
;:~ i. < " ~ . ~ ,<, , 

, ~ < •• ~ 

A'FI PS PRESS 
210SUM'MIT 'AVENUE' ' 

MONTVALE. NEW JERSEY 07645 ',' 

AFIPS 
CONFERENCE 
PROCEEDINGS 

VOLUME 42 

1973 
NATIONAL 
COMPUTER 

CONFERENCE 
AND 

EXPOSITION 
June 4-8, 1973 

New York, New York 



The ideas and opinions expressed herein are solely those of the authors and are 
not necessarily representative of or endorsed by the 1973 National Computer 
Conference or the American Federation of Information Processing Societies. 
Inc. 

Library of Congress Catalog Card Number 55-44701 
AFIPS PRESS 

210 Summit Avenue 
Montvale, New Jersey 07645 

©1973 by the American Federation of Information Processing Societies, Inc., 
Montvale, ~ew Jersey 07645. All rights reserved. This book, or parts thereof, 
may not be reproduced in any form without permission of the publisher. 

Printed in the United States of America 



PART I 

SCIENCE AND TECHNOLOGY 





CONTENTS 
PART I-SCIENCE AND TECHNOLOGY PROGRAM 

DELEGATE SOCIETY SESSION 

The Association for Computational Linguistics 
Linguistics and the future of computation ..................... . 
An abstract-Speech understanding .......................... . 
An abstract-Syntax and computation ........................ . 
An abstract-Literary text processing ......................... . 

Society for Information Display 
The augmented knowledge workshop ......................... . 
Graphics, problem-solving and virtual systems ................. . 

Association for Computing Machinery 
Performance determination-The selection of tools, if any ....... . 
An abstract-Computing societies-Resource or hobby? ........ . 

Special Libraries Association 
An abstract-Special libraries association today ................ . 
An abstract-Copyright problems in information processing ..... . 
An abstract-Standards for library information processing ...... . 

Association for Educational Data Systems 
An abstract-A network for computer users .................... . 
An abstract-Use of computers in large school systems .......... . 
An abstract-Training of teachers in computer usage ........... . 
An abstract-How schools can use consultants ................. . 

Society for Industrial and Applied Mathematics 
NAPSS-like systems-Problems and prospects ................. . 
An abstract-The correctness of programs for numerical com-

putation ................................................. . 

The Society for Computer Simulation 
An abstract-The changing role of simulation and simulation coun-

cils ...................................................... . 
An abstract-Methodology and measurement I' •••••••••••••••••• 
An abstract-Policy models-Concepts and rules-of-thumb ...... . 
An abstract-On validation of simulation models ............... . 

IEEE Computer Society 
An abstract-In the beginning ............................... . 
An abstract-Factors affecting commercial computers system 

design in the seventies ..................................... . 
An abstract-Factors impacting on the evolution of military com-

puters ................................................... . 

Instrument Society of America 
Modeling and simulation in the process industries .............. . 
Needs for industrial computer standards-As satisfied by ISA's 

programs in this area ..................................... . 

PERFORMANCE EVALUATION 

Quantitative evaluation of file management performance improve-
ments ................................................... . 

A method of evaluating mass storage effects on system perform-
ance .................................................... . 

1 
8 
8 
8 

9 
23 

31 
38 

39 
39 
39 

40 
40 
41 
41 

43 

48 

49 
50 
50 
51 

52 

52 

52 

53-56 

57 

63 

69 

D. G. Hays 
D. E. Walker 
J. J. Robinson 
S. Y. Sedelow 

D. C. Engelbart 
R.Dunn 

T. E. Bell 
A. Ralston 

E. A. Strahle 
B. H. Weil 
L. C. Cowgill 
D. Weisbrod 

B. K. Alcorn 
T. McConnell 
D. Richardson 
D.R. Thomas 

J. R. Rice 

T. E. Hull 

J.McLeod 
P. W. House 
T. Naylor 
G. S. Fishman 

H. Campaigne 

W. F. Simon 

G. M. Sokol 

C, L Smith 

T. J. Williams 
K. A. Whitman 

T. F. McFadden 
J. C. Strauss 

M. A. Diethelm 



The memory bus monitor-A new device for developing real-time 
systems 00000000000000000000000000000000000000000000000000 

Design and evaluation system for computer architecture 0 0 0 0 0 0 000 

An analysis of multi programmed time-sharing computer systems 0 0 

Use of the SPASM software monitor to evaluate the performance of 
the Burroughs B6700 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Evaluation of performance of parallel processors in a real-time envi-
ronment 00000000000000000000000000000000000000000000000000 

A structural approach to computer performance analysis 0 0 0 0 0 0 0 0 0 

NETWORK COMPUTERS-ECONOMIC CONSIDERATIONS
PROBLEMS AND SOLUTIONS 

Simulation-A tool for performance evaluation in network com-
puters 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 00000000000000000000000000000000 

ACCNET -A corporate computer network 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

A system of APL functions to study computer networks 0 0 0 0 0 0 0 0 0 0 

A high level language for use with computer networks 0 0 0 0 0 0 0 0 0 0 0 0 

On the design of a resource sharing executive for the ARPANET 0 0 0 

Avoiding simulation in simulating computer communications net-
works 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0000000000000 

ASSOCIATIVE PROCESSORS 

An implementation of a data base management system on an 
associative processor 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 •••• 0 • 0 0 • 0 0 • 0 •• 0 0 0 0 0 0 

Aircraft conflict detection in an associative processor 0 • 0 0 •• 0 • 0 ••• 

A data management system utilizing an associative memory. 0 0 0 0 • 

Associative processing applications to real-time data management 0 

AUTOMATED PROJECT MANAGEMENT SYSTEMS 

A computer graphics assisted system for management ... 0 •••• 0 •• 0 

TUTORIAL ON RESOURCE UTILIZATION IN THE 
COMPUTING PROCESS 

On the use of generalized executive system software 0 ••• 0 0 •• 0 •• 0 0 • 

Language selection for applications 0 0 ••• 0 •• 0 0 ••••••••••••• 0 •••• 

INFORMATION NETWORKS-INTERNATIONAL COMMUNI
CATION SYSTEMS 

An abstract-A national science and technology information 
system in Canada ... 0 ••• 0 •• 0 0 • 0 •• 0 0 0 •• 0 0 0 0 0 •• 0 0 • 0 ••••••• 0 • 

An abstract-Global networks for information, communications 
and computers .... 0 ••• , , 

75 
81 

87 

93 

101 

109 

121 

133 
141 
149 
155 

165 

171 
177 
181 

187 

197 

203 
211 

215 

Ro E. Fryer 
Ko Hakozaki 
M. Yamamoto 
T.Ono 
N.Ohno 
Mo Umemura 
M.A. Sencer 
C. L. Sheng 

J. Mo Schwartz 
D.S. Wyner 

Go Ro Lloyd 
RoE. Merwin 
P. H. Hughes 
GoMoe 

E. K. Bowdon, Sr. 
SoA.Mamrak 
F. R. Salz 
MoL. Coleman 
To D. Friedman 
H. Z. Krilloff 
R. Ho Thomas 

R. M. Van Slyke 
W.Chow 
Ho Frank 

R.Moulder 
H. R. Downs 
Co R. DeFiore 
P. B. Berra 
Ro R. Linde 
L. O. Gates 
T.FoPeng 

R. Chauhan 

WoGorman 
M. H. Halstead 

Jo E. Brown 



INTELLIGENT TERMINALS 

A position paper-Panel Session on Intelligent terminals-
Chairman's Introduction .................................. . 

A position paper-Electronic point-of-sale terminals ............ . 
Design considerations for knowledge workshop terminals ........ . 
Microprogrammed intelligent satellites for interactive graphics .. . 

TRENDS IN DATA BASE MANAGEMENT 

Fourth generation data management systems .................. . 
Representation of sets on mass storage devices for information 

retrieval systems ......................................... . 

Design of tree networks for distributed data .................... . 
Specifications for the development of a generalized data base 

planning system . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Database sharing-An efficient mechanism for supporting concur-
rent processes ............................................ . 

Optimal file allocation in multi-level storage systems ............ . 
Interaction statistics from a database management system ...... . 

CONVERSION PROBLEMS 

An abstract-Utilization oflarge-scale systems ................. . 

VIRTUAL MACHINES 

The evolution of virtual machine architecture .................. . 

An efficient virtual machine implementation .................. . 

Architecture of virtual machines ............................. . 

COMPUTER-BASED INTEGRATED DESIGN SYSTEMS 

The computer aided design environment project COMRADE-An 
overview ................................................ . 

Use of COMRADE in engineering design ...................... . 
The COMRADE executive system ............................ . 

The COMRADE data management system .................... . 

PLEX data structure for integrated ship design ................ . 
COMRADE data management system storage and retrieval tech-

niques .................................................. . 

The COMRADE design administrative system ................. . 

ACADEMIC COMPUTING AT THE JUNIOR/COMMUNITY 
COLLEGE-PROGRAMS AND PROBLEMS 

A business data processing curriculum for community colleges .... 
Computing at the Junior/Community College-Programs and 

problems ............ " ............ , ...... " ........ " ... . 
The two year and four year computer technology programs at 

Purdue University ........................................ . 

217 
219 
221 
229 

239 

245 

251 

259 

271 

277 
283 

290 

291 

301 

309 

319 
325 
331 

339 

347 

353 

359 

365 

367 

371 

I. W. Cotton 
Z. Thornton 
D. C. Engelhart 
A. van Dam 
G. Stabler 

V.K.M. Whitney 

S. T. Byrom 
W. T. Hardgrave 
R. G. Casey 

J. F. Nunamaker, Jr. 
D. E. Swenson 
A~B:-~wnifistoh 

P. F. King 
A. J. Collmeyer 
P. P. S. Chen 
J. D. Krinos 

W. E. Hanna, Jr. 

J. P. Buzen 
U. O. Gagliardi 
R. J. Srodawa 
L. A. Bates 
R. P. Goldberg 

T.Rhodes 
J. Brainin 
R. Tinker 
L. Avrunin 
S. Willner 
A. Bandurski 
W.Gorman 
M. Wallace 
B. Thomson 

A. Bandurski 
M. Wallace 
M. Chernick 

D. A. Davidson 

H. J. Highland 

J. Maniotes 



Computing studies at Farmingdale ........................... . 
Computer education at Orange Coast College-Problems and pro-

grams in the fourth phase .................................. . 
An abstract-Computing at Central Texas College .............. . 

STORAGE SYSTEMS 

The design of IBM OS/VS2 release 2 .......................... . 
IBM OS/VS1-An evolutionary growth system ............... ,. 
Verification of a virtual storage architecture on a microprogram-

med computer ........................................... . 
On a mathematical model of magnetic bubble logic ............. . 
The realization of symmetric switching functions using magnetic 

bubble technology ........................................ . 

The Control Data STAR-100 paging station .................... . 

NATURAL LANGUAGE PROCESSING 

The linguistic string parser .................................. . 

A multiprocessing approach to natural language ................ . 
Progress in natural language understanding-An application to 

1 unar geology ............................................ . 
An abstract-Experiments in sophisticated content analysis ..... . 
An abstract-Modelling English conversations ................. . 

DISCRETE ALGORITHMS-APPLICATIONS AND 
MEASUREMENT 

An abstract-The efficiency of algorithms and machines-A survey 
of the complexity theoretic approach ........................ . 

An abstract-Hypergeometric group testing algorithms ......... . 

An abstract-The file transmission problems .................. . 
An abstract--Analysis of sorting algorithms ................... . 
An abstract-Min-max relations and combinatorial algorithms ... . 
An abstract-The search for fast algorithms ................... . 

APPLICATIONS OF AUTOMATIC PATTERN RECOGNITION 

Introduction to the theory of medical consulting and diagnosis .... 

Pattern recognition with interactive computing for a half dozen 
clinical applications of health care delivery .................. . 

Interactive pattern recognition-A designer's tool .............. . 
Auto-scan-Technique for scanning masses of data to determine 

potential areas for detailed analysis ......................... . 

INGREDIENTS OF PATTERN RECOGNITION 

SPIDAC-Specimen input to digital automatic computer ....... . 

379 

381 
385 

387 
395 

401 
407 

413 

421 

427 

435 

441 
451 
451 

452 
452 

453 
453 
453 
453 

455 

463 
479 

485 

489 

C. B. Thompson 

R. G. Bise 
A. W. Ashworth, Jr. 

A. L. Scherr 
T. F. Wheeler, Jr. 

W. A. Schwomeyer 
E. Yodokawa 

H.Chang 
T. C. Chen 
C. Tung 
W.C. Hohn 
P. D. Jones 

R. Grishman 
N. Sager 
C. Raze 
B. Bookchin 
R.Kaplan 

W.A. Woods 
G. R. Martin 
R. F. Simmons 

J. Savage 
S. Lin 
F.K. Hwang 
P. Weiner 
C. L. Liu 
W. R. Pulleyblank 
I. Munro 

E. A. Patrick 
L. Y. L. Shen 
F. P. Stelmack 

R. S. Ledley 
E. J. Simmons, Jr. 

D. L. Shipman 
C. R. Fulmer 

R. S. Ledley 
H.K. Huang 
T. J. Golab 
Y. Kulkarni 
G. Pence 
L. S. Rotolo 



A method for the easy storage of discriminant polynomials ....... . 
A non-associative arithmetic for shapes of channel networks ..... . 
The description of scenes over time and space .................. . 

ADVANCED HARDWARE 

An abstract-Tuning the hardware via a high level language 
(ALGOL) ............................... . 

An abstract-1O- 5-10- 7 cent/bit storage media, what does it 
mean? .................................. . 
An abstract-Computer on a chip and a network of chips ........ . 

THE GROWING POTENTIAL OF MINI; SMALL SYSTEMS 

Computer architecture and instruction set design ............... . 

A new m-i-R-icompYte-r-Jmulti-pro-G€-SSQ-I"f-w.-theARPA network ..... . 

Data integrity in small real-time computer systems ............. . 

The design and implementation of a small scale stack processor 
system .................................................. . 

Operating system design considerations for microprogrammed 
mini-computer satellite systems ............................ . 

A GRADUATE PROGRAM IN COMPUTER SCIENCE 

An abstract-Another attempt to define computer science ....... . 
An abstract-The master's degree program in computer science .. . 

CRYPTOLOGY IN THE AGE OF AUTOMATION 

A homophonic cipher for computational cryptography .......... . 
Cryptology, computers and common sense ..................... . 
Information theory and privacy in data banks ................. . 
Privacy transformations for data banks ....................... . 
Design considerations for cryptography ....................... . 

DESIGN AND DEVELOPMENT OF APPLICATION PACKAGES 
FOR USERS 

More effective computer packages for applications ............. . 

EASYSTAT -An easy-to-use statistics package ................ . 
ACID-A user-oriented system of statistical programs .......... . 

A DAY WITH GRAPHICS 

Graphics Applications I 
Graphics and Engineering-Computer generated color-sound 

movies .................................................. . 

497 
503 
509 

518 

518 
518 

519 

529 

539 

545 

555 

563 
563 

565 
569 
581 
589 
603 

607 

615 
621 

625 

R. B. Banerji 
M.F. Dacey 
L.Uhr 

R. Brody 

J. Davis 
G. Huckell 

P. Anagnostopoulos 
M.J. Michel 
G. H. Sockut 
G. M. Stabler 
A. van Dam 
F .. E.-Heart-
S. M. Ornstein 
W. R. Crowther 
W. B. Barker 
T. Harrison 
T. J. Pierce 

M. J. Lutz 

J. E. Stockenberg 
P. Anagnostopoulos 
R. E. Johnson 
R.G.Munck 
G. M. Stabler 
A. van Dam 

M. A. Melkanoff 
B. H. Barnes 
G. L. Engel. 
M. A. Melkanoff 

F. A. Stahl 
G. E. Mellen 
1. S. Reed 
R. Turn 
C. H. Meyer 

W. B. Nelson 
M. Phillips 
L. Thumhart 
A. B. Tucker 
R.A. Baker 
T. A. Jones 

L. Baker 



Graphics computer-aided design in aerospace .................. . 
Graphics and digitizing-Automatic transduction of drawings into 

data bases ............................................... . 
Graphics in medicine and biology ............................ . 

Graphic Applications II 
Graphics and art-The topological design of sculptural and archi-

tectural systems .......................................... . 
Graphics and education-An informal graphics system based on 

the LOGO language ....................................... . 
Graphics and interactive systems-Design considerations of a 

. software system .......................................... . 
Graphics and architecture-Recent developments in sketch 

recognition .............................................. . 
Graphics and electronic circuit analysis ....................... . 
Graphics in 3D-Sorting and the hidden surface problem ....... . 

SATELLITE PACKET COMMUNICATIONS 

Packet switching with satellites .............................. . 
Packet switching in a slotted satellite channel .................. . 

Dynamic allocation of satellite capacity through packet reserva-
tion ..... , ............................................... . 

VIEWS OF THE FUTURE-I 

Chairman's introduction-Opposing views .................... . 
The future of computer and communications services ........... . 
Social impacts of the multinational computer .................. . 

A new NSF thrust-Computer impact on society ............... . 

VIEW OF THE FUTURE-II 

The impact of technology on the future state of information 
technology enterprise ..................................... . 

The home reckoner- --A scenario on the home use of computer::; ... . 

What's in the cards for data entry? ........................... . 

ENVIRONMENTAL QUALITY AND THE COMPUTER 

Assessing the regional impact of pollution control-A simulation ap-
proach ....................... , ...... , ................... . 

An automated system for the appraisal of hydrocarbon producing 
properties ............................................... . 

WHAT'S DIFFERENT ABOUT TACTICAL MILITARY COM
PUTER SYSTEMS 

What is different about tactical military operational programs .... 
What is different about the hardware in tactical military systems .. 

What is different about tactical military languages and compilers. 
What is different about tactical executive systems .............. . 

629 

635 
639 

643 

651 

657 

663 
677 
685 

695 
703 

711 

717 
723 
735 

747 

751 
759 

765 

773 

781 

787 
797 

807 
811 

R. Notestine 

C. M. Williams 
C. Newton 

R. Resch 

W.W.Newman 

R. C. Gammill 

N. Negroponte 
J. Franklin 
I. Sutherland 

N.Abramson 
L. Kleinrock 
S.S.Lam 

L. G. Roberts 

M. Turoff 
L. H. Day 
B. Nanus 
L. M. Wooten 
H. Borko 
P. G. Lykos 

L. A. Friedman 
C. A. R. Kagan 
L. G. Schear 
G. Bernstein 

J. R. Norsworthy 

K. D. Leeper 

G. G. Chapin 
E. C. Svendsen 
D.L.Ream 
R.J. Rubey 
W. C. Phillips 



Linguistics and the future of computation 

by DAVID G. HAYS 

State University of New York 
Buffalo, ~ew York 

My subject is the art of computation: computer archi
tecture, computer programming, and computer applica
tion. Linguistics provides the ideas, but the use I make of 
-them-is-not--the-l-ing:uist!-s--uS€; whic-h -w-G--Uld--oo-an- -attempt 
at understanding the nature of man and of human 
communication, but the computer scientist's use. In 
ancient India, the study of language held the place in 
science that mathematics has always held in the West. 
Knowledge was organized according to the best known 
linguistic principles. If we had taken that path, we would 
have arrived today at a different science. Our scholarship 
draws its principles from sources close to linguistics, to be 
sure, but our science has rather limited itself to a basis in 
Newtonian calculus. And so a chasm separates two cul
tures. 

The scientific reliance on calculus has been productive. 
Often understood as a demand for precision and rigor, it 
has simultaneously made theoreticians answerable to 
experimental observation and facilitated the internal 
organization of knowledge on a scale not imagined else
where in human history. Very likely, a reliance on lin
guistic laws for control of science during the same long 
period would have been less successful, because the prin
ciples of linguistic structure are more difficult to discover 
and manipulate than the principles of mathematical 
structure; or so it seems after two thousand years of 
attention to one and neglect of the other. How it will seem 
to our descendants a thousand years hence is uncertain; 
they may deem the long era of Western study of mathe
matical science somewhat pathological, and wonder why 
the easy, natural organization of knowledge on linguistic 
lines was rejected for so many centuries. 

However that may be, the prospect for the near term is 
that important opportunities will be missed if linguistic 
principles continue to be neglected. Linguistics is enjoying 
a period of rapid growth, so a plethora of ideas await new 
uses; the computer makes it possible to manipulate even 
difficult principles. Traditional mathematics seems not to 
say how computers much beyond the actual state of the 
art can be organized, nor how programs can be made 
much more suitable to their applications and human 
users, nor how many desirable fields of application can be 
conquered. I think that linguistics has something to say. 

1 

THREE Llr\GUISTIC PRIXCIPLES 

Since I cannot treat the entire field of linguistics. I 
ha-ve-4esen--te---s-ketch three pIincif}les that---se-em--mest 
basic and far-reaching. Two of them are known to every 
linguist and applied automatically to every problem that 
arises. The third is slightly less familiar; I have begun a 
campaign to give it due recognition. 

As everyone knows, the capacity for language is innate 
in every human specimen, but the details of a language 
are acquired by traditional transmission, from senior to 
younger. As everyone knows, language is a symbolic sys
tem, using arbitrary signs to refer to external things, 
properties, and events. And, as everyone certainly knows 
by now, language is productive or creative, capable of 
describing new events by composition of sentences never 
before uttered. Hockett9 and Chomsky3 explain these 
things. But of course these are not principles; they are 
problems for which explanatory principles are needed. 

