
percent). _ 

Most attendees (57 percent) have less than 10 years of 
EDP experience. Nine percent have over 18 years experience 
and 13 percent have worked in EDP less than four years. 
(See Exhibit 2) 

A detailed analysis was made of profiles of 70 attendees 
at an ACP A professional seminar. Most attendees (60 percent) 
thought they acquired their EDP skills on the job or through 
experience rather than from formal education or training. 
(See Exhibit 3) Apparently the educators and trainers 
still have a big job ahead of them! 

Some special comments received from the total population 
of 509 respondents are worthy of special mention. They 
would like to see: 

More university courses in technical and peopleware 
areas. 

More in-house courses of an education (not merely 
training) nature. 

More short courses in these critical areas by universities 
and others. 

More career planning and guidance by employers. 
More guidelines by professional associations for self

guidance. 
New Continuing Education Plans for the Computer 

Professional. 
Establishment of Professional Tests and other Achieve

ment Criteria for promotion to various levels. 

SURVEY 2 

The questionnaire for EDP managers 

A survey called "CAREER DEVELOP:;\lENT RE
SEARCH SURVEY (For EDP Organizations)" is being 
conducted. Preliminary findings are reported here. 

Addressees of the questionnaire were told-"Why should 
_ you help_thisprojeet?Itspurposes are: (1)toidentifyneeds 
for specific skills and knowledge at various levels of the EDP 
field, (2) to propose a workable multi-level EDP Career 
Structure (Career - paths, ladders, etc.), (3) to translate 
skills and knowledge needed into specific requirements in 
courses, experience, and achievement criteria for each EDP 
career leveL" 

Key EDP ~Ianagers were asked to respond on behalf 
of their organizations and to provide their personal view of 
educational needs of computer personnel on the job for 
five different job classes. 

Respondents from 56 government installations reported 
for 6934 EDP employees and from 47 non-government 
installations for 3129 EDP employees. The respondents 
individually average 12.7 years of EDP experience with a 
range of two to 36 years. 

Source of EDP knowledge/skills: 

1_3

_

5

% ----' 

Experience 

25% On-job training 

! 20% Formal education 

In-house training 

Other short courses 

Other (reading, discussion, etc.) 
10 20 30 40 50 

Per Cent 

Exhibit 3 



A Systems Approach to Career Development-Report of Two Surveys 877 

A non-government sample 

A randomly selected sample of 20 non-government 
installations was analyzed in depth. These respondents 
themselves were all managers and by background 45 percent 
were Business majors, 25 percent mathematics majors, 
15 percent EDP majors, and 15 percent other. Their pro
cessing environments were 78 percent Business, 16 percent 
Scientific, and 6 percent other. Their organizations were 
35 percent businesses, 5 percent Scientific. 30 percent 
service bureaus, 20 percent non-profit, 5 percent computer 
manufacturer and 5 percent software consulting. 

Of the 1539 EDP people they responded for, 11 percent 
were Supervisors, 11 percent Systems personnel, 16 percent 
Programmers, 48 percent Operators, 12 percent Support 
and 2 percent other. The respondents representing 63 
percent of the Supervisors state that Supervisors are "pro
fessionals," 61 percent for Systems professionals, 58 percent 
for programmers as professionals, and 10 percent for Op
erators as professionals. 

Detailed findings 

Some of the questions from the survey are repeated here 
with the percent of responses shown for affirmative answers 
to that specific item. 

In question four below, 68 percent of the respondees say 
that they are short of well-qualified EDP supervisors and 
63 percent for system personnel. Similarly many EDP 
personnel are currently under-qualified for their jobs. There 
seems to be no oversupply of systems analysts and no 
over-qualified supervisors or system people. On the other 
hand, over one-quarter of the installations have too many 
programmers or some over-qualified programmers with 
no career step to move up to. 
4. In your observation or opinion-(Check any item which 

applies) 

Super- Sys- Program- Opera-
visory terns ming tions 

a. Which positions have 
the shortest supply of 
well-qualified people? 68 

b. Which ones are cur
rently filled by some 
under-qualified 
persons? 42 

c. Which positions have 
an over-supply of 
well-qualified 
personnel? 16 

d. Which ones have 
some spots filled cur
rently by over-
qualified persons? 0 

Percent 

63 21 10 

32 21 32 

o 26 10 

o 26 21 

Question 4. 

a. Short supply of well-qualified people 

Programming 1 21% 7' 
:Z/25%Z=' 
L---

20. 

U Non-Government 

k::::J Government 

Operations ltzl,OL _____ .. 
o 10 20 30 40 - 50 60 70 

Per Cent 

b. Position filled by under-qualified persons 

Supervisory I--...--~........,..-,-__ .....J 

Systems 

Programming h~~---l'-r-"7I 

Operations 

so 
Per Cent 

d. Position filled by over-qualified persons 

Supervisory ~% 
20% 

Systems 0% 

20% 
o 10 20 ~-40 SO 

Exhibit 4 

n Non-Government 

IZI Government 

60 70 

o Non-Government o Government 

60 70 



878 National Computer Conference, 1974 

In question five below, preliminary analysis shows that 
items over 40 percent and below 10 percent are significant. 
Thus EDP supervisors are short on formal management 
education, human relations, and ability to communicate. 
Programmers need to learn more about human relations 
and numerous operators do not have enough technical 
knowledge to do an adequate job. 
5. Where EDP personnel are not adequately qualified for 

their present or their next position, which areas do you 
believe are their greatest shortcomings? 

Super- Sys- Program- Opera-
visory terns ming tions 

Percent 

Formal Education 45 20 10 40 
Technical Knowledge 15 15 30 75 
State-of-the-art 

knowhow 10 35 10 20 
Knowledge of 

_applicatioD,s ___ 15 30 25 40 
Human Relations 65 25 45 25 
Ability to Follow 

Through 35 30 25 30 
Ability to Communicate 50 45 35 25 
Ability to Lead 35 10 20 25 
Creativity and 

Imagination 30 15 25 25 
Social Responsibility 15 5 15 15 

In question six, percentages below 10 percent and above 
50 percent are significant. Thus programmers and operators 
should sharpen their technical knowledge and improve 
their job skills. The "myselfs," on the other hand, already 
know "all about" cooperation. 
6. What do you feel should be some prime objectives of 

additional training for EDP Personnel? Check as many 
as apply for the various positions. 

Myself 

OBJECTIVE 

Improve job skills 32 

Broaden background knowledge 42 

Increase technical knowledge 27 

Improve ability to relate to others 27 

Keep up with latest technology 63 

Learn better cooperation 10 

Refresh old skills/lu'1owledge 32 

Practice Leadership Skills 53 

In question seven below, respondents listed their recom
mendations as to which key senior personnel should have 
the knowledge from 14 specific graduate courses, with a 
rating of Essential, Desirable and Not Needed. Using a 
weight of 10 for E, 5 for D, and zero for N, a rating on the 
scale of 0 to 10 was calculated for each item. Scores show 
that 11 of 14 courses are regarded as critical knowledge for 
senior systems professionals (scores of 6 or over). 
7. In 1972 the ACM Curriculum Committee on Computer 

Education for Management (under a grant from the 
National Science Foundation), recommended a graduate 
curriculum of 14 courses they identified as needed by 
EDP Systems and Supervisory personnel. Please indicate 
which of these courses you regard as Essential, Desirable, 
or Not Needed by certain key EDP personnel. Fill in 
as many as apply with E, D, or N. 

My- Super- Sys-
Courses self visory terns 

The EDP Systems Life Cycle 6.8 6.8 6.1 
Computer Systems 7 6.9 7.7 

___ File and Communication Systems 5 5 8._6 
Software Design 5 4.2 8.2 
Modeling and Operations 

Analysis 6 4.6 5.6 
Information Analysis 5.7 5.3 7.1 
Systems Design 6.7 6.7 9.7 
Systems Development Projects 

& Case Studies 5.4 6.1 8.0 
Information Structures 5.6 5.0 6.9 
Functions of an Organization 7.2 7.7 6.8 
Information Systems for Plan-

ning & Decision Making 7.5 6.5 6 
Human and Organizational 

Behavior 8.1 9.0 6.5 
Administration of Information 

Systems 8.1 8.0 5.3 
Social Implications of Informa-

tion Systems 6.1 5.3 5 

Superv's. Systems Prog's. Oper's. 

Percent 

32 54 63 74 

58 48 42 37 

26 54 63 69 

64 69 47 26 

48 63 26 16 

42 21 53 31 

20 27 20 5 

69 26 5 10 



A Systems Approach to Career Development-Report of Two Surveys 879 

Note that this sample covers smaller and less sophisticated 
computer installations than Bob Henry's.20 Yet the critical 
needs (skills useful) overlap in several important areas. 

A GOVERNMENT SAMPLE 

A randomly selected sample of 20 government EDP 
installations was also analyzed and compared with the non
government sample. These respondents included managers, 
computer specialists and analysts. Forty per cent hold 
masters degrees, 20 percent majored in engineering, and 
13 percent each in math, management, English, law, and 
education. Their data processing environments are 66 
percent business-type government processing, 17 percent 
scientific and 17 percent other. 

Of the 2096 EDP people they responded for, 8 percent 
are supervisors, 13 percent systems, 31 percent programmers, 
29 percent operators, 13 percent support, and 6 percent 
other. Respondents representing 82 percent of the super
visors regard their EDP supervisors as "professionals," 
92 percent for systems professionals, 75 percent for pro
grammers as professionals, and 0 percent for operators as 
professionals. 

MORE COMPARISONS 

Some significant differences between the government and 
~on-government samples analyzed and compared for Survey 
2 are shown in Exhibit 4. 

In Question 4a, note that government has the greatest 
shortage of well-qualified operators while non-government 
has the largest shortage of well-qualified supervisors and 
systems personnel. Question 4b reveals that 50 percent of 
systems personnel in government are under-qualified. In 
Question 4d, note that 20 percent of both government 
supervisors and systems people are over-qualified and 
apparently don't have sufficient promotional opportunities 
or other adequate challenges. 

CONCLUSION AND FURTHER SURVEYS 

Further conclusions could be made by interpretation of 
the data reported in the two surveys above, but we think 
the reader may wish to make his own interpretations from, 
the basic data. Ongoing surveys will be continued by our 
Career Development group. We welcome assistance from, 
and exchange of data with, anyone else interested in promot
ing and measuring the degree of professionalism in our 
field. 

We wouid iike to conclude that all levels of computer 
professionals, including operators, must be updated and 

upgraded to improve the effective use of our computers 
and of our people and of their time and talents. 

REFERENCES 

1. Donati, Frank R., "Computers and Catastrophies," Data MGMT, 
December, 1971. Gives a suggested methodology for selecting pro
grammers who will become assets to the organization. The plan is 
called SCOPSE. Small Computer Oriented Programmer Selection 
and Evaluation and encompasses the criteria of programming 
characteristics, differentiating between ability and achievement, 
specific abilities and skills, interest, and performance. 

2. Brandon, Dick, "Better Systems Analysts a Must," COMPWRLD, 
September 13, 1972. The author believes that a large number of 
system analysts are unqualified and cites some of the factors which 
are contributing to this situation. 

3. Armer, Paul, "Obsolescence and Self-Assessment," CPR PROC 72. 
This keynote address to the tenth annual Personnel Research Con
ference explores the problem of obsolescence among computer 
people and suggests some things which might be done about it. 

4. Lassiter, Herbert B., "Improving the Productivity of Systems 
Analysts and Programmers," DATA MGMT, September 1972. 
Examines the system development process and the resulting task 
lists for analysts and programmers. In this context, the factors af
fecting productivity are listed and some tools for improving pro
ductivity are suggested. 

5. Bride, Edward J., "DP Position Titles 'Chaotic,' " COMPWRLD. 
September 13, 1972. Highlights of a report presented to the ACPA 
are given and stress the need for standardization of position titles 
before professional status will be granted to programmers and 
analysts. 

6. Adelson, Richard, "Mediocrity in EDP?" DATA MGMT, August 
1973. Offers several suggestions for the elimination of mediocrity 
and the establishment of an exceptional level of EDP personnel. 

7. Myers, Dr. M. Scott. "The Human Factor in Management Sys
tems," J. SYS MGMT, 22:10-5, November 1971. Job enrichment 
is discussed as the key to getting the most out of people. Several 
suggestions are offered for improving the chances of success of 
management systems. 

8. "A Study of Position Titles In The Computer Systems Field," 
NTIS, JUly 1972. Reviews various existing and historical systems of 
titling, and considers the pros and cons of defining a structure of 
position titles by induction from common usage. A formalization of 
position titles in the computer field is presented, defining the nature 
and function of these titles. 

9. "Curriculum 68," Communications of the ACM, March 1968 (Wm .. 
Atchison, Chairman). This is the heavily copied model curriculum in 
computer science. 

10. Ashenhurst, R. L., et al., "Curriculum Recommendations for 
Graduate Professional Programs in Information Systems," Com
munications of the ACM, May 1972. This is the "CURRICULUM 
72" for Information Analysts and Systems Designers. 

11. Gluckson, Fred A. and Michael G. K. Flannery, "Development of 
Computing Professionals," CPR PROC 72. Explores the employer's 
responsibility in developing the computing professional and the 
steps taken by the National Bank of Detroit in this direction. 
Describes the in-house training program in terms of resources, 
facilities, budget, etc., the development of a training program guide, 
and the administration of the overall program. 

12. Cohen, Herbert A., "Planning and Managing Your Career," 
DATA MGMT September 1972. (Conf. issue). Management com
petence and career mobility depends upon three major factors: the 
development of new skills and strategies; a refined ability to read 
complex organizational behavior and the attainment of results. 

13. Kaye, Donaid, "MIS Career Paths," CPR PROC, 72. This research 
study attempts to determine what career paths are open in cor-



880 National Computer Conference, 1974 

porate life for a Director of MIS. Three case studies are given and 
seven conclusions drawn relative to the prospects for advancement 
of a Director of MIS. 

14. Kirkpatrick, Curtis B., "Staffing for Computers In The Federal 
Government," DATA MGMT, November 1970. Structured job 
requirements established by the government for the selection of DP 
personnel are of great help in selecting qualified candidates. 

15. Dickmann, Robert A., "1971 AFIPS Information Processing Per
sonnel Survey," CPR PROC. 72. Charts show the distribution of 
EDP personnel by age, race, sex; highest degree, source of training, 
years of experience, number of years with present organization, 
number of employers worked for, number of persons supervised, and 
salary range. 

16. Gilchrist, Bruce and Richard W. Weber, "Employment of Trained 
Computer Personnel-A Quantitative Survey," PROC SJCC, 1972. 
Summarizes the employment picture for computer personnel as it 
relates to computer users. Data for government and non-govern
ment users and equipment manufacturers are compared. 

17. Andrews, Wally C. and Les J. Santag, "Career Development Re
view System; A New Approach To Performance Appraisal," NCC 
'74 Proceedings, Vol. 43. 

18. Ayer, Nancy L., "Step-By-Step: A Career Structure For Systematic 
EDP Growth," NCC '74 Proceedings, Vol. 43. 

19. Skeen, David R., "EDP Certification ... Is It Necessary?" NCC 
'74 Proceedings, Vol. 43. 

20. Henry, Robert M., "Skills Possessed and Skills Useful for MIS 
Practitioners: A Research Report," NCC '74 Proceedings, Vol. 43. 

BIBLIOGRAPHY 

1. Canning, Richard, "Career Programs in DP," EDP Analyzer 
August 197]. 

2. Dickmann, Robert A., Personnel Implications for Business DP, 
Wiley, 1971. 

3. Fritz, W. Barkley, "Computer System Standards for a Large 
Organization," DAT.4MATION, February, 1960. 

4. Kaye, Donald, "Career Paths in Systems and DP," J. SYS. MGMT, 
June 1971. 

5. Kapur, Gopal K., "Sharpen Your Systems Staff Through In-House 
Training," COMPUTER DECISIONS, March 1971. 

6. Oyer, Paul D., "Comprehensive In-House Training," Modern 
Data, 1971. 

7. Oyer, Paul D., "Training Business Systems Analysts in Information 
Systems Design: Use and Evaluation," ACM SIGCPR PROC, 1969. 

8. Teichroew, Daniel (Ed.), "Education Related to the Use of Com
puters in Organizations," ACM COMMS, September 1971. 

9. Weinberg, Gerald M., The Psychology of Computer Programming, 
Van~ostrand Reinhold Co. 1971. 



EDP Certification-Is it necessary? 

by DAVID R. SKEEN 

Office of Naval Research 
Arlington, Virginia 

INTRODUCTION 

There is a movement afoot within the computer industry 
which will have a great impact on EDP personnel. :Much 
literature has been published which concerns itself with 
EDP personnel certification. The formation of the Institute 
for Certification of Computer Professionals (ICCP) in 
August, 1973, has certainly triggered a large amount of 
discussion within the EDP community. In reality, everyone 
seems to be for certification and the prestigious distinction 
of being called "Professional." So it's everyone to the 
bandwagon! At a glance, it appears that our EDP certifica
tion bandwagon is charging ahead-the certification move
ment is straining at the harness, the bandwagon is creating 
dust clouds and recklessly moving forward and the computer 
passengers are frantically waving for forward motion. In 
essence, everything is moving forward except for one thing, 
the wheels-and they are going backwards, thus indicating 
that the certification base has not been firmly established. 
Is this the true posture of the EDP profession and its certifi
cation movement? Before proceeding with a grand and 
glorious certification program, it might be well at this time 
to ask a few important questions. One of which might be 
"Is EDP certification necessary?" 

Before addressing this question, we must first identify 
the problem of which certification is to be the remedy, i.e., 
is the problem to be solved related to licensure and the 
protection of the public or is it related to EDP personnel 
and their betterment? Also, what is the status of the EDP 
vocation in regards to the "Professional" movement? Are 
we ready for certification or for licensure? To sum up the 
entire situation-why certification? 

Before answering any question on EDP certification, it 
will be helpful to define three terms used by the EDP 
community: base of knowledge, certification, and profes
sionalism. Base of knowledge will be used in the content of 
this paper to express the basic skills required to satisfy a 
certain level of a standard job requirement. -

The second term, certification, connotes the approving or 
verifying a base of knowledge that a person should know 
and understand for his vocation or job. The Webster dic
tionary states that to certify is "to attest as being true or as 
represented or as meeting a standard." The key word in 
this phrase is "standard" ... to meet a standard. The question 

881 

to ask here is ... What standard has been identified to 
certify an EDP individual? There are several factors which 
should be considered in certifying an individual, viz: 

Testing 
Personnel references 
Experience 
Communications, toth verbal and written 
EDP contribution 
Education 

As stated by Harris and Swearingen in their article in 
Data Management of October, 1973, certification is a con
tinual cycle which is designed to establish and maintain a 
body of knowledge. l The steps necessary to do this are 
depicted in Figure 1. Certification is built upon a body-of
knowledge foundation. 

Finally, professionalism warrants a definition. This term 
is a difficult one to define. Before a definition can be given 
it '\vill be useful to identify some attributes of a profession, 
such as: 

(1) a defined body of knowledge of high intellectual 
content acquired by training in depth, 

(2) defined standards of competence, and certification 
that the professional meets those standards, 

(3) a code of ethics, 
(4) at least one professional society aimed at advancing 

the welfare of its members, 
(5) the responsibility to society to perform in a competent 

and ethical manner, 
(6) the licensing of the members of the profession by the 

state to practice the profession, 
(7) the right and ability of the members of the profession 

to eject someone from the field for being incompetent 
or unethical. 

For the purposes of this paper, the follo",;ng will be used 
when defining the expression "EDP professional": one who 
is trained in the skills of EDP, competent in the use of 
EDP tools, orderly and ethical in his approach, and does his 
work within an established philosophy of EDP. Profession
alism involves defining and maintaining a base of knowledge, 
certifying EDP personnel, and imposing licensure and 
implementing a policing agent for unethical behavior. 
Consequently, licensure is the next step after certification 



882 National Computer Conference, 1974 

has become established. The steps to professionalism are 
shown in Figure 2. 

CERTIFICATION VERSUS LICENSURE 

There are two schools of thought dealing with certification. 
The key question is ... Should certification include licensure? 
The primary concern is the public interest and well-being 
which may be affected by the EDP field and its endeavors. 
If public health and life are involved, then not only should 
the EDP professionals be certified but should also be licensed 
and policed by an agency tasked to protect the public. 
The ICCP has expressed its case by its title when the expres
sion "Professionals" is used. The attainment of "Profes
sional," if licensure is involved, would require three major 
phases: identifying a base of knowledge, certification, and 
licensure. At such an early stage in the development of an 
EDP profession, it is felt that certification should take 
high priority since it comes before licensure. In general, the 
EDP community is not ready for licensure or scarcely ready 
for certification since a base of knowledge has not been 

.. defined- or· stahdardized;--Uowever, --the- --EDP- --community . 
must be prepared to eventually answer this question. If 
licensure is required, then should an individual become 
"blessed" by an agency before he can practice? Possibly, 
certification and licensure ,viII evolve in the direction of the 
Certified Public Accountant (CPA) vice that of the doctor 
or lawyer. Certification as used in this paper will entail 
verifying that an individual has obtained a certain level 
of skills which have been identified via a base of knowledge. 
Hence, certification is only a portion or part of a profession 
as defined above. 

WHY CERTIFICATION? 

Those against certification usually give at least one of the 
following reasons: 

(1) The EDP vocation as a whole is not mature enough 
to be certified. Standards and skills cannot be identi
fied because of the ever-changing nature of EDP. 

(2) To certify means that structure is imposed and, 
consequently, creativity is hampered. 

(3) The majority of the EDP community and the general 
public is not concerned about the status of being 
certified. 

(4) ED P skills should be considered as a tradesman 
vocation especially progra~ming since it is becoming 
easier to learn and use. 

The list could be extended to include many more excuses; 
however, the author does not feel that any of these argu
ments are particularly valid and only attempt to avoid the 
EDP certification problem, i.e., identifying a base of 
knowledge. 

It is felt that certification is most urgently needed for 
several reasons, i.e.: 

(1) The critical need for identification and maintenance 
of a standard base of knowledge. 

(2) EDP systems are becoming very complicated and 
costly. The failure of the EDP vocation to design, 
develop and implement their systems successfully 
is a good indication that professional standards and 
a philosophy have not been identified and used. 

(3) Technology of EDP, such as telecommunications, 
data base management techniques, and sophisticated 
hardware, has effected the use of computers in almost 
any imaginable area of our society and is becoming a 
major industry in our country. 

(4) The general public, the users of computer products 
and services, and EDP employers must be protected 
from the technical incompetence which has crept 
into the EDP ranks. 

(5) EDP individuals should be responsible for their 
work, especially when the general public's privacy 
and well-being are at stake. 

From the above discussion, there are three groups of 

peop~~ w~i~h would?~Il~~~Jr?~_~erti~~~~i?n_: 

the individual being certified 
the employer 
the general public 

Advantages can be listed as follows for each group: 

(1) First and most importantly, certification will benefit 
EDP personnel since they should understand what 
standards must be satisfied to meet their basic job 
requirements. Thus, the individual would know what is 
expected of him. Used to its fullest, certification can 
be structured to form a career development program 
and, hence, be used to motivate and to give the 
employee a vocational goal. This approach requires 
a set of defined standards (tools of the trade) for 

r---=-----=--~ 

I. ~ l 
, Self-evaluation and Job 1 Recertification Definitions 

I continL BODY OF \ 
Ed t· KNOWLEDGE Curricula 

nca '\ DeVj'0pment 

t
esting 'and I 

Certification Accreditation 
~Standards 

--
Figure I-Certification cycle and career development2 



each type of job and a matching job description. 
Finally, job performance criteria should be identified 
to each job and be used to measure the individual's 
performance. 

(2) Certification would certainly help the employer when 
hiring or promoting computer personnel. If certifica
tion were done properly, the employer could rely 
more on the credentials of the individual. If the nature 
of the work required the person to be bonded or to 
handle sensitive information, the employer would 
have some assurance of the individual's competency 
if he were certified. Also, employers are no longer 
fooled by the mysteries of the computer. They have 
been taken too many times by poorly defined and 
developed software systems, and have come to expect 
the data processing function to pay its way. EDP 
budgets are being cut because of the failures of their 
Management Information Systems and poorly man
aged resources. 

(3) The public sector should be protected against in
competency within the EDP ranks. The question 
which should be asked is: "Is the public health 
and safety, property rights or schooling of the young 
affected by the software and hardware of the com
puter community? If the answer is "yes," licensure 
should be required as discussed above. The best 
answer to this question is public opinion. Should 
EDP experts be required to attest in court to the 
validity of a well designed system or program? 
A license would most definitely be required in this 
instance. 

Figure 2-Steps to EDP professionalism 

EDP Certification-Is It Necessary?· 883 

EFFORTS TOWARD EDP CERTIFICATION 

As shown in Figure 1, the first step is to identify a body 
of knowledge including the definition of skills for each set 
of job descriptions. Next, such a body can be taught via 
curricular which can be controlled by accreditation standards. 
Once a body of knowledge has been identified and taught, 
testing and certification can be administered. Recertification 
can be given once a continuing education program has been 
identified. The cycle is reiterative since new jobs are con
tinually being developed which require new or different 
skills. 

JOB DEFINITIONS 

For each job, skills must be identified and attached to 
each job description. Job descriptions should include: 

1. reporting relationship of the position, 
2. administrative responsibility, 
3. technical or functional responsibility, 
4. contacts made in the job, 
5. supervision required in the job, 
6. educational and experience qualifications, 
7. specialized training and certification required 

The first step toward job descriptions is to identify the job 
performance and to be able to measure such performance. 
Standard job descriptions have been identified by both the 
Civil Service Commission and the Association for Computer 
Programmers and Analysts (ACPA). The American Federa
tion for Information Processing Societies (AFIPS) has 
been working on a set of job definitions and skill require
ments, too. Much of this work has been performed by 
Dr. Ray Berger, director of Psychometrics, Inc. ACM has 
identified the skills necessary to meet the Information 
Analyst and Systems Designer job positions at the graduate 
and undergraduate levels.3 •4 These descriptions are examples 
of two such jobs which have been identified with specific 
skills. Work which has been done by these three groups 
would be good guidelines for the computer community to 
follow when identifying EDP job definitions. 

CURRICULA DEVELOPMENT AND 
ACCREDITATION STANDARDS 

Since standard job definitions can be identified with their 
associated skills, curricula can be developed to teach these 
skills. ACM has worked in this area with their Curricula for 
Information Analysts and Systems Designers. It has also 
done a large amount of work in Curricula Development 
for Computer Science· programs which have been used 
throughout the United States. The University of Maryland, 
the American University, and the University of Minnesota, 
among others, have played a valuable role in implementing 
all or portions of the ACM Curricula for Inform.ation 
Analysts and Systems Designers. A number of universities 



884 National Computer Conference, 1974 

and colleges have used the ACM Curricula for Computer 
Science as a guideline. Accreditation standards for such 
curricula in data processing have not been given the proper 
attention and should be devised. The AFIPS's report, 
"Professionalism in the Computer Field," states, "At the 
present time, there are no accrediting agencies specifically 
looking at Computer Science and Data Processing depart
ments in the colleges and universities."5 The article goes on 
to say, "The private EDP schools may seek accreditation 
by either the National Association of Trade and Technical 
Schools, the Accrediting Commission of Business Schools 
or the National Home Study Council. At the present time, 
a small minority of such schools are accredited by one of 
these three agencies."5 Since job skills and job definitions 
have not been totally identified and, subsequently, stand
ardized, little can be expected by the accreditation com
munity to attest to the curricula being developed by in
dividual EDP schools. Hence, such an effort is certainly 
needed by the EDP field. 

TESTING 

Testing can be grouped into two types, aptitude and 
proficiency. Aptitude testing verifies the ability of one to 
learn a certain base of knowledge. For example, if a computer 
operator wishes to become a programmer, his manager 
would like to know if the operator has the ability to under
take programming. tasks. Another example is the inex
perienced person who wishes to enter into the field of EDP. 
Several aptitude tests have been developed; the most popular 
one is the IBM Programmers Aptitude Test (PAT) which 
has been administered with some success. 

The more difficult type of testing is proficiency. The 
reason this kind of test is difficult is that managers have not 
fully identified the level of performance for a particular 
type of EDP position. Also, standard skills and job definitions 
have not been fully identified to warrant ease of testing. 
The Berger Test of Programming Proficiency is one test 
designed to measure an individual's knowledge and pro
ficiency in the basic principles and techniques of program
ming. It allows the individual organization to set its own 
standards of acceptability. Standard tests can be identified; 
Sweden has developed standard proficiency tests for most 
of its education courses throughout the country. Such a 
program should be researched and discussed as to the 
importance and feasibility of its application to EDP courses. 
Robert Dickmann has done extensive research and work in 
the area of testing. His book, "Personnel Implications for 
Business Data Processing," is a valuable piece of work in 
the area of testing EDP personnel. 6 Another area of pro
ficiency testing is the one which verifies how well a person 
will perform on the job. This method of testing is very 
difficult because the personality of the individual is in
troduced and, hence, many variables come into the picture 
and are difficult to measure and define, Several companies 
are ,vorking to,vard de"'leloping tests in this are"a. 

In his article, "Evaluating and Testing of Electronic 
Data Processing Personnel," Paul Oyer states that little 
has been done in the area of performance level testing, and 
standardized tests are needed to measure different levels 
of EDP achievement.7 Some work has been performed 
which attempts to test or evaluate performance of systems 
analysts, programmers and operators. One such example is 
the performance test developed by Diebold Group Inc.; 
however, it has not .been fully validated. Although this area 
of testing is only a portion of the certification procedure, it 
is vital to the effort and must be developed. 

CERTIFICATION 

Before August, 1973, only one organization, the Data 
Processing Management Association (DPMA), had become 
very involved with certification in the United States on a 
nation-wide scale. It sponsored two certification programs 
which were the Certificate in Data Processing (CDP) and 
the Registered Business Programmer (RBP) certificate. 
The CDP has proven itself as a tool for testing the entry 
leve!requirements ofa data processing manager since'its . 
inception in 1962. It requires the applicant to answer 300 
multiple choice questions in five general areas within 250 
minutes. The areas of concentration are: data processing 
equipment, computer programming and software, principles 
of management, quantitative methods, and systems analysis 
and design. Over the past 10 years, about 14,000 EDP 
personnel have received the CDP certificate. The first 
CDP exam entailed only 100 questions. This certificate has 
slowly gained acceptance in many organizations such as 
Xerox, General Electric, Weyerhaeuser Co., Franklin Life 
Insurance Co. in Springfield, Illinois, State Farm Insurance, 
The Prudential Insurance Co. of America, and the U. S. 
Army Corps of Engineers ... just to mention a few. 

The RBP examination started its career in 1969 and 
attempts to test the skills of a business programmer. This 
test has questions which are multiple choice but has not 
been as popular as the CDP exam because of three major 
reasons: (1) data processing managers have not fully sup
ported the exam, (2) the RBP has not been advertised as 
much as the CDP, and (3) the RBP is a later test and has 
not become as established as the CDP. 

In August, 1973, the Institute for Certification of Com
puter Professionals (ICCP) became legally established as 
a non-stock corporation in the state of Delaware. It was 
formed primarily to certify, develop and recognize EDP 
personnel. Initially, the certification tools to be used are 
the CDP and RBP which are being transferred to the ICCP 
from DPMA. The ICCP was formed from what was originally 
titled the Computer Foundation. The following professional 
societies are members of the ICCP: 

Association for Computing Machinery 
Data Processing Management Association 
IEEE Computer Societ:y· 



Association of Educational Data Systems 
Society of Certified Data Processors 
Society of Professional Data Processors 
Society of Data Educators 
Canadian Information Processing Society 
Association of Computer Programmers and Analysts 
Automation/ Association 

If the certification movement is approached properly, this 
organization could have a great impact on the EDP com
munity in addition to the general public. 

Other certification programs which exist in the United 
States but are mainly related to areas other than EDP are 
the Certified Data Educator (CDE), Certified Internal 
Auditor (CIA) and the Certified Public Accountant (CPA). 
Since these are not considered to be directly oriented to the 
computer vocation, a detailed explanation of each will not 
be given. 

Other countries have made impressive strides in certifica
tion. The two leading countries are Japan and England. 
Japan has a certification program which is equivalent to 
the CDP and RBP but consists of one test. There are two 
parts to its test, i.e., Class I and Class II. Class I is similar 
to the CDP and Class II is similar to the RBP. This program 
is administered by the Ministry of International Trade and 
Industry (MITI) and only 7 percent of the applicants in 
each class pass (as opposed to the 40 percent pass-rate in 
the U. S.). The questions of the tests are published for future 
study. (In the U. S., the CDP and RBP questions are not 
published. ) 

The British Computing Society (BCS) has a certification 
program which is by far the most extensive of any mentioned 
in this paper and probably the most extensive program in 
the world! Its primary purpose is to test those computer 
applicants who wish to join the BCS as a member. The 
exam involves two parts, and each part contains two sections. 
Sections 1 and 2 of Part I each require six hours of exams 
in two of the following six areas: 

Part I. Section 1 

1. Appreciation and development of computing systems. 
2. Representation of data in the computer. 
3. Set theory and the elements of logic design. 
4. Appreciation of analog and hybrid computing systems. 
5. Elementary programming. 
6. Introduction to techniques for computer applications. 

Part I. Section 2 

1. Fundamentals of computer technology. 
2. Programming. 
3. Data Processing. 
4. Analysis and design of information processing systems. 
5. Computational methods. 
6. Analog and hybrid techniques. 

Mter the candidate has passed Part I or its equivalent, 
he can use one of two methods for Part II. One method is 

EDP Certification-Is It Necessary? 885 

to take two more three hour examinations, plus a three 
hour written essay and an oral examination. The other 
method is to submit a dissertation on original work done at 
an advanced level. Part I was first given in 1969 and Part 
II in 1970. About 40 percent of the BCS candidates passed 
the Part I in 1972. Only eight passed the Part II require
ments in 1972 from a group of 26 candidates. An interesting 
point is that the BCS has seven grades of membership, viz, 
Fellows, Members, Licentiates, Associates, Affiliates, Stu
dents and Institutional Affiliates. As an example, the grade 
of "Fellow" carries the following requirements: " ... age 
over 30, and eight years accepted experience in data process
ing, five years of which must be in a responsible position. 
Exceptional merit over and above the normal call of pro
fessional duty must be proved."8 Fellowship is (1) not 
normally considered until the applicant has been a member 
for at least one year and (2) granted only to members who 
can prove their professional activities justify acceptance as an 
authority in their particular field of data processing. The BCS 
exams are oriented toward scientific areas vice business data 
processing. One important decision which has been made by 
the BCS is the new ruling requiring that candidates applying 
for entry as members on the basis of experience and having 
had the required seven years must enroll as affiliate members. 
This must be done beginning December 31, 1973. Hence, 
those wishing to become members will eventually be re
quired to take the examination because it has been recognized 
that years of experience do not necessarily equate to a 
certain level of knowledge. Finally, the BCS and Japanese 
exams have been governmently implemented, and centrally 
coordinated. The U. S. certification movement has not been 
centralized until the recent formation of the ICCP. 

CONTINUING EDUCATION AND 
RECERTIFICATION 

:Most universities and colleges offer some kind of continuing 
education program. However, since no set of standard skills 
and job definitions have been proposed, it is difficult to 
structure a meaningful program for continuing education 
in EDP. Presently, there does not exist a recertification 
program in the U. S. or abroad. 

CERTIFICATION AND CAREER DEVELOP:MENT 

One other factor which should be considered once the 
certification cycle has been identified and executed is a 
career development program such as that discussed by 
Nancy Ayer.9 At this juncture of the certification problem, 
the primary goal should be oriented toward the EDP in
dividual vice licensure. Figure 3' depicts an example of a 
proposed career structure with its career ladders. (For more 
detail on this structure, refer to the article, "Step-by-Step: 
A Career Structure for Systematic EDP Growth.")lO Such 
a program can be used to measure progress toward certifica
tion of an EDP individual within a company. In fact, if 



886 National Computer Conference, 1974 

EDP MANAGEMENT 

EDP RESEARCH 

TECHNICAL SUPffiVISORSJ SYST];)IS 
SPEX::IAL-

ISTS -
PRODUCTION MANAGEMENT TECHNICAL SPEX::IALIST PROGRAMMING S 

U 
P 
P 
0 
R 
T 

TECHNICAL SUPPORT 

EQUIPMENT OPERATIONS 

~ 

Figure 3-EDP families within a career development structurelO 

such a program could be identified as a standard guideline, 
it would lend itself to helping the individual in planning 
his career and would provide a means for continuing his 
education and testing his on-the-job progress. Such a program 
is being identified by the ACM Special Interest Group of 
the Washington, D. C. Chapter, chaired by Paul Oyer of 
the Census Bureau. The career development structure being 
proposed contains 10 different groups of similar jobs, called 
"Families." An example of a family is the computer operator 
series which in turn is composed of four levels of operators, i.e., 
Computer Operator I, II, III, and IV. Each level has a 
job description with specific skills identified. Further, 
each level has associated with it the performance expected 
from the employee. Progress of each employee could be 
measured by testing, job performance and the supervisor's 
recommendations. Each level has a set of training courses 
identified to it, both those required and those that are 
optional. Once the employee has satisfied the requirements 
of his job level and has demonstrated his potential for 
advancement, he has two primary options available to 
him: (1) to continue in the same family at a higher level, or 
(2) to change to another family if an entry point exists. 
Such a career development structure requires five types of 
tests: (1) entry into a basic family for the first time, (2) 
entry into a higher level job within the same family, (3) 
performance and subject testing at the same level, (4) entry 
into a higher-level family from another organization, and 
(5) entry into a different family (e.g., operator to program
mer). Such a career structure would lend itself to assisting 
the certification effort. This structure contains all the 
essential parts of certification as mentioned previously. It 
utilizes testing, personnel references, job performance and 
experience, communications, EDP contribution, and educa
tion. Another important point which this structure shows 
is that certification programs should consist of more than 

one or two types of certification. In this example, ten different 
types of certificates could be awarded, assuming each re
quired certification. Entry level for an inexperienced com
puter person would not be involved in certifying an individual 
since he has no experience. In this case, aptitude of the 
individual should be tested. However, a career development 
program should not ignore the importance of screening 
those individuals who are not well adapted to the EDP 
field. If all areas are considered and included in a certifica
tion program, the career development framework would 
greatly benefit the individual, the employer and the general 
public. Greater success of implementing systems would be 
realized, thus reducing costs and personnel turnover. 

FUTURE OF EDP CERTIFICATION 

It is very difficult to give justice to such an all encompass
ing subject as Certification in such a short space. What has 
been given is a general view of the status of EDP certification 
and some ideas to be considered. The first step to take in any 
sitlJl1tio:n.istQrec_ognize __ the problem. Theformation_oLthe_ 
ICCP is the first important step to recognize the plight of 
the EDP community. The next step is to determine exactly 
where we are and what efforts have been taken to remedy 
the problem. Work is being done by the SI GCD of Washing
ton, D. C. which will aid the computer community in this 
effort.ll Some very significant work has been done in the 
areas of job definition, particularly by AFIPS, ACM and 
ACPA. EDP curricula have been defined but its total 
validity is questionable since no standard has been formu
lated for job skills or even job types. Accreditation stand
ards must become an important factor in certification. 
This can be done with the assistance of EDP societies, or 
more appropriately, with the assistance of ICCP. Much 
work has been done toward testing EDP personnel; how
ever, job performance in the present job or in the next 
higher job has not been validated. More effort should be 
oriented toward the testing of oral and written capabilities 
of the individual. One aspect which the CDP and RBP 
tests do not attempt to do is to verify the oral and written 
competency of the applicant. Essay questions should be 
given for certain "families" orior all "Professionally;' 
identified groups. If certain levels of competency are 
identified as in the BCS, certain levels of certification should 
be allowed. Possibly, the highest level of a certain professional 
family should be required to (1) do original work which 
will contribute to the EDP profession and (2) pass an oral 
exam on this original work. The written essay exam would 
prove the candidate's ability to write awl tu logically ap
proach a problem. Many universities and colleges require 
one or more comprehensive exams at the masters level and 
some even require such exams at the undergraduate level. 
Testing criteria could be identified to grade the oral and 
written exams. The CDP is certainly not the answer to 
EDP certification since there can be several different groups 
or "families" in the EDP field. The CDP has proven to be 



very valuable when considering such aspects as administering 
a nation-wide test, verification of EDP questions, etc. 
Continuing education must be formulated to support the 
recertification step. Little has been done on identifying such 
a program. EDP personnel must be properly educated. 

Once the problem has been identified and the present 
situation has been inventoried, the next major step is to 
set forth objectives and requirements. We must define 
"Professional" EDP areas and determine if certification is 
required before the individual can practice. The present 
status of EDP certification is such that licensure should 
not be considered until a framework with definitions has 
been built. The first priority to be satisfied is to give direction 
to the individual and, subsequently, to the computer voca
tion. Once this has been done, licensure and ethics can be 
confronted. The first priority must be met by the EDP 
universe or the public will place demands upon the EDP 
community through state or federal legislation. Such a 
move would be premature since we have not defined or 
set standards. 

The fourth step involves the formulation of an approach 
to achieve certification. Hopefully, this will revolve around 
the individual and will entail a centralized effort to establish 
a path toward a meaningful certification program. Also, 
of great importance is the forming of a career development 
structure which will enhance EDP certification. If a career 
development program is implemented, it will aid EDP 
personnel in keeping abreast of their ~rea of expertise. It 
will motivate them to strive for the next higher level of 
certification. In the author's opinion, certification exams 
should not require the applicant to have a degree for two 
reasons: (1) people who have certain undergraduate degrees 
do not always out-perform those without a degree, and (2) 
experience if of a progressively concentrated nature should 
be accepted in lieu of certain types of formal schooling. 
Everyone should be required to pass their level of certifica
tion via the successful completion of an examination. If 
the programmer is considered a "Professional," the certifica
tion exam should be difficult enough that a college degree 
in a certain area of endeavor would greatly benefit the 
individual in passing the exam. Recertification is urgently 
needed. Because of the dynamics of EDP, an individual can 
quickly become obsolete. Any formulated certification pro
gram should address itself to this aspect. In order to keep 
a certificate current, EDP personnel should be required to 
take a "mini" exam to verify that the candidate is up-to-date 
in the field. Continuing education should support the 
recertification program and is necessary throughout the 
career of each person. Such areas as technology changes, 
management concepts, computer metrics, software enhance
ments, terminology, etc., must be covered in such a program. 
Licensure should not be imposed in the near future because 
the EDP community is not prepared. Even a base of knowl
edge has not yet been standardized. 

Hopefully, the ICCP will be the answer to the EDP 
certification problem by defining all certification steps in 
detail and not just the testing aspect. Much coordination 

EDP Certification-Is It Necessary? 887 

and research work remains to be done; if undertaken prop
erly, a successful EDP certification program can be im
plemented. If the objective of the certification movement is 
oriented toward the individual, the answer is "yes" to the 
question, "EDP Certification-Is It Necessary?" If the 
objective is to license the EDP individual in the near future, 
the answer is "no." 

In the late 50's and early 60's, the primary concern of the 
computer world was the sophistication and gadgetry of the 
computer hardware. Next followed the concern for the state
of-the-art in software, its capabilities, structure and ease of 
use. However, the 70's are pointing in the direction of 
computer peopleware and the ability of top management 
to ascertain the quality of these people. The thrills of hard
ware and software must come second to the needs of the 
EDP individual. The decade of the 70's should best be 
remembered as the "peopleware" era and not the "fourth 
generation" era. 

REFERENCES 

1. Harris, Fred H. and John K. Swearingen, "Report on the Status of 
the Institute for Certification of Computer Professionals," Data 
Management, October, 1973, p. 18. 

2. Ibid. 
3. Teichroew, Daniel, Ed. "Education Related to the Use of Com

puters in Organizations," Communications of the ACM, September, 
1971, pp. 573-588. 

4. Couger, J. Daniel, Ed. "Curriculum Recommendations for Under
graduate Programs in Information Systems," Communications of the 
ACM, December, 1973, pp. 727-749. 

5. Professionalism in the Computer Field, The American Federation of 
Information Processing Societies, Montvale, New Jersey, 1970, p. 7. 

6. Dickmann, Robert A., Personnel Implications for Business Data 
Processing, John Wiley and Sons, Inc., New York, New York 1971. 

7. Oyer, Paul, "Evaluating and Testing of Electronic Data Processing 
Personnel," (Unpublished paper). Available from the Institute for 
Science and Public Affairs, Box 9242, Suitland, Md. 20023. 

8. "Experience Only! Door is Closing," Computing, July 6, 1973, p. 20. 
9. Ayer, Nancy, "Step-by-Step: A Career Structure for Systematic 

EDP Growth," NCC '74 Proceedings, Volume 43. 
10. Ibid. 
11. Ibid. 
12. Oyer, Paul and Dorothy L. Ray, "A Systems Approach to Career 

Development: Report of Two surveys," NCC '74 Proceedings, Vol
ume 43. 

BIBLIOGRAPHY 

Ayer, Nancy, "Step-by-Step: A Career Structure for Systematic EDP 
Growth," NCC '74 Proceedings, Volume 43. 

Beyer, Jack, "The Society of Data Educators," Data Management, 
November, 1972, p. 33. 

Canning, Richard, "The Question of Professionalism," EDP Analyzer, 
December, 1968, p. 1-1. 

--, "Career Programs in Data Processing," EDP Analyzer, August, 
1971, pp. 1-15. 

Couger, J. Daniel, Ed., "Curriculum Recommendations for Under
graduate Programs in Information Systems," Communications of the 
ACM, December, 1973, pp. 727-749. 

"Curriculum 68," Communications of the ACM, March, 1968, pp. 151-
197. 



888 National Computer Conference, 1974 

Dickmann, Robert A., Personnel Implications for Business Data Pro
cessing, John Wiley and Sons, Inc., New York, New York, 1971. 

Dorn, Philip H., "EDP Professionals-The Blurred Image," Datama
tion, Jan., 1971, pp. 22-24. 

"Experience Only! Door is Closing," Computing, July 6, 1973, p. 20. 
Glaser, George, "AFIPS-An Inside View," Data ."Wanagement, ~ovem

ber, 1973, pp. 30-33. 
Gilchrist, Bruce and Milton R. Wessel, Government Regulation of the 

Computer Industry, AFIPS Press, Montvale, New Jersey, 1972. 
Guerrieri, John A., Jr., "Certification-Evolution, Not Revolution," 

Datamation, November, 1973, pp. 101-104. 
Harris, Fred H. and John K. Swearingen, "Report on the Status of the 

Institute for Certification of Computer Professionals," Data Manage
ment, Oct., 1973, pp. 18-21. 

Inoue, Michael S., Ph.D., "Japanese CDP Program-Number Two 
Tries Harder," Data Management, February, 1971, pp. 26-3l. 

Oyer, Paul, "Evaluating and Testing of Electronic Data Processing 

Personnel." Unpublished paper, (Available from the Institute for 
Science and Public Affairs, Box 9242, Suitland, Md. 20023). 

Oyer, Paul and Dorothy L. Ray, "A Systems Approach to Career De
velopment: Report of Two Surveys," NCC '74 Proceedings, Volume 
43. 

Professionalism in the Computer Field, The American Federation of In
formation Processing Societies, Montvale, New Jersey, 1970. 

Reinstedt, Robert N. and Raymond M. Berger, "Certification: A Sug
gested Approach to Acceptance," Datamation, ~ovember, 1973. 
pp.97-100. 

"Should Computer Professionals Be Licensed?" Communications of the 
ACM, May, 1971, p. 368. 

Skeen, David R., "ADP Professionalism ... A Myth or a Reality?" 
unpublished paper. (Can be obtained upon request from the Author). 

Teichroew, Daniel, Ed., "Education Related to the Use of Computers in 
Organizations," Communications of the ACM, September, 1971, pp. 
573-588. 



Skills possessed and skills useful for MIS practitioners-A research 
report* 

by ROBERT M. HENRY 

University of Minnesota 
Minneapolis, Minnesota 

The major report setting forth major curricular recom
mendations for graduate professional programs in informa
tion systems appeared in 1972.** The context of the report 
was an information systems environment and developmental 
process' distinguishing between two analyst activities: 
information analysis and design analysis. Figure 1 seeks to 
draw the ACM distinction. And that distinction is carried 
forth into skill sets identified as desirable for graduates. Six 
clusters or groupings of skills are offered (people, models, 
systems, computers, organizations, and society) and thir
teen courses are proposed to impart those skills. The thirteen 
courses are set forth as a two-year graduate core curriculum 
for both information and design analysts. 

The Management Information Systems Research Center 
at the University of Minnesota has taken the liberty of 
amending the chart (Figure 2) from its form in the ACM 
report. Course titles and sequencing are unchanged. The 
rows in the chart represent the four semesters of core courses 
in the recommended two-year curriculum. Vertical or down
ward sloping arrows indicate prerequisite relationships. 
Horizontal arrows represent co-requisite course offerings. 
The chart shows the names of skill clusters identified by 
the committee nearest the courses which most directly 
address those clusters. Thus "people" skills are seen to be 
communicated through courses entitled "Organizational 
Functions" and "Human and Organizational Behavior." 
At the bottom of the exhibit, the Management Information 
Systems Research Center has added the words "Information 
Analyst" and "Design Analyst", each with an arrow. The 
arrow indicates the opposing poles of the curriculum at 
which either analyst might take additional elective courses. 
Six of the courses are shown to be more representative of 

* Sustaining MISRC Associates for the research period included 
Burlington Northern, Inc.; Dayton Hudson Corporation; CENEX, 
Inc.; Federal Reserve Bank; General Mills, Inc;. Honeywell, Inc.; 
International Multifoods; Minneapolis Gas Company; 3M Company; 
Northern States Power Company; Northwest Bancorporation; Pills
bury Company; St. Paul Companies, Inc.; and Soo Line Railroad 
Company. 
** ACM Curriculum Committee on Computer Education for Manage
ment. "Curriculum Recommendations for Graduate Professional Pro
grams in Information Systems." Ccnnmunications the ACM, 15:5, 
May, 1972. 

889 

generalist information analyst skills and seven of the courses 
are seen to be more representative of the design analyst's 
specialty area. The words ':generalist" and "specialist" are 
MISRC additions. 

The ACM report isolated six skill clusters in proposing 
thirteen graduate courses spread over two years. While 
opinion was solicited by the AGM committee from many 
areas, no formal research underlay the ACM report. The 
University of Minnesota sought to validate the ACM as
sumption and recommendations. The ACM committee 
assumed sufficient demand for Information Systems graduate 
students to justify their proposed curriculum and recom
mended specific skills to be stressed by that proposed cur
riculum. To test the ACM assumption and recommendations, 
the ::\USRC researchers determined to survey D P /IS prac
titioners in an empirical fashion. Relevant questions in
cluded the following: What skills do practitioners presently 
possess? What skills are useful for each position? How do 
employees, supervisors and users vary in their perceptions? 
What then are the implications for education? 

The MISRC research objectives were three in number: 

1. Survey projected demand quantity for -:\US grad
uates 

2. Specify skills required 
3. Develop curricular implications 

The procedure in attacking these research objectives was 
first to build a subject sample. Seventeen relatively auton
omous organizations were approached in fourteen Twin 
Cities firms. In concert with the Corporate Director of In
formation Systems or his equivalent, a manning table was 
developed for twelve positions representing the managerial 
and software development positional levels within informa
tion system. A descriptive paragraph attempted to set the 
bounds for each position so that, regardless of job titles, 
like functions and personnel could be compared across 
organizational boundaries. 

In the next step skills were selected, clustered, and pro
cessed into research instruments. After pilot testing, 111 
skills were eventually selected to be researched. The skills 
were grouped into seven clusters and then reclustered into 
three. The total skill set appears in Appendix A. An asterisk 



890 National Computer Conference, 1974 

Information Analysis Activity. Design Analysis 

Organizational Dynamics Focus Computer Dynamics 

Determination of Task Translation into 
I nformation Needs Hardware/Software 

(1) Feasibility Phases (1 ) System Design 

(2) System Specification (2) System Implementation 

Product Design Analogy Manufacturing System Design 

Figure 1 

on any skill in the first six clusters represents a "generalist" 
skill or one more representative of the information analyst 
activity. Skills without asterisks in the first six Clusters 
represent "specialist" skills more appropriate to the design 
analyst activity. The seventh cluster, "performance", 
cannot be divided into specialist or generalist skills. 

The performance cluster is a part of each clustering 
scheme (see Figure 3), illustrated between the six rows 
and three columns. 

-Once the firms were selected ahcithe-skill sets we:fechoseri~
pilot tested, and clustered, separate instruments were 
designed for supervisors, users, and employees. Each par
ticipant -supervisor and user rated a designated employee 
of his acquaintance at a level within the organization deter
mined by the researchers and the information systems 
manager. Supervisors and users rated the employees as to 
skills actually possessed and skills deemed useful or non
useful for that employee's level of functioning, regardless 
of whether or not the employee actually possessed the skill. 
Rating scales were a four-piont forced choice. A pilot at
tempt was begun with six points rather than four, but the 
four-point scale was found better to harmonize "\vith four
point scales presently being used by subjects in job review 
and evaluation. For everyone of the 111 skills, then, super
visors and users rated a given employee as to the degree of 
skill possessed and the usefulness of that skill for the posi-

(Generalist) (Specialist) 

_INFORMATION ANALYST 

DESIGN ANALYST -----

Figure 2 

DISTRIBUTION OF GENERALIST AND SPECIALIST 
SKILLS WITHIN SIX ACM CLUSTERS 

Genera 1 ist Specialist Perfonnance 
Cluster Cl uster Cl uster 

People 10 

Organizations 12 

Society 10 

Systems 11 12 

Models 

Computers -2. ...E 
44 + 53 + 14 = 111 

Figure 3 

tion. Where a rater was not familiar with one of the 111 
skills where a rater had not observed either the presence 
or absence of that skill in the employee being rated, or 
where the rater had no feel for the usefulness of that skill 
for the positional level within the organization, the rater 
Wa,s requested_torefrainJJ::QIIl making a judgment. 

Each employee engaged in self rating as to skill levels 
possessed. Just as the supervisors and users, they rated the 
usefulness or non-usefulness of every skill for their positional 
level in the organization. Unlike supervisors, employees were 
asked to designate the source (or sources) of skills for each 
skill they possessed. Three weights could be assigned by 
employees as to the sources for any skill. In the illustration, 
shown by Figure 4, the employee has indicated he is superior 
or exceptional in his ability to write detailed program speci
fications. That skill is deemed by him to be extremely useful 
or significant for his position in the organization. The em
ployee has indicated that primary sources of that skill for 
him were: (1) higher education; (2) on the job experience 
after data processing entry; and (3) in-house education. 
Firms were chosen, skills selected, and rating instruments 
designed. Data gathering was step four. The subject sample 
consisted of 981 persons, representing 475 employee raters, 
375 supervisor raters, and 131 user raters distributed among 
twelve positional levels. (See Figure 5). 

RATING INSTRUMENTS 

SUPERVISOR AND USER 

SKILL: 

Ability to write detailed program specifications 

123412345671234 

Skill level Rating Scale 

1. Not presently possessed 
!!.!rm!!;~f::!!:!l)ry! 

2 Minimally qualified 
(below average) 

3. Highly qualified 
(above.verage) 

4. Superior 
(exceptional) 

11 13 I I r I 1 x I I 
Usefulness for Job Scale 

tOlnouse 
(I.mimpl)r~~n!~ 

2_ Seldomuse!ul 
(helpful) 

3. Extremely useful 
(significant) 

4. Absolute necessity 
(mandatory) 

Figure 4 

EMPLOYEE 

Source of Skill Rating Scale 

1. On the job Experience prior to data 

2. On the job experience after data 
processing entry 

3. Vendor supplied education 

4. Professional, technical,vocational 
schools 

5. Higher education (college, university I 

6_ln-houseeducation(by,mployer) 

7_ Independent,tudy (on own) 



Skills Possessed and Skills Useful for MIS Practitioners-A Research Report 891 

Director/Manager of all D.P. 

Assistant Manager of D.P. or 
Specialty Manager of D.P. 

Manager of Systems Analysis 

Project Team Director 
(Lead Analyst/Programmer, etc.) 

Senior Systems Analyst 

Junior Systems Analyst 

Manager of Analysis and Programming 

Senior Systems Analyst/Programmer 

Junior Systems Analyst/Programmer 

Manager of Programming 

Senior Programmer 

Junior programmer 

TOTALS 

RESEARCH SAMPLE 

Figure 5 

Participants 
~ Supvr User 

12 

29 25 

18 17 10 

30 25 

48 42 18 

25 19 

31 26 12 

84 67 34 

50 42 15 

84 53 13 

E 

475 375 131 

The data base consisted of nine major files-two files 
each for employees, supervisors and users consisting of their 
111 ratings both for (1) Skills Possessed and (2) Skills Use
ful. There were three additional employee files: (1) company 
demographic information (size of firm, monthly hardware 
expenditure, reporting structure, etc.); (2) individual 
demographic information (total DP experience, length of 
time per present position, immediate past ten-year work 
history, educational level, graduation data, major specialty 

26% 

Bus. 
Admin. 
(Non· 
Acct.) 

23% 

Math 

MAJOR FIELD IN COLLEGE 

9% 

6% 
5% 

Inn 
Liberal No Technology Acct. Other Camp. 
Arts College Science 

Figure 6 

EMPLOYEE GRADUATION DATA 

N % 

High School 89 18 
Technical Institute 83 17 
Undergraduate Degree 250 53 
Graduate Degree 34 7 

Undergraduate and 
Technical Institute 17 4 

Graduate and Technical 
Institute 2 1 -

475 100 

Figure 7 

area, age, etc.); and (3) skill sources for the 111 skills. 
Output at any data base entry includes (1) skill mean rat
ings, (2) skill sources, (3) a rank ordering of the entire skill 
set, and (4) individual and company demographic data. 
Inquiries may be addressed for any or all positions by any 
set or sub-set of either rated or rater subjects, for skills 
possessed and for skills useful, for each of the 111 skills 
and/or each of the skill clusters. T-test significance testing 
was at the .001 level. 

FINDINGS 

Company demographic information 

The firms have major hardware expenditures for DP /IS 
averaging slightly more than $75,000 per month for main
frames in Twin Cities locations alone. In all but five cases 
the director's reporting channel is through the Vice Presi
dent for Administration or Management Services (or his 
equivalent). Analysts and programmers are assigned about 
equally to applications areas and to project teams. The 
user's role has become increasingly prominent. Essentially, 
they represent information systems as opposed to DP 
environments. 

Individual demographic information 

Subjects averaged 30 years 11 months in age, six years 
mean total DP experience plus an additional one and one
half years non DP-business experience. Average DP experi
ence per current firm was slightly more than five years and 
the average length of time per present position was two and 



892 National Computer Conference, 1974 

PERFORMANCE SKILLS PRESENTLY POSSESSED 

Superior (4.0) •••••••••••••••••••••••••••••••••••••••••••••••••••• 

Highly Qualified (3.0) .............................. . 

3.17 

2.96 2.97 
Minimally Qualified (2.0) •• 

Not Presently Possessed 

Employees Supervisors Users 

Figure 8 

one-third years. ~ umber of companies averaged 1.79 to 
includg present employer. All demographic figures were 
slightly deflated due to two factors: (1) work histories were 
reported only for 120 months; and (2) the sample was 
biased toward newer hires and promo tees. 

Only 15 percent of the sample had not attended college. 
Majors or specialty areas are shown in Figure 6. As these 
are combined, the subjects 'vere one-third Business Ad
ministration, one-third :Math and Technology, one-sixth 
Liberal Arts, and one-sixth no college. 

Figure 7 is the graduation data for all subjects. Sixty
five percent of the sample had college or university under
graduate degrees. Eight percent earned graduate degrees. 

Skill cluster means 

By every comparison of the performance cluster with 
every other cluster, for any position, by all raters, on both 
skills possessed and skills useful, the performance cluster 
received a significantly higher mean rating. There was 
no surprise in terms of usefulness. The big surprise was 
that users (1) rated employees significantly higher than 
either employees or supervisors on performance skills pres
ently possessed (Figure 8); and (2) rated performance skills 
significantly higher than any other cluster of skills presently 
possessed (Figure 9). 

In Figure 9, the rank ordering of employee and super
visor mean ratings were consistent for levels of skills pos
sessed and relative usefulness by cluster in both the seven 
cluster and the three cluster analysis. Users disagreed little 
as regards relative usefulness, reversing only the importance 
of the society and models clusters in the sixth and seventh 
rank order positions for the seven cluster comparison. Users 
disagreed drastically on the cluster mean values derived 
from their individual ratings on skills presently possessed. 
After surprising by elevating the performance clu8ter, users 
on both the seven cluster and three cluster groupings said 

that the twelve positions surveyed possess technical skills 
above all else. In short, the users confirmed the projected 
image of "computerniks" on the DP /IS personnel. And 
that image is the mme strongly stated in contrast with their 
clear agreement with employees and supervisors as to rank 
orderings of useful skills. 