My first principle is stratification.12 This principle is 
often called duality of patterning, although in recent 
years the number of levels of patterning has grown. The 
original observation is that language can be regarded as a 
system of sounds or a system of meaningful units; both 
points of view are essential. One complements the other 
without supplanting it. Phonology studies language as 
sound. It discovers that each of the world's languages uses 
a small alphabet of sounds, from a dozen to four times 
that many, to construct all its utterances. The definition 
of these unit sounds is not physical but functional. In one 
language, two sounds with physically distinct manifesta
tions are counted as functionally the same; speakers of 
this language do not acquire the ability to distinguish 
between the sounds, and can live out their lives without 
knowing that the sounds are unlike. English has no use 
for the difference between [p] and [p'], the latter having a 
little puff of air at the end, yet both occur: [p] in spin, [p' 
] in pin. Since other languages, notably Thai, use this 
difference to distinguish utterances, it is humanly possi
ble not only to make the two forms of / p / but also to hear 
it. Thus languages arbitrarily map out their alphabets of 
sounds. lC 

Languages also differ in the sequences of sounds that 
they permit. In Russian, the word vzbalmoshnyj 'extrava-
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gant' is reasonable, but the English speaker feels that the 
initial sequence /vzb/ is extravagant, because initial Iv/ 
in English is not followed by another consonant, and fur
thermore initial I zl is not. The Russian word violates 
English rules, which is perfectly satisfactory to Russian 
speakers, because they are unacquainted with English 
restrictions. As Robert Southey put it, speaking of a Rus
sian, 

And last of all an Admiral came, 
A terrible man with a terrible name, 
A name which you all know by sight very well 
But which no one can speak, and no one can spell. 

(Robert Southey, 'The March to Moscow.') Phonology, 
with its units and rules of combinations, is one level of 
patterning in language. 

That languages are patterned on a second level is so 
well known as to require little discussion. English puts 
its subject first, verb second, object last-in simple 
sentences. Malagasy, a language of Madagascar, puts 
the verb first, then the object, last the subject.ll Other 
orders are found elsewhere. English has no agreement 
in gender between nouns and adjectives, but other lan
guages such as French and Russian, Navaho and Swahili, 
do; nor is gender controlled by semantics, since many 
gender classes are without known semantic correlation. 
Gender is as arbitrary as the English rejection of initial 
/vzb/ . 

The units that enter into grammatical patterns are 
morphemes; each language has its own stock, a vocabu
lary that can be listed and found once more to be arbi
trary. It seems true that some color names are universal 
-needed in all languages to symbolize genetic capacities 
-but other color name~ are al~o coined, ~uch a~ the Eng-
lish scarlet and crimson, on arbitrary lines. \,8 

The existence of a third level of symbolic patterning is 
best shown by psychological experiments. Memory for a 
story is good, but not verbatim. Only the shortest 
stretches of speech can be remembered word for word; 
but the ideas in quite a long stretch can be recited after 
only one hearing if the hearer is allowed to use his own 
words and grammatical structures.5 The comparison of 
pictures with sentences has been investigated by several 
investigators; they use models in which below is coded as 
not above, forget is coded as not remember, and so on, 
because they need such models to account for their sub
jects' latencies (times to respond measured in millisec
onds). Using such models, they can account for the dif
ferences between times of response to a single picture, 
described with different sentences, to an impressive 
degree of precision. 12 

Each level of symbolic patterning should have both 
units and rules of construction. On the phonological level 
the units are functional sounds; the rules are rules of 
sequence, for the most part. On the grammatical level the 

units are morphemes and the rules are the familiar rules 
of sequence, agreement, and so on. On the third level, 
which can be called semological or cognitive, the units are 
often called sememes; the morpheme 'forget' corresponds 
to the sememes 'not' and 'remember'. The rules of organi
zation of this level have not been investigated adequately. 
Many studies of paradigmatic organization have been 
reported, sometimes presenting hierarchical classifica
tions of items (a canary is a bird, a dog is a quadruped, 
etc.), but this is only one of several kinds of organization 
that must exist. Classification patterns are not sentences, 
and there must be sentences of some kind on the semolog
ical level. Chomsky's deep structures might be suitable, 
but Fillmore6 and McCawley 13 have proposed different 
views. What is needed is rapidly becoming clearer, 
through both linguistic and psychological investigations. 
The relations that help explain grammar, such as subject 
and object, which control sequence and inflection, are not 
the relations that would help most in explaining the inter
pretation of pictures or memory for stories; for such 
purposes, notions of agent, instrument, and inert material 
are more suitable. But the organization of these and other 
relations into a workable grammar of cognition is unfin
ished. 

Up to this point I have been arguing only that language 
is stratified, requiring not one but several correlated 
descriptions. Now I turn to my second principle, that 
language is internalized. Internalization is a mode of stor
age in the brain, intermediate between innateness and 
learning. Concerning the neurology of these distinctions I 
have nothing to say. Their functional significance is easy 
enough to identify, however. 

What is innate is universal in mankind, little subject to 
cultural variation. Everyone sees colors in about the same 
way. unless pathologically color blind. Everyone on earth 
has three or more levels of linguistic patterning. The dis
tinctions among things (nouns), properties (adjectives), 
and events (verbs) are so nearly universal as to suggest 
that this threefold organization of experience is innate. To 
have grammar is universal, however much the grammars 
of particular languages vary. The innate aspects of 
thought are swift, sure, and strong. 

What is internalized is not the same in every culture or 
every person. But whatever a person internalizes is rea
sonably swift, sure, and strong; less than what is innate, 
more than what is learned. Besides the mechanisms of 
linguistic processing, various persons internalize the skills 
of their arts and crafts; some internalize the strategies of 
games; and all internalize the content of at least some 
social roles. 

The contrast between learning and internalization is 
apparent in knowledge of a foreign language. A person 
who has learned something of a foreign language without 
internalization can formulate sentences and manage to 
express himself, and can understand what is said to him, 
although slowly and with difficulty. A person who has 
internalized a second language is able to speak and 
understand with ease and fluency. 



Similarly in games, the difference between a master of 
chess, bridge, or go is apparent. But something more of 
the difference between learning and internalization is also 
to be seen here. The novice has a more detailed awareness 
of how he is playing; he examines the board or the cards 
step by step, applying the methods he has learned, and 
can report how he arrives at his decision. Awareness goes 
with learned skills, not with internalized abilities. 

Internalized abilities are the basis of more highly orga
nized behavior. The high-school learner of French is not 
able to think in French, nor is the novice in chess able to 
construct a workable strategy for a long sequence of 
moves. When a language has been internalized, it 
becomes a tool of thought; when a chess player has inter
nalized enough configurations of pieces and small 
sequences of play, he can put them together into strate
~._The_musician_ intexnali~_e~ __ chQrd_~, meI9dje~_,--.I:!!ld 
ultimately passages and whole scores; he can then give his 
attention to overall strategies, making his performance 
lyrical, romantic, martial, or whatever. 

What makes learning possible is the internalization of a 
system for the storage and manipulation of symbolic 
matter. If a person learns a story well enough to tell it, he 
uses the facilities of symbolic organization-his linguistic 
skills-to hold the substance of the story. Much of the 
content of social roles is first learned in this way; the 
conditions of behavior and the forms of behavior are 
learned symbolically, then come to be, as social psycholo
gists put it, part of the self-that is, internalized. In fact, 
the conversion of symbolic learned material into internal
ized capacities is a widespread and unique fact of human 
life. It must be unique, since the symbol processing 
capacity required is limited to man. This ability gives 
man a great capacity for change, for adaptation to differ
ent cultures, for science: by internalizing the methods of 
science, he becomes a scientist. 

The amount that a person internalizes in a lifetime is 
easy to underestimate. A language has thousands of 
morphemes and its users know them. Certainly their 
semantic and grammatical organization requires tens
more plausibly hundreds-of thousands of linkages. A 
high skill such as chess takes internalize knowledge of the 
same order of magnitude, according to Simon and Baren
feld. 15 

I think that internalized units are more accurately 
conceived as activities than as inert objects. All tissue is 
metabolically active, including the tissue that supports 
memory. Memory search implies an activity, searching, 
in an inactive medium, perhaps a network of nodes and 
arcs. More fruitfully we can imagine memory as a net
work of active nodes with arcs that convey their activity 
from one to another. A morpheme, then, is an activity 
seeking at all times the conditions of its application. 

My third principle in linguistics is the principle of 
metalinguistic organization. Language is generally recog
nized as able to refer to itself; one can mention a word in 
order to define it, or quote a sentence in order to refute it. 
A very common occurrence in grammar is the embedding 
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of one sentence within another. A sentence can modifv a 
word in another sentence, as a relative clause: . 

The boy who stole the pig ran away. 

A sentence can serve as the object of a verb of perception, 
thought, or communication: 

I saw him leave. I know that he left. 
You told me that she had left. 

And two sentences can be embedded in temporal, spatial, 
or causal relation: 

He ran away because he stole the pig. 
He stole the pig and then ran away. 
He is hidin~_ far from the spot where he stole the pig. 

An embedded sentence is sometimes taken in the same 
form as if it were independent, perhaps introduced by a 
word like the English that, and sometimes greatly altered 
in form as in his running away. 

The definition of abstract terms can be understood by 
metalinguallinkages in cognitive networks. The definition 
is a structure, similar to the representation of any sen
tence or story in a cognitive network. The structure is 
linked to the term it defines, and the use of the term 
governed by the content of the structure. Science and 
technology are replete with terms that cannot be defined 
with any ease in observation sentences; they are defined, 
I think, through metalingual linkages. What kind of pro
gram is a compiler? What kind of device can correctly be 
called heuristic? These questions can be answered, but 
useful answers are complicated stories about the art of 
proglamming, not simple statements of perceptual condi
tions, and certainly not classificatory statements using 
elementary features such as human, male, or concrete. 

I can indicate how vast a difference there is between 
metalingual operations and others by proposing that all 
other operations in cognitive networks are performed by 
path tracing using finite-state automata, whereas metalin
gual operations are performed by pattern matching using 
pushdown automata. These two systems differ in power; a 
finite-state machine defines a regular language and a 
pushdown automaton defines a context-free language. 

A path in a cognitive network is defined as a sequence 
of nodes and arcs; to specify a path requires only a list of 
node and arc types, perhaps with mention that some are 
optional, some can be repeated. A more complex form of 
path definition could be described, but I doubt that it 
would enhance the effectiveness of path tracing proce
dures. In Quillian's work, for example, one needs only 
simple path specifications to find the relation between 
lawyer and client (a client employs a lawyer). To know 
that a canary has wings requires a simple form of path 
involving paradigmatic (a canary is a kind of bird) and 
syntagmatic relations (a bird has wings). The limiting 
factor is not the complexity of the path that can be 
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defined from one node to another, but the very notion 
that node-to-node paths are required. 4

•
14 

Pattern matching means fitting a template. The pat
terns I have in mind are abstract, as three examples will 
show. The first, familiar to linguists, is the determination 
of the applicability of a grammatical transformation. The 
method, due to Chomsky, is to write a template called a 
structure description. The grammatical structure of any 
sentence is described by some tree; if the template fits the 
tree of a certain sentence, then the transformation applies 
to it, yielding a different tree. These templates contain 
symbols that can apply to nodes in grammatical trees, 
and relations that can connect the nodes. Chomsky was, I 
think, the first to recognize that some rules of grammar 
can be applied only where structure is known; many 
phenomena in language are now seen to be of this kind. 
Thus linguists today ask for tree-processing languages 
and cannot do with string processors. 

My second example is the testing of a proof for the 
applicability of a rule of inference. A proof has a tree 
structure like the structure of a sentence; whether a rule 
of inference can be applied has to be tested by reference 
to the structure. 'If p and q then p' is a valid inference, 
provided that in its application p is one of the arguments 
of the conjunction; one cannot assert that p is true just 
because p, q, and a conjunction symbol all occur in the 
same string. 

Finally, I come to metalingual definition. The defini
tion is itself a template. The term it defines is correctly 
used in contexts where the template fits. As in the first 
two examples, the template is abstract. A structure 
description defines a class of trees; the transformation it 
goes with applies to any tree in the class. A rule of infer
ence defines a class of proofs; it applies to each of them. 
And a metalingual definition defines a class of contexts, 
in each of which the corresponding term is usable. Char
ity has many guises; the story-template that defines char
ity must specify all of the relevant features of charitable 
activity, leaving the rest to vary freely. 

When the difference in power between finite-state and 
context-free systems was discovered, it seemed that this 
difference was a fundamental reason for preferring con
text-free grammars in the study of natural language. 
Later it became evident that the need to associate a struc
tural description with each string was more important, 
since context-free grammars could do so in a natural way 
and finite-state automata could not. Today linguists and 
programmers generally prefer the form of context-free 
rules even for languages known to be finite state, just 
because their need for structure is so urgent. It may prove 
the same with pattern matching. In proofs, in transforma
tions, and in definitions it is necessary to mark certain 
elements: the conclusions of inferences, the elements 
moved or deleted by transformation, and the key partici
pating elements in definition. (The benefactor is charita
ble, not the recipient.) Until I see evidence to the contra
ry, however, I will hold the view that pattern matching is 
more powerful than path tracing. 

Pattern matching is, surely, a reflective activity in 
comparison with path tracing. To trace a path through a 
maze, one can move between the hedges, possibly mark
ing the paths already tried with Ariadne's thread. To see 
the pattern requires rising above the hedges, looking down 
on the whole from a point of view not customarily 
adopted by the designers of cognitive networks. That is, 
they often take such a point of view themselves, but they 
do not include in their systems a component capable of 
taking such a view. 

COMPUTER ARCHITEC'TURE 

I turn now to the art of computation, and ask what 
kind of computer might be constructed which followed 
the principles of stratification, internalization, and 
metalingual operation. 

Such a computer will, I freely admit, appear to be a 
special-purpose device in comparison with the general
purpose machines we know today. The human brain, on 
close inspection, also begin::) to look like a :special-purpose 
machine. Its creativity is of a limited kind, yet interesting 
nevertheless. The prejudice in favor of mathematics and 
against linguistics prefers the present structure of the 
computer; but a special-purpose machine built to linguis
tic principles might prove useful for many problems that 
have heretofore been recalcitrant. 

Stratification is not unknown in computation, but it 
deserves further attention. The difficulties of code trans
lation and data-structure conversion that apparently still 
exist in networks of different kinds of computers and in 
large software systems that should be written in a combi
nation of programming languages are hard to take. The 
level of morphemics in language is relatively independent 
of both cognition and phonology. In computer architec
ture, it should be possible to work with notational 
schemes independent of both the problem and the input
output system. Whether this level of encoding both data 
and their organization should be the medium of transmis
sion, or specific to the processor, I do not know. But it is 
clear that translators should be standard hardware items, 
their existence unknown in high-level languages. Sophisti
cation in design may be needed, but the problems seem 
not insurmountable, at least for numerical, alphabetic, 
and pictorial data. The design of translators for data 
structures is trickier, and may even prove not to be possi
ble on the highest level. 

The lesson to be learned from the separation of gram
mar and cognition is more profound. Language provides a 
medium of exchange among persons with different inter
ests and different backgrounds; how they will understand 
the same sentence depends on their purposes as well as 
their knowledge. Much difficulty in computer program
ming apparently can be traced to the impossibility of 
separating these two levels in programming languages. 
Programs do not mean different things in different con
texts; they mean the same thing always. They are there-



fore called unambiguous, but a jaundiced eye might see a 
loss of flexibility along with the elimination of doubt. 
Many simple problems of this class have been solved; in 
high-level languages, addition is generally not conditioned 
by data types, even if the compiler has to bring the data 
into a common type before adding. More difficult prob
lems remain. At Buffalo, Teiji Furugori is working on a 
system to expand driving instructions in the context of 
the road and traffic. He uses principles of safe driving to 
find tests and precautions that may be needed, arriving at 
a program for carrying out the instruction safely. Current 
computer architecture is resistant to this kind of work; it 
is not easy to think of a program on two levels, one of 
them providing a facility for expanding the other during 
execution. An interpreter can do something of the sort; 
but interpretive execution is a high price to pay. If com
puter hardware provided for two simultaneous monitors 
of the data stieain, orieexecufiil-g -a -complIed program 
while the other watched for situations in which the com
piled version would be inadequate, the separation of 
morphemics and cognition might better be realized. 

In teaching internalization to students who are mainly 
interested in linguistics, I use microprogramming as an 
analogy. What can be seen in the opposite direction is the 
fantastic extent to which microprogramming might be 
carried with corresponding improvement in performance. 
If the meaning of every word in a language (or a large 
fraction of the words) is internalized by its users, then one 
may hope that microprogramming of a similar repertory 
of commands would carry possibilities for the computer 
somewhat resembling what the speaker gains, to wit, 
speed. 

A computer could easily be built with a repertory of 
10,000 commands. Its manual would be the size of a desk 
dictionary; the programmer would often find that his 
program consisted of one word, naming an operation, fol
lowed by the necessary description of a data structure. 
Execution would be faster because of the intrinsically 
higher speed of the circuitry used in microprogramming. 
Even if some microprograms were mainly executive, 
making numerous calls to other microprograms, overall 
speed should be increased. At one time it would have 
been argued that the art could not supply 10,000 widely 
used commands, but I think that time is past. If someone 
were inclined, I think he could study the literature in the 
field and arrive at a list of thousands of frequently used 
operations. 

Parallel processing adds further hope. If a computer 
contains thousands of subcomputers, many of them 
should be operating at each moment. Even the little we 
know about the organization of linguistic and cognitive 
processing in the brain suggests how parallel processing 
might be used with profit in systems for new applications. 

A morphemic unit is the brain seems to be an activity, 
which when successful links a phonological string with 
one or more points in a cognitive network. If these units 
had to be tested sequentially, or even by binary search, 
the time to process a sentence would be great. Instead all 
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of them seem to be available at all times, watching the 
input and switching from latency to arousal when the 
appropriate phonological string appears. If each were a 
microprogram, each could have access to all input. Con
flicts inevitably arise, with several units aroused at the 
same time. Grammar serves to limit these conflicts; a 
grammatical unit is one with a combination of inputs 
from morphemic units. When a morphemic unit is 
aroused, it signals its activation to one or several gram
matical units. When a proper combination of morphemic 
units is aroused, the grammatical unit is in turn aroused 
and returns feedback to maintain the arousal of the 
morphemic unit which is thereupon enabled to transmit 
also to the cognitive level. Thus the condition for linkage 
between phonology and cognition is a combination of 
grammatical elements that amounts to the representation 
of a sentence structure. This is Lamb's model of stratal 
orgariizafioii, and shows -how grammar reauces-TeiicaT 
ambiguity. The problem it poses for computer architec
ture is that of interconnection; unless the morphemic 
units (like words) and the grammatical units (like phrase
structure rules) are interconnected according to the 
grammar of a language, nothing works. The computer 
designer would prefer to make his interconnections on the 
basis of more general principles; but English is used so 
widely that a special-purpose computer built on the lines 
of its grammar would be acceptable to a majority of the 
educated persons in the world-at least, if no other were 
on the market. 

A similar architecture could be used for other purposes, 
following the linguistic principle but not the grammar of a 
natural language. Ware l6 mentions picture processing and 
other multidimensional systems as most urgently needing 
increased computing speed. Models of physiology, of 
social and political systems, and of the atmosphere and 
hydrosphere are among these. Now, it is in the nature of 
the world as science knows it that local and remote inter
actions in these systems are on different time scales. A 
quantum of water near the surface of a sea is influenced 
by the temperature and motion of other quanta of water 
and air in its vicinity; ultimately, but in a series of steps, 
it can be influenced by changes at remote places. Each 
individual in a society is influenced by the persons and 
institutions close to him in the social structure. Each 
element of a picture represents a portion of a physical 
object, and must be of a kind to suit its neighbors. 

To be sure, certain factors change simultaneously on a 
wide scale. I f a person in a picture is wearing a striped or 
polka-dotted garment, the recognition of the pattern can 
be applied to the improvement of the elements through
out the area of the garment in the picture. A new law or 
change in the economy can influence every person simul
taneously. Endocrine hormones sweep through tissue 
rapidly, influencing every point almost simultaneously. 
When a cloud evaporates, a vast area is suddenly exposed 
to a higher level of radiation from the sun. 

These situations are of the kind to make stratification a 
helpful mode of architecture. Each point in the grid of 
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picture, physiological organism, society, or planet is con
nected with its neighbors on its own stratum and with 
units of wide influence on other strata; it need not be 
connected with remote points in the same stratum. 

Depending on the system, different patterns of interac
tion have to be admitted. Clouds are formed, transported, 
and evaporated. Endocrine glands, although they vary in 
their activity, are permanent, as are governments. Both 
glands and governments do suffer revolutionary changes 
within the time spans of useful simulations. In a motion 
picture, objects enter and depart. 

How the elements of the first stratum are to be con
nected with those of the next is a difficult problem. It is 
known that the cat's brain recognizes lines by parallel 
processing; each possible line is represented by a cell or 
cells with fixed connections to certain retinal cells. But 
this does not say how the cat recognizes an object com
posed of several lines that can be seen from varying orien
tations. Switching seems unavoidable in any presently 
conceivable system to connect the level of picture ele
ments with the level of objects, to connect the level of 
persons with the level of institutions, to connect the ele
ments of oceans with the level of clouds, or to connect the 
elements of the morphemic stratum with the level of cog
nition in linguistic processing. 

In computation, it seems that path tracing should be 
implicit, pattern matching explicit. The transmission of 
activity from a unit to its neighbors, leading to feedback 
that maintains or terminates the activity of the original 
unit, can be understood as the formation of paths. Some
thing else, I think, happens when patterns are matched. 

A typical application of a linguistically powerful com
puter would be the discovery of patterns in the user's 
situation. The user might be a person in need of psychiat
ric or medical help; an experimenter needing theoretical 
help to analyze his results and formulate further experi
ments; a lawyer seeking precedents to aid his clients; or a 
policy officer trying to understand the activities of an 
adversary. In such cases the user submits a description of 
his situation and the computer applies a battery of pat
terns to it. The battery would surely have to be composed 
of thousands of possibilities to be of use; with a smaller 
battery, the user or a professional would be more helpful 
than the computer. 

If the input is in natural language, I assume that it is 
converted into a morphemic notation, in which grammati
cal relations are made explicit, as a first step. 

On the next level are thousands of patterns, each linked 
metalingually to a term; the computer has symbolic pat
terns definitive of charity, ego strength, heuristics, hostili
ty, and so on. Each such pattern has manifold repre
sentations on the morphemic stratum; these representa
tions may differ in their morphemes and in the gram
madical linkages among them. Some of these patterns, in 
fact, cannot be connected to the morphemic stratum di
reetly with any profit whatsoever, but must instead be 
linked to other metalingual patterns and thence ul
timately to morphemic representations. In this way the 

cognitive patterns resemble objects in perception that 
must be recognized in different perspectives. 

Grammatical theory suggests an architecture for the 
connection of the strata that may be applicable to other 
multistratal systems. The two strata are related through a 
bus; the object on the lower stratum is a tree which reads 
onto the bus in one of the natural linearizations. All of the 
elements of all of the patterns on the upper stratum are 
connected simultaneously to the bus and go from latent to 
aroused when an element of their class appears; these 
elements include both node and arc labels. When the last 
item has passed, each pattern checks itself for complete
ness; all patterns above a threshold transmit their arousal 
over their metalingual links to the terms they define. 
Second -order patterns may come to arousal in this way, 
and so on. 

If this model has any validity for human processing, it 
brings us close to the stage at which awareness takes over. 
In awareness, conflicts are dealt with that cannot be 
reduced by internalized mechanisms. The chess player 
goes through a few sequences of moves to see what he can 
accomplish on each of them; the listener checks out those 
occasional ambiguities that he notices, and considers the 
speaker's purposes, the relevance of what he has heard to 
himself, and so on. The scientist compares his overall 
theoretical views with the interpretations of his data as 
they come to mind and tries a few analytic tricks. In 
short, this is the level at which even a powerful computer 
might open a dialogue with the user. 

Would a sensible person build a computer with archi
tecture oriented to a class of problems? I think so, in a 
few situations. Ware listed some problems for which the 
payoff function varies over a multibillion-dollar range: 
foreign policy and arms control, weather and the environ
ment, social policy, and medicine. With such payoffs, an 
investment of even a large amount in a more powerful 
computer might be shown to carry a sufficient likelihood 
of profit to warrant a gamble. In the case of language
oriented architecture, it is not hard to develop a compos
ite market in which the users control billions of dollars 
and millions of lives with only their own brains as tools to 
link conceptualization with data. A president arrives at 
the moment of decision, after all the computer simula
tions and briefings, with a yellow pad and a pencil; to give 
him a computer which could help his brain through mul
tistratal and metalingual linkages of data and theories 
would be worth a substantial investment. 

Can these applications be achieved at optimal levels 
without specialized architecture? I doubt it. Parallel 
processing with general-purpose computers linked 
through generalized busses will surely bring an improve
ment over serial processing, but raises problems of delay 
while results are switched from one computer to another 
and does nothing to solve software problems. Specialized 
architecture is a lesson to be learned from linguistics with 
consequences for ease of programming, time spent in 
compilation or interpretation, and efficiency of parallel 
processing. 



COMPUTATIONAL LINGUISTICS 

I have delayed until the end a definition of my own 
field, which I have presented before.7 It should be more 
significant against the background of the foregoing discus
sion. 

The definition is built upon a twofold distinction. One 
is the distinction, familiar enough, between the infinitesi
mal calculus and linguistics. The calculus occupies a 
major place in science, giving a means of deduction in 
systems of continuous change. It has developed in two 
ways: Mathematical analysis, which gives a time-inde
pendent characterization of systems including those in 
which time itself is a variable-time does not appear in 
the metasystem of description. And numerical analysis, 
in which time is a variable of the metasystem; numerical 
analysis deals in algorithms. 
. Linguistics, aIs-o~-h~is develo-ped {n twowaYs.Thefirrie~ 

independent characterizations that Chomsky speaks of as 
statements of competence are the subject of what is called 
linguistics, with no modifier. This field corresponds to the 
calculus, or to its applications to physical systems. Time
dependent characterizations of linguistic processes are the 
subject matter of computational linguistics, which also 
has two parts. Its abstract branch is purely formal, deal
ing with linguistic systems whether realized, or realizable, 
in nature; its applied branch deals with algorithms for the 
processing of naturally occurring languages. 

I have undertaken to show that the concepts of abstract 
computational linguistics provide a foundation for nonnu
merical computation comparable to that provided by the 
calculus for numerical computation. The work is still in 
progress, and many who are doing it would not be com
fortable to think of themselves as computational linguists. 
I hope that the stature of the field is growing so that more 
pride can attach to the label now and hereafter than in 
earlier days. 
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Speech understanding 

by DONALD E. WALKER 

Stanford Research Institute 
Menlo Park, California 

ABSTRACT 

Research on speech understanding is adding new 
dimensions to the analysis of speech and to the under
standing of language. The accoustic, phonetic, and phon
ological processing of speech recognition efforts are being 
blended with the syntax, semantics, and pragmatics of 
question-answering systems. The goal is the development 
of capabilities that will allow a person to have a conversa
tion with a computer in the performance of a shared task. 
Achievement of this goal will both require and contribute 
to a more comprehensive and powerful model of language 
-with significant consequences for linguistics, for com
puter science, and especially for computational linguis
tics. 

Syntax and computation 

by JANE J. ROBINSON 

The University of Michigan 
Ann Arbor, Michigan 

ABSTRACT 

Algorithms have been developed for generating and 
parsing with context-sensitive grammars. In principle, the 
contexts to which a grammar is sensitive can be syntactic, 
semantic, pragmatic, or phonetic. This development 
points up the need to develop a new kind of lexicon, 
whose entries contain large amounts of several kinds of 
contextual information about each word or morpheme, 
provided in computable form. Ways in which both the 
form and content of the entries differ from those of tradi
tional dictionaries are indicated. 

Literary text processing 

by SALLY YEATES SEDELOW 

University of Kansas 
Lawrence, Kansas 

ABSTRACT 

To date, computer-based literary text processing bears 
much greater similarity to techniques used for informa
tion retrieval and, to some degree, for question-answering, 
than it does to techniques used in, for example, machine 
translation of 'classical' artificial intelligence. A literary 
text is treated not as 'output' in a process to be emulated 
nor as a string to be transformed into an equivalent ver
bal representation, but, rather, as an artifact to be ana
lyzed and described. 

The absence of process as an integrating concept in 
computer-based literary text processing leads to very 
different definitions of linguistic domains (such as seman
tics and syntactics) than is the case with, for example, 
artificial intelligence. This presentation explores some of 
these distinctions, as well as some of the implications of 
more process-oriented techniques for literary text proc
essing. 



The augmented knowledge workshop 

by DOUGLAS C. ENGELBART, RICHARD W. WATSON, and JAMES C. NORTON 

Stanford Research Institute 
Menlo Park, California 

CONCEPT OF THE KNOWLEDGE WORKSHOP 

This paper discusses the theme of augmenting a knowl
e-dgeworkshop. -The first part-of-the-paper describes the 
concept and framework of the knowledge workshop. The 
second part describes aspects of a prototype knowledge 
workshop being developed within this framework. 

The importance and implications of the idea of knowl
edge work have been described by Drucker.3.4 Considering 
knowledge to be the systematic organization of informa
tion and concepts, he defines the knowledge worker as the 
person who creates and applies knowledge to productive 
ends, in contrast to an "intellectual" for whom informa
tion and concepts may only have importance because 
they interest him, or to the manual worker who applies 
manual skills or brawn. In those two books Drucker 
brings out many significant facts and considerations 
highly relevant to the theme here, one among them 
(paraphrased below) being the accelerating rate at which 
knowledge and knowledge work are coming to dominate 
the working activity of our society: 

In 1900 the majority and largest single group of 
Americans obtained their livelihood from the farm. 
By 1940 the largest single group was industrial work
ers, especially semiskilled machine operators. By 
1960, the largest single group was professional, 
managerial, and technical-that is, knowledge work
ers. By 1975-80 this group will embrace the majority 
of Americans. The productivity of knowledge has 
already become the key to national productivity, 
competitive strength, and economic achievement, 
according to Drucker. It is knowledge, not land, raw 
materials, or capital, that has become the central 
factor in production. 

In his provocative discussions, Drucker makes exten
sive use of such terms as "knowledge organizations," 
"knowledge technologies," and "knowledge societies." It 
seemed a highly appropriate extension for us to coin 
"knowledge workshop" for re-naming the area of our 
special interest: the piace in which knowledge workers do 
their work. Knowledge workshops have existed for centu
ries, but our special concern is their systematic improve
ment, toward increased effectiveness of this new breed of 
craftsmen. 
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Workshop improvement involves systematic change not 
only in the tools that help handle and transform the 
materials, but in the customs, conventions, skills, proce
dures,- we-rk-ing-met-heds-,fH'-g-ani-z-ati-onal-rG-ies,---t-r-aining,-
etc., by which the workers and their organizations harness 
their tools, their skills, and their knowledge. 

Over the past ten years, the explicit focus in the Aug
mentation Research Center (ARC) has been upon the 
effects and possibilities of new knowledge workshop tools 
based on the technology of computer timesharing and 
modern communications. 18-41 Since we consider automat
ing many human operations, what we are after could 
perhaps be termed "workshop automation." But the very 
great importance of aspects other than the new tools (i.e., 
conventions, methods, roles) makes us prefer the "aug
mentation" term that hopefully can remain "whole
scope." We want to keep tools in proper perspective 
within the total system that augments native human 
capacities toward effective action.I-3.1O.16.18.24 

Development of more effective knowledge workshop 
technology will require talents and experience from many 
backgrounds: computer hardware and software, psycholo
gy, management science, information science, and opera
tions research, to name a few. These must come together 
within the framework of a new discipline, focused on the 
systematic study of knowledge work and its workshop 
environments. 

TWO WAYS IN WHICH AUGMENTED 
KNOWLEDGE WORKSHOPS ARE EVOLVING 

Introduction 

First, one can see a definite evolution of new workshop 
architecture in the trends of computer application sys
tems. An "augmented workshop domain" will probably 
emerge because many special-purpose application sys
tems are evolving by adding useful features outside their 
immediate special application area. As a result, many will 
tend to overlap in their general knowledge work support
ing features. 

Second, research and development is being directed 
toward augmenting a "Core" Knowledge Workshop 
domain. This application system development is aimed 
expressly at supporting basic functions of knowledge 
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work. An important characteristic of such systems is to 
interface usefully with specialized systems. This paper is 
oriented toward this second approach. 

NATURAL EVOLUTION BY SCATTERED 
NUCLEI EXPANDING TOWARD A COMMON 
"KNOWLEDGE WORKSHOP" DOMAIN 

Anderson and Coover15 point out that a decade or more 
of application-system evolution is bringing about the 
beginning of relatively rational user-oriented languages 
for the control interfaces of advanced applications soft
ware systems. What is interesting to note is that the func
tions provided by the "interface control" for the more 
advanced systems are coming to include editors and gen
eralized file-management facilities, to make easier the 
preparation, execution, and management of the special
purpose tools of such systems. 

It seems probable that special application-oriented 
systems (languages) will evolve steadily toward helping 
the user with such associated work as formulating models, 
documenting them, specifying the different trial runs, 
keeping track of intermediate results, annotating them 
and linking them back to the users' model(s), etc. When 
the results are produced by what were initially the core 
application programs (e.g., the statistical programs), he 
will want ways to integrate them into his working notes, 
illustrating, labeling, captioning, explaining and inter
preting them. Eventually these notes will be shaped into 
memoranda and formal publications, to undergo dialogue 
and detailed study with and by others. 15 

Once a significant user-oriented system becomes estab
lished, with a steady growth of user clientele, there will be 
natural forces steadily increasing the effectiveness of the 
system services and steadily decreasing the cost per unit 
of service. And it will also be natural that the functional 
domain of an application system will steadily grow out
ward: "as long as the information must be in computer 
form anyway for an adjacent, computerized process, let's 
consider applying computer aid to Activity X also." 

Because the boundary of the Application System has 
grown out to be "next to" Activity X, it has become 
relatively easy to consider extending the computer
ized-information domain a bit so that a new applica
tion process can support Activity X. After all, the 
equipment is already there, the users who perform 
Activity X are already oriented to use integrated 
computer aid, and generally the computer facilitation 
of Activity X will prove to have a beneficial effect on 
the productivity of the rest of the applications sys
tem. 

This domain-spreading characteristic is less dependent 
upon the substantive work area a particular application 
system supports than it is upon the health and vitality of 
its development and application (the authors of Reference 
15 have important things to say on these issues): however. 
it appears that continuing growth is bound to occur in 

many special application domains, inevitably bringing 
about overlap in common application "sub-domains" (as 
seen from the center of any of these nuclei). These special 
subdomains include formulating, studying, keeping track 
of ideas, carrying on dialogue, publishing, negotiating, 
planning, coordinating, learning, coaching, looking up in 
the yellow pages to find someone who can do a special 
service, etc. 

CONSIDERING THE CORE KNOWLEDGE 
WORKSHOP AS A SYSTEM DOMAIN IN ITS 
OWN RIGHT 

A second approach to the evolution of a knowledge 
workshop is to recognize from the beginning the amount 
and importance of human activity constantly involved in 
the "core" domain of knowledge work-activity within 
which more specialized functions are embedded. 

If you asked a particular knowledge worker (e.g., scien
tist, engineer, manager, or marketing specialist) what 
were the foundations of his livelihood, he would probably 
point to particular skills such as those involved in design
ing an electric circuit, forecasting a market based on var
ious data, or managing work flow in a project. If you 
asked him what tools he needed to improve his effective
ness he would point to requirements for aids in designing 
circuits, analyzing his data, or scheduling the flow of 
work. 

But, a record of how this person used his time, even if 
his work was highly specialized, would show that 
specialized work such as mentioned above, while vital 
to his effectiveness, probably occupied a small frac
tion of his time and effort. 

The bulk of his time, for example, would probably 
be occupied by more general knowledge work: writing 
and planning or design document; carrying on dia
logue with others in writing, in person, or on the tele
phone; studying documents; filing ideas or other 
material; formulating problem-solving approaches; 
coordinating work with others; and reporting results. 

There would seem to be a promise of considerable 
payoff in establishing a healthy, applications oriented 
systems development activity within this common, "core" 
domain, meeting the special-application systems "coming 
the other way" and providing them with well-designed 
services at a natural system-to-system interface. 

It will be much more efficient to develop this domain 
explicitly, by people oriented toward it, and hopefully 
with resources shared in a coordinated fashion. The alter
native of semi-random growth promises problems such as: 

(1) Repetitive solutions for the same functional prob
lems, each within the skewed perspective of a par
ticular special-applications area for which these 
problems are peripheral issues, 

(2) Incompatibility between diferent application soft
ware systems in terms of their inputs and outputs. 



(3) Languages and other control conventions inconsist
ent or based on different principles from one sys
tem to another, creating unnecessary learning bar
riers or other discouragements to cross usage. 

In summary, the two trends in the evolution of knowl
edge workshops described above- are each valuable and 
are complementary. Experience and specific tools and 
techniques can and will be transferred between them. 

There is a very extensive range of "core" workshop 
functions, common to a wide variety of knowledge work, 
and they factor into many levels and dimensions. In the 
sections to follow, we describe our developments, activi
ties, and commitments from the expectation that there 
soon will be increased activity in this core knowledge 
workshop domain, and that it will be evolving "outward" 
to meet the other application systems "heading inward." 

BASIC ASSUMPTIONS ABOUT AUGMENTED 
KNOWLEDGE WORKSHOPS EMBEDDED IN A 
COMPUTER NETWORK 

The computer-based "tools" of a knowledge workshop 
will be provided in the environment of a computer net
work such as the ARPANET.7

.8.14 For instance, the core 
functions will consist of a network of cooperating proces
sors performing special functions such as editing, publish
ing, communication of documents and messages, data 
management, and so forth. Less commonly used but 
important functions might exist on a single machine. The 
total computer assisted workshop will be based on many 
geographically separate systems. 

Once there is a "digital-packet transportation system," 
it becomes possible for the individual user to reach out 
through his interfacing processor(s) to access other people 
and other services scattered throughout a "community," 
and the "labor marketplace" where he transacts his 
knowledge work literally will not have to be affected by 
geographical location. 27 

Specialty application systems will exist in the way that 
specialty shops and services now do-and for the same 
reasons. When it is easy to transport the material and 
negotiate the service transactions, one group of people will 
find that specilization can improve their cost/ effective
ness, and that there is a large enough market within reach 
to support them. And in the network-coupled computer
resource marketplace, the specialty shops will grow-e.g., 
application systems specially tailored for particular types 
of analyses, or for checking through text for spelling 
errors, or for doing the text-graphic document typography 
in a special area of technical portrayal, and so on. There 
will be brokers, wholesalers, middle men, and retailers. 

Coordinated set of user interface principles 

There will be a common set of principles, over the 
many application areas, shaping user interface features 
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such as the language, control conventions, and methods 
for obtaining help and computer-aided training. 

This characteristic has two main implications. One, it 
means that while each domain within the core \vorkshop 
area or within a specialized application system may have 
a vocabulary unique to its area, this vocabulary will be 
used within language and control structures common 
throughout the workshop system. A user will learn to use 
additional functions by increasing vocabulary, not by 
having to learn separate "foreign" languages. Two, when 
in trouble, he will invoke help or tutorial functions in a 
standard way. 

Grades of user proficiency 

Even a once-in-a-while user with a minimum of learn
ing will want to be able to get at least a few straightfor
wardthi-ngsoone. In faet,even an expert-user-iu--one
domain will be a novice in others that he uses infre
quently. Attention to novice-oriented features is required. 

But users also want and deserve the reward of 
increased proficiency and capability from improvements 
in their skills and knowledge, and in their conceptual 
orientation to the problem domain and to their work
shop's system of tools, methods, conventions, etc. "Ad
vanced vocabularies" in every special domain will be 
important and unavoidable. 

A corollary feature is that workers in the rapidly evolv
ing augmented workshops should continuously be 
involved with testing and training in order that their skills 
and knowledge may harness available tools and method
ology most effectively. 

Ease of communication between, and addition of, 
workshop domains 

One cannot predict ahead of time which domains or 
application systems within the workshop will want to 
communicate in various sequences with which others, or 
what operations will be needed in the future. Thus, 
results must be easily communicated from one set of 
operations to another, and it should be easy to add or 
interface new domains to the workshop. 

User programming capability 

There will never be enough professional programmers 
and system developers to develop or interface all the toois 
that users may need for their work. Therefore, it must be 
possible, with various levels of ease, for users to add or 
interface new tools, and extend the language to meet their 
needs. They should be able to do this in a variety of pro
gramming languages with which they may have training, 
or in the basic user-level language of the workshop itself. 

Availability of people support services 

An augmented workshop will have more support serv
ices available than those provided by computer tools. 
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There will be many people support services as well: 
besides clerical support, there will be extensive and 
highly specialized professional services, e.g., document 
design and typography, data base design and administra
tion, training, cataloging, retrieval formulation, etc. In 
fact, the marketplace for human services will become 
much more diverse and active.27 

Cost decreasing, capabilities increasing 

The power and range of available capabilities will 
increase and costs will decrease. Modular software 
designs, where only the software tools needed at any given 
moment are linked into a person's run-time computer 
space, will cut system overhead for parts of the system 
not in use. Modularity in hardware will provide local 
configurations of terminals and miniprocessors tailored 
for economically fitting needs. It is obvious that cost of 
raw hardware components is plummeting; and the 
assumed large market for knowledge workshop support 
systems implies further help in bringing prices down. 

The argument given earlier for the steady expansion of 
vital application systems to other domains remains valid 
for explaining why the capabilities of the workshop will 
increase. Further, increasing experience with the work
shop will lead to improvements, as will the general trend 
in technology evolution. 

Range of workstations and symbol representations 

The range of workstations available to the user will 
increase in scope and capability. These workstations will 
support text with large, open-ended character sets, pic
tures, voice, mathematical notation, tables, numbers and 
other forms of knowledge representation. Even small 
portable hand-held consoles will be available. 13 

Careful development of methodology 

As much care and attention will be given to the devel
opment, analysis, and evaluation of procedures and 
methodology for use of computer and people support serv
ices as to the development of the technological support 
services. 

Changed roles and organizational structure 

The widespread availability of workshop services will 
create the need for new organizational structures and 
roles. 

SELECTED DESCRIPTION OF AUGMENTED 
WORKSHOP CAPABILITIES 

Introduction 

\Vithin the framework described above, ARC is devel
oping a prototype workshop system. Our system does not 

meet all the requirements outlined previously, but it does 
have a powerful set of core capabilities and experience 
that leads us to believe that such goals can be achieved. 

Within ARC we do as much work as possible using the 
range of online capabilities offered. We serve not only as 
researchers, but also as the subjects for the analysis and 
evaluation of the augmentation system that we have been 
developing. 

Consequently, an important aspect of the augmentation 
work done within ARC is that the techniques being 
explored are implemented, studied, and evaluated with 
the advantage of intensive everyday usage. We call this 
research and development strategy "bootstrapping." 