The rank ordering varied but not substantially across 
positions. Specialist skills would be elevated, for example, 
over generalist skills both for senior and junior programmers. 
At all other positions generalist skills were deemed more 
useful. The marked trend to elevate the behavioral skills 
with systems over technical skills suggests something of the 
evolution of systems, the enhanced role of the user, and 
the viability of the ACM insight in suggesting an informa
tion analyst as a key developmental resource. 

Entry level positions 

The probability of entering each of the twelve positions 
is depicted in Figure 10. From "without" means either 
from outside the DP /IS organization or from outside the 
firm. Experience to' a-cquire threshold-' organizational and" 
specialty skills is predictably more determinative than 
graduate versus undergraduate levels of information analy
sis or design analysis education. With good DP /IS experi
ence of 1-3 years, either design or information analysts 
may target for junior systems analyst/programmer or 
junior analyst, depending upon the job function within 
the organization. Additional experience will enhance oppor
tunity for more rapid upward mobility. Rarely will grad
uates enter at senior levels of IvIIS f'nvironments until 
tested within the environment. Graduates recruited who have 
not yet acquired DP /IS work experience will enter, at least 

Rank 
Order 
Position 

RANK ORDERINGS OF SEVEN AND THREE SKILL CLUSTERS 
BASED ON CLUSTER MEAN RATINGS 

Skills Possessed Skills Useful 
Emp & Supvr User 

Raters Raters Emp & Supvr User 

Performance Performance Performance Performance 

People Computers People People 

Systems Systems Systems Systems 

Organizations people Organizations Organizations 

Computers Organi za tions Computers Computers 

Society Society Society Models 

Models Models Models Society 

Emp & Supvr & Users 

Performance I Performance Performance 

Specialst l
'speCialist 

Generalist 

Generalist Generalist 

Specialist 

I 

Figure 9 



Skills Possessed and Skills Useful for MIS Practitioners-A Research Report 893 

presently, at the junior programmer or DP trainee level 
(regardless of degree level). If the programmer function 
continues to shift toward a coding function, entry level 
for the environments surveyed will be standardized at 
junior analyst or junior programmer analyst level. While 
the openings were not surveyed in the present research, the 
evaluation of MIS oriented systems suggests that increas
ingly information and design analysts with strong func
tional competence in an applications area, e.g., finance, 
marketing, etc., will have recruitment opportunity from 
the applications area of the firm. Although experience is 
key, the desired combination of experience and relevant 
education has implications for both recruitment areas-the 
firm and the educational institution. As the firm must 
select "mid-career" persons for additional education, so 
must higher education recruit them. 

Demand 

Of the environments surveyed an average of three new 
junior programmer lines, two new junior analyst/program
mers, and one new junior analyst is projected each year 
for each of the next five. Private talk indicates the fore
casted increase is at asking levels only. The curve of the 
increase for both senior and junior programmers is decreas
ing. The curve of the increase for both junior analysts and 
junior programmer/analysts is increasing. The net size of 
the organization has essentially stabilized. Information 
rather than design analysts appear the critical new resource 
required. 

Sources of skill 

Figure 11 shows the percentage of each of seven sources 
as contributor to a given skill cluster. The same analysis 

Probability of Entry from Without 

1. Director/Manager of All Data Processing 6% 

2. Assistant Manager of Data Processing or Specialty 
Manager of D.P. 5% 

3. Manager or Supervisor of Systems Analysis 4% 

4. Project Team Director (Lead Analyst/Programmer, etc.) 7% 

5. Senior Systems Analyst 15% 

6. Junior Systems Analyst 15% 

7. Manager of Analysis and Programming 5% 

8. Senior Systems Analyst/Programmer 17% 

9. Junior Systems Analyst/Programmer 35% 

10. ManagEr or Supervisor of Programming 0% 

11. Senior Programmer 25% 

Junior Programmer 100% 

Figure 10 

People 

Systems 

Computers 

Organizations 

SOCiety 

Specialist 

o 

~o 

~.s 

Figure 11 

can be performed on each of the 111 skills, where possessed. 
The informal process of "on the job training after DP 
entry" was the major source cited. Higher education was 
the highest formal process cited, some"\vhat surprisingly 
given the mean seven and one-half years subject aggregate 
business experience and the newness of computer-related 
curricula. The source of tomorrow's information analyst is 
predictably higher education. 

Continuing education 

Space does not permit the position-by-position profile 
which must be the address of another paper. On the basis 
of supervisor usefulness ratings for the AGM clusters signifi
cant continuing education needs by position were as follows: 

1. People-all positions except senior and junior pro
grammers 

2. Systems-all positions except specialty managers, 
senior and junior programmers 

3. Organizations-all positions except specialty mana
gers, programming manager, senior and junior pro
grammers 

4. Computers-throughout the programmer/analyst and 
programmer functions 

5. Society-for the director, junior analyst, and pro
gramming manager 

6. Models-for the assistant director and the specialty 
manager 

SUMMARY 

A large data bank has been constructed which may be 
queried on numerous parameters. Only gross findings have 
been reported to date. 

Certain AGM assumptions and recommendations were 
tested. For the environments sampled, there is viability 
and greater demand for information analysts than for 
design analysts. If graduates could undergo the two-year 



894 National Computer Conference, 1974 

recommended curriculum "mid-career" with 1-3 years of 
specialty experience, a highly recruitable graduate could be 
produced. Experience will increase as a dominant recruit
ment criterion. 

An interesting consideration for· further research is to 
compare MISRC's 1973 research profile with another for 
the same twelve positions obtained in 1975. Updated im
plications for education might again be produced. 

APPENDIX A-GENERAL INDEX TO SKILL 
CLUSTERS 

• Generalist or Information Analyst 
* Specialist or Design Analyst 

NOTE: All skills are preceded by the words "Ability to" 
or "Knowledge of." 

I. PEOPLE (10) 

* • communicate with others verbally (in general) 
* • describe and identify individual and group behavior 

----{e.g" describeand-identify-workingrelationships-among· 
people in an organizational environment) 

* • predict alternate future behavior of individuals and 
groups (e.g., predict individuals' reactions to operating 
changes) 

* • grasp the facts and feelings of what is spoken 
* • recognize, understand, and communicate the meaning 

a particular event has for you 
* • interview others 
* • effect change in work relationships 
* • communicate and interact with non-computer oriented 

people 
*. gain the confidence and support of others in work 

relationships 
* • recognize and remove personality problems which 

interfere with job completion 

II. SYSTEMS (23) 

*. view, describe, and define any situation as a system 
* • analyze and evaluate different software applications 

packages 
*. perform economic analyses (cost/benefit studies) of 

proposed resource commitments for a project 
* • analyze and determine cost benefits of project (infor

mation system) to user 
• design and use I/O layouts 

* • calculate cost/performance tradeoffs in a system 
* • present. in writ.ing fl· det.ailed descript.ion of part. of a 

project 
*. evaluate system performance and make needed adjust

ments to system after implementation 
• design and use decision tables 
• design and use run and grid charts 

* • specify, given information needs and sources, several 
alternative sets of information to meet needs 

• develop the major alternatives in specifying an infor-

mation processing system, including data files and 
communications structures 

• prepare clear and useful documentation (programs and 
procedures within programs, systems, etc.) 

• analyze programs outlines by system analysts for 
detailed design and construction 

* • make "rough cut" feasibility evaluations of proposed 
new techniques or applications of current technology 

• design software and hardware configurations 
• design and use flowcharts (system and program) 
• prepare effective user documentation for either a 

portion of a system or an entire system 
• project planning and control tools (PERT, CPM, etc.) 

* • sources for updating knowledge of technology 
* • general systems theory (open/closed systems, system 

boundaries, feedback concept) 
the need for security in programs, data storage, and 
work flow design, as well as physical protection of 
programs and data 
"outside" computer services (information concerning 
consultants, software houses, application packages, 

. etc) 

III. COMPUTERS (32) 

• write detailed program specifications 
• convert existing programs from one system to another 

(language to language, computer to computer) 
• use program testing aids (special debugging packages, 

traces, and snapshots) 
• program in file oriented languages (COBOL, RPG) 
• program in scientific or algorithmic type languages 

(FORTRAN, PL/l) 
• program in an assembly type language (BAL, CO:\f

PASS) 
• program in simulation languages (GPSS, SIMULA) 
• revise existing programs (including debugging and 

refinement) 
• analyze communication systems (estimate line and 

terminal requirements, volume and message length, 
queues, etc.) 

• use sort and utility packages 
• use sequential and index sequential file techniques 
• use direct or random file techniques 
• create, maintain and interrogate files 
• prepare sample data for programs and providing test 

runs 
• analyze and evaluate programming languages for se

lecting most appropriate language for a given problem 
solution 

• analyze and evaluate different hardware configurations 
• use interactive debugging facilities (available through a 

time-sharing arrangement such as Text-Editor) 
• existing communications facilities (line types, ex

changes, utilities) 
• multilinked data structures (trees, multilist, inverted 

list, networks, etc.) 
• sorting techniques (radix, merge, bubble, tree) 



Skills Possessed and Skills Useful for MIS Practitioners-A Research Report 895 

• searching techniques (sequential, binary, directory) 
• microprogramming 
• performance evaluation techniques (simulation pack

ages, hardware and software monitors) 
• minicomputers 
• characteristics of auxiliary storage devices (capacity 

access, storage): tape, disk, drum, etc. 
• input-output devices (types available, general market) 
• operating systems (including scheduling algorithms, 

memory and peripheral management, interrupt sys
tems) 

• multiprogramming and multiprocessing 
• time-sharing operating system (concepts and facilities) 
• job control languages (coding and techniques) 
• "inner workings" of compilers, interpreters or other 

translators 
• communication access methods and their general fea

tures to support terminal/teleprocessing applications 

IV. ORGANIZATIONS (12) 

* • develop positive and negative impacts of a specified 
information system on specified parts of an organi
zation 

* • identify in an on-going organizational situation the key 
issues and problems of a given functional area (pro
duction, finance, marketing, etc.) 

*. present in writing a summary of a project for manage
ment action (suitable to serve as a basis for decision) 

*. identify possible short term and long term effects of a 
specified action on organizational goals 

* • develop specifications for a major information system, 
addressing a given organizational need, and determine 
the breakdown into manual and computer-based parts 

* • gather information systematically within an organiza
tion, given specified information needs and/or specified 
information flows 

* • apply the "system viewpoint" in depth within the 
organization structure 

*. data gathering techniques (interviews, etc.) 
* • the function of purposeful organizational structure and 

the major alternatives for that structure 
*. specify elements and relationships of information in 

various functional segments of the organization 
* • accounting practices and procedures 
*. corporate policy and lines of authority and responsibility 

V. SOCIETY (10) 

*. articulate and defend a personal position on some 
important issue of the impact of information technology 

and systems on society (i..rnportant as defined by Con
gressional interest, public press, semitechnical press, 
etc.) 

* • public and private data banks 
*. computer impacts on industrial, clerical and managerial 

positions 
* • computer industry with regard to growth patterns, 

competition, and government regulations 
* • standardization practices in the computer industry 
*. professional data processing associations 
* • . problems of providing training in data processing 
* • changes in employment patterns as a result of automa

tion 
* • potential applications of automated processes for society 
*. evaluate the social consequences of a proposed system 

VI. MODELS (10) 

• formulate and solve simple management science type 
models, linear programming, dynamic programming, 
queueing, simulation) 

*. recognize the appropriate management science (opera
tions research) models for situations commonly 
encountered 

• queueing structures 
• inventory control models 
• matrix algebra 
• differential calculus for optimization 
• elementary statistics 
• fundamentals of probability theory 
• set theory 
• formulate and solve complex simulation models 

VII. PERFORMANCE CLUSTER (14) 

• accept responsibility and initiate action 
• perform tasks accurately 
• cooperate and work effectively with others 
• plan and organize work assignments 
• motivate self and others 
• train and develop subordinates 
• create in others an acceptance and willingness to dis

cuss problems 
• manage other people 
• complete assignments on time 

. • work effectively under pressure 
• work independently with limited supervision 
• define a problem 
• handle a number of assignments simultaneously 
.. delegate assignments and review the results of assign

ments directly under control 





Data base-An emerging organizational function 

by RICHARD L. NOLAN 

Harvard University 
Boston, Massachusetts 

A vignette of increasing frequency is for a manager with 
a problem to arrive in the EDP manager's office and ask for 
information required to solve his problem. The information 
required almost always cuts across computer applications 
and files of several functional areas. In the majority of the 
installations, the EDP manager is forced to flatly turn down 
the manager's request. He either cannot reEpond because 
the needed data is hopelessly locked up in existing poorly 
documented computer files, or because responding would 
throw the normal computer processing into upheaval. 

In a minority, but grm,ving number of other installations, 
however, the EDP manager is increasingly able to effectively 
respond to the manager's ad hoc request for information. 
These EDP managers have been implementing a data base 
approach through employment of data base software. At 
this point, extreme caution of interpretation and extrapola
tion is warranted. Data base or DB rings too much like the 
illusive Management Information System, or MIS, of the 
past and the present. It clearly does have some of the same 
characteristics, but as I will demonstrate in this paper, it is 
founded on a much more sound footing. I will also provide 
evidence that the forces are in irreversible motion. But similar 
to other major computer innovations, the early implementa
tion is expensive a;nd inhibited with organizational change 
problems. These problems should not be given short shrift, 
nor should the interpretation of their significance be allowed 
to overshadow the direction that has been set in motion by 
the technology. 

AN HISTORICAL STAGE PERSPECTIVE 

A recent research study revealed that the EDP budget 
for a number of companies, when plotted overtime from initial 
investment to mature operation, forms an S-shaped curve. l 

An analysis of the events associated with the S-shaped EDP 
budget curve led to the formation of a stage hypothesis of 
EDP growth. Exhibit I shows the S-shaped EDP budget 
curve pattern and the three growth processes that must 
be dealt with as an EDP function matures: (1) growth in 
EDP management techniques, (2) growth in specialization 
of personnel, and (3) growth in computer applications.2 

Because of the rapid growth of computer technology, man
agement of data has developed haphazardly and in a laggard 

897 

fashion over the years.3 A general approach of data manage
ment has emerged only very recently, and, consequently, 
applications have developed discretely from one another in 
an unintegrated and wasteful fashion. Further, each increase 
in the complexity and capabilities of computers has brought 
new generations of applications, but these applications still, 
for the most, part, have been specialized in nature, designed 
for a specific operational use or for a specialized staff func
tion. 

Hence management of data has continued to develop in 
fragmented fashion and at rather low organizational level
at a subdepartmental or substaff level. 

Today, upper levels of management are seeking informa
tion that can be generated only from properly structured, 
company-wide pools that include data from the narrower 
applications located further down in the organizational hier
archy. That is, management information today requires that 
a company have a data base which can be used in conjunc
tion with broad-range programs, to generate information on 
a broader and more comprehensive scale than the single, 
isolated applications of the past could usually do. 

Notwithstanding the new demands, tradition is still strong; 
indeed, it has barely been challenged. Exhibit II represents 
the traditional way of doing things-collecting and coding 
data for specific programs and thereby gluing them more or 
less permanently and exclusively to those programs. In retro
spect, this approach has had three significant disadvantages. 

Files and records have tended to become redundant 

Suppose Company X originally had only a single, 
computer-based system-say, for accounts receivable--"which 
is represented in Exhibit II as Program 1. 

Program I P...as three data files: A, B, and C. File A con
tains customer records, each consisting of data elements a 
and b; a might be the customer name and b his outstanding 
balance. Files Band C contain other data elements needed 
for the accounts receivable program. 

Assume that now the company wishes to implement a 
second program-Program II, as illustrated in Exhibit II
with Files D, E, and F, comprehending elements a, b, c, d, f, 
and g. Note that the company already has all these elements, 
except g, on file for Program 1. In all probability, however, 



898 National Computer Conference, 1974 

.t-

- - - - - _I~ "_ - - - - - - - - - - - - - - - - - -
I ~ : 

~
ost- reduction ProUr.ration or Mer.tori D t. _ 

Applications accounting I applications 1n all I appl lema:" new r~.t1one 
appUcations I functional areas I .. is on ;ontro 

- ~~ ~ - spec~Ui=t= I - - - - - speci~1z=on ~r spec~Ui~t1~~-
for cOIIpIlter control and data baa. tecbnoloc:r 

Spec1aliz.ation efficiency :::~MS3 and teleproceaa1n« 

Management 

Technique" 

"Sal.e!J.orientedn 

STAGE I: STAGS II: 
Initiation Contagion 

-t---t---
I Control-orionted Re.ourco-~.ntod 

STAGE In: 
Control 

cant.rol~nt 

STAGE IVI 
Integration 

Exhibit I-The four stages of EDP growth 

its programmers coded Files A and B (including all the 
elements a, b, c, and d) expressly for Program I, and hence 
cannot now use A and B intact for Program II. Thus the 
programmers have to make a choice: 

(a) They can recode A and B so that these files can be 
used by either Program I or Program II. But this 
would mean rewriting Program I to take account of 
the recoding. 

(b) Alternatively, they can build two "new" files, con
sisting of data from A and B but coded for the special 
convenience of Program II. 

In the past, when faced with this kind of choice, an EDP 
department has usually just gone ahead and constructed the 
two "new" files. Going back over Program I ordinarily seems 
like too much trouble, so making up the new files seems the 
easiest way out. It is-in the short run. 

But in the long run, as the exhibit shows, Company X 
might easily find itself creating more and more quasi-dupli
cate files as it adds new programs. For example, it will need 
two new versions of File B for Programs II and IV-that is, 
Files E and K. It will need three new versions of File A for 
Programs II, III, and IV-that is, Files D, G, and J. It will 
need a new version of File I for Program I~-that is, File L. 
And so on. The redundancy of data is obvious; In just this 
little, highly simplified example, 7 out of 12 (58 percent) of 
the data elements of the files are redundant. 

Initially, redundancy does not cause a great deal of trouble. 
As soon as pieces of data must be updated, however, it does 
cause a great deal of trouble. In an EDP department of any 
size, it is virtually impossible to update all the redundant 
files and reports in s:rstematic and s:;rncr...ronized fashion. 
Consider what must happen if Company X adds a customer: 
it must update A, B, D, G, and J, and that would only be 
the beginning. 

Once files, records, and reports have begin to overlap and 
updating becomes a serious chore, updating procedures begin 
to sag of their own weight and different parts of the organiza
tion begin to receive inconsistent reports generated from 
files that are in various states of disrepair. In one large com-

pany, the inconsistencies between sales reports at the division 
level and sales reports at the branch level were so extreme 
that the salesmen began to keep very elaborate manual 
sales records. These two sets of reports were, in fact, gen
erated in large part from redundant files that were updated 
a t different times. 

These particular inconsistencies resulted from a mere differ
ence of organizational level-that is, the divisional versus 
the branch level. Severe redundancy problems can arise even 
more easily when reports from one function must be meshed 
with reports from another function. For example, the:re is 
absolutely no reason to expect that a company's inventory
control report will jibe with its accounting report unless the 
updating disciplines for the files of both functions are syn
chronized with each other. 

Even slight variations in the data used for the two func
tional reports can cause glaring inconsistencies: 

In a large retail chain whose applications had developed 
in the traditional fashion, the needs of the business forced 
management to request the integration of a number of differ
ent functional programs and systems. With great effort, the 
job was--done. However, it was done in such a Way that many 
quasiduplicate files were created and many separate, but 
essentially similar, programs were patched together. The 
company suddenly found itself spending 90 percent of its 
programming man-hours just keeping the programs running 
in concert and the files up-to-date. 

At the very least, redundancy, spells confusion and ex
pense for any sizable operation. Perhaps its worst feature is 

Exhibit II-The traditional approach to programs and data 



that the longer a company follows the traditional pattern 
and keeps adding new programs and redundant files of data, 
coded specifically and exclusively for those programs, the 
greater the task it must face when it finally assembles all its 
data in a single pool, so structured and coded that new pro
grams can be run without extensive recollection or recoding 
of data. 

The traditional approach undercuts or aborts the advances of 
computer technology 

Originally, the relatively high cost of on-line storage was 
a main factor that induced companies to delimit the scope 
of programming and therewith the amount of data needed 
during any given run. In effect, this reinforced the practice 
of creating and maintaining separate files for each applica
tion in the company's portfolio-companies tended to store 
no more data than were needed for the run at hand. 

Today, however, many companies that have followed the 
traditional route, but have acquired up-to-date on-line stor
age systems, find they have the capacity to keep relatively 
huge amounts of data alive in the system. But their data are 
still organized and coded along first-generation computer 
lines-that is, by specific programs. From a rational view
point, this is as awkward, expensive, and absurd as keeping 
modern accounting records wholly in Roman numerals. 

The traditional approach obstructs upper management's growing 
demands for applications that require a data base 

A review of the evolution of computer-based applications 
runs as follows. First, the computer was first used to replace 
existing manual functions, primarily within the accounting 
function. Kext came the integration of computer-based sys
tems within and between functional areas. Now cross-func
tional/interlevel systems are being developed to serve middle 
and upper-middle management; or, to put it another way, 
management is now demanding the benefits of computer 
innovations. The redundancies and inefficiencies that result 
from the traditional approach to the management of data 
become so signal and so extensive that applications can be 
adequate only if they are developed in such a manner that 
specific programs are separate from the data. 

THE DATA BASE COXCEPT 

As Exhibit III shows, the data base concept is to structure 
a company's computer-readable data into a single pool, which 
is used to run both routine programs and programs written 
in response to ad hoc requests. Note that no files appear in 
this exhibit. The base of data elements and their structure 
supplant the specific files. Note also that two additional soft
ware systems are in evidence here \vhich were not in evidence 
in Exhibit II: 

(a) The data base interface system enables a specialist 
data base programmer to organize and structure the 

Data Base-An Emerging Organizational Function 899 

I 

Normal operations 

General 
interface system. 
containing software for 
accessing the data 
elements 

Interface system for 
special applications. 
containing a data-base 
programming 
software and language 

..... 

Data elements 
S, b, C, d. e, f. etc. : 
A.II elements are 
unique. 
All elements are stored 
on-line to the computer 
system. 
Elements are coded and 
organized to maximize 
access and minimize 
costs. • •••. .. 

I 

I t_s __ 
_____ ------.J 

Exhibit III-The data base approach to programs and data 

data elements in a manner that minimizes or elimi
nates redundancy and optimizes the economic costs of 
data storage and accessibility. 

(b) The interface system for special programming in
cludes a high-level progr~mming language especially 
designed for manipulating data elements contained in 
the data base, solving problems, and producing re
ports. To write ad hoc programs, the programmer 
works successively, through the interface for special 
applications and the general interface system to the 
data base itself. 

Comparing Exhibits II and III, one can see an immense 
contrast between the traditional concept and the data base 
concept, both theoretical and practical. 

Since much of the computer technology necessary to imple
ment the data base concept exists and the rest of the tech
nology is being developed rapidly, a strong case for adopting 
the data base approach can now be made. Yet, in operational 
terms, the concept is still novel. To what degree is it being 
used? ~llat are the issues and problems involved in imple
menting it? By what strategies can a company work toward 
a data base? And what benefits can we realistically expect 
from it? 

AN INTERVIEW STUDY 

To answer these questions I administered Ii pattern inter
view to the data-processing managers of ten companies in 
six diverse industries. The questions permitted unrestricted 



900 National Computer Conference, 1974 

responses, and hence the information these managers pro
vided is not as clear-cut as one might wish. However, it is in
formative. The opinions expressed varied considerably among 
the EDP managers. By and large, a given manager's opinions 
reflected the particular stage his company had reached in the 
evolutionary progression toward full use of the data base 
concept. 

First of all, I found a certain amount of confusion about 
what ltdata base" means. My open-ended question, "What 
is the data base in your company?" usually brought first a puz
zled expression to the manager's face, and then a request for 
clarification. I answered that I wanted a statement on how 
he views his company's data base, if, indeed, he views it at 
all. 

Responses ranged all over the lot. Some managers included 
all the computer-readable data in their company. Others 
defined the base more narrowly-for example, as including 
only the random-access disc files used for routine reporting 
and analysis. 

The common thread in the responses was "computer
readable." Since all the interviewees were data-processing 
managers, this common thread is not surprising. But, ob
viously;- the-great majority -of im organiiationis data are 
non-computer-readable; they are maintained in file cabinets 
as well as in the minds of management. 

Although more and more data are being put into computer
readable form, as the technology improves and makes more 
sophisticated computer-based applications both feasible and 
economic, much of the literature on data bases falsely as
sumes that companies have already translated all the data 
needed for these applications into machine-readable terms. 
This simply has not yet happened-indeed, most companies 
have not even begun to collect the data needed for these 
applications, in machine-readable form or otherwise. 

In general, the more advanced a company's use of the 
data base approach, the less naive and more realistic the 
manager's definition of what the base ought to contain
for example, "shared random-access files used for [periodic] 
production programs and ad hoc management requests." 
Such a definition reflects the two key characteristics of the 
data base: (a) sharing data between programs, and (b) struc
turing data so that ad hoc management requests can be 
served. 

One data-processing manager articulated the criterion of 
responsiveness to ad hoc management requests especially 
well. He said that his company will realize the data base 
approach fully when he has incorporated the technology that 
will permit him to respond to any reasonable request by 
management for reporting or analysis within one day, and 
without undue degradation of his continuing data procf'lSsing. 
He further described a reasonable request as one that draws 
on existing computer-readable data. 

Responses to my questions on the structure and integration 
of computer-readable data grouped into three categories. 
On one end of the spectrum were the companies that struc
tured their computer data on the basis of individual applica
tions, .vith only lirnlteu cross-functional integration among 

applications-that is, sharing data between such functional 
applications as manufacturing and accounting. In the middle 
of the spectrum were the companies that had aggressively 
designed applications for cross-functional data sharing. On 
the other end of the spectrum were two companies that not 
only had achieved a high degree of cross-functional integra
tion of their data base, but also had begun to achieve an 
interlevel integration-that is, an integration of their data 
base for managerial reporting and analysis with their opera
tional data bases. 

Both of these companies used commercial data base soft
ware packages. They used one software package for data 
organization (the General Interface System of Exhibit III), 
and a different software package to produce ad hoc manage
ment reports and analyses (the Interface System for Special 
Applications in Exhibit III). 

Both data-processing managers were reasonably satisfied 
with the commercial software they were using. Nevertheless, 
they both commented that even the most sophisticated data 
base software commercially available did not incorporate 
the more advanced data-structure methods. Such methods 
coordinate th~or~tical data structures (for example, things 
resembling immense decision trees) with the access con
straints of physical storage devices, such as rotating magnetic 
discs. Suffice it to say that data organization is extremely 
complex and technical. 

It is so complex, in fact, that one is virtually forced into 
using commercial software. One of the data-processing man
agers stated that structure technology is so complex today 
that he could not possibly support an in-house effort to 
develop the software. The other manager had initially hoped 
to develop his own data base software, but, after a pre
liminary investigation of the costs and problems, he decided 
to acquire a commercially available package. 

However, this complexity ultimately derives from the na
ture of the key tasks for which top management wants the 
data base to be used. If upper management focuses on key 
tasks that embrace all the company's data and require very 
extensive vertical and horizontal integration of reports and 
analyses, the job of organizing the data base is tougher than 
when the key tasks embrace only a part of the data and re
quire less than the complete integration of all functions. 

The EDP managers interviewed expressed concern over 
these major organizational issues associated with the data 
base: 

(a) Acquiring personnel that can handle its technical 
aspects. 

(b) Funding and developing suitable charge-out systems 
to support it. 

(c) Setting and enforcing company-wide standards. 
(d) Using the data resource to best advantage. 

The major associated technical issues for which they ex
pressed concern were these: 

(a) Converting data to data base form. 
(b) Providing appropriate soft"\vare for the interfaces. 



(c) Designing a data base which will permit ad hoc re
sponsiveness without degrading normal computer pro
cessing. 

(d) Building in reliability and the ability to reconstruct 
lost data. 

Both the organizational issues and the technical issues 
were generally felt to be of such magnitude that aggressive 
action on implementing the data base concept fully was not 
warranted at the time. The consensus was that the concept 
is sound, but that much more needs to be done administra
tively before it can be effectively realized in practice. 

MANAGEMENT ACTION4 

Use of the data base concept is the next natural milestone 
in the evolution of EDP applications. It embraces the special
ization of EDP functions; it allows management real flexibil
ity in satisfying its need for information; and it -permits 
companies to view and use their data as a real resource.5 

Yet caution and patience are advised in pursuing the con
cept. What should managers do to deal with this push-and
pull condition? 

Take the idea seriously 

Upper management should provide direction to the EDP 
manager by identifying key tasks of the business and setting 
priorities for an improved information capability. Perhaps 
the single most important factor to break out of a parochial 
treatment of data is upper management's guidance and its 
insistence on exploiting data for the interests of the business. 

Set up a data administration function 

The issue is when to set up a data administration function, 
rather than . whether to have such a function. Ultimately, an 
administrator will be needed to implement the data base 
concept, anyway. For those companies currently without 
such a position, an administrative structure is needed for 
formulating a data base implementation plan, and establish
ing data base standards, controls, and access procedures. At 
a minimum, a data base specialist should be acquired now to 
provide decision-making guidance for the EDP manager and 
steering committee. This person can also provide guidance 
in evaluating and selecting appropriate software. 

Incorporate data base technology into the computer system 

The hardware technology, as well as the software tech
nology, for data bases has matured to the point that the 
data base concept can be both feasible and cost-effective for 

Data Base-An Emerging Organizational Function 901 

many organizations. While the company will not be notice
ably hurt in the short run by ignoring data base technology, 
it will in the longer run. 

Also, the data base concept cannot be implemented over
night. If a company begins to plan and act now, it can assim
ilate even drastic technological improvements into its existing 
systems in an orderly fashion. 

To incorporate the technology that will permit data base 
operations, an organization must identify its key computer
based systems and restructure them (a) to remove redun
dancy, and (b) to facilitate their use by higher levels of man
agement. For the present, companies must probably acquire 
commercial software for structuring data and responding to 
management requests for ad hoc analyses and reports. 

Think of data as a resource 

For the longer term, management should begin to think 
of data as a basic resource. It should accept this idea as a 
natural consequence of functional specialization of the gen
eral management function. Since the data-resource concept 
is closely associated with a fast-moving computer technology, 
management should expect to see the movement toward 
specialized data-management activities proceed at a faster 
rate than, say, specializations in the human resource function. 

In retrospect, the curve shown in Exhibit I takes the same 
shape as the generic learning curve. In large part, I think 
that the curve has been driven by developments in hardware 
technology in the second and third generation computer 
systems. Now, however, the advancements seem to be taking 
place more in software than in hardware. The breakthrough 
most likely to start off another S-shaped EDP budget curve 
is data base technology. In dealing with data base tech
nology, caution is in order and the painful lessons of the past 
should not be cast aside with the first blushes of enthusiasm 
in perceiving the potential·of the concept. 

REFERENCES 

1. Nolan, Richard L., "Managing the Computer Resource: A Stage 
Hypothesis," Communications of the ACM, Vol. 16, No.7, July 
1973, pp. 399-405. 

2. Gibson, C. F. and Richard L. Nolan, "Managing the Four Stages of 
EDP Growth," Harvard Business Review, Vol. 52, No.1, Jan.-Feb. 
1974, pp. 76-88. Gives a detailed discussion of the stages and the 
organizational issues for each stage. 

3. Nolan, R. L., "Computer Data Bases: The Future is Now," 
Harvard Business Review, Vol. 51, Ko. 5, Sept.-Oct. 1973, pp. 98-114. 
The ensuing discussion about the way in which computer data has 
been treated in the past, and the explanation of the data base con
cept is largely taken from this article. 

4. Ibid., pp. 113-114. 
5. Nolan, R. L., ed., Managing the Data Resource Function, West 

Publishing Company, St. Paul, Minnesota, 1974. For an extended 
treatment of the evolution of the data resource function. 





Data bases-Uncontrollable or uncontrolled? 

by CHERYL M. TRAVER 

Stanford University 
Stanford, California 

In the last two years the "data base" concept has re
ceived as much management publicity as did "Management 
by Objectives" in the years just prior. The popularity of 
and recognition given to the power of computing in recent 
years, coupled with increased awareness of the role the 
enlightened manager should assume, have encouraged one 
installation after another to acquire a data base system in 
the pursuit of modern techniques for information retrieval. 
As both hardware and software have become cheaper and 
more widely available, the decision has become easier to 
make; thus the apparent need for foresight and planning 
has declined. Unfortunately, all too many people are now 
seeing the entire data base technology as an impossible 
dream and discrediting the concept as an expensive toy 
devised by the ever-hungry computer vendors. This trend 
is summarized in a brochure for a current seminar on data 
bases: "No subject in computing history has had the import 
of data base, nor disaster stories of equal magnitude."* 
And yet the "disasters" are not necessary. With proper 
foresight and planning and continued supervision, a data 
base system can produce all the results it promises. 

As long as the concept was new, the software expensive, 
and the expertise nonexistent, much planning was done 
before anyone ventured into the new territory of the data 
base systems. But as the successes were publicized and the 
software became more available, many installations began 
to acquire such systems with little more thought than new 
compilers and card readers. Is it any wonder then that 
fiascos occurred and disillusionment set in? It is unfair, 
however, to attribute these disasters -to the data base tech
nology. One must look instead to the people behind those 
systems, and in particular to management. For, in the new 
era of data base technology, management cannot blame the 
system, or the computer, or the people pushing the computer 
buttons or coding the computer programs. Data base sys
tems die (or become diseased) through lack of management 
interest, lack of controls and standards, lack of committed 
resources, and the absence of a cohesive bond which en
courages the users of data to define their needs and com
municate their desires. 

As stated in the abstract, data bases are a lot like chil-

* Data: Base 1974- Seminars: Fact vs. Fiction, Performance Development 
Corpor~tion, 1974 brochure. 

903 

dren. Both carry a great deal of appeal to the casual observer, 
probably due to the fact that they are usually presented at 
their best by a devoted set of admirers who extol their 
virtues and minimize their shortcomings. Vendors out for a 
sale will, of course, never stress -(perhaps not even mention) 
the limitations of a system. The owners of such systems, on 
the other hand, are similar to the man who, having nurtured 
back to health a scraggly mutt that was left on his door
step, becomes convinced the bastard is at least equal in 
worth to the pedigreed schnauzer next door. Disaster stories 
and problem children are presented in third-party terms 
and are interpreted as happening only to the "other guy". 

Furthermore, the owners of many data base systems are 
a lot like many parents. They are unhappy, disillusioned, 
and cannot understand how they acquired an uncontrollable 
and unmanageable offspring. They complain of the exorbi
tant investments of resources, time, and money, and wonder 
why they ended up with a rotten apple. They blame the 
environment, God, and country--everything but themselves. 

Fortunately, though, the concept of parenthood has been 
around long enough for us to _ realize that model children 
are not accidents, but rather the product of hard work and 
concern. In recent years many books, seminars, and classes 
have appeared which aim to help parents and potential 
parents acquire the necessary knowledge. On the other hand, 
typical of a field that is growing very rapidly, the tech
nology for supporting the sophisticated data base was 
available long before the guidelines on how to use it. In
deed, the early users were often not even aware of the po
tential problems. Many of such systems were dismal failures 
or at least disappointments. There were some, of course, 
that survived and even prospered, usually as the result of a 
gifted and farsighted individual. The ratio of successes to 
failures, however, strongly indicates that data bases are a 
risky business. The pUblicity of the failures has frightened 
many and caused others to blame the computer and its 
software. For the farsighted, however, the successes prove 
the benefits can be had-if one can learn how to obtain 
them. 

THE DECISION 

First of all, it should be recognized that data bases are 
not for everyone. Compared with the traditional fixed 



904 National Computer Conference, 1974 

input/output tape systems, data base systems are expensive. 
The very sophistication and complexity \vhich permit the 
flexibility and versatility of the new type of system also 
make it difficult to work with. When there are many op
tions, mistakes are more frequent, since there are also more 
\vrong solutions. ::\1istakes mean money since they require 
rework-manpower and machine time. 

Data base systems usually include online terminal facili
ties for retrieval and/or maintenance of data. These facilities 
encourage increased cognizance at the user level. Since the 
data are directly available, the operating environment of 
the computer installation is forced to become more polished. 
Mistakes can no longer be covered by reruns without user 
knowledge. The support for an online system requires actual 
dedicated machine time and thereby substantially reduces 
the wall-clock hours available for batch work. The batch 
capacity of the CPU is therefore greatly reduced. 

Ongoing support 

The new sophisticated systems also require ongoing 
support. They-are not like the "canned" payroll packages 
or budget accounting systems which, although usually 
requiring an initial conversion of input/output documents, 
may be executed week after \veek with minimal interven
tion. The good data base system is alive. It needs super
vision and care in order to be molded and tuned to react 
better to the needs and desires of its user population. 

One could compare the data base system to the rose. 
Although universally recognized as one of the most beautiful 
flow('rs, the rose does not appear in every garden, even 
though its cost is not prohibitive. The fact that, unlike the 
tulip or chrysanthemum, the rose bush requires constant 
care and attention makes many people give up that beauty 
and settle for other pretty flowers \vhich require less effort. 

Data base systems are open-ended-if handled properly 
they can be expanded to include an ever-\videning spectrum 
of information needs. However, this expandability can be 
expensive. The tendency is strong to permit such systems 
to grow too rapidly. User desire and user need may become 
confused and often the installation which can barely afford 
to support the user needs finds itself in a costly situation 
where the desires of some users are being catered to before 
the needs of others have even been addressed. 

These new systems can even be expensive in terms of 
computer hardware in that the search for more rapid means 
of data access for ever-growing online demands encourages 
a proliferation of different hardware peripherals. 

Management commitment 

However, the greatest expense of a successful data base 
system is management time. To be successful, a data base 
system requires standardization and compromises at the 
user level. In many environments, especially university 
administrativ'c arcas, time has permitted ,rariotls dcpart-
ments to become semiautonomous. This characteristic is 

usually very evident in the automated systems of the in
stallation where each application is an independent system 
with its own editing rules, formats, and procedures. In a 
data base system data must conform across areas in order 
to be able to form a base for information retrieval. 

This need for conformity or standardization is similar to 
the process of American urbanization. * In colonial days 
the pioneers were self-sufficient and independent; they had 
no need for standardization. The shift toward urbanization 
and community living forced a certain amount of stand
ardization: people had to learn to cooperate in order to live 
together in harmony. Thus was born a government of checks 
and balances. Likewise, the desire to make common use of 
data necessitates an acceptance of a form of ICgovernment" 
and this government needs definition of, commitment to, 
and enforcement of IClaws". Although the rules can be (and 
all too often are) formulated and enforced strictly by the 
computing organization, our society seems adapted to a 
more democratic form of rule. Hence, the management of 
all areas contemplating use of data base information must 
become involved. 

Since the needs and desires emanate from the users, those 
are the -people'.vlio should be determining -the nature of 
their data and of the system to transform those data into 
information. This commitment of management time is 
heaviest in the early stages and will be difficult because no 
results will be immediately apparent. ::VIany of the discus
sions may even seem absurd. For example, agreement on a 
standard format for a computer-stored name may seem 
trivial. However, without that standardization the resultant 
computer systems may not be able to search and match 
satisfactorily. Worse yet, the_ computer system may be 
burdened with the weight of trying to resolve through soft
ware those problems which should have disappeared through 
user discussion. 

Unfortunately, most installations are not first entering 
computerization when they contemplate a data base en
vironment. They already have precedents, conflicting stand
ards, and users who have become accustomed to their own 
way. It is the responsibility of management to see that 
these users come to agreement. Otherwise, they should not 
show surprise if the computer administration delays de
livery of the data base system or if that system seems super
ficial or incomplete. 

PREPARATION 

Even when the commitment of time, money, and man
power has been made, not all data base systems are success
ful. The biggest reason is lack of planning. Having made a 
large commitment, the user communities understandably 
want results. The computer personnel, in an attempt to 
satisfy their users, too often rush headlong into the acquisi
tion of a data base vehicle and the implementation of the 

* John K. Lyon, "The Role of the Data Base Administrator," DATA 
BASE, Winter 1971, pp. 11-12. 



first base systems. Somehow the estimates are always low 
and corners are cut in the attempt to placate the expectant 
communities. The first systems may even seem fairly satis
factory. This approach, although reasonably successful with 
the independent systems of the past, portends disaster for a 
data base system. The data base system is a self-propagating 
animal which feeds on the insatiable desires of its users. 
As more is learned about the capabilities of the system 
and the characteristics of the data contained therein, more 
is demanded. Widespread and diverse areas in the organiza
tion will become involved; new sources of information will 
be discovered. These conditions are healthy. However, if 
there were not strong foundations upon which the original 
data base was built, the additional demands may overtax 
the system. To avoid a short life for the data base, the long 
range goals, needs, and desires must be carefully analyzed 
even before the selection of the data base vehicle-and 
obviously before the design of the first application systems. 

The data 

The first element to be analyzed is the data themselves. 
The various types of data, both those which currently exist 
and those which \vould be desirable to obtain, should be 
analyzed. In-depth descriptions need not be detailed in the 
early stages of planning. However, those data which span 
traditional file boundaries must be isolated. (An example of 
this might be university instructor course load, which is 
used for personnel reports and also for student study lists.) 
These interrelated data may not seem critical in the early 
phases of a data base system. However, due to the tendency 
toward the development of more complex analyses and 
correlations which were unavailable in the past, these 
interrelated data must be structured within the data base 
in such a manner that future demands do not overburden 
the retrieval structures and/or security schemes of the new 
system. 

All data should be classified according to their "owners" 
and "users". The owners are those people who can modify 
the contents or nature of the data-the traditional controllers 
of the file. The users are those people who are permitted to 
peruse the data. The owner/user relationships must be 
carefully studied to ensure that an appropriate security 
scheme can be evolved. 

U sage patterns 

Once the data have been analyzed and isolated, the 
retrieval and maintenance patterns of the data should be 
identified. These patterns will be used to determine the 
spectrum of data base features that are necessary and 
desirable and will help to determine the need for online 
retrieval. The 'currency' requirement of the data is also 
important: ho\v current the data in the base must be to a 
large extent indicates the real need for an online mainte
nance environment. If the data can be a day or a week old, 
a pressing requirement does not exist. (Of course, online 

Data Bases-Uncontrollable or Uncontrolled 905 

mamtenance, given that online retrieval has already been 
justified by need, may be more cost effective and is usually 
more desirable than overnight batch maintenance.) Since 
terminal equipment is still rather expensive, it must usually 
be carefully justified by need (or by enough available funds 
to justify desire). In addition, the establishment of an online 
environment is usually a one-way street: very few organiza
tions revert to batch-only systems. 

The data base vehicle 

The characteristics of the retrieval and modification 
patterns should be summarized and condensed into a spec
trum of required features (those functions/characteristics 
which must be facilitated) and a spectrum of desired fea
tures (those functions/characteristics which would improve 
usage and expansion of the system). These spectra may 
then be compared with those features provided by the 
available data base vehicles. 

A thorough analysis of the available budget and man
power for programming and support must be done, both 
for the current time period and for several years hence. By 
comparing available resources and desired characteristics 
\vith costs and offered features, the organization should be 
able to find a suitable data base system (or to decide tJ1at 
any such system is beyond the current scope of feasibility). 

DATA AD::vnNISTRATION 

After the organizational needs and desires have been 
defined and a data base vehicle acquired, a live data base 
should not be established until proper controls over that 
system have been established. It should be clear from the 
records of those data base vehicles currently available that 
each of them has the potential for a successful data base 
system-and the possibility of failure. The difference is 
not inherent in the data base vehicle itself but rather in the 
manner in which it is used-or misused. The data base 
system must be controlled, or it becomes uncontrollable. 

The specific method employed to produce the controlled 
environment is not important: the presence of such a method 
is. However, the trend in recent years has been to focus the 
responsibility for this supervision in one individual within 
the computing organization. He may be called a data base 
administrator (DBA), data manager, information specialist, 
systems controller, information scientist, communications 
administrator, or any of a number of other titles. His func
tions may vary from the purely technical to the strictly 
political. His responsibilities are often almost infinite, his 
authority all too often nonexistent or only token. 

If the responsibilities and functions attributed to the 
DBA are even cursorily examined, it should be obvious 
that no single individual, not even a "superman", could 
adequately handle all of the work. It should also be ap
parent that the specialties required vary from those asso
ciated with computer technicians to those needed to con
verse with and instruct clerical personnel to yet others 



906 National Computer Conference, 1974 

directed at the involvement with middle and upper manage
ment. This diversity and breadth of functional responsi
bility is finally being recognized. A few installations have 
already begun forming a Department of Data Administra
tion so that the diverse needs may be satisfied via more 
than one individual: perhaps a teacher, writer, technician, 
analyst, and user representative. A strong manager is 
mandatory to ensure consistency and the strong commit
ment that the user is all-important. 

However, regardless of what the organizational structure 
is, a consistent attitude is shared by these installations: the 
recognition of the need for control over and monitoring of 
the data base. A summary of the responsibilities and func
tions follows. 

Maintenance of the data base and its directories 

One of the most recognized characteristics of the data 
base environment is the fact that control must be exercised 
over the creation, deletion, and reorganization of files. Most 
data base systems have sophisticated file structures which 

- -- --oombine traditional files into a single data-set, 6fteh-onthe 
same physical device. l\1any support chaining between 
logical files and even permit references to multiple records 
in a manner that is transparent to the requester. Caution 
must be employed when deleting or reorgap.izing one logical 
file since other systems may depend on its contents. The 
allocation of space for new files must be coordinated to 
ensure that overlapping does not occur and that usage on 
the various devices in the data bases can be balanced across 
all user areas. 

The system files used by the data system must also be 
controlled. This usually involves the maintenance of a 
system dictionary or directory file and a file which contains 
data on the space utilization and boundaries of user data 
files in the data base. 

As wi1l become increasingly more obvious, the very so
phistication which makes a data base system flexible and 
powerful also permits accidental catastrophes and seem
ingly self-destructive files. Many an installation has been 
forced to recognize the need for centralized control on 
major modifications to the data base when two program
mers build a file in the same allocated space or when the 
system directory is destroyed by an inexperienced operator. 

Control over the contents of the data base directory is 
also important, since that is usually the user means of 
access to his data. Because the definitions of all data items 
within the entire data base are stored within one directory 
and users may often gain access to more than one file, the 
names and structures within the dictionary must be moni
tored to ensure compatibility, uniqueness, and consistency 
with the names in the overall system. Revisions to the 
directory must be controlled for the same reasons demanded 
by the physical data themselves. 

It is also necessary to organize the printing and distribu
tion of the contents of the dictionary. Frequently, Data 

Element Dictionary manuals, based on the stored contents 
of the physical dictionary, are prepared and distributed to 
the authorized users; it is, of course, very important to 
ensure that each user gain access only to those Dictionaries 
which contain data he may retrieve. 

Security 

Probably the duty most widely associated with the data 
base administrator is that of controlling the security aspects 
of the data system. Even in those environments where all 
the information in the data base is published in public 
documents the security requirements are stringent. This 
characteristic is no doubt precipitated by the new retrieval 
capabilities commonly offered the user: the more ease he 
enjoys in being able to analyze his data, the more appre
hension he has about the ease others might share in ac
cessing his data. As will be stated again, those requirements 
placed on a data base system because of user apprehension 
should receive the utmost consideration in that the primary 
purpose of most such systems is to provide users with more 
and better information, 

Included under the enforcement of security are the assign
ment, reassignment, and modification of passwords and/or 
passkeys. Although the DBA normally supervises the 
password procedures, the policies and procedures governing 
the issuance of these passwords should be the responsibility 
of higher management or a consortium of users. Procedures 
for detecting the compromise of security keys and control 
procedures within the actual machine room may also be 
assigned to the DBA. 

Integrity 

The integrity of his data is very important to the owner 
of a file. The stability of the system with which he interacts 
is critical to the user of a data base. These needs are fairly 
easily met in the traditional computerized systems-and, 
even if not quite met, infringements can usually be mini
mized before reaching the user level. 

In an online system, especially one which permits online 
updating; stability is a very elusive quality. Procedures on 
backup and recovery, logging systems and audit trails must 
be carefully established and even more carefully controlled. 
Backup hardware may even be needed, since the user who 
trusted his data processing department enough to discard 
his manual files will want to revert to them when he cannot 
get at his data because of a malfunction. Because of the 
integrated natum of the new files, testout procedures must 
be established and monitored for both software system 
modifications and new application systems. 

The standardization of the codes among files is also re
lated to data integrity. Inconsistencies between traditional 
files were easily tolerated in that only the computer program 
need know. But when the user begins to input his own 
retrieval requests he becomes easily discouraged if con-



fronted by such situations as name being stored surname 
first in an admissions file yet surname last in the student 
master file. Unfortunately, although it is easy to convince 
users that consistency in codes and data content is critical, 
it is almost impossible to get them to agree on a change to 
their standard. 

Quality control and performance measurement 

In addition to the need for standardization of data con
tent, the data base systems require a certain amount of 
standardization of application design, especially where 
terminal interaction with a user is involved. To the user 
all communications derive from a common source--the 
computer-and he will not respond happily to major differ
ences in the responses requested of him. 

In addition, since data base systems frequently support 
multiprogramming and concurrent accessing of data, lack 
of efficiency in a given program may affect the performance 
of another application or even of the entire system. Thus, 
standards must be established for application systems and 
these standards must be enforced by someone outside of 
the environment which ahvays demands too much in too 
short a time. 

Because of the user cognizance and the tendency to\vard 
sophisticated system activity, performance measurements 
become an important responsibility of the data base ad
ministrator. Hard\vare and software monitors may be used 
to measure CPU and hardware utilization and the distribu
tion of access. For those systems supporting interactive 
devices, system and user response times should also be 
measured. The activity by terminal user is informational 
and often required for accounting interfaces. Such measure
ments may be used to assist terminal users who show ab
normal usage. The performance of the system expressed in 
quantitative form often dispels user convictions that the 
system is slow or that "everybody else" is benefiting more. 

Consulting and training 

Because of his exposure to so many aspects of data man
agement, the DBA often serves as the consultant, instructor, 
and technical advisor for his installation. Programmers 
and analysts need assistance in design problems and may 
also need help in program debugging under the software 
system. In addition to knO\ving all things about the data 
base syst-em in use j the DBA must keep current on the 
"state of the art" and knowledgeable of other software 
and hardware, especially the data base packages on the 
market. 

Programmers and analysts in the installation require 
much training in the techniques for data definition, file 
design, security features, application design, coding techni
ques, and-of course--installation standards. All of these 
guidelines must be incorporated into formai documentation. 

Users and management must also be educated in the use 

Data Bases-Uncontrollable or Uncontrolled 907 

of the data base and its features. Even using the terminal 
imposes a threat to many, in that they feel the pressure of 
the "meter running" and some even fear that "something" 
is looking out from inside the terminal screen. 

User liaison 

Communication with the user is the single most impor
tant role of the DBA, since in the long run it will usually 
be the reactions and attitudes of the data base users that 
will 'make or break' usage of a data base system. If the 
user is displeased or confused, he will not be receptive to a 
more sophisticated system. If he does not trust the security 
features or feels frustrated by his terminal, he will yearn 
for the old, more comfortable procedures. For these reasons 
the user attitudes must be considered, no matter how trivial 
or ridiculous. Frequent interactions and status reports, 
immediate assistance \vith terminal problems, and a log of 
trouble calls and user problems will help to comfort the 
unfamiliar user. Since interactions \vith the nontechnical 
populace are frequently difficult for computer personnel, 
the DBA may be the sole source of such 'hand-holding' 
talent. 

IMPLEMENTATION 

Once the procedures for sustaining a good data base have 
been established, the organization can begin to implement 
its own data base systems. Here, however, caution must be 
employed. Data base systems are not easy to design. On
line systems are a new technology and not much expertise 
is yet available. The new systems are used so directly by 
non-computer-oriented people . that the primary emphasis 
must be placed on an audience unfamiliar to the computer 
professional. 

The greatest problem usually becomes apparent in the 
use of the data base vehicles themselves. The new software 
is complex and· capable of sophisticated applications. How
ever, it is nothing more than a tool: it must be used with 
skill and expertise in order to produce satisfactory results. 
A data base vehicle is like a typewriter. Although it is a 
well-established fact that the typewriter has greatly in
creased the productivity of secretaries, no one would expect 
anything but a disaster if an untrained person were required 
to exchange longhand for a typewriter. Yet most installa
tions expect far greater miracles of their computing organi
zations when a data base vehicle is introduced. And, un
fortunately, since most computing organizations do not 
realize the complexity of the new technology, the users of 
the first system may become the victims. Furthermore, 
although there are many fine secretarial schools which can 
consistently produce speed typists in a short amount of 
time, there are very few ways to learn data base technology 
and no ready substitute for one to two years of hands-on 
experience in a production environment. 

As a result, the disaster-prone patterns are becoming 



908 National Computer Conference, 1974 

familiar: The computer processing department plunges 
directly into the design and implementation of a major 
application-one with a high exposure profile and impor
tance to the entire community. In an attempt to show 
results quickly, analysis is cut short, user interaction is 
curtailed, and the less visible features (such as edits and 
controls) are delayed "until later". There is little time to 
spend in training the programmers in the use of the new 
data base vehicle. The resultant system is obviously weak, 
but the lack of efficiency and shallowness of design are not 
always apparent until the second or third system is added. 
Eventually the hastily built foundations of the data base 
begin to crumble and work must begin again. 

Thus, it is wise to approach the implementation with 
caution; Work should begin \vith a small low-profile applica
tion and expectations should be kept low. Above all, it 
should be recognized that not all of the problems are due to 

computer professionals. A true story illustrates the point: 
Having recently joined the computer professional staff, one 
of our analysts was especially interested in making a good 
impression with the user community. When one of them 
called to complain that she had not received her Numbers 
Report that week, he assured her that he would check into 
the situation. When none of the programmers could figure 
out which particular report might be the missing one, he 
went to the user, who promptly showed him a neat file 
wherein he was astounded to find page after page of mem
ory dumps. It seems that one of the report programs had 
always encountered problems and the programmer, in order 
to facilitate debugging, had appended a partial dump of 
memory to the printouts of the reports. The corrections had 
finally been made and the dump option removed. The un
questioning user had simply filed the copies and worried 
only when the Numbers Report failed to appear. 



Interconnection networks-A survey and assessment 

by KE~NETH J. THURBER 

Spe:rry Univac 
St. Paul, Minnesota 

INTRODUCTION TO INTERCONNECTION 
NETWORKS 

As the level of complexity of digital systems increases, the 
problem of interconnecting subunits is receiving increasing 
attention. Weare reaching the point \vherc processing speed 
cannot be further improved through the use of faster com
ponentry. Further speed-up of systems 'will most likely result 
from changes in the organization and structure of hardware, 
rather than by raw circuit improvements. Another factor 
increasing the complexity of systems is the arrival of cheap, 
powerful LSI microcomputers which allow system construc
tion involving a plurality of processors connected together to 
perform a specific task. 1 ,2 Restructurable system concepts are 
also very promising, but require extensive amounts of inter
connective capability.3 Thus, bus structures4 are attracting 
considerable attention. This paper focuses on a small segment 
of the general bus structure problem; namely, interconnection 
(permutation, sorting, etc.) networks. 

Figure 1 indicates the essential elements of an intercon
nection network. The network consists of a set of n input 
lines, a set of n output lines, a block of connective logic, and a 
set of control lines. The control lines structure the connective 
logic such that the n input lines and n output lines are con
nected together in some fashion. Clearly, if we allow all 
permutations of the line connections to occur there are n! 
connections possible. Thus, an upper bound on the network 
control lines required is log2 (n!). There are a number of 
variations of such networks that have been recently proposed. 
This paper will describe each of the major concepts and will 
give a global comparison of the concepts as to their capabil
ity, throughput delay, allowable size, etc. 

Typical applications of the networks will also be indicated. 
One interesting point to note is that since the functionality 
of the networks is so difficult to realize, little work has been 
done on the networks to make them practical other than 
trying to discover ways to cost effectively achieve their 
functionality. 

Sorting via software techniques has been studied ex
tensively. Martina presents a comprehensive survey of the 
software sorting problem and its various solutions. 

DESCRIPTIOX OF INTERCONNECTION 
NETWORK COKCEPTS 

The most important interconnection network concepts 'will 
be described in this section in chronological order. 

909 

Benes' telephone network 

Benes6 ,7,8,9 may be considered the father of interconnection 
networks. He performed the first major in depth studies of 
the rearrangeable array and the two input-two output per
muter celL Additionally, he studied the networks in terms of 
their combinatorial and topological properties. 

Benes defined a connecting network as an arrangement of 
S"witches and disjointed transmission links which allow a set 
of terminals to be connected together in various combina
tions. Benes also studied the rearrangeability of a network 
and the concepts of "blocking" and "distance." Rearrange
ability deals with the ability to route new calls during the 
presence of current calls. A network is considered blocked, if a 
given pair of idle terminals cannot be connected. A network 
can be non-blocking in two senses. These are: (1) if rearrange
ment of present calls unblocks the requested call (non
blocking in the wide sense) or (2) if a network has no block
ing states (non-blocking in the strict sense). Distance is the 
number of calls one would have to add or remove to change 
network states. 

Benes uses graphs to describe his networks and derives 
necessary and sufficient conditions for them to be non
blocking in both senses. 

A diagram of a typical rearrangeable network is shown in 
Figure 2. A Benes network for n = 8 is given in Figure 3. 
Further extensive work on rearrangeable networks has been 
done by JoePO and Opferman and Tsao-Wu.l1 Opferman and 
Tsao-Wu indicate that extensions to nXm networks can be 
readily made using the rearrangeable array.u 

Batcher networks 

Batcher12 ,13 networks were envisioned for use in sorting 
and merging applications and as a replacement for crossbar 
switching networks, A crossbar switch for n elements grows 
at the rate of n2• A Batcher network grows at the rate of 
(Xi) n (log2n) 2 for n elements. The delay time for n = 2p words 
is (Y2)p(p+1) basic element delays; i.e., (Y2) log2 n( (lOg2 n) 
+1). 

Figure 4 shows the basic Batcher network element. It ac
cepts two input numbers A and B and outputs their minimum 
(maximum) on the L (H) output line. Figure 5 is the symbol 
for a s by t odd-even merging network. The use of the com
parison network to merge two ascending sorted lists (al, . . ., 



910 National Computer Conference, 1974 

INPUT 
LINES 

CONTROL 
LINES 

CONNECTIVE 
LOGIC 

Figure I-An interconnection network 

OUTPUT 
LINES 

a8 and bl , .•. , bt) into a single ascending sorted list (CI, .•• , 

C8+t) is shown in Figure 6. Since a 1 by 1 network is a simple 
comparator, Figure 6 is an iterative rule for the odd-even 
merging network's construction. 

Another network (Bitonic Sorter) was also described. A 
sequence is defined as bitonic if it is the juxtaposition of two 
monotonic sequences, one ascending and one descending. 
Also it can be assumed that a sequence remains bitonic if it 
is split and the two parts are interchanged. Since any two 

..------+01 

1----.. 02 

n-1 On-2 

Figure 2-Benes' rearrangeable network 

Figure 3--An 8X8 rearrangeable network 

monotonic sequences can be used to construct a bitonic 
sequence, a network that rearranges a bitonic sequence into 
monotonic order can be built and used as a merging network. 
Figure 7 gives the iterative rule for constructing a bitonic 
sorting network for 2n numbers using n comparison cells and 
two sorters for n numbers. 

Sorting networks for arbitrary sequences can be constructed 
from either odd-even or bitonic sorters by forming ordered 
lists of length 2 and merging those lists two at a time, to form 
lists of length 4, etc .. 

MI N (A,B) 

(A, B) 

Figure 4-Basic batcher cell 



C, 

as 

b1 

Figure 5-Batcher odd-even merger cell 

Kautz's cellular interconnection arrays 

Much work14 ,15,27,35,38,39,42,43,44,46,47 was done on interconnec
tion networks at Stanford Research Institute. Kautz46 pro
vides a good summary of the results of the various studies. 
He describes three main problems. These are: (1) universality 
of interconnection networks,38 (2) minimization of inter
connection networks39 ,47 and (3) permutation networks. 14 

Problems (1) and (2) deal with the desire to be able to ar
range a homogeneous set of elements in a "less-than-com
pletely-connected" network to optimize some parameter. The 
universality of interconnection networks is studied by using 
networks represented as linear graphs. Problem (1) becomes 
the determination of the characteristics of universal networks 
which allow any configuration with a sparse interconnection 
structure to be realized as part of a "universal" network. 
For example, universal networks of six elements with inter
connection links to no more than three other elements can be 
exhibited which realize every possible six-element network in 
which elements are connected to no more than two other 
elements. Problem (1) is abstracted to determining what 
graphs may be embedded in a universal graph with n nodes 
(elements) of degree (number of connections) d. Bounding 
relationships on nand d are derived. Problem (2) can be 
abstracted to trying to minimize the largest value of the 
number of PE's which one must pass through in communicat
ing between two elements of a network. This problem can be 
considered in terms of the diameter of a graph. The problem 

Interconnection Networks-A Survey and Assessment 911 

a, 
C, 

a2 

C2 
a3 

C3 
alj 

Clj 

C5 

C6 

C7 
as 

b, 

b2 

b3 

blj 

bt~ ~Cs+t 

Figure 6-Batcher odd-even merging network 

ELEMENT 

SORTER 

ELEMENT 

SORTER 

Figure 7-Bitonic sorter 

I-----.C, 

1-----. Cn+1 



912 National Computer Conference, 1974 

OR r 

, , 
Figure 8-Basic Kautz cell 

then becomes the synthesis of graphs \vith prescribed diam
eters but a constrained degree of a node. Various synthesis 
(construction) techniques and bounds are described. 