In our experience, complex man-machine systems can 
evolve only in a pragmatic mode, within real-work envi
ronments where there is an appropriate commitment to 
conscious, controlled, exploratory evolution within the 
general framework outlined earlier. The plans and com
mitments described later are a consistent extension of this 
pragmatic bootstrapping strategy. 

To give the reader more of a flavor of some of the many 
dimensions and levels of the ARC workshop, four exam
ple areas are discussed below in more detail, following a 
quick description of our physical environment. 

The first area consists of mechanisms for studying and 
browsing through NLS files as an example of one func
tional dimension that has been explored in some depth. 

The second area consists of mechanisms for collabora
tion support-a subsystem domain important to many 
application areas. 

The third and fourth areas, support for software engi
neers and the ARPANET Network Information Center 
(NIC), show example application domains based on func
tions in our workshop. 

General physical environment 

Our computer-based tools run on a Digital Equipment 
Corporation PDP-10 computer, operating with the Bolt, 
Beranek, and Newman TENEX timesharing system.9 The 
computer is connected via an Interface Message Proces
sor (IMP) to the ARPANET.7 o s There is a good deal of 
interaction with Network researchers, and with Network 
technology, since we operate the ARPA Network Infor
mation Center (see below).39 

There is a range of terminals: twelve old, but servicea
ble, display consoles of our own design,26 an IMLAC dis
play, a dozen or so 30 ch/sec portable upper/lower case 
typewriter terminals, five magnetic tape-cassette storage 
units that can be used either online or offline, and a 96-
character line printer. There are 125 million characters of 
online disk storage. 

The display consoles are equipped with a typewriter
like keyboard, a five-finger keyset for one-handed 
character input, and a "mouse"-a device for con
trolling the position of a cursor (or pointer) on the 
display screen and for input of certain control 
commands. Test results on the mouse as a ~creen-



selection device have been reported in Reference 25, 
and good photographs and descriptions of the physi
cal systems have appeared in References 20 and 21. 

The core workshop software system and language, 
called NLS, provides many basic tools, of which a num
ber will be mentioned below. It is our "core-workshop 
application system." 

During the initial years of workshop development, 
application and analysis, the basic knowledge-work func
tions have centered around the composition, modification, 
and study of structured textual material. 26 Some of the 
capabilities in this area are described in detail in Refer
ence 26, and are graphically shown in a movie available 
on 10an~1-

The structured:te.xt manipulation has heendevelop_ed 
extensively because of its high payoff in the area of 
applications-system development to which we have 
applied our augmented workshop. We have delayed 
addition of graphic-manipulation capabilities 
because there were important areas associated with 
the text domain needing exploration and because of 
limitations in the display system and hardcopy print
out. 

To build the picture of what our Core Knowledge 
Workshop is like, we first give several in-depth examples, 
and then list in the section on workshop utility service 
some "workshop subsystems" that we consider to be of 
considerable importance to general knowledge work. 

STUDYING ONLINE DOCUMENTS 

Introduction 

The functions to be described form a set of controls for 
easily moving one around in an information space and 
allowing one to adjust the scope, format, and content of 
the information seen.26.41 

Given the addition of graphical, numerical, and vocal 
information, which are planned for addition to the work
shop, one can visualize many additions to the concepts 
below. Even for strictly textual material there are yet 
many useful ideas to be explored. 

View specifications 

One may want an overview of a document in a table-of
contents like form on the screen. To facilitate this and 
other needs, NLS text files are hierarchically structured 
in a tree form with subordinate material at lower levels in 
the hierarchy. 26 

The basic conceptual unit in NLS, at each node of 
the hierarchical file, is called a "statement" and is 
usually a paragraph, sentence, equation, or other unit 
that one wants to manipulate as a whole. 
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A statement can contain many characters-present
ly, up to 2000. Therefore, a statement can contain 
many lines of text. Two of the "view-specification" 
parameters-depth in the hierarchy, and lineS peT 

statement-can be controlled during study of a 
document to give various overviews of it. View speci
fications are given with highly abbreviated control 
codes, because they are used very frequently and 
their quick specification and execution make a great 
deal of difference in the facility with which one stud
ies the material and keeps track of where he is. 

Examples of other view specifications are those that 
control spacing between statements, and indentation for 
levels in the hierarchy, and determine whether the identi
fications associated with statements are to be displayed, 
whi~.h br(1Il~_h(~sl ill the tree.a,r~t(). b_~ disRla-y~~:t,. :wh~th~r 
special filters are to be invoked to show only statements 
meeting specified content requirements or whether state
ments are to be transformed according to special rules 
programmed by the user. 

Moving in information space 

A related viewing problem is designating the particular 
location (node in a file hierarchy) to be at the top of the 
screen. The computer then creates a display of the infor
mation from that point according to the view specifica
tions currently in effect. 

The system contains a variety of appropriate com
mands to do this; they are called jump commands 
because they have the effect of "jumping" or moving one 
from place to place in the network of files available as a 
user's information space.26.33-39 

One can point at a particular statement on the screen 
and command the system to move on to various posi
tions relative to the selected one, such as up or down 
in the hierarchical structure, to the next or preceding 
statement at the same hierarchical level, to the first 
or last statement at a given level, etc. 

One can tell the system to move to a specifically 
named point or go to the next occurrence of a state
ment with a specific content. 

Each time a jump or move is made, the option is 
offered of inciuding any of the abbreviated view spec
ifications-a very general, single operation is "jump 
to that location and display with this view." 

As one moves about in a file one may want to quickly 
and easily return to a previous view of the path as one 
traverses through the file and the specific view at each 
point, and then aliowing return movement to the most 
recent points saved. 

Another important feature in studying or browsing in a 
document is being able to quickly move to other docu
ments cited. 
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There is a convention (called a "link';) for citing 
documents that allows the user to specify a particular 
file, statement within the file and view specification 
for initial display when arriving in the cited file. 

A single, quickly executed command (Jump to Link) 
allows one to point at such a citation, or anywhere in 
the statement preceding the citation, and the system 
will go to the specific file and statement cited and 
show the associated material with the specified view 
parameters. This allows systems of interlinked 
documents and highly specific citations to be created. 

A piece of the path through the chain of documents is 
saved so that one can return easily a limited distance 
back along his "trail," to previously referenced docu
ments. Such a concept was originally suggested by Bush 1 
in a fertile paper that has influenced our thinking in 
many ways. 

Multiple windows 

Another very useful feature is the ability to "split" the 
viewing screen horizontally and/ or vertically in up to 
eight rectangular display windows of arbitrary size. Gen
erally two to four windows are all that are used. Each 
window can contain a different view of the same or differ
ent locations, within the same or different files. 39 

COLLABORATIVE DIALOGUE AND 
TELECONFERENCING 

Introduction 

The approach to collaboration support taken at ARC to 
date has two main thrusts: 

(1) Support for real-time dialogue (teleconferencing) 
for two or more people at two terminals who want 
to see and work on a common set of material. The 
collaborating parties may be further augmented 
with a voice telephone connection as well. 

(2) Support for written, recorded dialogue, distributed 
over time. 

These two thrusts give a range of capabilities for sup
port of dialogue distributed over time and space. 

Teleconferencing support 

Consider two people or groups of people who are geo
graphically separated and who want to collaborate on a 
document, study a computer program, learn to use a new 
aspect of a system, or perform planning tasks, etc. 

The workshop supports this type of collaboration by 
allowing them to link their terminals so that each sees the 
same information and either ('an control the system. This 

function is available for both display and typewriter 
terminal users over the ARPANET. 

The technique is particularly effective between dis
plays because of the high speed of information output and 
the flexibility of being able to split the screen into several 
windows, allowing more than one document or view of a 
document to be displayed for discussion. 

When a telephone link is also established for voice 
communication between the participants, the technique 
comes as close' as any we know to eliminating the need for 
collaborating persons or small groups to be physically 
together for sophisticated interaction. 

A number of other healthy approaches to teleconferenc
ing are being explored elsewhere. 11.12.16.17 It would be 
interesting to interface to such systems to gain experience 
in their use within workshops such as described here. 

RECORDED DIALOGUE SUPPORT 

Introduction 

As ARC has become more and more involved in the 
augmentation of teams, serious consideration has been 
given to improving intra- and inter-team communication 
with whatever mixture of tools, conventions, and proce
dures will help.27.36.39 

If a team is solving a problem that extends over a con
siderable time, the members will begin to need help in 
remembering some of the important communications
i.e., some recording and recalling processes must be 
invoked, and these processes become candidates for 
augmentation. 

If the complexity of the team's problem relative to 
human working capacity requires partitioning of the 
problem into many parts-where each part is independ
ently attacked, but where there is considerable interde
pendence among the parts-the communication between 
various people may well be too complex for their own 
accurate recall and coordination without special aids. 

Collaborating teams at ARC have been augmented by 
development of a "Dialogue Support System (DSS)," 
containing current and thoroughly used working records 
of the group's plans, designs, notes, etc. The central fea
ture of this system is the ARC Journal, a specially man
aged and serviced repository for files and messages. 

The DSS involves a number of techniques for use by 
distributed parties to collaborate effectively both using 
general functions in the workshop and special functions 
briefly described below and more fully in Reference 39. 
Further aspects are described in the section on Workshop 
Utility Service. 

Document or message submi.<;sion 

The user can submit an NLS file, a part of a file, a file 
prepared on another system in the ARPANET 
(document). or text t~'ped at submission time (message) 



to the Journal system. When submitted, a copy of the 
document or message is transferred to a read -only file 
whose permanent safekeeping is guaranteed by the Jour
nal system. It is assigned a unique catalog number, and 
automatically cataloged. Later, catalog indices based on 
number, author, and "titleword out of context" are cre
ated by another computer process. 

Nonrecorded dialogue for quick messages or material 
not likely to be referenced in the future is also permitted. 

One can obtain catalog numbers ahead of time to inter
link document citations for related documents that are 
being prepared simultaneously. Issuing and controlling of 
catalog numbers is performed by a Number System (an 
automatic, crash-protected computer process). 

At the time of submission, the user can contribute such 
information as: title, distribution list, comments, key
W-6-fa-S,eat-affig--numbers of-documents this- new one 
supersedes (updates), and other information. 

The distribution is specified as a list of unique identifi
cation terms (abbreviated) for individuals or groups. The 
latter option allows users to establish dialogue groups. 
The system automatically "expands" the group identifi
cation to generate the distribution list of the individuals 
and groups that are its members. Special indices of items 
belonging to subcollections (dialogue groups) can be pre
pared to aid their members in keeping track of their dia-
10gue. An extension of the mechanisms available for 
group distribution could give a capability similar to one 
described by Turoff. 17 

Entry of identification information initially into the 
system, group expansion, querying to find a person's or 
group's identification, and other functions are performed 
by an Identification System. 

Document distribution 

Documents are distributed to a person in one, two, or 
all of three of the following ways depending on informa
tion kept by the Identification System. 

(1) In hardcopy through the U.S. or corporation mail 
to those not having online access or to those desir
ing this mode, 

(2) Online as citations (for documents) or actual text 
(for messages) in a special file assigned to each 
user. 

(3) Through the ARPANET for printing or online 
delivery at remote sites. This delivery is performed 
using a standard Network wide protocol. 

Document distribution is automated, with online deliv
ery performed by a background computer process that 
runs automatically at specified times. Printing and mail
ing are performed by operator and clerical support. \Vith 
each such printed document, an address cover sheet is 
automatically printed, so that the associated printout 
pages only need to be folded in half, stapled, and stamped 
before being dropped in the mail. 
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Document access 

An effort has been made to make convenient both 
online and offline access to Journal documents. The 
master catalog number is the key to accessing documents. 
Several strategically placed hardcopy master and access 
collections (libraries) are maintained, containing all 
J oumal documents. 

Automatic catalog-generation processes generate 
author, number, and titleword indices, both online and in 
hardcopy.38 The online versions of the indices can be 
searched conveniently with standard NLS retrieval capa
bilities.37 ,39,41 

Online access to the full text of a document is accom
plished by using the catalog number as a file name and 
loading the file or moving to it by pointing at a citation 
and asking the -system to "}ump;; there as -(fescrlbed-e~~~ 
lier. 

SOFTWARE ENGINEERING AUGMENTATION 
SYSTEM 

Introduction 

One of the important application areas in ARC's work 
is software engineering. The economics of large computer 
systems, such as NLS, indicate that software develop
ment and maintenance costs exceed hardware costs, and 
that software costs are rising while hardware costs are 
rapidly decreasing. The expected lifetime of most large 
software systems exceeds that of any piece of computer 
hardware. Large software systems are becoming increas
ingly complex, difficult to continue evolving and main
tain. Costs of additional enhancements made after initial 
implementation generally exceed the initial cost over the 
lifetime of the system. It is for these reasons that it is 
important to develop a powerful application area to aid 
software engineering. Areas of software engineering in 
which the ARC workshop offers aids are described below. 

Design and review collaboration 

During design and review, the document creation, edit
ing, and studying capabilities are used as well as the col
laboration, described above. 

Use of higher level system programming languages 

Programming of NLS is performed in a higher level 
ALGOL-like system programming language called L-10 
developed at ARC. The L-10 language compiler takes its 
input directly from standard NLS structured files. The 
PDP-10 assembler also can obtain input from NLS files. 

It is planned to extend this capability to other ian
guages, for example, by providing an interface to the 
BASIC system available in our machine for knowledge 
workers wishing to perform more complex numerical 
tasks. 



16 National Computer Conference, 1973 

We are involved with developing a modular runtime
linkable programming system (MPS), and with planning 
a redesign of NLS to utilize MPS capabilities, both in 
cooperation with the Xerox Palo Alto Research Center. 
MPS will: 

(1) Allow a workshop system organization that will 
make it easier for many people to work on and 
develop parts of the same complex system semi
independently. 

(2) Make it easier to allow pieces of the system to exist 
on several processors. 

(3) Allow individual users or groups of users to tailor 
versions of the system to their special needs. 

(4) Make it easier to move NLS to other computers 
since MPS is written in itself. 

(5) Speed system development because of MPS's 
improved system building language facilities, inte
grated source-level debugging, measurement facili
ties, the ability to construct new modules by com
bining old ones, and to easily modify the system by 
changing module interconnection. 

System documentation and source-code creation 

Source-code creation uses the standard NLS hierarchi
cal file structures and allows documentation and other 
programming conventions to be established that simplify 
studying of source-code files. 

Debugging 

A form of source-level debugging is allowed through 
development of several tools, of which the following are 
key examples: 

(1) A user program compilation and link loading facil
ity that allows new or replacement programs to be 
linked into the running system to create revised 
versions for testing or other purposes. 

(2) NLS-DDT, a DDT like debugging facility with a 
command language more consistent with the rest of 
NLS, and simplifies display of system variables 
and data structures, and allows replacement of 
system procedures by user supplied procedures. 

(3) Use of several display windows so as to allow source 
code in some windows and control of DDT in oth
ers for the setting of breakpoints and display of 
variables and data structures. 

Measurement and analysis 

A range of measurement tools has been developed for 
analyzing system operation. These include the following: 

(1) Capabilities for gathering and reporting statistics 
un many operalillg ~)~tem parameters such as utili-

zation of system components in various modes, 
queue lengths, memory utilization, etc. 

(2) The ability to sample the program counter for 
intervals of a selectable area of the operating sys
tem or any particular user subsystem to measure 
time spent in the sampled areas; 

(3) Trace and timing facilities to follow all procedure 
calls during execution of a specified function. 

(4) The ability to study page-faulting characteristics of 
a subsystem to check on its memory use character
ist.ics. 

(5) The ability to gather NLS command usage and 
timing information. 

(6) The ability to study user interaction on a task basis 
from the point of view of the operating-system 
scheduler. 

(7) The ability to collect sample user sessions for later 
playback to the system for simulated load, or for 
analysis. 

Maintenance 

Maintenance programmers use the various functions 
mentioned above. The Journal is used for reporting bugs; 
NLS structured source code files simplify the study of 
problem areas and the debugging tools permit easy modi
fication and testing of the modifications. 

THE ARPA NETWORK INFORMATION CENTER 
(NIC) 

Introduction 

The NIC is presently a project embedded within 
ARC.39 Workshop support for the NIC is based on the 
capabilities within the total ARC workshop system. 

As useful as is the bootstrapping strategy mentioned 
earlier, there are limits to the type of feedback it can 
yield with only ARC as the user population. The NIC is 
the first of what we expect will be many activities set up 
to offer services to outside users. The goal is to provide a 
useful service and to obtain feedback on the needs of a 
wider class of knowledge workers. Exercised within the 
NIC are also prototypes of information services expected 
to be normal parts of the workshop. 

The NIC is more than a classical information center, as 
that term has come to be used, in that it provides a wider 
range of services than just bibliographic and "library" 
type services. 

The NIC is an experiment in setting up and running a 
general purpose information service for the ARPANET 
community with both online and offline services. The 
services offered and under development by the NIC have 
as their initial basic objectives: 

(1) To help people with problems find the resources 
(people, systems, and information) available within 
the network community that meet thf'ir nPNio;:.. 



(2) To help members of geographically distributed 
groups collaborate with each other. 

Following are the NIC services now provided to meet 
the above goals in serving the present clientele: 

. Current online services 

(1) Access to the typewriter version (TNLS) and dis
play version (D~LS) of the Augmentation 
Research Center's Online System (NLS) for 
communique creation, access, and linking between 
users, and for experimental use for any other infor
mation storage and manipulation purpose suitable 
for NLS and useful to Network participants. 

(2) Access to Journal, Number, and Identification 
Systems. to al1o.w .. mes.,c;;;ages and documents to .. be 
transmitted between network participants. 

(3) Access to a number of online information bases 
through a special Locator file using :KLS link 
mechanisms and through a novice-oriented query 
system. 

Current offline services 

(1) A 'Network Information Center Station set up at 
each network site. 

(2) Techniques for gathering, producing and maintain
ing data bases such as bibliographic catalogs, direc
tories of network participants, resource informa
tion, and user guides. 

(3) Support of Network dialogue existing in hardcopy 
through duplication, distribution, and cataloging. 

(4) General Network referral and handling of docu
ment requests. 

(5) Building of a collection of documents potentially 
valuable to the Network Community. Initial con
centration has been on obtaining documents of 
possible value to the Network builders. 

(6) As yet primitive selective document distribution to 
Station Collections. 

(7) Training in use of NIC services and facilities. 

Conclusion 

The Network Information Center is an example proto
type of a new type of information service that has signifi
cant future potential. Even though it is presently in an 
experimental and developmental phase, it is providing 
useful online and offline services to the ARPANET 
community. 

PLANS FOR A WORKSHOP UTILITY SERVICE 

Motivation 

It is now time for a next stage of application to be 
established. We want to involve a wider group of people 
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so that we can begin to transfer the fruits of our past work 
to them and with their assistance, to others, and so that 
we can obtain feedback needed for further evolution from 
wider appiication than is possibie in our project alone. 28 

We want to find and support selected groups who are will
ing to take extra trouble to be exploratory, but who: 

(1) Are not necessarily oriented to being core-workshop 
developers (they have their own work to do). 

(2) Can see enough benefit from the system to be tried 
and from the experience of trying it so that they 
can justify the extra risk and expense of being 
"early birds." 

(3) Can accept assurance that system reliability and 
stability, and technical! application help will be 
available to meet their conditions for risk and cost. 

ARC is establishing a Workshop Utility Service, and 
promoting the type of workshop service described above 
as part of its long-term commitment to pursue the contin
ued development of augmented knowledge workshops in a 
pragmatic, evolutionary manner. 

It is important to note that the last few years of work 
have concentrated on the means for delivering support to 
a distributed community, for providing teleconferencing 
and other basic processes of collaborative dialogue, etc. 
ARC has aimed consciously toward developing experience 
and capabilities especially applicable to support remote 
and distributed groups of exploratory users for this next 
stage of wider-application bootstrapping. 

One aspect of the service is that it will be an experi
ment in harnessing the new environment of a modern 
computer network to increase the feasibility of a wider 
community of participants cooperating in the evolution of 
an application system. 

Characteristics of the planned service 

The planned service offered will include: 

(1) Availability of Workshop Utility computer service 
to the user community from a PDP-IO TEKEX 
system operated by a commercial supplier. 

(2) Providing training as appropriate in the use of 
Display NLS (DNLS), Typewriter NLS (TNLS), 
and Deferred Execution (DEX) software subsys
tems, 

(3) Providing technical assistance to a user organiza
tion "workshop architect" in the formulation, 
development, and implementation of augmented 
knowledge work procedures within selected offices 
at the user organization.6 

This assistance will include help in the develop
ment of NLS use strategies suitable to the user 
environments, procedures within the user organi
zation for implementing these strategies, and 
possible special-application NLS extensions (or 
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simplifications) to handle the mechanics of par
ticular user needs and methodologies. 

(4) Providing "workshop architect" assistance to help 
set up and assist selected geographically distrib
uted user groups who share a special discipline or 
mission orientation to utilize the workshop utility 
services and to develop procedures, documentation, 
and methodology for their purposes. 

GENERAL DESCRIPTION OF SOME WORKSHOP 
UTILITY SUBSYSTEMS 

Introduction 

Within a particular professional task area (mission- or 
discipline-oriented) there are often groups who could be 
benefited by using special workshop subsystems. These 
subsystems may be specialized for their specific applica
tion or research domain or for support of their more gen
eral knowledge work. Our goal is to offer a workshop util
ity service that contains a range of subsystems and asso
ciated methodology particularly aimed at aiding general 
knowledge work, and that also ~;upports in a coordinated 
way special application subsystems either by interfacing 
to subsystems already existing, or by developing new 
subsystems in selected areas. 