Problem (3) concerns permutation networks. Kautz14 et al. 
and Waksman15 utilized the basic permutation cell shown in 
Figure 8 to build interconnection arrays. The cell has two 
states defined as "cross" and "bend." A number of different 
array types have been investigated, including triangular, 
diamond,-. rectangular, pruned -rectangular, ... rhomboidal, 
square, almost square, Bose-Nelson,I6 and rearrangeable 
arrays.9,14,15 

The triangular array is shown in Figure 9. The proof of its 
permutation capability is inductive. Clearly, the left most 

COLUMN 

i 
I 
I 
I 
I 
I 
I, 
I 

Xn-1 

n-2 

Figure 9-Triangular interconnection array 

.n-1 

cell can perform the permutation for n = 2. Assume that 
n-2 columns can perform any permutation of n-1 elements, 
then by adding column n-1 to the array the variable Xn 
may be switched into the sequence Y I , •.. , Y n - l at any point, 
thereby adding an element and making the sequence Xl, ... , 
Xn map 1 to 1 and onto the sequence Y I , •.. , Yn in any 
fashion (permutation). The number of cells required is 
Y2(n2-n). The other arrays studied were variations that 
altered the level of interconnectivity and the number of cells 
in the arrays. Further, the regularity of the structure was 
manipulated and studied. The rearrangeable array was es
sentially an implementation of Benes' rearrangeable networks 
described earlier.6,7,8,9 

Thurber's programmable indexing networks 

Thurber17 introduced a network called an "indexing net
work" to overcome some deficiencies of n to n interconnection 
networks. Limitations of interconnection networks typically 
are that input words cannot be repeated or deleted at the 
output. Blanks cannot be inserted into the output and the 

.. number of input words and the number of output· words 
must be equal. The indexing network differs from the per
muter in that input words can be repeated or deleted and 
blanks can be inserted in the output. For an indexing net-

INPUT ""0 
===> 

I NPUT WORD 
REGISTERS 

INPUT 
==> 
TO OPM 

:::" , II 

OUTPUT 
REGISTER 

L-----Ji I 

Figure lo-Programmable indexing network 



work, the number of input words (n) has no special relation 
to the number of output words (m). The non-blank output 
words may appear in many contiguous subsets of the output 
words (these subsets could be empty). Also, it is desirable to 
process data during its routing (e.g., matrix transposition 
in addition to simple sorting or merging) . 

Thurber proposed two general solutions. The first is essen
tially a circulating storage device ·with a map. The device 
contains an input storage device and an output storage de
vice. The map determines how items are moved from the 
input to the output. Shift registers were envisioned as being 
used. The speed of the solution was dependent upon the 
amount of parallelism built into the network. 

If N is a network with n inputs and m outputs then the 
output position map (OPJ\,I) is a vector containing m distinct 
cells with log2 (n+ 1) binary bits per cell. Each cell contains 
the binary code corresponding to the input value desired in 
the corresponding output cell. Log2 (n+ 1) bits are needed 
since the n inputs and the 0 (blank) must have a code so that 
they can be specified as output values if desired. 

Figure 10 is an example of a typical indexing network. The 
input word registers are shifted until the data tag matches 
the OPYl value then the value is transferred and the OPYl 
advanced. Obviously, this process is sequential and could 
require nXm shift cycles. Variations on this theme include 
bidirectional shifting of the registers and increased hardware 
parallelism. 

The second solution was called the "Splitter" and is shown 
in Figure 11. This solution required that each piece of data be 
furnished with a map (tag) called an input position map. 
The input position map (IPM) is a set of binary codes as
sociated with the input data of a network that specifies the 
position (or positions) that the data is to be transferred to in 
the set of output registers. The allowable data transfers are 
indicated in Figure 12. The Splitter operates by transferring 
(at each stage) the top most piece of data according to the 
map. Eventually as indicated in Figure 11, the input se
quence is reordered. Pipelining is possible through the net
work. The most difficult and limiting part of these solutions 
is that the maps must be preconstructed to sort the data 
based upon the tags. 

INPUT 
INTO THE 
SPL ITTER 

n TO 

n/2 nlll ~ 

==> U
12TO ==> ~ 

TRANSFER [TI 
LOGI C nl4 = TO 

TRANSFER n/8 
LOGIC 

~
~~ = Rfl 
14 G&J 
" Io"l 

= I "~~ I 
L--..J ~ 

==> C::=J OUTPUT WORD 0 

==> .. .c==J OUTPUT WORD 2 

==> 
TRANSFER 
LOGIC 

Figure 11-8plitter 

Interconnection N etworks-A Survey and Assessment 913 

TRANSFER BYTE VALUE 

D o 0 

D 
D o 1 

.. 
1 0 

D 
--. 

1 1 

.. 
Figure 12-Allowable splitter transfers 

Thurber's cascaded permutation network 

Thurber18 studied the problem of constructing a permuta
tion network from a cascade of identical cells such as shown in 
Figure 13. Figure 14 indicates the implementation of one 

INPUT 
PINS 

Figure 13-Cascade permuter 

Y, 
Y2 
Y3 

OUTPUT 
PINS 



914 National Computer Conference, 1974 

x, 

\....-_-+--- Y 6 

(
I 2 3 1+ 5 6\3 

5621+ I V 
Figure 14-Permutation cell 

possible permutation and Figure 15 indicates the effect of 
the composition operator. Given the knowledge of how the 
basic permutation is realized and composed, the problem 
then resolves itself into selecting (via permutation group 
theory) a base which spans the space of all permutations, but 
which may be economically realized. 

Three obvious solutions for the base were rejected. These 
were: 

(1) The set of n! permutations would allow a single cell 
in the cascade but require many pins and large amounts 
of logic. 

(2) The set of two permutations 

(

1234 ... n) and (1234 ... n-I n) 
2134 ... n 2345 ... n 1 

because this required cascades of length n!. 
(3) A solution based upon cardinality of permutation or

bits because there is no generation algorithm for 
control. 

Solutions selected were: 

(1) A base of n elements in which a permutation of n ele
ments is inductively implemented using a permutation 
of n-l element:::; ana the permutation Gi~:::: ~- l~) 

(2) A base of 2n-4 elements in which permutations were 
added to the base of (1) above to reduce the cascade 
length. 

(3) A base choosen so that the cascade length did not ex
ceed n-I cells. This solution increased the base size to 
approximately n2• 

Detailed examples, calculations of length, control al
gorithms, etc., are given in Reference 18. 

Tarjan's sorting network 

Tarjan19 considered the problem of sorting a sequence of 
numbers using stacks and queues. Three types of basic ele
ments were used. These were queues (FIFO elements), 
stacks (LIFO elements), and a switchyard. A switchyard is 
represented by a directed graph with a unique source and 
sink in which a vertex represents a siding. A siding can be 
either a queue or stack. Further assumptions include (1) 
the source and sink sidings must be queues and (2) storage 
may only occur at vertices of the graph. Tarjan concen
trated on determining propertiBS· of . sorting networks and 
their relationship to the ability to sort sequences. No specific 
networks are derived in the paper. The paper presents a good 
insight into the difficulty of describing general properties of 
sortable sequences. One important result derived is that if 
m2::2, then a sequence of length 3·2m- 1 (or less) may be 
sorted using m stacks in series. 

Harada's sequential permutation networks 

Harada20 proposed two permutation networks. The first is 
a representation of the general permutation (;1!2!a::: r;,,,) . 
The second is a lexicographic network representation. Its 
behavior may be computationally described as an explicit 
representation of the factorial counting function N = L:~=2 Ah 
. (h-I) !<n!, where Ah is a h-nary factorial digit and 0:::; 
A h :::; (n-I). 

(, 23~56\ 
\.562~ly 

(123~56\ = (, 23~56,\ 
~54'23) 235'6~ 

Figure l.!)-Composition operator example 



Harada provides a detailed examination of the relation
ship between the two networks and their control states. His 
analysis begins with the observation that given the ability to 
generate all permutations of k-1 elements, another state in 
the network can be constructed (utilizing more elements) 
which can construct all permutations of k elements. The 
networks employed are two versions of the KautzI4 et a1. tri
angular array. As shown in Figure 8, each cell may bend or 
pass a variable. Two complementary networks (shown in 
Figures 16 and 17) are defined. The network of Figure 16 
works like the triangular array of Kautz. The network of 
Figure 17 is the lexicographic network. 

The goal of the study was to define a network which would 
produce permutations for computational purposes not an 
interconnection network, but the network could be used as 
an interconnection network. The following conclusions were 
reached about each network: 

(1) each could generate all n! permutations 
(2) a permutation could be derived from its predecessor 

in a single clock step. 
(3) the permutor of Figure 16 represents the equation 

( 123 n) d" t . ted 
P1P2P3::: P" an IS mpu onen . 

(4) the permuter of Figure 17 represents the factorial 
counting function and is output oriented. 

I I 

I I - .... - - - - , 
\ 

"-

I I "-
" ~ I 

........ - --

I I 
--- --- --- ---l I 

-r-. _ -

3 ~ 

Interconnection Networks-A Survey and Assessment 915 

- - I I -- -
--- ........... 

........ 

l I --
.......... 

"-
"-

I I "-

"I 1 
............ 

-- --l I 

I I 
I 
I 

3 

Figure 17-Harada lexicographic permutation array 

Bandyopadhyay' 8 permuter network 

Bandyopadhyay21 et a1. discussed the implementation of 
the network shown in Figure 18. The concept was based upon 
the generation of a permutation of K elements by being able 
to generate a permutation of K -1 elements. The selector 
cells were realized using cellular logic arrays. The advantage 
of this approach is the small number of control lines. The 
disadvantage in comparison to Thurber'sI8 cascade approach 
is that all cells are unique and thus the concept is suitable for 
LSI implementation only if cellular arrays can be used in the 
implementation as proposed.21 

'-1 Y, 
SELECTOR 

CELL Y2 

SELECTOR 

CELL 

Y n-' 
Yn 

CONTROL CONTROL CONTROL 

Figure 16-Harada permutation array Figure 18--Bandyopadhyay cascade permuter 



916 National Computer Conference, 1974 

Smith's sorting network analysis 

Smith22 considers a number of problems concerning the 
concept of a sorting network. Whereas, most of the other 
references are mainly interested in how to synthesize sorting 
networks, Smith was interested in whether a network sorts 
and the characteristics of networks which sort items. 

Smith views the network as a sequential finite state ma
chine. Comparators are finite state machines and, thus, com
positions of comparators are finite state machines. Further
more, viewing the network as a composition of finite state 
machines, he is able to analyze the number of permutations 
that may be produced by anyone given configuration of 
comparators (of any mixed variety). A large number of 
theorems describing the behavior of comparator networks are 
derived. Several important results are: 

(1) No two reachable states in a sorting network are 
equivalent 

(2) A sorting network on an n-element domain has 
<T(n) = :E;=o k!" (:) reachable states where (;) de
notes a Stirling number of the second kind. 

. 'The. Smith. paper.also..introduces. the ... concept teFmed the 
zero-one principle and shows how this principle may be ap
plied to determine whether a network sorts or not. One of the 
most important results of his investigation is that no com
parator network containing one or more comparators can sort 
each of the assignments 

000 ... 1 

000 ... 1 
001 ... 1 
011 ... 1 

without sorting some other assignment. More importantly 
the paper notes some of the reasons why the problem of de
signing sorting networks is so difficult: i.e., 

(1) lack of algebraic structure on the subject; 
(2) lack of tools to manipulate composite networks of 

comparators; and 
(3) lack of tools to manipUlate sets of network assign

ments, 

Smith did, however, discover that it seemed easier to ap
proach the subject from the standpoint of Boolean ex
pressions rather than from the standpoint of partially ordered 
sets. Furthermore, he did not see any promising opportunities 
for resolution of even the simplest questions, such as, how 
many comparators are required to construct a sorting net
work. 

Lawrie's n networks 

Lawrie23 developed a set of connection net\vorks and al
gorithms for their synthesis based upon the concept of the 
mathematical notion of a lin base" representation of integers. 

The research was being done to determine effective means of 
interconnecting processing elements in highly parallel pro
cessor configurations. 

Lawrie shows that if Rn is an ordered set of integer factors 
of n(Rn= (PI, ... ,Pk) such that PI"P2" ... Pk=n) then n(Rn) 
may be defined as the set n(Rn) = (WI/Wk = 1, Wi= Wi+I
Pi+I) where O<i':::;k-l and Wi= II~=i+I Pj. Also note that 
Wo=n and Wx/Wk = 1 means that there exists an integer, a, 
such that lVI"a= Wk. Using Q(Rn), Lawrie develops a con
nection network algorithm. The algorithm constructs a k 
stage network (stages numbered 1, 2, ... , k from left to right) . 
The ith stage is composed of n/pi crossbar switches, each 
switch Pi by Pi. At each stage the n/pi crossbar switch 
networks have their inputs and outputs labeled from 0 to 
n-1 (e.g., the inputs and outputs of switch number 2 are 
pi, Pi+I, ... , 2pi-1). Connections are made by connecting 
output j of stage i to input l of stage i + 1 where l = (j -+- Wi-I) -
W i- I+ (j mod Pi)" W i+ (j mod Wi-I) -+-Pi. Where X-+- Y is 
taken to mean the integer part of the quotient. A special set 
of connections must be computed for stage 1. A control 
algorithm is developed by constructing a n-set, which repre
sents a mapping or connection between n input and n output 

... nodes;-·n-sets can he-·used·to·describetho {~-(jfittol6f-the-net~ 
work and to detect conflicts in routing. A detailed study of 
the properties, effectiveness, and construction of n networks 
is given in Reference 23. 

One n network which Lawrie implemented is shown in 
Figure 19. This is a bit serial network constructed from build
ing blocks that transmit and/or block signals in response to 
the strobe or reset at each cell. Transmissions allowed are 
A = C, B = D, or A = D, B = C. Conflicts can occur but may 
also be resolved in this network scheme. 

A 
o o 

8 

2 2 

6 3 

If 

5 5 

3 6 

7 7 

Figure 19-0 network 



o 
A C 

--------~ ~------~ 0 

2 2 

3 
3 

~ 

5 5 

6 6 

7 7 

Figure 2O-Redrawn n network 

There are a number of things to note about the n network 
of Figure 19. First, topologically, its last stages represent 
bitonic sorters and rearrangeable networks. Further when it is 
redrawn as ShO"'ll in Figure 20, it contains the perfect shuffie 
interconnections26 •27 and the interconnections become quite 
regular. 

There are many forms of n networks. Lawrie has analyzed 
numerous variations which minimize various pertinent fac
tors. His work is probably the best analytic study of inter
connection networks performed to date. It provides us with 
the most advanced mathematical tools so far developed in the 
area of sorting and interconnection networks. Crossbar 
switches, bitonic sorters, etc., can be viewed as special cases of 
n networks. 

Figure 21-Banyan 

Interconnection Networks-A Survey and Assessment 917 

CROSSBAR 
SWI TCH 

1 

SW 
1 

CROSSBAR 
SWI TCH 

2 

SW 
2 

••• 

••• 

CROSSBAR 
SWITCH 

SL-l 

SW 
F 

Figure 22-L-level SW banyan structure with fanout F and spread S 

Goke and Lipovsh's banyan networks 

A "banyan" as defined by Webster is an East Indian fig 
tree whose branches grow shoots that take root and become 
new trunks. A banyan24 can be illustrated graphically. A 
graph of a banyan is a Hasse diagram of a partial ordering in 
which there is one and only one path from any base to any 
apex. A base constitutes any vertex with no incident arcs. 
An apex is any vertex without arcs incident from it. All other 
vertices are called intermediates. Figure 21 is a banyan. 
The significance of banyan networks is that their tree shaped 
structure provides the possibility of allowing low propagation 
delays with limited fan out systems. Further, priority hard
ware can be included to minimize conflicts and conflict de
tection schemes can be devised. 

Large banyan networks may be synthesized recursively 
from smaller networks. Goke and Lipovski prove a number of 
theorems relating to banyan networks,. which will allow 
synthesis of large banyan networks and determination of the 
networks potential for conflicts. 

L-level banyan (a banyan whose vertices are arranged in 
levels so that arcs can only exist bet\veen vertices in adjacent 
levels) are considered for propogation delay factors (distance 
between base and apex is the critical factor), conflicts (a 
criteria to avoid conflicts and enhance performance is de
rived), and speed factors. 

There are two quite important banyan networks. These 
are the SW45 and CC (cylindrical crosshatch) structures. 
The SW structure recursively expands to a crossbar..s\vitch as 
illustrated in Figure 22. The CC structure is rectangular and 
contains N = SL vertices in each level. If V KO, V Kl, ••• , V K n- 1 

are the vertices in each level K of an L-Ievel CC banyan 
structure then there is an arc from a vertex V K i to a vertex 
VK +1i in the level above whenever j=i+mSK(mod n) for 
some m=O, 1, ... , S-1. Furthermore, crossbar switches, 
bitonic sorters, etc., are able to be described and analyzed 
as banyans. 



918 National Computer Conference, 1974 

TABLE I-Comparison of Interconnection Network Approaches 

:s:ARIIMETERS DATE NIJ4BER OF CELLS TYPE OF CEllS UPPER BOUND ON CYCLES 
TRANSMISSION REQUIRED FOR AN 
TIME ARII TURY 

NETWORK TYP PERMlTATION 

COM4ENTS 

BARREL VARIABLE COM4ON ElEMENT I N 
DEPENDING ON SElECTOR aJlPUTER SYSTEMS 

SHIfTER lOG:!n 
CEll CHIPS CHIPS 

l~n 

USED 

COItION ElEMENT IN SOlIE 
CROSSBAR lOG:!n n2 CROSSPOINT l~n aJlPUTER SYSTEMS. 

TWO INPUT EARLY lIlT Wfll STUD I EO 
BENES 2 lOO:! n n Lo~(n)-n+l Tl«I OUTPUT 2 lOG2 n REIlRIWItUIl£ NETWOIII( 

SWITCHES COtICEPT. 

TWO INPUT 
(lOG:! n)2 

n/4«lO~ n12_ (lO~ n)2 BITON IC SORTER BATCHER TWO OUTPUT 
(LOG,. n)+4) SWITCHES 

KAUTZ n-l N2/2 TO n l.OGt' 
TWO INPUT 

n-l 
MANY 01 FFERENT SOLUTIONS 

~T~!~UT TOPOLOGIES 

SHIFT MANY· 01 FFERENT SOLUTIONS 
THURBER nm TO n (n+m)(p) REGISTER nm TO n REQUIRING VARYING AMOUNTS 

CEllS OF CONTROL HAROWABE 

n-1 T0Ln=n-l n-1 TO Ln:;n-l ~EJIITYF1D4 CASCADES RUN INTO PIN n-1 TO Ln:;:n-l 
THURBER +Ln-! (\,)=2) +Ln-! (L3=2) 

2.5112..511 TO 7n 
+Ln-! (L3=2) 

LIMITATIONS QUICKlY 
GoITES PER CEll 

MATHEMATICALLY SOPHISTICATED 
LAWRIE LO~ n n LO~ n VARIES lO~ n ANALYTIC AND SYNTHESIS TOOLS 

GROWTH RATES MAY VARY 

GOKE lO~ n n LO~ n COIISIDERULY DEPENDING UI'OtI 
FAN OUT ASSUMPTIONS 

APPLICATIONS 

There are a number of applications for which sorting and 
interconnection networks maybe used. Some typical-ones· are 
listed below: 

(1) sorting data 
(2) switching networks ",i.th priority (conflict) resolution 
(3) multiaccess memories 
(4) content addressable memories 
(5) recirculating memories 
(6) permutation generators 
(7) restructurable bussing structures 
(8) interconnection net,,,"orks for parallel processors 

Some actual problems requiring (or solved by) application 
of interconnection networks may be found in References 
25-32. Further references of interest pertinent to the subject 
of interconnection networks begin with Reference 33 and 
continue to Reference 48. 

COMPARISON OF INTERCONNECTION 
NETWORKS 

It is very difficult to make a comparison of iritercormection 
networks for the following reasons: 

(1) There is very little theory and analytic tools available. 
(2) The networks were mainly developed ad hoc and thus 

satisfy varying requirements, making them even more 
difficult to compare due to their different capabilities. 

(3) We have no baseline networks to reference. 
(4) There are really two structures to consider (control 

and data routing) . 

Table I has been constructed to give the reader a feel for 
some global differences in the networks. Presented in this 
table are some very gross comparisons of the "order-of
magnitude" type. The table is admittedly quite rough, be
cause the detailed comparison of such networks is far beyond 

the scope of this paper. Barrel shifters and crossbar switches 
have been included to provide a baseline feel for the net
works complexity. Notably, the order-of-magnitude prop
erties of the networks are quite similar so that differences in 
the networks lie in the areas of ease of control, detailed 
capabilities, practicality, ease of reduction to design, required 
number of gates, ability to utilize off-the-shelf parts for 
construction, number of pins, size, weight, power, etc. 
Furthermore, data transmission time and the upper bound 
on number of cycles are identical, except one must note that 
you need to multiply data transmission time by a time factor 
T for each stage to account for time delays and to obtain a 
realistic data transmission time figure. T may be different 
for each cell type thus proqucing different speed networks. 

CONCLUSION 

The most important issue clouding the future of interconnec
tion networks is their practicality. Numerous ad hoc ap
proaches have been developed which demonstrate that 
interconnection networks can be designed but that reduction 
of such networks toeconomieally viable units is very difficult. 
A number of theoretical developments23.24.46 have been intro
duced which provide good methodologies for analytically 
designing interconnection networks. Notably, the complexity, 
delay time, number of units required, etc. do not differ sig
nificantly between approaches. Thus it is time to consider 
the practical problems associated with interconnection net
works. Some of the practical issues that must be resolved 
before interconnection networks can become viable com
ponents of a computer system include: 

1. Determination whether any additional functions are 
appropriate to be included in the networks 

2. Design of basic building block modules which provide 
good gate to pin ratios, are low cost, and provide the 
ability to be utilized to construct larger networks. 

3. Development of cost effective LSI partitioning of the 
networks and their basic building blocks 

4. Development of simple, easily changeable control 
algorithms 

5. Investigation of the problems involved with actually 
transmitting -signals· through the hetworks. 

To date work on interconnection networks has generally 
concentrated on achieving the network functionality and ig
nored the problems associated ,,,i.th implementing the net
works. Economically viable networks have yet to be achieved. 
Furthermore, many difficult problems remain to be solved 
before the networks approach practicality. From the view 
point of the network's functional characteristics, real pro
gress js being made. Some of the recent advances23.24.26 include 
a number of early network designs as special cases. Thus a 
strong analytic base has been laid. 

In distributed systems, systems of many small processors, 
or systems constructed from modular logic, the interconnec
Lion logic may be at least as expensive as the logic in the 
processors themselves, thus the recurring hardware cost of 



modular computer networks may be two to ten times that of 
a general purpose sequential machine capable of doing the 
same job.48 Therefore, deriving economical interconnection 
networks and bus structures will be more important than 
ever due to advances in LSI technology. The theoretic future 
of interconnection networks appears bright, but the real 
challenge lies in reducing to practice economical interconnec
tion networks which will make possible digital systems with a 
high degree of interconnectivity. 

REFERENCES 

1. Joseph, E. C., "Future Computer Architecture in Polysystems," 
Proceedings of COMPCON 72, pp. 149-153, September 1972. 

2. Johnson, M. D., et aI., "All Semiconductor Distributed Aerospace 
Processor/Memory Study; Volume II: Description of Alternatives 
and Trade Off's," Final Report Air Force Contract F33615-72-C-
1709, August 1973. 

3. Wulf, W. A., and C. G. Bell, "C.mmp-A Multi-mini-Processor," 
Proceedings of the 1972 F JCC, pp. 765-777, December 1972. 

4. Thurber, K. J., et aI., "A Systematic Approach to the Design of 
Digital Bussing Structures," Proceedings of the 1972 FJCC, pp. 
719-740, December 1972. 

5. Martin, W. A., "Sorting," Computing Surveys, December 1971, 
pp. 147-174. 

6. Benes, V. E., "Algebraic and Topological Properties of Connecting 
Networks," BellSy.stem Technical Journal, pp. 1249-1273, July 1962. 

7. Benes, V. E., "Permutation Groups, Complexes, and Rearrangeable 
Connecting Networks," Bell System Technical Journal, pp. 1619-
1640, July 1964. 

8. Benes, V. E., "Optimal Rearrangeable Multistage Connecting Net
works," Bell System Technical Journal, pp. 1641-1656, July 1964. 

9. Benes, V. E., Mathematical Theory of Connecting Networks and 
Telephone Traffic, Academic Press, New York, 1965. 

10. Joel, A. E., "On Permutation Switching Networks," Bell System 
Technical Journal, pp. 813-822, May-June 1968. 

11. Opferman, D. C. and N. T. Tsao-Wu, "On a Class of Rearrangeable 
Switching Networks," Bell Systems Technical Journal, pp. 1579-
1618, May-June 1971. 

12. Batcher, K. E., "Sorting Networks and Their Applications," 
Proceedings of the 1968 SJCC, pp. 307-314. 

13. Batcher, K. E., "Means for Merging Data," U.S. Patent 3428946, 
February 18, 1969. 

14. Kautz, W. H., et al., "Cellular Interconnection Arrays," IEEETC 
May 1968, pp. 443-451. 

15. Waksman, A., "A Permutation Network," JACM, January 1968, 
pp. 159-163. 

16. Bose, R C. and R. J. Nelson, "A Sorting Problem," JACM, Sept. 
1962, pp. 282-296. 

17. Thurber, K. J., "Programmable Indexing Networks," Proceedings 
of the 1970 SJCC, pp. 51-58. 

18. Thurber, K. J., "Permutation Switching Networks," Proceedings 
of the 1971 Computer Designer's Conference, January 19-21, 1971, 
Anaheim, California, pp. 7-24, Industrial and Scientific Conference 
Management, Chicago, Illinois. 

19. Tarjan, R, "Sorting Using Networks of Queues and Stacks," 
JACM, April 1972. pp. 341-346. 

20. Harada, K., "Sequential Permutation Networks," IEEETC, May 
1972, pp. 472-479. 

21. Bandyopadhyay, S., et aI., "A Cellular Permuter Array," IEEETC, 
October 1972, pp. 1116-1119. 

22. Smith, B. J., "An Analysis of Sorting Networks," Final Report 
ONR Contract NOOOl4-70-A-0362-0006, October 1972. 

Interconnection Networks-A Survey and Assessment 919 

23. Lawrie, D. H., Memory-Processor Connection Networks, Uni
versity of Illinois Report UIUCDCS-R-73-557, February 1973. 

24. Goke, L. Rand G. J. Lipovski, "Banyan Networks for Partitioning 
Multiprocessor Systems," 1st Annual Computer Architecture Con
ference, Gainsville, Florida, December 1973, pp. 21-28. 

25. Rohrbacher, D. L., Advanced Computer Organization Study: 
Volume I-Basic Report, Volume 2-Appendixes, Air Force Con
tract AF 30(602)-3550, April 1966, AD 631870 and AD 631871. 

26. Thurber, K. J. and J. W. Myrna, "System Design of a Cellular 
APL Machine," IEEETC, April 1970, pp. 291-303. 

27. Pease, M. C., "An Adaption of the Fast Fourier Transform to Paral
lel Processing," JACM, pp. 252-264, April 1968. 

28. Stone, H. S., "Parallel Processing with the Perfect Shuffle," 
IEEETC, pp. 153-161, February 1971. 

29. Stone, H. S., "Dynamic Memories with enhanced data access," 
IEEETC, pp. 359-366, April 1972. 

30. Gold, D. E., "Applications of Some Switching Network Results to 
Dynamic Allocation of Memories in a Hierarchy," COMPCON 72, 
pp. 127-129. 

31. Kuck, D. J., et aI., "Interconnection Networks for Processors and 
Memories in Large Systems," COMPCON 72, pp. 131-134. 

32. Wong, C. K. and P. C. Yue, "The Anticipatory Control of a Cyclic
ally Permutable Memory," IEEETC, May 1973, pp. 481-488. 

33. Liu, C. L., "Construction of Sorting Plans," Theory of Machines 
and Computations, pp. 87-98 (eds. Z. Kohavi and A. Paz) Academic 
Press, New York, 1971. 

34. Van Voorhis, D. C., A Lower Bound for Sorting Networks that use 
the Divide-Sort-Merge Strategy, Stanford Digital Systems Labora
tory Technical Report No. 17, August 1971. 

35. Levitt, K. N., et aI., "A Study of the Data Communication Prob
lems in a Self-Repairable Multiprocessor," Proceedings of the 1968 
SJCC, pp. 515-527. 

36. Clos, C., "A Study of Non-Blocking Switching Networks," Bell 
System Technical Journal, March 1963, pp. 406-424. 

37. Tsao-Wu, N. T., and D. C. Opferman, "On Permutation Algorithms 
for Rearrangeable Switching Networks," Conference Record 1969 
IEEE International Conference On Communications, pp. 10.29-10.34. 

38. Kautz, W. H. and J. Turner, "Universal Connecting Networks and 
the Synthesis of Canonical Sequential Circuits," Proceedings of the 
9th Annual Symposium on Switching and Automata Theory, pp. 257-
268, 1968. 

39. Elspas, B., "Topological Constraints on Interconnection-limited 
logic," Proceedings of the 5th Annual Symposium on Switching Circuit 
Theory and Logical Design, pp. 133-137, 1964. 

40. Joel, A. E., Relay Permutation Type Switching System, U.S. Patent 
2,625,610 January 13, 1953. 

41. Moore, E. F., Relay Selecting Circuit, U.S. Patent 2,864,008, 
December 9, 1958. 

42. Kautz, W. H., et aI., Cellular Logic-in-Memory Arrays, Final Re
port ONR Contract NONR-4833(00), May 1970. 

43. Waksman, A., "On Permutation Networks," Proceedings of the 
Hawaii International Conference on System Sciences, January 1968, 
pp. 581-582. 

44. Kautz, W. H., "Cellular Logic-in-Memories," IEEETC, August 
1969, pp. 719-727. 

45. Lipovski, G. J., "The Architecture of a Large Associative Proces
sor," Proceedings of the 1970 SJCC, pp. 385-396. 

46. Kautz, W. H., "The Design of Optimum Interconnection Networks 
for Multiprocessors," Structure et Conception des Ordinateurs Archi
tecture and Design of Digital Computers, (ed. Guy Boulaye), Ecole 
dete de 1 O.T.A.N. A N.A.T.O. Advanced Summer Institute 1969, 
Dunob, Paris, 1971. 

47. Elspas, B., et aI., Theory of Cellular Logic Networks and Machines, 
Final Report Contract F19628-68-C-0262, 1968. 

48. Fuller, S. H., and D. P. Siewiorek, "Some Observations on Semi
conductor Technology and the Architecture of Large Digital 
Modules," Computer, October 1973, pp. 15-21. 





An economical construction for sorting networks 

by DAVID C. VAN VOORHIS 

IBM 
Los Gatos, California 

INTRODUCTION 

An N-input sorting network, or an N-sorter, is a switching 
circuit with N outputs that satisfy the following: for any 
combination of inputs 1= {£o, iI, . . ., ~N -I}, the resulting 
outputs 0= too, 01, ••• , ON-d are a permutation of I, and 
00::S;0I.:~:;· •• ::S;ON-I. Batcherl shows that a basic 2-sorter, or 
comparator cell, can be used to construct N-sorters for arbi
trary N. For example, the circuit in Figure 1 is a 4-sorter, 
since comparators A. through D move the smallest input to 00 

and the largest input to 03, and then comparator E orders the 
remaining two inputs. 

The study of sorting networks that use comparators is 
motivated only in part by the d~sire to build special hard
ware for sorting; the follo"'ing areas of research would also 
benefit from improved constructions for such circuits: 

1. Permutation Networks-An N -input permutation net
work is simply a s",itching circuit that performs the 
function of an NXN crossbar switch. Waxman2 

shows that a basic 2-permuter cell quite similar to a 
comparator can be used to construct an N-input per
mutation network for arbitrary N. Although Wax
man's circuit is cheaper and faster by a factor of 
"-'lo~N than the best N-sorter known, the effort 
required to control (that is, "program".) the minimum 
cell permutation network makes it less attractive than 
a sorting network for some applications. 

2. Nonadaptive Sort Algorithms-For a number of 
popular internal sort algorithms, such as ShellsorV 
and Quicksort,4 the basic step is to compare two 
records and to interchange them if they are out of 
order. The two algorithms cited are adaptive in that 
the particular sequence of "Compare and Condi
tionally Interchange (CCI)" operations that are per
formed depends in part on the original order of the 
records. It is possible, however, to design sort al
gorithms that use a fixed sequence of CCI operations, 
and hence are nonadaptive. Such sort algorithms may 
prove especially attractive for pipeline computers, 
since a fixed sequence of CCI operations doesn't 
require any conditional branching. 

3. Parallel Sort Algorithms-Sort algorithms that use a 
sequence of CCI operations are well suited for parallel 

921 

computers, since successive CCI operations can be 
executed simultaneously (in different processors) if 
their operands are distinct. 

Most of the previous work ",ith sorting networks that use 
comparators has been devoted to the problem of determining 
S (N), the minimum number of comparators required by a 
network that sorts N inputs. This problem is particularly 
intriguing because the strongest lower bound known5 for 
SeN), 

N(lo~N) +.5N (lOg2(log2N» +O(N), 

grows asymptotically as N (logN) , whereas the strongest 
upper bound known,6 

.250N (log2N) 2 - .386N (log~) +0 (N) , 

grows as N (logN) 2. This paper shows that 

SeN) ::S;.250N(log2N)2 - .395N(log2N )+O(N), (1) 

which represents an improvement of "-' .009N (lo~N) over 
the best previous upper bound for S(N). 

This paper gives a concise notation for sorting networks 
that use comparators, followed by a brief description of a 
network7 ,8 that previously provided the strongest upper 
bound known for SeN). Improvements to this network are 
shown to lead to (1). 

COMPARATOR NETWORKS* 

Let x= (Xo, Xl, ... , XN-1) represent a sequence of N real 
numbers and let R(N) represent the set of such sequences; 
x is said to be sorted if XO::S;XI::S; ••• ::S;XN-I. A single operator, 
the comparator operator (i:j), is defined as follows for xE R(N) 
and O::S;i<j<N. 

x(i:j) = y, where (2) 

A sequence of one or more comparator operators is termed a 
comparator network; Greek letters ",ill be used to represent 

* The notation used here is based on that used by Floyd and Knuth' 
and by Knuth.1o 



922 National Computer Conference, 1974 

iO 

2 
°0 

~ 0 °1 

i2 °2 

i3 °3 

Figure 1-4-sorter 

such networks, 'with afJ denoting the network consisting of 
a followed by fJ. C (N) represents the set of comparator net
works whose comparator operators all have the form (i:j) 
withj <N, and a network aE C(N) is called an N-sorter net
work if for every sequence xE R(N), xa is sorted. For ex
ample, it is easily verified that 

a= (0: 1) (2:3) (0:2) (1 :3) (1 :2) (3) 

is a 4-sorter network. 
Our interest in this mathematical formulation of com

parator networks is summarized by the following obvious 
lemma. 

Lemma 1: 

If a is an N -sorter network that consists of c comparator 
operators, then: 

1. there exists a nonadaptive sort algorithm that includes 
exactly c CCl operations; 

2. there exists an N -input sorting network that contains 
exactly c comparators; and 

3. SeN) ~c. 

Asequencex= (XO,Xl, •• • ,XN~l)ER(N) is termed a Boolean 
sequence if xkE [0, 1J for 05,k<N, and the set of such se
quences is denoted B(N). For any sequence xEB(N), I x I 
and I i I represent, respectively, the number of l's in x and 
the number of O's in x. The following important theorem, 
which has been proved independently by several researchers, 
such as Knuth10, greatly simplifies the problem of testing a 
given comparator network a E C (N) to determine whether it 
is an N -sorter network. 

Theorem 1: (Zero-One Principle) 

A comparator network a E C (N) is an N -sorter network if 
and only if for every sequence x E B (N), xa is sorted. 

Most of the network constructions described in the next two 
sections are recursive, in the sense that once a particular net
work a E C (N) is designed, this design is copied k times in the 
construction of a larger network fJE C(kN). The substitution 
operator S ( ., .) defined as follows permits fJ to be specified 
compactly. If aEC(N), and if k= (ko, kl' ... ) is a (possibly 
infinite) sorted sequence of nonnegative integers, then 
S(a, k) is the comparator network achieved by repiacing each 

comparator operator (i:j) with (ki:kj). For example, if 

k= (m I m is a positive prime) 

= (1,2,3,5,7, ... ), 

and if a is given by (3), then 

Sea, k) = (1:2) (3:5) (1:3) (2:5) (2:3) 

The technique used in this paper to design especially ef
ficient networks is first to prove that a particular network 
a = fJ'Y is an N -sorter network, and then to show that fJ.y is 
also an N -sorter network, where .y is achieved by removing 
one or more comparator operators from 'Y. This pruning is 
indicated by the deletion operator 5) ( ., ., .), which is defined 
as follows. If aE C(N), and if k and l satisfy 05,k, l<N, then 
5)(a, k, l) is the comparator network achieved by removing 
from a each comparator operator of the form (i :j) where 
i<k or j~N -l. For example, if a is given by (3), then 

5)(a, 1, 1) = (1 :2). 

THE [g, dJ NETWORK STRATEGY 

The most economical general strategy known for construct
ing N-sorter networks, the [g, dJ strategy/'s is based on g-way 
merging. This section briefly describes the [g, dJ strategy for 
the special case that N = gd, and the next section adds the 
further restriction that g:ll:: d = 2r. The following simple ob
servation shows that, despite these restrictions, the network 
constructions described can be used to achieve an N -sorter 
network for arbitrary N. 

Lemma 2: (Knuth;lo Greenll) 

If a is an N-sorter network, where N>l, then 5)(a, 0,1) 
is an (N - 1) -sorter network. 

The description of the [g, dJ (gd)-sorter network depends 
on the observation that any sequence x E B (gd) can be treated 
as a g X d array whose ith row and jth column are defined as 
follows* for 05,i<g and 05,j<d. 

ROW (x, d, £) = (xkEx I (kjd) =i); 

COL(x, d,j) = (xkEx I (kj jd) =j). 

(Note that ROW (x, d, i) EB(g) and COL(x, d, j) EB(d) 
when xEB(gd).) 

The [g, dJ (gd)-sorter network has the form afJ'Y, where for 
any sequence xEB(gd), 

1. ROW(xa, d, i) is sorted, 05,i<g; 
2. COL(xafJ, d, j) is sorted, 05,j <d; and 
3. xafJ'Y is sorted. 

The comparator networks a and fJ are defined as follows, 

* Here "kid" and "klld" represent. resDectivelv. the ollot.ipnt. <I.nrl t.ll .. 
remainder that result from the integer division ~i k by").d.- ------ --- ----



where al is any d-sorter network and /31 is any g-sorter net
work. 

a=alS(al, (kl (k/d) =1» ... S(al, (kl (k/d)=g-l»; (4) 

/3=S(/3l, (k I (k//d) =0» ... S(/3l, (k I (k//d) =d-l». (5) 

Theorem 2 and Corollary 2.1 below lead to a precise definition 
of 'Y. 

Theorem 2: (Gale and Karp12) 

If the rows of a two-dimensional array are sorted, then 
sorting the columns of that array preserves the order of the 
rows. 

Corollary 2.1: 

If x is any sequence in B (gd) , and if a and /3 are given by 
(4) and (5), then ROW(xa/3, d, i) and COL(xa/3, d, j) are 
sorted, for O~i<g and O~j<d. 

Corollary 2.1 suggests the following definition for 'Y, the 

(a) ~ rl : ~1 includes four 

[2.2J f-networks that sort 

~(~.4) - O. 
~(~.4) '" 6. 
~(!.4) - O. and 

~(!.4) - o. 

(b) ! (2: t2 includes 

comparator operators 

that sort 

COL2(!.4.0) ~ 0 and 

COL2(!.4.1) z o. 

::~:: 
'8~'" 
"2~'t5 

(c) ! t:B: tB is a [16.41 F2N-network 

Figure 2-[4,4] f-network 

An Economical Construction for Sorting Networks 923 

final component of the [g, dJ (gd)-sorter network. A com
parator network 'YE C(gd) is termed a [g, dJf-network, where 
g, d~2, if Z'Y is sorted whenever zEB(gd) and ROW(z, d, i) 
and COL(z, d, j) are sorted, for O~i<g and O~j<d. With 
this definition, we can summarize the [g, dJ strategy as fol
lows. 

Construction 1: ([g, dJ strategy) 

If aI, /31, and 'Yare, respectively, a d-sorter network, a g
sorter network, and a [g, dJ f-network, where g, d~2, and 
if a and /3 are given by (4) and (5), then a/3'Y is a (gd) -sorter 
network. 

Since the [g, dJ strategy is recursive, it can be used to 
achieve a (4r )-sorter network for arbitrary r, provided a 
[2 r

, 2r J f-network can be designed. It is readily verified that 
the 4-sorter network defined by (3) uses the [g, dJ strategy 
with g=d=2, and that 

'Y=(1:2) (6) 

is a [2, 2J f-network. The next section describes a recursive 
construction that yields [2r, 2r J f-networks for r~2. 

The description of the recursive construction for [2 r
, 2r J 

f-networks involves the following sequences, which are de
fined for xEB(2n ) and l~r<n. 

Qo(x, 2r) = (xkEx I (k//2) =0, ((k/2r)//2) =0); 

Ql(X, 2r) = (xkEx I (k/ /2) = 1, ((k/2r)/ /2) =0); 

Q2(x,2r) = (xkEx I (k//2) =0, ((k/2r)//2) =1); 

Q3(x,2r) = (xkEx I (k//2) =1, ((k/2r)//2) =1); 

When x is considered a 2n- r X2r array, these sequences have 
the following simple interpretation. (See Figure 2(a).) 

Qo(x, 2r) = (even elements on even rows of x); 
Q1(X, 2r) = (odd elements on even rows of x); 
Q2(X, 2r) = (even elements on odd rows of x); 
Q3(X, 2r) = (odd elements on odd rows of x); 

COL2(x, 2r ,j) = (elements of COL(x, 2r, 2j) 
and COL(x, 2r, 2j+l». 

When r~2, the [2r, 2r J f-network has the form 'Y1'Y20, 
where if xEB(4r ), and if ROW (x, 2r , i) and COL(x, 2r,j) are 
sorted, O~i, j <2r

: 

1. Qk(X'Yl,2r ) is sorted, 0~k~3; 
2. COL2(x'Y1'Y2, 2r , j) is sorted, O~j<2:>"-1; and 
3. X'Y1'Y20 is sorted. 



924 National Computer Conference, 1974 

The comparator networks 'Yl and 'Y2 are defined as follows, 
where 'Y is any [2T-1, 2r-1Jf-network. 

'Yl=S('Y, (k I (k//2) =0, «k/2T)/2) =0» 

S('Y, (k I (k//2) =1, «k/2T)/2) =0» 

S('Y, (k I (k//2) =0, «k/2T)/2) =1» 

S( 'Y, (k I (k/ /2) = 1, «k/2T) /2) = 1» ; (7) 

'Y2= (1:2r) (3:2r+2) .. , (4T-2T-l:4r-2). (8) 

Theorem 3 below shows that 'Y2 does indeed leave COL2(x'Yl'Y2, 
2T, j) sorted, 0:::;j<2r-l; also, Theorem 3 leads to a precise 
definition of o. 

Theorem 3: (Van Voorhisl3 ) 

Let x be any sequence in B (4r) for which ROW (x, 2r, i) 
and COL (x, 2r, j) are sorted, O:::;i, j<2T, where r~2. If 'Yl 
and 'Y2 are given by (7) and (8), and if Z = X'Y1'Y2, then 
Qk(z,2r ) and COL2(z, 2r, j) are sorted for 0:::;k:::;3 and 0:::; 
j <2r-l, and the distribution of O's and l's in Z satisfies: 

I Qo(z,2r) 1:::;1 Ql(z,2T) 1+IQ2(Z,2r) 1+1; 

I Q3(Z, 2T) 1:::;1 Ql(Z, 2r) 1+1 Q2(Z, 2T) 1+1; 

I Q3(Z, 2r) 1=0=>1 Qo(z, 2r) I ~ 

(9) 

(10) 

I Ql(Z, 2r) 1+1 Q2(Z, 2T) 1-1; (11) 

IQ3(Z,2T) I > 1=::}1 Qo(z,2r) 1:::;1 Ql(z,2r
) 1+IQ2(Z,2r) I; (12) 

I Qo(z, 2T) I =O=::}I Q3(Z, 2r) I ~ 

I Ql(Z, 2r) 1+1 Q2(Z, 2r) 1-1; (13) 

I Qo(z,2r) 1>1=::}IQ3(z,2T) 1:::;1 Ql(z,2T) 1+IQ2(Z,2T) I. (14) 

Constructions 3 through 6 below involve four special com
parator networks that are defined as follows. The comparator 
networks EB, EL, EH, and ENEC(2n) are termed, respectively, a 
[2n, 2TJ F2B-network, a [2n, 2r J F2L-network, a [2n, 2'J F2H
network, and a [2n, 2rJ F2N-network, where 2:::;r<n, if ZEB, 
ZEL, ZEH, and ZEN are sorted whenever 

1. zEB(2n), 
2. Qk(Z, 2T) and COL2(z, 2T, j) are sorted for 0:::;k:::;3 

and O:::;j < 2r-l, and 
3. Z satisfies, respectively: (9)-(14); (9)-(12); (9)-(10) 

and (13)-(14); and (9)-(10) only. 

These definitions imply the following lemma. 

Lem'ma 3 

If 0 is a [2n, 2r J F2N-network, where 2:::;r<n, then 0 is 
also a [2n , 2TJ F2B-network, a [2n , 2r J F2L-network, and a 
[2n , 2r J F2H-network. 

With the above definitions, we can summarize the [2 r , 2r J 
f-network design as follows. 

Construction 2: 

If 'Y and EB are, respectively, a [2r- 1, 2r-1Jf-network and a 
[4T

, 2r J F2B-network, where r~2, and if 'Yl and 'Y2 are given 
by (7) and (8), then 'Yl'Y2EB is a [2r

, 2r Jf-network. 

This construction is illustrated in Figure 2 for the case 
r=2: Figure 2(a) shows X'Yl (with x(i:j) represented by an 
arrow from Xi to Xj), where 'Yl is achieved by using (6) in 
(7); Figure 2(b) shows Y'Y2=X'Yl'Y2, where 'Y2 is given by (8); 
and Figure 2(c) shows ZEB=X'Yl'Y2EB, where EB is the [16, 4J 
F2B-network described by Construction 3 below (and 
Lemma 3). Construction 4 below provides a recursive design 
for F2N -networks, which is illustrated in Figure 3. (Construc
tions 3 and 4 are justified by Van Voorhisl3 ) 

Construction 3: 

The comparator network 

0= (2:4)(6:8) ... (2n-6:2n-4) 

(3:5)(7:9) ... (2n-5:2n-3) 

(3 :4) (5:6) ... (2n-5 :2n-4), (15) 

where n~3, is a [2n, 4J F2N-network. 

Construction 4: 

If EN is a [2n- 1
, 2r- 1J F2N-network, where 3:::;r<n, if 0 

is given by (15), and if 

then 

iO= (k I «k/ /4) /2) =0), 

il= (k I «k/ /4)/2) = 1), 

S(EN,iO)S(EN,il)o 

is a [2n, 2TJ F2N-network. 

(16) 

(17) 

In view of Lemma 3, the [4r
, 2r J F2N-network described 

by Constructions 3 and 4 can serve as the [4r, 2rJ F2B-net
work required by Construction 2. (The resulting [2r, 2TJ f
network is precisely that considered by Van Voorhis8.) 
Although the [2n , 4J F2N-network 0 given by (15) is the 
best [2n

, 4J F2B-network known, Constructions 5 and 6 
below show that when r~3, a [2n , 2TJ F2B-network requires 
(at most) 2(r-l) fewer comparator operators than the 
[2n

, 2rJ F2N-network described by Construction 4. Also, 
Constructions 5 and 6 show that when r~3, a [2n , 2rJ F2L
network and a [2n, 2r J F2H-network require (at most) r-l 
fewer comparator operators than the [2n , 2rJ F2N-network 
described by Construction 4. (These constructions are justi
fied by Van Voorhi:s. 13) 



Za~~4~.5 

~.5S.54I1S5 
5'2 z58 z59 ~ z62 z6J ~ G 11,58 11,59 ~ "62 s6J 

(a) [:32;4] F2N-netwrk tor COL2(z.4.0) 

"56 z'5l 

[32.4J F2N-net1lOrk tor COL2(s.4.1) 

(c) [64,4 J F2N-network 

Figure 3-[64,8] F2N-network 

Construction 5: 

Let eL, eH, and eN be, respectively, a [2n-1, 2r
- lJ F2L

network, a [2n- l, 2r-lJ F2H-network, and a [2n-1, 2r-lJ 
F2N-network, where 3::::; r < n, and let 0, iO, il, and a be 
given by (15)-(17) and 

Then 

and 

a= (2:2r) (3:2r+l) (3:2r) (2n-2r-2:2n-4) 

(2n-2r-l:2n-3) (2n-2r-l:2n-4). (18) 

as(eL, iO) S(eH, il)5)(o, 6, 6), 

as( eL, iO) SeeN, il) 5)( 0, 6, 4), 

as(eN, iO)S(eH, il)5)(o, 4, 6), 

as(eN, iO)S(eN, il)5)(o, 4, 4) 

are, respectively, a [2n , 2r J F2B-network, a [2n , 2r J F2L
network, a [2n , 2r J F2H-network, and a [2n , 2r J F2N
network. 

It is readily verified that when 

An Economical Construction for Sorting Networks 925 

where 0 is given by (15), the [64, 8J F2B-, F2L-, F2H-, and 
F2N-networks described by Construction 5 are all identical 
to the [64, 8J F2X-network in Figure 3 except that: 

1. the networks described by Construction 5 all begin 
\vith the six extra comparator operators in a; 

2. the networks described by Construction 5 do not re
quire the six comparator operators (2:4), (3: 5), 
(58:60), (59:61), (3:4), and (59:60) in Figure 3(c); 

3. the F2B- and F2L-networks do not require the com
parator operator (5:6) in Figure 3(c); and 

4. the F2B- and F2H -networks do not require the com
parator operator (57: 58) in Figure 3 (c) . 

Construction 6 below shows further that: 

5. the [64, 8J F2B- and F2L-networks described above 
do not require the comparator operator (9: 12) in 
Figure 3(a); and 

6. the [64, 8J F2B- and F2H-networks described above 
do not require the comparator operator (51: 54) in 
Figure 3 (b). 

Construction 6: 

Let 0, iO, il, and a be defined by (15)-(18), where 3 =r<n, 
let 01 be the [2n- l, 4J F2N-network achieved by replacing 2n 

with 2n - l in (15), and let al be achieved by replacing 2T with 
2r - l and 2n with 2n - l in (18). Then* 

and 

as (al5)(ol, 6, 4), iO)S(al5)(ol, 4, 6), il)5)(o, 6, 6), 

as (al5)(ol, 6, 4), iO) S(al5)(ol, 4, 4), il)5)(o, 6,4), 

as(al5)(ol, 4, 4), iO) S(al5)(ol, 4, 6), il)5)(o, 4, 6), 

as(al5)(ol, 4, 4), iO)S(al5)(ol, 4, 4), il)5)(o, 4, 4) 

are, respectively, a [2n , 8J F2B-network, a [2n , 8J F2L
network, a [2n , 8J F2H-network, and a [2n , 8J F2N-network. 

NUMERICAL RESULTS 

The (4T )-sorter network described by Construction 1, with 
g=d=2T and r~2, shows that 

(19) 

where f(2 r , 2r) is the minimum number of comparator opera
tors required by a [2r

, 2r J f-network. The [2, 2J f-network 
(6) and the [2 r , 2T J f-network described by Construction 2 

* Note that al~(oh6,4) is identical to the network achieved by removing 
the single comparator operator (5:6) from 01; similarly, al~(01,4,6) can 
be achieved by removing the single comparator operator (2n-l..7:2n-l..6) 
from 01, and al~(0114,4) =01. 



926 National Computer Conference, 1974 

show that 
f(2, 2) ~1, (20) 

f(2r, 2r) ~4'f(2r-l, 2r- 1) + Y2(4r-2r) 

r~2, (21) 

where F2B(2n, 2r) is the minimum number of comparator 
operators required by a [2n, 2r J F2B-network. With F2L(2n, 
2r), F2H(2n, 2T), and F2N(2n, 2r) defined similarly, the net
works described by Constructions 3 through 6 show that 

F2N(2n, 4) ~2n-5, n~3; (22) 

F2N(2n, 2r) ~2.F2N(2n-l, 2r-l) 

+F2N (2n, 4), 3~r<n; (23) 

F2B(2n, 8) ~2n+I-19, n~4; (24) 

F2L(2n, 8) ~2n+I-17, n~4; (25) 

F2B(2n, 2r) ~2.F2L(2n-l, 2r-l) 

+F2:N(2n
, 4) -2, 4~r<n; (26) 

F2L(2n, 2r) ~F2L(2n-l, 2r- 1) +F2N(2n- 1, 2r- 1) 

------_ •..• __ ... ----- .- ... --_ .. ----_ ..•.. ----_ .... _. 

+F2N(2n, 4) -1, 4~r<n. (27) 

(Relation (26) uses the result F2L(2n, 2r) = F2H(2n, 2r), 
which follows by symmetry.) 

Relations (20)-(27) can be used to show that 

F2N(2n , 2r) ~ (r-l)2n -5·2r- 1+5, 2~r<n; 

F2L(2n, 2r) ~ (r-l)2n -5·2r- 1-r+6, 3~r<n; 

r~2. 

Therefore, (19) leads to 

S(42k) ~(4k+(p+qk)2k+ 1~~)42k_ ~, k~O, 

where p is a constant determined by the boundary condition, 
and 

k 

qk= 2: (12·2 i+l)/(18.2i ·42i). 
i=1 

The boundary condition S(4) ~5 provided by (3) leads to 
p= -29/36, whereas the boundary condition S(16) ~60 
provided by Greenll leads to p= -241/288. Since qk con
verges rapidly to .046, the latter value for p shows that 

S(4r) ~r24r-.791r4r+O(4r), 

which is equivalent to (1). 

CONCLUSIONS 

This paper has considered a refinement of the [g, dJ strategy 
for sorting networks that leads to slightly more economical 
networks than those previously described. The question arises 

whether further refinements will lead to even greater savings. 
The answer is probably "yes," and both of the following ap
proaches seem promising. 

1. Strengthen Theorem 3. It can be shown that for k~ 1, 

1 Q3(Z, 2r) 1 < Y2k(k+l)=>1 Ql(Z, 2r) 1 + 1 Q2(Z, 2r) I-k 

~I Qo(z, 2r) 1+1 Q3(Z, 2r) 1 

~I Ql(Z, 2r) 1+1 Q2(Z, 2r) I+k, 

and that a similar relation applies for the l's in z. 
These two relations imply (9)-(14), which lead to the 
savings in Constructions 5 and 6; perhaps other conse
quences of these relations will lead to further savings. 

2. Generalize the [g, dJ strategy to higher dimensions. 
The most economical 18-sorter network known7 

begins by sorting each dimension of a 2X3X3 array, 
and the most economical 16-sorter network knownll 

begins by sorting each dimension of a 2 X 2 X 2 X 2 
array. Perhaps a 3- or 4-dimensional version of Con
struction 2 will yield economical (8r )-sorter networks 

__ or_economicaL'(lW).,.sorter_networks. 

On the other hand, the [g, dJ network strategy and its 
multidimensional extensions are based on g-way merging, and 
it has been shown14 that any strategy based on merging re
quires order N (log N) 2 comparators. Since the strongest 
lower bound known for S (N) is order N (log N), future 
research on sorting networks might be more profitably de
voted to: 

1. developing a new general strategy for sorting net
works; or 

2. proving a stronger lower bound for SeN). 

(Most researchers feel that the latter task is easier.) 
Finally, it should be noted that since hardware costs are 

expected to diminish significantly in the near future, it may 
become more desirable to minimize the delay of a sorting 
network, rather than the number of comparators. 

REFERENCES 

1. Batcher, K. E., "Sorting NetworkS and their Applications," Proc. 
SJCC, 1968, pp. 307-314. 

2. Waksman, A., "A Permutation Network," JACM, Vol. 15, No.1, 
Jan. 1959, pp. 159-163. 

3. Shell, D. L., "A High Speed Sorting Procedure," CACM, Vol. 2, 
No.7, July 1959, pp. 30-32. 

4. Hoare, C. A. R., "Quicksort," Compo J., Vol. 5, 1962, pp. 10-15. 
5. Van Voorhis, D. C., "Toward a Lower Bound for Sorting Networks," 

in Complexity of Computer Computations, Plennm Pr€,_,>,,; 1972, pp. 
119-129. 

6. Drysdale, R. L., Sorting Networks which Generalize Batcher's Odd
even Merge, Honors Paper, Knox College, Galesburg, Illinois, May 
1973. 

7 . Van Voorhis, D. C., A Generalization of the Divide-sort-merge Strategy 
for Sorting Networks, Technical Report No. 16, Digital Systems 
Laboratory, Stanford University, Stanford, California, August 
1971. 

8. Van Voorhis, D. C., Large [g,d] Sorting Networks, Technical Report 



No. 18, Digital Systems Laboratory, Stanford University, Stanford, 
California, August 1971. 

9. Floyd, R. W. and D. E. Knuth, The Bose-Nelson Sorting Problem, 
CS Report 70-177, Stanford University, Stanford, California, 
November 1970. 

10. Knuth, D. E., "Sorting and Searching," The Art of Computer Pro
gramming, Vol. 3, Addison-Wesley, 1973. 

11. Green, M. W., "Some Improvements in Non-adaptive Sorting 
Algorithms," Proc. of the Sixth Annual Princeton Conference on In
formation Sciences and Systems, 1972, pp. 387-391. 

An Economical Construction for Sorting Networks 927 

12. Gale, D. and R. K. Karp, "A Phenomenon in the Theory of Sorting," 
IEEE Conference Record of the Eleventh Annual Symposium on 
Switching and Automata Theory, 1970, pp. 51-59. 

13. Van Voorhis, D. C., An Economical Construction for Sorting Net
works, Working Paper 16/ A45 No.1, IBM System Development 
Division, Los Gatos, California, January 1974. 

14. Van Voorhis, D. C., A Lower Bound for Sorting Networks that Use 
the Divide-sort-merge Strategy, Technical Report No. 17, Digital 
Systems Laboratory, Stanford University, Stanford, California, 
August 1971. 





Business and industry in the 70's find computer-aided instruction 
a practical answer to training problems 

by EUGENE G. KERR 

Western Institute for Science and Technology 
Waco, Texas 

INTRODUCTION 

When one reads the technical literature of an industry or 
business or attends their national meetings, he is faced 
with subjects such as "Real Time Systems," "Data Base 
Systems," "Management Information Systems" and "Tele
processing Networks." Clearly the focus of many industries 
and business concerns is the application of "on-line" com
puting technology to their varied operational problems. A 
recent survey of business and industrial computer users 
indicates that the majority of medium and large scale 
computer users have on-line or teleprocessing systems 
scheduled in their short range plans. 

These new on-line systems have brought new problems 
or have compounded old problems during their implementa
tion. Historically, user training on new computer based 
systems has been a substantial problem which often resulted 
in a shaky start-up of these new applications. The reasons 
for ~he problems have been well documented and range 
from user hostility to inept systems design. These problems 
have often been compounded by inadequate training of the 
end users by the computer oriented systems and program
ming staff. 

The effects of inadequately trained user personnel were 
most often compensated by the availability of systems and 
programming personnel augmenting and hand-holding the 
user p~rsonnel during the start-up phase. The cost of doing 
this has increased significantly in the last few years. 

On-line teleprocessing systems, in addition, suffer even 
more severe problems. 

• The user is often hundreds of miles from the computer. 
• Errors made by the user on the terminal system can 

require enough additional processing to correct, that 
this can severely degrade both the external system 
(Customer Service) and the computer system itself. 

• Most of these new teleprocessing systems bring the 
computer face to face with the user's customer. Under 
batch systems the customer was shielded by the user 
from poor training and/or system. But under these new 
on-line systems, the sins of omission and commission 
in training and systems design will be full public view. 

• The new on-line system very often requires direct 

929 

knowledge by significantly larger numbers of people. 
For example, the Bank of ::\1ontreal in Canada has a 
requirement to train over 20,000 people in some phase 
of operating the terminal. This poses a significantly 
increased burden on training. 

• With the above large numbers of people, computer 
staff became even less desirable as the training staff. In 
addition, few organizations have adequate training 
staff to meet these needs. 

Due to the above problems industry and business have 
searched for a viable alternative. This search led several 
major businesses to an unexpected conclusion. Computer
Aided Instruction (CAl) provided both an operationally 
feasible and cost effective way of solving this new training 
dilemma. Thus, CAl which has existed experimentally in 
education for over 10 years without ever becomming a cost 
effective widely used educational tool, has found a practical 
role in the solution of industrial training problems. 

HISTORY 

The first large scale application of CAl to Industrial training 
came 'within the IBM Corporation in the mid-sixties. This 
was the training and upgrading of their field engineers first 
on the IBM 1440 system with Coursewriter I and then on 
a Model 360/65 running DOS. It is interesting to note 
that IBM did not offer Coursewriter (a CAl language) 
until several years later as an independent processor on the 
360 series. Also internal IBM staff were pushing the dedi
cated CAl system (IBM 1500) using Coursewriter. This 
system had little application to training in business and 
industry and eventually proved to be too costly for public 
education and has been phased out. 

In the latter part of the sixties most experimentation was 
still going on in the "Education Field" with very little being 
done by business and industry. A few of the earliest major 
teleprocessing users, notably airlines and finance companies 
seeing the need for some teaching devices on their systems 
added simple programmed instructions to their operating 
systems. These were not sophisticated, but did show both 
a need and gave some experience with CAl type approaches. 



930 National Computer Conference, 1974 

A major contributing factor to the lack of use of CAl 
first by "Education" and subsequently by business and 
industry was the approaches taken by developers of CAl 
languages and tools. IBM with Coursewriter set the general 
mode of, CAl language development. By the late 1960's 
CAl languages had proliferated as many universities and 
federally funded projects had developed their own versions. 
The major languages in the early seventies are: 

TUTOR-(Project Plato University of Illinois) 
PLANIT-(System Development Corporation) 
COURSEWRITER III-(IBM) 

In addition many users felt that time sharing or inter
active languages such as FORTRAN, BASIC or APL were 
all that a person needed to do CAl and so much course 
material was developed in these languages. Though these 
approaches were adequate for research and experimentation 
in "Education" they were too expensive for widescale use. 
Even though research demonstrated that many applications 
of CAl (ranging from simple drill and practice to sophisti
cated simulations) were educationally effective, their wide-

. .spread use was hindered by the high cost and operational 
implementation problems. Thus, even though much of CAl 
had proven educationally sound, interest in it as a tool and 
hope for its eventual widespread use was waning in the 
early seventies. In fact, many educators including industrial 
trainers had felt that CAl was just another passing fad. 
Most "Education" researchers had moved on to "CMI" 
(Computer )1anaged Instruction) which they felt had wider 
and more immediate requirement. ~1ost industrial trainers 
returned to other approaches: PI, Video Tape, Cassettes, 
Seminars, etc. 

NEW DEVELOP:\IIENTS 

As discussed earlier, the seventies has led to a significant 
increase in on-line teleprocessing system in almost all areas 
of business and industries. In order to meet the needs for 
adequate training, companies have intensified their standard 
training approaches. This has proved to be very expensive 
since usually a large number of specialized trainers are 
required and much traveling is involved. Another commonly 
proposed approach has been to provide some learning sup
port as part of the computer system. This has usually in
volved programming training aids directly into the actual 
application programs (United Airlines, Dial Finance). Two 
major problems have arisen with this latter approach. 

• This increases the time required to get application 
programs running and orten significantly adds to their 
complexity. 

• Computer programmers are not educators and have 
little aptitude for training requirements. This means 
that training aids programmed in are often neither 
adequate nor meaningful. 

Research and development people looking at the above 
problems and the projected increase in on-line systems, set 

out the follo"''ing guidelines as a workable solution for a 
CAl system that would meet the needs of business and 
industry. 

• The normal operational terminal should be able to be 
used for training with the proviso that such training 
would not interfere with the normal operation of the 
on-going production processing on-line environment. 

• The computer software for such a system should use a 
minimum amount of computer resources (10 to 25 
thousand characters of memory) and be usable under 
a wide variety of business and industrial on-line tele
processing systems (CICS, TSO, IMS, FASTER, APL, 
etc.) and on a variety of computers. 

• The creation of learning material should be able to be 
done by regular training staff and entered without 
requirement for computing programmers or computing 
knowledge. 

• The system should provide comprehensive record
keeping and management information capability which 
provides the training staff with the control critical to 
ensuring training success . 

- ---. The .. training··· portion of _. the . -system should-provide
capability to produce training materials from simple 
drill and practice to sophisticated simulation all with 
automatic recordkeeping. 

• The training system should allow the easy use of other 
media and training materials (PI Texts, Films, Video 
Tapes, Cassettes, etc.) and provide for the record
keeping and management of these materials. 

A number of new software and application techniques 
have allowed this type of system to be developed and to 
be interfaced with business and industrial on-line systems. 
To date a few specialized and experimental systems ap
proach the above design requirements. One of these is a 
commercially available system called TIME (Terminal 
Instructional :Managed Education). This system was de
veloped from an experimental university CAl system and 
has the following characteristics. 

• Programmed in IBM Assembly Language. 
• Structure is based on Fourth Generation Data Base 

and Information Retrieval Concepts. (This contrasts 
to the compiler language approach taken by most CAl 
developers. ) 

• Totally compatible with business and industrial trans
action oriented systems. 

• Economical of Core. (Only 10-15,000 characters re
quired.) 

• Highly modular. Consists of over 200 small (500 charac
ters) re-entrant processing modules. 

• Able to run under numbers terminal control systems 
(CICS, IMS, FASTER, APL, etc.) . 

• Runs simultaneously with most application programs. 
• Uses any current data bases and/or on-line files such 

as personnel records, branch record, etc. 
• Easy t.o updat.e and maintain. 

Equally important to the use of any system such as 



Business and Industry in the 70's Find Computer-Aided Instruction a Practical Answer to Training Problems 931 

TIME is its usability by non-technical training staff to 
produce, test and maintain specific training materials for 
the on-line system. The following characteristics illustrate 
the major training support features required. 

• No computing knowledge required to produce training 
material. 

• Editing and error correction aids are available to the 
coursewriter. 

• Provision is made for the trainer to develop course 
material ranging from simple drill to complex simula
tion material. 

• Complete records are maintained on all student activity 
and use of course material. 

• Provision for a management mode that allows the 
trainer not only to manage his instructional environ
ment but gives quantitative information on the readi
ness of a trainee to use the system. 

• Provision for a management mode that allows the 
trainer to manage 'other types of instructional ma
terials such as PI, Video Tapes, Films, Cassetts, etc. 

CURRENT USES 

Since the advent of a commercially available CAl package 
for business and industry, a wide variety of uses have been 
made with it. The majority of users concentrated on train
ing terminal operators as their major task. Bt.t even in this 
short time other creative uses of it have been made. The 
following is a list of industries where CAl is being used and 
the general types of application. 

• Banking 
• Terminal Training 
• Data Entry 
• Management Training 
• Supervisory Training 
• Personnel Policies 
• Introduction to Banking Services 

• Life Insurance 
• Data Entry 
• Terminal Training 
• Sales Training 
• Product Introduction 

• Manufacturing 
• Warehousing and Inventory 
• Terminal Training 
• Management Training 
il Computer Techniques 
• Creativity (Aero Space Company) 

• Food Processing 
• Terminal Training 
• Data Entry 
• Warehousing and Inventory 

• Retail 
• Buyer Training 
• Management Training 
• Sales Training 
• Basic Retail Skills Training 

In Branch Centralized TIME 

2 Weeks elapsed 1 Week elapsed 4 Weeks elapsed 
40 Hours per trainee 40 Hours per trainee 20 Hours per trainee 
Overtime required Use of replacement No dislocation or 

significant personnel required overtime 
Impact on branch Maximum branch Little impact on 

operation dislocation branch operation 
Rigid problems with Rigid problems with Very flexible schedul-

illness, turnover, illness, turnover, ing allowed 
etc. etc. 

2nd Most efficient Least efficient learning Most efficient learning 
learning 

Evaluation subjec- Evaluation subjective Definite evaluation 
tive 

Readiness subjective Readiness subjective Quantitative informa-
tion on readiness to 
convert 

Motivation good Motivation dependent High motivation 
on trainer 

Management infor- Little management in- Management informa-
mation depends on formation available tion available on all 
observation aspects of training 

Figure I-Operational comparisons 

As wider use of CAl is made in business and industry 
the diversity of materials will expand. 

In order to get a better prospective of the use of a CAl 
system in a business and industrial environment let's look 
at a summary of an early leader in this field. 

Bank of Montreal-Montreal, Quebec 

Bank of Montreal 

Type of Organization 
Number of Locations 
Number of Employees 

to be Trained 
Average Branch 

Computer Hardware 
Communication 
Computer Software 

Terminal Control 
System 

Applications 

Training System 
Number of Courses 

Nationwide Bank 
Over 1,000 

20-30,000 initially 
10 staff 6 tellers 
1 supervisory 3 managers 

IBM 370/168's 
Leased Line Network 

Developed Internally 

DDA, Savings, Installment 
Credit 

TIME 
Over 100 

This bank was faced with a large problem. They' had over 
20,000 employees to train at over 1,000 sites. Since they 
were putting 5,000 terminals on-line, CAl offered an eco
nomically and operationally feasible approach. Robert 
McDougal, Vice-President, responsible for the mechaniza
tion project decided that the cost savings (up to $1,000 in 
some branches) and the operational benefits (Figure 1) 
more than offset the newness of the concept. His foresight 



932 National Computer Conference, 1974 

has proven valid in retrospect as the Bank of Montreal is 
now heavily into conversion. 

Being first posed some problems, but the bank drew in 
its own training staff and hired Gordon Davies with a heavy 
background in training systems in the military to head the 
development of the system. Courses were developed and 
tested by this staff and then were piloted with the first few 
branches. Since CAl allows changes easily, the bank is still 
changing materials when they are found not to be doing 
the job. 

Mter their entry application of CAl the bank pointed 
out the following benefits beyond the obvious ones of cost 
and operational use. 

• Availability of CAl for other types of training (Man
agement Procedures, Sales, etc.). 

• Uniformity of materials and methodology in the pres
entation of learning material. 

• Validation of training materials with easy modification 
when required. 

When the Bank of Montreal completes their training they 
will be one of the largest users of CAl in any environment 
business, military or educational. 

CONCLUSIONS 

CAl has indeed found a permanent place in business and 
industry. It is predicted that most companies going to major 
on-line systems will make use of this tool. As users become 
more experienced they will branch out into wider areas of 
training. Perhaps this wider application of CAl will spur 
educational institutions to reevaluate their positions on 
its use. In addition, having CAl tools available in many 
major companies opens new vistas for educators to serve 
the business and industrial areas. 



The role of computer assisted instruction (CAl) in management 
information systems 

by RAYMOND J. COLLINS 

Kraftco Corporation 
Glenview, Illinois 

In recent months there has been much discussion of the 
"Fourth Generation" in computer technology. Defined as 
a total system, not a new series of computer hardware, the 
Fourth Generation has the following characteristics: . 

• An interactive communications system 
• A data base system 
• A transaction processing system 

At Kraftco Corporation a new dimension, Computer Assisted 
Instruction (CAl), has been added to this Fourth Generation 
total system concept-a dimension which provides manage
ment with a new body of information on which to base its 
decisions. The objective of this paper is to describe how 
Kraftco, faced \vith the challenge of implementing a Fourth 
Generation Order Entry System, utilized a sophisticated 
CAl system in the management decision-making process. 

BACKGROUND 

In 1970, the Corporation approved a recommendation to 
implement a Fourth Generation Order Entry System (OES). 
This new system would replace· the existing paper tape 
system and provide management with a comprehensive 
data base with which to plan, evaluate and forecast the 

Figure I-IBM 3270 CRT tenninal and keyboard 

933 

directions best suited to the corporate objectives. OES 
affected every aspect of the business; sales districts, plants 
and distribution centers, division as well as corporate 
headquarters, would participate in the system. The specifica
tions called for the utilization of the IBM 3270 Information 
Display terminals for the entry of order data and IBM 
3286 printers for the output of hard copy messages. 

In addition, locations with high volume printing require
ments (such as distribution centers) would utilize high speed 
IBM 3780 Card Reader/Printer terminals. Kraftco would 
be the first company in the food industry to utilize these 
cathode ray tube (CRT) terminals in an on-line order entry 
system environment-an environment which included users 
spread across the United States from Maine to Hawaii and 
from Alaska to Miami, in Canada from Vancouver to 
Montreal, and even in Puerto Rico. There would be ap
proximately 140 CRT terminals installed in over 65 locations. 

Truly, this multi-million dollar system represented a major 
challenge both to tl~e management of the corporate Systems 
Services who must develop the computer system and to 
the management of the company divisions who must im
plement and smoothly integrate this new system into the 

Figure 2-IBM 3286 printer 



934 National Computer Conference, 1974 

Figure 3-Communications network map 

everyday life of the business. Both management teams 
agreed that prior experience dictated that the system would 
only be as good as the education and training of its users. 

USER TRAINING CONSIDERATIONS 

The audience for the education program consisted of two 
categories of people. First, there were the local management 
personnel who would be responsible for the implementation 
of the new Order Entry System at their respective Sales 
Districts and Distribution Centers. They must understand 
the new system and be in a position to administer the 
required training to the administrative personnel who would 
actually be doing the work. Secondly, there were two groups 
of administrative personnel: 

(1) Sales District, and 
(2) Distribution Center. 

Each group must be taught how to perform their day-to-day 
order entry and order dispatching functions utilizing the 
new CRT terminals and printers. By far, the largest audience 
was in the second group. Over four hundred administrative 
personnel must be trained to input the pre-coded transactions 
on to the appropriately formatted CRT screen and achieve 
an acceptable level of speed and accuracy while performing 
this data entry function. An analysis of the problems as
sociated with the training of the OES users came to the 
following conclusions: 

(1) The smooth conversion and implementation of OES 
are highly dependent on the successful completion 
of training. Since OES affects many vital areas of 
the business, all personnel must execute their functions 
properly. 

(2) Errors are especially costly when dealing with real
time systems. Each error compounds file require
ments, communication line utilization, error report 
generation and system cont.rol balancing as ... vell as 
the time of the individuals involved in correcting the 

error. Thus, a definite economic value could be 
attached to the benefits realized by a sound, per
formance-tested education program. The education 
program had to be designed so that each trainee had 
to progress beyond intellectual understanding of the 
system to develop his performance capabilities. 

(3) Centralized training would be extremely difficult 
because of the diverse geographical distribution of 
the users. In addition to the cost aspects of travel 
and living expenses for literally hundreds of users, 
the interruption of business due to the unavailability 
of employees who would be attending classes was not 
desirable. 

(4) Since OES would be continually in a state of revision 
as development and testing progressed simultaneously 
with user training, students who had been trained 
early in the cycle must be advised of the latest 
procedural changes. 

(5) If local management were given total responsibility 
for training, the everyday pressures of running the 
business could have a negative impact on the quantity 
and. quality. of t~e. ~esulting .. training prograIll.Local 
inanageinen-{-needed support at a -local-Ievel- to get 
the job done effectively. 

(6) Finally, management must have facts to make the 
following decisions: Is a particular location ready 
to convert to the new system? Is each location aware 
of the latest revisions to OES? Will new employees 
be provided with adequate training after a location 
has been converted to the new system? 

To make these decisions, management had to focus its 
attention on the most basic question of all: What kind of user 
training should be employed to meet the above challenges? 

After a thorough investigation of the most recent develop
ments in industrial training programs, management chose 
Computer Assisted Instruction as the principal training 
tool, supplemented in hard copy by comprehensive pro
cedure manuals. The selection of CAl enabled the corpora
tion to insist on a central prerequisite for the education 
program: that the Order Entry System training effort run 
in the same environment as OES daily processing. Although 
the implications of such a decision are far-reaching, at least 
two challenges Were obvious from the outset: (1) In order 
to utilize the same environment for training and OES daily 
operations, CAl would have to run successfully on the new 
IBM 3270 Cathode Ray Tube terminals which had been 
chosen for the Order Entry System, and (2) CAl courses 
would have to simulate the graphic control features which 
are used so extensively in the Order Entry System formatting 
techniques. 

SYSTElVI ENVIRONMENT 

Adapting CAl software for use with the IBM 3270 
terminals was a challenge welcomed by management; 
many of the outstanding features of the new Cathode 
Ray Tube would, management reasoned, enhance the train-



The Role of Computer Assisted Instruction (CAl) in Management Information Systems 935 

ing program as much as they enhance the Order Entry System 
itself. The large screen of the CRT provided 1920 character 
positions, sufficient to accommodate a full behavioral unit 
of instruction. Furthermore, the highlighting feature of the 
IBM 3270 terminals was as potentially useful for CAl 
course writing as it was for OES transactions. Several of 
the advanced features of the CRT terminal (extra program 
function keys, data entry keyboard design, free movement 
of the cursor) promised to add significant sophisticated 
dimensions to traditional CAl course development. The 
graphic control capabilities of the terminal itself could be 
adapted for use in CAl, just as they had been incorporated 
into the Order Entry System formatting techniques. 

Following a rather extensive exploration of the existing 
CAl software systems, a CAl program was selected that 
seemed adaptable to the IBM 3270 terminals under CICS. 
Essentially, the program consists of the TIME (Terminal 
Instruction Managed Education) software package developed 
by McDonnell Douglas Automation Corporation, with 
major enhancements provided by Kraftco personnel. The 
features of the CAl system evolved, through improvements 
and software adaptations, into a program of attractive and 
varied capabilities. Among the most advantageous aspects 
of the new CAl software were: 

(1) Frugal use of 370 core (under 15K) 
(2) Easy portability 
(3) Convenient author language and simplified coding 
(4) Ready adaptability to the 3270 CRT terminals 

under CICS 
(5) Incorporation of the student's name in the text, 

response, and question lines of each course frame 
(6) A "Mailbox" feature which permits on-line communi

cation between course authors and individual trainees, 
as well as all-point bulletins from course authors 
to all students 

(7) A "Calculator" capability allowing the trainee to 
interrupt his course at any time and tap the com
puter's mathematical resources to perform a wide 
variety of complicated calculations 

Remote Location 

I-

I 
I 
I 
I 
I 
I 
I 
I 
I 

I I 
I I 

IT.A~f : MANUAL - __ I 

I 
I 
I 
I 

Data Center 

Figure 4-Remote message switching 

T I II I S Y STill 6/15/73 14:40:25 

IIBLCQIB '1:0 'J:IIIC lIQIIDBUUL IIORLD at ColI IDIICA1'IOII 

PLIASI IRTII YOUI RAIlI 

Figure 5-Signing into CAl 

(8) An "Index" feature which can serve as an on-line 
dictionary, cross-indexing terms and concepts for 
quick reference by trainees at any time during a 
course 

(9) A Computer Managed Instruction System (CMI) 
with sound information processing, readily adaptable 
to the corporation's own needs. 

ORGANIZATION OF TRAINING PERSONNEL 

Once the initial software for the Computer Assisted 
Instruction had been acquired, a specialized CAl training 
team was formulated, consisting of one person with a solid 
technical background and another with considerable teaching 
experience in the humanities, but without technical back
ground. The training team composition, while somewhat 
unusual, was very instrumental in the effectiveness of the 
CAl effort. Maintaining a staff technical expert on the CAl 
software development provided management with control 
of the CAl design modifications-both in liaison with, and 
independent of, the efforts of McDonnell Douglas Automa
tion Corporation. Entrusting the CAl curriculum develop
ment to a trained non-technical educator resulted in courses 
with a readable "humanized" writing style and a sound 
educational psychology. In a sincere attempt to avoid 
duplicating some other companies' mistakes, where pro
grammers as course authors produced CAl courses that 
were logically sound but tediously boring, Kraftco courses 
were designed under the supervision of educators and were 
written to appeal to user trainees who possessed no technical 
background. 

INITIAL PREPARATIONS 

In order to provide a valuable tool for effective course 
writing, a "CAl Standards Manual" was created for use 
by the course authors. This manual sets high standards for 
learning theory, grammatical style, and educational structure 



936 National Computer Conference, 1974 

HOW TO BEGIN TAKING A C.A.I. COURSE 

Figure 6(a) 

6/15/73 14:40: 25 

WELC<IIE TO THE wotrol!Rl'UL walLD OF CAl EDUCATION 

PLEASE ENTER YOUR NAME 

Figure 6(c) 

of each course. Emphasis is placed on the importance of 
sound behavioral objectives as the foundation for each 
course; in actual practice at Kraftco, behavioral objectives 
composed by course authors must be approved by the CAl 
curriculum coordinator before actual course writing may 
begin. Much of the "CAl Standards Manual" is devoted 
to exercises and instructions on how to incorporate the 
modern concepts of totally individualized instruction in 
CAl course writing: courses are structured according to 
decision points and branching techniques, permitting 
experienced and bright students to proceed swiftly through 
the lesson while trainees requiring more detailed information 
are also accommodated. "Leap frog learning," or the ability 
of a student to skip lesson units that do not pertain to him, 
is one of the outstanding benefits of CAl branching technique; 
when it is utilized skillfully. 

To aid course authors in the creation of interesting and 
valid instructional units, the "CAl Standards Manual" 
addresses such topics as: advantageous use of the trainee's 
name, effective incorporation of student interaction, ap
propriate audience analysis, the need for a defined "computer 
teacher" personaiity, the necessity for clearly stated achieve
ment expectations, the ability to reword the same concept 
again as an effective remedial measure, the advantages of 

6/15/73 14: 40: 25 

WELC<IIE TO TIlE WONDERFUL WORLD OF CAl EDUCATION 

PLEASE ENTER YOUR NAME 

Figure 6(b) 

ENTER ID 

Figure 6(d) 

positive reinforcement and the impact of good negative 
reinforcement (complete with sample responses, arranged 
by degree of intensity), and an explanation of the various 
answer types. While the existence of such a guide to CAl 
course writing may not be unusual with other companies 
working in the same field, Kraftco's strong insistence on high 
educational standards as evidenced by the comprehensive 
nature of the "CAl Standards Manual" is one of the factors 
surely contributing to the corporation's outstanding success 
with Computer Assisted Instruction. Furthermore, the 
"CAl Standards Manual" becomes especially helpful when 
course authors are programmers or system designers who 
have expertise in one phase of the Order Entry System, 
but who lack teaching and writing experience. Although 
m08t. course writing is done by the full-time C} ... I training 
staff, management is able to enlist expert programmers' 
efforts as temporary course authors by providing them with 
the manual outlining sound pedagogical practice. 

While the educational thrust of the CAl course develop
ment was well under way, the technical advancements of 
the CAl software were increasing rapidly. The technical 
expert on the training staff worked in close conjunction with 
the McDonnell Douglas designers to create a CAl program 
with the most outstanding capabilities possible. Of particular 



The Role of Computer Assisted Instruction (CAl) in Management Information Systems 937 

ENTER 10 

Figure 6(e) 

COURSE/FUNCTION NAME 

IImlODUCTION TO CAI_ 

Figure 6(g) 

PLEASE ENTER COURSE/FUNCTION NAME 

Figure 6(f) 

HELLO, JANE, 

YOU'RE ON TIME--THE TERIIINAL INSTRUCTION C(JQ'UTER MANAGED EDUCATION SySTI!M-
EMa\NATING FR(»I THE KRAFTCO DATA CENTER IN GLENVIEW, ILLINOIS. 

UNDER THE GUIDANCE OF YOUR SUPERVISat, YOU WILL BE SCHEDOLID TO TAiCE COURSES 
AT YOUR TERIIlNAL WHICH WILL ClUGINATE IN GLENVIEW AND BE TRANSMITTED TO 
YOU OVER SPECIAL TELEPHONE LINES. THESI! COURSES WI!R.E CREATED BY IlEMBERS 
OF THE KRAFTCO PROCEDURES AND TRAINING STAFF, AND STCllED ON DEVICES 
ACCESS IBLE BY THE KRAFTCO C(»IPUTERS. 

WHEN YOU SIGN ON AT YOUR TERIIlNAL AND REQUEST A COURSE, 
ONE OF THI! KRAFTCO C(JQ'UTERS RETRIEVES THE R~UESTED COURSE PR(»I THE STORAGE 
DEVICE, TRANSMITS IT TO YOU, ACCEPTS RESPONSES FR(»I YOU, AND MONITCBS YOUR 
PROCRESS AS YOU MOVE THROUGH THE COURSE. THIS PROCESS IS KIlCA/N AS: 

CAl -- C(»IPUTER ASSISTED INSTRUCTION 

NOW, JANE, PLEASE TYPE "c" TO CONTINUE, AND THEN PRESS THE "ENTER" KEY. 

Figure 6(h) 

Figure 6-How to begin taking a CAl course 
(a) After entering a security code for the Order Entry System, the student clears the CRT screen; she then types "START" and hits the "Enter" 
key on her keyboard; (b) The system responds with heading information for the CAl program, and asks for the student's name; (c) The student types 
her name, beginning where the cursor is pointing, and then depresses "Enter"; (d) The system requests the student's official identification number; 
(e) The student records her Ib on the screen and presses "Enter"; (f) The system now asks the student to name the course she wishes to take; (g) The 
stud£nt chooses a course from the "Course Catalog" in her CAl Workbook, and types the official course title on the screen. She then presses "Enter"; 
(h) The first frame of the selected course appears on the screen. If the student had begun this course earlier, the system would have placed her in the 

last frame she had completed, rather than at the beginning of the course 

value was the addition of the following programming features 
to the existing CAl software: 

(1) Macro-type expansion pre-compiler utility 
(2) Standardized course flow control 
(3) Diagnostic editor 
(4) Course fiowcharter which dial!;l1oses logic flow errors 

and provides a course flowchart for documentation 
purposes 

(5) Report generator module 
(6) Copy library capability for course authors, utilizing 

Panvalet 

COURSE DEVELOPlv1ENT PROCEDURE 

Once the technical and educational preparations for CAl 
course development were made, a logical procedure for all 

course construction was devised. Each course author initially 
prepares a series of behavioral objectives for his course; 
once the objectives are approved by the CAl curriculum 
coordinator, the course author composes his course. Each 
completed course is referred to the designer of the specific 
application in question for content verification, and is then 
passed to the curriculum coordinator for a review of the 
style and psychology. Finally, the CAl technical expert 
verifies that the course makes use of the latest CAl technical 
capabilities. Where additional programming needs are 
recognized, the technical man formulates proposals for 
further software development by McDonnell Douglas 
Automation Corporation, or he creates programs himself 
to meet special requirements. The organized course .vTiting 
procedure worked smoothly; in less than two months, eight 
full-length CAl courses were developed. 

While seven of the eight courses centered on the major 



938 National Computer Conference, 1974 

SAMPLE PAGES FROM C.A.I. WORKBOOK 

KlAn FOODS -II\' 0# __ .... ' NCIDI a. 

AFTER-THE-FACT COMPUTER INVOICED ORDER HEADER 

DISTRICT NAME: _____________ _ ~------------~ 
CCI (Enter From CRT) 

~------------------------------------------~ 

~ 
·SHIPMENT 

NUMBER 

~a99~ 

ENTER ON CRT FORMAT ALL FIELDS MARKED BelOW 

~ 
CARRIER 

ROUTE NO. 

Iamfj 

lldJ 
STOP 

NUMBER 

l.tl 
FREIGHT TERMS 
blank"'PREPAIO 

'-COLLECT 

W~h1 

~?tUJ 
VEHICLE NUMBER 

IaM5l ww 

~ 
SHIPPING 

LOCATION NO. 

LuJ 

!,Ave! & Gu,\lV Mln~ 

~-c·s--t 
.. ,~ .... o.a_~ -.~ --,S--: 
~ - .. --_._,,--p 

f. . 
J~ .. 5OuICI~1 CS 

PAGE 12 

MO DAY 
SHIPPING DATE 

'CUSTOMER 
NUMBER 

MO DAY 
DELIVERY DATE 

MO DAY 
·ORDER DATE 

MO DAY 
ACCOUNTING DATE 

$:ALES 
ROUTE 

~ ~.h'-;;~~I- ... -~ - --

-Ill-- -luBJ ----- ~ -~-- ~- -Ei ~~G~~-~JE~- :--
ALERT DATED NO. OF eXCHANGE OUTSIDE CUSTOMER PURCHASE 9?9 

t-_bl_~_~_L~_iG_~:_t=_~_:~ ___ PI\_L_LE_TS __ bl_an_~:_~_~::.:L~:.:.:L::.:.:X.:.;:~=E::.:.':::m.:::",::.:~:....~E_~~-=~:.::..:'~:::~:::nda::.:.ro=,y:..:... ____ O_RO_E_R_N_UM_B_ER _______ i1~t:+~~fl5 
VARIABLE ORDER DATA 

e Kraftco Corporation 
CCMPUTIIt ASSISTED IHSTRUCTlOO 

DA.tA EII'l'RY COURSE WcaKBOOK 

TABLE OF COIITENTS 

HfY TO START A CAl COll!SE • 

CATALOG OF COURSES •• 

HOW TO STOP A CAl COURSE. 

SPECIAL INSTRUCTIOOS F(lt CAl STUDENTS 

WalJQ;HEETS FOR CAl COURSES 

"IIITRODUCTIOO TO THE 3270" • 

"IIITRODUCTIOO TO CAl" _ • • 

-BEFORE-THE-FACT ORDERS" _ 

"ORDEB. STATUS Il~UESTS" •• 

"APTEB.-THE-FACT CCIIPUl'EB./INVOICED ORDEB.S". 

"APTEB.-THE-FACT MANUALLY/INVOICED ORDERS". 

"DETAIL CREDIT MOIOS" __ 

"BATCH ED CREDIT MEMOS" _ 

"PILLSBURY BEFORE-THE-FACT alDERS" • 

APPENDIX. _ • • • _ _ _ • • • • • _ _ _ • 

------~ 

----.-------~ 

11 

111 

1v 

_ 1 

• 2 

• 3 

• 6 

lO 

13 

l7 

20 

23 

26 

Figure 7-Sample pages from CAl workbook 

SUl-TOTAL - OIIOSS AMOUNT 
LUSWHII_AUOW '3' 

WS OTHIII CIEDtTS • X • X X X X X X • X X ,x x x:x • x x x 

... _. 



The Role of Computer Assisted Instruction (CAl) in Management Information Systems 939 

AUTHOR CODING 
This portion of the frame simulates 
a typical Order Entry System format. 
The student is able to enter the 
answer in the body of the format it
self, thereby utilizing CAl graphic 
controls Panva1et Copy Library 
statements are used to simplify 
author coding. 

This portion of the frame consists 
of the various answers. responses, 
and destinations programmed for 
this frame. Panva1et Copy Library 
statements are also utilized here. 

RESULTING STUDENT TEXT 
The student is able to practice 
working with an actual Order Entry 
System format as part of the C~I 
lesson. The answer is to be entered 
where the cursor indicates. 
Depending on the accuracy of the 
answer, the student will be given 
an appropriate response and destin
ation, as coded by the author. 

111111111122222222223333333333444444444455555555556666666666 77717771778 
1234567890123456789012345678901234567890123456 7890 123456 7890123456 7890 123456 7890 

SINCE OUR CONTROL TarALS AGREE, OUR TRANSACTION IS C(J1PLETE. 

24~ ____________________________________________ ~ 

CS36 

<RDER NlI1BER 
11023470111 

SPLIT FORMAT RECEIVED F<R: 

SEGMENT CotITROL 
NUMBER TOTAL 

1 1070 
4 615 

VERIFY CONTROL TarALS 
ENTER CONFIRMATION: YES-Y 

NO-N 

cci 11023340180 

NEXT FORMAT 

ENTER "y" <R ''M'' INTO THE CONFIRMATION FIELD, BEGINNING WHERE YOU SEE THE 
CURS<R POSITiONED. 

Figure 8-A sample course frame showing the use of an actual order entry system format 

transactions of the Order Entry System, one course served 
as an introduction to the operation of the IBM 3270 terminal. 
Initially, the decision was made to treat the subject of 
data entry procedures for each of the seven transactions, since 
data entry skill was required by hundreds of operators 
throughout the country_ Other topics requiring training
such as how to code orders for the various Order Entry 
System transactions-pertain to far fewer "students" across 
the nation; the decision was made, therefore, to teach those 
subjects by alternate methods, such as week-long classes 
at headquarters or special sections in the procedure manuals. 
CAl courses were to focus on the data entry techniques only. * 

* The corporation conducted six user classes at a central location to train 
office managers in the coding of order forms for the Order Entry System. 
The CAl training team members were fully prepared to serve as class 
instructors, since their course authoring experience had made them 
thoroughly familiar with the details of the Order Entry System. During 
the week-long classes on order coding for OES, the local office managers 
were given ten hours or more of on-line exposure to the CAl courses on 
data entry. In this way, the office managers were able to participate 
briefly in the CAl training program which had been prepared for their 
local employees. 

The average length of a CAl course in OES data entry 
is 100 frames. Each course went through approximately 
four revisions in the first two months of development, while 
CAl software was simultaneously adapted to bring all the 
courses to the IBM 3270 screens. Although there were still 
technical and contextual revisions to make, the training 
staff met a very tight deadline successfully. 

Now-six months later-each of those original eight 
courses has been updated at least fourteen times to incor
porate the latest system changes, technical capabilities, and 
educational approaches. In addition, six more courses have 
been added to the catalog, a dictionary of terms for the 
CAl Index is being compiled, and the "CAl Standards 
Manual" is being expanded. 

Trainees followed a specified sign-on procedure which 
records pertinent data for subsequent Computer Managed 
Instruction (eMI) reporting. 

Meanwhile, employees across the nation are enjoying 
considerable exposure to CAl training. Over two hundred 
seventy-five trainees have already registered their names 
and identification numbers with the computer so that they 



940 National Computer Conference, 1974 

response 

text 

question 

answer 

VERY GOOD, JANE. 

correct 
answer __ YOU HAVE UNDOUBTEDLY HAD EXPERIENCE IN CALLING UP DIFFERENT KINDS 

OF FORMATS, PARTICUlARLY TIlE BEFORE-TIlE-FACT ORDER FORMAT. 

incorrect 
_answer_ 

Hal, LET'S PRACTICE DOING IT. 

IF TIIERE WERE A DIFFERENT FORMAT ON MY SCREEN, AND YOU WANTED 
TO CALL UP A BEFORE-TIlE-FACT ORDER FORMAT NEXT, WHAT CODE WOULD 
YOU TYPE AFTER ''NEXT FORMAT?" FEEL FREE TO LOOK UP TIlE CODE FCR 
A BEFORE-TIlE-FACT ORDER FORMAT IF YOU NEED TO. AS SOON AS YOII = TIIr:: ~~:,=~ TYPE IT IN WHERE MY CURSOR INDICATES BELCM, 

VERY GOOD, JANE. 

{

YOU HAVE UNDOUBTEDLY .HAD EXPERIE!I;E IN CALLING UP DIFFERENT KINDS 
OF FORMATS, PARTICUlARLY TIlE BEFORE-THE-FACT <IlDER FORMAT. 

Hal, LET'S PRACTICE DOING IT. 

{

IF nIERE WERE A DIFFERENT FOIIMAT 011 MY SCREEN, AND YOU WANTED 
TO CALL UP A BEFORE-nIE-FACT <IlDER FORMAT NEXT, WHAT CODE WOIILD 
YOU TYPE AFTER ''NEXT FORMAT?" FEEL FREE TO LOOK UP nIE CODE FOR 
A BEFORE-nIE-FACT ORDER FORMAT IF YOU NEED TO. AS 50<11 AS YOU 
KNaI TIlE ANSWER, PLEASE TYPE IT IN WKIIlE MY C\IlSat INDICATES BELCM 
AND THEN PRESS IIENTER. If ' 

MY SCREEN I«lULD BE BLANK FOR OIIE OF TWO REASONS: 
1. SIGN-OIl PROCEDlRE HAS JUST BEEN CCMPLETED AT TIlE BEGINNING OF TIlE 

DAY, OR 
2. YOII HAVE FINISHED ENTERING A SERIES OF TRANSACTIONS, AND YOU 

TI!JlPORARILY DO NOT HAVE ANY M<llE TRANSACTIONS TO ENTER. 

ON EITIIER OF nIESE OCCASIONS, YOII CAN CALL UP A BEFORE-TIlE-FACT ORDER 
FORMAT FRCM A BLANK SCREEN BY TYPING IN: 

nIEN, WITHOUT SKIPPING A SPACE, TYPE IN nIE FOUR CHARACTERS OF nIE FORMAT 
YOU ARE REQUESTING. IN TIllS CASE, THE FOUR CHARACTERS YOII SHOULD TYPE ARE 
es01. GO AHEAD, JANE. TYPE IN EVERYnIING YOU I«lULD ENTER 011 MY SCREEN. 
USE THE SPACE BELOW, AND BE SURE TO HIT MY "ENTER" KEY WHEN YOII ARE DONE. 

GOOD SHCM, JANE. NOW LET'S CONCENTRATE 011 HOW TO CALL UP nIE SAME 

VIIlY GOOD, JANE. 

YOU HAVE UNDOUBTEDLY HAD EXPERIENCE ·IN CALLING UP DIFFERENT KINDS 
OF FORMATS, PARTICULARLY THE BEFORE-TIlE-FACT (JlDER FORMAT. 

Hal. LET'S PRACTICE DOING IT. 

IF THIIlE WERE A DIFFERENT FORMAT 011 MY SCREEN, AND YOU WANTED 
TO CALL UP A BEFORE-THE-FACT (JlDER FORMAT NEXT WHAT CODE I«lULD 
YOU TYPE AFTER ''NEXT FORMAT?" FEEL FREE TO wOK UP TIlE CODE Fat 
A BEFORE-TH!-FACT ORDER FORMAT IF YOU NEED TO. AS SOON AS YOU = nIr: =~~~ TYPE IT IN WllERE MY CURSOR INDICATES BELCM, 

UH-OII. THAT'S NOT QUITE RIGHT. 

. .. ·LET'S·GO ·BACK··ABJ) REYII!W Hat TO CAU··UP· A BI:Pa!E~TIIl!:-l.ACT··!mD··Y<IIHAT 
FRCM A PREVIOUS SCREI!II. 

PLEAS! TYPE "c" Fat "CONTIND!." AND PRESS ''BHTIIl. n 

FORMAT FRCM A BLANK SCREEN. 

MY SCREEN WOULD BE BLANK FOR OIIE OF TWO REASONS: 

incorrect 
answer 

I 
L _ to remedial unit ~ _ ... 

1. SIGN-ON PROCEDURE HAS JUST BEEN CCMPLETED AT THE BEGINNING OF TIlE 
DAY, OR 

2. YOII HAVE FINISHED ENTERING A SERIES OF TRANSACTIONS, AND YOU 
TI!JIPORARILY DO NOT HAVE ANY MORE TRANSACTIONS TO ENTER. 

ON EITHER OF THESE OCCASIONA, YOU CAN CALL UP A BEFORE-THE-FACT ORDER 
FORMAT FRCM A BLANK SCREEN BY TYPING IN: 

THEN, WlnIOUT SKIPPING A SPACE, TYPE IN TIlE FOUR CHARACTERS OF THE FORMAT 
YOU ARE REQUESTING. IN nIlS CASE, THE FOUR CHARACTERS YOII SHOULD TYPE ARE 
es01. GO AHEAD, JANE. TYPE IN EVERYTHING YOII WOULD ENTER ON MY SCREEN. 
USE THE SPACE BELCM, AND BE SURE TO HIT MY "ENTER" KEY WHEN YOU ARE DONE. 

THAT'S EXACTLY CORRECT, JANE. 
A BEFORE-THE-FACT (JlD1Il FORMAT I«lULD APPEAR AUT()IATICALLY. 
Hal, LET'S PRACTICE WORKING WITH nIE FORMAT YOII JUST CALLED UP. 

nIE FIRST nIING YOU SHOULD KNaI PRIOR TO ENTERING A BEFORE-nIE-FACT CRDER 
IS nIE TYPE OF SOURCE DOClllEllTS YOU WILL NaUfALLY BE GIVEN. PAGE 02 IN 
YOUR COURSE WORKBOOK CONTAINS A SAMPLE BLANK FORMAT FOR A BEFORE-nIE-FACT 
ORDER. NOTE nIE PAGES FOLLOWING IT. EXAMINE TIlE BEFatE-TllE-FACT ORDER 
HEADER SHEETS AS WELL AS TIlE CURRENT atDER FatM WInI WHICR YOU MAY BE 
FAMILIAR. 

nIE BEFORE-TIlE-FACT ORDER HEADER SHEETS ARE REQUIRED SO THAT YOU CAN 
PROVIDE THE SYSTI!JI WITH DATA WHICH DOES NOT EXIST 011 THE PRESENT ORDER FatM. 

YOU SHOIILD HAY!! ONE BEFORE-THE-YAer uiWJ!;R HiAiJtK SHEin •. ~ tAGH S;,;(,ijj!itr ui! 
THE (JlDER. IF nIE (JlDER IS NOT SEGMENTED, YOU'LL NEED ONLY ONE HEADER SHEET. 

FRCM nIE PRODUCT ORDER FatM, WHICH YOU ARE ACCUSTCMED TO us lNG, YOU WILL 
OBTAIN nIE PRODUCT DETAI L INFORMATION. 

NOW, JANE, PLEASE TYPE IN "c" TO ~ONTINUE, AND THEN PRESS "ENTER." 

, 

:~H~Q/~iAN;owsci:;~ CONCENTRATE ON HOW TO CALL UP THE SAME 

MY SCREEN WOULD BE BLANK FOR ONE OF TWO REASONS: 