In the descriptions to follow are a number of workshop 
subsystem domains that are fundamental to a wide range 
of knowledge work in which ARC already has extensive 
developments or is committed to work. For each subsys
tem we include some general comments as well as a brief 
statement of current ARC capabilities in the area. 

Document development, production, and control 

Here a system is considered involving authors, editors, 
supervisors, typists, distribution-control personnel, and 
technical specialists. Their job is to develop documents, 
through successive drafts, reviews, and revisions. Control 
is needed along the way of bibliography, who has checked 
what point, etc. Final drafts need checkoff, then produc
tion. Finally distribution needs some sort of control. If it 
is what we call a "functional document" such as a user 
guide, then it needs to be kept up to date.39 There is a 
further responsibility to keep track of who needs the 
documents, who has what version, etc. 

Within the ARC workshop, documents ranging from 
initial drafts to final high-quality printed publications 
can be quickly produced with a rich set of creation and 
editing functions. All of ARC's proposals, reports, designs, 
letters, thinkpieces, user documentation, and other such 
information are composed and produced using the work
shop. 

Documents in a proof or finished form can be produced 
with a limited character set and control on a line printer 
or typewriter, or publication quality documents can be 
produced on a photocomposer microfilm unit. 

Presently there are on the order of two hundred spe
cial directives that can be inserted in text to control 
printing. These directives control such features as 
typefont, pagination, margins, headers, footers, state
ment spacing, typefont size and spacing, indenting, 
numbering of various hierarchical levels, and many 
other parameters useful for publication quality work. 
Methodology to perform the creation, production, 
and controlling functions described above has been 
developed, although much work at this level is still 
needed. 

In terms of future goals, one would like to have display 
terminals with a capability for the range of fonts availa
ble on the photocomposer so that one could study page 
layout and design interactively, showing the font to be 
used, margins, justification, columnization, etc. on the 
screen rather than having to rely on hardcopy proof
sheets. 

To prepare for such a capability, plans are being 
made to move toward an integrated portrayal mecha
nism for both online and hardcopy viewing. 

Collaborative dialogue and teleconferencing 

Effective capabilities have already been developed and 
are in application, as discussed above. There is much yet 
to do. The Dialogue Support System will grow to provide 
the following additional general online aids: 

Link-setup automation; back-link annunciators and 
jumping; aids for the formation, manipulation, and study 
of sets of arbitrary passages from among the dialogue 
entries; and integration of cross-reference information 
into hardcopy printouts. Interfaces will probably be made 
to other teleconferencing capabilities that come into exist
ence on the ARPANET. 

It also will include people-system developments: con
ventions and working procedures for using these aids 
effectively in conducting collaborative dialogue among 
various kinds of people, at various kinds of terminals, and 
under various conditions; working methodology for teams 
doing planning, design, implementation coordination; and 
so on. 

Meetings and conferences 

Assemblies of people are not likely for a long time, if 
ever, to be supplanted in total by technological aids. 
Online conferences are held at ARC for local group meet
ings and for meetings where some of the participants are 
located across the country. 

Use is made of a large-screen projection TV system to 
provide a display image that many people in a conference 
room can easily see. This is controlled locally or remotely 
by participants in the meeting, giving access to the entire 
recorded dialogue data base m: needed during the meeting 
and also providing the capability of recording real-time 



meeting notes and other data. The technique also allows 
mixing of other video signals. 

Management and organization 

The capabilities offered in the workshop described in 
this paper are used in project management and adminis
tration.39 Numerical calculations can also be performed 
for budget and other purposes, obtaining operands and 
returning results to NLS files for further manipulation. 

Where an organization has conventional project man
agement operations, their workshop can include computer 
aids for techniques such as PERT and CPM. We want to 
support the interfacing that our Core Workshop can pro
vide to special application systems for management proc
esses. 

We -aYe---especiatly--lnteFested -at this stage-, in-1l1an-a:ge~ 

ment of project teams-particularly, of application-sys
tems development teams. 

Handbook development 

Capabilities described above are being extended toward 
the coordinated handling of a very large and complex 
body of documentation and its associated external refer
ences. The goal is that a project or discipline of ever
increasing size and complexity can be provided with a 
service that enables the users to keep a single, coordi
nated "superdocument" in their computer; that keeps up 
to date and records the state of their affairs; and provides 
a description of the state of the art in their special area. 

Example contents would be glossaries, basic concept 
structure, special analytic techniques, design principles, 
actual design, and implementation records of all develop
ments. 

Research intelligence 

The provisions within the Dialogue Support System for 
cataloging and indexing internally generated items also 
support the management for externally generated items, 
bibliographies, contact reports, clippings, notes, etc. Here 
the goal is to give a human organization (distributed or 
local) an ever greater capability for integrating the many 
input data concerning its external environment; process
ing (filtering, transforming, integrating, etc.) the data so 
that it can be handled on a par with internally generated 
information in the organization's establishing of plans 
and goals; and adapting to external opportunities or 
dangers.3s 

Computer-based instruction 

This is an important area to facilitate increasing the 
skills of knowledge workers. ARC has as yet performed 
little direct work in this area. We hope in the future to 
work closely with those in the computer-based instruction 
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area to apply their techniques and systems in the work
shop domain. 

In training new and developing users in the use of the 
system, we have begun using the system itself as a teach
ing environment. This is done locally and with remote 
users over the ARPANET. 

Software engineering augmentation 

A major special application area described above, that 
has had considerable effort devoted to it, is support of 
software engineers. The software-based tools of the work
shop are designed and built using the tools previously 
constructed. It has long been felt 24.29 that the greatest 
"bootstrapping" leverage would be obtained by inten
sively developing the augmented workshop for software 
engineers; --and--we--ho-pe---to--stimul-at-e and- -sup-port--more--
activity in this area. 

Knowledge workshop analysis 

Systematic analysis has begun of the workshop envi
ronment at internal system levels, at user usage levels, 
and at information-handling procedure and methodology 
levels. The development of new analytic methodology and 
tools is a part of this process. The analysis of application 
systems, and especially of core-workshop systems, is a 
very important capability to be developed. To provide a 
special workshop subsystem that augments this sort of 
analytic work is a natural strategic goal. 

CONCLUSION-THE NEED FOR LONG-TERM 
COMMITMENT 

As work progresses day-to-day toward the long-term 
goal of helping to make the truly augmented knowledge 
workshop, and as communities of workshop users become 
a reality, we at ARC frequently reflect on the magnitude 
of the endeavor and its long-term nature.22 

Progress is made in steps, with hundreds of short
term tasks directed to strategically selected subgoals, 
together forming a vector toward our higher-level 
goals. 

To continue on the vector has required a strong com
mitment to the longer-range goals by the staff of ARC. 

In addition, we see that many of the people and organi
zations we hope to enlist in cooperative efforts will need a 
similar commitment if they are to effectively aid the 
process. 

One of ARC's tasks is to make the long-term objec
tives of the workshop's evolutionary deveiopment, the 
potential value of such a system, and the strategy for 
realizing that value clear enough to the collaborators 
we seek, so that they will have a strong commitment 
to invest resources with understanding and patience. 



20 National Computer Conference, 1973 

One key for meeting this need will be to involve them 
in serious use of the workshop as it develops. The 
plans for the Workshop Utility are partly motivated 
by this objective. 

Although the present ARC workshop is far from 
complete, it does have core capabilities that we feel 
will greatly aid the next communities of users in their 
perception of the value of the improved workshops of 
the future. 

ACKNOWLEDGMENTS 

During the 10 year life of ARC many people have con
tributed to the development of the workshop described 
here. There are presently some 35 people-clerical, hard
ware, software, information specialists, operations re
searchers, writers, and others-all contributing signifi
cantly toward the goals described here. 

The work reported here is currently supported primar
ily by the Advanced Research Projects Agency of the 
Department of Defense, and also by the Rome Air Devel
opment Center of the Air Force and by the Office of 
Naval Research. 

REFERENCES 

1. Bush, V., "As We May Think," Atlantic Monthly, pp. 101-108, 
July 1945 (SRI-ARC Catalog Item 3973). 

2. Licklider, J. C. R., "Man-Computer Symbiosis," IEEE Tmnsac
tions on Human Factors in Electronics, Vol. HFE-1, pp. 4-11, 
March, 1960 (SRI-ARC Catalog Item 6342). 

3. Drucker, P. F., The Effective Executive, Harper and Row, New 
York, 1967 (SRI-ARC Catalog Item 3074). 

4. Drucker, P. F., The Age of Discontinuity-Guidelines to our 
Changing Society, Harper and Row, New York, 1968 (SRI-ARC 
Catalog Item 4247). 

5. Dalkey, N., The Delphi Method-An Experimental Study of 
Group Opinion, Rand Corporation Memorandum RM-5888-PR, 
1969 (SRI-ARC Catalog Item 3896). 

6. Allen, T. J., Piepmeier, J. M., Cooney, S., "Technology Transfer to 
Developing Countries-The International Technological Gate
keeper," Proceedings of the ASIS, Vol. 7, pp. 205-210, 1970 (SRI
ARC Catalog Item 13959). 

7. Roberts, L. G., Wessler, B. D., "Computer Network Development 
to Achieve Resource Sharing," AFIPS Proceedings, Spring Joint 
Computer Conference, Vol. 36, pp. 543-549, 1970 (SRI-ARC Cata
log Item 4564). 

8. Roberts, L. G., Wessler, B. D., The ARPA Network, Advanced 
Research Projects Agency, Information Processing Techniques, 
Washington, D.C. May 1971 (SRI-ARC Catalog Item 7750). 

9. Bobrow, D. G., Burchfiel, J. D., Murphy, D. L., Tomlinson, R. S., 
"TENEX-A Paged Time Sharing System for the PDP-10," pre
sented at ACM Symposium on Operating Systems Principles, 
October 18-20, 1971. Bolt Beranek and Newman Inc., August 15, 
1971 (SRI-ARC Catalog Item 7736). 

10. Weinberg, G. M., The Psychology of Computer Programming, Van 
Nostrand Reinhold Company, New York, 1971 (SRI-ARC Catalog 
Item 9036). 

11. Hall, T. W., "Implementation of an Interactive Conference Sys
tem," AFIPS Proceedings, Spring Joint Computer Conference, Vol. 
38, pp. 217-229,1971 (SRI-ARC Catalog Item 13962). 

12. Turoff, M., "Delphi and its Potential Impact on Information Sys
tems," AFIPS Proceedings, Fall Joint Computer Conference. Vol. 
39. pp. 317-~2n. Jfl71 (SRI-ARC' CAtalog Ttpm ,flnnl 

13. Roberts, L. G., Extensions of Packet Communication Technology 
to a Hand Held Personal Terminal, Advanced Research Projects 
Agency, Information Processing Techniques, January 24, 1972 
(SRI-ARC Catalog Item 9120). 

14. Kahn, R. E., "Resource-Sharing Computer Communication Net
works," Proceedings of the IEEE, Vol. 147, pp. 147, September 
1972 (SRI-ARC Catalog Item 13958). 

15. Anderson, R. E., Coover, E. R., "Wrapping Up the Package-Crit
ical Thoughts on Applications Software for Social Data Analysis," 
Computers and Humanities, Vol. 7, No.2, pp. 81-95, November 
1972 (SRI-ARC Catalog Item 13956). 

16. Lipinski, A. J., Lipinski, H. M., Randolph, R. H., "Computer 
Assisted Expert Interrogation-A Report on Current Methods 
Development," Proceedings of First International Conference on 
Computer Communication, Winkler, Stanley (ed), October 24-26, 
1972, Washington, D.C., pp. 147-154 (SRI-ARC Catalog Item 
11980). 

17. Turoff, M., "'Party-Line' and 'Discussion' Computerized Confer
ence Systems," Proceedings of First International Conference on 
Computer Communication, Winkler, Stanley (ed), October 24-26, 
1972, Washington, D. C., pp. 161-171, (SRI-ARC Catalog Item 
11983). 

BY OTHER PEOPLE, WITH SUBSTANTIVE 
DESCRIPTION OF ARC DEVELOPMENTS 

18. Licklider, J. C. R., Taylor, R. W., Herbert, E., "The Computer as a 
Communication Device," International Science and Technology, 
No. 76, pp. 21-31, April 1968 (SRI-ARC Catalog Item 3888). 

19. Engelbart, D. C., "Augmenting your Intellect," (Interview with D. 
C. Engelbart), Research/Development, pp. 22-27, August 1968 
(SRI-ARC Catalog Item 9698). 

20. Haavind, R., "Man-Computer 'Partnerships' Explored," Elec
tronic Design, Vol. 17, No.3, pp. 25-32, February 1, 1969 (SRI
ARC Catalog Item 13961). 

21. Field, R. K., "Here Comes the Tuned-In, Wired-Up, Plugged-In, 
Hyperarticulate Speed-of-Light Society-An Electronics Special 
Report: No More Pencils, No More Books-Write and Read Elec
tronically," Electronics, pp. 73-104, November 24, 1969 (SRI-ARC 
Catalog Item 9705). 

22. Lindgren, N., "Toward the Decentralized Intellectural Workshop," 
Innovation, No. 24, pp. 50-60, September 1971 (SRI-ARC Catalog 
Item 10480). 

OPEN-LITERATURE ITEMS BY ARC STAFF 

23. Engelbart, D. C., "Special Considerations of the Individual as a 
User, Generator, and Retriever of Information," American Docu
mentation, Vol. 12, No.2, pp. 121-125, April 1961 (SRI-ARC Cata
log Item 585). 

24. Engelbart, D. C., "A Conceptual Framework for the Augmentation 
of Man's Intellect," Vistas in Information Handling, Howerton and 
Weeks (eds), Spartan Books, Washington, D.C., 1963, pp. 1-29 
(SRI-ARC Catalog Item 9375). 

25. English, W. K., Engelbart, D. C., Berman, M. A., "Display-Selec
tion Techniques for Text Manipulation," IEEE Tmnsactions on 
Human Factors in Electronics, Vol. HFE-8, No.1, pp. 5-15, March 
1967 (SRI-ARC Catalog Item 9694). 

26. Engelbart, D. C., English, W. K., "A Research Center for Aug
menting Human Intellect," AFIPS Proceedings, Fall Joint Com
puter Conference, Vol. 33, pp. 395-410, 1968 (SRI-ARC Catalog 
Item 3954). 

27. Engelbart, D. C., "Intellectual Implications of Multi-Acces!' 
Computer Networks," paper presented at Interdisciplinary Confer
ence on Multi-Access Computer Networks, Austin, Texa~, April 
Hl':'(), prf'print (SRI ARC .JQurllJI FilcS~Sjl. 



28. Engelbart, D. C., Coordinated Information Services for a Disci
pline- or Mission-Oriented Community, Stanford Research Insti
tute Augmentation Research Center, December 12, 1972 (SRI
ARC Journal File 12445). Also published in "Time Sharing
Past, Present and Future," Proceedings of the Second Annual Com
puter Communications Conference at California State University, 
San Jose, California, January 24-25, 1973, pp. 2.1-2.4, 1973. 
Catalog Item 5139). 

RELEVANT ARC REPORTS 

29. Engelbart, D. C., Augmenting Human Intellect-A Conceptual 
Framework, Stanford Research Institute Augmentation Research 
Center, AFOSR-3223, AD-289 565, October 1962 (SRI-ARC Cata
log Item 3906). 

30. Engelbart, D. C., Huddart, B., Research on Computer-Augmented 
Information Management (Final Report), Stanford Research Insti
tute Augmentation Research Center, ESD-TDR-65-168, AD 622 
5Z0,-Marili1905\SRr~ARCCatalog Item 9(90). 

31. Engelbart, D. C., Augmenting Human Intellect-Experiments, 
Concepts, and Possibilities-Summary Report, Stanford Research 
Institute Augmentation Research Center, March 1965 (SRI -ARC 
Catalog Item 9691). 

32. English, W. K, Engelbart, D. C., Huddart, B., Computer Aided 
Display Control-Final Report, Stanford Research Institute 
Augmentation Research Center, July 1965 (SRI-ARC Catalog Item 
9692). 

33. Engelbart, D. C., English, W. K, Rulifson, J. F., Development of a 
Multidisplay, Time-Shared Computer Facility and Computer
Augmented Management-System Research, Stanford Research 
Institute Augmentation Research Center, AD 843 577, April 1968 
(SRI-ARC Catalog Item 9697). 

34. Engelbart, D. C., Human Intellect Augmentation Techniques
Final Report, Stanford Research Institute Augmentation Research 

The Augmented Knowledge Workshop 21 

Center, CR-1270 N69-16140, July 1968 (SRI-ARC Catalog Item 
3562). 

35. Engelbart, D. C., English, W. K, Evans, D. C., Study for the 
Development of Computer A.ugmented ,Management Techniques
Interim Technical Report, Stanford Research Institute Augmenta
tion Research Center, RADC-TR-69-98, AD 855 579, March 8, 
1969 (SRI-ARC Catalog Item 9703). 

36. Engelbart, D. C., SRI-ARC Staff, Computer-Augmented Manage
ment-System Research and Development of Augmentation Facility 
-Final Report, Stanford Research Institute Augmentation 
Research Center, RADC-TR-70-82, April 1970 (SRI-ARC 
Catalog Item 5139). 

38. Engelbart, D. C., Experimental Development of a Small Computer
Augmented Information System-Annual Report, Stanford Re
search Institute Augmentation Research Center, April 1972 
(SRI-ARC Catalog Item 10045). 

39. Online Team Environment-Network Information Center and 
Computer Augmented Team Interaction, Stanford Research Insti
tute Augmentation Research Center, RADC-TR-72-232, June 8, 
1-972 {SRI-ARC Jo-urnal:File 13041). 

RELEVANT ARTICLES IN ARC/NIC JOURNAL 

40. Engelbart, D. C., SRI-ARC Summary for IPT Contractor Meeting, 
San Diego, January 8-10, 1973, Stanford Research Institute Aug
mentation Research Center, January 7, 1973 (SRI-ARC Journal 
File 13537). 

MOVIE AVAILABLE FROM ARC FOR LOAN 

41. Augmentation of the Human Intellect-A Film of the SRI-ARC 
Presentation at the 1969 ASIS Conference, San Francisco (A 3-
Reel Movie, Stanford Research Institute Augmentation Research 
Center, October 1969 (SRI-ARC Catalog Item 9733). 





Graphics, problem solving and virtual systems 

byR.M.DCNN 

u.s. Army Electronics Command 
Fort Monmouth, :\ew Jersey 

IKTRODUCTION 

Man naturally uses many languages when he thinks crea
tively. Interactive compli6ti!~( mec-naffisrtfs Infefiaea to 
augment man's higher faculties must provide for appro
priate man-machine dialogues. The mechanisms must not 
constrain man's linguistic expressiveness for communica
tion in the dialogues. To do so is to limit or retard the 
creative activity. 

This paper explores some basic concepts for problem 
solving through interactive computing. Characteristics of 
the interactive access process and over-all system con
cepts are discussed. The evolution of a recognition autom
aton is proposed based on current work toward a multi
console, interactive graphics Design Terminal. 

BASIC CONCEPTS 

Certain notions about problem solving, virtual systems, 
use-directed specification and interactive graphics are 
central to the concluding proposal of this discussion. 
These notions do not all reflect the current state-of-the
art or even that of the very near future. However, they do 
characterize the objectives and capabilities that should be 
the goals of interactive computing mechanism research 
development and use. 

Problem solving 

"Problem solving" is considered to be a process that 
involves creative thinking and discovery. Problem solving 
in a computer-based system is considered to be the activ
ity of a human exploring a concept or system for which a 
computer-based description has been or is being devised. 
The human tries to perceive, alter and/ or assess the 
description, behavior, performance or other quality of the 
concept or system. Very often the system or concept has 
time-dependent characteristics which add to its complex
ity. 

The essence of the problem solving process is variation 
and observation of the system under study. Alexander! 
pointed out that human cognition functions to discover 
and identify the "misfit variable" that is the cause of the 
problem. To do so, the human needs to "toy" with the 
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system so that he has a "feel" for its characteristics in 
terms of personal judgments that may be quite subjec
tive. 

interactive computing mechanisms in problem solving 
situations should extend and amplify man's basic abilities 
for creative thinking and discovery. These mechanisms 
should improve his ability to perceive previously unrecog
nized characteristics. They should permit and support 
man's definition of new and meaningful symbols by 
which he designates his perceptions. They should aid in 
making any specification of values he chooses to assign to 
his symbolized perceptions. And, interactive computing 
mechanisms should aid in specifying and retaining any 
combination of evaluated, symbolized perceptions. Of 
particular interest are the combinations that man's crea
tive faculty perceives as being related so as to form a 
higher order entity. 

Virtual systems 

A virtual system is considered to be an organized, 
temporary collection of resources that is created for a 
specific transient purpose. 

Computer-based virtual systems combine processes, 
processors, data storage mechanisms. Interactive, com
puter-based virtual systems are considered to include 
people as another type of resource. The specific purposes 
that generate virtual systems are considered to be func
tionally classifiable. As a result, one can associate a spe
cific purpose with a type of virtual system in terms of the 
function of the virtual system, or the process that carried 
out its formation, or the structure of its physical or func
tional organization or any combination of these attributes. 