1. ~~~-: PROCEDURE HAS JUST BEEN CCMPLl!TED AT THE BEGINNING OF THE 

2. YOII HAVE FINISHED ENTERING A SERIES OF TRANSACTIONS AND YOU 
TI!JIPORARILY DO NOT HAVE ANY MORE TRANSACTIONS TO ENTER. 

~~~F A ~~!K ~~i~Y ~~I~N I;:LL UP A BEFORE-THE-FACT ORDER 

THEN, WITIIOUT SKIPPING .. A SPACE. TYPE IN THE ~OUR "l!ARACTERS Of! THE -ORMAT
YOU ARE REQUESTING. IN TIllS cASE, THE FOUR CHAM~~ERS ;OU SHOULD ~PE ARE
es01. GO AHEAD, JANE. TYPE IN EVERYTHING YOU WOULD ENTER ON MY SCREEN
USE TIlE 5 PACE BELOW, AND BE SURE TO H IT MY "ENTER" KEY WHEN YOU ARE DONE.

FRMT-CSSOl_

THAT '5 NOT QUITE RIGHT, AND I'M AFHAID YOU WOULD NOT GET THE SCREEN
FORMAT YOU WANTED. LET'S TRY IT ONCE MORE.

BE SURE TO USE nIE CORRECT TRANSACT 1011 CODE AFTER "FRMT-."
IN TIllS CASE, TIlE CODE SHOULD BE CSOl.

NOW, JANE, PLEASE TYPE IN THE WHOLE THING AGAIN.
BE SURE NOT TO PLACE A PERIOD (.) AT TIlE END OF YOUR FOUR-CHARACTER
FORMAT N~ER, AND REMEMBER TO HIT "ENTER" WHEN YOU KNOW YOUR ANSWER
IS CORRECT.

I
I
~

'--
Figure 9-CAI branching technique

The Role of Computer Assisted Instruction (CAl) in Management Information Systems 941

can be recognized as students. Then, when CAl is extended
to them daily through a system of remote message switching,
trainees in distant locations sign on to the terminal indicating
that they wish to begin taking a CAl course.

Graphic control features have been added to the CAl
software so that regular Order Entry System formats can be
used in CAl courses; students are able to enter data in
the appropriate fields, just as they will when their location
is converted to the Order Entry System.

The interactive mode of CAl training allows the student
to participate freely in the learning process. Each course
frame consists of five basic parts: the text material, the ques
tion which is posed to the student, the student's answer, the
appropriate response by the course, and the destination
to the next frame of instruction. Since the response and
destination are both dependent on the accuracy of the
student's answer, each course is individually structured for
the student's capabilities.

The trainee can choose to take a course all the way through,
or he can "STOP" at any time. Once he types "STOP,"
the computer remembers where the student left off, and will
always return him to the frame he last finished-regardless
of how much time goes by before the student resumes the
course.

EVALUATION

Even at this early stage in the corporation's experience
with Computer Assisted Instruction, there has been signifi
cant feedback from employees across the country regarding
CAl as a major training tool. The most gratifying response
has been, unanimously, that learning is enjoyable. Office
managers report that their employees look forward to train
ing time each day because the subject itself is made pleasur
able and interesting, and the terminal-as-medium is "fas
cinating." Furthermore, early intrigue wi+,h the terminals
does not seem to diminish as training pl resses. Another
benefit of CAl, from the employees' perspeClJlves, is that the
"computer teacher" has been given a distinct and pleasant
personality by the CAl authors. The positive attitude of
the "teacher" increases the trainees' desires to excel in
their learning.

Employees report further that they respond highly favor
ably to the personalization of the text and question lines
of each frame. In addition, the use of the trainee's first
name in the positive responses creates an educational
atmosphere of interest and trust. On the other hand, em
polyees identified a significant error course authors had made.
The incorporation of the student's first name in the negative
responses seems to be too personal to maintain a healthy
learning atmosphere. The psychological impact of "Charlie,
I am afraid your answer is wrong again" is too strong,
according to the CAl students, because the trainee is usually
too embarrassed to try again. Instead, a non-personalized
negative response, such as "I am afraid your answer is
wrong," permits the student to try again and again "without
personal guilt over his mistakes. As a result of this feedback

from students, the course authors revised all the courses
to eliminate names in the negative responses.

One benefit of the CAl training program is that much of
the potential apprehension associated with changing from
an old system to an entirely new one was removed as a
result of the pleasurable exposure to CAl education. From
management's perspective, the attitude-shaping capabilities
of CAl are a most welcome bonus. Experience to date has
shown that employee "fear" of the new equipment is virtu
ally removed by CAL The early management decision to
train students in the same environment used for daily
processing-i.e., utilizing the identical equipment in the
same physical surroundings-has proved to be a very wise
choice. Employees can become familar with the techniques
and equipment of the Order Entry System before the system
is live for their location.

As each office converts from the old system to the new
Order Entry System, the most significant benefits of CAl
training become obvious. To date, twenty-one locations
across the country have been smoothly and efficiently
converted to the new Order Entry System without any
substantial training problems. The interactive mode of
Computer Assisted Instruction has increased student
comprehension and concentration to the extent that CAI
trained employees are able to remember and put into effect
the precise details of OES data entry. Since OES error
correction takes place on-line, no statistics on error rates
are available. Ho\vever, the actual number of errors has not
been, to date, significant enough to interfere in any way with
the smooth conversion to the Order Entry System. CAl has,
therefore, proved to be highly successful in teaching discipline
and precision by providing practice on sample formats
without consequences to the production system, Many of
the CAl trainees volunteer that their comprehension seems
much greater as a result of taking CAl courses compared
to their learning comprehension after reading a procedure
manual only. Employees at one location, for example,
once noticed a minute change (the nonsignificant addition
of a minus sign) that had been made to one frame of a
CAl course. They recognized instantly that the frame in
question had been updated overnight. When questioned,
the trainees readily admitted that they would probably
never notice a similar change to the procedure manual
they are reading, but that they find it quite easy to con
centrate on the small details of CAl courses.

One of the reasons cited for the high degree of compre
hension by CAl trainees is that the CAl "computer teacher"
is much more helpful in providing detailed remedial informa
tion than a traditional teacher can afford to be in the class
room situation-or than a procedure manual can afford
to be in its print structure. CAl students can move at their
own speed without guilt at proceeding too slowly, and
without undue pressure to finish quickly. Whenever addi
tional information is required, it is readily provided before
the student can move on to another lesson unit. Unlike one
of the dangers of t.radit.ional programmed instruction,
however, CAl trainees never get "stuck" in one frame
if they are having difficulty with an answer. A programmed

942 National Computer Conference, 1974

LET'S TRY AGUN ••
ORDER SPLIT FORMAT CCiI 11023340150

CS35 ORDER SPLIT F<mIAT cci 11023340150

ORDER NUMBER 11023470111 CONTROL 2170 CUST DCMINION STORES LIMITED
SPECIFY PRODUCTS AND CASES TO BE SPLIT FRCM PRESENT SEGMENT: error ORDER Nl!1BER 11023470111 CONTROL 2170 CUST D(MINION STORES LIMITED

SPECIFY PRODUCTS AND CASES TO BE SPLIT FRCM PRESENT SEQlENT:

CASES ON PRODUCT
SPLIT

CASES
SPLIT

---- ..
PRODUCT NUMBER
OD070
00067
00555
00406
01871
02004
00001
00005
00201

ORDER
500
250
320
240
200
100
210
100
250

75

LAST FRODUCT ON ORDER

CONTINUATION?

WE HAVE ONE MORE PRODUCT TO GO TO COMPLETE THE ORDER SPLIT TRANSACTION FOR
SEQlENT 2. ENTER THE ORDER SPLIT DATA REQUIRED FOR PRODUCT NUMBER 0001.

continue
with
course

correot-:.:... ___ _
answer

correct
answer

E
R
R o
R

,-
I
IE
I
IR
IR :0
IR
I
I
I
L_>

PRODUCT NUMBER
00070
00067
00555
00406
01871
02004
00001
00005
00201

CASES ON
ORDER

500
250
320
240
200
100
210
100
250

PRODUCT
SPLIT

CASES
SPLIT

75

LAST PRODUCT ON ORDER

CONTINUATION?

WE HAVE ONE MORE PRODUCT TO GO TO COMPLETE THE ORDER SPLIT TRANSACTION FOR
SEGMENT 2. ENTER THE ORDER SPLIT DATA REQUIRED FOR PRODUCT NUMl!ER 0001.

PRODUCT NUMBER 00001 IS THE LAST PRODUCT POSTED TO SEQlENT 2 TO BE
SPLIT FROM OUR PICKING LIST EXAMPLE ON PAGE 16 OF THE CAl WOR~OOK.
IF YOU'LL LOOK AT THE PICKING LIST AGAIN, THE CASES ON ORDBR (CASES
SHIPPED"), QUANTITY 210, HAVE NOT BEEN SPLIT. THE TOTAL~~~~~
HAS BEEN ASSIGNED TO SEGMENT 2. THEREFORE, NO ENTRY IN
SPLIT FIELD IS REQUIRED. THE ONLY ENTRY FOR PROOUCT 00001 IS THE
PRODUCT SPLIT FIELD, AS YOU SEE BELOW:

PROOUCT NUMBER
00001

CASES ON
ORDER

210

PRODUCT
SPLIT

1

CASES
SPLIT

NOW, JANE, PLEASE TYPE .. c .. SO THAT YOU CAN FILL IN THE SPLIT INFORMATION

FOR THIS PRODUCT AGAIN.

ORDER ,PUT FORMAT cci 11023340150

ORDER NUMBER 11023470111 CONTROL 2170 CUST DCMINlOO STORES LIMITED
SPECIFY PRODUCTS AND CASES TO BE SPLIT FRCM PRESENT SEGKENT:

PRODUCT NUMBER
00070
00067
00555
00406
01871
02004
00001
00005
00201

CASES ON
ORDER

500
250
320
240
200
100
210
100
250

PRODUCT
SPLIT

CASES
SPLIT

75

LAST PRODUCT ON ORDER

CONTINUATIOO?

WE HAVE ONE MORE PRODUCT TO GO TO COMPLETE THE ORDER SPLIT TRANSACTION FOR
SEQlENT 2. ENTER THE ORDER SPLIT DATA REQUIRED FOR PRODUCT Nl!1BER 0001.

SIGN-OFF AT 15:12:22

Figure lO-Programmed routine for remedial help

routine was designed to accommodate those students who
may repeatedly commit the identical error (in spite of three
levels of remedial help). The students are always permitted
to leave the course without penalty and to seek the answer
from the procedure manual or their supervisor. Once the

trainee has the answer, he is allowed to re-enter the course
at the beginning of the lesson unit he was taking. There is
no need for him to start at the beginning of the entire course,
becam;e he would then be repeating what he a.lready knows.

As a result of the high degree of success of the Computer

The Role of Computer Assisted Instruction (CAl) in Management Information Systems 943

REPORT A* Kraftco Corporation
PAGE 0001

COM PUT E R 'A S SIS TED INS T R U C T ION

STUDENT STUDENT STUDENT LOCATION
...l:JLJl..-- NAME IDENTIFICATION

0029 JOHN ABRAMS 7693

0153 MARLYCE D. ADAMSON 6305

0010 BONNIE AIELLO 2189

0023 CHRISTOPHER W. APPLETON 5405

0247 BARBARA ARENSON 2239

0086 JOE ARROWSMITH 6305

0016 JAN ASHLEY 3146

* ALPHABETICAL CLASS LIST

REPORT B* Kraftco Corporation PAGE 0004

COMPUTER ASS 1ST E D INS T R U C TID N

STUDENT STUDENT PASSWORD COURSE START LAST ACT. if FRAMES iF FRAMES ACTIVE/ ID if NAME ID1F DATE DATE C(J.1PLETED IN COURSE COMPLETE**

0068 JOE MASTERS 003 02/09/73 03/26/73 66 66 02 C

Oll 02/21/73 04/01/73 87 102 A 01 C

008 02/22/73 03/05/73 75 75 01 C

012 04/17/73 04/30/73 21 125 A

0069 META SULLIVAN 001 05/04/73 05/ll/73 103 103 01 C

* COURSE PROGRESS BY STUDENT ID 11

** AN "A" ("ACTIVE") CODE INDICATES THAT THE STUDENT IS STILL TAKING THE COURSE.

A "c" ("COMPLETE") CODE INDICATES THAT THE STUDENT HAS COMPLETED THE COURSE.

THE TWO-DIGIT FIGURE REFLECTS THE NUMBER OF TIMES THE STUDENT HAS C(J.1PLETED THE SAME COURSE.

Figure II-Two computer managed instruction reports

944 National Computer Conference, 1974

Assisted Instruction training effort, management is now
better able to make the crucial decision: When is each
location ready to convert to the new Order Entry System?

MANAGEMENT INFORMATION PROCESSING
THROUGH CAl

A major piece of evidence influencing that decision is the
information processing gained through Computer Managed
Instruction (CMI) reports. At regular intervals, manage
ment is provided "with the following information:

(1) The number of students (in general) who have
completed, or are taking, each course.

(2) The number of students (by location) who have
completed, or are taking, each course.

(3) The effectiveness of each course frame-i.e., sta
tistical data on the number of students (and their
locations) who err on certain key points within each
course. (This is valuable information for the course
authors who are continually re-evaluating the clarity
of their courses. Information of this kind may in-

""dicate ri," trainini weakness that is either Inherent
in the course, or unique to a particular location.)

Since management can monitor the individual training
progress of every remote location through CMI, educated
decisions can be made regarding each location's readiness
for conversion. Continual checking of an Office's progress
avoids last minute decisions; management can choose to
send special field representatives to help achieve total
readiness at a particular location, as soon as a potential
training problem appears evident. In this way, management
is assured of meeting the planned conversion date for each
office.

Although the Computer Managed Instruction reports are
most valuable tools, Computer Assisted Instruction itself
permits management decisions to be based on much more
than just information processing. The crucial decision to
convert a location can be made with full confidence in the
quality behind the information processing data. For example,
management can always rely on the following characteristics
of Computer Assisted Instruction:

(1) Learning has taken place. CAl continually tests and
reinforces the material it teaches by asking for
practical, interactive responses. Conversely, a pro
cedure manual is incapable of providing individualized
instruction, a manager cannot really determine that
his employee has fully read and comprehended a
procedure manuaL despite the excellence of the
manual itself, until the learning is put into actual
practice at the risk of costly errors.

(2) Education has been sound, both psychologically and
contextually. Each course was constructed-and
reconstructed-by trained experts. The CAl course
author, moreover, is continually accountable for his
course content and styie because his iessons are
subjected to scrutiny by those who actually use the

system he's teaching. User feedback is both en
couraged and sincerely incorporated in all CAl
course revisions, as a way of further management
accountability to users.

(3) Training has consistently adhered to high standards
of style. Although each "computer teacher" has been
purposely endowed with a lively and distinct person
ality, the CAl courses all seem to be part of a larger
and more comprehensive training plan. The course
consistency eliminates one initial obstacle to sound
learning; the adjustment to different styles of teaching
and variable standards of expectation.

(4) Training has been customized to the corporation's
special needs. Since courses are written by Kraftco
CAl educators for Kraftco employees, there is no
danger of the characteristic loss of specificity that
often occurs when an outside training package is
adapted to one's own needs.

(5) Education is current. Editing of CAl courses can be
done on-line or overnight in batch. Late-breaking
important changes can be called to everyone's
attention through the use of the Mailbox feature of
CAL ""-

(6) Training has shaped attitude very positively. ::.\1anage
ment recognizes the vital importance of attitude
shaping in any endeavor; since CAl has proven to
be one of the best means of creating an outstanding
morale among employees, the training program is
valued even more highly by management.

FINANCIAL CONSIDERATIONS

Naturally, one of the prime considerations was the cost
of implementing the selected training system. An extensive
financial analysis took the following factors into account:

(1) Cost of developing an in-house software program
versus renting (or rent with option to buy) a CAl
system such as the McDonnell Douglas TIME
system. The corporation chose to rent the TIME
system for a three year period at a monthly rental
of $1500. Total cost of the program is approximately
$50,000.

(2) Cost of writing the actual curriculum associated with
each CAl course. Since one of the major costs in the
development of a CAl system is the writing of the
course material, the system which is selected must
be relatively simple for the course authors to code.

(3) Cost of the extra hardware (if any) which must be
allocated to the CAl system. Usually, LIte exLra
hardware consists of additional CPU core required
over and above the normal transaction processing
requirements and additional disk storage space
required for the CAl data base.

When these CAl costs were compared to the costs of doing
a comparable job of training (measured by the results
achieved) using another educational approach-such as

The Role of Computer Assisted Instruction (CAl) in Management Information Systems 945

field classes or training at headquarters-it was obvious
to management that Computer Assisted Instruction is
considerably more economical than other training modes.
Furthermore, in the opinion of management, cost con
siderations dictated that obtaining an outside CAl package,
and enhancing it, was a better plan than attempting to
design a full CAl software system.

CONCLUSION

Although managers of data processing installations have
long felt that sound information processing would assure
informed decision-making, Kraftco's experience ""ith CAl
has convinced its corporate management that good decision-

making is more than information processing. By its very
nature, Computer Assisted Instruction allows the manager
to have control of the quality behind the data gathered
through information processing, and permits the corporation
to place confidence in the role of CAl in the "Fourth Genera
tion" of computer systems. Kraftco's initial experience
with CAl has been so successful that Computer Assisted
Instruction will be used as part of the company's in-house
technical training, as well as for nationwide user education.
Once a manager can have confidence in the proficiency level
of his employees-a confidence achieved by the skillful
incorporation of Computer Assisted Instruction-he can
make his decisions with the characteristically sound judg
ment of the successful executive.

Computer-assisted instruction in industry

by CATHERINE P. BREEX

Montgomery Ward and Company
Chicago, Illinois

The newest training technology is Computer-Assisted
Instruction-CAl as it will be referred to here. CAl is an
abbreviation for Computer-assisted Instruction; that is, in
struction prepared by a human teacher for presentation
under computer control. Its primary aim is to optimize the
learning process.

CAl is worth consideration because, if for no other reason,
it is here. With so much of business "on the computer," it
is only a matter of time before the computer is used for in
struction in industry as it is now used in education. Some
people believe that industry, because of its pressing need to
teach new job skills, will make a far greater use of CAl than
academia which, in many cases, is bound by the traditional
classroom.

In the United States, most of the work on CAl has been
done in federally funded projects in a few large universities.
To name a few, Indiana State University, Florida State
University, Ohio State University, Pennsylvania State Uni
versity, Stanford University and the University of Illinois.
Computer-assisted Instruction has been called the first trans
plant in the field of education-likened to an artificial edu
cation heart!

How does a trainee in industry learn his job or obtain other
kinds of information on CAl?

-He goes to the terminal and identifies himself and the
program he wants by typing his name and the code for his
particular lesson. If I were the student, I would type "Cathe
rine Breen" and if I ,vere learning how to read a financial
statement I would type MWFS (Montgomery Ward Finan
cial Statement) or any other code the computer had been
programmed to accept.

The computer will check its memory and immediately
confirm that it knows me by responding with a code of its
0'""11 which will permit me to begin my training on the
computer.

And, if I were continuing a lesson previously started, the
computer would find the appropriate lesson and would permit
me to start where I had left off the previous day or previous
week. The computer then, becomes my mechanized, personal
tutor.

The trainee proceeds to read information and answer
questions or solve problems given him by the computer, the
computer judges his answers, helps him correct his errors,
always giving him a second and sometimes a third chance

947

and ends the training by telling him how well he has done
positive reinforcement at work!

You can see how valuable this type of training is In

industry where training must, for economical as well as
practical reasons, be done on a fragmented basis.

There is no need to worry about the inept supervisor or
the overbearing, autocratic instructor. The computer is
infinitely patient and a personal, private trainer who teaches
on a one-to-one basis.

The computer does other things! It can score each em
ployee's answers, it can compare one trainee with others.
It can even point up misspellings, if that is important to the
learning process.

Another feature of Computer-assisted Instruction is that
the instructor is able to obtain a PRINTOUT of the em
ployee's performance to use as a basis for evaluating his
progress and the training program itself. The computer will
give the trainer a complete report and analysis of a trainee's
performance. The instructor can analyze the report and
determine which employees need special help. Such an
analysis may reveal the real reason for poor performance, a
reason that may not be readily discernible in the conventional
classroom-like situation. It may not be a matter of "cannot
learn" or "will not learn" but may be caused by a poor
learning climate or other factors not directly connected with
job knowledge. The computer may reveal that an employee
knows how to do a job, knows the answers but, for some
reason, is not motivated to apply this knowledge. Perhaps
he has had a poor "human" instructor!

Now, how does the instructional material get into the
computer? How are training programs created for the com
puter? Keep in mind the program designer is the REAL
TEACHER in Computer-assisted Instruction.

The first step after determining training needs, establishing
short term and long term objectives as ,veIl as the target
population and initial behavior, is to decide whether the
material is appropriate for CAL This is done by applying
the following criteria or judgment factors for determining
whether a training program can best be taught by the
computer.

First of all, is the information vital to the job or is it just
"nice to know?" For example, a program on the electrical
circuitry of a trash compactor is vital to the repair man's
job but, a program on how many trash compactors have

948 National Computer Conference, 1974

been produced to date and what the outlook may be for
their universal use, is "nice to know" information but cer
tainly not vital to his job.

Next, is the information something that must be learned
by a large population? Do a great number of people need
this information to do their job? Montgomery Ward has
nearly 500 retail stores spread across the country and it is
very important that the 12,000 merchandise department
managers in those stores know such things as how to figure
turnover and maintain gross profit and understand the
fundamentals of merchandising.

Obviously, Computer-assisted Instruction is ideal for this
large, widespread population. It can teach critical job skills
quickly, and what is most important, teach them in a uniform
and efficient manner. It will also give immediate feedback
so that the instructor can evaluate his training efforts and
the understanding and progress of employees.

Another criterion-is the target population small but the
subject matter so important and so complicated that it
requires the talents of many qualified instructors who are
not available at the same time or not available at all? In our
case, we have such a situation in training our buyers.

Still· another ·criterion~is the·subject best learned on a·
one-to-one basis? For example, our linear programming of
merchandise mathematics in book form is not dynamic
enough to hold the attention of Merchandise Department
Managers who apparently find this subject too sterile in
book form. CAl makes it a viable learning experience through
the use of simulation. Interaction between the Department
Manager and the computer makes merchandise mathematics
come alive. And, the employee can see its relevance to his
day-to-day merchandising job. The computer acts as a
sparring partner ... a protaganist ... the devil's advocate,
to motivate the trainee to perform!

So, the computer can be a POWERFUL teaching tool.
But, to be effective, the author of the program must know
HOW to plan the various types of teaching strategies and
know WHEN to use them.

FIRST, CAl must, like programmed instruction, be se
lective, giving the learner only the information he needs to
achieve the training objectives. SECOND, CAl must be
versatile, presenting each learner with a sequence of infor
mation that is designed to suit his particular learning needs.
THIRD, CAl must be self-pacing, permitting the learner to
proceed at his own information-assimilation rate.

There are several strategies that can be used to achieve
these requirements. The first, and perhaps still the most
commonly used in the educational system, is DRILL AND
PRACTICE. The next most commonly used strategy or
teaching mode is TUTORIAL, followed by INQUIRY,
GAMING and SIMULATION.

DRILL AND PRACTICE is a computer presentation of
problems, usually arithmetic, which are to be answered by
the learner. The objective is to build skills. The learner is
given three or four chances to get the correct answer. The
program a,uthor may provide for an automatic help sequence,
that is, a branching sequence, or maJr mercl~{ provide it and

let the learner use it if he feels the need. The computer gives
the score and stores that score within its record for that
learner. A presentation of drill and practice problems such
as this is essentially linear with the amount of text kept to
a minimum.

The TUTORIAL MODE is very similar to linear pro
grammed instruction. The computer presents a fixed sequence
of information with or without branching to specialized help
sequences. Information is· given, questions asked, the learner
answers, and the computer judges. The program author can
provide the learner with a help sequence that can be used
in two ways. Either the computer can automatically provide
the help or the student can request it.

This mode, the TUTORIAL MODE, takes over the main
responsibility for presenting a concept and for developing
skill in its use. The intention is to approximate the interaction
between a patient supervisor and an individual employee.
Obviously, an important aspect of the TUTORIAL MODE
is to avoid the experience of failure.

In PROBLEM SOLVING, the learner presents quanti
tative data and asks the computer to solve the problem or,
the computer presents quantitative data and asks the learner
to solve the problem~ In the first· case~· the computer acts as
a calculator. The second is really a form of DRILL AND
PRACTICE.

The INQUIRY MODE of CAl is CAl in one of its very
best and most efficient forms. The computer presents the
learner with a problem, requires him to specify what infor
mation he needs to solve that problem, and then provides
the information. When the learner has solved the problem,
he asks the computer to judge his answer. Rarely will two
people ask for the same information to solve the problem.
This makes it necessary for the program author to anticipate
the facts the different learners require and to build a compre
hensive information bank in the computer.

The INQUIRY MODE of CAl is learner-controlled and
is the most exciting to me personally and the most chal
lenging both technically and pedagogically. Learner-con
trolled CAl permits the learner to structure for himself the
sequence of instructional experiences he will receive. Since
no two learners will follow exactly the same pathway through
such a program, it is truly LEARNER-CONTROLLED.
However, these programs may be extremely time-consuming
to produce and may run six to 10 times as many "instruc
tions" to the computer as does a DRILL AND PRACTICE
or a pure TUTORIAL MODE program. But the learner
controlled program is worth the effort!

Another type of CAl is GAMING AND SIMULATION.
Here a model of some real or idealized complex situation is
put into the computer. The learner then must work with
and interpret the complex relationship among the variables
that represent the situation. The learner puts his solution
into the computer where it is compared with the model.

How are GAMING and SIMULATION alike or different?
There is a difference although many use the two terms
interchangeably.

GAl\lING ... the major characteristics are:

1. There need be little or NO similarity to a situation in
the real world.

2. There is usually a degree of competition.
3. Payoffs are often, if not always, involved.
4. There is an element of "fun," i.e., the learners may

not consider the experience as learning.

In SIMULATION ... the major characteristics are:

1. There is a GREAT similarity to a situation in the
real world-as great as can be simulated on the
computer.

2. A model of "cause and effect" of these events is
implied and often explicit, i.e., what happens if "you"
do this-or that

3. Transfer of learning is assumed likely as a result of
the simulation where the computer presents the work
situation as it REALL Y is and requires a decision on
the part of the learner.

Again, both GAMES and SIMULATION involve the
higher-order processes within the cognitive domain-those
of analyzing, synthesizing and evaluating information. And,
both are LEARNER-CONTROLLED so far as achieving
the prescribed objectives are concerned. Industry will use
SIMULATION because time and money are involved.
GAMING, although fun, is not related to the real world of
work.

Wards has used SIMULATION in a CAl Specification
Buying program ,,,here it was necessary to simulate the
highly complex buyer's job and give him an opportunity to
develop his buying skills ON THE COMPUTER-some
thing we cannot afford to let him do ON THE JOB where
millions of dollars are involvedl

These are the basic teaching strategies. The program
author selects the one or the combination of two or more
that best present the subject to the learner. As far as subject
matter is concerned, CAl is most effective in the cognitive
areas. Affective learning may take place with a CAl subject
but most likely it is not BECAUSE of CAl -but merely
fallout, so to speak.

CAl programs should unfold in an apparently spontaneous
way. To do this, the program designer must plan possibilities
rather than specific paths. A program designed for teaching
'with a "let it happen" approach requires a different kind of
planning from that used in linear programmed instruction.
Industry greater need greater versatility than that and can
get it if it learns how to use the flexible logic and large
random access memory of the computer.

In slide films, Educational Television Programs, audio
tapes-the instructional sequences and the time are fixed.
In text books and programmed instruction materials, the
instructional sequence is fixed but the time limit is not-an
improvement over the former. But, though an improvement,
the material is NOT personalized since all trainees or students
receive the SAME instruction.

An ideal situation, which CAl can provide, is instruction
in which the instructional sequence is NOT FIXED and in

Computer Assisted Instruction in Industry 949

which the time is NOT FIXED. A CAl program that has
branching sequences is an attempt in the right direction
all branches being different in content but alike in their
intent to help the learner achieve an instructional objective.

The next subject is hardware. What types of terminals
are in use today? The most common is a teletypewriter-a
machine similar to the selectric typewriter and which is
equipped to accept paper from a continuous roll. The learner
communicates with the computer by typing and the com
putercommunicates with the learner by typing-both com
munications appearing on the typewriter paper.

A newer, more complex system includes a cathode ray
tube which many CAl systems use. This unit looks like a
small television se~ connected to a keyboard very similar to
a standard typewriter keyboard. The learner communicates
with the computer by typing-the typing appearing simul
taneously on the cathode ray tube. The computer communi
cates with the student by flashing information on the cathode
ray tube.

The very newest type of terminal, one developed at the
University of Illinois, has a Plasma Display Panel which
'will no doubt eventually replace the cathode ray tube for
Computer-assisted Instruction terminals. The reason? The
relatively simple structure of the Plasm Display Panel will
greatly reduce the cost of communication between the
terminal and the computer. It will bring the cost of CAl
down to a point where CAl will not only be feasible but
economically practical in industry.

We, at Montgomery Ward, feel privileged to have PLATO
terminals and to be part of the University of Illinois' research
project on the PLATO CAl system. We are indebted to
Dr. Donald L. Bitzer, Director of the Computer-based
Education Research Laboratory at the University of Illinois
and co-inventor of the Plasma Display Panel, for the oppor
tunity to research the PLATO System for industrial training.

Dr. Bitzer will, through his invention, make education
available to large masses of people, who up to this point
have had little or no access to learning. In industry, we
anticipate that CAl will also provide knowledge and skills
to a great number of minorities who at the present time
occupy low level or entry jobs with little or no opportunity
for upward mobility.

Wards, in addition to the PLATO System, is a user of the
IBM Interactive Training System which uses a cathode ray
tube terminal. Programs have been created for training in
the operational and merchandising areas on both systems.

Back to the Plasma Display Panel. Instead of the cathode
ray tube, PLATO, as mentioned before, uses a Plasma
Display Panel. This device consists of two thin layers of
glass between which is a rectangular array of small neon
gas cells. Any cell can be selectively ignited to form part of
a word, diagram, line drawing, graph, etc. Data arrives at
the terminal from the computer via a voice grade telephone
line.

The Plasma Display Panel is approximately twelve inches
square and contains 512 digitally addressable positions along
each axis. Pictures from the terminal's random access image

950 National Computer Conference, 1974

selector can be projected on the display panel and computer
generated information superimposed on those pictures. This
combination of static and dynamic information makes com
plex displays possible. The image selector's film plate can
contain up to 256 images and can be easily inserted and
removed by the learner.

When the terminals are outside the computer center, and
this in all probability will be the most economical and
practical use of CAl in industry, they will get their signal
from the computer by voice grade telephone lines.

By the middle of 1974, we will have ten PLATO terminals
in our Corporate Office in Chicago. Eventually we plan to
share a coaxial cable or microwave installation with uni
versities and other institutions in the Chicago area. This
will greatly reduce data transmission costs. Right now there
is a cost of approximately $120.00 per month per terminal
for the telephone line to the central computer.

In addition to data transmission costs, there are rental
and management services costs PER TERMINAL charged
us by the University of Illinois. These are approximately
$2500 per terminal per year.

At Wards, all training programs which are put on the
.... ···-compuier··-reffe·cE both·silorf-term-a:nd]ong--term corpora£e-·

goals. Because Computer-assisted Instruction insures con
sistency and objectivity, Wards plans to use this computer
talent to make certain that training goals reflect Company
goals. All training in industry, no matter what technology
is used, must have as its prime purpose the improvement of
employee skills and bottom line performance--an increase
in profit!

Some of the CAl programs we have are:

Turnover . .. This is a merchandise training program for
the Retail Department Manager which shows him the
effects of sales on inventory, inventory on sales, and
gives him an opportunity to experiment with sales and
inventory figures so that he can LITERALLY see the
effect on his merchandise turnover. For example, if the
Department Manager wants to increase his turnover,
he will find that he must increase his sales if he keeps
his inventory the same or will have to reduce his inven
tory if his sales remain the same as budgeted. The
computer quickly calculates the turnover based on the
trainee's input-a simple but meaningful application of
the PROBLEM SOLVING teaching logic.

How to Read a Financial Statement . .. It is imperative
that our buyers understand the balance sheet in order
to select the best manufacturer for our merchandise.

Determining Price Points . .. One of the things a buyer
must do when planning a line is establish promotional
selling prices as well as basic selling prices. This program
lets the buyer trainee experiment with different price
points and shows him the effects of his pricing on his
total profit goal.

Return on lr1 erchandise Investment . . . This is a program
designed to help the Retail Department Manager under-

stand the effects of turnover and maintained gross profit
on the total profit goal.

Merchandise Mathematics . .. As I said earlier, this was
formerly a P.I. program which was too lean-it did not
have enough practice problems for most people. The
CAl version uses SIMULATION to relate the mathe
matics to the real life situation. We also use DRILL
and PRACTICE problems-perhaps one of the fun
instances where we will use that teaching mode.

Right now,· we are going to show you portions of two
Montgomery Ward programs on PLATO IV and two or
three programs developed by the University of Illinois.

Montgomery Ward Specification Buying ... This IS a
program for the buyer trainee which teaches him,
through the TUTORIAL and INQUIRY and SIMU
LATION modes, how to develop performance and tech
nical specifications for a product. In this program, we
have used a portable, electric drill as the product.

Montgomery Ward How to Repair a Trash Compactor . ..
ThH-trastrCDIIlpactoris·a new product which . compacts·
trash into a relatively small space--a product developed
because of our country's need for pollution control.
Since the product is new, it is important that our service
repair men all over the country know how to install and
repair it. In this program we have used the great capa
bility of PLATO IV to show colored slides and super
impose computer-generated material on those slides. For
example, the trainee is asked to identify the controls of
the compactor. He is shown a picture of the control
panel, and superimposed on the picture of the controls
is a computer-generated question which asks him to list
the types of controls.

University Programs . .. First, we will show you a course
in College Genetics to illustrate how the computer can
simulate a testing laboratory. Then, we will show you a
number of designs that have been "drawn" by the
computer.

The above programs were selected to illustrate the teach
ing, slides and graphic capabilities of PLATO IV. The com
plete PLATO IV System also has an audio attachment and
a touch panel, both of which are accessed through the
computer program.

Let me emphasize that as a training director using PLATO
IV, it was not necessary for me to have prior knowledge of
a programming language or computer technology.

The PLATO IV System uses the TUTOR language a
simple, pseudo-English programming language which permits
a trainer to "type" his lessons directly into the computer.

The trainer can compose, edit, test lesson material as well
as analyze student responses using the same terminal the
learner uses.

No traditional computer program need be written-no
systems programmer need be employed. All the trainer or

would-be trainer needs is his m.vn well prepared lesson plan
containing all information to be presented and all answers
to problems and questions to be presented.

Any trainer or would-be trainer who is thoroughly familiar
with his subject could, knowing the TUTOR language, type
his material into the computer without first ha'lJing put it on
paper! For example, a Comptroller at Wards could teach
payroll control, a Merchandise Manager could teach mer
chandising replenishment, a Field Auditor could teach retail
auditing, a Corporate Office training staff member could
teach management skills.

Wards is conditioned to the use of Computer-assisted
Instruction. About six years before working with PLATO,
Wards designed a Decision Making CAl program for Retail
Store Management Staff using SIMULATION as the teach
ing mode. However, they were restricted to the use of the
teletype"\vriter and a computer mathematical model. In this
Decision Dynamics program, two teams of retail store
management staff put into the computer, their "merchandise
operating expenses" for each month of the two six-months
periods of the program's fiscal year.

Figures are then compared with the ideal model stored in
the computer and the participants told via the resulting
printout whether they have made a profit and if they have
met their goals for that year. Now, that Wards has the
versatility of CAl, it plans to use case studies, role playing
and other teaching modes which will more clearly illustrate
the real merchandising situation in retail stores.

Once CAl systems are exposed to Management, there will
be many demands for training programs and there will be a
temptation to put EVERYTHING on the computer! How
ever, it is important to resist that temptation and apply the
criteria presented here.

Presently bottom-line uses of CAl for are:

• A Comprehensive Buyer Training Program covering such
critical areas as Analyzing the Market, Selecting a
Supplier, Contract Buying, Implementing the Buying
Plan, etc.

• Retail Department Manager Training including Sales and
Inventory Budgeting, Inventory Control, Operating

Computer Assisted Instruction in Industry 951

Procedures, Promotional Planning, Determining Basic
Needs, and Management Skills.

• Sales Personnel Training to include cash register and
sales check training, product knowledge, customer service,
and handling of refunds and exchanges. Salesmanship is
not included at this time; it is not certain that the com
puter can do a better job than a "live" instructor! It is
important to reserve judgment as to the effectiveness
of computer training in the Human Relations area.

• Retail Store 1.11anager and Staff Training-Here we an
ticipate a real breakthrough and hope the computer can
shorten the orientation period for these critical personnel.
I wonder how much time and money is wasted while
middle management, and even TOP management, fa
miliarize themselves with the complexities of their new
positions?

• Basic Skills Training-These will cover the knowledge
areas necessary for minorities to attain upward mobility
and career ladder planning. Included are basic English,
arithmetic, human relations and supervisory training.

Much is being said today about ORGANIZATIONAL DE
VELOPMENT and a lot of time and money is being spent
on programs to create the kind of climate that will allow
employees to operate more efficiently and more courageously.
Basic to the concept of ORGANIZATIONAL DEVELOP
MENT, is the security created by a knowledge of job skills.
Computer-assisted Instruction will be a strong partner in the
area of ORGANIZATIONAL DEVELOPMENT!

Trainers in industry must be constantly alert to ne\v de
velopments. SECONDLY, education and industry can learn
from each other. Education for many has lost its mystique.
Young people regard it as a "necessary evil" to enter the
world of work-a "tribal rite" which earns them a license
to hunt, fish and procreate! They look for short term goals,
early responsibility and what is MOST important, feedback.
Any educational experience must be relevant and simulate
more accurately than it presently does, those problems en
countered in daily living. Hopefully, CAl will act as a
communicator-as a sharing mechanism-which will enable
both industry and education to satisfy these needs!

The use of CAl at McDonnell Douglas

by BERNARD H. GODDARD

McDonnell Douglas A utomatwn Company
Seattle, Washington

Computer Aided Instruction (CAl) gives you increased
productivity and reduced training costs. Increased pro
ductivity is imperative in today's economic environment
people must be trained to perform at top quality levels in
order to maintain your high productivity. We have done
studies at McDonnell Douglas on training costs with both
a control group and a test group using identical course
material to find out the training costs involved in a con
ventional classroom situation and in a CAl presentation.
Training time can be reduced with CAl -in some cases as
much as 50 percent-over conventional classroom training.
CAl will give you increased productivity by training your
people better, faster, without social disorder, in their assigned
area, on the equipment they're going to use, and by reduc
ing the training costs-both by the method of presentation
and the lack of travel involved.

In our studies at McDonnel Douglas it was determined
that a definite cost reduction was afforded through the use
of CAL Even though McDonnell Douglas owned the TIME
software package, the corporate office did their own study
with the following total cost results on two types of courses.

Technical Training Conventional TIME System
Classroom

100 students $11,354. $7,128.
200 students $21,728. $12,094.
300 students $32,102. $17,060.

Cognitive Training

100 students $2,182. $2,394.
200 students $4,052. $3,973.
300 students $5,922. $5,552.

The training time was reduced by 53 percent in the techni
cal training and 23 percent in the cognitive training.

Let us consider an old idea that 've want to get away
from, like the one-room schoolhouse. ::.YIany classes taught
even today are this variety, where you have a class of
students in a classroom, and one instructor. The instructor
must get the information over to the trainees-what's the
best way to do that? The best way is to have one instruc
tor, one trainee; therefore you have a one to one training
relationship. You DON'T have that relationship in the

953

one-room schoolhouse approach becaus~ in the one-room
schoolhouse, everybody's getting the same material whether
they need it or not. Can you afford this? If you have one
instructor with one trainee, you have maximum training of
personnel. But the costs would be very high. How do you
do this economically? How do you get the information to
the trainee and the trainee's questions answered all on a
one-to-one basis?

What happens in the usual classroom when one person in
that group asks a question? The question ties up the other
people in the whole class, but maybe it relates to only four
or five people in the entire group. What are the rest of them
doing? They lose interest and you have lost your concen
trated one-to-one training. Or, on the other hand, if every
body asks a question at once, CAl can still give you this
one-to-one relationship, by dealing with each question as it
turns up. The instructor using CAl has the medium to train
each trainee with one-to-one teaching. He develops the
course, writes it, presents it, through the computer to the
terminal to the trainee. The instructor becomes many
instructors to many trainees, since each one sees the terminal
as the instructor. The trainee using CAl has the ability to
gain access to the instructor through a message function
and is using a terminal that in most cases he will be working
on in his job. The trainees see the instructor as being copied
so each student is talking to his own instructor on a one-to
one basis, and has, so far as he is concerned, a separate
instructor for each course.

Now, ,,,"here can we use this type of training? In today's
environment, you can use this in almost all applications
because today's technology requires that your trainees
must know the facts.

At :;.\IcDonnell Douglas CAl will be used in all divisions
of the company to train technical skills and cognitive data.
In some cases the :Management Development training will
use CAl and the conventional classroom in conjunction to
train their personnel. It will greatly reduce the training
time that is now required for the trainee to spend in a
classroom.

Three way instruction control using the computer, the
instructor and the trainee can control the course by the
following. The trainee can review the course at any time he
v.-ishes; he may request instructor assistance, or he may
continue the course. The trainee can go step by step, straight

954 National Computer Conference, 1974

through the material, or he can stop, and continue at a more
convenient time. The trainees at McDonnell Douglas were
most receptive to the CAl approach. They liked the idea
of the freedom of CAl versus the structured classroom
regimentation. With CAl the trainee may miss an assigned
time period and still not miss the training material. If they
are sick or work builds up to the point where they must get
it done then they can do both, the training and the other
(work or sickness) without missing out, and the main point
is that the employer will benefit as well. The training that
is needed is obtained at the most convenient time and work
schedules can still progress. .

The instructor can build in review positions at whatever
point they are needed throughout the course and then the
computer will control these reviews. The computer controls
what's going on in the following manner: it monitors the
trainee's progress and the time that it takes him to go
through the course. It tailors trainee lessons according to
how the instructor has set up the course at the time it was
written. The trainee may be required to go step by step
through a series of functions that he must prove he can
perform. Or, if the trainee proves he can do a certain step
correctly, he goes into some new" type of material, and the
computer controls that. The computer executes trainees'
requests-they may take different courses, they may stop
courses, they may continue courses, etc.

The computer can also monitor course effectiveness and
with this data the instructor can check to see whether the
course is providing the material the trainee needs, or whether
the trainee is getting the type of material that is going to
improve his job knowledge. By going through the statistics
kept automatically by the computer after a course has
been completed, you can get an item analysis immediately
from the questions, you can get the path that the trainee
took thr~ugh the course, and you can also have instructor/
trainee communication, if needed, through a message
function. So now the instructor can look at the course,
evaluate it, change it, communicate with the trainee, evalu
ate him, and monitor the progress of all trainees. The in
structor can determine whether or not the trainee has
obtained the information that is needed, and whether or not
the course did what it was supposed to do. If it did not,
the instructor may change the course. You can evaluate
the trainee, determine whether or not the material was
valid by the pre-set test standard, and whether it has pro
vided the necessary skill to the trainee.

You can monitor the progress of the trainees very simply.
I think Jim Adams of MCAlR did a fantastic job with his
students, when they were taking the course on Binary
N umbers and Boolean Algebra. Jim would dial into the
computer each morning with the name and lD of each
student, and that would tell him exactly how far that
trainee had progressed the night before. Jim knew exactly
how far each trainee went each day and if any were having
trouble without ever being there to actually see what they
did in their progress and he could communicate with the
trainees if he had a need. The instructor ha::. a lot of control
with CAl due to the record keeping of the computer. Jim

was also released from that group of students and he was
available to :MCAlR to teach a conventional on-hours
course. We did some comparison studies at the Corporate
level on retention within l\1CAUTO. We found that the
retention rate under CAl was about 5 percent higher at
the completion of a course than with a conventional class
room presentation, using a control and test group. Also,
CAl post test results showed about 5 percent improvement
over conventional classroom training after 90 days. The
retention rate also remained higher with CAl than with
conventional "classroom instruction. The study at .McDon
nell Douglas had the following retention figures at the
completion of the training.

Technical Training
Cognitive Training

Conventional
Classroom

88.26%
75.0%

Tl:1IE System

93.06%
76.4%

A 90 day post test was given with the folImving results:

Technical Training
Cognitive Training

Conventional
Classroom

85.3%
63.75%

T-I1fESystem

90.0%
65.29%

Therefore the results show a definite advantage with CAl
over the conventional classroom.

Skill levels can be changed, by determining what skill
level is required and then training to that level, testing
trainees to assure that they are at that level, and then test
ing periodically to see if they still maintain it. If they have
trouble maintaining the level, retrain them and maintain
them at that position. CAl training is faster because the
trainee will progress at his own rate. In a conventional
classroom, all trainees are going to progress at the rate of
the slowest individual in the class. In a conventional class
room you have to teach to the slow students because today's
technology requires that you have full knowledge of the
material that you're going to be using. JCL for example,
might be an example of a situation where one could get by
with rninimum knowledge (If you know what the JeL is,
you can run a program very simply and correctly.) but that
person would have to rely on someone else's ability to check
his JCL level.

You can measure trainee proficiency to handle job de
mands. You can simulate the job the trainee is supposed
to do wherever he is employed. If your operation covers a
largp geographical area, you can have the Lrainees remain
at their position, with courses available 24 hours a day
instantaneously without moving people from place to place.
One of the biggest costs of training today in big companies
is sending people from one location to another to train
them on the various aspects of the job.

Some CAl systems require that you be a programmE'r to
use them while with a few you do not need to know how to
do programming. Some programmers can write training

courses, but usually programmers do not understand educa
tional objectives, or are not interested. If your field is train
ing, and you're trying to train, then you need to be able to
,,yrite courses ,vithout using a programming language, so
that both kinds of trainee can understand your courses.

In McDonnell Douglas's TI:\,fE, you may use straight
English or any language and write a course the way you
think you want it to look, have it keypunched or entered
from a terminal into the computer and in either case, you
can see exactly the way the presentation ,vill appear to the
trainee. If it's going to be presented on a CRT terminal,
look at it on a CRT; if it's going to be presented on a hard
copy terminal, it should be looked at on a hard copy presen
tation. In any case, you can get an idea of what the course
is going to look like instantaneously. Course appearance is
definitely an enhancement of your training and of student
acceptance of CAL

CAl can be presented with various types of courses;
tutorial, drill and practice, test, simulation and gaming,
and special features. Tutorial courses usually are used to
present new material. The trainee is given information on
one objective and then a question is asked. The trainee
replies and a new segment of information is presented
based on that reply. The trainee does not move to new
material until he has mastered the current material. CAl is
most effective because of the concentration of study plus
the response that the instructor builds into the course based
on the trainee reply.

With drill and practice courses, a trainee is drilled on the
subject matter for as long as necessary. The trainee may
also use practice problems from his own area. You may
give all trainees the same or different material. With CAl,
the computer keeps the test scores, the accuracy of each
trainee, what test results he had, what answers he gave,
what path he took through the particular training course.
Those test scores can be measured against a pre-set level so
that the trainee must maintain 90 percent or 70 percent or
whatever the score you set. When you write the behavioral
objectives to the course, you will state what level of skill,
or what level of achievement the particular course requires
in order for a trainee to pass.

In simulation and gaming you can set up various situa
tions, either actual or imagined and have the trainee inter
act. It may be the completion of forms or the correction of
errors related to a job. Games can also be played with CAl,
to generate thought processes or just to play games-some
managers believe the games could be used as a reward
after a trainee has spent time on training courses.

Special features consist of a catalog of courses which
give you a hierarchy of all courses within the system. The
catalog does not need to be limited to just courses, it may
be a hierarchy of any type of material or information you
want to list. For example: suppose we wanted to take our
written procedural material specifications and place it in a
hierarchical tree so that we could have easy access to them.

The Use of CAr at McDonnell Douglas 955

Or, what we know with regard to aircraft engines can all
be cataloged under one branch of the catalog in a hierarchi
cal tree. Any type of system or material that you want can
be placed in a hierarchical order. The reference library
consists of all the material that you want to put in a de
scription of, ·what the various courses cover, and whom they
relate to.

The management portion allows you to obtain manage
ment reports, on line text editor, and course generator.
Under course generator you can generate new courses either
on-line from a terminal or in batch mode through a batch
reader. Course generator gives you a listing of all course
material that has been generated line by line. In on-line text
editor you can add a frame, add a line to an existing frame,
change the destination of a frame, change the frame number,
correct spelling, or change any other portion of the frame
contents that need to be modified. Management reports
allow you to look at the status of each trainee. Statistics
available by the trainee are, 30 completed courses, five
active courses, trainee name, trainee id, course name, course
id, and path through a course. Course statistics are kept on
how many people selected each answer within a frame to
provide you with reliability of course material, course
name, course id, and course size.

In Summary CAl offers increased knowledge levels, re
duced training costs, no travel of either trainees or instruc
tors, no disruption of work schedules, and higher retention
of course content than is found with conventional classroom
training. The instructor can instantly monitor all courses,
he can evaluate course content, and correct or modify it as
needed. Also if you have multi-time zone coverage, the
material is always available, 24 hours a day when your
computer is available. Probably one of the outstanding
features of CAl is the equal quality instruction and manage
ment at all locations. Any time that you develop and present
a conventional course, it's always best the first time--(you're
tuned to a peak when you get ready to teach it), then you
kind of let down a little bit each successive time you teach
it, you kind of have the tendency to say "well, I've taught
this before, r know it, so r don't have to worry". With
CAl that never happens because if you find something new,
you add that to the course, and you keep adding-you may
get rid of some deadwood as needed, but you're only adding
to course content and therefore enhancing the level of
instruction. In management you have the capability of all
locations having the same course; this is not the situation
when you have sent 10 instructors into the field with 10
different ideas of what a particular job might be. With CAl
there is only one description and it's always the same.
Reduced travel expenses: almost no travel expenses involved
in CAl courses. People get their training in their own work
area-one of the big values of CAl is no social disorder, so
you don't have the problem of upsetting car pools, and
forcing people away from their normal work time, and
place.

PANEL SESSION PAPERS AND PAPER ABSTRACTS

A panel session-Intelligent terminals-Rationale and implications

SESSION CHAIRMAN-L. C. HOBBS

Hobbs Associates, Inc.

Panel Members

L. C. Hobbs-Hobbs Associates, Inc.
Dr. Marcian E. Hoff, Jr.-Intel
T. B. Steel, Jr.-Equitable Life Ins. Co.
Charles R. Fisher, Consultant
C. W. Rosenthal-Bell Telephone Laboratories

OVERVIEW-L. C. HOBBS

Continuing reductions in cost of LSI logic and memories
is making it increasingly attractive from an economic stand
point to include processing and computing capability in
terminals. At the same time, communications costs are re
maining constant or decreasing at a much lesser rate. There
fore, maintaining a properly balanced telecommunication
system requires distributing, processing, and computing
functions to the terminals in many cases. A number of
manufacturers are now offering smart or intelligent terminals
which include varying degrees of processing and computing
capability which can be used to handle part of the users
processing and computation tasks and to reduce the load on
the communications lines and the central processor. On the
other hand the economy of scale still favors centralized mass
storage and certain types of applications require a central
data base to permit multiple users to access and update the
same large files.

This session will consider the interrelations of the different
parts of a telecommunication system which include intelligent
terminals. Questions such as which processing and compu
tation function should be performed in the terminal and
which in the central processor, type of system software
required to allocate tasks between the terminal and central
processor, and the types and capabilities of peripheral equip
ments that should be incorporated in the terminal will be
addressed. Hardware, software and communications tech
nology trends and their impact on intelligent terminal sys
tems will be discussed. User requirements and problems will
also be considered. In addition to brief presentations from
each panelist, ample time will be allotted for discussions and
audience/panel interaction.

959

HARDWARE IMPLICATIONS OF INTELLIGENT
TERMINALS-DR. MARCIAN E. HOFF, JR.

Developments in LSI technology have made the intelligent
terminal a reality. Further developments in LSI technology
will allow ever increasing amounts of computing function to
be delegated to the terminal. It is not unreasonable to
expect compact terminals to contain processing power ex
ceeding that of today's medium scale computers, and to
have sufficient memory for all but the largest of jobs. The
typical central facility may become more library than
processor. Development of low-cost high capacity file storage
units could even further decentralize computing function.

SOFTWARE IMPLICATIONS OF INTELLIGENT
TERMINALS-T. B. STEEL, JR.

The implications of intelligent terminals on software design
and development range from trivial to p1'0found depending
on the degree of "intelligence" in the terminal. At one end
of the scale the ability to perform minor editing at the
terminal merely relieves the central processor of a task. At
the other end of the scale the problem begins to merge with
those of computer networks.

This discussion will concentrate on the middle of this
spectrum, considering the implications for modularization of
operating system and data base management systems as
well as a not very clearly understood impact on programming
language design.

COMMUNICATIONS IMPLICATIONS OF
INTELLIGENT TERMINALS-CHARLES R. FISHER

Two important changes in the communications industry
protend lower cost and higher speed data transmission: The
change to digital techniques for voice circuits will probably
take place as the cost per voice circuit remains nearly con
stant in 1974 dollars. Thus, the tariffs for voice circuits
should stay nearly constant in 1974 dollars (or perhaps even
reduce slightly due to competition from Specialized Common
Carriers). However, digitized voice circuits use 64 kilobits
to achieve each voice channel. Perhaps as much as Y2 the
channel bit capacity needs to be allocated to overhead and

960 National Computer Conference, 1974

other costs of operating the channel as a data channel
instead of a voice channel. This would in turn give 32 kilobit
data service. At the present cost of a voice channel, the
advent of high performance and responsive packet and/or
message switching systems will allow the user to utilize the
communications system on a demand basis. The user will
benefit from this economically through tariffs which tend
to charge by the bit rather than unit of time, eliminating
charges for unproductive circuit utilization incurred with
current circuit switched arrangements.

USER IMPLICATIONS OF INTELLIGENT
TERMINALS-C. W. ROSENTHAL

The so-called "intelligent" terminal is used as an adjunct
to a central maxi-computer where it carries on significant
logical functions. It is also used in stand-alone configurations
where it intermittently or infrequently connects to a central
computer to acquire a program, load data or return data.
These terminals are a solution which has found the right

problems. The solution is composed of low-cost mini- and
midi-computers and their peripherals which are plausible
because of integrated circuit technology and intense compe
tition. The solution is also affected by the increasing under
standing of computers by users in labs, schools. and plants.

Problems solved by using terminals in place of central
computers include: protracted delays in providing central
lized time sharing of adequate cost, accessibility, resources
and reliability; changing central computer software effects
on stable programs which ate used over and over again;
lack of personal control on priorities and schedules; and
interference among users causing loss of privacy or loss of
work when others crash.

The considerable advantages of terminals are somewhat
balanced by disadvantages such as: the administration of
purchase and maintenance contracts; heavy involvement in
software and hardware technology which may be remote from
one's fundamental discipline; dedication of space; coupling
to obsolescent equipment, and unwitting replication of
stand-alone terminals beyond the point where a central
computer can serve many users.

A panel session-The effect of changing technology on computer
graphic systems

MODERATOR-PHILLIP P. DAMON
Hughes Aircraft Company, Industrial Products Division

Panel Members

James D. Foley-University of North Carolina, Depart-
ment of Computer Science

Arthur D. Hughes-Hughes Associates
Carl Machover-Information Displays, Inc.
Sol Sherr-North Hills Associates
Robert H. Stotz-University of Southern California

Information Sciences Institute
Luis Villalobos-Hughes Aircraft Company, Industrial

Products Division

OVERVIEW-CARL MACHOVER

Rapidly changing technology is affecting every aspect of
computer graphic systems. Basically, a computer graphic
system consists of an interface/display processor, function
generators, display, operator input/output devices, and soft
ware. Each element will be briefly described as an introduc
tion for subsequent speakers who "vill discuss technology im
pact on the elements. Tradeoff considerations among the
various elements will also be discus~ed.

INTERFACE AND DISPLAY PROCESSOR-
ROBERT H. STOTZ

Today the interface bet"\veen graphic display generators ann
application software comes in many different forms, ranging
in speed from phone lines to megabit parallel channels and in
performance from simple code translators to fu]] blown pro
grammable-processors. With the ever-lessening cost of pro
cessing power, the philosophical questions of what should be
done in the display and what should be done in the host
computer deserve review. Several new graphic display prod
ucts will be discussed in this session as illustrative examples
of the approach being taken by various manufacturers. In
addition there is mounting activity toward standardizing
graphic communications, at least for the ARPA]X et. The
status of that activity will also be reviewed.

961

GENERATORS-LUIS VILLALOBOS

Graphic generators convert digital data to visual images.
This discussion is limited to line drawings; it excludes gen
erators for solid areas, edge, fill, and symbols.

Early generators produced all images out of dots by placing
the dots close together (roughly 100 points/inch) to produce
smooth-looking lines and curves. The data required is pro
portional to the total image arc-length; hence, scaling affects
either image quality or data requirements.

Vector generators draw straight lines, from the previous
vector end point to the new point specified. Vectors reduce
data from 100 points/inch to 1 point/vector, regardless of
size.

Vectors can be used to approximate curves, but about 20
vectors/inch are required to obtain smooth curves.

A "good" curve generator does for curves what vector
generators do for straight lines, i.e., significantly reduce data
required for curves. Curve generators draw specific curves,
e.g., conics, exponentials, and circular arcs (from the previous
end point to the new point specified). The most generally use
ful generator curves appear to be conics. A conic generator
reduces data for curves from 20 vectors/inch to the equivalent
of 4 vectors/curve, regardless of curve length. Curves such as
spirals or curves with inflection points require more data.

DISPLAYS-SOL SHERR

The majority of presently available computer graphic dis
plays are of the refresh type using random deflection, or vec
tor CRTs. These offer full graphics capability and consider
able flexibility in image formation and presentation. The
digital television refresh CRT systems, while very common as
alphanumeric displays, have been largely restricted to limited
graphics for economic reasons. The direct view storage display
offers a full graphics capability at very low cost by incorporat
ing storage in the CRT, allowing low-speed data transmission
and generation electronics. The electrical storage system has
most of the same characteristics plus zoom and selective
erase capability. It improves the visual image by using stand
ard television monitors.

There are only two types of flat panel or matrix displays

962 National Computer Conference, 1974

commercially available, both based on gas discharge phe
nomena. These are the AC gas discharge or plasma panel
which has been incorporated in a few computer graphics
systems, and the DC gas discharge which is used primarily
as an alphanumeric unit but has shown the ability to create
limited graphics images. Other fiat panel displays using liquid
crystals or light emitting diodes are still in the early stages of
development.

No system appears to be in a position to oust all of the
others at present. The ideal system is still to be achieved and
remains a challenge for display designers.

OPERATOR INPUT/OUTPUT DEVICES-
ARTHUR D. HUGHES

Discussions of computer displays often concentrate heavily
on transfer of information to the operator from the system,
sometimes losing sight of the need to transfer information and
control from the operator to the system. This reverse transfer
process using anything but the hands of the operator has not
yet been fUl)Y.<leveloped. Most designs presuppose.some inter
active operation between human and system. This operation
occurs in concert with an output signal back to the operator
to acknowledge his action, usually through the eyes of the
operator.

Existing I/O devices are found using two primary tech
niques, one with operation directly in an x-y plane (light
pens, tablets, digitizers), the other not (controls, switches,
keys). Either set of techniques may be associated with the
display screen, except that the light pen, expected to remain
popular, must be. However, touch-sensitive screens allow the
operator simply to use the finger or a stylus.

Looking into the future, suppose we consider use of the
operator's voice and hearing instead of hands and eyes for
operator input and output. There are already devices' on the
market for voice input particularly associated with computer
audio response systems. However, I believe that voice input,
with or without voice answer back, could be an important
addition to the list of operator I/O devices for displays.

SOFTWARE-JAMES D. FOLEY

Display architecture impacts graphics software in at least
two ways: ease of programming and machine-independence.
It has become axiomatic that if computer architects and com
puter programmers collaborate in conceiving a new computer,
the result will likely be more versatile and powerful than
otherwise. With one or two notable exceptions, display system
architects have not applied this axiom to their own endeavors.
Consequently, most displays are not programmer-oriented,
making the writing of graphics system software needlessly
complex-.·

The second area of impact is machine-independence. This
is the ability to move a graphics application program from
one display system to another. There are numerous problems,
yet the capability is being sought by many users. Displays
cause difficulty both at the broad architectural level and at
the level of details. Differences in basic architecture \vill and
should always exist. But on the contrary, low level details
such as character codes, or character spacings, coordinate
system, and line structure types are rather unimportant and
could well be standardized. This would eliminate many pro
gramming problems of machine-independence.

A panel session-Mass memory systems

SESSION CHAIRMAN-JOHN C. DAVIS

Department of Defense

Panel Members

Dennis Luck-Department of Defense
Eric Salbu-Ampex Corporation
Carol Peters-Informatics, Inc.
Robert Koenig-Control Data Corporation
Glen Bacon-IBM Corporation

OVERVIEW-JOHN C. DAVIS

The concept of what capacity constitutes a "mass" mem
ory system has been growing by 1 ()4 bits per decade. This
trend is expected to continue at least through the 1280's. A
mass memory system as now defined must have a capacity of
greater than 1011 bits.

What technologies, architecture, and software are used in
current mass memory systems? What is the cost of owner
ship of a mass memory system? Who needs mass memory
systems? What are the prospects and projections for new
technological innovations in the field of mass memories?

In this session the answer to these questions will be ad
dressed with the emphasis placed on establishing the current
state of the art in both mass memory hardware and software.

~1ASS ME:VIORIES-DEN~IS R. LUCK

A brief review of the state-of-the-art of third level mass
storage systems will be presented. The general thrusts of
mass storage developments now underway will be outlined.
Mass storage cost benefit analysis considerations, system
integration requirements, storage networking trends and
user benefits will be included. The evolution of the storage
hierarchy will be discussed.

MASS STORAGE SYSTEM IMPLEMENTATION
APPROACHES-ERIC SALBU

The optimal Mass Storage System (MSS) Implementa