The resources that are available for use in a computer
based virtual system may be centralized or widely dis
tributed. Today's trend points to the general case for the 
future as being distributed resources interconnected by 
communications networks. Network-oriented, computer
based virtual systems are extensible by the simple expe
dient of interconnecting more and/ or different resources. 
The problems associated with the design and control of 
extensible distributed computing systems were investi
gated as early as 1965 by Cave and Dunn,2 and since then 
by many others.3.4.5.6.7.s.9.1o 
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For problem solving processes that incorporate interac
tive computing mechanisms, a particular type of com
puter-based, network-oriented virtual system is of spe
cific interest. This system type exhibits two hierarchical 
characteristics. First, it allows and supports a hierarchy 
of functional uses to which it may be put. And second, it 
also embodies the capacity to interconnect and support 
access to resources on a hierarchical basis. 

Use-directed specification 

Use-directed specification is considered to be a process 
within a time-ordered activity. The subjects and history 
of activity determine the semantics and pragmatics of the 
specification. ll In this context, semantics is taken to be 
the process of identifying relations between elements of a 
specification and the intents that are to be signified by 
those elements. Pragmatics is taken to be the process of 
identifying the extent and manner by which the signified 
intents can be of value to the time-ordered activity. For 
activities that are not deterministic, the semantic and 
pragmatic processes establish the operational context and 
effect of use-directed specifications on a probablistic 
basis. 

Use-directed specification presumes an identified sys
tem of pragmatic values based upon the goals of the activ
ity. For many time-ordered activities, the goals are 
unclear. Therefore, the associated system of pragmatic 
values are poorly defined or may not exist at all at the 
start of the activity. Such activities require rules of 
thumb, strategies, methods or tricks that are used as 
guides until the goals and pragmatic value !'y!'tem are 
established. This heuristic 12 approach requires a feedback 
mechanism as part of the means by which the activity is 
conducted. Feedback is used to provide information 
which may lead to adjustments in the heuristics and clar
ification of the activity's goals and pragmatic value sys
tem. 

Adaptive, use-directed specification will be used to 
characterize activities that operate in the manner just 
described. Adaptive, use-directed specifications are of 
particular interest for problem solving activities that 
incorporate interactive mechanisms in the environment of 
network-oriented, computer-based virtual systems with 
hierarchical characteristics. 

I nteractiue graphics 

Interactive graphics is considered to be a computer
based process with the human "in-the-Ioop." "Interac
tive" describes the relation between the human and the 
computer-based process. The interactive relation is char
acterized by a rate of response to human service requests 
that is both useful and satisfying to the human. If the rate 
is too fast, the substance of the response may not be use
ful to the human. If the rate is too slow, the human may 
not he sMisfierl. Dunn. \3 Boehm, et 81.. 14 ;:mrl many 

others have explored detailed characteristics of interac
tion in a graphics environment. 

Interactive graphics is considered to have three princi
pal purposes.15 One purpose is to improve the quality and 
rate of the input/ output relation between people and 
machines. Another purpose is to provide assistance to 
people during detailed specification of some particular 
abstract representation. The remaining purpose is to 
provide assistance to people in visualizing and evaluating 
some attribute, behavior or performance of a specified 
abstract representation. 

All three purposes, but especially the latter two, are of 
particular interest for problem solving activities that 
incorporate interactive computing mechanisms. 

VIRTUAL SYSTEM ACCESS AND INTERACTIVE 
GRAPHICS 

Most interactive computing systems contain an inher
ent assumption about certain knowledge required of the 
users. In some systems, the assumption is open and 
stated. In others, a less obvious, more troublesome situa
tion may exist. Users of interactive computing systems 
rarely can consider the system as a "black box" into 
which parameter identification and values are entered 
and from which problem solving results are received. 
Most often the user is minimally required to explicitly 
know: the "black box" function to be used; the identifica
tion of the shared main computer that supports the 
"black box" function; the way in which the function must 
be requested; the way in which service on the supporting 
computer must be requested; and the type of information 
that must be provided to the function and the supporting 
computer. Some interactive systems require even more of 
the user. 

The user of most of today's interactive systems can 
reasonably be required to have knowledge of the kind 
referred to above. However, when one considers the types 
of interactive systems that are likely to exist tomorrow, 
these requirements are not merely unreasonable, they 
may be impossible to be satisfied by typical users. 

Consider the use of interactive computing mechanisms 
by problem solving activities via an extensible, network
oriented, distributed resource computing system. Over 
time, such a system will undergo significant changes in the 
number, type and pattern of dispersion of resources that 
are inter-connected. For an individual user, as his efforts 
progress or change, the combinations of resources appro
priate to his purposes will also change. Any economic 
implementation of such a system will not be free of peri
ods or instances when "busy signals" are encountered in 
response to requests for service. Therefore, it is likely that 
most resources will have some level of redundancy in the 
system. 

The following conclusion must be drawn. If the human 
user of interactive computing systems must continue to 
satisfy today's requirements in the environment of tomor
row's svstemf-;, then the enormous potential of these svs-



tems will be lost to the user. It appears that this conclu
sion can be obviated. If one analyzes interactive access 
characteristics along with system functions and relations 
in a certain way, it appears feasible to reduce the burden 
of system knowledge upon the user to a manageable level 
in the environment of sophisticated interactive networks 
of the future. 

Interactive access performance characteristics 

The basic motivation for interactive access is to allow 
people to function as on-line controllers and participants 
in the computing process. Consequently, we must con
sider characteristics of interactive access mechanisms 
from the view of both human and system performance. 
Further, if we consider performance characteristics in the 
context of a complex process such as "problem solving" 
then, in a very loose sense, we have taken a "worst· case" 
approach. 

The first thing to consider is that interaction is carried 
on by means of a dialogue. This implies the existence of a 
language known to both parties. The question is-what 
should be the scope of reference of this language? Should 
it be the mechanisms of computing? Or the functioning of 
the interactive device? Or the topics which give rise to the 
body of information pertinent to the problem to be solved? 

Ideally, one should not need to be concerned with 
computing mechanisms or interactive devices, but only 
with information relevant to the problem. Practically, one 
may want or need at least initial and, perhaps, refresher 
information on mechanisms and devices. One can then 
conclude that the principal concern of the language 
should be the topics which relate to the problem. The 
discourse should permit tutorial modes or inquiry dia
logues on other issues only at the specific request of the 
user. Raphael's16 work and that of others have estab
lished a solid foundation for the inquiry capability. 

But, what of the problem solving topics? Should a sepa
rate language exist for each one? Could that be feasible as 
the domain of interactive problem solving expands? 
Clearly, it is not even feasible with today's primitive use. 
Tomorrow's uses will make this matter worse. It may be 
equally unreasonable to expect that machine systems can 
be provided with a human's linguistic faculty for some 
time. However, there are at least two feasible approxima
tions. 

The first is exemplified by MATHLAB.17 In this ef
fort, the machine is being programmed with the rules of 
analytical mathematics. Then the user interactively 
writes a mathematical equation on a machine sensible 
surface, the equation is solved analytically by the ma
chine and the graph of the solution is displayed on an in
teractive graphics device. The process also requires 
that the machine is programmed to recognize hand
written entries. It does this task imperfectly and has to 
be corrected through re-entry of the symbols. The sensi
ble input surface and the visible output surface to
gether form the interactive mechanism of feedback until 
man and machine have reached agreement. A related 
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example is the "turtle" language of Papert'slS Math
land. 

This first type of approximation provides a linguistic 
mechanism for a broad topic of discourse and in addition, 
provides an interactive feedback mechanism that allows 
man and machine to work out misunderstandings in the 
dialogue. 

The second approximation is exemplified by the work 
of Pendergraft. lu9 In this effort, the main concern 
became the evolution of computer-based, linguistic sys
tems of a certain kind-a semiotic system. These systems 
are based on semiotics, the science of linguistic and other 
signs and how they are used (first identified by Charles 
Sanders Pierce and later elaborated upon by Morris 21). 

"A semoitic system can be precisely specified as a sys
tem of acts rather than of things. Such a specification 
describes what the system does, not what it is in a physi
cal sense. The specification of acts consists of two basic 
parts: 

"(a) Potential acts. Individually, these may be thought 
of as mechanical analogues of habits. Collectively, they 
constitute a body of knowledge delimiting what the sys
tem can do, what is within its competence. 

"(b) Actual acts. These are individually the analogues 
of behaviors realizing the potential acts or habits. They 
relate to one another within a single taxonomic structure 
that centers on a history of the success or failure of ele
mentary senso-motor behaviors, or inferred projections of 
that history. Together and in their relations, these actual 
acts constitute a pattern of experience delimiting what the 
system observes in the present, remembers of the past, or 
anticipates for the future. 

"Among the potential acts, there must be certain acts 
which determine how the current pattern of experience is 
to be "deduced" from the current body of knowledge. The 
very realization of habits as behaviors depends upon this 
logical part of the specification. Deductive behaviors real
izing these logical habits themselves, may appear in the 
experimental pattern being constructed; usually the sys
tem will not be aware of its logical behaviors. 19 

An automatic classification system was defined and 
constructed 11 that provided the mechanism for the unify
ing taxonomic structure. It was demonstrated to be capa
ble of assessing probability of class membership for an 
occurrence. It also was demonstrated to be capable of 
detecting the need and carrying out effort to reclassify the 
data base upon the occurrence of a "misfit." 

This second type of approximation provides a mecha
nism for man and machine to interactively teach each 
other what is relevant in their dialogue. It also provides a 
capability for both partners to learn useful lessons for the 
problem solving activity based on their actual history of 
success and failure. This latter point is particularly rele
vant for the situation when another user wishes to do 
problem solving in an area in which the system has 
already had some "experience." 

In summary, the interactive access mechanisms for 
problem solving ought to have the following performance 
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characteristics. The mechanisms should be oriented to 
discourse on the subject of the problem. Recourse to sub
sidiary dialogues, e.g. tutorial inquiry, etc., at the request 
of the human, should be provided to facilitate the opera
tion of the mechanism by the user. The mechanisms 
should bear the burden of trying to deduce the system 
implications of a human's service request, rather than the 
human needing to direct or set up the implementation of 
service in response to the request. Use of the wide band
width channel provided by interactive graphics for man
machine communication at a rate comfortable to the 
human is the concluding feature of this characterization. 

Interactive graphics systems functions and relations 

Figure 1 illustrates the relations that exist among the 
five essential functions in any interactive graphics sys
tem. The human output function presents images in a 
form compatible with human viewing and cognition. The 
human input function mechanizes requests for atten
tion and provides a means for entry of position, notation or 
transition data that will affect the graphics and other 
processes. The storage function retains images or their 
coded abstractions for subsequent processing. The appli
cation function is the set of higher order, "black box" 
processes that will utilize information inherent in images 
as input data. Finally, the graphics function performs the 
three types of sub-processes that are the heart of the 
graphics process. One type of sub-process provides for 
composition, construction or formation of images. The 
second type of sub-process provides for manipulation or 
transformation of images. The third type of sub-process 
(attention handling) links the composition and/ or manip
ulation sub-processes to interaction, intervention or use 
by higher order processes being performed either by the 
application function or by the user. Notice that the rela
tions between the graphics system functions are ones of 
data flow within an overall system. 

\\TC observe the following. -The data that flo\vs from one 
function of the system to another can al.ways be envi-

sioned as having at least two distinct types of compo
nents. One component type contains information about 
variables and their values. The other component type 
contains information about the identity and parameters 
of the function that is to utilize the variable data. 

Considered this way, inter-function data are messages 
between elements of the graphics system. They convey 
service requests for specified functions. Message struc
tured service requests of a limited kind for computer 
graphics has been considered in the environment of dis
tributed resource, network-oriented systems. 20 

In order to successfully support interactive graphics 
access in a network environment, careful distribution of 
the graphics system functions must be accomplished 
within the network facilities. And equally important, the 
relationships between graphics system functions must be 
preserved. 

DESIGN TERMINAL 

One approach for network-oriented, interactive graph
ics is illustrated by a Design Terminal configuration 13 

under development at the author's installation. Some 
limited experience with it in conjunction with network 
access has been gained. 22 The Design Terminal is basi
cally a multi-console terminal with the ability to inde
pendently and concurrently interconnect graphics con
soles, graphics functions and network-based application 
and storage functions. 

Objectives 

Two issues have motivated the development of the 
Design Terminal. First, in certain types of installations, 
there is considered to be a need to insure that interactive 
facilities for problem solving and design specification are 
functionally matched and economically operated with a 
multi-source capability from hardware suppliers. This 
issue involves concern for the relation between types of 
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display mechanisms (e.g. refresh CRT's, DVST's, printer/ 
plotters, etc.), the types of graphics' use and the proba
bility of occurrence and volume need for each type of use. 
Second, for an installation that requires many intelligent 
terminals, there is the concern for the total system imple
mentation and support costs. 

The solution that is being pursued is a little farther 
around the "wheel of reincarnation"23 than other related 
configurations. A general purpose mini-processor and a 
special purpose display processor form the heart of a 
terminal with remote access to many shared computers. 
The general purpose mini-processor is being multi-pro
grammed in a certain way to support concurrent, inde
pendent graphics activities emanating from the terminal. 
The main thrust is to expand the number of concurrently 
active graphics consoles at the terminal so as to achieve a 
satisfactory distribution of the total cost of the terminal 
over each concurrently active console. Figure 2 illustrates 
the test bed on which this effort is being conducted. 

The Design Terminal configuration is concerned with 
providing an interactive graphics terminal with the fol
lowing capabilities: (a) in its simplest form, it is a single
console intelligent terminal; (b) the local mini-processor 
and special purpose processor facilities for providing the 
graphics function are shared by many interactive graph
ics consoles; (c) the graphics consoles currently active 
may employ widely different display mechanisms; (d) a 
majority of all the connected consoles can be concurrently 
active; (e) the current use of each active console can 
involve display of different images than those being gen
erated for all other active consoles at the terminal; (f) the 
terminal can concurrently obtain support for the graphics 
system application and storage functions from more than 
one shared main computer system; and (g) the current 
use of each active console can involve a different applica
tion on a different shared main computer than is involved 
for all other active consoles at the terminal. The distribu
tion of graphics system functions for the Design Terminal 
configuration are illuustrated in Figure 3. 
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Experience 

Although the development of the Design Terminal is 
still incomplete, our experience so far has provided 
insight into the difficulties of problem solving on network
based, virtual systems through interactive graphics. 

The first point is not new. It is yet another confirma
tion of something well known to the computing profession 
and industry. Most users of computing, particularly in an 
interactive environment, cannot afford to be bogged down 
in the mechanics of the computer system. They certainly 
don't care about the subtle intricacies or enduring truths 
and beauties of the system that turn on its builders and 
masters. Therefore, the intricate knowledge about access 
to and use of distributed resources must somehow be 
built-in to the system. 

The second point is also not completely unknown. The 
telecommunications people have been considering alter
natives for a long time. The efforts of Hambrock, et aJ.24 
and Baron25 are two of the most significant to our current 
situation. In a large, dynamic and expanding network, 
one cannot maintain deterministic directories of every 
possible combination of resources and associated inter
connection schemes that are being used or can be 
expected to be used. The transmission facilities would be 
jammed with up-date traffic and the resource processors 
would be heavily burdened with directory maintenance. 

For the user and the system builder, this point appears 
to raise a paradox. The user doesn't want to and can't 
manage to know everything about the network. And the 
maintenance of directories within the network would 
impose a severe utilization of scarce resources. 

The approach of the ARPANET represents an interim 
compromise for this problem, based upon Baran's work 
on distributed communication systems. However, the user 
is still required to know a great deal about the use of each 
resource in the network even though the communications 
problem is taken care of for him. For each resource of 
interest; (a) he must know that the resource exists; (b) he 
must know where within the net it is located; and (c) he 
must know the usage procedure required by the processor 
of that resource. He may be required to know much more. 
For users of interactive mechanisms with extreme accessi
bility provided for by the Design Terminal type configu
ration, this approach to locating and specifying essential 
resources is especially troublesome. 

The conclusion we draw toward the problem we pose is 
that the resource directory function cannot be built into 
either the resource processors or the interconnection facil
ities of the network. We also conclude that attempts to 
moderate search traffic loading in random techniques24 

and relieve switching bottlenecks can be successful6 pro
vided the search criteria and routing mechanism are care
fully defined. 

There is one more point to be considered. It is raised by 
the cost of computer software development and the grow
ing diversity of available computing resources. We cannot 
afford and shall not be able to afford explicit re-design of 
resource linkages each time a new, useful combination is 
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devised that provides additional higher level capability. 
The interactive access mechanims to network-based vir
tual systems must provide or be able to call upon a gener
alized, dynamic linkin,g function. This function will link 
together distributed resource modules it has determined 
to be available and to form the appropriate basis for sat
isfying an interactive service request. 

HIERARCHICAL ACCESS TO VIRTUAL 
SYSTEMS VIA INTERACTIVE GRAPHICS 

Cherry27 has observed "that recognition, interpreted as 
response according to habits, depends upon the past expe
rience from which an individual acquires his particular 
habits." Although his interest was human communica
tion, one should recall the earlier discussion on basic 
concepts. In particular, consider Cherry's observation in 
the context of adaptive, use-directed specification and the 
extensions and amplification of man's basic abilities as a 
result of problem solving through interactive computing 
mechanisms. In this context, this observation provides a 
significant suggestion toward possible answers to many 
of the difficulties cited above. 

Semiotic coupler function 

In the linguistic environment, Pendergraft 11 character
ized a self-regulating system with goal-directed behavior 
in terms useful to our purpose. A hierarchy of processes 
was described. The perception process tries to recognize 
input data in terms of familiar attributes. The symboliza
tion process assigns identifiers to the recognized data. The 
valuation process associates the assigned symbols to proc
esses that effect the response of the system to input data. 
It does so in terms of the system's current knowledge of 
pragmatic values that will satisfy its goal directed per
formance. 

For problem solving through interactive graphics access 
to distributed resource networks, the goal would be for the 
system to correctly determine and cause the interconnec
tion of a virtual system necessary to satisfy each interac
tive service request. Correctness would be a probablistic 
measure that would improve with experience for a given 
problem solving area. 

The input data to the perception process would be the 
image data and/ or symbol string that specifies the inter
active service request. The output of the perception proc
ess would be the syntactic parsing of the service request 
over the language of service requests. The perception 
process also operates on a probablistic basis derived from 
experience. 

The input data to the symbolization process would be 
the identification of processing functions that are 
required to satisfy the service request. The output of the 
symbolization process would be the identification of the 
network's known distributed resources that must be 
assembled into a virtual system to carry out the process
ing functions. Again, .the performance of the symboiiza-

tion process will improve as experience increases with 
both the problem solving topic and the network resources. 
In situations where processing functions are specified for 
which network resources are unknown or unavailable, two 
options exist. Either the symbolization process appro xi -
mates the function in terms of known resources or the 
network is searched. 

The input data to the valuation process would be the 
identification of resource modules that will be called upon 
to satisfy the service request. The output of the valuation 
process would be the identification of the processing 
sequence and data flow relationships that must exist 
amongst the activated resource modules. This valuation 
process is extremely dependent on experience for 
improved performance in a given problem solving area. 

Adaptive classifier function 

Each of the preceding processes depends upon feedback 
from experience to improve performance. Pendergraft 
suggests that the processes applied to stimulus informa
tion should also be applied to response information. 11 

For us, this suggests that the user should interactively 
"grade" the system's performance. The system would then 
apply the three preceding processes to the "grading" 
information in order to adjust the probability assign
ments to the estimates of relationship and to the classi
fication structure for service requests vs. processing func
tions. When "misfits" were identified and/ or when the 
probabilities computed for relationships dropped below 
some threshold, the classification structure would be 
recomputed. Pendergraft and Dale28 originally demon
strated the feasibility of this approach in the linguistic 
environment using a technique based on Needham'!=;29 
theory of clumps. 

As new resources are added to the network, the process
ing functions that they provide are entered into the classi
fication structure with some initial (perhaps standard) 
probability assignment for relations to all known types of 
service requests. These probabilities are then revised 
based upon the feedback from the user's grading of the 
system's performance. 

Use-directed specification function 

The user is of pivotal importance toward specifying 
service requests and generating performance grades for 
the system. Yet, as was indicated earlier, he must be 
capable of the actions without being required to have 
elaborate knowledge of the system's internal content, 
structure or mechanisms. It is in this area that interac
tive graphics plays a vital role in expediting the problem 
solving dialogue between man and machine. 

Consider the simple concept of a "menu," that is, a set 
of alternatives displayed to the user for his selection. In a 
complex problem solving area, the result of a user selec
tion from one meHU cail lead It) the display of a :;uburdi 



nate menu for further specification of the task to be per
formed. In effect, this process leads to a concept of the 
dialogue as a selection process of the alternative paths in 
trees of menus. 

We claim that generalized sub-trees can be devised for 
areas of problem solving methodology that can be para
metrically instantiated to a given topic at run-time only 
guided by previous menu selections during the current 
session at the terminal. Furthermore, we claim that this 
sub-tree concept can be devised so as to allow a given sub
tree to be invoked from a variety of parent nodes in the 
specification process. Work on the Design Terminal 
includes an effort to implement this concept. 

The specification process cannot be fully accommo
dated by the mechanism of the parametric dialogue tree. 
Procedures illustrated by the MATHLAB techniques, the 
methods of Coons/o the Space Form3l system and more 
conventional interactive graphics layout, drafting, and 
curve plotting techniques will all be required in addi
tion to alphanumeric data entry in order to complete the 
specification. The point is that the semantics of these 
specifications, in terms of the problem solving proc
essing functions that are required, will have been directed 
by the current use of the dialogue mechanism. 

One set of choices that is always displayed or selectable 
represents the user's evaluation alternatives of the sys
tem's performance. Another optional set is one that places 
the system in the role of a tutor, either for use of the sys
tem or for the use of a processing function to which the 
system provides access. 

Another set of options should also be callable. In this 
case, the user may want to access a specific processing 
function. He may not know its name or the location of the 
resources in the distributed system that support it. If he 
does have specific identification, he may use it. If he 
lacks an identifier, the user will generally know of some 
attribute of the process. Therefore, he should be able to 
enter a search mode in which he can construct the search 
criteria for the known attribute in whatever terms that 
the system supports. 

The set of use-directed specifications that are achieved 
in the above manner form the set of interactive service 
requests that are input to the semiotic coupler function. 
The selection of evaluation alternatives forms the feed
back input to the adaptive classifier function. 

A RECOGNITION AUTOMATON (RECOGNATON) 

We suggest that distributed resource computing net
works should contain nodes of at least two distinct types. 
The first type is a service node at which the computing 
resources of the network are connected. The second type 
is the access node. It is to the access node that the user is 
connected through his interactive graphics console. 

"\Ve further suggest that the access node is the point in 
the network which implements the functions necessary to 
provide interactive hierarchical access to virtual systems 
in the network. We call the implementation vehicle at the 
access node a recognition automaton or Recognaton. 
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The Recognaton performs four principal functions. 
Three of them have already been described: semiotic 
coupling; adaptive classification; and use-directed specifi
cation. The fourth function generates messages into the 
distributed resource network. It uses the output data of 
the valuation process of the semiotic coupling function. 
These messages request assignment and activation of 
network resources according to the processing sequence 
and inter-process data flow requirements that were deter
mined from the current status of the pragmatic value 
system. The messages are the immediate cause for the 
formation of the virtual system. 

The functions of the Recognaton represent a significant 
computational load at a rather sophisticated level. It is 
unlikely that the cost to implement this computation 
could be afforded for a single interactive graphics console. 
Therefore, we conclude that multiple inte-ractiv.e graphi-es 
consoles must be serviced by a given Recognaton. Figure 
4 illustrates an access node with the Recognaton functions 
based on the configuration of the Design Terminal that 
was discussed earlier. 

SUMMARY 

This discussion began with a concern for an interactive 
mechanism to facilitate man-machine dialogues oriented 
to man's creative thought processes. The intent was to 
consider problem solving as a test-case, creative process 
with practical implications. The activity of the mecha
nism was taken to be to serve as a means for specification 
of and hierarchical access to virtual systems formed in a 
distributed resource computing network. A recognition 
automaton, the Recognaton, has been proposed which 
appears to serve the purpose and does not impose system 
level conflicts. Implementation of the Recognaton 
appears feasible as an extension of the Design Terminal 
multi-console, interactive graphics configuration. 
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Performance determination-The selection 
of tools, if any 

by THOMAS E. BELL 

The Rand Corporation 
Santa Monica, California 

As interest in computer performance analysis has grown, 
the dedication of some analysts to a single tool and analy
sis approach appears to have become stronger. In most 
instances this affection probably comes from increased 
familiarity and success with an approach combined with 
a resulting lack of familiarity and success with other 
approaches. 

Other equally experienced analysts use a variety of 
approaches and tools, and may give the appearance that 
any tool can be used in any situation. Only a little experi
ence is necessary, however, to conclude that personal 
inspection, accounting data, hardware monitors, software 
monitors, benchmarks, simulation models, and analytical 
models are not equally cost effective for performing gen
eral operations control, generating hypotheses for per
formance improvement, testing performance improve
ment hypotheses, changing equipment, sizing future sys
tems, and designing hardware and/ or software systems. 
The analyst new to performance analysis may become 
confused, discouraged, and, eventually disinterested in 
the field as he attempts to start an effective effort. This 
paper attempts to aid him by presenting an overview. 
Tools are described; applications are listed; and impor
tant considerations are reviewed for selecting a tool for a 
specific application. 

ALTERNATIVE TOOLS AND APPROACHES 

An analyst's approach to analyzing a system's perform
ance can, to a large extent, be described by the tools he 
uses. For example, an analyst using simulation as his tool 
performs an analysis based on abstracting important 
characteristics, representing them correctly in a simula
tion, checking the results of his abstractions, and per
forming simulation experiments. * If he were analyzing 
accounting data, his procedure would probably involve 

* More complete procedural suggestions for pursuing a simulation 
analysis can be found in Reference 1. 
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listing conditioned data, generating tentative reports, 
trying to employ them, and then revising the reports. The 
following summaries indicate some of the important 
analysis characteristics of simulation, accounting sys
tems, and other available tools. Most of the technical 
details are omitted because they are only marginally rele
vant to this discussion. * * 

Personal inspection 

Personal inspection can imply an uninspired glance 
at the machine room. This sort of activity often leads to 
beliefs about an installation based more on preconceived 
notions than on reality. This "tool" usually is employed 
in an "analysis" involving occasional glances at a ma
chine room when the observer sees precisely what he 
expected to see (whether it's true or not, and often even in 
the face of significant, contrary evidence). Since the 
observer may only glance at the machine room for a few 
minutes two or three times per day, his sample of the 
day's operation is very incomplete. This type of perform
ance analysis, although common, is without redeeming 
social value, and will not be considered further. Other 
types of personal inspection are more valuable for per
formance analysis. 

Each time a piece of unit record equipment processes a 
record, it emits a sound. The performance analyst can use 
this sound to roughly estimate activity and judge the 
occurrence of certain system-wide problems. For exam
ple, a multiprogrammed system may be experiencing 
severe disk contention in attempting to print spooled 
records. Quite often, this problem manifests itself in 
strongly synchronized printing from the several printers 
on a large system. As the disk head moves from track to 
track, first one then another printer operates. When one 
printer completes output for its job, the other printer(s) 
begins operating at a sharply increased rate. 

** See References 2 and 3 for some details. Further material can be 
found in References 4-7. A review of monitors available in 1970 ap
pears in Reference 8. 
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Multiple, rapidly spinning tapes and extremely active 
disk heads can, in some environments, indicate severe 
trouble. In other environments (where loads should be 
causing this kind of behavior), they may indicate a 
smoothly running system. Unfortunately, most installa
tions fall somewhere between these two extremes, leaving 
analysts-and managers-with an amorphous feeling of 
unease. 

The clues from personal inspection can be valuable, but 
an experienced eye, accompanied with an equally experi
enced ear, is often necessary to make sense from the raw 
environment. Fortunately, alternatives are available. 

Accounting systems 

Accounting systems aggregate computer usage by task, 
job, or other unit of user-directed work. The primary 
objective of the accounting system's designer is cost allo
cation, which sometimes compromises the usefulness of 
accounting system data, particularly where overhead is 
involved.* 

Although accounting data can be deceptive, analysts 
can determine the actual data collection methods used 
and perform analyses based on a good understanding of 
potential errors.** Accounting data also have some dis
tinct advantages for analyses. They are usually quite 
complete because they are retained for historical pur
poses, and changes in collection methods are well docu
mented so that users can examine them for correctness. 
The data are collected about the system's work and or
ganized in precisely the correct way to facilitate work
load control-by requests for computer work (by job). In 
addition to serving as input for reports about computer 
component usage, accounting data (sometimes com
bined with operations logs) can be used to determine the 
use to which this activity was devoted. For example, a 
user would seldom be using a simulation language if he 
were involved in writing and running payroll programs, 
and simulation execution could, prima facie, be consid
ered of negligible value to the organization in this 
circumstance. 

For most analysts, accounting data have the advan
tage of immediate availability, so analysis can begin 
without delays for acquisition of a tool. However, imme
diate data availability does not necessarily imply imme
diate usability. Accounting systems are commonly very 
extensive, so analysts are often overwhelmed with the 
quantity of items collected and the number of inci
dences of each item. All these data are usually placed in 
poorly formatted records on a file along with irrelevant 
or redundant data. The data conditioning problem may 
therefore be a major hurdle for successful analysis. 
Inadequate documentation of the details of data collec-

* Determining system overhead is not trivial, and one of the least triv
ial problems is defining precisely what the term means. The appendix 
suggests some of its constituents. 
** See Reference 9 for some useful techniques to employ a.ccounting 
rlHtIl. 

tion by manufacturers and inadequacies in the data col
lection (leading to variability in addition to significant 
bias) can confuse any analysis results unless the analyst 
is very careful. 

Monitors 

Performance monitors (whether implemented in hard
ware or software) are designed to produce data revealing 
the achieved performance of the system. These tools 
produce data, not understanding, so the analyst does not 
buy his way out of the need for thoughtful analysis when 
he purchases one. 

A hardware monitor obtains signals from a computer 
system under study through high-impedance probes 
attached directly to the computer's circuitry. The signals 
can usually be passed through logic patchboards to do 
logical ANDs, ORs, and so on, enabling the analyst to 
obtain signals when certain arbitrary, complex relation
ships exist. The signals are then fed to counters or timers. 
For example, an analyst with a hardware monitor could 
determine (1) the portion of CPt} time spent performing 
supervisory functions while only one channel is active, or 
(2) the number of times a channel becomes active during 
a certain period. Because hardware monitors can sense 
nearly any binary signal (within reason), they can be 
used with a variety of operating systems, and ~ven with 
machines built by different manufacturers. This capabil
ity to monitor any type of computer is usually not a criti
cally important characteristic, because the analyst is 
usually concerned with only one family of computers. 
Some hardware monitors are discussed in References 2-5 
and 10-14. 

The hardware monitor's primary disadvantage for 
analysis is its great flexibility. Analysts with extensive 
experience have learned the most important performance 
possibilities to investigate, but even the notes distributed 
by vendors of these monitors often prove inadequate for 
aiding the novice. Cases of wasted monitoring sessions 
and of monitors sitting in back rooms are seldom docu
mented, but their validity is unquestionable. In some 
cases even hardware monitor vendors, while attempting to 
introduce clients to their monitors, have held a session on 
an unfamiliar machine and failed miserably. (In most 
cases, they have proved how valuable it is to have their 
expertise on hand to aid in performing a complex analysis 
with a minimum of fuss and bother.) 

Software monitors consist of code residing in the 
memory of the computer being monitored. This means 
that they can have access to the tables that operating 
systems maintain, and thereby collect data that are more 
familiar to the typical performance analyst. Since he 
usually was a programmer before he became an analyst, 
descriptions of data collection are often more meaningful 
to him than the descriptions of hardware monitor data 
collection points. In addition, most software monitors are 
designed to produce specific reports that the designers 
found to be particularly meaningful for the hardware! 
snft-wRrp ('omhinntinn hping monitorprl This recu('Ps thi" 



difficulty of analysis, particularly where the design of 
application jobs is under consideration. Hardware moni
tors, in systems where a program may reside in a variety 
of places, do not typically produce reports on individual 
problem performance that can be easily interpreted, but 
software monitors typically can. For more material on 
some software monitors see References 2, 3, 7, and 16-20. 

The answer to every analyst's problem is not a software 
monitor. Software monitors require a non-negligible 
amount of memory, often both central memory and rotat
ing memory. In addition, some amount of I/O and CPU 
resources are necessary for operating the monitor. This all 
amounts to a degradation in system performance, and at 
the precise time when people are concerned with perform
ance. As a result, the analyst needs to choose carefully 
how much data he will collect and over how long a period. 
This necessity adds to the analyst's problems~ and is 
usually resolved in favor of short runs. This, in turn, 
leads to data of questionable representativeness. Since 
computer system loads usually change radically from 
hour to hour, the analyst may be led to conclude that one 
of his changes has resulted in significant changes in per
formance, when the change actually resulted from differ
ent loads over the short periods of monitoring. 

The choice between hardware and software monitors 
(and between the subtypes of monitors in each group
sampling vs full time monitoring, separable vs integrated, 
recording vs concurrent data reduction, and so on) is 
largely dependent on situation-specific characteristics. 
Application in the specific situation usually involves 
monitoring the normal environment of the existing com
puter. An alternative exists: a controlled, or semi-con
trolled, environment can be created. This analysis 
approach is closely related to the use of batch bench
marks and artificial stimulation. 

Benchmarks 

A batch benchmark consists of a job, or series of jobs, 
that are run to establish a "benchmark" of the system 
performance. The benchmark run is usually assumed to 
be typical of the normal environment but to have the 
advantage of requiring a short time for execution. The 
most common use of benchmarks is for equipment selec
tion, but analysts often use benchmarks for determining 
whether a change to their systems has improved the per
formance of the benchmark job stream. The conclusion 
about this performance (usually measured primarily by 
the elapsed time for execution) is then assumed to be 
directly related to the normal environment; an improve
ment of 20 percent in the benchmark's performance is 
assumed to presage an improvement of 20 percent in the 
real job stream's performance. Benchmark work is 
described in References 21 and 22. 

For an on-line system this technique would not be 
applicable because on-line jobs exist as loads on terminals 
rather than as code submitted by programmers. The 
analog to the benchmark job in a batch system is artifi-
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cial stimulation in the on-line environment. Through 
either hardware or software techniques, the computer 
system is made to respond to pseudo-inputs and the 
response is measured. A stimulator, implemented in soft
ware, is described in Reference 23. 

The obvious difficulty in using batch or on-line bench
marking is relating the results to the real job stream. The 
temptation is to assume that jobs presented by users are 
"typical" and that the results will therefore be applicable 
to reality, or that the on-line work described by the users 
is actually what they do. Neither assumption is generally 
true. 

Running benchmarks or artificially stimulating a sys
tem implies some kind of measurement during a period of 
disrupting the system's operation; then the results must 
be related to reality. Performance modeling has the same 
difficulty in relating its results to reality, but it does not 
disrupt the system's operation. 

Performance modeling 

Simulation modeling of computer system performance 
has seemed an attractive technique to analysts for years, 
and it has been used in response to this feeling. An ana
lyst may design his own simulation using one of the gen
eral or special purpose languages, or employ one of the 
packaged simulators on the market. * In either case, he 
can investigate a variety of alternative system configur
ations without disrupting the real system, and then ex
amine the results of the simulated operation in great 
detail. Virtually all such simulations model the opera
tion of the system through time, so time-related inter
actions can be thoroughly investigated. Some simulation 
experiences are described in References 29-35. Prob
lems and objectives in simulating computers are de
scribed in Reference 36. 

Analytical models are usually steady-state oriented, 
and therefore preclude time-related analysis. However, 
they usually do provide mean and variance statistics for 
analyses, so those analyses requiring steady-state solu
tions (e.g., most equipment selections) could employ the 
results of analytical modeling. Simulations, on the other 
hand, must be run for extensive periods to determine the 
same statistics, and analysts need to worry about prob
lems like the degree to which an answer depends on a 
stream of random numbers. Examples of analytical 
modeling are given in References 37 -42. 

The problem that often proves overwhelming in using 
either type of modeling is ensuring that the model (the 
abstraction from reality) includes the most important 
performance-determining characteristics and interactions 
of the real system. Without this assurance, the model is 
usually without value. Unfortunately for the analyst, 
indication that a particular model was correct for another 
installation is no real assurance that it is correct for his 
installation. Unique performance determinants are 

* For information about such languages and packages see References 
24-2R. 
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usually found in operating system options, configuration 
details, and workload characteristics. Therefore, a valida
tion exercise of a simulative or analytical model is usually 
a necessity if specific values of output parameters are to 
be used in an analysis. 

APPLICATIONS 

The applications of computer performance analysis can 
be categorized in a variety of ways, depending on the 
objective of the categorization. In this paper the objective 
is to aid in selecting an appropriate tool and analysis 
approach. The following categorization will therefore be 
adopted: 

General control: Many installations are run by intui
tion. Freely translated, this means that they are not 
managed, but instead allowed to run without control. 
All attempts at other applications of performance 
analysis will be of marginal utility without control 
based on adequate operating information. 

Hypothesis generation: Computer system performance 
improvement involves generating hypotheses, testing 
hypotheses, implementing appropriate changes, and 
testing the changes.* Useful information for hypothe
sis generation often appears so difficult to specify 
and obtain that random changes are attempted to 
improve the system. The failure rate for performance 
improvement efforts without explicit hypothesis 
generation is extremely high. 

Hypothes~ testing: Given an interesting hypothesis, an 
analyst's first impulse is to assume its correctness 
and begin changing the system. This usually results 
in lots of changes and little improvement. Hypothesis 
testing is imperative for consistently successful 
computer system performance improvement. 

Equipment change: The friendly vendor salesman says 
his new super-belchfire system will solve all your 
problems. The change is too large to be classified as a 
performance improvement change. Should you take 
his word for it and make him rich, or do your own 
analysis? If you choose to do your own analysis, 
you're in this category when you're upgrading or 
downgrading your system. 

Sizing: Sizing a new system is a step more difficult than 
equipment change because it often involves estimat
ing workload and capacity in areas where extrapola
tion of existing characteristics is impossible or unreli
able. This situation does not occur so often as equip
ment change, but usually involves much higher costs 
of incorrect decisioni". Typical situations are bringing 
in a new computer for a conceptualized (but unreal-

* This is a summary of the steps suggested in Reference 43. 

ized) workload, centralization of diverse workloads 
previously run on special purpose hardware/software 
systems, and decentralization of workload from a 
previously large system to a series of smaller ones. 
Vendor selection is included in this category since the 
performance-related part of this problem can be 
described as sizing and verifying (or merely verifying, 
in the case of some procurements) the performance of 
a certain size system. 

System design: Whether dealing with hardware or soft
ware, designers today usually are concerned with 
performance. If the designers are in the application 
area, the concern for performance often comes too 
late for doing much about the mess. Early considera
tion, however, can be expensive and unfruitful if 
carried on without the proper approach. 

The easiest situation would be for each of these cate
gories to have exactly one tool appropriate for applica
tion in analyses, but performance analysis has more di
mensions than the single one of analysis objective. Two 
of the most important ones are analyst experience and 
type of system under consideration. 

ANALYST EXPERIENCE 

Some groups of analysts have considered single systems 
(or a single model of system processing essentially the 
same load at several sites) over a period of years. These 
groups have often developed simulation and analvtical 
tools for one type of analysis, and then, with th~ tool 
developed and preliminary analysis already performed, 
apply them in other situation~. Similarly, they may have 
used accounting data for a situation where it is particu
larly applicable, and then have applied it in an analysis 
in which accounting data's applicability is not obvious. 
The ability of group members to apply a variety of famil
iar tools freely in diverse situations is one of the reasons 
for maintaining such groups. 

Some other groups have developed analysis techniques 
using a single tool to the extent that their members can 
apply it to a much wider variety of situations than 
expected because they have become particularly familiar 
with its characteristics and the behavior of the systems 
they are analyzing. As a result, such groups have proved 
able to enter strange installations and produce valuable 
results by immediately executing rather stylized analyses 
to check for the presence of certain hypothesized prob
lems. 

The analyst with less than one or two years of perform
ance analysis experience, however, cannot expect to 
achieve the same results with the~e approaches. The 
remainder of this paper will consider the situation of the 
more typical analyst who is not yet extensively experi
enced. 



TYPE OF SYSTEM 

Software monitors are obviously commercially availa
ble for IBM System 360 and 370 computers, but their 
existence for other systems is often unrecognized. This 
sometimes leads analysts to believe that personal inspec
tion is the only alternative for any other system. In fact, 
virtually every major computer system on the market 
currently possesses an accounting system; hardware 
monitors will work on any system (with the exception of 
certain very high speed circuits); batch benchmarks can 
be run on any system; and models can be constructed for 
any system (and have been for most). In addition, soft
ware monitors have been implemented for most computer 
systems in the course of government-sponsored research. 
The analyst's problem is to discover any required, 
obscure tools and to be able to use them without undue 

- -

emphasis on learning the tools' characteristics. 
The world of performance analysis tools is not so 

smooth as may be implied above. First, benchmarks for 
on-line systems are nearly impossible to obtain for any 
system without assistance of the computer system vendor. 
Second, many tools are simply no good; their implemen
ters did a poor job, or they are poorly documented, or 
they don't do the thing needed for the problem at hand. 
Third, searching out the appropriate tool may require 
more time than the analyst can spend on the entire per
formance analysis. Fourth, the analyst seldom has prior 
knowledge of whether one of the first three problems will 
arise, so he doesn't know where to concentrate his search. 
Fortunately, any of several different types of tools can be 
used in most analyses, so the analyst can pick from sev
eral possibilities rather than search for some single possi
bility. The choice is largely dependent on the category of 
analysis being performed. 

CATEGORY OF ANALYSIS 

Having presented some important analysis characteris
tics of various tools, limited the discussion to apply only 
to analysts without extensive experience, and begged the 
question of tool availability, the important step remains 
of matching analysis objective with type of tool and anal
ysis. Suggestions about tool selection for each analysis 
objective are given below; they should be interpreted in 
the context of the discussion above. 

GeneraL control 

Accounting data generally have proven most appro
priate for general control. They are organized correctly 
for generating exception reports of system misuse by 
programmers (incorrect specification of job options, vio
lating resource limitations, and running jobs inappro
priate for their assigned tasks). They also usually provide 
valuable information about operations (number of 
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reloads of the operating system, number of reruns, inci
dence of the system waiting for tape mounts, etc.). Fur
ther, it provides data on the level of chargeable resource 
utilization so that financial management can be 
performed. 

Accounting data's primary disadvantage is the diffi
culty of generating meaningful reports from it. It also 
requires operators' adherence to appropriate standards of 
operation for maintaining reliable data. Further, it 
usually can provide reports no sooner than the following 
day. One alternative is to use a very inexpensive hard
ware monitor with dynamic output for on-line operational 
control and to use accounting data for normal reporting. 
(Regular use of monitors, perhaps one use per month, can 
also be adopted to supplement the accounting data.) 