tion/Interface approach selected is heavily application de
pendent, e.g., response time versus throughput requirements
are different for real time and batch.

963

The characteristics of the Host System and the Mass
Storage System will also influence the total implementation
approach, both with respect to Hardware and Software. The
presentation will address this topic in a somewhat general
ized manner.

SOFTWARE REQUIREMENTS FOR MASS
STORAGE SYSTEMS-CAROL B. PETERS

Mass Storage devices provide a new level of on-line storage.
This level is at present characterized by large storage ca
pacity, slow access, good transfer rates, high density record
ing, and relatively low cost. The characteristics of the devices
are such that they are being imbedded in systems which in
clude controlling mini-computers. The entire hardware/
software system is referred to as a Mass Storage System.

Mass Storage Systems provide a new type of data resi
dency-one which is a hybrid of on-line data residency and
off-line library storage. Data which is stored on a Mass
Storage device is on-line, but it is not as readily accessible as
data stored on fast access devices. The large capacity of Mass
Storage devices and low recording media costs make it prac
tical to retain on-line large volumes of data formerly retained
in tape/disk libraries.

This paper discm:ses the software requirements for Mass
Storage Systems. An overview of current software develop
ments in the Mass Storage Systems area is included. This is
followed by a discussion of future requirements and a dis
cussion of data flow through storage hierarchies/networks.

THE SCROLL MASS MEMORY SYSTEM
ROBERT KOENIG

This paper describes the SCROLL Mass Storage drive
under development by Control Data Corporation. The
SCROLL drive combines a rotating head with a controlled
foil bearing to implement non-contact recording on a wide
web of magnetic tape. The tape handling mechanisms pro
vide for precise sensing and control of tape position, and are
implemented to prevent any contact with the tape medium.
Tests conducted to date show the level of recording reli
ability is equal to that of discs. Data formats and hierarchy
are the same as those used on discs. The capacity of a single
SCROLL drive is in excess of 100 billion (l()ll) bits.

964 National Computer Conference, 1974

TECHNICAL EVALUATION OF MASS STORAGE
SYSTEMS-GLEN BACON

As Magnetic Recording Technologies and the several al
ternate technologies improve, the range of possible cost/
performance tradeoff in mass storage will increase. This will
allow new configurations for mass storage devices, as well as

influencing the hierarchy of other storage devices which sup
port. the system. This paper will develop assumptions to
support improvement trends in the several technologies and
access cost/performance possibilities for the major alterna
tives. Points of technology development at which the rela
tive order of the alternatives change will be identified.

A panel session-Current trends in the software products industry

SESSION CHAIRMAN-MARTIN A. GOETZ

A pplied Data Research

Panel Members

L. A. Welke-International Computer Programs, Inc.
Patrick McGovern-International Data Corporation
Burton Grad-IBM Corporation

OVERVIEW

This session will examine the Software Products Industry,
concentrating on the economics of the industry, the problems

965

facing the software manufacturer, and the changing needs
of the user. The panel presentations and discussion will be
based on the following: (1) the industry is rapidly growing
both internationally and domestically, with U.S. revenues
expected to exceed $1 billion by 1976; (2) the industry's
expansion is forcing the software manufacturer to face new
problems in developing, maintaining, distributing, support
ing, and marketing his product; and (3) the types and
sophistication of software packages available to users are
constantly growing and changing.

A panel session-Applications and extensions of the TENEX
operating system

SESSION CHAIRMAN-JERRY D. BURCHFIEL

Bolt Beranek & Newman, Inc.

Panel Members

Mel Pirtle-NASA AMES Research Center
Edward Fiala-Xerox Palo Alto Research Center
Robert Thomas-Bolt Beranek and Newman, Inc.
Daniel Murphy-Digital Equipment Corporation
David Walden-Bolt Beranek and Newman, Inc.

OVERVIEW

The TENEX system was developed in 1969 to serve as a
powerful, flexible, yet inexpensive research facility. It pro-

967

vides virtual memory, a hierarchy of processes within each
job, a pseudointerrupt system for interprocess communi
cation, and a highly human-engineered command language.
This system has become such a popular research tool that
there are (as of January 1974) 12 TENEX systems in oper
ation. Ten of these TENEX systems are hosts on the
ARPANET, a national computer resource sharing network
developed by the D.O.D. Advanced Research Projects
Agency.

This session will explore interesting aspects of the com
puting environment provided by TENEX, emphasizing the
new facilities and modes of resource sharing which TENEX
provides.

A panel session-A large real-time system development

SESSION CHAIRYIAX-M. P. FABISCH

Bell Telephone Laboratories

Panel Members

N. H. Brown-Bell Telephone Laboratories
J. W. Olson-Bell Telephone Laboratories
W. S. Doyle and J. R. Gibbons-Bell Telephone Laboratories
J. P. Haggerty-Bell Telephone Laboratories
B. P. Donohue, III and J. F. McDonald-Bell Telephone

Laboratories
R. R. Conners-Bell Telephone Laboratories
R. D. Freeman-Bell Telephone Laboratories
H. M. Jackson, II-Bell Telephone Laboratories

OVERVIEW-T. H. CROWLEY and N. H. BRO\VN

Development of the large, real-time data processing sys
tem for the SAFEGUARD ballistic missile defense system
has led to many innovations in both hardware and software.
The objective of this and the following talks is to impart
some of the lessons that we have learned, which we believe
will be useful to the data processing community.

The system must achieve very high throughput and reli
ability. To help meet this objective, a multiprocessor archi
tecture has been employed.

The multiprocessor and other system characteristics have
created new challenges and developments in operating sys
tems and applications software development.

Extensive testing has been required to achieve high confi
dence in correct system performance. This led to a new ap
proach, in the use of redundant hardware for simulating test
inputs.

To support this large development effort, numerous com
mercial computers and service programs were used. New
methods for debugging, integrating, improving soft,vare
quality, and controlling changes were sought.

ARCHITECTURE OF THE CLC CO:\1PUTER
J. W. OLSON

The architecture of the Central Logic and Control com
puter (CLC) represents the first reduction to practice of
large scale multiprocessing in a computing system. l\fulti
processing was chosen because of its potential for bigh per
formance, while providing an architecture capable of high

969

availability. The computer is significantly larger than previ
ous multiprocessors which have used multiplicity numbers of
the order of two or three. A modular concept is employed in
which a community of as many as ten processors and a num
ber of input/output elements share a common, modular
memory.

The multiple elements communicate via well-defined inter
faces and are interconnected by a flexible switching network.
Control of the switching network allows the computer ele
ments to be partitioned into two independently operating
computers. The primary partition is large enough to run the
real-time software, while the secondary partition is used for
system exercise or for maintenance testing. Partitioning of
elements is controlled by software, and reconfiguration may
be accomplished in less than a second. A means of system
recovery is built into the design to automatically restore
real-time operations whenever the primary partition mal
functions.

PROCESS DESIGN-THE STRUCTURING OF
REAL-TI:\1E SOFTWARE SYSTEMS-
W. S. DOYLE and J. R. GIBBONS

The term process is used to describe. a complete software
system for the CLC computer. Applications processes, driver
processes, and test processes have been developed. Each of
these includes an operating system as well as the applications
programs.

Process design can be thought of as system engineering of
the software components that constitute a process. The goals
of process design are to identify the components of the pro
cess, to design a control structure that optimizes its execu
tion, and to map the system design requirements across the
process components efficiently.

The product of process design is a definition of the com
ponents of the process and a definition of the control
structure.

This talk will discuss the techniques that were utilized in
the design of two applications processes.

AN OVERVIEW OF THE CLC OPERATING
SYSTE:M-J. P. HAGGERTY

This talk surveys the capabilities of the operating system
for the Central Logic and Control computer (CLC). The

970 National Computer Conference, 1974

operating system is principally oriented toward applications
software execution, i.e., toward providing the environment
required by the programs which control and communicate
with special peripherals. Non-real-time operations such as
disk pack maintenance must also be allowed. The CLC
operating system is therefore divided into two parts, the
Tactical Operating System (TOS) for the former function,
and the Basic Operating System (BOS) for the latter.

This talk discusses TOS at length, since the concepts be
hind this program are applicable not only to this project, but
also to other computer systems which contain more than one
central processing unit or which must respond to inputs in
real-time. Emphasis is placed on the unique aspects of the
CLC Operating System.

PROCESS-SYSTEM TESTING AND THE
SYSTEM EXERCISER-B. P. DONOHUE, III and
J. F. McDONALD

To establish a viable system test program, the following
questions had to be answered : How would the system be

·exercisedtnrougbits·range of· operatlon-? . Wh~tsystem
parameters should be measured; and, how will the measure
ments be made? What is the success criteria against which
the measurements will be compared, and what is the accept
able level of variation?

To exercise a system as complex as this through its range
of operation is, in itself, a complicated task. To solve this, a
tool called the System Exerciser was developed. It has the
capacity of simulating a high traffic environment and various
system peripherals, so that the bulk of the system hardware
and software can be tested.

This talk addresses the development of the System Exer
ciser. In addition, it discusses the utilization of the System
Exerciser in performing system testing. The concepts of de
veloping a step-by-step test program are discussed, with
emphasis on early planning and the utilization of the incre
mental approach.

SUPPORT COMPUTERS AND SOFTW ARE
R. R. CONNERS

This talk focuses on one aspect of system implementa
tion-the development, control, usage and operating en-

vironment of software tools such as the compiler, assembler,
binder, and similar programs which, in turn, support de
velopment of applications programs.

Emphasis is placed on lessons learned over ten years of
developing support software and over five years of operating
commercial support computers, rather than on cataloging the
programs which were written. However, there will be an
introduction to each of the major support programs, and to
the function of each of the commercial support computers
used on the project.

THE USE OF FORMAL PROFESSIONAL
REVIEW IN THE DEVELOPMENT OF
SOFTWARE-R. D. FREKVIAN

This talk describes "flowchart review," a technique that
was used in the programming of one of the large pieces of
software for this project.

The process of flowchart review required each programmer
to write a detailed flowchart before doing any coding, and to
give .. abox-:by"box explanation of his flowchart-to· a review
committee consisting of about a half-dozen of his colleagues.
This review committee, in as friendly a manner as possible,
was expected to take an "I'm from :\1issouri and you have to
prove it to me" attitude, and to aggressively question every
assumption that the programmer made.

In addition to greatly improving the quality of the code,
there was a return in terms of software development time
saved as a result of the time spent in these review sessions.

PROJECT CONTROL A~D SUPPORT
H. 1I. JACKSON, II

This talk describes some of the unique management prob
lems encountered during the development of the system.
Topics addressed range from the management approach for
directing the more than 2,000 people to some of the planning
techniques that have proved useful in predicting the needs
during the life cycle of the project for manpower, calendar
time: computer time, etc. The plan used for documenting the
software is presented along with a discussion of configuration
management. Change control is discussed with special atten
tion to control of changes to object code referred to as
patches.

A panel session-Mathematical software-Patterns for the future

SESSION CHAIRMAN-JOHN R. RICE

Purdue University

Panel Members

Charles Lawson-Jet Propulsion Laboratory
William J. Cody-Argonne National Laboratories
William Gear-University of Illinois
Hans J. Oser-National Bureau of Standards
Barry Boehm-TRW Systems

971

OVERVIEW

The panelists present patterns that they believe to be im
portant in the future of mathematical software. These pat
terns include the increasing demand for high quality, for a
philosophy of development and testing, for standardized
libraries with portability and the impact of computer net
works, parallelism and lower hardware costs. Economic con
siderations will become more important as will the creation
of software as the principal objective of research.

A panel session-Security kernels

SESSION CHAIRMAN-STEVEN B. LIPKER
The ill itre Corporation

Panel Members

William A. Wulf, Carnegie-:Hellon University
Roger R. Schell, ::\lajor, United States Air Force
Gerald J. Popek, University of California
Peter G. Neumann, SRI Computer Science Group
Clark Weissman, System Development Corporation
Theodore A. Linden, Department of Defense

PA~EL OVERVIEW-8TEVEK B. LIPNER

INTRODUCTIOX

Recent experience in computer security has illustrated the
susceptibility of numerous operating systems to hostile
penetration.1 Successful penetrations have been directed at
manufacturers' conventional operating systems as well as
special "secure" versions that have been the subjects of ex
haustive- efforts to find and fix all potential security problems.
While formal reports are understandably hard to come by,
it appears that the effort required to "break" any operating
system and obtain access to any information it stores (at
any time and without detection) is in the range two to four
man-months. In contrast, the effort expended in futile at
tempts to prevent such penetration may be as much as two
orders of magnitude greater (several man-years or more).

The underlying problem that is reflected by the ease of
penetrating most operating systems is that of completeness.
If even one error in an operating system allows a user to
write a program that subverts the operating system's access
controls, hundreds of other errors may have been corrected
to no avail. In such a system, there is no relative protection
or degree of security, but simply the (faint) hope that \vould
be penetrators will overlook the remaining error(s). If a
penetrator does exploit such an error, his probability of
success is one; the operating system's level of security is zero.
Experience with penetration tests of current operating sys
tems has shown the prevalence of errors of the sort mentioned.
Unfortunately, it is the nature of the problem of completeness
that no amount of testing by penetration attempts can dem
onstrate the absence of such errors.

973

SECURITY KERNELS*

The security kernel approach represents an attempt to find
an alternative to the futile and (apparently) never-ending
cycle of conducting penetration tests and correcting errors.
The basic characteristic of this approach is the provision of a
small correct mechanism, the security kernel, that implements
the basic protection environment for the computer system.
The kernel manages the resources of the computer in such a
way that no program can subvert the access controls and ef
fect a penetration. A few programs outside the kernel may
perform ancillary security-related functions (viz: checking
passwords at login) but they are not involved in the basic
function of controlling access to information; the bulk of the
programs in a system controlled by a kernel can have no ef
fect whatever on security.

The security kernel approach is a radical one in the sense
that it requires a new and different mechanism at the very
base of the computer system. The idea of merely making
minor repairs to an existing operating system seems much
less drastic (and costly) and correspondingly more attractive.
Unfortunately the latter approach has been tried and found
unworkable. For this reason, the kernel approach is being
pursued by a number of organizations with an interest in
developing secure computer systems.

BASIC KERNEL REQUIRE~1EN"TS

The requirements that a security kernel must meet fall
into two different classes:

(1) A kernel must present a suitable functional environ
ment to the users and programs that employ it; and

(2) It must be designed and implemented so as to provide
complete, correct and effective control over the en
v'1.rOrullent it presents.

The differences in the several security kernels being developed
by the panelists reflect differences in their perceptions of the
requirements in each class and of the ways of meeting those
requirements. The functional environments provided by the

* The work reported herein was sponsored by the United States Air
Force Electronic Systems Division under Contract Number F19628-73-
C-OOOl, Project 572R.

974 National Computer Conference, 1974

kernels vary from "bare" virtual machines through seg
mented virtual memories to very rich capability and domain
environments. Similarly a variety of design, implementation,
and proof techniques characterize attempts to identify and
satisfy requirements of the second class.

Considerable variation in approach to defining a functional
environment is a natural consequence of variation in user re
quirements. However, the requirement for sound kernel design
and implementation is a constant if the problem of complete
ness is to be solved. It is success in meeting this requirement
that distinguishes a sound security kernel, for the richest
functional environment is of no value if the kernel that imple
ments it can be penetrated. Accordingly, much of the panel's
discussion will address the ways by which kernel developers
can assure themselves and others that the problem of com
pleteness has been solved.

KERNEL DESIGN AND PROOF

A number of issues in the areas of design, correctness, and
proof bear on the -sueeess or failure of a kernel· in· solving the
problem of completeness. Among these are:

-Interaction of function and correctness: Which sets of
functional requirements facilitate the development of a
correct kernel?

-Specification techniques: How does a designer specify a
kernel's function? What characteristics of the func
tional description must be proven?

-Proof of design: How does the designer specify the
mechanisms that implement a kernel? How can he con
vince himself that those mechanisms implement pre
cisely the kernel he requires?

-Hardware-software tradeoff: The paragraphs above have
left vague the question of whether a kernel is hardware
or software. What hardware base is in fact required for a
sound kernel, and how does it interact with kernel soft
ware?

SUMMARY

It is clear that this panel will not develop "the answers" to
the questions above. However it is equally apparent that, in
the coming years, a number of organizations will complete
security kernels and describe them in the literature. This
panel session should give its audience (and its panelists)
ideas of what to expect of the security kernels to come and
of how to assess them when they do become available.

REFERENCE

1. Branstad, D. K., "Privacy and Protection in Operating Systems"
Computer, Volume 6, Number 1, January 1973, pp. 43-46.

HYDRA-A KERNEL PROTECTION SYSTEM*
WILLIAM A. WULF

The Hydra system is the 'kernel' base for a collection of
operating systems designed to exploit and explore the poten
tial inherent in a multiprocessor computer system. Since the
field of parallel processing in general, and multiprocessing in
particular, is not current art, the design of Hydra has a dual
goal impo~ed upon it: (1) to provide, as any operating system
must, an environment for effective utilization of the hardware
resources, and (2) to facilitate the construction of such en
vironments. In the latter case the goal is to provide a meta
environment which can serve as the host for exploration of
the space of user-visable operating environments.

The particular hardware on which Hydra has been imple
mented is C.mmp, l a multiprocessor constructed at Carnegie
Mellon University. C.mmp permits the connection of (up to)
16 processors to 32 million bytes of shared primary memory
through a cross-bar switch. The processors are any of the
various models of PDP-ll minicomputers. Each processor is
actually an independent computer system with a small
amount of private memory, secondary memories,i/o devices,
etc. Processors may interrupt each other at any of four pri
ority levels; a central clock serves both for unique-name
generation (see below) and broadcasts a central time base to
all processors. Relocation hardware on each processor pro
vides mapping of virtual addresses on that processor to
physical address in shared primary memory.
The decision to use a 'kernel' approach, that is to provide

only a set of mechanisms from which operating system facil
ities may be built, arose from two considerations: first, the
conviction that only by this approach would it be possible
to build a 'correct' system, and second, a desire to avoid pre
disposing the users of C.mmp to any particular mode of use
through the idiosyncratic nature of 'the system'. (We want
to learn how to effectively utilize a multiprocessor, not a
multiprocessor plus particular operating system.) Thus our
goal is to create an environment in which users can and will
create t:p.eir own operating environments-including schedul
ing and paging policies, file systems, etc.-and to support the
simultaneous execution of an arbitrary number of such user
defined environments.

Given the general decision to adopt the 'kernel system'
approach, the question remains as to what belongs in a
kernel, and, perhaps more importantly, what does not. If a
kernel is to provide facilities for building an operating system,
and we wish to know what these facilities should be, then it is
relevant to ask what an operating system is or does. Two
views are commonly held: (1) an operating system defines a
'virtual machine' by providing facilitie:s, or resources, which
are more convenient than those provided by the 'bare' hard
ware, and (2) an operating system allocates (hardware)
resources in such a way as to most effectively utilize them.

* This research is supported by the Advanced Research Projects Agency
of the Office of the Secretary of Defense (F44620-70-C-0107) and is
monitored by the Air Force Office of Scientific Research.

Of course these views are, respectively, the bird's-eye and
worm's-eye "views of what is a single entity wiih multiple
goals. Nevertheless, the important observation for our pur
poses is the emphasis placed, in both views, on the central role
of resources-both physical and virtual.

The mechanisms provided by the Hydra kernel are all in
tended to support the abstracted notion of a resource (in
carnations of a resource are called objects). These mechanisms
provide for the creation and representation of new types of
resources, as well as operations defined on them, protected
access to instances of one or more resources within controlled
execution domains, and controlled passing of both control and
resources between execution domains. The key aspects of
these facilities are the generalized notion of resource, the
definition of an execution domain, and the protection mecha
nism which allows or prevents access to resources within a
domain.

The mechanism used by HYDRA to achieve the various
goals outlined above is an extension of the notion of a
capability based protection system.2 ,3 As with other capability
systems:

(1) HYDRA supports the abstraction of a resource called
an object. There may be several types of objects, typical
examples of object types are pages, files, processes,
and directories.

(2) For each type of object there are a finite number of
operations, or accesses, defined on that object type.
For example, operations such as 'open', 'close',
'read', 'write', and 'append' might be defined with
respect to file-type objects.

(3) Objects are named by capabilities-which are pro
tected by the system in the sense that a program may
move them around, but may not create them or alter
them in arbitrary ways. In addition to naming an
object, a capability contains a specification of the
accesses allowed to that object; that is, the capability
determines the operations which may be performed on
the object which it names. Hence, possession of a.
capability is prima facia evidence of the right to ac
cess an object in certain ways.

HYDRA extends the basic capability concept to allow
any user to define new types of objects and operations on the
new type. Thus the user may extend the basic resource types
of "the system" as he sees it while not only retaining the
protection applicable to previously defined resources, but
extending the protection to the ne'.v resource. The user may
wish to extend the system to provide a new facility (e.g., a
different file organization), to alter management policies for a
class of resources (e.g., a better disk request queueing algo
rithm), or to enforce a different security policy with respect
to a resource. The extension of the capability model of pro
tection involves several changes to the model:

(1) Objects may contain capabilities as well as data. (In
the usual capability-based systems capabilities may
only be kept in a special C-list associated with pro-

A Panel Session-Security Kernels 975

cesses.) This permits existing objects to be used in the
representation of new objects.

(2) The operations, or accesses, are defined by a special
object type called a procedure. Since procedures are
themselves objects, they may be manipulated, and
protected, by the same mechanisms applicable to
other objects.

(3) Protection is checked, as in other capability systems,
when an operation is applied to an object; that is,
when a capability is passed as a parameter to a pro
cedure. In addition to this protection check, however,
rights amplification may occur at this protection do
main boundary (between caller and called). The
called procedure may inherit more rights to the object
than the caller possessed. This, in effect, allows the
creator of a new object type to manipulate the repre
sentation of the objects of that type while preventing
the owner of an instance of the type from doing so.

The HYDRA kernel is operational and is currently being
used to explore the ease with which extensions of both func
tion and security policy may be made in practice. To date our
experience indicates that the HYDRA mechanisms can, in
deed, be used to easily extend the environment of a user's
program.

REFERENCES

1. Wulf, W. A. and C. G. Bell, "C.mmp-A Multi-Mini-Processor,"
Proc. AFIPS FJCC 1972, pp. 765-777.

2. Dennis, J. B. and E. C. Van Horn, "Programming Semantics for
Multiprogrammed Computations," CACM 9, 3, March 1966, pp.
143-155.

3. Lampson, B. W., "Dynamic Protection Structures," Proc. AFIPS
Conj., 35, FJCC 1969.

EFFECTIVE~ESS-THE REASON FOR A SECURITY
KERNEL-ROGER R. SCHELL

IXTRODUCTION

From the viewpoint of protection, the primary technological
deficiency of today's computer systems is the pervasive lack
of effective internal security controls.l There is a sizeable
collection of nominal access controls for information en
trusted to computer systems; yet these often attractive
protection features seem impotent when faced with a de
liberate effort to thwart them. The military, in particular,
needs dependable controls, since they have no legal redress
for information compromised by an enemy. A suitable
"security kernel" is one of the few available techniques for
providing effective security.

Security kernel connotes a small, basic set of controls.
However, a kernel needs more than just modular design, well
structured specifications, or similar useful (but not sufficient)

976 National Computer Conference, 1974

techniques. We advocate three elements of kernel develop
ment that provide a basis for meaningful protection: (1)
precise security definition; (2) fundamental design; (3)
certifiable implementation.

PRECISE SECURITY DEFINITION

The first step in kernel development is clearly establishing
what it means for the computer system to be "secure". The
abstraction of a "reference monitor"3 controlling the access
of active subjects to objects is used to model the security char
acteristics of the entire system-for the military this models
the access of people to information. For the computer com
ponent of the system there are corresponding representations.
With this model, all operations in the system can be con
sidered in terms of just two security (equivalence) classes:
(1) the Reference function provides for subjects to access
objects based on a set of access authorizations; (2) The
Authorize function provides for subjects to change the access
authorizations. The specific formulation of these two func-

. tions precisely determines· the protection features of the sys-
tem.

System features may range from total isolation (as between
distinct virtual machines) to refined control of information
sharing. The military controls access based on individual
"need-to-know" and a set of (partially ordered) national
security "classifications". We have modeled2 secure (against
compromise) military systems by a Reference function that
allows a user access if and only if his classification (called
"clearance") is greater than or equal to the information
classification and he has a need-to-know. Similarly, the
A uthorize function permits access authorization only to
sufficiently cleared users. This model is secure even against
"trojan horse" attempts to violate classification. A precise
model is basic, with or without a security kernel; however,
we cannot today prove an entire system correct, but it is
sufficient to concentrate on the kernel.

FUNDAMENTAL DESIGN

The kernel design for the reference monitor must faithfully
reflect the formal model. This faithfulness is characterized
by three design principles: the kernel is (1) complete in
mediating all references; (2) isolated from tampering; (3)
simple enough that its correctness can be established. Our
basic approach is to partition the security controls into a
distinct portion of the system. The design is fundamental in
the sense that it is independent of computational semantic~.
That is, the kernel is demonstrably sufficient for system
security (as precisely defined) for all possible computations,
including any penetration attempts.

The effectiveness of this approach is in marked contrast to
the usual approach to security controls, not only in degree
but also in basic concept. Nominal controls represent essen-

tially a game of wits between the designers making all the
checks they can think of and a penetrator looking for one
oversight. On the other hand the viability of the postulated
approach has been demonstrated in our recently completed
prototype design. 5 The precise definition of lisecure" and a
fundamental kernel design approach provide the basis for
establishing a priori (viz., "certifying") that a system is
secure.

CERTIFIABLE IMPLEMENTATION

The essential characteristic of a certifiable system is the
specific design criteria which, if met, insures the algorithmic
security of the system. This certification is distinguished from
efforts to directly test system security (e.g., by penetration
teams) and from ad hoc attempts at improved implementa
tions for "more secure" systems. Certification must establish
the correspondence between the fundamental design and the
implementation. One approach4 is a direct mathematica1
proof-by hard work and tenacity. Alternatively, a struc-

. -tured implementation (afterthemannerof-Dijkstra) maybe
developed by successive decomposition of the Reference and
A uthorize functions. Hardware support for per segment access
control and multiple protection environments (e.g., as in
Multics) is also a major implementation aid.

Since this kernel development approach is implicitly based
on a deterministic, asynchronous view of computation, a final
comment is in order: the problems of hardware component
failures and the use of external time to lisend Morse code"
must be independently considered.

CONCLUSIONS

A properly constructed security kernel can provide effective
internal access controls for modern computer systems. A
sufficient theory exists, design feasibility has been demon
strated, and adequate hardware/software architectures for
implementation are available. The industry must now choose
between a sound (security kernel) basis for truly effective
security or continued costly and unsuccessful attempts to
correct the weaknesses of contemporary systems.

REFERENCES

1. Anderson, J. P., Computer Security Technology Planning Study,
ESD-TR-73-51, October 1972.

2. Ben, D. E., Secure Computer Sysiems: Maihematical Foundations,
ESD-TR-73-278.

3. Lipner, S. B., Computer Security Research and Development Require
ments, MTP-142, MITRE Corporation, February 1973.

4. Price, W. R., Implications of a Virtual Memory Mechanism for
Implementing Protection in a Family of Operating Systems, Ph.D.
Thesis, Carnegie-Mellon University, June 1973.

5. Schiller, W. L., Design of a Security Kernel for the PDP-ll/45,
ESD-TR-73-294, June 1973.

A PRINCIPLE OF KERNEL DESIGN-GERALD J.
POPEK

One of the results of the recognition of the need for reliable
control of access to informati0n has been attention to the
way that software in multiuser systems is structured. The
concept of a security kernel as the lowest level of an operating
system, containing just that code relevant to security, has
grown out of that attention.

The value of a security kernel, as well as a discussion of the
idea itself, is presented in companion notes here, and by the
author elsewhere in this volume. Here we attempt to gen
eralize one of the notions behind the value of a security kernel
by describing a principle of which the kernel is an applica
tion. We name it the principle of "least common mechanism."*

A common mechanism shall be one which, if it were to
operate improperly, could lead to a security flaw. For many of
today's systems, the entire operating system is a common
mechanism, for it is run in supervisor state with universal
privileges, while applications programs are not. The principle
demands that a system be designed to minimize the amount of
such common mechanism, and we argue that if the principle is
followed the security of the system will generally be enhanced.
An example may provide some clarification.

Most contemporary operating systems provide an I/O
interface for user programs that is considerably improved
over that of the bare machine. Consequently, however, a
significant amount of code is often devoted to translating user
requests into a form directly processible by the hardware.
The code is frequently complex and a rich source of security
flaws. In most systems today, that translation is a common
mechanism. It is executed on behalf of many users, in super
visor state, with high privileges.

However, the above structure is not intrinsically necessary.
The only portion of the code which must be a common
mechanism is that which, at the very last moment possible,
checks the hardware I/O commands and actually empowers
the action. In that way, security is not dependent on trans
lation. Execution errors during translation are not worrisome
since they occur in an impotent environment without special
privileges, and the common checking code catches any illegal
I/O commands that may have been issued. The amount of
common mechanism has been considerably reduced.

Note that the translation code can be reentrant, and still
shared by many users. This sharing does not make the code a
common mechanism. True, errors in that code may cause a
user program to malfunction; in fact many user programs
may fail because of the same error. However, no security
breech occurs. Each user is still limited only to the informa
tion which is rightfully his. The conditions here are similar,
for example, to bugs in a system supplied compiler, which
may cause the failure of many user programs but without .
security implications.

*This name was suggested by Mike Schroeder during a conversation
in which this author was explaining the security advant3.0'"'eS of vi~';;ual
machine designs.

A Panel Session-Security Kernels 977

As another way that the amount of common mechanism
can be reduced, suppose a system contains extensive facilities
to support dynamic interprocess parameter passing. Suppose
further that users rarely if ever employ them to communi
cate between jobs with differing access privileges, although
the facilities are often used within a given job. These facilities
should not be run in privileged mode, but rather placed in a
less powerful environment. For example, a virtual machine
monitor or hypervisor removes many service features of a
system (in fact, entire operating systems) from the position
of common mechanism.

It should be pointed out that, in both of the above ex
amples, it usually would be necessary to restructure the guts
of the operating system innards. The code which performs
I/O translation and checking is frequently not easily sepa
rated.

The principle of least common mechanism can be a con
siderable aid in improving the security of a system and helps
determine what code a security kernel should contain.
Exactly the minimum common mechanisms should be in
cluded. However, a particular architecture has not been
specified. As a case in point, it is possible that a system should
have more than one kernel while still agreeing with the
principle. For example, let the basic kernel of a general pur
pose operating system provide for supporting and isolating
simple processes. The only primitive sharing facility included
might be the ability to arrange shared read-write segments.
Then, a file system, with its own kernel, could be built in
one process, and whenever a user wished to act on a file, he

. would communicate with the file system through a shared
segment. The original kernel's task of process isolation and
the responsibilities of the file system's kernel have been
separated, decreasing complexity, and the upper levels of
software each needs to support have also been simplified.

The effect of the definition of the common mechanism de
pends on what is meant by a security flaw. For example, one
might mean only that users are to be prevented from obtain
ing information that belongs to others. This is the usual view
point current today, tacitly assumed here. It includes for
example obtaining illegal access to another user's files. How
ever, an alternate interpretation of security might demand
that there be no way by which one user can cause a defective
scheduler not to run another user. One's definition of security
can have a significant impact on what portions of a system are
considered common mechanism. In the above, the scheduling
discipline must be included.

It has been suggestedl that one way to judge the security
design of a system is to evaluate it with regard to the principle
of least privilege: is it possible to lirr.it users'· access to the
least amount of information and pmver necessary to perform
the desired task. 4 For example, most traditional operating
systems violate this principle, since when the user calls upon
the supervisor for a service, he cannot limit the supervisor
only to the relevant information. Protection that is efficient
only for large files, or available only for entire directories,
implies that a user often must be given access to more than
is necessary.

978 National Computer Conference, 1974

The concept of least common mechanism should also be
used as a judgment criterion, for the less that is involved in
maintaining the security of the system, the less that must be
certified. In fact, for some multiuser systems, those parts
upon which the security of the system depends may be made
small enough and straightforward enough in their structure
to admit of a formal verification of their security properties,
or perhaps even become candidates for firmware implementa
tion.

The first two examples in this note could have been justified
by least privilege rather than least common mechanism, al
though those changes in structure are unlikely to have been
motivated that way. Nevertheless, there are differences be
tween these two principles. Whether the I/O checking code
mentioned earlier has access to the contents of various devices
or sections of memory is unrelated to its being a common
mechanism. Under certain conditions that code need not even
be run in a highly privileged mode.

However, these principles of least common mechanism and
privilege should be viewed together, for strict adherence to
one can cause difficulties with the other. When to trade extra
mechanism for occasional violation of least privilege, and

.. vice versa; may notbe·clear. The abitityt<Ycbhttol access to
individual data elements may support least privilege, but if it
is rarely useful, then the extra mechanism needed to support
that ability may not be justified.

The principle of least common mechanism is the underlying
reason why kernel designs can in general lead to more secure
systems.

BIBLIOGRAPHY

1. Jones, A. K., Protection in Programmed Systems, Ph.D. Thesis,
Carnegie-Mellon University, 1973.

2. Linden, T. A., "A Summary of Progress Toward Proving Program
Correctness," AFIPS Conference Proceedings, 1972 Fall Joint
Computer Conference, pp. 201-211.

3. Popek, G. J. and Kline, "Verifiable Secure Operating System Soft
ware," AFIPS Conference Proceedings, 1974 National Computer
Conference.

4. Saltzer, J. H., "Protection and the Control of Information Sharing
in Multics," to be published in Communications of the ACM.

ON THE DESIGN AND VERIFICATION OF A
SECURE OPERATING SYSTEM-PETER G.
NEUMANN

Claims regarding the security of an operating system are
meaningful only if the security can be verified, i.e., the
operating system can be shown to satisfy a set of explicit
security requirements. Even then, these requirements must
themselves be complete enough to preclude unanticipated
security violations. Various factors affecting the feasibility of
obtaining such verification are discussed below. For example,
extensitle use of structure and compartmentalization can

greatly facilitate design, implementation, and proof of
security.

In order to achieve th.e objectives of demonstrable security,
it is very desirable to have the following tools and techniques:

(a) A formal design methodology encouraging a highly
structured design, and providing design descriptions,
or specifications, at each of various levels of the design.

(b) A formal assertion language in which to state precisely
the desired security requirements.

(c) Techniques for proving that the design and the imple
mentation satisfy the formally stated security asser
tions. These techniques should take advantage of any
structure in the design and implementation. They may
be mostly manual or computer assisted, but there is
growing hope for the further development of realistic
semi-automatic proof techniques.

A very attractive approach to proving the security be
havior of a complex operating system is to partition the de
sign so that all security-sensitive functions are clearly par
titioned, e.g., those functions controlling sharing and isolation
of protectable objects. (We refer to the boundary of such a
partitioli as the "security perimeter." Itgeneiany c()Iltains
significantly more than the "security kernel" referred to else
where in this session.) Proof of security then consists of proofs
regarding the interior of the security perimeter, plus proofs of
successful isolation, i.e., that portions of the system outside
of the security perimeter cannot compromise the security.
The interior of the security perimeter may itself be highly
structured (although not necessarily hierarchical).

A small team of SRI people (Karl Levitt, Larry Robinson,
John Wensley and myself) is currently undertaking to design
a secur~ general-purpose operating system (with main em
phasis on the design within the security perimeter) and to
prove that this design satisfies the security requirements. We
are developing a formal design methodology based on Parnas'
technique of module specifications,I-3 and extending it to
make it suitable for a large system consisting of many
modules. Extensions include the representation of inter
module connectivity and the well-defined handling of excep
tion conditions. The formal assertion language is closely re
lated to the specification language, although somewhat more
precise. The proof techniques are evolving out of our experi
ence in the use of a range of current techniques for proofs of
correctness of smaller programs.4- 5 These proof techniques
are highly structured, and are appropriate to our structured
design. We expect that the large size of the entire operating
system will not be a deterrent to provability, since the design
is being structured into reasonably clean interconnections of
reasonably well-structured and modest-size modules. As a
result, the complexity of proof can be kept approximately
linear with module size and with interconnection complexity.
We feel that this approach holds great promise. In particular,
we believe that these techniques are adequate for our present
purposes, at least with respect to manual proof.

The design is using a capability-based design philosophy
[e.g., Reference 6] \vith extendible object types. Although we

are initially attempting only to prove a detailed design
(that is, a "partially implemented" design), the proof tech
niques also apply to the proof of an ultimate implementation
(in terms of executable programs) as the lowest levels of de
sign. In this sense, proof of an implementation is a multi
stage process iteratively involving proofs of various stages of
design (or implementation) specificity. Thus verification of
the security of the entire operating system is a relatively
straightforward effort; given the proof of the detailed design.
Furthermore, it is in general sufficient to reprove selectively
following local modifications.

We have one unusual consideration, namely that we are
not constrained by inadequacies of any existing architecture.
This is for the most part a great advantage. However, it is
sometimes necessary to resist temptations toward conceiving
infeasible architectures. A final· comment is in order on the
scope of our work. 1N e feel very strongly that hardware error
detection, crash recovery, and fault-tolerance in general are
intimately related to security, and thus we are including such
concepts in our design considerations. We hope that our
results will have a general and wide applicability.

REFERENCES

1. Parnas, D. L., "A Technique for the Specification of Software
Modules with Examples," CACM Vol. 15, pp. 330-336, December
1972.

2. Parnas, D. L., "On the Criteria to be Used in Decomposing Systems
into Modules," CACM Vol. 15, pp. 1053-1058, December 1972.

3. Parnas, D. L. and D. Sieworek, Use of the Concept of Transparency
in the Design of Hierarchically Structured Systems, Carnegie-Mellon,
27, July 1972.

4. Elspas, B., K. N. Levitt, R. J. Waldinger and A. Waksman, "An
Assessment of Techniques for Proving Program Correctness,"
Computing Surveys Vol. 4, No.2, 1972.

5. Waldinger, R. and K. Levitt, "Reasoning about Programs," ACM
Proc. Symp. on Principles of Programming Languages, pp. 169-182,
October 1973.

6. Lampson, B. W., "Dynamic Protection Structures," AFIPS Conf.
Proceedings, 1972 FaZZJoint Computer Conference, Vol. 41, pp. 33-47,
1972.

KERNELS FOR VARYING SECURITY REQUIRE
MENTS-T. A. LINDEN

In discussing security kernels it is useful to begin by
focusing on the word "security" rather than on the ,vord
"kernel". Security can mean many different things. Fruitless
arguments may be avoided if we take the time to define the
range of possible meanings for security and the ,yay these
meanings interact with the kernel idea.

To choose a specific meaning for the words "secure sys
tem", I propose that all three of the following questions must
be answered:

(1) What class of threats is the system secure against?
(2) What type of evidence for security is expected?
(3) What types of sharing will be required in the system?

A Panel Session-Security Kernels 979

With respect to the first question, security kernels attempt
to deal with a reasonably well-understood class of threats.
They provide access controls in the hardware and resident
software which can prevent simultaneous users of the system
from interacting in undesirable ways. Many other types of
threats, such as those associated with the physical integrity
of the computer site, are not addressed by the kernel idea.
However, a security kernel can make it easier to handle some
additional threats. For example, since a security kernel iso
lates the security-relevant software in a well-defined part of
the whole operating system, it becomes easier to guarantee
that it is loaded correctly and to control modifications to it.

More significant insight into the kernel idea can be gained
by turning our attention to the second question-the level of
evidence available to support claims of security. When dis
cussing software access controls, I suggest that the evidence
for security is usually based on one of the five following ap
proaches:

(1) Study of the manufacturer's manuals and brochures.
(2) Personal confidence in the system's designers and

implementers.
(3) Analysis of the system design.
(4) Testing and penetration efforts.
(5) Analysis and proof of assertions about the detailed

implementation.

It is indicative of the present state of the art that it is hard
to stop smiling until one approaches the end of this list.
Even extensive testing and penetration studies provide little
evidence that a system is secure, although they frequently
prove the opposite.

I believe that the essential point to a security kernel is that
it should make it feasible to provide solid objective evidence
for the security of the access controls implemented in soft
ware. It is not enough that the access controls be designed
just to meet specified security threats; they must also be
designed so that the integrity of the implementation will be
demonstrable. Given our present ability to demonstrate
properties of programs, this puts severe limitations on the
size and organization of both the programs that implement
the access controls and all the software and hardware on
which they depend.

The types of sharing that will be required from a secure
system account for most of the differences between various
approaches to security kernels. The first aspect of this prob
lem is the sharing of physical resources such as the CPU,
memory, peripherals: etc. The problem of designing a small,
well-structured security kernel clearly becomes more difficult
as more sharing of physical resources is required. Most current
security problems arise from the need to share physical
resources; however, current trends in hardware costs indicate
that the most important long range security problems may
arise from the need for other types of sharing.

In the future we can expect a continually increasing need
for flexible sharing of programs and data. This may entail
much more than just a file system that allows restricted dis-

980 National Computer Conference, 1974

tribution of the programs and data. For example, if a program
written by one person is to be used by someone else, then we
might want the security kernel to guarantee that the pro
gram cannot steal or alter all of the information in the file
directory of the person who used the program

Finally, there is the problem of sharing or decentralizing of
control over who can access what. Centralized security con
trol is adequate in many situations-in fact is often neces
sary, especially for the military. However, there are situa-

tions where decentralization of the security controls would be
very desirable.

In discussing security kernels, it is important to carefully
consider the amount of sharing which will be needed. Complex
forms of sharing will certainly make it more difficult to imple
ment a small, provable security kernel. On the other hand,
if a system does not allow for enough sharing, then manual
procedures will usually develop which effectively bypass or
negate the carefully designed automatic security controls.

A panel session-Snobol languages

SESSION CHAIRMAN-RALPH E. GRISWOLD

University of Arizona

Panel Members

James F. Gimpel-Bell Laboratories
Robert B. K. Dewar-Illinois Institute of Technology
Paul J. Santos-Bell Laboratories
David R. Hanson-University of Arizona

981

OVERVIEW

SNOBOL has developed from simple string processing to a
sophisticated general purpose programming language. This
session will consist of brief presentations and discussions by
panelists who have played major roles in the design, imple
mentation, and application of the SNOBOL languages. The
panel will be available for questions from the audience.

A panel session-Program debugging

SESSION CHAIRMAN-HELENE E. KULSRUD

Institute for Defense Analyses

Panel Members

Robert M. Blazer-USC/Information Sciences Institute
Hermann H. Goldstine-IBM and The Institute for

Advanced Study
Ralph Grishman-Courant Institute, NYU
M. D. McIlroy-Bell Telephone Laboratories
P. E. Hagerty-University of Maryland
Moderator
Helene E. Kulsrud-Institute for Defense Analyses

983

OVERVIEW

The computing community is now concerned with the cost
in time and money consumed by the debugging process. In
spite of advances, such as proving program correctness, use
of higher level languages and new methods for structuring
programs, the problem remains. The panelists will consider
many phases of the debugging activity as it exists today,
giving their views on current and proposed tools and tech
niques.

A panel session-Computer output to microfilm

SESSION CHAIRMAN-JOHN R. RIDGEWAY

Combustion Engineering, Inc.

Panel Members

James N. Hollister-Eastman Kodak Company
Jon Warms-American Telephone & Telegraph
Bryan Wood-Gould. Inc.
Tom Glacken-Computer Microfilm International Corp.

985

OVERVIEW

This session assumes no prior knowledge of COM. We
will review a history of COM, what it is, where it is going
and then, related COM to Information Management. Micro
film technology can be used in a real-time MIS environment
as a replacement for computer devices; as an extension of
the Computer's capabilities; and as a low cost back-up
system.

A panel session-The CODASYL and GUIDE/SHARE proposals
on data base management systems

SESSION CHAIRMAN-LARRY SIMONETTE

Peat, Mar'Wick, Mitchell

Panel Members

Barbara Fossum-Sperry-UNIV AC
Chuck Mairet-Deere & Company
C. W. Bachman-Honeywell Information Systems Division
Mike o 'Connell-Digital Equipment Corporation
Roger Holliday-IBM Corporation
Don Jardine-Queens University

987

OVERVIEW

Six panelists will discuss the subject of Data Base Manage
ment (DBM) as it relates to CODASYL's Data Base Lan
guage Task Group report and Data Definition Language
Committee Report and the GUIDE/SHARE published re
quirements for a DBM and other published GUIDE docu
ments deemed pertinent. Four key issues that best deal
with the philosophy, concepts and differences of the
CODASYL and GUIDE/SHARE work to date will be
addressed.

A panel session-Report on the mM data security study

SESSION CHAIRMAN-LEE DA...~NER

IBM Corporation

Panel Members

Robert T. Caravella-State of Illinois-MID
Robert H. Scott-MIT-Information Processing Services
Gerald E. Short-Systems Group of TRW, Inc.

OVERVIEW

The IBM Data Security Study Project has essentially
been completed. This session will summarize IBM's efforts
to the project and reports by three non-IBM study sites.
The discussion will cover data security from the viewpoints
of the user, the system designer, and the administrative
and operations managers.

989

A panel session-Audit considerations of data bases

SESSION CHAIRMAN-RICHARD A. NERAD

Arthur Anderson & Company

Panel Members

Robert Manion-Author Anderson & Company
Gresham T. Brebach-Arthur Anderson & Company
James Muenz-Kraftco Corporation

991

OVERVIEW

Now, at the onset of a new era of data processing centered
around the data base concept, it is important for the business
oriented systems man to be aware of the impact that this
concept has on the company management responsible for
the business operations. This panel will present a series of
topics related to the corners of key corporate responsibilities:
the executive management, the financial management and
the auditor.

A panel session-Research in data security-Policies and projects

SESSION CHAIRMAN-ROBERT F. MATHIS

The Ohio State University

Panel Members

Stephen R. Crocker-Advanced Research Projects Agency
Marvin Denicoff-Office of Naval Research
Victor Mitchell-U.S. Army Material Command
Frederick W. Weingarten-National Science Foundation
Edward Feustel-Rice University
Lance J. Hoffman-University of California-Berkeley
David Hsiao-The Ohio State University
Rein Turn-The Rand Corporation
William Wulf -Carnegie-Mellon University

SCOPE AND SIGNIFICANCE-ABSTRACT

This session "\\-1.11 begin with presentations and a panel
discussion by representatives of various governmental agen
cies involved with research or funding of research in data
.security. They "\\-1.11 present their views on the policies and
goals of federally funded research in the area of data security
and how this relates to privately funded research and de
velopment in this and related areas. They will also have the
opportunity to point out new directions which should be
pursued. There will be discussion on both the technological
and social impact of such funding.

The session will also include reports from some significant
research projects in the data security area. The research
projects will be described in terms of original scope and
purpose, results obtained, investigations underway, sug
gestions for future research, and publications. These research
reports should provide the computing community at large
a good view of current research, support policy, and future
directions in the data security area.

This session will differ substantialiy from, but be comple
mentary to, the sessions on user oriented development
projects in data security which were presented at the last
National Computer Conference. It should provide a good
forum for reporting the current status of many research
projects in the area of data security and serve as a means of
encouraging communication between researchers and users
interested in this area.

993

RESEARCH ON COMPUTER SECURITY COSTS AT
THE UNIVERSITY OF CALIFORNIA, BERKELEY
LANCE J. HOFFMAN

Research into costs associated with computer security
techniques is currently underway at the University of Cali
fornia, Berkeley. Several types of costs are being investigated.

ENCIPHERMENT /DECIPHERMENT

Costs of encipherment and decipherment have finally been
determined in replicable experiments on Berkeley's CDC
6400 and the Stanford IBM 360/67. Using the results of
these experiments, encipherment time coefficients were calcu
lated for four different encipherment methods: one-word key
multiword key, double key, and pseudo-random key. The
encipherment time coefficients, which measure the :relative
speed of a given encipherment method on a given machine
are shown in Table I, and the interested reader is referred
to Reference 1 for more detail.

Preliminary worst-case overhead results have also been
measured for a method of altering operating systems to
allow dynamic data-dependent decisions at execution time
without requiring either the binding of security parameters
at compile-time, or the great increase in overhead necessi
tated by run-time decisions. Relatively simple additions to
the functions of input-output routines may result in the
dynamic capabilities we want at little additional cost. By
interposing a security module between user programs and
system input/output routines (see Figure 1), we have been

TABLE I-CDC 6400 CPU Time Used for Encryption

Method

Null Transformation
One Word Key
Long Key
Double Key
Pseudo-Random Key

Encipherment Time Coefficient
Assembly Language FORTRAN

1.000 1.00
1.004 2.68
1.73 4.03
2.64 6.60
4.21 9.96

994 National Computer Conference, 1974

ORIGINAL

MODIFIED

I call
comp:!ed
user !
progrcm I

~
g'
o
g
::>

'"
comp;led g
user I a.
pro;ram ~

1

system
IIO
routines

masquerading
IIO routine system

routine

r--:
I
7"-in:-ka-g-e -+------1 ~;rs~luie

security modules

Figure I-Modified system I/O to implement data security modules

able to achieve dynamic security checking with speed ap
proaching that of data-independent decisions in a manner
applicable to most operating systems today.2 We plan to
extend and improve our preliminary CDC 6400 results on
the IBM 360/67 and hope that additional CPU overhead
can be cut to well below 10%.

We initially planned to design several application-oriented
languages which would incorporate data-dependent and data
independent security features and we still plan to design
some application-oriented languages with very general se
curity features after the work of the previous paragraph is
completed. It is our hope that some of these will be able to
screen out most unauthorized data accesses at compile-time
and still support dynamic data access decisions at run-time.

We will also continue our work with procedure-based
access control mechanisms3 and hope to eventually implement
some of these in microcode or hardware and thus eliminate a
great deal of CPU and memory overhead which is caused by
security considerations. We also hope to develop a theoretical
framework for procedure-based access control analagous to
and compatible with access matrix models and other models.4

The work described above is all being done under NSF
Grant GJ-36475. It is separate and distinct from another
project on computer security at Berkeley, the PRIME
Project.s

REFERENCES

1. Friedman, T. D. and L. J. Hoffman, Execution Time Requirements
for Encipherment Programs, University of California Electronics
Research Laboratory Memo ERL-M378, June 1, 1973. To appear,
Communicat'ions of the ACM.

2. Woodward, F. G. and L. J. Hoffman, Worst-case Costsjor Dynamic
Data Element Security Decisions, University of California Elec
tronics Research Laboratory Memo ERL-M413, September 26,
1973.

3. Hoffman, L. J., "The Formulary Model for Access Control,"
Proc. AFIPS 1971 FJCC, Vol. 39, AFIPS Press, pp. 587-60l.

4. Bell, D. E. and L. J. LaPadula, Secure Computer Systems: Mathe
matical Fouruiations, ESD-TR-73-278, USAF Electronic Systems
Division, L. G. Hanscom Field, Bedford, Mass.

5. Baskin, H. B., B. R. Borgerson, and R. Roberts, "PRIME-A
Modular Architecture for Terminal-Oriented Systems," Proc.
AFIPS 1972 SJCC, pp. 431-437.

RESEARCH ON DATA SECURE SYSTEMS*
DAVID K. HSIAO, DOUGLAS S. KERR AND
FRED A. STAHL**

The research at The Ohio State University on data security
has evolved from some of the earlier work in logical access
control mechanisms begun in 1965.1 In order to provide an
introduction for others to some of the work, we have pub
lished a summary entitled "Logical- -Access Control Me-cha;..
nisms in Computer Systems."2 Due to considerable advances
in computer hardware and software protection mechanisms
in recent years, an examination of the logical access control
mechanisms with respect to their supporting hardware and
software protection mechanisms is needed. To this end we
have taken the first step by reviewing critically some of the
significant work in the area of data security. The review is
documented in a technical report entitled "An Annotated
and Cross-Referenced Bibliography on Computer Security
and Access Control in Computer Systems."3

Our progress in developing a general theory of data security
and data secure systems has been good. Experimentations
will occupy our attentions for the months to come. Major
research and experimentation efforts are discussed below.

ON DEVELOPING A THEORY OF DATA SECURITY

A multi-level model for data secure systems has been
proposed.4 In this model the relevant issues in data security,
such as integrity, privacy. protection . and controlled infor
mation sharing, can be studied, on the one hand; and the
conventional procedures such as identification, authenti
cation, authorization, and compartmentalization can be char
acterized, on the other hand. Furthermore, the model allows
different problems in data security to be considered· at a
level of abstraction appropriate to the specific issue and
procedure under study. The highest level iR c(YY1,ceptual. In it,
"patterns of protection" (intuitively, the ways the users may
access the data) can be defined in formal and unambiguous

The work reported herein is supported by the Office of Naval Research
under Contract NOOOI4-67-A-0232-002.
** The Department of Computer and Information Science, The Ohio
State University. Columbus, Ohio 4:l21O,

A Panel Session-Research in Data Security-Policies and Projects 995

ways. The intermediate level of the model is structural. Here,
the primitives to be utilized in the realization of the patterns
of protection defined in the higher level will be specified.
The most important feature of this level is that the critical
functions of an access control mechanism are no longer carried
out by complex, and thus potentially unreliable programs,
but are inherent in the basic structure of the system by the
utilization of deadlocks. When a user attempts an unper
mitted access, he deadlocks ,yith a "pseudo-user" and cannot
proceed. Thus, the demonstration of system correctness in
volves the certification of a limited number of small, single
purpose modules and the verification of the correctness of the
user/pseudo-user interaction. On the lowest level, a system
to illustrate the utility and practicality of the model will be
created. Overall, the research should suggest a modelling
and design technique for a demonstrably complete and correct
system for providing logical access control in a shared data
base system.

Our present plan for this research consists of three studies.
The first is to complete our abstract model of data secure
systems and develop a general theory of data security as
proposed in Reference 4. In particular, we emphasize the
structural level of the model. It is hoped that this level of
modelling can reveal the inner working of the access control
mechanism based on the theory of deadlock. With a good
understanding of its inner working, the access control mecha
nism can then be properly designed and implemented. The
application of the theory of deadlock to access control is
new. We believe that this is the first application. Tra
ditionally, system designers attempt to avoid and circumvent
the system deadlocks which tie up system resources and
utilities. However, in our case, we deliberately tie up resources
and utilities as a means to deadlock penetrators of the
.system. Obviously, these resources and utilities are logical
resources such as files, records and fields and functional
utilities such as data access and manipulations. Such deadlock
is called security deadlock. One of the basic requirements is
that no authorized use of and access to the data base will
cause a security deadlock and any unauthorized use or
access will cause an immediate security deadlock. This re
quirement will be met.

ON CONTEXT PROTECTION AND
CONSISTENT CONTROL

Although the capability of the access control mechanisms
to regulate field, record and file security, has been recognized
as indispensible in advanced data secure systems, there is
the need of more subtle protection and refined control which
we shall call context protection and consistent control. Context
protection enables the same data unit (field, record or file)
to be protected differently in different contexts. For example,
the same data field may be protected differently in different
records. The difference may be determined by the manner
in which the fields and records are being accessed. Consistent
control is concerned with the problem that when new data

units based on the old data units of the data base are created
by the users, these data units must be protected consistently
in the sense that their access requirements must be generated
automatically and must conform with the access require
ments of the old data units. Our study5 has begun to show
that both context protection and consistent control can be
enforced by means of certain built-in relations among the
data units involved. These relations under certain conditions
can reveal any violation of context protection and consistent
control. Here our first step is to identify those relations which
are basic and primary to the contextual relations. It is
hoped that by proposing these basic and primary relations,
more elaborate contextual relations among data elements
can be defined for protection reasons. Furthermore, a method
of enforcing the protection can be facilitated by these basic
and primary relations. Necessary and sufficient conditions
under which a protection violation will occur due to con
textual security constraints must be identified. With these
conditions and the method, it will be possible to propose a
data definition language for specifying data base protection
requirements and to develop an access control mechanism
for enforcing the requirements.

ON DATA SECURE COMPUTER ARCHITECTURE

In this research we are concentrating on computer archi
tectural (hardware) requirements for the realization of data
secure systems.6 Hardware requirements will be investigated
via hardware modification (such as microprogramming) of
an existing computer system. By introducing a special data
management instruction repertoire for access control mecha
nisms, the problem of high performance and reliability may
be alleviated. It is the primary aim of this study to determine
the desired computer hardware organization for the enhance
ment of data security. Systems requirements will be studied
in view of computer configuration and architectural issues.
To this end, we intend to build some special softwarej
hardware interfaces interconnecting several different com
puter systems. Novel system architecture utilizing a high
degree of processing parallelism and distributed functionality
may provide new solutions to improved effectiveness in data
security.

ON DESIGN AND IMPLEMENTATION TOOLS
FOR DATA SECURE SYSTEMS

In order to demonstrate the feasibility and usefulness of
the theoretical studies, an undertaking on system design
and implementation of a demonstration system is desired.
Furthermore, the system will be needed as a vehicle to
experiment with new access control mechanisms as well as
novel data base applications. As a design and implementation
tool, a PLjl-like systems programming language, known as
PLjX, has been developed.8 ,9,10 We plan to use PLjX for
the design and implementation of experJffiental data secure
systems.

996 National Computer Conference, 1974

ON DISTRIBUTED SECURE DATA BASES
IN COMPUTER NETWORKS

One of the most promising ways of utilizing network
capabilities while providing efficient and reliable processing
is the establishing of distributed data bases. However, dis
tributed data bases pose unique problems and advantages
toward the safeguarding of sensitive information. In our
researchll we are investigating the ways in which crypto
graphic techniques can be employed to provide the needed
security inherent in transmitting information over common
carrier lines. In particular, we are investigating techniques
by which information in encrypted form may be processed
without passing through the additional steps of decryption
and subsequent reencryption.12 .!3

REFERENCES

1. Hsiao, D. K., "Access Control in An On-Line File System,"
Working Papers of F I LE68-I nternatWnal Seminar on File Organiza
tion by I.F.LP. (LA.G.) Administrative D~ta Processing Group,
Copenhagen, Denmark, Nov. 1968. The same paper is also included
in a book entitled File Orga,nization-Selected Papers fromFILE68,
an I.A.G. Conferenc~ by Studentiitteratur Ab, Lund, Sweden. -

2. Hsiao, David K., "Logical Access Control Mechanisms in Computer
Systems," Proceedings of Conference on Secure Data Sharing,
ONR/NSRDC, Washington, D.C., July 1973.

3. Bergart, J. G., M. Denicoff, and D. K. Hsiao, An Annotated and
Cross-Referenced Bibliography on Computer Security and Access
Control on Computer Systems, Technical Report OSU-CISRC-TR-
72-12, The Department of Computer and Information Science, The
Ohio State University, November 1972.

4. McCauley, E. J., III, and D. K. Hsiao, A Model for Data Secure
Systems, Technical Report OSU-CISRC-TR-73-8, The Department
of Computer and Information Science, The Ohio State University,
February 1974.

5. Nee, C. J., and D. K. Hsiao, Theoretical Foundations for Context
Protection and Consistent Control in Data Secure Systems, Technical
Report OSU-CISRC-TR-73-9, The Department of Computer and
Information Science, The Ohio State University, February 1974.

6. Baum, R. 1., and D. K. Hsiao, A Data Secure Computer Architecture,
Technical Report OSU-CISRC-TR-73-10, The Department of
Computer and Information Science, The Ohio Stat-e University,
March 1974.

7. Hsiao, D. K., and T. Wyrick, System Configuration Study on the
Interconnection of the IBM 370/165, DEC System-10 and Micro
1600/21 Computer Systems, Technical ReportOSU-CISRC-TR-73-7,
The Department of Computer arrd Informatiorr Science and the
Instruction and Research Computer Center, The Ohio State Uni
versity, October 1973.

8. Hsiao, D. K., et aI., The PL/X Compiler-Subsystem Writers' Manual,
The Instruction and Research Computer Center and The Depart
ment of Computer and Information Science, The Ohio State Uni
versity, August 1973.

9. Hsiao, D. K., et aI., The PL/X Programming Language Reference
Manual, The Instruction and Research Computer Center and The
Department of Computer and Information Science, The Ohio
State University, August 1973.

10. Hsiao, D. K., et aI., The PL/X Compiler Program Statements,
Technical Report OSU-CISRC-TR-73-11, issued jointly by the
IRCC and The Department of Computer and Information Science,
The Ohio State University, December 1973.

11. Cohen, E. I., D. K. Hsiao, and F. A. Stahl, Distributed Secure Data
Bases in Computer Networks, Technical Report OSU-CISRC-TR-
73-11, The Department of Computer and Information Science, The
Ohio State University, February 1974.

12. Stahl, F. A., "A Homophonic Cipher for Computational Security,
Proceedings of the AFIPS National COmputer Conference and
Exposition, Vol. 42, AFIPS Press, Montvale, N.J., 1973, pp. 565-8.

13. Stahl, F. A., On Computational Security, Report R-637, Coordinated
Science Laboratory, University of Illinois, Urbana, Illinois, January
1974.

RESEARCH IN THE PROTECTION OF PRIVACY OF
PERSONAL INFORMATION DATABANKS
THEORETICAL AND TECHNICAL
ASPECTS*-REIN TURN

INTRODUCTION

This two-year study, funded by the National Science Foun
dation Grant GI-29943, was completed in March 1974. The
research was focused on a model of protector-intruder inter
actions in databank systems which identified the economic
variables necessary for rational decisions, both by the pro
tector of a databank and would-be intruders, in imple
menting protection systems or attempting to overcome these,
respectively.! Within this framework the research was con
ducted in three areas: theoretical studies, system studies,
and compilation of an annotated bibliography. The results
of each are summarized below. Details are available in
published papers and reports.

THEORETICAL STUDIES

We examined the following theoretical questions that arise
in the context of protecting privacy and security of personal
information databank systems.

Existence of uncrackable databanks

The question was, are there fundamental mathematical
and logical principles by which it is possible to establish
the existence of uncrackable (in the sense of Coates2) data
banks-those which by their very nature would provide
perfect privacy? "VIle concluded3 that if both the databank
protector and the intruders have unlimited resources avail
able, then no uncrackable (in the sense of Coates) databank
exists; but if both the protector and intruder have limited
resources, then uncrackable databanks may exist.

Applications of information theory

We established an information-theoretic model· for data
storage in computer files and showed how Shannon's com-

* The research described herein was supported by the National Science
Foundation Grant GI-29943. However, any views or conclusions con
tained in this paper should not be interpreted as representing the official
position or policy of the National Science Foundation or- The Rand
Corporation.

A Panel Session-Research in Data Security-Policies and Projects 997

munication theory of secrecy systems and the rate distortion
theory can be used to design irreversible privacy transfor
mations for application in statistical databank systems.4 ,5

Data aggregation transformations

We explored the applicability of elements of Kolmogorov's
E-entropy theory for establishing measures of the degree of
protection afforded by data aggregation in statistical data
banks. Although a natural metric for databank purposes
was defined, the calculation of E-entropy or the E-capacity
of the ensemble of records has thus far been intractable (the
problem is of the "sphere-packing" type) and without such
a calculation this approach does not lead to useful results
such as those of classical Shannon information theory.

Number-theoretic aspects of passwords

We examined the use of pseudorandom numbers as pass
words in databank systems that have large numbers of
remote terminals. We showed that various logistically at
tractive password generation and distribution systems are
vulnerable to simple number-theoretic analyses that permit
deducing the passwords of all the terminals. We proposed
new password generation and distribution strategies to re
duce such vulnerabilities. 6

Modeling of protector-intruder interactions

We borrowed notions from game theory to set up an
economic model of the "competition" between a databank
protector and an economic profit seeking intruder. 1 This
model suggests optimal policies for both. Before the model
can be effectively used in practice, however, it is necessary
to derive ways to measure the effectiveness of protection
mechanisms, the value of information protected, the costs of
both protection and intrusion, and the information loss.
We have formulated strategies for deriving such measures. 7 ,8

Centralized vs. decentralized databank systems

Many people intuitively feel that a centralized databank
is a greater threat to privacy than a set of decentralized
databanks. We have compiled sets of arguments, pro and con,
on this question. Our score sheet shO\vs that, if properly
designed, implemented and controlled, a centralized databank
should be able to provide more privacy protection than a
decentralized databank. 9 This appears to be so for most of
the threat scenarios that we have been able to invent.

A philosophical aspect of the privacy question

It is argued here that fear of the unknown and lack of
knowledge by a person whose record is in the data bank of

"What information on him is in the databank?" "Who is
requesting information on him?" "What information is re
leased to the requestor?" and even the fact that his record
is in a particular databank, contributes greatly to his concern
about data privacy. It is suggested that, although the Fair
Credit Reporting Act is a step in the right direction, far
more should be done to institute a sense of "reciprocity"
between a databank's subject, and the databank's controller,
custodian and users.

SYSTEM STUDIES

Another major part of the research dealt with system
oriented aspects of privacy protection and data security.
Here we attempted to further the understanding of the nature
of databank systems and their privacy and security problems.

Structure of databank systems

We established a model and a classification scheme for
personal information databank systems which, we feel,
effectively display the privacy and security aspects of such
databank systems.1.7 Along with this we established a cata
logue of threats faced by personal information databanks
and their subjects.7,9

"jlf odel" security systems

We used the above classification to derive a series of
representative data security systems for the various classes
of databank systems. 7 We hope that such security system
models can be used in practice as a framework for designing
effective data security systems for specific databanks.

Privacy transformations

We analyzed the system implications of using (reversible)
privacy transformations in protecting stored data and pointed
out the pitfalls that face any uniformed attempts of their
use-the level of protection achieved is often only illusory.1o

Foundations of data security engineering

We outlined a general framework for the development of
Data Security Engineering-a methodology and a set of
techniques for designing effective data security systems in
computerized databanks and information systems. 8 Such a
methodology should include techniques- for security require
ments analysis as well as security system synthesis, derivation
of measures of effectiveness and techniques for their practical
evaluation, and tradeoff relationships between the various
variables. A design methodology for data security systems is
urgently needed. We hope to make the first necessary steps
toward its development.

998 National Computer Conference, 1974

ANNOTATED BIBLIOGRAPHY

A major by-product of the project was the compilation
of an annotated and cross-indexed bibliography on privacy
and security related publications from 1970 through 1973.11

The bibliography contains over a thousand entries. We also
drafted a glossary of terms in the privacy and security area
and a historical overview of the developments in the data
privacy and security field. To date these have not been
published.

FUTURE RESEARCH

Weare planning to continue research in the data security
area, concentrating on theoretical aspects of protection in
resource-sharing computer systems, instrumentation of com
puter systems for real-time threat monitoring, and further
development of the data security engineering methodology.

PROJECT MEMBERS

Principal investigators of this project were Mario L.
Juncosa and Rein Turn. Other members of the project were
Kathleen Hunt, Selmer M. Johnson, Irving S. Reed, and
Norman Z. Shapiro. Martin Davis participated briefly as a
consultant.

REFERENCES

1. Turn, R., and N. Z. Shapiro, "Privacy and Security in Databank
Systems: Measures of Effectiveness, Costs, and Protector-Intruder
Interactions," AFIPS Conference Proceedings, Vol. 41, Part 1,
1972 Fall Joint Computer Conference, AFIPS Press, Montvale,
N.J., 1972, pp. 435-444.

2. Coates, J. F., Computers and Privacy: Is There a Missing Theorem'!
Note N-680 (R), Institute for Defense Analysis, Arlington, Va.,
April 1970.

3. Shapiro, N. Z., and M. Davis, Uncrackable Databanks, R-1382-
NSF, The Rand Corporation, December 1973.

4. Reed, 1. S., The Application of Information Theory to Privacy in
Databanks, R-I282, The Rand Corporation, May 1973.

5. Reed, I. S.,"Information Theory and Privacy in Databanks,"
AFIPS Conference Proceedings, Vol. 42, 1973 National Computer
Conference, AFIPS Press, Montvale, N.J., 1973, pp. 581-587.

6. Johnson, S. M., Certain Number-Theoretic Aspects of Access Control
Passwords, R-1433-NSF, The Rand Corporation, March 1974.

7. Turn, R., Privacy and Security in Personal Information Databank
Systems, R-I044-NSF, The Rand Corporation, March 1974.

8. Turn, R., Toward Data Security Engineering, P-5142, January 1974.
9. Shapiro, N. Z., M. L. Juncosa, and R. Turn, Privacy and Security in

Centralized vs. Decentralized Databank Systems, R-1456-NSF, The
Rand Corporation, March 1974.

10. Turn, R., "Privacy Transformations for Databank Systems,"
AFIPS Conference Proceedings, Vol. 42, 1973 National Computer
Conference, AFIPS Press, Montvale, N.J., 1973, pp. 589-601.

11. Hunt, K., and R. Turn, Privacy and Security in Databank Systems:
An Annotated Bibliography, 196.9-1.973, R-1261-NSF, The Rand
Corporation, March 1974.

HYDRA-A KERNEL PROTECTION
SYSTEM*-WILLIAM A. WULF

The Hydra system is the 'kernel' base for a collection of
operating systems designed to exploit and explore the po
tential inherent in a multiprocessor computer system. Since
the field of parallel processing in general, and multiprocessing
in particular, is not current art, the design of Hydra has a
dual goal imposed upon it: (1) to provide, as any operating
system must, an environment for effective utilization of the
hardware resources, and (2) to facilitate the construction of
such environments. In the latter case the goal is to provide
a meta-environment which can serve as the host for explor
ation of the space of user-visable operating environments.

The particular hardware on which Hydra has been imple
mented is C.mmp, l a multiprocessor constructed at Carnegie
Mellon University. C.mmp permits the connection of (up to)
16 processors to 32 million bytes of shared primary memory
through a cross-bar switch. The processors are any of the
various models of PDP-ll minicomputers. Each processor
is actually an independent computer system with a small
amount of private memory, secondary memories, I/O devices,

----etc~Processors ihay interrupt each" other ai -any --ciff6ur- ---
priority levels; a central clock serves both for unique-name
generation (see below) and broadcasts a central time base
to all processors. Relocation hardware on each processor
provides mapping of virtual addresses on that processor to
physical addresses in shared primary memory.

The decision to use a 'kernel' approach, that is to provide
only a set of mechanisms from which operating system
facilities may be built, arose from two considerations: first,
the conviction that only by this approach would it be pos
sible to build a 'correct' system, and second, a desire to
avoid predisposing the users of C.mmp to any particular
mode of use through the idiosyncratic nature of 'the svstem.'
(We want to learn how to effectively utilize a multipr~cessor,
not a multiprocessor plus particular operating system.) Thus
our goal is to create an environment in which users can and
will create their own operating environments-including
scheduling and paging policies, file systems, etc.-and to
support the simultaneous execution of an arbitrary number
of such user-defined environments.

Given the general decision to adopt the 'kernel system'
approach, the question remains as to what belongs in a
kernel, and, perhaps more importantly, what does not. If a
kernel is to provide facilities for building an operating system,
and we wish to know what these facilities should be, then
it is relevant to ask what an operating system is or does.
Two views are commonly held: (1) an operating system
defines a 'virtual machine' by providing facilities, or resources,
which are more convenient than those provided by the 'bare'
hardware, and (2) an operating system allocates (hardware)
resources in such a way as to most effectively utilize them.

* This research is supported by the Advanced Research Projects Agency
of the Office of the Secretary of Defense (F44620-70-C-0107) and is
monitored b:r the Air Foree Office of Scientific Research.

A Panel Session-Research in Data Security-Policies and Projects 999

Of course these views are, respectively, the bird's-eye and
worm's-eye views of what is a single entity with multiple
goals. Nevertheless, the important observation for our pur
poses is the emphasis placed, in both views, on the central
role of resources-both physical and virtual.

The mechanisms provided by the Hydra kernel are all
intended to support the abstracted notion of a resource
(incarnations of a resource are called objects). These mecha
nisms provide for the creation and representation of new
types of resources, as well as operations defined on them,
protected access to instances of one or more resources 'within
controlled execution domains, and controlled passing of both
control and resources between execution domains. The key
aspects of these facilities are the generalized notion of
resource, the definition of an execution domain, and the
protection mechanism which allows or prevents access to
resources within a domain.

The mechanism used by HYDRA to achieve the various
goals outlined above is an extension of the notion of a
capability based protection system.2 ,3 As with other capability
systems:

(1) HYDRA supports the abstraction of a resource called
an object. There may be several types of objects,
typical examples of object types are pages, files,
processes, and directories.

(2) For each type of object. there are a finite number of
operations, or accesses, defined on that object type.
For example, operations such as 'open,' 'close,' 'read,'
'write,' and 'append' might be defined with respect to
file-type objects.

(3) Objects are named by capabilities-which are pro
tected by the system in the sense that a program may
move them around, but may not create them or alter
them in arbitrary ways. In addition to naming an
object, a capability contains a specification of the
acce,sses allowed to that object; that is, the capability
determines the operations which may be performed on
the object which it names. Hence, possession of a
capability is prima facia evidence of the right to
access an object in certain ways.

HYDRA extends the basic capability concept to allow any
user to define new types of objects and operations on the
new type. Thus the user may extend the basic resource
types of "the system" as he sees it while not only retaining

the protection applicable to previously defined resources, but
extending the protection to the new resource. The user may
wish to extend the system to provide a new facility (e.g., a
different file organization), to alter management policies for
a class of resources (e.g., a better disk request queueing
algorithm), or to enforce a different security policy with
respect to a resource. The extension of the capability model
of protection involves several changes to the model:

(1) Objects may contain capabilities as well as data. (In
the usual capability-based systems capabilities may
only be kept in a special C-list associated with
processes.) This permits existing objects to be used
in the representation of new objects.

(2) The operations, or accesses, are defined by a special
object type called a procedure. Since procedures are
themselves objects, they may be manipulated, and
protected, by the same mechanisms applicable to
other objects.

(3) Protection is checked, as in other capability systems,
when an operation is applied to an object; that is,
when a capability is passed as a parameter to a pro
cedure. In addition to this protection check, however,
rights amplification may occur at this protection do
main boundary (between caller and called). The called
procedure may inherit more rights to the object than
the caller possessed. This, in effect, allows the creator
of a new object type to manipulate the representation
of the objects of that type while preventing the mvner
of an instance of the type from doing so.

The HYDRA kernel is operational and is currently being
used to explore the ease with which extensions of both func
tion and security policy may be made in practice. To
date our experience indicates that the HYDRA mechanisms
can, indeed, be used to easily extend the environment of a
user's program.

REFERENCES

1 Wulf, W. A., and C. G. Bell, "C.mmp-A Multi-Mini-Processor,"
Proc. AFIPS FJCC 1972, pp. 765-777.

2. Dennis, J. B., and E. C. Van Horn, "Programming Semantics for
Multiprogrammed Computations," CACM 9,3 (3/66), pp. 143-155.

3. Lampson, B. W., "Dynamic Protection Structures," Proc. AFIPS
Con/., Vol. 35, FJCC 1969.

A panel session-Accessing a data hase through a minicomputer

SESSION CHAIRMAN-CHARLES A. LUPIEN

Combustion Engineering Inc.

Panel Members

R. D. Harrison, Jr.-Bell Laboratories
E. Lowenthal-MRI Systems Corporation
T. Richley-CIMCOM Systems, Inc.

OVERVIEW

Several speakers will address the notion of using small
scale computing devices (or minicomputers) and associated

1001

data storage units as data base management "machines."
These machines communicate with larger host processors to
satisfy data handling requests emanating from programs
running on the host. This is tantamount to removing the
DBMS software from large main frames (e.g., IMS and total)
and housing such software in one or more peripheral com
puters.

A panel session-Utility computing-A superior alternative?

SESSION CHAIRMAN-GEORGE J. FEENEY

General Electric Company

Panel Members

Robert D. Hilton-Coca-Cola Company
Robert L. Johnson-General Electric Company
Thomas J. O'Rourke-Tymshare, Inc.
Thomas E. Kurtz-Dartmouth College

OVERVIEW-GEORGE J. FEENEY

In 1905, approximately 50,000 small, privately-mvned
generating stations produced roughly half the total U.S.
supply of electricity-largely for their own needs. Today,
only about six percent of the nation's electric power is pro
duced by such small local generating stations with the bulk
of the country's power needs being met by some 200 large
utilities.

The data processing industry is on the verge of a similar
change for almost identical reasons. Despite the presence of
some 60,000 widely-scattered and largely privately-operated
general purpose computers, a trend away from in-house,
do-it-yourself computing is becoming increasingly apparent.
And, as in the electric utility industry, the driving forces are
scale economy and variable cost aided by rapidly advancing
technology.

Today, computer power generated at large, centralized
facilities is transmitted and distributed over international
data communications networks on a variable cost basis to
most business centers in the free world.

This "Coming of Age" of utility computing brings with it a
major turning-point in the industry, and broad implications
for both users of computers and hardware suppliers. These
implications and what they portend for business and data
processing managers form the core of this panel discussion.

THE COMPUTER CONNECTION-A DIFFICULT
QUESTION-ROBERT D. HILTON

Utility computing represents one of the most interesting,
challeng1~'1g and perhaps critical decisions facing Inany com
panies, large and small. The answer to the question is even
more complex today with the confusion of integrated systems,

1003

data base management systems, telecommunications, mini
computers, etc.

Management, traditionally, has had great. difficulty up
grading their needs and concepts to match an ever-racing
evolution in computer technology. There have been no
precedents for them to go by. There is a degree of "future
shock" between management and systems technology.

In-house versus utility computing decisions frequently
demand clear, long-range plans and heavy, sometimes
irretrievable, commitments. Utility computing is not an easy
question!

LARGE-SCALE USE OF UTILITY COMPUTING
ROBERT L. JOHNSON

General Electric Company's Switchgear Equipment Busi
ness Division, headquartered in Philadelphia, manufactures
a wide range of equipment used by utility and industrial
customers for electrical power distribution and control.
Computer systems are used to support the work of every
function and are vital to the success of the business. These
applications include sophisticated approaches to production
control, factory control and design automation, in addition
to the conventional payroll and accounting work. Two years
ago, the Division gave up operation of its only large-scale
computer and elected to participate in a project with GE's
Information Services Division to prove the feasibility of
fully remote data processing (utility computing) on a mass
scale.

This practical use of utility computing has proven success
ful, allowing the Division to significantly reduce data pro
cessing expenditures with no degradation in reliability or
on-time job performance.

IMPACT OF UTILITY COMPUTING IN THE
COMMERCIAL WORLD-THOMAS J. O'ROURKE

Essentially what we're telling the business manager is that
he can buy the right to use a highly sophisticated com
puting/communication resource on a pay-as-you-use basis,
with access by virtually any type of terminal device from
anywhere in this country and overseas, accompanied by a

1004 National Computer Conference, 1974

rapidly growing pretested library of applications packages.
The user also can run his own programs.

What's the impact? If we can show reliability, which we
can, and the price is fair, there has to be interest, and there is.
The rationale for our kind of service appeals to everyone who
is concerned with costs but doesn't want to be concerned with
additional hardware and support operations and manage
ment time and precious capital dollars on product develop
ment and sales.

The impact of our services on commercial business will
grow and broaden because of the accelerating growth in
suitable application packages geared to special needs. Also,
because the economy and general business environment is
tougher and tighter this year, we should be more attractive to
more businesses than the option of committing hard dollars
to upgrading or installing in-house systems. Additionally, the
convenience and flexibility of being able to access a network
such as our TYMNET makes possible modes of business
heretofore impractical for many firms.

Just having the utility resource as an alternative may give
rise to the most significant factor in commercial business-

management now has an outside, objective benchmark
against which to measure the cost and the efficiency of its
present service resource. That may be the most revealing
insight and benefit of all.

IMPACT OF UTILITY COMPUTING IN
EDUCATION-THOMAS E. KURTZ

The main reason for utility (network) computing in
education is that no single institution, however large and rich,
can hope to provide its computer users with the enormous
variety of special services they need. The issues here are more
complicated than cost and efficiency; of special interest is the
necessity for the utility (network) to provide small portions
of services to many individual users, and thus to play the
retail function. The kinds of special services include: data
bases (in large numbers), special complex programs, exchange
and transport of simpler programs, access to special language
processors, and. access to unusual hardware.

A panel session-Structured systems development

SESSION CHAIRMAN-JACK SHAW

Touche Ross & Co.

Panel Members

Kenneth W. Hunter-U.S. General Accounting Office
Gregory L. Brennan-The Chase Manhattan Bank

OVERVIEW-JACK· SHAW

THE NEED FOR A METHODOLOGY

The management of data processing projects has yet to
proceed from a loosely practiced "art" to a professionally
disciplined science. EDP practitioners have not established a
"body of knowledge" or a methodology or a standard ap
proach to the development of systems. Such a body of
knowledge is a prerequisite to the effective management of
systems projects.

A systems management methodology will satisfy a number
of "needs":

• A body of knowledge which may be taught to computer
science and general management majors as well as EDP
professionals.

• A basis for structuring the planning, development and
implementation of systems projects.

• A vehicle for communication with general and executive
level management in order to achieve their commitment
to and involvement in systems projects.

• A basis for planning and controlling systems projects.

METHODOLOGY CHARACTERISTICS

A methodology which meets the above needs should con
tain the following characteristics:

• The methodology should be independent of the nature
of the project being developed.

• The methodology should have predetermining review
and approval check-points and end-products which may
be used as project documentation.

• The methodology should be non-technical and com
municative to non-EDP management.

• The methodology should reflect the unique needs and
operating environment of the organization involved.

1005

APPROACH TO THE DEVELOPMENT OF
A METHODOLOGY

The approach to the development and implementation of a
methodology within an organization will and should vary
with the nature and size of the organization and, most
importantly, with the management style of the organization.
The panelists will elaborate on the approaches used within
their public and private sect or organizations.

BENEFITS

There are two principal thrusts to the benefits to be derived
through the introduction of a standardized approach to
systems development within an enterprise:

• To the individual-the professional will achieve a basis
for communications with the user of his services and to
the management which will appraise his performance.
The professional will not have to rely on technical
jargon or other unintelligible means to communicate
progress or problems, but rather will become a part of the
total organization. The professional will acquire a "body
of knowledge" which may be built upon to improve his
job performance and satisfaction.

• To the organization-the organization within which a
standardized methodology is introduced will benefit not
only in terms of the professional growth and satisfaction
of its employees, but in terms of harnessing computer and
systems technology to the needs of the organization. An
appropriate "body of knowledge" for the planning,
development, and implementation of systems projects
will help assure that the organization is working on the
"right things" and that planned projects are developed
and implemented in a managed fashion.

KENNETHW. HUNTER

In the public sector, the leadership for developing standard
methodology has been taken by the General Accounting
Office. An initial study was conducted by the National
Academy of Sciences for the General Accounting Office in
1972. The academy emphasized the need for principles and
standards and proposed a broad range program for develop-

1006 National Computer Conference, 1974

ment. In line with the academy's recommendation, the
General Accounting Office has created a Task Group on
Principles and Standards for Computer-based Information
Systems. The Task Group has members from Federal, state
and local government and from the private sector. Their
primary concentration in 1974 is on the cost control and
accountability for the development and operation of com
puter-based information systems. The principles and stand-

ards, or good practices, developed by the Task Group are
intended to provide guidance to system developers and
system managers, and also to provide criteria for auditors
and other independent evaluators of information systems
developed and management. The GAO has closely coordi
nated its work with a GUIDE/SHARE project for the
development of accounting procedures for the data proces
sing function, including the methods of charging users.

A panel session-management impact of networks

SESSION CHAIRMAN-EINAR STEFFERUD
Einar Stefferud and Associates

MODERATOR-DAVID J. FARBER
The University of California at Irvine

Panel Members

Laurence H. Baker-The California State University
and Colleges Office of the Chancellor
Joseph D. Naughton-National Institutes of Health,

Bethesda, Md.
Ronald P. Uhlig-U.S. Army Materiel Command
John R. Lanahan-Inland Steel Company
Carl H. Reynolds-Hughes Aircraft Company
Leland H. Williams-Triangle Universities Computa

tion Center

Technical feasibility of networking is putting pressure on
management in education, government and industry to deal
with some new but fundamental policy issues. There are a
number of important management issues to consider.

First: Communications networks facilitate major sharing of
computer resources across major organizational boundaries
with the result that difficult new problems are being forced to
the attention of management at all levels.
Second: Many organizations have grown dependent on their
eomputing facilities. With networks this dependency is shift-

1007

ing toward foreign (or outside) computing facilities, causing
power structure shifts which threaten management with re
thinking their organizational structures.
Third: The management problems of sharing have not been
solved in pace with technical developments. Sharing is now
feasible but the management problems are unsolved. A sub
stantial effort will be required to find some way for organiza
tions to afford the risks of becoming dependent upon outside
facilities, if networking is to become acceptable.
Fourth: The role of the technician must be fully understood
in relationship to the politics of the power structure shifts
that result fro:t;ll networking developments. Weare all
threatened by real dangers if technicians and managers fail to
play their proper roles in the effort to solve problems posed
by networks. It is vital that all the players in this drama
understand their respective roles and avoid stepping on each
others lines.
Fifth: The role of top management in evaluating or directing
the use of networks must also be fully understood in relation
to the need for organizational changes to accommodate the
power structure shifts that result from networking develop
ments.

A panel of experts from education, government and in
dustry, who are currently facing and solving these problems
will address the issues.

A panel session-The high cost of software
Causes and corrections

SESSIOX CHAIRMAN-RICHARD H. THAYER

Rome A iT Development Center

Panell\1embers

John B. Slaughter-Kaval Electronics Laboratory Center
Barry W. Boehm-Systems Group of TRW Inc.
Judith A. Clapp-The MITRE Corporation
John H. :Manley-Air Force Systems Command
James H. Burrows-United States Air Force

OVERVIEW-RICHARD H. THAYER

In any large scale data processing development the cost of
software development is three to five times the cost of hard
ware. It is estimated that in 1280's this development cost
will jump to ten times that of the expenditures predicted for
the hard",are of that era. If the Government or industry is to
maintain a ceiling on this cost, research must be conducted
on ways to reduce costs in the various phases of software
development such as design, specification, implementation,
etc. For purposes of this session, "cost" will encompass not
only the resources necessary to develop the software or trans
fer it, but also costs associated with delays in both delivery
and "fixing," and resources wasted with software of poor
quality. This session is an outgrowth of a tri-service/industry
symposium entitled "The High Cost of Software" which was
held at the Kavy Post-Graduate Center, Monterey, California
from September 17-19, 1973, in which service, industry and
university experts attempted, for the first time, to get a better
understanding of the costs of computer software and to make
some recommendations as to what could be done about it.
This session deals ,vith the causes of software costs the
identification of both specific trouble areas and pro~osed
R&D approaches that could be taken to eliminate the nega
tive impact these areas have, and the particular ongoing re
search projects aimed at reducing software costs.

UKDERSTANDIKG THE SOFTWARE PROBLE:\1-
JOHK B. SLAUGHTER

The so-called "software problem" is not only a very diffi
cult one to solve but is equally difficult to define and describe.

1009

The problem has many facets; cost, quality, and timeliness
of delivery, being the more obvious ones. Clearly there are
strong interrelationships that exist among these factors, and
any perturbation of one causes interactions with the others
which can cause uncontrollable reactions if careful manage~
ment is not applied. :\1 uch can be learned by studying the
development of hard,vare and attempting to transfer the
tenets of successful hardware design to the software design
process. Some progress is being made in this direction, e.g.,
"structured programming," but a generation of non-struc
tured approaches to software development is difficult to
eradicate completely. Certain key software problems can be
identified, however, and there are some practical approaches
to their solution.

SOFTWARE RELIABILITY AND SOFTWARE
ERRORS-BARRY W. BOEHM

Roughly half of our efforts to develop software are spent
in activities which attempt to guarantee its reliability. In
spite of all this effort, however, unreliable software continues
to cause numerous painful and embarassing operational
problems. There is, however, a relationship between software
reliability and software errors. Error analysis is most helpful
in providing clues for how to build-in reliability (error pre
vention) and how to improve reliability (error detection and
correction). However, \vithout an underlying software reli
ability model, error analysis can tell us relatively little about
estimating reliability. Th€re is some body of quantitative
knowledge of software errors: their general frequency, and
their correction with various characteristics of the software
development process. There is one study available concern
ing a detailed compilation of error type and an analysis of
how these types of errors could be prevented or eliminated.
Software reliability tools can be developed in the future that
can prevent or eliminate the various types of software errors.

AUTOMATED MONITORING OF SOFTWARE
QUALITY-JUDITH A. CLAPP

High software costs do not constitute a problem if those
costs are reasonable for what is delivered, i.e., compared to

1010 National Computer Conference, 1974

the value of the services rendered by the software during the
period of its use. Two aspects of software development have
been most responsible for the dissatisfaction with software
costs; delays in software delivery and poor software quality.
Schedule slippages result in unplanned additional expendi
tures and loss of services. If software does not meet its re
quirements, fails under operational use, or cannot be main
tained and modified easily then the price of the system is
never justified. Better management tools and techniques are
a key to maintaining schedules and improving software
quality. Automated aids are needed to monitor progress and
measure quality of a software product during its de
velopment.

EMBEDDED COMPUTERS-SOFTWARE COST
CONSIDERATIONS-JOHN H. ~1ANLEY

Software costs are uniquely impacted during the develop
ment of large scale systems containing embedded computer
subsystems, such as automated rapid transit systems or
modern aircraft employing digital avionics. When engineer
ing such systems, management emphasizes the overall system
often to the detriment of the integrating software. Too often
the software must be cleverly forced into a hardware sub
system that has been suboptimized to fit mechanically into
the overall system. Also, the task of integrating computer
subprograms into a complete software package is enormously
complicated by the requirement to also integrate numerous
mechanical subsystems affected by the software. These and
several other issues are identified as problems with embedded
computer systems that increase software costs. Solutions to
reduce the high cost of this specialized software are currently
being developed by the Air Force for acquiring their large
scale automated systems.

JAMES H. BURROWS

The "High Cost of Software" as a phrase is an attention
getter. The "high" is provocative. I, for one, do not get
turned on by such rhetoric. If what is meant by the phrase
is . that software related dollars are increasing both in size
and in percentage of ADP budget, I guess I can only agree
and say "what did you expect to happen," economy of scale
of manufacturing large volumes apply only to part of the

ADP budget. However, precise layout of the jobs to facilitate
production line operation, a job done to facilitate such
economies is comparable to a software job. The production
process we are working toward is the production of data
processing support for some operations and that does have
large scale economy. In this we have both been responsive
and economic, or we would not be supporting as many activi
ties as we are today.

However, although I reject any idea that software develop
ment costs should decrease like hardware production costs, I
do feel that the examination of the development process can
lead us to areas for decrease in costs.

Due to the noticeable increase in ADP use and thus in
process and computer program development costs, much
well intentioned but sometimes misplaced effort has been
spent getting the "process" under control. Most of the efforts
copy good management practices of other development or
production disciplines. The major effort has been "visibility"
and "configuration control," both good but useless if ad
ministered by someone whose image is "production" rather
than "development," not that there aren't some production
aspects in development. The number of management over
seers is legion and appears to be growing. This is a cost
growth area we can avoid.

In point of fact, I feel that the foremost problem we have
in reducing software costs is the shortage of talented dis
cipline practitioners at both the bench and management level.
Where "square fillers" are not enough~ nor necessarily even
useful.

Another difficulty is the changing and/or incompletely
stated requirements. To a degree this is unavoidable, but can
be expected and provided for. However, the number of mid
wives who are neither responsible for development, for opera
tion and maintenance, or for usc, but who have a jurisdic
tional interest and represent peripheral consideration, is
again legion. Another cost to avoid.

There is much we can do in shortening and strengthening
communication lines, orienting users in the new technology,
choosing good people and facilitating their efforts with good
tools, putting more formalism into our management and our
development process so that we, not others, can see where we
are and are going. What we can't stand are practitioners who
are not fully competent, and management direction- from
people whose technical competence is in another field or
another phase of effort. There is a world of difference between
the overall concept of development and that of production.

A panel session-Effective use of computers

MODERATOR-MARVIN M. WOFSEY
George Washington University

Panel Members

James V. Milano-Pfizer and Company, Inc.
Phillip J. London
Robert L. Johnson-Babson College
Phillip C. Howard-Applied Computer Research

OVERVIEW-MARVIN M. WOFSEY

This panel focuses on the critical areas of evaluation in
order to promote effective computer installations. Compara
tively short papers will be presented on: evaluating computer
installations, evaluating programs before they are put on
the computer, reevaluating programs after they are running
on the computer, and what management should know about
the performance of their system. These will be followed by a
panel discussion.

AUTOMATED DATA SYSTE~1 (ADS) DEVELOPMENT
PLANS-PHILLIP J. LONDON

This presentation will discuss the structure of ADS De
velopment Plans used in the management evaluation and
monitoring of large scale ADS projects. The ADS Develop
ment Plan is intended to be a comprehensive, detailed justifi
cation and economic analysis of ADS development, conver
sion or major revision proposals. Preparation of such plans
can significantly enhance management's capability of achiev
ing ADS project goals.

The high cost of developing and operating large automated
data systems, and their importance to the effectiveness of the
organizations they serve, necessitates the use of a systematic
procedure and standard discipline for justifying ADS from
inception through full operation. The stated objective of such
a framework is to assure that the ADS will: (1) perform as
specified, (2) become operational at the time planned, and
(3) not exceed the allocated cost.

1011

A STUDY OF THE REEVALUATION OF
APPLICATION PROGRAMS ONCE PUT ON
THE COMPUTER-ROBERT L. JOHNSON

"For every benefit you receive," Emerson wrote, "a tax is
levied." The development of computer applications gave
business many benefits. At last the tax collector is catching
up with us.

Our delusion that technology has the answer to everything
has involved us in many unsuccessful EDP applications.
These applications are now unsuccessful because the organiza
tion has failed to determine if the output is still practical,
useful, and accurate. Installations have failed to realize
that successful computer applications involve continual re
evaluation as the organization develops. To assume manage
ment responsibility for a successful EDP application, manage
ment must think of its own posture in trying to establish
correct control procedures.

Information is a non-consumable commodity. It grows
endlessly, but the system builders spend little time in de
ciding when and what data or programs should be destroyed.

WHAT COMPUTER CENTER MANAGEMENT
SHOULD KNOW ABOUT THEIR SYSTEMS'
PERFORMANCE-PHILLIP C. HOWARD

The growing interest in performance evaluation and en
hancement is a clear sign of management's growing awareness
of generally poor system utilization and their interest in
increasing the cost/effectiveness of the computer installation.
A manager does not necessarily have to be expert in perfor
mance evaluation techniques and methodology, but he should
insist on regular reports covering various aspects of system
performance. Some basic and relatively simple indicators can
serve to direct his attention to the areas that offer the greatest
promise for improvement.

A panel session-Charge-out system for management
acceptance and control of the computer resource

SESSION CHAIRMAN-RICHARD L. NOLAN

Harvard Business School

Panel Members

Charles Carey-Xerox Corporation
1fichael J. Samek-Celanese Corporation
K. Sreenivasan-MITRE Corporation
John V. Soden-McKinsey and Company
.Myron Uretsky-New York University

OVERVIEW

This panel focuses on the issues of using the pricing mecha
nism to both control and exploit the computer resource. The
pricing mechanism for computer services and charge-out
systems are employed primarily for control purposes. A more
powerful role exists in the area of exploiting the computer
resource and engendering user management acceptance and
accountability. The panel ",·ill build upon ideas in the follow
ing paper in both the management and design issues of
charge-out systems.

INTRODUCTIOX

The use of pricing, or familiarly charge-out, for computer
services is one of the most unexploited management tools.
On the one hand, this is rather startling since pricing has
proved to be an effective tool for controlling resource alloca
tion processes. For example, inter-divisional transfer pricing
has been successfully employed to influence plant per
formance. Another example is the use 0' rates of return in
capital investment. The use of computers in organizations
can be likened to these resource allocation processes. On the
other hand, the slight attention paid to pricing as a manage
ment tooi is understandable in light of some of the tough
practical problems involved in its use.

Recently, many of these practical problems have either
been resolved or satisfactorily coped 'with enabling the
pricing mechanism to serve the computer resource allocation
and control process. Xerox is an example oLone of the com
panies that is beginning to tap the potential of the pricing
mechanism. Xerox has implemented a "standard cost" type
system for processing computer-based applications. Each

1013

application was subjected to an industrial engineering study
to establish its standard cost. The standard costs used market
based prices for computer resources. The company then
charges users the standard cost for processing their applica
tions throughout the year and actual costs are also tracked
and available to users on request. Where several users share
the benefits of a computer application the processing costs are
allocated between them. Users decide upon a "fair" appro
priation of the costs. If one user decides to eliminate his
report, the other users must pickup the added costs. The
intent is to provide accountability to those that benefit from
computer resources, and to provide feedback information so
those that benefit can more effectively behave as responsible
users.

The important point is that standard cost type systems for
computer services are feasible and thereby offer an extremely
powerful management tool for both controlling and ex
ploiting the computer. Yet, the tough problems of designing
appropriate systems for pricing and charging of computer
services remain. Our intent is to identify these problems and
issues in a manner that will permit examination of strategies
and tactics for resolving them.

OBJECTIVES OF A PRICING SYSTK\{

As a service function, the somewhat conflicting objectives
of the Information Systems Department are to:

1. Assist in the full exploitation of computer resources
throughout the organization-i.e., increase service

2. Provide computer services at the most economical
level for the organization-i.e., control costs of
resources.

Since the resource prlCwg mechanism should assist the
Department in achieving its overall objectives, these two
objectives are thus fundamental to the design of a specific
pricing system.

~\\'1ANAGEMENT DESIGN ISSUES

Once objectives of a pricing system are specified, we believe
that there are five major management design issues that
must be resolved.

1014 National Computer Conference, 1974

1. What computer services should be charged-out?-The
most obvious service to be charged-out is computer proces
sing. However, the pricing strategy is confounded by the
mixed bag of functions performed in many mature Informa
tion Systems Departments ,vhich include programming,
systems analysis, management science modeling supervision,
facilities, teleprocessing network usage, data entry, stand
ards, forms and procedures, and messenger services.

One of the tougher issues is hmv to handle R&D type of
computer services. Every company has potential applications
of computers for which it is important to keep abreast of the
emerging technology. Point-of-sale technology is a good
example for retail stores. The issue is how to support the
R&D effort cooperatively when no one user would be \villing
to bear the costs.

Computer data bases provided another dimension to this
issue. Computer data bases offer a potential for shifting the
system design philosophy of computer-based systems in a
way to better use data. The technology is emerging and the
question is what role should the charge-out system play
and when.

2, O~ VJhatbasis should computer services be charged-out?
A my raid of philosophies and interrelateabases exist Ior
charging:

• market price versus actual costs
• cost recovery versus profit/loss
• average cost versus incremental costs
• standard costs versus actual costs
• controllable versus full costs

Although it is difficult to capture all the dimensions of these
alternatives, the essence of them seem to be manifest in the
type of responsibility center for the Information Systems
Department, and their effect on user behavior. The responsi
bility center issue is usually posed with the following question:
Should the Information Systems Department have profit
center responsibility or cost-center responsibility? Another
way of stating the issue is whether the Information Systems
department should be allowed to set market competitive
prices for computer services or should they charge-out their
actual costs. This issue often becomes influenced by the
politics of the organization. For some managers, the idea of
making a profit through providing an internal service seems
inappropriate.

3. What are the relative importance of key design parameters
for a charge-out system? There is almost an infinite number of
ways that charge-out systems can be designed. The general
problem is to trade-off the extent and sophistication of
"effectiveness" design parameters such as fairness, accepta
bility, simplicity, accountability, timeliness, stability, com
parability, and flexibility, with their implementation and
maintenance costs.

If the user (or consumer) of computer services does not
clearly see the effects of charging on his' budget or organiza
tional unit in general, then he won't be influcnced by the
charges. However, even if he cieariy sees the eITed::;, there

must be the proper incentives for him to take action in an
intended way. These attributes can be stated in the form of
two questions for a charge-out system.

1. Does the charge-out system communicate?
2. Does the charge-out system motivate?

On the one hand, it is desirable to communicate the
economic cost of the computer services of a user so that
intelligent decisions can be made on the value of computer
services relative to other resource alternatives. The economic
costs of computer services include both the cost that the user
directly control such as computer processing, and costs that
he does not directly control such as operating system main
tenance. Ideally, the user should effectively make decisions
like whether a computer-based marketing information
system would better serve his needs than adding more
salesmen or increasing inventory stock.

On the other hand, it is desirable to provide the user with
feed-back that tends to motivate him to reassess the value of
computer-based systems, and which contributes to developing
an overall awareness about the nature of computer-based
r-e-s-ourc-es~ To---accofuplishtliis, it is important-that the user-is
cognizant of an "action-response" phenomenon. For example,
if a user cuts out one report, he shoUld see some effect on his
charge. If he cuts out the entire system, he should see, per
haps, a more significant reduction in his computer charges.
During budget reviews, he should view computer-based
system redesign as onc alternative to becoming more efficient
or effective. By holding the user accountable only for those
computer-related costs that he directly influences provides an
incentive for him to manage those costs in a similar manner
to controllable personnel and facilities costs.

Charging for shared computer-based applications present a
partiCUlarly difficult problem. Shared computer-based appli
cations have similar properties to production processes which
give rise to joint and by-product costs. For example, a
perpetual inventory computer-based system has potential for
producing market-oriented product activity reports for a low
marginal cost for system design and programming. The
question that arises is how much should the respective
manufacturing department and marketing department be
charged for processing the inventory control application.

Especially where the computer is involved, situations
arise that are gOOQ for the company as a whole but which
discriminant against one user in terms of cost incidence.
For example, with emerging data base technology, it is
generally unfair to levy the start-up costs of implementing
data base technology to the first user. In order to prevent
unfair discrimination against one user for decisions made for
the good of the company, the issue of incentive pricing arises.
Incentive pricing focuses on pricing computer services to
effect a desired behavior on the part of the user. A familiar
example of incentive pricing is to place a high price on every
magnetic tape that is used relative to disk utilization in
order to provide the user with an incentive to alter his
progranls to use disk files rather than tape files.

A Panel Session-Charge-Out Systems for Management Acceptance and Control of the Computer Resource 1015

"Many companies have struggled with and coped with the
design issues of charge-out systems only to lose the confidence
of users because of inconsistent charges for computer proces
sing. The main problem has resided with multiprogramming
environments, and now virtual memory environments.
Stated simply, the problem is to charge the user the same cost
\vhen he processes the same job. Experience of charging the
user significantly different costs for running the same job
tends to destroy the user's confidence in the computer service
department. Eventually, the loss of confidence leads to a
situation where the user simply ignores his computer charges.

Attempts to solve the problem from a technical approach
have also frequently ended up in failure. These attempts
have engaged highly sophisticated and complex charging
algorithms. The net result has been a charging procedure so
esoteric as to defy virtually all comprehension by the user.

Changing computer configurations have resulted in addi
tional complications in maintaining consistent charging.
Computer system configuration changes move with advances
in the technology and changes should be frequently expected.
Unfortunately, configuration changes have created havoc
with many charge-out systems by causing the charges to
users to significantly vary. More often than not, the result
has been a loss of confidence and a tendency for the user to
ignore computer charges.

4. How should the charge-out system be administered?
Central administration and policy-making are keys to
effective use of the pricing mechanism for controlling and
exploiting computer services. Yet there is a basic conflict for
those Information System Departments that are given
profit-center responsibility and must deal with user depart
ments that are profit-centers. For the profit-center responsi
bility approach to work in concept, the profit-center managers
must be allowed large latitude in their (discretion). One of
these elements of latitude of discretion is to procure services
and resources as efficiently as possible. If more efficient
services are available outside, the reasoning goes that the
profit-center manager should be allowed to procure the
services outside.

The problem in practice is that it isn't. easy nor straight
forward for a user to pick up his computer-based application
and take it to an outside service bureau. One problem arises
from the fact that most applications are designed to run on
unique computer systems and often use shared files. A second
problem has to do ·wi.th applications involving company
sensitive information, and information private to the com
pany's personnel.

Even if it is feasible for the user to take his applications
outside, however, a basic issue is that the expenditure to the
outside vendor is with "real" money. If the company has
already committed to an investment in a computer facility
and has the capacity to serve the user, the computer facility
investment can be undermined. This not to say that special
cases cannot arise where it is for the good of the company to
use outside computer vendors. A familiar example of such a
special case is the processing of large linear progranmling
models. The issue turns on (1) how informed the user is on

the implications of the "going outside decision," and (2)
sound policies to maintain the interests of the company when
those interests are in conflict "lith the interests of an in
dividual user.

The steering committee has often been used to provide a
forum for maintaining company interests and exploring
policy-making alternatives. However, most companies have
experienced disappointment ,,,ith their EDP steering com
mittee. Issues such as the role of the role of the steering
committee, make-up, and authority remain outstanding.

.5. How should the charge-out system be used to ensure com
puter system eificiency? In a somewhat oversimplified sense,
the user if charged for the full cost of computer services, can
go outside for those services, and does so, then there is prima
facie evidence that the inside services are inefficient. Unfortu
nately, there are so many "ifs" involved that it is difficult to
evaluate computer system efficiency in this manner.

There is another way. With minor adjustments to the
accounting soft,vare integral to most operating systems, a
great deal of information can be obtained about computer
system efficiency. The information can be used for altering
the computer configuration and system design techniques.
A project carried out by the MITRE Corporation indicates
that the IB11 Systems 11anagement Facility (S:vlF) for
accounting of computer costs can be used to obtain much of
the same resource utilization information currently obtained
from hardware and software monitors.

PRAGMATIC FACTORS INFLUEi\CING
CHARGE-OUT SYSTE~I{ STRATEGY

The choice of pricing strategy is likely to be bound up in
the transfer pricing or cost allocation policies of the host
organization for other services. For example, if there is a
corporate accounting and purchasing activity which does
charge out its services to divisions, the corporate computer
activity will tend to do likewise-whether rightly or wrongly.

The choice of str.ategy is also complicated by the organiza
tional relationship of the Information Systems Department
to the host organization. In other words, when the Informa
tion Systems Department is centralized, hybrid, or de
centralized relative to its host, it creates organizational
boundaries across which the strategy has to operate. In
addition, there is a growing trend to establish computer
services subsidiaries. This raises additional issues of equitable
pricing for internal versus external users of these services.

The pricing strategy in all likelihood is also related to the
basic economics of the industry of the host organization. For
example, :MIS executives in the banking industry can
generally make persuasive arguments for dual processor
configurations due to the high "cost" of not closing business
during overnight processing. Thus, daytime processing in the
banking industry has a tendency to be "freer" than in some
other industries. Hence, in all likelihood, their pricing strategy
will not tend to focus on dampening the interactive load
during the daytime hours.

Finally, the choice of pricing strategy is related to the

1016 National Computer Conference, 1974

stage of development of the EDP effort in that the objective
of the strategy will vary from one stage to the next-i.e., at
one point, the objective may be to cultivate users and at
another to control cost growth of user demand.

SUMMARY

Our position is that the use of computer services in organiza
tions is a resource allocation process. One way to control the

resource allocation process is through a pricing mechanism.
We believe that the pricing mechanism, or charge-out
approach, is a powerful management tool for both controlling
the use of the computer resource and engendering manage
ment acceptance of it as an exploitable resource. We also are
aware of the difficulties in tapping the charge-out mechanism.
Our purpose is to identify the main design issues that must be
resolved and coped with in order to incorporate the pricing
mechanism into the process of mining the computer resource.

A panel session-Accelerating information delivery

SESSION CHAIRMAN-DON S. CULBERTSON

Argonne National Laboratory

Panel Members

Dennis Elchesen-Lawrence Livermore Laboratory
Miss Mary Ann Swanson-Evanston Township High School
Frederick G. Kilgour-Ohio College Library Center
Dr. Russell Shank-Smithsonian Institution

Purpose: To describe using three example institutions, the
potential size and scope of the library market for computers,
peripheral units and specially designed software. There are
literally thousands of libraries in the U.S.; public school,
special, college, medical and law. Until recently only the
largest institutions with large computer facilities and foun
dation grants have been able to develop the custom made
systems to tend to the library housekeeping, handle enormous
inventories of books, index files of journal articles, notify

1017

users of items available as fast as they are published, and
search the small segment of the world's knowledge which is
in machine readable form.

The Special Libraries Association program illustrates three
aspects of the development of library automation from the
beginnings noted above.

Part 1. A large specialized library developed to a high degree
of sophistication.

Part 2. A small library able to take advantage of the com
puter hardware and systems staff of its parent organi
zation (which itself may not be very large). Interest
and opportunity lead to a library highly automated
for its type.

Part 3. A consortuim of various sized libraries receiving on
line services from their center. Most of the smaller
members could not have afforded the system develop
ment costs.

Part 4. Question moderator and program summary.

A panel session-Certification of computing personnel:
prospects and potential impact

SESSION CHAIRMAN-FRED H. HARRIS

Univer~ty of Chicago Computation Center
Chicago, Illinois

Panel Members

Robert N. Reinstedt-The Rand Corporation
Donn B. Parker-Stanford Research Institute
William J. Horne-Boston College
H. R. J. Grosch-Computerworld

CERTIFICATION OF COMPUTING PERSONNEL
PROSPECTS AND POTENTIAL IMPACT-FRED
H. HARRIS

Sociologists have identified key attributes of profes
sionalism by studying vocations which are widely recognized
as professions. These include, among others, a high standard
of skill and knowledge; public reliance upon the standards of
its practitioners, and the observance of an ethical code.

Moreover, a look at the history of the traditional profes
sions, such as medicine and law, as well as younger groups
such as accounting, has yielded identifiable trends which
mark a vocation as an emerging profession. For example,
ongoing activities for the development of organized, formal
training at advanced levels and associated testing require
ments, usually fostered from within organized groups of
practitioners, denote a change from trade to profession.
Another such activity is the establishment, and peer group
enforcement, of codes of conduct.

Thus, major segments of the computing industry's work
force can be considered to be an emerging profession. But
trend lines are not conclusive nor well established. Key
questions remained to be answered, and the panel today will
focus its attention on certification. Do we wish to be? Do
we have the tools to do so in an effective way? What will be
the impact as we proceed?

TECHNIQUES OF EFFECTIVE TEST
DEVELOPMENT-ROBERT N. REINSTEDT

There are established acceptable guidelines that must be
met in developing tests for general use. If these guidelines
are not adhered to, the tests will not be able to gain ac
ceptance, and if challenged will be fo'und to be non-usable.

1019

Four areas are of prime concern to test developers today.
Reliability, validity, non-compromised tests, and tests that
are free from cultural! ethnic bias.

Although actual construction of tests and test questions
may seem considerably more complex, and refining the
instrument requires tedious and sophisticated attention, the
four areas mentioned above are the real crux of test
development.

Because of the importance of these criteria, professional
psychometricians have incorporated methods aimed at
satisfying the criteria as a standard function of test
development.

As tests and testing meet with more opposition, and are
being questioned as never before, it becomes essential to
produce tests that do exactly what they purport to do and
do it equitably for the entire population exposed to the
testing procedure. This holds true whether one speaks about
tests used for selecting college students, graduate school
admittance, job selection, certification or any other form
whereby lives of individuals are affected as a result of the
outcome of some type of examination designed for general
use.

PROFESSIONAL CERTIFICATION AND THE
IMPACT ON THE INDIVIDUAL PRACTITIONER
DONN B. PARKER

Certification is one more step in providing the practitioner
with the feeling that he really belongs to a profession. He is
separated from the identity with technicians and with other
professions. But we can ask what is the size and range of
performance of this profession when it is finally achieved?
Will most programmers be relegated to technician levels?
Will application programmers identify with their applica
tions areas as higher level languages reduce the need for
today's programming expertise? The shift to special interest
groups within ACM and the Computer Society may be an
indication of this. What will a certification requirement for
membership in ACM do to its total membership? It doubled
the size of the British Computer Society overnight. Will
certification in the future have little or no more impact than
it currently has? Will licensing requirements be legislated
and change this situation? Why be certified?-Lots of
questions to be answered only by trying it.

1020 National Computer Conference, 1974

CERTIFICATION AND ITS IMPACT ON
MANAGEMENT-WILLIAM J. HORNE

We define management in the usual textbook manner as
those activities which involve "planning, organizing, ac
tuating, and controlling." I prefer the less formal definition:
"the art and science of getting meaningful work done through
people." Within this latter definition, I believe, we shall find
the major impact on management that certification of
computer professionals will come to have.

Currently, management really has no definitive 'scientific'
method for determining the quality and capacity for mean
ingful output of computer-oriented people. The present
method, then, is to try them-the practitioners-one after
another, until at least a satisfactory performer is found.

For certification to successfully and beneficially impact
management, it must identify uniquely the above-average
programmer, the above-average management scientist, the
above-average information systems manager, etc., especially
in terms of productivity.

Management desperately needs computer specialists who
recognize the central economic issue of scarcity. It desperately

needs computer specialists who "feel," with the behavioral
scientist, the importance and significance of the human
element with all its ramifications.

If certification succeeds in providing a handle on choosing
people with these characteristics, it will affect management
practices profoundly in the next several decades. We shall
address this impact as thoroughly as time allows.

IMPACT OF CERTIFICATION ON THE
COMPUTING INDUSTRY-H. R. J. GROSCH

For many years we have seen youngsters recruited out of
academic dens of computer science and put to work in systems
programming teams, with no evidence of practical know-how
and no demonstrated general ADP skills. It will be greatly
beneficial to the software industry, and to the software part
of the hardware industry, to have a possible filter.

At the sales end, vendors are always being asked to
recommend personnel to customers. Certification makes the
process safer. And in a venue as diverse as the computer
industry, a common experience, a shared area of discourse
helps internal o~~anization and understanding.

A panel session-Large information processing networks:
development and operational experience

SESSION CHAIRMAN-HOWARD FRANK

Network Analysis Corporation

Panel Members

Davis McCarn-National Library of Medicine
Richard Sprague-Payment Systems Inc.
M. U. Ayres-Boeing Computer Services
John Perra-Aetna Life & Casulty
George Feeney-General Electric Company
Morton Blanchard-National Association of Securities

Dealers

OVERVIEW

By 1980, 70% of all computers may be connected to
terminals via extensive communication facilities. Information

1021

processing networks will influence nearly every segment of
our economy with applications ranging from remote com
puting to credit verification and electronic funds transfer.
The builders of these new networks will be faced with a host
of problems such as selecting new devices, vendors, and
common carrier offerings and operating systems in environ
ments where multiple component failures are common. This
session, whose panelists are experts in the art of making
networks work, will address the problems encountered in
building and operating large networks.

1022

A panel session-Digital communications on cahle systems

SESSION CHAIRMAN-WILLIAM F. UTLAUT

u.s. Department of Commerce

Panel Members

Peter M. McManamon-U.S. Department of Commerce
Hubert J. Schlafly-TelePrompter Company
Friend Skinner-MITRE Corporation
S. S. Tyler-Singer Company

OVERVIEW

Three technologies-digital transmission, computers, and
cable systems-offer opportunities to meet the growing and

diverse needs for high volume and rate of data and infor
mation transfer required by society for business, education,
entertainment and crime reduction. Panelists will discuss
technical and economic factors, and their priorities, associ
ated with integrating these technologies, and others, to pro
vide services such as electronic mail, banking, retail market
ing, work and learning at home, surveillance and others.

A panel session-Information systems for ambulatory care

SESSION CHAIRMAN-ANTHONY I. WASSERMAN

University of California

Panel Members

William Cass-Massachusetts General Hospital
Jerome H. Grossman-Massachusetts General Hospital
Alfred H. Garratt-HEW
William V. Glenn, Jr.-Massachusetts General Hospital
Gerald A. Giebink-Health Care Management Systems

OVERVIEW-ANTHONY I. WASSERMAN

Until recently, most medical information systems were
developed for use in hospitals, despite the fact that the
majority of health care is given in clinics and physician's
offices. There are several reasons for this situation, including
the following:

(1) the nature of acute care implies a more urgent need
for communication. of information among health
professionals;

(2) there is a greater volume of data collected on inpatients
than on outpatients;

(3) there are larger sums of money per encounter in
volved, tending to make information systems more
economical.

Within the past few years, however, the cost reduction in
computer hardware, the increasing volume of paperwork in
the medical field, and the advent of very large clinics have
combined to make development of information systems for
outpatient settings much more feasible.

Several such systems have become operational and more
are presently under development. The earlier systems

1023

emphasize medical information and contain a subset of the
patient's medical record, including a summary of the patient's
most recent visits, a list of current problems and diagnoses,
a list of current medications, and the most recent results of
any laboratory tests. As the systems have become more
sophisticated, more information of an administrative nature
is being added, including patient visit scheduling, economic
analysis of ambulatory care, utilization and membership
statistics for clinics, and quality of care assurance.

There are a number of problems which must be overcome
in the design of information systems for ambulatory care,
including:

(1) disagreement over the content and format of the
abbreviated ambulatory medical record;

(2) creation of a system which is cost-effective in terms of
reduced provider time, hardware costs, software
development costs, system reliability, and ongoing
maintenance costs;

(3) development of a system which is flexible enough to
evolve gradually as information needs and computing
technology change;

(4) design of a man-machine interface which is acceptable
to the providers who will use the system;

(5) difficulty in satisfying both medical and management
needs in an information system.

Successful implementation of these outpatient information
systems can result in improved quality of health care through
better continuity of care and a superior ability to practice
preventive medicine, while at the same time providing a
management tool which can effectively control the costs of
medical information processing.

1024

A panel session-Terminal hardware and methodology
in hospital information systems

SESSION CHAIRMAN-STANLEY E. JACOBS

American Hospital Association

Panel Members

Lou Phillips-Chairman of the Board, Medelco, Inc.
Marion J. Ball-Director, Health Sciences Center Computer

Systems, Temple University
John W. Anderson-Administrator, Tabernacle Community

Hospital and Health Center

OVERVIEW-STANLEY E. JACOBS

Opening comments will define the term "hospital informa
tion systems" (HIS). Two levels of HIS will be described
first the level of HIS wherein the computer is used primarily
as a data collection and message switching device; second the
level where the computer also maintains a data bank of
patient information and assists in the scheduling and con
trolling of activities of the hospital.

Today there are approximately twenty vendors of HIS.
Each vendor utilizes terminals unique to HIS system.
Qualitative differences exist not only in the hardware, but in
the data entry strategies and in the types of personnel for
whom the terminals are intended.

Assisted by visual aids, there will be a description and
discussion of the terminals of each vendor and the meth
odologies utilized for data entry and retrieval. Finally, a
hospital administrator will discuss his ideas concerning the
value of HIS t-o theshort-t-erm; . gen-eralhospital.

Dr. Jacobs will describe the needs for HIS, the HIS
objectives, and the features which enable systems to achieve
the HIS objectives. Vendor system versus in-house develop
ment will be discussed. The rapid entry of vendors into the
market-place will be pointed out, together with similarities
and differences between vendor systems. Finally, a distinction
will be made between the "data collection/message switching
type of HIS" and the "total HIS".

A panel session-Computer algorithms for analyzing patient data

SESSION CHAIRMAN-JONATHAN CLIVE

Duke University

Panel Members

Lee B. Lusted-University of Chicago Medical School
Casimir Kulikowski-Rutgers University
T. AllanPryor-Latter-Day Saints Hospital
Discussant-Bruce 1\tlcCormick-University of Illinois-

Chicago Circle

OVERVIEW-JONATHAN CLIVE

This topic deals with the computer-assisted evaluation of
the questions of which several alternative diagnostic states
might apply to a particular patient. Weare also concerned
here with the choice of therapy once a disease presence has
been established. The computer-assistance scenario of this
type must take into account both the types of diseases for
which it is being instituted and possibly large amounts of
patient data.

AN OVERVIEW OF COMPUTER-ASSISTED
CLINICAL METHODS-LEE B. LUSTED

The clinical process often requires the physician to make
decisions based upon a large volume of diverse information.
Whether these decisions are of a diagnostic, therapeutic, or
prognostic nature, the utilization' of computer-assisted
decision-making techniques can be of substantial service to
the clinician. This discussion considers the general require
ments of a computerized probabilistic information processing
(PIP) system within the clinical framework, and directs
attention to the following points:

(1) Accessibility and utility of the PIP system in terms of
physician-computer interaction;

1025

(2) The use of subjective diagnostic probabilities as input
for the PIP system;

(3) Use of a PIP system for patient-management and
choice of therapy.

A SYSTEM FOR COMPUTER-BASED MEDICAL
CONSULTATION-CASIMIR KULIKOWSKI

To feel confident in using a consultation program, the
practitioner must be able to understand the methods under
lying the computer's decision-making capabilities, and know
the scope and structure of medical knowledge upon which
these methods rely. In some fields of medicine a structure of
statistical association among clinical findings may be appro
priate. However, a consultation program that attempts to
include the knowledge of expert consultants in a field must
include information on the anatomy, physiology, pathology,
and therapy of the disease groupings for which it is designed
to be effective.

A major problem consists of structuring this knowledge so
that it can be used efficiently for diagnosis, prognosis, and
therapy. It is unusual for traditional biomathematical models
to be applied directly as a basis for clinical decision-making
because of their excessive detail appropriate to the laboratory
but not to clinical situations. What is required is a descriptive
model of disease processes that can serve as a basis for the
logical interpretation of clinical findings, supported, when
possible, by more detailed models of physiology and func
tion. A consultation system based on a descriptive, assa
ciational, and causal model of disease has been developed and
applied to problems' of glaucoma. The system provides
recommendations on the management of patients, together
with explanations of its reasoning in terms of the model of
disease. Alternative models can be developed to incorporate
differing opinions and emphases of specialists in the
field giving the system flexibility and greater scope of
interpretation.

1026

A panel session-Computer-simulations of aspects of· the
diagnostic process

SESSION CHAIRMAN-MAX A. WOODBURY

Duke University

Panel Members

Richard Friedman-University of Wisconsin
David Gustafson-University of Wisconsin
Jonathan Clive-Duke University
Discussant
Max A. Woodbury-Duke University

OVERVIEW

This session discusses research related to study of the
diagnostic process using computer-assisted methods, and
from a perspective that is not necessarily disease-specific or
decision oriented. Some of this research concerns itself with
the detection of latent diagnostic and prognostic groups, as
well as the study of diagnoses evaluated by physicians on
computer-simulated patients.

A panel session-The use of computers for instruction and
administration in elementary and secondary education

SESSION CHAIRMA...l\J-SYLVIA CHARP

Sclwol District of Philadelphia

OVERVIEW

The use of the computer in education, especially in ele
mentary and secondary education, has already made an
impact. The number of school systems using computers for
both administrative and instructional applications is grmv
ing. Questions, however, are still being raised, which require
sharing of experiences by educators. When and for what
applications can the same hardware be used for both ad
ministrative and instructional purposes, 1\Then and is it eco
nomical to buy time from time-sharing company, or when
and how best to use stand-alone minicomputers require
careful study. The objectives and needs of the individual

1027

school user or school system must be stated and then specifi
cations given to the manufacturers so that these objectives
can be met as manufacturers become more and more aware
of the many uses of computers, especially in instruction,
hardware may be built which satisfy the particular needs of
education. The problem of training for administrators and
teachers cannot be overlooked. Administrators and teachers
need to know how to use effectively all the additional in
formation made available. Also, the changing role of the
teacher as the computer becomes the dispenser of informa
tion, needs to be understood. Manufacturers, educators,
regional laboratories, private companies must all work to
gether in this endeavor.

1028

A panel session-University computer curricula

SESSION CHAIRMAN-DICK B. SIMMONS

Texas A&M University

Panel Members

Edward J. McCluskey-Stanford University
Aaron Finerman-State University of New York
M. L. Dertouzos-Massachusetts Institute of Technology
Jurg Nievergelt-University of Illinois

OVERVIEW

.. The status of university computer curricula will be dis
cussed and recommendations of how university computer

curricula can be improved in the future will be presented.
The panel will discuss how universities can better meet
critical needs of industry, business, and government in the
various areas of information processing. With the advent of
minicomputers, on-line computing, computer aided instruc
tion and the rapid growth of data processing, the emphasis
in computer curriculum has changed and some of the earlier
ideas should be updated ..

A panel session-Computer education for managers

SESSION CHAIRMAN-JA..."\1ES E. OBERG

DOD Computer Institute

Panel Members

Jack Butler-DOD Computer Institute
Bernard F. King, Jr.-IBM Corporation
Stephen Ruth-U. S. N"avy

OVERVIEW-JAMES E. OBERG

Data processing is still a specialized trade, carried out by
specialists. They talk to each other in a private jargon. They
do not as a rule encourage outsiders to try to understand their
craft.

For computer use to change from a craft practiced by a
sel~ct guild to an aspect ot twentieth century technology
available to all (like telephones, television, automobiles), the
concepts of computers must be made understandable to the
non-technical people who need computing power.

Up to now, computer education has concentrated on uni
versity training curricula for future members of the guild.
For the rest of the population, their education-or mis
education-comes from newspapers, science fiction movies,
telephone billing errors, etc.

Today, all kinds of people are face to face with computers.
Their efficient utilization of available computer power de
pends on how well they understand what computers can and
cannot do.

Standing between them and this efficient utilization is a
"computer mystique," a modern mythology of the machine.
This mystique, with its misconceptions and mysteries, is the
result of the popular press, movies, and real world experience
with computerized systems. The "mystique" was also to a
large extent encouraged by members of the computer fra
ternity themselves.

Computer power can be extremely useful in the difficult
and crucial problems faced by decision-makers. Managers
and executives can use computer information systems to help
get the right information at the right time to enable them to
make the right decisions. The manager has got to allocate his
resources among contending demands to get the optimal
results in the end.

Efficient computer use in management has suffered from
many factors. For example:

1. Misconceptions about the capabilities and lirnitations
of computer systems.

1029

2. Not enough attention to the information system which
is to be serviced by the computer.

3. Not enough attention to the organization and human
implications of computer systems.

4. Naivete regarding the work and talent required at all
organization levels to develop, design, and maintain a
truly effective computer system.

Misconceptions can be based on an overestimation of a
computers power, or a refusal to concede that a computer
has any real application in the "real world." Hope, fear,
love, hate, the entire spectrum of human emotions all have
been directed toward computer systems.

How can the functional manager in executive and admin
istrative positions learn to use the power which computer
systems can give him? This session will examine several
introductory orientation educational programs now in exist
ence. Their purpose is to educate the non-technical functional
manager with regard to computer potentials for his or
ganization.

COMPUTER EDUCATION FOR ADMINISTRATIVE
MANAGERS-JACK BUTLER

Background-The Defense Department established in 1964
the DOD Computer Institute (DODCI), whose purpose was
to conduct computer orientation and introductory courses
for government executives who had no previous computer
experience. DODCI has a staff of 25 instructors and is lo
cated in downtown Washington, D.C., in the Washington
N avy Yard. Courses are offered both in Washington and
on-site where any government installation requests them.
More than 3000 students per year receive their first serious
computer orientation from DODCI.

Objectives-The two-week orientation course is designed to
provide an educational background for high level manage
ment personnel, both military and civilian, who have re
sponsibilities involving general-purpose digital computer
systems but who have had little or no previous orientation
in automatic data processing.

The specific course objectives are:

A. To provide knowledge of the fundamentals of com
puter hardware and software, including their charac
teristics, capabilities and limitations.

1030 National Computer Conference, 1974

B. To introduce essential computer system development
concepts with related planning considerations.

C. To familiarize the student with the necessary com
puter and ADP terminology in an effort to close the
commu~ications gap between management and the
computer specialist.

D. To introduce basic quantitative techniques and their
application in the area of management science.

E. To provide a basis from which the student can pursue
further individual study.

Course Description-The course covers computer capabili
ties, limitations and applications to include key concepts and
planning factors for instituting new computer systems or
improving existing systems. Each course provides computer
"hands on" experience through laboratory work with a small
digital computer, and with computer terminals in a time
sharing environment. Guest lecturers complement the theory
and principles taught by the instructor staff. Upon conclu
sion of the course, the student has a sound basis upon which
to add further computer knowledge, and he can well appreci
ate the potential of today's digital computer systems.

ResuUs--DODCl's--experience ·with-eciucatiohof--h-6ii
technical management personnel indicates that two weeks of
full-time instruction and lab work is indeed sufficient to over
come the "computer mystique," the psychological barrier
which is the main cause of inefficient· use of computer re
sources today. Students are enthusiastic about the course.
The demand for this service among all branches of the mili
tary and government continues to grow.

EDUCATING THE NON DATA PROCESSING
EXECUTIVE-FACT AND FANCY
BERNARD F. KING, JR.

The proposed 45 minute lecture is based upon our past
two years of experience in educating IBl\f customer execu
tives. The dimension of the effort during that period was
2500 executives who attended 10,000 days of instruction.

During that period radical changes ,vere introduced in

executive education. These changes reflected the pressure
that on-line, interactive, data base system appear to impose
upon an organization. Specifically the major topics are: (a)
organizational planning (b) strategic management role (c)
user management/DP management contention (d) tech
nology in the organization. The lecture will explore why
these changes occurred and the instruction content.

Throughout the lecture, the older Executive Computer
Concepts education will be contrasted with the newer
approach.

Finally a control group of 15-20 chief executive officers
will be followed from completion of their education program
through the next 6 months to measure the actual benefit, if
any, that occurred to the organization for a one week invest
ment of the CEO's time.

A BUSINESSMAN'S APPROACH TO THE
DETERMINATION OF THE VALUE OF
EXECUTIVE LEVEL EDP COURSES
STEPHEN RUTH

This presentation defines some of the major evaluative
issues which are involved in executive courses in EDP tech
nology. ~fany of the traditional measurements for effective
ness of an adult educational experience are found to be un
suitable. The major emphasis is on clarifying what should be
the goals of a course of this type and, more importantly, an
elaboration of some proposed methods for evaluating whether
goals are in fact achieved. One aspect of this discussion which
is somewhat counter intuitive is the fact that an executive's
satisfaction or pleasure with the course, its surroundings, and
its instructor frequently constitute a neutral and occasion
ally an inverse indicator of the real value of the course. Data
based on a factor analysis technique is presented to develop
this point.

Since the use of these courses is an expensive cost element
in executive development and education, a cost-based evalu
ation system, which takes into consideration the real, as
opposed to apparent, value of executive EDP courses is
proposed.

A panel session-C-COMP-COPICS-Communications oriented
manufacturing plan: ~~A paper-less factory approach"

SESSION CHAIRMAM-THEODORE A. BAKALAR
IBM Corporalion

Panel Members

Theodore A. Bakalar-IBM Corporation
Dennis Sears-IBM Corporation

CONTROL of manufacturing shipping schedules and costs
implies there is control over the manufacturing process.
Very often production control does not have the capability to
control the execution of the manufacturing plan. Lack of

1031

control is Jargely because of the information environment
that exists. Two problems are very apparent-the vast
amount of paperwork on the plant floor and the untirrieliness
of its information. A plant floor communication system can
help solve these problems.

The "shop packet" is YESTERDAY'S roadmap!
This session will take a close look at C-COMP (COPICS

Communication Oriented Manufacturing Plan) as a new
systems approach in the areas of receiving, inspection, ma
terial handling, stockroom, order release, labor reporting and
dispatching to address the paperwork problems and provide
a tool to help control the manufacturing process.

1032

A panel session-Problems, perils and promises of computer graphics

SESSION CHAIRMAN-LAWRENCE ROSLER

Bell Telephone Laboratories

Panel Members
James D. Foley-University of North Carolina
John B. Macdonald-Western Electric Company
H. G. Marsh-Raytheon Company

OVERVIEW

For many years, profitable large-scale use of computer
graphics has been "just around the corner." The panelists,

representing industrial users, system developers, and uni
versity researchers, will present divergent views on what is
required for the promises finally to be fulfilled. These views
range from coding in tailored machine language to writing
transportable programs in a high-level language. An open
discussion, with audience participation invited, will follow.

A panel session-Numeric control machine tool technology and
applications

SESSION CHAIRMAN-DR. JAlVIES WARNER
Northern Illinois University

Panel Member

Dr. Ronald L. Boase-CAM-I, Inc.

PART FAMILY CODE?-DR. RONALD L. BOASE

The problem of constructing a part family code for identi
fying parts having "similar" process plans is considered. The

1033

basic emphasis is on the role the part family code plays in
relating descriptive information on the part to its process
plan. The use of the typical digital structure of a part family
code restricts the ability for representing this relationship
accurately. Self-learning computer algorithms which express
this relationship in functional form replaces the need for a
part family code. Code identifiers labeling parts having simi
lar process plans can then be more beneficially used.

1034

A panel session-Manufacturing information systems

SESSION CHAIRMAN-EARL GOMERSAL

Motorola, Inc.

OVERVIEW

New eras of increased productivity and profits through
advanced Manufacturing Infonnation Systems-the great
nonsequitur. Far from fulfilling years of advanced publicity

and still resistant to new technologies, more economical
devices, and a host of new optimizing gadgets, total systems
answers to manufacturing problems continues to be .the
elusive "brass ring" for the adventurous and a Waterloo for
those who have been given the resources to make it happen.

Dealing with manufacturing imperfections requires im
perfect solutions. If that fox is not lost in the hunt, the next
decade can be a promise fulfilled. Manufacturing Infonnation
Systems need not be limited to "mechanized tradition." A
down to earth analysis of "do differentlys" will be presented.

A panel session-Shop floor control

SESSION CHAIRMAN-J. O'TOOLE
Mid America Corporalion

Panel Member

James A. O'Toole-Mid America Corporation

SHOP FLOOR CONTROL-JAMES A. O'TOOLE

Controlling the factory environment will significantly in
crease productivity. Efficient coordination of jobs with man

1035

power and machines increases output and income. The Com
puter, if it is properly used, provides the capability for coordi
nating the elements of the factory floor more efficiently than
manual systems.

Mr. James A. O'Toole, Vice President of Mid-America
Computer Corporation, will address this subject in a practical
manner based on installation experiences.

1036

A panel session-What manufacturers would like to see
happening in point-of-sale

SESSION CHAIRMEN-GERALD T.
MONTGOMERY

J. C. Penney Company

and

VERNON L. SCHATZ

Jewel Companies, Inc.

Panel :Members

-Michael ::.\lcHale-UNITOTE--
Samuel Harvey-Singer Business ::'\lachines
~L G. Tomlin-IBM
Richard Simon-Sweda International
Joseph Vale-American Regitel
Richard Fried-National Cash Register
W. E. Carey-IBM
John King-Electronic Store Information Systems
Ralph Canada-National Cash Register
John Ineson-8inger Business :'IIachines
Terry White-Sperry-UKIVAC
Fred Bialek-~ational Semiconductor Corporation

OVERVIEW

--Implementation of electronic-Point--of-Sale (POS) Systems
is still in its early stages, so many of the potential benefits
are still untapped.

This is one of four sessions (two each in Retailing and
Distribution) in which POS manufacturers will describe the
approach they have developed and the improvements in
store operations their systems will make possible.

These sessions should be of interest to anyone concerned
with the future direction of POS.

A panel session-Point-of-sale systems for supermarkets

SESSION CHAIRMAN-VERNON L. SCHAATZ

Jewel Companies, Inc.

Panel Members

Vern Sdhaatz-Jewel Companies, Inc.
Doug Brookings-Schnuck Markets, Inc.
Dan Minter-SAMI
Ron Low-Jewel Companies, Inc.
Lee Paulson-Allied Supermarkets, Inc.

1037

OVERVIEW

The session on Point-of-Sale Systems will be primarily
concerned with supermarket operations. It will emphasize
live experience in the use of such systems. Discussions of
current experience will be complemented by discussions of
the anticipated impact of the Uniform Grocery Products
Code (UPC) and scanning.

1038

A panel session-Transferability of government information systems,
problems and solutions. Is it cost effective?

SESSION CHAIRMAN-VERNE H. TANNER, JR.

NASIS

Panel Members

James J. Trainor-Department of H.E.W.
Nelson A. Howell-N A8IS
Charles D. Trigg-IBM Corporation
Harold O. Casali-Department of Finance and Adminis

tration

OVERVIEW

One of the most significant challenges facing state infor
mation coordinators today deals with the ability or lack of

ability to make use of the proven concepts of systems de
veloped in other jurisdictions. The panel will attempt to
develop a definition of the word "transferability," to outline
the restraints and pitfalls which prevent a successful transfer
and to suggest ideas and methods which can avoid these
problems. While specific examples presented by the panel
will deal with state activities, their problems and solutions
should be of importance not only to all levels of government
on a horizontal plan, but also to all levels of government on
a vertical plan.

A panel session-Federal activities in information processing

SESSION CHAIRMAN-JOHN GENTILE

Panel Members

Assistant Postmaster General-U.S.
Postal Service

Kenneth W. Hunter-U.S. General Accounting Office,
General Management Studies Division

Clark R. Renninger-U.S. Department of Commerce,
National Bureau of Standards

Gordon Yamada-Office of Federal Management Policy

OVERVIEW

Discussion and presentation of responsibilities of various
federal agencies as they relate to the federal establishment,
intergovernmental relations and the private sector in the
area of information processing, especially that of the General
Accounting office, the General Services Administration and
the National Bureau of Standards in carrying out their
missions.

1039

1040

A panel session-Law enforcement-Do the systems really provide
the information and safeguards promised?

SESSION CHAIRMAN-GLEN E. POMMERENING

u.s. Department of Justice

Panel Members

Howard Bjorklund-Department of Justice
Melvin F. Bockelman-Kansas City Police Department
Alan A. Hamilton-REJIS

OVERVIEW

--Law -Enforcernent--"-An -updating of the-advances made in
providing information for the management of law enforce-

ment and problems still facing these activities and the re
sources being brought to bear on their solutions.

Over the past year several new and very successful infor
mation systems have come "alive" throughout the country.
While at the same time questions have been raised as to
whether the systems have really provided the type of infor
mation required and/or contained the safeguards which were
promised.

A panel session-Security, privacy and the information processing
system

SESSION CHAIRMAN-KENNETH ORR

Langston-Kitch and Assoc.

Panel Members

Jerry Hammett-Department of Defense
Daniel B. MaGraw-Department of Administration
Andrew O. Atkinson-PROJECT CLEAR-Regional

Computation Center
Mark Gitenstein-Council Subcommittee on Constitutional

Rights, U.S. Senate

OVERVIEW

With the publishing of the report of the Health, Education
and Welfare Secretary's Committee, "Records, Computers

1041

and Rights of Citizens," on personal data systems the ques
tion of the individual's right· to privacy and methods of
securing this right have taken on even greater importance
to the information processing committee. The panelists will
attempt to define security and privacy and to draw the
distinction which makes them both severable and related.
In the past it has been a contention that security of systems
is a panacea to the protection of privacy. It is the contention
of some of the panelists that this is not necessarily the correct
assumption.

1042

A panel session-Venture capital for computer companies

SESSION CHAIRMAN-ROBERT F. JOHNSTON

J ohnslon Associates

Panel Members

John Doede-First Chicago Investment Corporation
Edgar Jannotta-William Blair & Company
Gene Amdahl-Amdahl Corporation
Moderator
Robert F. Johnston-Johnston Associates

OVERVIEW

This session will eXplain the factors investors take into
consideration in evaluating venture capital investment. In-

vestors are primarily interested in the management of the
company, their previous performance, and their program
for implementing their current business plan.

Conversely, we will also discuss the characteristics the
management should look for in their investor. The investors
should be experienced in venture capital, be aware of the
risks and willing to work with the company.

We will also discuss the different types of financings
private placement and public offerings. The dramatic ups
and downs of the stock market over the past several years
~ave leftthe management of many small computer companies
thoroughly confused regarding the criteria for investment.
We hope to eliminate some of this confusion.

A panel session-The auditor/EDP manager relationship

SESSION CHAIRMAN-NOEL ZAKIN

A ICPA

Panel Members

Richard J. Guiltinan-Arthur Anderson & Co.
Everett C. Johnson-Haskins & Sells
Richard D. Webb-Touche Ross & Co.

OVERVIEW

The auditor and EDP operating personnel have many
areas of mutual interest. More effective communication will

1043

enable both auditors and data processing professionals to
better discharge their respective responsibilities. The audi
tor's responsibilities, his role in an EDP environment, the
need for mutual cooperation and planning, the impact of
advanced systems and the use of audit software will be
among the topics discussed. The AICP A's responsibilities
and· activities in the ED P area will also be considered.

A panel session-Hardware and software concerns
relating to industrial pr~cesses

SESSION CHAIRMAN-HENRY R. KOEN

OVERVIEW

Software development is the major concern in the delivery
of industrial process control. This session will examine key
guidelines in hardware and software that effect success. Six
papers ,vill be presented in a vi,-orkshop atmosphere virith
statements likely to draw fire. This blue ribbon panel of
speakers will then be required to defend their theory and
discovery. High attendee interaction is anticipated.

System software for real time systems and the unique
control and application programs necessary to satisfy user
requirements are examined. Typical industrial data acquisi
tion and control systems are presented to characterize
control and application software for data collection, proces
sing, storage and retrieval. The approach is segmented into
areas of currently high activity.

DIGITAL CONTROL ALGORITHMS-DESIGN
AND APPLICATION CONSIDERATIONS
CHARLES W. ROSS

Many of the same functional design considerations required
for an analog controller are properly applied to digital con
troller design. This presentation examines requirements
beyond normal controller functions such as proportional,
integral, derivative, feedforward, and compensating control
to also examine practical design considerations such as:
initialization, bumpless transfer, antiwindup provisions,
limiting conditions, man-machine interface, accuracy limita
tions, dead bands, bandwidth and range selection. This
controller permits considerable flexibility for conventional
applications and allows the selection of various control
options. Examples of hierarchically interfacing the controller
to other, possibly more sophisticated, levels are presented,
including parameter and error adaption, model feedforward
and feedback, and economic optimization.

PROGRAM LANGUAGE SELECTION
JOHN E. PEYTON, JR.

Programming languages express problems in terms familiar
to the user and are also machine translatable. Commonly
used languages have been widely accepted because they
express "ide ranges of problems in a few fundamental modes.

1045

But these modes are often cumbersome or inadequate for
expressing process control problems. Several attempts have
been made to overcome this but no widely accepted means has
yet been developed. Selection of a programming language for
process control involves thorough analysis of the char
acteristics of the intended application and familiarity with
the characteristics of available languages. Several current
efforts are attempting to identify fundamental characteristics
required of process control language and means of language
implementation, especially for minicomputers.

INPUT-OUTPUT SOFTWARE REQUIREMENTS FOR
PROCESS CONTROL-RICHARD F. THOMAS, JR.

The designer of a process I/O system should be prepared to
apply a variety of techniques in order to produce a system
well suited to the needs of the application. At the level of
acquisition of data one must consider the merits of main
taining data banks versus direct acquisition of data on
demand from application programs. There are usually
several different needs for identification of process signals and
devices. Especially, the interests of process control applica
tions and control system maintenance and diagnostics may
be sufficiently different to justify two levels of interface to
process I/O devices. Generally at the highest level interface
one would prefer to refer to signals by name, or perhaps
logical unit number, regardless of the physical process in
volved in acquiring or sending data. The definition of these
software interfaces and the transformations of both references
and data which are associated with them can have an impor
tant impact on both the efficiency and utility of a control
system.

MICRO COMPUTERS IN INDUSTRIAL
PROCESSES-RONALD P. ROBERTS

For this new and booming technology, terminology must
be clarified before we draw analogies on the evolution of small
and very small computers. Some must even be considered
extremely small.

The MICRO PROCESSOR and LSI computer in systems
and industrial process control applications are first treated
from a technical viewpoint, then in terms of economics and
the role of manufacturers, OEM's and end-users. Like"ise a

1046 National Computer Conference, 1974

treatise is to be opened on programming and software con
siderations. Questions will be raised on scope, responsibility,
support and industry standards.

Thinking and discussion will be stimulated with comments
on the future; markets, applications proliferation of manu
facturers: Pitfalls and Advantages.

DATA HIGHWAYS-DALE W, ZOBRIST

Data highways are used to connect a sundry of input
devices with computers. For industrial control applications
these highways must often handle large volumes of data over
considerable distances. Serial data path technology developed
during the past decade is being applied to many industrial
control systems today. In addition to the obvious wire and
installation cost reductions, serial data highways can help
reduce the risks often associated 'with large industrial in
stallations. Various parallel and serial highways ,vill be

discussed, along with existing and proposed standards for
such highways.

MAN/MACHINE CONSIDERATIONS IN FUTURE
PROCESS CONTROL SYSTEMS-RENZO
DALLIMONTI

Modern computer and display technology already provide
the tools for implementing bold and exciting innovations to
the man/machine interfaces of the future. CRT displays and
computer systems have now reached a stage where they can
replace the traditional panel with its 30 to 100 feet of in
strumentation. The old dream of a "control-room-on-a desk"
is now feasible for large process units.

The obstacles to its widespread adoption will be neither
cost nor technology. The constraints will be our under
standing of the operator's job, his operating procedures, and
our knowledge of human factors engineering!

A panel session-Applying computers in the research and
development laboratory

MODERATOR-DR. JOHN R. KOSOROK
Battelle-Northwest

Panel Members

Russell L. Heath-Aerojet Nuclear Company
Theodore H. Kehl-University of Washington
Edward A. Kramer-Digital Equipment Corporation
Robert E. ~fahan-Battelle-Northwest

APPLYING COMPUTERS IN THE RESEARCH
AND DEVELOPMENT LABORATORY-DR.
JOHN R. KOSOROK

To bring about a better understanding of the needs of
laboratory researchers employing small computers and the
potential of these computers for meeting such needs, a panel
of two computer users, a system designer and a computer
manufacturer representative will address the problem. The
panel will discuss:

(1) electronic and electromechanical devices comprising a
computer system (hardware),

(2) computer programs (software), and
(3) connecting circuitry linking laboratory instruments

and the computer (interface).

The panel will discuss the hardware, software and interfaces
which are in existing laboratory installations and currently
available from manufacturers. On-line, real-time systems in
which the laboratory worker can interact with the computer
system to modify its operation will be emphasized. Attendees
with questions and problems are urged to participate during
the question and answer period.

In the application of laboratory computers, the prospective
user of the computer system takes the first step in the system
design by specifying the required performance. Detailed
computer knowledge is not necessary for this first step, but
the prospective user should be aware of potential computer
applications and the general performance capabilities so as
not to unnecessarily restrict performance requirements. The
system designer then integrates computer hardware, software
and instrument interfaces to construct a system that will
have sufficient capability to meet the user's research require
ments. System costs and performance are directly related to
the software available with the computer. Software for

1047

specific applications may be available from commercial
sources or may be developed by the system designer.

APPLYING COMPUTERS IN RESEARCH AND
DEVELOPMENT LABORATORIES-R. L. HEATH

Nuclear physics laboratories in this country have played a
pioneering role in the development and application of real
time dedicated computer systems in the research laboratory.
The complex nature of experiments which are conducted in
this field have provided an ideal environment for the use of
high speed digital processes for control of equipment, acquisi
tion and storage of data, and real-time processing. Charac
teristics of such systems include extensive use of interactive
devices, graphics, specialized programming languages and
communications links between processor systems. The prob
lems related to systems design, component selection, soft
ware development and system utilization will be illustrated
by describing several experimental systems from design con
cept . to end use. These will include both single purpose sys
tems employing small mini-computers and a complete labora
tory data acquisition and analysis system employing several
processors and a multi-task operating system. The objective
will be to provide a basis for stimulation of discussion on the
options available to the potential user in the design and im
plementation of laboratory systems.

LABORATORY AUTOMATION IN A UNIVERSITY
T. H. KEHL

Our laboratory constructs digital devices both as inde
pendent and computer-interfaced. State logic methods (fast
becoming industry standards) are used for all devices.
Standardization of interfaces are performed in a rack which
can contain up to 24 independent real-time clocks, optically
coupled external interrupts, clock-driven interval interrupts,
power drivers, etc. Because of the extensive computer and
stand-alone controller construction, a semi-automatic wire
wrap machine and computer-aided design software has been
utilized. This equipment has, in turn, allowed us to construct
our own mini-computers.

Our software, a central concern of laboratory automation,

1048 National Computer Conference, 1974

has the features of: (a) direct interrupt driven high-level
statements, (b) development in FORTRAN on a large com
puter, (c) constants alteration from mini-computer console
and, (d) monitor loading of multiple mini-computer programs.

THE MANUFACTURERS' ROLE IN APPLYING
COMPUTERS IN THE RESEARCH DEVELOPMENT
LABORATORY-EDWARD KRA1VIER

A mini-computer manufacturer plays a significant role and
has a substantial obligation in determining the state of the
technology for the application of computers in the R&D
laboratory. A major supplier of computers to the R&D
community is obligated to properly anticipate the needs of
the scientific community and develop the products and ser
vices to satisfy those needs.

A -typical computer company spends approximately 10
percent of its total revenues in the R&D. It continuously
tries to anticipate the needs of its targeted market place and
produce the products that are usable by its potentialcus
tomers. The products today include not only hardware for
data acquisition, computation and analysis, but also software
and services that will allow these computer systems to be
utilized more easily by the user community. The trade-off
with cost, performance and reliability/maintainability serve
as inputs in the development of new products. Consideration
must also be given to any changes in the types of R&D users
will be performing.

We will discuss how these factors interact to produce a
product line that meets the needs of the scientific community.
Other items to be discussed will include what can a user ex
pect from a computer manufacturer, and general purpose tools
versus dedicated applications.

THE METAMORPHOSIS IN LABORATORY COM
PUTING-ROBERT E. MAHAN

Discussions of the emerging state of the art in laboratory
computing are presented from the system designer's view
point. Topics of interest include hardware, software, inter
facing, and standardization. The fragmentation of the his
torical minicomputer into three distinct classes, the super
mini, the standard mini and the micromini, is discussed with
emphasis on systems experience in a research and develop
ment laboratory environment. Available soft,vare support
and limitations are discussed for each class of machine. Em
phasis is placed on the capabilities of systems software;
especially compilers, assemblers, and· operating systems. In
terface conventions, requirements, and experiences are dis
cussed for several real-time systems. Of special interest is
the treatment of the isolation and data conversion problem
in the computer/instrument interface. The final topic pre
sented concerns the standardization of system elements to
promote the compatibility and reproduction of hard\vare and
soft"Tare in the laboratory environment. Benefits and limita
tions of standardization are cited.

A panel session-Communication nets in transportation

SESSION CHAIRMAN-DAN E. COUCHENOUR

Eastern Air Lines, Inc.

Panel Members

C. F. Norton-Northwest Orient Airlines
Donald LePorte-Transport Data Communications, Inc.
J. Swartz-Aeronautical Radio, Inc.
Moderator
Dan E. Couchenour-Eastern Air Lines, Inc.

OVERVIEW

Through development and application of combined com
puter and communications technology the transportation

1049

telecommunication network provides the optimum facility
utilization. Standardization of data interchange formats,
computer-to-computer interfaces, and network control pro
cedures are today a reality. Topics will include: (1) Communi
cation network planning and implementation, (2) Standardi
zation of data interchange, (3) Network consolidation, (4)
Computer-to-computer line control procedures used to pro
vide assurance of data interchange, and (5) A panel discus
sion: Questions and Answers.

1050

A panel session-Equipment control in transportation

SESSION CHAIRMAN-EUGENE JONES

Avis Rent-A-Car

OVERVIEW

At no time in the history of this industry has the control
of its equipment been as vital. The energy crisis has resulted
in a forced reduction of inventory. Control over the avail
ability of this inventory is going to be the key not only to

short term profits, but to providing the maximum level of
customer service in this highly competitive industry which
has significant long term implications.

In addition to the use of on-line reservation systems in
the airline industry, current systems in other applications,
such as the Wizard of A vis car rental system will be discussed.

A panel session-Computerized transportation-distrihution
A user overview

SESSION CHAIRMAN-JACK w. FARRELL

Traffic M anagement Magazine

Panel Members

William R. McCartin-The N oxell Corporation
Frank J. Cyrkiev.ricz-Gerber Scientific Instrument Co.
Edmund R. Piesciuk-The Carrier Corporation
Phillip T. Catalano-Steelcase, Inc.
Moderator
Jack W. Farrell-Traffic Management Magazine

1051

OVERVIEW

BUSINESS LOGISTICS is an ever-growing customer for
computer services in manufacturing or marketing-oriented
firms. Transportation, inventory control, order processing
and myriad related activities require intensive computer
support to meeting competitive pressures, reduce operating
costs and improve customer services.

At this meeting, a physical distribution journalist, an
MIS manager and three traffic-distribution executives discuss
logistics development's urgent need for greater EDP-manage
ment participation.

1052

A panel session-Computing and mathematics in society

MODERATOR-DR. DONALD L. THOMSEN, JR.

Panel Members

SI A../ltI Institute for jU athematics and
Society

Dr. Warren J. Ewens-University of Pennsylvania
Dr. James S. Coleman-University of Chicago
Dr. John J. Donovan-Massachusetts Institute of

Technology
Dr. Warren E. Walker, The-New York City Rand

Institute

·PANEL"OVERVIEW=--:DONALD-E --THOMSEN,- JR.

The Panel will address selected areas of current interest
where computing and mathematics have been successfully
applied to societal problems. Those societal fields which have
been chosen are biological systems, sociology, energy, and
urban emergency services. Although interrelated each area
has quite different characteristics. In biology we examine
long term evolutionary phenomena; in sociology we review
through the techniques of simulation and surveys those
human relations which are of concern day by day, month by
month, and year by year; in energy we discuss problems both
short and long range having to do with basic sources and
distribution; and in emergency urban services we address
very immediate activity related to what happens when that
fire alarm box is pulled down the street. In these four areas
the Panel will present examples of noteworthy past successes
and conjectures as to where future progress very likely will
be made.

COMPUTERS IN REAL-WORLD BIOLOGICAL
_SYSTEMS-WARREN J. EWENS

Real-world biological systems are both complex and long
lasting. The complexity arises through the fact that various
characters are influenced by many genes, and also by the
environment, that some genes influence many characters,
and that the effects of the various genes are strongly inter
active. To carry out programs of plant and animal breeding,
as well as to study long-term evolutionary effects, only by

using a computer can we hope to model these systems faith
fully and draw useful conclusions.

COMPUTERS IN THE STUDY OF SOCIAL
PROCESSES-JAMES S. COLEMAN

Two major directions in the use of computers exist in
sociological work. One is the use in analysis of social surveys
and social experiments, ranging from small to massive, and
involving both data processing and statistical calculations.
The second ease is siI}::lUlationotl;l.QciaLproeesses, similar to, _
b~t ~ith s~~e ~~~iations upon, simulation in other areas.
Examples of both these kinds of uses will be presented.

MANAGEMENT INFORMATION SYSTEMS FOR
ENERGY DISTRIBUTION-JOHN J. DONOVAN

The problems facing us now are maldistribution, poor
strategies, and in some cases a surplus of energy fuel. Our
objective is to develop an energy information system that will
provide management assistance in administering the distri
bution of energy resources. Functions of the system range
from straight information retrieval to construction of the
mathematical model for forecasting supply and demand and
to construction of modeling facilities for testing the effects
of various policies. Research in the construction of informa
tion systems, system privacy and security, and in file system
design are particularly applicable. Using this research it has
been possible to build such a system for the New England
Region in a matter of months.

MATHEMATICAL MODELLING OF URBAN
EMERGENCY SERVICE VEHICLE DEPLOYMENT
POLICIES-WARREN E. WALKER

A sharp increase in fire alarms and a tightening of the ex
pense budget in New York City resulted in a need for more
effective use of the existing resources of the Fire Department.
A computer simulation of the Departmenes operations and
other mathematical models were developed to evaluate al
ternative deployment policies. Analysis which led to the im
plementation of new deployment policies will be discussed.

DATA REFEREXCE CHARACTERISTICS OF
DATABASE APPLICATION PROGRAMS

by ISAO MIYA:\'lOTO

Nippon Electric Company Ltd.
Fuchu, Tokyo,Japan

ABSTRACT

In- this paper the data reference characteristics of database
applications programs are discussed. Factors characterizing
some properties of data references are selected, and the data
working set as a locality and the interreference interval dis
tribution are measured.

The data reference characteristics of application programs
can be divided into three types, hard-type, soft-type and
special-type, when the logical structures of database and the
search strategies are considered.

Also the problem of restructuring an application program
taking parallelism into consideration is discussed.

MULTI-CONNECTION XETWORKS

by GERALD M. MASSON

University of Pittsburgh
Pittsburgh, Pennsylvania

ABSTRACT

Many applications involving the manipulation of large
amounts of data or the interconnection of various subsystems
into specific configurations employ the use of connection net
works. Accordingly, a number of impressive results have been
developed by the researchers in this field concerning the
analysis and design of such networks. However, the vast
majority of this work has dealt almost exclusively with a class
of connection requirements for which at any time each input
to the network is required to have at most one connection to
the outputs of the network. It is becoming increasingly evi
dent that there are a significant number of important appli
cations for which this one-to-one type of connecting capabil
ity is not sufficient and for which a one-to-many or many-to
many type of connecting capability is needed instead. Ket
works capable of handling such requirements will be referred
to as multi-connection networks, and this paper will consider
their analysis and design. Aspects of the extension of existing
work concerning the one-to-one type networks will be dis
cussed. In addition, an approach will be described to the de
sign of such networks which results in a new class of struc
tures having multiple connection capability.

1053

1054

STAREX-THE JPL-STAR COMPUTER RESI
DENT EXECUTIVE

by JOHN A. ROHR

Jet Propulsion Laboratory
Pasadena, California

ABSTRACT

STAREX, the resident executive for the JPL-STAR com
puter is presented. The JPL-ST AR computer is a fault
tolerant computer which includes hardware self-repair capa
bility. All programs which run on the computer require
special considerations for proper operation in the fault
tolerant hardware environment. System programs use a single
variable to indicate the rollback status of the active routine.
User programs periodically invoke system routines to save
the program state and establish rollback points. When a
fault occurs, hardware self-repair occurs first, followed by
software recovery to resume computation in a proper state.

--A brief--description of -the- JPL-ST AR computer is given; -fol-,
lowed by an overview and then implementation details of
STAREX. Finally, the fault-tolerance considerations in the
design of ST AREX are discussed.

SIMULATION OF EXECUTING ROBOTS IN
IMPERFECTLY KNOWN ENVIRONMENTS*

by L. SIKLOSSY and J. DREUSSI

University of Texas
Austin, Texas

ABSTRACT

A simulated robot solves tasks in environments which she
knows only approximately. The robot is given a description
of the environments and of her capabilities. From the latter,
she generates procedures that are evaluated to solve tasks.
As tasks are solved, the robot improves her knowledge of
the environment and the efficiency with which she can solve
problems. Unknown, correctly known,and incorrectly known
facts are treated in a uniform mannp,r.

The design used, that of an executing robot, is contrasted
to the design of planning robots. Executing robots may also
he used to plan in perfectly known environments and are
usually more efficient than planning robots. In imperfectly
known environments, planning robots are inadequate.

* Partially supported by N.S.F. Grant GJ-34736.

THE PROVISION AND USE OF ENVIRON
MENTAL INFORMATION IN A MULTIPRO
GRAMMING SYSTElVI*

by TOMLINSON G. RAUSCHER

University of Maryland
College Park, Maryland

ABSTRACT

In a modern multiprogramming system a user, who is
competing for system resources, may desire to optimize him
self relative to his environment. The environment includes
not only the physical machine and attached devices but also
system software and the programs of other users which are
sharing and competing for resources. As most modern sys
tems provide little environmental information to users, we
describe facilities for querying the system to ascertain
environmental information. The user, in dynamicalJy query
ing the environment, can use information on the status of
hardware and software (both system and other user) to im
prove the status and performance of his program according
to some cost function he selects. Several examples demon
strate the utility of these environmental inquiry facilities.

* This research was supported in part by the United States Atomic
Energy Commission through Contract AT-(40-1)-3817.

1055

1056

BILL OF MATERIAL AND REQUIREMENTS
CALCULATION SYSTEMS

J. WEINBERG
McDonnell Aircraft Company

ABSTRACT

The Bill of Material and Requirements Calculation System
to be presented comprises the first phase of a total part num
ber data base development that is expected to encompass all
areas of production and inventory control within the McDon
nell Aircraft Company component of McDonnell Douglas
Corporation.

The system develops a bill of material file that contains
both an engineering product configuration and a manufac
turing product configuration. The file is created and main
tained using both on-line real time and batch data entry
methods. Included in the applications processed against the
bill of material are programs which: perform a configuration
audit tojnsure that the engineering and manufacturing con
figura.tions agree; calculate requirements for all manufac
tured parts; perform bill of material breakdowns and generate
product structure listings; and perform document follow-up
and status reporting in manufacturing operational areas.

The data base has been developed using the data manage
ment and teleprocessing facilities provided by the Informa
tion Management System (lMS). On-line update and re
trieval is accomplished via a network of cathode ray tubes,
on-line typewriters and on-line medium speed line printers
located in operational areas.

AMERICAN FEDERATION OF INFORMATION PROCESSING
SOCIETIES, INC. (AFIPS)

OFFICERS AND BOARD OF DIRECTORS

President

~lr. George Glaser
225 Warren Road

San Mateo, California 94402

Secretary

Dr. Dick Simmons
Data Processing Center

Texas A & 11
College Station, Texas 77843

Dr. Anthony Ralston
SUNY at Buffalo

Comp uter Science Department
4226 Ridge Lea Road

Amherst, New York 14226

Dr. A. S. Hoagland
IBM Corporation

Dept. 29A 0 Bldg. 910
P.O. Box 1900

Boulder, Colorado 80302

Executive Director

Dr. Robert W. Rector
AFIPS

210 Summit Avenue
Montvale, New Jersey 07645

ACM Directors

Mr. Herbert S. Bright
Computation Planning, Inc.

7840 Aberdeen Road
Washington, D.C. 20014

IEEE Directors

V ice President

Mr. Paul W. Berthiaume
Electronic Associates, Inc.

185 Monmouth Park Highway
West Long Branch, N.J. 07764

Treasurer

Mr. Marvin W. Ehlers
Square D Company
Executive Plaza

Park Ridge, Illinois 60068

Mr. Richard B. Blue, Sr.
TRW Systems Group

Scientific Data Processing Lab
One Space Park-R3/1098

Redondo Beach, Calif. 20278

Professor Edward J. McCluskey
Stanford University

Department of Electrical Eng.
Stanford, California 94305

Dr. S. S. Yau
Department of Computer Science

N orthwestern University
Evanston, Illinois 60201

Society for Computer Simulation Director

Mr. Frank C. Rieman
Computer Sciences Corporation

1101 San Antonio Road-Suite 202
Mountain View, California 94040

Association for Computation Linguistics Director

Dr. A. Hood Roberts
Center for Applied Li..llguistics

1717 Massachusetts Ave., N.W.
Washington, D.C. 20036

American Institute of Aeronautics
and Astronautics Director

Dr. Robert R. McCready
Vought Systems Division

P.O. Box 5907
Dallas, Texas 75222

American Statistical Association Director

Mr. James Filliben
Statistical Engineering Laboratory

National Bureau of Standards
Washington, D.C. 20234

Instrument Society of A merica Director

Mr. Theodore J. Williams
Purdue University
102 Michael Golden

West Lafayette, Indiana 47907

Soc.iety fm:. Information pisplay. Director

Dr. C. P. Crocetti
Rome Air Development Center-XP

Griffiss Air Force Base, New York 13441

American Institute of Certified Public Accountants
Director

Mr. Noel Zakin
AI CPA

666 Fifth Avenue
New York, New York 10019

American Society for Information Science Director

Mr. Robert J. Kyle
1066 McConnell Drive
Decatur, Georgia 30033

Society for Industrial and Applied Mathematics Director

Dr. D. L. Thomsen, Jr.
SIAM Institute for Mathematics and Society

97 Parrish Road, South
New Caanan, Connecticut 06840

Special Librar:ies Association Director

Mr. Herbert S. White
Institute for Scientific Information

325 Chestnut Street
Philadelphia, Penna. 19105

Association for Educational Data Systems Director

Dr. Sylvia Charp
The School District of Philadelphia

Board of Education
,5th and Luzerne Streets

Philadelphia, Pennsylvania

JOINT COMPUTER CONFERENCE BOARD

President

Mr. George Glaser
225 Warren Road

San Mateo, California 94402

V ice President

Mr. Paul W. Berthiaume
Electronic Associates, Inc.

185 Monmouth Park Highway
West Long Branch, New Jersey 07764

Treasurer

Mr. Marvin Ehlers
Square D Company

Executive Plaza
Park Ridge, Illinois 60068

A CM Representative

Dr. Herbert R. J. Grosch
Computerworld

797' Washington Street
Newton, Massachusetts -02160

IEEE Representative

Mr. Merlin Smith
T. J . Watson Research Center

P.O. Box 218
Yorktown Heights, N.Y.

SC S Representative

Mr. Ralph Wheeler
Lockheed Missiles & Space Co.

P.O. Box 504
Sunnyvale, California 94088

JOINT COMPUTER CONFERENCE COMMITTEE

Mr. AI Hawkes, Chairman
Computer Horizons

53 West Jackson Blvd.
Chicago, Illinois

Mr. Jerry L. Koory
H-W Systems

525 South Virgil
Los Angeles, California 90005

Dr. M. M. Astrahan
IBM Research Laboratory
Monterey & Cottle Roads
San Jose, California 95193

Dr. David Sudkin
43 Upland Road

Waban, Massachusetts 02168

Mr. Jeffery D. Stein
On-Line Business Systems, Inc.

One Embarcadero Center
San Francisco, California

Dorothy Tucker
Banker's Trust Company

1775 Broadway-12th floor
New York, New York 10019

Dr. Henry S. McDonald
Bell Laboratories, Inc.

Murray Hill, New Jersey 07971

JOINT COMPUTER CONFERENCE TECHNICAL PROGRAM COMMITTEE

Dr. Henry S. McDonald, Chairman
Bell Laboratories

Murray Hill, New Jersey 07971

Mr. Robert Glaser
IBM Corporation, Dept. 693
1271 Avenue of the Americas

New York, New York

Mr. Rex Rice
Memory Systems Operation

Fairchild Systems Technology
974 E. Arques Avenue

Sunnyvale, California 94086

Mr. Nathaniel Macon
6104 Namakagan Road

Washington, D.C.

Mr. Jack Roseman
On-Line Systems

115 Evergreen Heights Drive
Pittsburgh, Pennsylvania 15229

Professor R. L. Motard
College of Engineering
University of Houston
Houston, Texas 77004

Mr. Jack Minker
University of Maryland

Computer Science Center
College Park, Maryland 20742

1974 NATIONAL COMPUTER CONFERENCE
CHAIRMAN

Dr. Stephen S. Yau
Department of Computer Science

N orthwestern University
Evanston, Illinois 60201

1975 NATIONAL COMPUTER CONFERENCE
CHAIRMAN

Mr. Donal A. Meier
National Cash Register Company

16550 West Bernardo Drive
San Diego, California 92127

1974 NATIONAL COMPUTER CONFERENCE COMMITTEES

General Chairman

Stephen S. Yau
Northwestern University
Evanston, Illinois

V ice Chairman

Samuel Levine
United Air Lines
Chicago, Illinois

Computer Art Fair

Kurt F. Lauchner
Eastern Michigan University
Ypsilanti, 2\1ichigan

Computer Science Fair

Benjamin Mittman
N orthwestern University
Evanston, Illinois

Science Theatre

Thomas :\lurphy
University of Chicago
Chicago, Illinois

Tours

John Mayer and Judy Newman
United Air Lines
Chicago, Illinois

Controller and Secretary

James S. Aagaard
Northwestern University
Evanston, Illinois

NCCC Representative

Albert K. Hawkes
Computer Horizons, Inc.
Chicago, Illinois

Technical Program Committee

Theodore NI. Bellan-Ghairman
McDonnell Douglas Automation Co.
St. Louis, Missouri

C. V. Ramamoorthy
University of California
Berkeley, California

R. Stockton Gaines
Institute of Defense Analyses
Princeton, New Jersey

Thomas N. Pyke, Jr.
National Bureau of Standards
Washington, D. C.

Herbert Seidensticker
Combustion Engineering, Inc.
Stamford, Connecticut

James A. Schweitzer
Xerox Corporation
Rochester, ~ew York

W. Chou
Network Analysis Corp.
Glen Cove, N ew York

Walter S. Huff, Jr.
Huff, Barrington and Owens and Associates

Erik D. :McWilliams
National Science Foundation
Washington, D. C.

Thomas J. Archbold
International Harvester Company
Hinsdale, Illinois

Vernon L. Schatz
The Jewel Company, Inc.
Chicago, Illinois

Gerald T. Montgomery
J. C. Penney Company
New York, N. Y.

Vern H. Tanner, Jr.
State of Iowa
Des .Moines, Iowa

Allen J. Burris
The Northern Trust Company
Chicago, Illinois

William D. Tabachnik
Mobil Oil Corporation
New York, New York

Paul G. Mercer
Eastern Airlines
Miami, Florida

Local Arrangements Committee

Richard B. Vlise--Chairman
IIT Research Institute
Chicago, Illinois

James M. Francoeur
lIT Research Institute
Chicago, Illinois

Robert S. Hollitch
Sargent & Lundy Engineers
Chicago, Illinois

Gail Langston
St. Margaret Hospital
Hammond, Indiana

Charles Radgowski
IIT Research Institute
Chicago, Illinois

Tom Stanley
Rockwell International Corp.
Downers Grove, Illinois

Registration Committee

Anthony S. Wojcik-Chairman
Illinois Institute of Technology
Chicago, Illinois

Lawrence J. Henschen
Northwestern University
Evanston, Illinois

Joseph H. Mayne
Loyola University
Chicago, Illinois .

Richard J. Weiland
Illinois Institute of Technology
Chicago, Illinois

Exhibits Committee

Clyde R. Cornwall-Chairman
Ampex Computer Products
Marina Del Rey, California

DISCUSSANTS, MODERATORS AND PANELISTS

Abrams, IVlarshall Dertouzos, M. L. Harris, Larry R.
Alsburg, Peter Dewar, Robert B. K. Harrison, R. D. Jr.
Amdahl, Gene Doede, John Harvey, Samuel
Anastatio, E. J. Donohue, B. P. II Heath, Russell L.
Anderson, John W. Donovan, John Hilton, Robert
Ando, Kaoru Donovan, John J. Hoff, Marcian E. Jr.
Appleton, Jon Doyle, W. S. Hoffman, Lance J.
Atkinson, Andrew O. Drew, Adrian Holliday, Roger
Ayres, M. U. Dunten, Stanley D. Hollister, James N.

Hopper, Grace M.
Bachman, C. W. Elchesen, Dennis Horne, William J.
Bacon, Glen Epich, Raymond Howard, Phillip C.
Baker, Laurence H. Estrin, Gerald Howell, Nelson A.
Ball, Marion J. Ewens, Warren J. Hughes, Arthur D.
Battiste, Edward Farmer, Robert S. Hunter, Kenneth W.
Bell, Thomas E. Feustel, Edward Hsiao, David
Benes, V. E. Fiala, Edward

Ineson, John Bialek, Fred Finerman, Aaron
Bigelow, Robert P. Firestone, Roger M. Jackson, H. M. II
Bjorklund, Howard Fisher, Charles R. J annotta, Edgar
Blanc, Robert Foley, James D. Jardine, Don
Blanchard, Morton Fossum, Barbara Johnson, Everett C.
Blasch, Larry Freeman, R. D. Johnson, Robert
Blazer, Robert M. Fried, Richard Johnson, Robert L.
Boase, Ronald L. Friedman, Richard Johnson, Whitney L.
Bockelman, Melvin F. Friel, William
Boehm, Barry W. KaeHner, C. G.
Bouknight, W. Jack Gardner, Willard Kandel, Abraham
Brebach, Gresham T. Garland, Stephen J. Kehl, Theodore H.
Brennan, Gregory L. Garratt, Alfred H. Kemeny, John G.
Brookings, Doug Gear, William Kilgour, Frederick G.
Brooks, F. P. Jr. Gibbons, J. R. King, Bernard F. Jr.
Brown, N. H. Giebink, Gerald A. King, John
Burgess, P. M. Gimpel, James F. Kiviat, Philip J.
Butler, Jack Gitenstein, Mark Klink, William C.

Glacken, Tom Koenig, Robert
Canada, Ralph Glenn, William V. Jr. Kramer, Edward A.
Caravella, Robert T. Godwin, William Kulikowski, Casimir
Carey, Charles G. Goldstine, Hermann Kuo, Frank
Carey, W. E. Goodyear, Franklin F.
Carruth, Ronald Gotlieb, C. C. Lanahan, JohnR.
Casali, Harold O. Grad, Burton Landim, E.
Catalano, Phillip T. Grishman, Ralph Lawson, Charles
Cerf, Vinton Grosch, H. R. J. LePorte, Donald
Cherry, Herbert Grossman, Jerome H. Linden, Theodore A.
Cody, William J. Guiltinan; Richard J. L-ondon, Phillip J.
Coleman, James S. Gustafson, David Long, Harvey
Conners, R. R. Low, Ron
Cornelius, John Hagerty, P. E. Lowenthal, E.
Crandall, Richard L. Haggerty, J. P. Luck, Dennis
Crocker, Stephen R. Hamilton, Alan A. Luehrmann, Arthur W.
Cross, Phillip C. Hammer, Carl Luke, John W.
Cyrkiewicz, Frank J. Hammett, Jerry Lusted, Lee B.

Hanson, David R.
Dallimonti, Renzo Hargraves, Robert F. Macdonald, John B.
Denicoff, Marvin Harrington, Rodney B. Machover, Carl

MacKinnon, Don Peters, Carol Strasburg, Harry
MacGraw, Daniel B. Peyton, John E. Jr. Swanson, Mary Ann
Mahan, Robert E. Philipps, Lou Swartz, J.
Mairet, Chick Piesciuk, Edmund R.
Manion, Robert Pinkerton, Tad B. Tiechroew, D.
Marsh, H. G. Pinson, Elliot N. Thomas, Richard F. Jr.
McCarn, Davis B. Pirtle, Mel Thomas, Robert
McCartin, William R. Popek, Gerald J. Thornton, Zane
McCluskey, Edward J. Postel, Jonathan B. Tomlin, M. G.
McConnell, Tom Pouzin, Louis Trainor, James J.
McDonald, J. F. Trigg, Charles D.
McGirt, Frank Rasmussen, Norman Tucker, Dorothy I.
McGovern, Patrick Reinstedt, Robert Turn, Rein
McHale, Michael Renninger, Clark R. Tutelman, David
McIlroy, M. D. Reynolds, Carl H. Tyler, S. S.
McManamon, Peter M. Richardson, Duane
Metcalfe, Robert Richley, T. Uhlig, Ronald P.
Milano, James V. Roberts, Ronald P. Ullman, Art
Mills, Richard D. Rosenthal, C. W. Uretsky, Myron
Minter, Dan Ross, Charles W.
Mitchell, Victor Ruth, Stephen Vale, Joseph
~loIltrQssJJ? M. Rynike~,- Richard Villalobos, Luis
Morgan, M. Granger
Mueller, Gerhard O. S'albu, Eric Walden, David
Muenz, James Samek, Michael J. Walker, Warren E.
Munyan, John Santos, Paul J. Ward, James A.
Murphy, Daniel Scanlon, Robert Warms, Jon

Schell, Roger R. Webb, Richard D.
Naughton, Joseph D. Schlafly, Hubert J. Weingarten, Frederick W.
Negroponte, Nichalos P. Scott, Ben Weissman, Clark
Neumann, Peter G. Scott, Robert H. Welke, L. A.
Nievergelt, Jurg Screenivasan, K. White, Henry J.
Norton, C. F. Sears, Dennis White, Terry

Shaffer, Charles Williams, E. Belvin
O'Connell, Mike Sheer, Sol Williams, Leland H.
Olson, J. W. Short, Gerald E. Wood, Bryan
Ornstein, Severo Siegel, John H. Wulf, William
O'Rourke, Thomas Simon, Richard Wulf, William A.
Oser, Hans J. Skinner, Friend Wyatt, Joseph
Ostlund, James J. Smythe, Sheila

Soden, John V. Yabobbin, Ray
Parker, Donn G. Sprague, Richard Yamada, Gordon
Paulson, Lee Steel, T. B. Jr.
Peleyras, Francois Stibitz, George Zemanek, H.
Perra, John Stotz, Robert H. Zobrist, Dale W.

Babayan, V.
Bender, E. C.
Byrne, E. R.
Carkin, P.
Conners, R. R.
Desoer, C. A.
Gearing, B.
Giloth, P. K.
Gordon, T. H.

Baer, J.
Belady, L. A.
Compaigne, H.
Carter, W. C.
Chandy, K. M.
Chen, T. C.
Chu, W. W.
Chu, Y.
Cragon, H. G.
Davidson, C. H.
Feng, T.

Alter, R.
Ashenhurst, R. L.
Aupperle, E. M.
Blanc, R. P.
Bouknight, J. W.

Bonner, W.
Koenig, R.

Ashenhurst, R.
Bitzer, D.
Boast, W.
Booth, T.
Brooks, F.
Collins, G.

Crean, D. M.
Dunn, ~L D.
Ganter, G. E.
Jacob, S. E.

REVIEWERS

COMMUNICATIONS SYSTEMS

Herbst, R. T.
Huttenhoff, J.
Janik, J. J.
Koeppen, C.
Mansell, J. J.
Nissley, M.
Ossanna, J. F., Jr.
Pederson, D. O.
Pehlert, W. K.

Peterson, T. G.
Reines, J.
Riebe, R.
Rochkind, M. ~1.
Scanlon, J. M.
Shoaf, G. H.
Slana, M. F.
Tuomenoksa, L. S.
Whitehead, L. D.

COMPUTER ARCHITECTURE & HARDWARE

Foster, C. C.
Garcia, O. N.
Harlow, C. A.
Hong, S. J.
Kruy, J. F.
Kuck, D. J.
Manning, E. G.
Mathur, F.
:\fcCluskey, E. J.
Jfenvin, R. E.
Mulder, M. C.

CO:\fPUTER NETWORKING

Bowles, K.
Cotton, 1. W.
Farber, D.
Frank, H.
Jasper, D. P.

DISTRIBUTION

Paulson, L.
Wiorkowski, G.

EDUCATION

Glaser, R.
Harley, W.
Hitchens, H.
Kerr, E. G.
Mills, H.

HEALTH CARE & BIOTECHNOLOGY

Korn,H.E.
Macaleer, R. J.
McGrath, E. T.

Parish, R. 1\1-
Sassenfeld, H. M.
Siewiorek, D. P.
Simmons, R. B.
Stone, H. S.
Szygenda, S. A.
Trauboth, H. H.
Walford, R. B.
Watson, W. J.
Yeh, R. T.

Kleinrock, L.
Kuo, F. K.
Metcalfe, R.
Wulf, W.

Morgan, G.
Myers, R.
Suppes, P.
Tiedeman, D.
Wedemeyer, C.

Pickens, K. E.
Wasserman, A. I.
Zwicky, G. F.

Allan, J. J.
Bergen, W. S.
Corripio, A. B.
Fisher, J. M.
Johnson, A. E., Jr.

Baledes, T.
Blackmare, S.
Bonekamp, F.
Canning, R. C.
Case, L. R.
Codd, E. F.
Fecenko, T.
Gumerman, A. F.
Hernon, J.
Joy, J.
Katter, D. A.

---KirSlieIibaum~-F.

Aron, J.
Bateman, B.
Carlson, G.
Cheek, R.
DeVine, V.

Ball, N. A.
Branstad, D. K.
Buzen, J. P.
Eckhouse, R. H., Jr.
Fabry, R. S.
Fife, D.
Gimple, J. F.
Glick, M.
Griswold, R. E.
Halstead, M. H.
Hodges, R.
Hoffman, L. J.
Hsiao, D. K.

INDUSTRIAL PROCESS CONTROL

Koppel, L. B.
Lavigne, J. R.
Reduto, E. P.
Scioscia, J. S.

Stenuf, T. J.
Westerberg, A. W.
Whitman, K. A.
Whooley, J. P.

INFORMATION MANAGEMENT SYSTEMS

Little, J.
Liver, J. A.
Lupien, C.
Mairet, C. E.
Michey, M.
Murray, E.
Myers, W.
O'Neil, N. D.
O'Toole, J.
Parke, B.
Pattern, F.

--PreScott,L.

MANAGEMENT ACCEPTANCE

Dooley, R.
Gilchrist, B.
Horowitz, P.
Krause, K. W.

SOFTWARE SYSTEMS

Johnson, D.
Keller, R. M.
Lampson, B. W.
Lee, J. A. N.
Linden, T.
Liskov, B. H.
Lucas, B.
Lynch, W. C.
Lyon, G.
Morris, J. B.
Plauger, P. J.
Popek, G. J.

Rittersbach, G. H.
Schoen, A.
Secrest, R.
Smith, L. B.
Stanford, D.
Tilton, F.
Vaughn, P.
Vreugdenhill, C. K.
Weatherman, J.
Wichael, D.
Zakrzewski, R. S.

:Matye, T.
Perry, R.
Schlegel, M.
Wofsie, M.

Roth, P.
Schlegel, C. T.
Schmitt, S. A.
Schroeder, M. D.
Sevcik, K.
Squires, S.
Stewart, S. L.
Stillman, R.
Varian, L.
Waite, W. M.
Walker, J.
Wexelblat, R.

SESSION CHAIRMAN AND AREA DIRECTORS

Alter, Ralph Gonzalez, Mario J. Jr. Orr, Kenneth
Archbold, Thomas J. Griswold, Ralph E. O'Toole, J.
Archibald, Julius A. Jr. Oyer, Paul D.
Ashenhurst, Robert L. Harris, Fred H.

Harris, JoAnn Patterson, William

Bakalar, Thomas A. Haynes, Richard Pommerening, Glen E.

Bateman, Barry L. Hobbs, L. Charlie Pyke, Thomas N.

Berra, P. Bruce Huff, Walter S.

Buchik, G. Hyduk, S. J. Rahimi, Morteza A.
Ramamoorthy, C. V. Burchfiel, Jerry D.

Jacobs, Stanley E. Raub, William F. Burris, Allen J.
Jasper, David P. Rice, John R. Burrows, James H.
Johnston, Robert F. Richards, Murray L.

Cashman, Thomas J.
Jones, Eugene Richardson, William M.

Ridgeway, John R.
Charp, Sylvia Kahn, Bob Rosen, Saul
Chou, Wushow Kerr, Eugene C. RosIer, Lawrence Chu, Wesley W. Kleinrock, Leonard
Clive, Jonathan Koen, Henry R. Schaatz, Vernon L. Cotton, Ira W. Kosorok, John R. Schreiber, H. Couchenour, DanE. Kruy, Joseph Schueitzer, James A. Culbertson, Don S. Kulsrud, Helene E. Secrest, R. D. Cupp, B. Garland Kurtz, Thomas E. Seidensticker, Herbert

Lagabun, Gene Shaw, Jack
Damon, Phillip P. Simmons, Dick B.
Danner, Lee Lev, Joseph A.

Simonette, Larry
Davis, John C. Levine, Sam

Solomon, I. I.
Denning, Peter J. Lipner, Steven B.

Stefferud, Einar
Donavon, Paul F. Lockett, JoAnn

Stitelman, Leonard
Dunn, Michael D. Lupien, Charles A.

Su, Stanley Y. W.
Durand, Gerald C. Lykos, Peter

Tabachnik, William D.

Masson, Gerald M. Tanaka, Richard I.
Evensen, Don

Mathis, Robert F. Tanner, Verne H. Jr.
Fabisch, M. P.

Maurer, W. D. Thomsen, Donald L.
Farber, David J. McCormick, Bruce Thayer, Richard H.
Farrell, Jack W. McWilliams, Erik D.
Feeney, George J.

Mercer, Paul G. Utlaut, William F.
Frank, Howard

Merwin, Richard E.
Mitchell, George Ware, Willis H.

Gagliardi, U go O. Montgomery, Gerald T. Warner, James
Gaines, R. Stockton Wasserman, Anthony I.
Galey, Michael N erad, Richard A. Wofsey, Marvin M.
Gantner, George E. Nolan, Richard L. Woodbury, Max A.
Gentile, John
Goetz, J\lartin A. Oberg, James E. Zadeh, Lotfi A.
Gomersal, Earl Oliver, Paul Zakin, Noel

Altshuler, G., 27
Andrews, D. I., 257
Andrews, W. C., 867
Archbold, T. J., 701
Archibald, Jr., J. A., 313
Avizienis, A., 643
Ayer, N. L., 861

Baatz, E. L., 749
Baird, G. N., 417, 423, 431
Ball, M. J., 215
Balzer, R., 365
Barnett, G. 0., 159
Batcher, K. E., 405
Bateman, B. L., 375
Beaverstock, E. E., 285
Bell, T. E., 761
Berra, P. B., 1, 53
Bise, B. W., 207
Boardman, Jr., T. L., 273
Breen, C. P., 947
Brewer, J. E., 837
Bunderson, V., 167
Burton, R. P., 513
Buzen, J. P., 371

Capraro, G. T., 53
Carnes, J. E., 827
Carr, H. M., 389
Cashman, T. J., 231
Cass, W., 159
Cassell, R., 791
Castleman, P. A., 457
Chalice, R., 81
Chambers, J. M., 827
Chang, H., 847
Chou, W., 553
Chuang, H., 637
Clapp, J. A., 337
Claybrook, B. G., 659
Cody, V., 469
Collins, R. J., 933
Cook, M. M., 417, 431
Crosby, H. A., 821
Crowder, F. M., 77
Curtis, D. L., 375
Czerlinski, G., 107

Daneels, A., 743
Das, S., 637
Davis, E. W., 17
Davis, R., 169
D'Elia, L. F., 57
Doyle, R., 279
Duax, VV'. L., 469
Duben, F. T., 841

AUTHOR INDEX

Elshoff, J. L., 185
Encarnacao, J., 521
Eulenberg, J. B., 121

Fayon, A. M., 753
Feldman, J. D., 7
Fletcher, J. D., 127
Fram, D. M., 457
Frank, R. L., 45
Freibrun, R. B., 201
Fulmer, L. C., 7

Gammill, R. C., 349
Geisler, C. D., 115
Gerla, M., 577
Giloi, W. K., 521
Godbole, S. S., 799
Goddard, B. H., 953
Goel, A. L., 41
Goldberg, P. S., 371
Goldberg, R. P., 195
Good, D. J., 357
Greenfield, N. R., 71
Griffith, A. K., 267

Hadden, Jr., D. R., 837
Haidle, R., 107
Haring, O. M., 81
Harris, R. G., 545
Huang, S., 41
Heller, R., 279
Henry, R. M., 889
Hergenhan, C. B., 447
Hildebrandt, R. J., 93
Hochsprung, R., 81
Hollister, C. A., 457
Hopewell, L., 561
Hoyt, P. M., 431

Irby, C. H., 247

Jauvtis, H. I., 841
Jaye, F. C., 737
Johnson, L. A., 423, 431
Johnson, C. L., 473
Jordan, Jr., B. W., 749
Justice, N., 159

Kalikow, D. N., 125
Kapur, G. K., 321
Katzper, M., 313
Kerr, E. G., 929
Kershenbaum, A., 583
Kim, K. H., 289
King, K. J., 749
Kinzer, J. M., 239

Kleffman, R. W., 683
Kleinrock, L., 767
Kline, C. S., 145
Knadeler, C., 399
Kneppelt, L. R., 485
Kosonocky, W. F., 827
Kreider, D. L., 529
Kreitzberg, C. B., 307

Lennon, W. J., 749
Leonard, J. V., 821
Levitt, G., 63
Levy, S., 279
Li, H. F., 625
Lippman, M. D., 439
Lloyd, G. R., 537
Lloyd, S. C., 35
Lockett, J., 671
Luken, R. A., 613
Lunsford, G., 399
Lurie, R., 159

Magel, K., 653
Magill, D. R., 241
Malick, P., 677
Manley, J. H., 343
Martin, J. J., 665
McDonald, J. F., 545
McGeachie, J. S., 529
McGregor, P., 565
McKell, L. J., 807
McKenzie, A. 1\1., 857
Millbrandt, W. W., 153
Memis, R. D., 241
Mendelssohn, J. E., 613
Michel, M., 653
Mitchell, J., 399
Mollenauer, J. F., 453
Moreira, A. C. S., 57
Munini, L. J., 299

Naylor, W. E., 767
Nickerson, R. S., 125
Nolan, R. L., 897

O'Kane, K. C., 93
Oliver, N. A., 179
Oliver, P., 411, 431
Olson, D. G., 807
Oyer, P. D., 873

Parhami, B., 643
Patterson, W. W., 23
Pechan, III, E. H., 613
Peck, J. C., 77
Peters, G. J., 491
Pierce, D. A., 235

Pinheiro, C., 57
Plagman, B., 27
Pokrywiecki, S., 469
Popek, G. J., 145
Pryke, J. T. M., 299
Purcell, C. J., 385

Rahimi, M. A., 121
Ramamoorthy, C. V., 289, 625
Ransil, B. J., 477
Ray, D. L., 873
Reiner, R., 737
Reiter, S., 753
Resnick, M. H., 709
Richardson, W. M., 175
Rochkind, M. M., 447
Rodriguez-Rosell, J., 153
Rohrer, D. C., 469
Rose, J. A., 821
Russell, C. H., 457
Russo, P. M., 439

Sauer, D. J., 827
Shah, P., 107

Shelly, G. B., 227
Shetler, A. C., 693
Siegel, J. R., 457
Sitar, E. J., 453
Skeen, D. R., 881
Slaughter, J. B., 333
Sloan, M. E., 303
Sontag, L. J., 867
Spain, R. J., 841
Steinhorst, G. C., 375
Stevens, K. N., 125
Stewart, D. H., 63
Stitelman, L., 621
Stroll, Z. Z., 749
Suppes, P., 127
Sullivan, J. E., 337
Sustman, J. E., 545
Svetlik, D. J., 753
Swanson, L., 307

Taylor, B. J., 35
Testa, 0.,327
Theberge, H. J., 285
Thurber, K. J., 909

Tiedeman, D. V., 781
Traver, C. M., 903
Turn, R., 139
Turner, V. B., 453

van Dam, A., 537, 653
Vanderheiden, G., 115
Van Voorhis, D. C., 921
Volk, A. M., 115

Wald, L. D., 133
Walther, G. H., 379
Ward, J. A., 803
Watson, W. J., 389
Webb, F. N., 457
Weeks, C. M., 469
Witt, P. R., 593
Wright, G. P., 807

Yamaguchi, K., 45
Yang, S., 399
Y ormark, B., 63

Zdonik, S. R., 457

	000001
	000002
	000003
	000004
	000005
	000006
	000007
	000008
	000009
	000010
	000011
	000012
	000013
	000014
	0001
	00010
	0002
	0003
	0004
	0005
	0006
	0007
	0008
	0009
	0011
	0012
	0013
	0014
	0015
	0016
	0017
	0018
	0019
	0020
	0021
	0022
	0023
	0024
	0025
	0026
	0027
	0028
	0029
	0030
	0031
	0032
	0033
	0034
	0035
	0036
	0037
	0038
	0039
	0040
	0041
	0042
	0043
	0044
	0045
	0046
	0047
	0048
	0049
	0050
	0051
	0052
	0053
	0054
	0055
	0056
	0057
	0058
	0059
	0060
	0061
	0062
	0063
	0064
	0065
	0066
	0067
	0068
	0069
	0070
	0071
	0072
	0073
	0074
	0075
	0076
	0077
	0078
	0079
	0080
	0081
	0082
	0083
	0084
	0085
	0086
	0087
	0088
	0089
	0090
	0091
	0092
	0093
	0094
	0095
	0096
	0097
	0098
	0099
	0100
	0101
	0102
	0103
	0104
	0105
	0106
	0107
	0108
	0109
	0110
	0111
	0112
	0113
	0114
	0115
	0116
	0117
	0118
	0119
	0120
	0121
	0122
	0123
	0124
	0125
	0126
	0127
	0128
	0129
	0130
	0131
	0132
	0133
	0134
	0135
	0136
	0137
	0138
	0139
	0140
	0141
	0142
	0143
	0144
	0145
	0146
	0147
	0148
	0149
	0150
	0151
	0152
	0153
	0154
	0155
	0156
	0157
	0158
	0159
	0160
	0161
	0162
	0163
	0164
	0165
	0166
	0167
	0168
	0169
	0170
	0171
	0172
	0173
	0174
	0175
	0176
	0177
	0178
	0179
	0180
	0181
	0182
	0183
	0184
	0185
	0186
	0187
	0188
	0189
	0190
	0191
	0192
	0193
	0194
	0195
	0196
	0197
	0198
	0199
	0200
	0201
	0202
	0203
	0204
	0205
	0206
	0207
	0208
	0209
	0210
	0211
	0212
	0213
	0214
	0215
	0216
	0217
	0218
	0219
	0220
	0221
	0222
	0223
	0224
	0225
	0226
	0227
	0228
	0229
	0230
	0231
	0232
	0233
	0234
	0235
	0236
	0237
	0238
	0239
	0240
	0241
	0242
	0243
	0244
	0245
	0246
	0247
	0248
	0249
	0250
	0251
	0252
	0253
	0254
	0255
	0256
	0257
	0258
	0259
	0260
	0261
	0262
	0263
	0264
	0265
	0266
	0267
	0268
	0269
	0270
	0271
	0272
	0273
	0274
	0275
	0276
	0277
	0278
	0279
	0280
	0281
	0282
	0283
	0284
	0285
	0286
	0287
	0288
	0289
	0290
	0291
	0292
	0293
	0294
	0295
	0296
	0297
	0298
	0299
	0300
	0301
	0302
	0303
	0304
	0305
	0306
	0307
	0308
	0309
	0310
	0311
	0312
	0313
	0314
	0315
	0316
	0317
	0318
	0319
	0320
	0321
	0322
	0323
	0324
	0325
	0326
	0327
	0328
	0329
	0330
	0331
	0332
	0333
	0334
	0335
	0336
	0337
	0338
	0339
	0340
	0341
	0342
	0343
	0344
	0345
	0346
	0347
	0348
	0349
	0350
	0351
	0352
	0353
	0354
	0355
	0356
	0357
	0358
	0359
	0360
	0361
	0362
	0363
	0364
	0365
	0366
	0367
	0368
	0369
	0370
	0371
	0372
	0373
	0374
	0375
	0376
	0377
	0378
	0379
	0380
	0381
	0382
	0383
	0384
	0385
	0386
	0387
	0388
	0389
	0390
	0391
	0392
	0393
	0394
	0395
	0396
	0397
	0398
	0399
	0400
	0401
	0402
	0403
	0404
	0405
	0406
	0407
	0408
	0409
	0410
	0411
	0412
	0413
	0414
	0415
	0416
	0417
	0418
	0419
	0420
	0421
	0422
	0423
	0424
	0425
	0426
	0427
	0428
	0429
	0430
	0431
	0432
	0433
	0434
	0435
	0436
	0437
	0438
	0439
	0440
	0441
	0442
	0443
	0444
	0445
	0446
	0447
	0448
	0449
	0450
	0451
	0452
	0453
	0454
	0455
	0456
	0457
	0458
	0459
	0460
	0461
	0462
	0463
	0464
	0465
	0466
	0467
	0468
	0469
	0470
	0471
	0472
	0473
	0474
	0475
	0476
	0477
	0478
	0479
	0480
	0481
	0482
	0483
	0484
	0485
	0486
	0487
	0488
	0489
	0490
	0491
	0492
	0493
	0494
	0495
	0496
	0497
	0498
	0499
	0500
	0501
	0502
	0503
	0504
	0505
	0506
	0507
	0508
	0509
	0510
	0511
	0512
	0513
	0514
	0515
	0516
	0517
	0518
	0519
	0520
	0521
	0522
	0523
	0524
	0525
	0526
	0527
	0528
	0529
	0530
	0531
	0532
	0533
	0534
	0535
	0536
	0537
	0538
	0539
	0540
	0541
	0542
	0543
	0544
	0545
	0546
	0547
	0548
	0549
	0550
	0551
	0552
	0553
	0554
	0555
	0556
	0557
	0558
	0559
	0560
	0561
	0562
	0563
	0564
	0565
	0566
	0567
	0568
	0569
	0570
	0571
	0572
	0573
	0574
	0575
	0576
	0577
	0578
	0579
	0580
	0581
	0582
	0583
	0584
	0585
	0586
	0587
	0588
	0589
	0590
	0591
	0592
	0593
	0594
	0595
	0596
	0597
	0598
	0599
	0600
	0601
	0602
	0603
	0604
	0605
	0606
	0607
	0608
	0609
	0610
	0611
	0612
	0613
	0614
	0615
	0616
	0617
	0618
	0619
	0620
	0621
	0622
	0623
	0624
	0625
	0626
	0627
	0628
	0629
	0630
	0631
	0632
	0633
	0634
	0635
	0636
	0637
	0638
	0639
	0640
	0641
	0642
	0643
	0644
	0645
	0646
	0647
	0648
	0649
	0650
	0651
	0652
	0653
	0654
	0655
	0656
	0657
	0658
	0659
	0660
	0661
	0662
	0663
	0664
	0665
	0666
	0667
	0668
	0669
	0670
	0671
	0672
	0673
	0674
	0675
	0676
	0677
	0678
	0679
	0680
	0681
	0682
	0683
	0684
	0685
	0686
	0687
	0688
	0689
	0690
	0691
	0692
	0693
	0694
	0695
	0696
	0697
	0698
	0699
	0700
	0701
	0702
	0703
	0704
	0705
	0706
	0707
	0708
	0709
	0710
	0711
	0712
	0713
	0714
	0715
	0716
	0717
	0718
	0719
	0720
	0721
	0722
	0723
	0724
	0725
	0726
	0727
	0728
	0729
	0730
	0731
	0732
	0733
	0734
	0735
	0736
	0737
	0738
	0739
	0740
	0741
	0742
	0743
	0744
	0745
	0746
	0747
	0748
	0749
	0750
	0751
	0752
	0753
	0754
	0755
	0756
	0757
	0758
	0759
	0760
	0761
	0762
	0763
	0764
	0765
	0766
	0767
	0768
	0769
	0770
	0771
	0772
	0773
	0774
	0775
	0776
	0777
	0778
	0779
	0780
	0781
	0782
	0783
	0784
	0785
	0786
	0787
	0788
	0789
	0790
	0791
	0792
	0793
	0794
	0795
	0796
	0797
	0798
	0799
	0800
	0801
	0802
	0803
	0804
	0805
	0806
	0807
	0808
	0809
	0810
	0811
	0812
	0813
	0814
	0815
	0816
	0817
	0818
	0819
	0820
	0821
	0822
	0823
	0824
	0825
	0826
	0827
	0828
	0829
	0830
	0831
	0832
	0833
	0834
	0835
	0836
	0837
	0838
	0839
	0840
	0841
	0842
	0843
	0844
	0845
	0846
	0847
	0848
	0849
	0850
	0851
	0852
	0853
	0854
	0855
	0856
	0857
	0858
	0859
	0860
	0861
	0862
	0863
	0864
	0865
	0866
	0867
	0868
	0869
	0870
	0871
	0872
	0873
	0874
	0875
	0876
	0877
	0878
	0879
	0880
	0881
	0882
	0883
	0884
	0885
	0886
	0887
	0888
	0889
	0890
	0891
	0892
	0893
	0894
	0895
	0896
	0897
	0898
	0899
	0900
	0901
	0902
	0903
	0904
	0905
	0906
	0907
	0908
	0909
	0910
	0911
	0912
	0913
	0914
	0915
	0916
	0917
	0918
	0919
	0920
	0921
	0922
	0923
	0924
	0925
	0926
	0927
	0928
	0929
	0930
	0931
	0932
	0933
	0934
	0935
	0936
	0937
	0938
	0939
	0940
	0941
	0942
	0943
	0944
	0945
	0946
	0947
	0948
	0949
	0950
	0951
	0952
	0953
	0954
	0955
	0956
	0957
	0958
	0959
	0960
	0961
	0962
	0963
	0964
	0965
	0966
	0967
	0968
	0969
	0970
	0971
	0972
	0973
	0974
	0975
	0976
	0977
	0978
	0979
	0980
	0981
	0982
	0983
	0984
	0985
	0986
	0987
	0988
	0989
	0990
	0991
	0992
	0993
	0994
	0995
	0996
	0997
	0998
	0999
	1000
	1001
	1002
	1003
	1004
	1005
	1006
	1007
	1008
	1009
	1010
	1011
	1012
	1013
	1014
	1015
	1016
	1017
	1018
	1019
	1020
	1021
	1022
	1023
	1024
	1025
	1026
	1027
	1028
	1029
	1030
	1031
	1032
	1033
	1034
	1035
	1036
	1037
	1038
	1039
	1040
	1041
	1042
	1043
	1044
	1045
	1046
	1047
	1048
	1049
	1050
	1051
	1052
	1053
	1054
	1055
	1056
	1057
	1058
	1059
	1060
	1061
	1062
	1063
	1064
	1065
	1066
	1067
	1068
	1069