The most commonly used general control technique is 
one of the least useful. Personal inspection is inadequate 
for anything except the case of a manager continually on 
the floor-and he needs an adequate system of reporting 
to detect trends that are obscured by day-to-day prob
lems. The techniques in this section may appear too 
obvious to be important, but we find that ignoring them is 
one of the most common causes of poor computer system 
performance. 

Hypothesis generation 

Hypothesis generation for system performance 
improvement is based on the free run of imagination over 
partly structured data, combined with the application of 
preliminary data analysis techniques. In general, the data 
leading to the most obvious relationships prove best, so 
personal inspection and partly reduced accounting data 
often are most useful. Quick scans of system activity, 
organized by job, often lead to hypotheses about user 
activity. An analyst can often hypothesize operational 
problems by visiting several other installations and trying 
to explain the differences he observes. 

Some installations have found that regular use of a 
hardware or software monitor can lead to generating 
hypotheses reliably. The technique is to plot data over 
time and then attempt to explain all deviations from his
torical trends. This approach may have the advantage of 
hypothesis formulation based on the same data collection 
device that is used for hypothesis testing. 

Hypothesis testing 

Nearly any tool can be used for testing performance 
improvement hypotheses. The particular one chosen is 
usually based on the type of hypothesis and the tool used 
in generating the hypothesis. For example, hypotheses 
about internal processing inefficiencies in jobs can 
usually be best tested with software monitors designed to 
collect data on application code. Hypotheses about the 
allocation of resource use among programmers can 
usually be tested most readily through the use of account-
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ing data. Simulative and analytical models can often be 
used to perform tests about machine scheduling and the 
trade-off of cost and performance, particularly when 
hypothesis generation employed modeling. 

After a hypothesis is tested, implementation of a 
change is usually the next step. Following implementa
tion, the resulting performance change requires examina
tion to ensure that the expected change, and only that 
change, has occurred. Although the same tool may be 
used for both parts of hypothesis testing, employing a 
different tool provides the advantage of forcing the ana
lyst to view the system from a slightly different point of 
view, and therefore reduces the chance of ignoring impor
tant clues in seemingly familiar data. This advantage 
must be traded-off against the advantage of easing detec
tion of perturbations in the familiar data caused by 
implemented changes. 

A special note is in order for the use of benchmarks in 
hypothesis te~ting. If a hypothesis involves a character
istic of the basic system, a completely controlled test 
often can test the hypothesis far more thoroughly than 
other types of tests. For example, an analyst might 
hypothesize that his operating system was unable to initi
ate a high-priority job when an intermediate-priority job 
had control of the CPU. While he could monitor the 
normal system until the condition naturally occurred, a 
simple test with the appropriate benchmark jobs could 
readily test the hypothesis. We have found that artificial 
stimulation of on-line systems can similarly test 
hypotheses rapidly in both controlled tests and monitor
ing normal operation. The temptation to examine only 
"the normal system" should be resisted unless it proves to 
be the most appropriate testing technique. 

Equipment change 

Equipment change might involve upgrading the sys
tem's CPU, changing from slow disks to faster ones, or 
adding a terminal system. All these changes might be 
considered merely major tuning changes, but they involve 
enough financial risk that more analysis is devoted to 
them than normal system performance improvement 
efforts. In addition, the analyst has a very stylized type of 
hypothesis: how much performance change results from 
the hardware change? These special characteristics of 
equipment change lead to increased use of benchmarks 
and simulation. 

When the alternative configuration exists at another 
installation (usually a vendor's facility), analysts can 
generate a series of benchmarks to determine how well 
the alternative performs in comparison with the existing 
system. Recently, synthetic benchmarks have come to be 
used more extensively in this process, particularly in test 
designs which examine particular system characteristics, 
or which include carefully monitoring normal system uti
lization to improve the meaningfulness of the bench-
marks. 

Tn other ('ases there is no svstem available for running 
the benchmarks. Simulation is often employed in this 

environment. The most important problem in this type of 
analysis is ensuring the validity of the workload descrip
tion on the alternative system and the validity of the 
alternative's processing characteristics. Unvalidated 
simulations may be the only reasonable alternative, but 
the risk of employing them is usually high. 

Sizing 

The technique used most commonly today in sIzmg 
computers is listening to vendor representatives and then 
deciding how much to discount their claims. This situa
tion is partly the result of the difficulties involved in 
using the alternatives-benchmarking and modeling. 
Although analytical modeling is conceptually useful, its 
use in sizing operations has been minimal because its 
absolute accuracy is suspect. Simulative modeling 
appears less suspect because the models are closer to 
commonly-used descriptions of computer systems. The 
sensitivity of simulation models to changes in parameters 
can often be verified, at least qualitatively, so analysts 
can gain some degree of faith in their correctness. 

All the problems of using benchmarking in equipment 
change analyses are present when benchmarking is used 
in sizing analyses. In addition, the relationship of bench
marks to workloads that will appear on a future system is 
especially difficult to determine. A synthetic benchmark 
job might be quite adequate for representing workload 
mea~ingfully on a modification of the existing system, 
but Its characteristics might be very wrong on a com
pletely different system. (This same problem may be true 
for simulations, but a validated simulation should facili
tate correct workload descriptions.) 

Design 

Tool selection in design must be divided into two parts 
-selection in the early design phase and selection in the 
implementation phase. In the earlier phase, performance 
analysis must be based on modeling because, without any 
implemented system, real data cannot be collected. The 
later phase might, therefore, seem particularly suited to 
the data collection approaches. In fact, modeling appears 
to be a good technique to employ in concert with moni
tored data in order to compare projections with realized 
performance. Collecting data without using modeling may 
decrease management control over development and 
decrease the ease of data interpretation. 

Design :fforts can begin by using modeling exclusively, 
and then mtegrate monitoring into the collection of tools 
as their use becomes feasible. 

FINAL COMMENT 

Computer performance analysis tools and approaches 
are in a period of rapid development, so the appropriate
ness of their application in various situations can be 
expected to change. In addition. individual analysts often 



find that an unusual application of tools proves the best 
match to their particular abilities and problems. The 
suggestions above should therefore not be interpreted as 
proclamations of the best way to do performance analy
sis, but as general indications of potentially useful 
directions. 

Inadequate understanding of computer system per-
formance currently precludes quantifying problems 
across large numbers of systems. Each analyst must feel 
his way to a solution for each problem with only helpful 
hints for guidance. If improved understanding is devel
oped, the artistic procedure discussed in this paper may 
evolve into a discipline in which analysts have the assur
ance they are using the correct approach to arrive at the 
correct answer. 
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APPENDIX-COMPUTER OVERHEAD 

Accountancy requires that computer overhead costs 
be borne by users who are charged directly for their 
demands on the system. Data collection systems tend to 
include this requirement as a basic assumption under
lying their structures. The resulting aggregation ob
scures the type of overhead most prominent in a system, 
the resources heavily used by overhead activities, and 
the portion of total system capability devoted to over
head activities. System analysis requires these data; 
they need definition and should be available for per
formance analysis. 

From the viewpoint of performance analysis, at least 
five components of overhead can be identified in most 
multiprogramming systems. These are: 

1. I/O handling 
2. User resource request handling 
3. System handling of spooled I/O 
4. Job or sub-job (e.g., job step or activity) initiation/ 

termination 
5. System operation (including task switching, swap

ping, maintaining system files, etc.) 
I/O handling may require large amounts of time, but 

this is largely controllable by the individual user. Item 
one, therefore. may not be a candidate for inclusion in a 
definition of overhead in many analyses. 

User resource request handling (at least at the time of 
job or sub-job initiation) is similarly controllable by the 
users except for required system-required resources (such 
as system files). Item two might be included in definitions 
more often than item one, particularly since item two is 

often influenced strongly by installation-specified prac
tices (such as setting the number of required files). 

System handling of spooled I/O is under the control of 
users to the extent that they do initial and final I/O, but 
the alternatives open to installation managements for 
influencing its efficiency are often very great. For exam
ple, changing blocking sizes or using an efficient spooling 
system (such as HASP) can have gross effects on the 
amount of resources consumed in the process. Installation 
management's control over this is so high that item three 
is often included in a definition of overhead. 

Initiation and termination appear to consume far more 
resources than usually assumed. User-specified options 
influence the amount of resource usage, but installation
chosen options and installation-written code can impact 
usage to a large degree. The choice of specific operating 
system, order of searching files for stored programs, lay
out of system files, and options in the operating system 
can change the resources used to such an extent that item 
four should be included in overhead in nearly all cases. 

System operation is always included as a part of over
head. The difficulty of :separating thi~ element of over
head from all the rest is very difficult, so analyses usually 
assume that it is included as part of one of the other 
elements. One technique for quantifying its magnitude 
is to decide on the parts of code whose execution repre
sent it and then to measure the size of these elements. 
The same parts of code can be monitored with a hardware 
monitor to determine the amount of processor time and 
I/O requests that arise from execution of the code. The 
sizes of system files are usually not difficult to obtain for 
determining the amount of rotating memory used by this 
type of overhead. This technique, however, will nearly 
always underestimate that amount of overhead since 
pieces of overhead are so scattered through the system. 

Ideally, each of the types of overhead would be identi
fied and measured so that installations could control the 
amount of each resource that is lost to it. If the resource 
loss to overhead were known for typical systems. each of 
the applications of performance analysis would be eased. 

Computing societies-Resource or 
hobby? 

by ANTHONY RALSTON 

State University of New York 
Buffalo, New York 

ABSTRACT 

The fodder for a technical society is people but people 
can nevertheless use as well as be used by the society. 
Such use can be passive (e.g., publishing articles in the 
society's journals) or active through direct participation 
in the professional activities or administration of the 
~o('iety. Ap. in thr up.{' of FIll romputing resourcep-o there is a 
potential for both profit and loss; these will be examined. 
in part at least, seriously. 



The special libraries association today 

by E. A. STRABLE 

Special Libraries Association 
New York, New York 

ABSTRACT 

Special librarians are part of the larger library commu
nity but can be differentiated from other groups of librar
ians (school, public, academic) by where they practice 
their profession, by the groups with whom they work, and 
most importantly, by their goals and objectives. The 
major objective, the utilization of knowledge for practical 
ends, brings special librarianship thoroughly into infor
mation processing in some unusual and unique ways. The 
Special Libraries Association is the largest society to 
which special librarians belong. The Association, like its 
members, is also involved in a number of activities which 
impinge directly upon, and affect, the role of information 
processing in the U.S. 

Copyright problems in information 
processing 

by B. H. WElL 

Esso Research and Engineering Company 
Linden, New Jersey 

ABSTRACT 

Present copyright laws were developed largely to pro
tect "authors" against large-scale piracy of books, arti
cles, motion pictures, plays, music, and the like. These 
laws and related judicial decisions have in recent years 
raised serious questions as to the legality of such modern 
information processing as the photocopying, facsimile 
transmission, microfilming, and computer input and 
manipulation of copyrighted texts and data. Congress has 
so far failed to clarify these matters, except for sound 
recordings. It has proposed to have them studied by a 
National Commission, but it has repeatedly refused to 
establish this without aiso passing revisions chiefly deal
ing with cable-TV. Emphasis will be placed in this talk on 
consequences for libraries, library networks, and other 
information processors, and on recent legislative develop
ments. 
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Standards for library information 
processing 

by LOGAN C. COWGILL 

Water Resources Scientific Information Center 
Washington, D.C. 

and 

DA VID L. WEISBROD 

Yale University Library 
New Haven, Connecticut 

ABSTRACT 

Technical standards will be described in terms of their 
intent, their variety (national, international, etc.), their 
enumeration, and their development process. Their 
importance will be evaluated in terms of their present 
and future usefulness and impact. 
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A network for computer users 

by BRUCE K. ALCORN 

Western Institute for Science and Technology 
Durham, North Carolina 

ABSTRACT 

Computer networks are an accepted fact in the world of 
computing, and have been for some time. Not so well 
accepted, however, is the definition of a computer net
work. Some claim that to be a network the communica
tions system must connect a group of computers as 
opposed to a network of terminals communicating with 
one computer. Still others hold that both are examples of 
computer networks; the first being a ring network and the 
latter a star network. 

Within education, computer networks of many descrip
tions exist. Most such activities have dealt with the insti
tutions of higher education, but there are some notable 
exceptions. These networks are operated by universities, 
independent non-profit corporations, branches of state 
governments, and private industry. Some are time-shar
ing systems, some operate in the remote batch mode, and 
others offer both types of service. Most of the computing 
done through these networks has been for instructional 
purposes; however, a great many research problems are 
processed with administrative applications last in amount 
of activity, although increasing. 

During 1968 the National Science Foundation initiated 
a number of projects which gave a great impetus to 
computer networks, mainly among colleges and universi
ties. This effort continues today in a different form 
through the Expanded Research Program Relative to a 
National Science Computer Network of the NSF. 

Currently the National Institute of Education is sup
porting the development of the Nationwide Educational 
Computer Service, a network designed to help colleges 
and school systems meet their computing needs at a 
minimum of cost. This network will consist of a large 
scale computer serving a series of intelligent terminals in 
institutions in various parts of the United States. The 
system is configured in such a way so as to assist the 
student, faculty, and administrator at a cost effective 
rate. The factors involved in producing this saving 
include the particular hardware and software at the cen
tral site and at the terminal location, the mode of opera
tion and the effective use of existing tele-communication 
facilities. 

Uses of the computer in large school 
districts 

by THOMAS J. McCONNELL, JR. 

Director, Atlanta Public Schools 
Atlanta, Georgia 

ABSTRACT 

In this age of accountability in education it is apparent 
that the most economical and efficient systems conceiva
ble must be made available to the administrator. This 
fact is true at all levels of management from the class
room to the superintendent. 

Most large school districts could not perform all of the 
tasks required of them if they had to operate in a manual 
mode. This fact is certainly not unique to school districts 
but is a common problem of our dynamic society. 

The administrative use of the computer in most school 
districts came about as a result of a need for more effi
cient and faster methods of performing accounting func
tions. After their first introduction they generally just 
"growed" as Topsy would say. Most large school districts 
today will have a rather sophisticated set of hardware and 
software supported by a very fine staff of professionals. 

With the advent of tighter budget control and with most 
educators today clamoring for some form of "program 
budgeting" the computer is an even more vital ingredient 
that is required if we are to provide for quality education. 

Additionally, it is no longer sufficient to provide auto
mation to the administrative functions in a school dis
trict. The computer is fast becoming an essential part of 
our instructional program. This instructional role of the 
computer is coming into being in the form of Computer 
Managed Instruction (CM!) as well as Computer Assisted 
Instruction (CAl). 

Although development of uses for the computer for 
instructional purposes has only been under way for a few 
short years, we have witnessed some very dramatic 
results. Most educators are in agreement as to the effec
tiveness of the computer for instructional purposes; the 
fact that it has not expanded as many had hoped and 
assumed is a function of finances rather than a short
coming of the Implementation. 

Education can expect to have some very rewarding 
experiences in its relationship with the computer and the 
computer professional in the seventies. This fact will 
come about as a result of developments in computer tech
nology both in hardware and in software. Also, the reduc
tion in the cost factor should be of such magnitude that 
computer services will be available to more school dis
tricts and at a cost that they can afford. 

With proper organization and cooperation the computer 
can begin to realize its full potential in bringing about 
efficient. effective education in its many aspects. 



Training of teachers in computer 
usage 

by DUANE E. RICHARDSON 

Northwest Regional Educational Laboratory 
Portland, Oregon 

ABSTRACT 

I plan to discuss the need in teacher education for 
training and experience in the selection of instructional 
materials for use on computers and the teacher's role in 
helping to identify criteria for developing additional 
instructional materials. 

§£~£LfLc_ ~~s~~~_sio_n __ ~il) h~_ dj:!".e~t~g _ ~t c:l~_sqjbing a 
course which will guide teachers through the development 
of a set of criteria by which to judge the value of such 
instructional applications and will demonstrate how the 
criteria can be applied. The course will allow the teacher 
to practice application of the criteria to sample instruc
tional uses from his particular interest. 
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How schools can use consultants 

by DONALD R. THOMAS 

ARIES Corporation 
Minneapolis, Minnesota 

ABSTRACT 

Data processing consulting firms today offer a variety 
of professional services to schools. Users of these services, 
however, often differ in their opinions of the value of 
these services. 

The point of this presentation is simply that unsatisfac
tory consultant relationships can have their source not 
onlyi!1 the consultant himself, but also in the schoo) use 
of the consultant's services. In other words, use of consul
tive services implies a two-way relationship which is sub
ject to misuse and abuse by either party. 

The experience throughout the educational computer 
area demonstrates that time and effort devoted to sound 
use of consultants will pay substantial dividends. That 
factor should be a major one in the planned use of a 
consultant. 

An experienced consultant will bring expertise to a 
study based upon his experiences with other clients. This 
should result in client confidence and in assuring that the 
unique needs of the clients will be identified and 
addressed. 





NAPSS-like systems-Problems and prospects 

by JOHN R. RICE 

Purdue University 
West Lafayette, Indiana, 

NAPSS-NUMERICAL ANALYSIS PROBLEM 
SOLVI;\JG SYSTEM 

This paper arises from the development of ;\JAPSS 
and discus-s-es the p-roblems solved and still it> be solved in 
this area. The original paper contains two phrases which 
define the objectives of NAPSS (and NAPSS-like sys
tems) in general, yet reasonably precise, terms: 

"Our aim is to make the computer behave as if it 
had some of the knowledge, ability and insight of 
a professional numerical analyst. " 

"describe relatively complex problems in a sim
ple mathematical language-including integra
tion, differentiation, summation, matrix opera
tions~ algebraic and differential equations, poly
nomwl and other approximations as part of the 
bas ic language." 

A pilot system has been completed at Purdue and runs on 
a CDC 6500 with an Imlac graphics console. It does not 
contain all the features implied by these objectives, but it 
has (a) shown that such a system is feasible and (b) 
identified the difficult problem areas and provided 
insight for the design of a successful production system. 
The purpose of this paper is to identify the eight princi
pal problem areas, discuss four of them very briefly and 
the other four in somewhat more detail. Several of these 
problem areas are specific to NAPSS-like systems, but 
others (including the two most difficult) are shared with 
a wide variety of software systems of a similar level and 
nature. 

The presentation here does not depend on a detailed 
knowledge of NAPSS, but specific details are given in the 
papers listed in the references.1. 2,3,4.5.6.7 

PROBLEM AREAS 

The eight principal problem areas are listed below: 

1. Language Design and Processing 
2. Simulating Human Analysis (Artificial Intelligence) 
3. Internal System Organization 
4. User Interface 
5. Numerical Analysis Polyalgorithms 
6. Symbolic Problem Analysis 
7. Operating System Interface 
8. Portability 
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The first of these is the best understood and least diffi
cult at the present time. The next four are very sub
stantial problem areas, but the pilot NAPSS system 
shows that one can obtain acceptable performance and 
results. Symbolic problem analysis (except for things 
like symbolic differentation, is not made in the pilot 
NAPSS system and, in a numerical analysis context, 
this is an undeveloped area. The interface with the oper
ating system is very complex in the pilot system and is 
an area of unsolved problems. Basically the pilot 
::-.JAPSS system needs more resources than the operating 
system (which is indifferent to NAPSS) provides for one 
user. The final problem area, portability is as difficult 
for NAPSS as for other complex software systems. 

All of these problem areas except 5 and 6 are present 
in any problem solving system with a level of perform
ance and scope similar to NAPSS. Examples include 
statistical systems (BMD,SPSS,OSIRIS); linear pro
gramming and optimization packages (LP90,OPTIMA); 
engineering problem solving systems (COGO,NAS
TRA:r\,ICES) and so forth. There is considerable vari
ation in the present characteristics of these systems, but 
they have as ultimate goal to provide a very high level 
system involving many built-in problem solving proce
dures of a substantial nature. 

Only a brief discussion of the first four problem areas 
is presented here because they are either less difficult or 
already widely discussed in the literature. The next two 
problem areas are specific to ~APSS-like systems and 
several pertinent points are discussed which have arisen 
from an analysis of the pilot NAPSS system. The final 
two are widely discussed in the literature but still very 
difficult for a NAPSS-like system. Some alternatives 
are presented, but the best (or even a good) one is still to 
be determined. 

LANGUAGE DESIGN AND PROCESSING 

Ordinary mathematics is the language of NAPSS 
modulo the requirement of a linear notation. While this 
linear notation does lead to some unfamiliar expressions, 
it is not an important constraint. NAPSS has also 
included a number of conventions from mathematics that 
are not normally found in programming languages 
(e.g., 1=2, 4, .. " N). Incremental compilation is used to 
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obtain an internal text which is then executed incremen
tally. This approach is, of course, due to the interactive 
nature of NAPSS. 

The creation of this language processor was a very 
substantial task. The primary difficulties are associated 
with the fact that all variables are dynamic in type and 
structure, function variables are data structures (not 
program structures) and that many operators are quite 
large and complex due in part to the wide variety of oper
and types. For example, several integrals may appear in 
one assignment statement and each of these may lead to 
interaction with the user. The current NAPSS language 
processor is relatively slow, partly because of the nature 
of the language, partly because of the incremental and 
interactive approach and partly because it is the first one. 
However, it performs well enough to show that it is not a 
major barrier to obtaining an acceptable production sys
tem. 

SIMULATING HUMAN ANALYSIS (ARTIFICIAL 
INTELLIGENCE) 

The original objectives include a large component of 
automatic problem solving in the NAPSS system. This 
component lies primarily in the polyalgorithms and 
manifests itself in two ways. First, there are facilities 
to analyze the problem at hand and to select an ap
propriate numerical analysis technique. This analysis 
continues during the computation and specific techniques 
may be changed several times during the execution of a 
poly algorithm. The second manifestation is in incorporat
ing common sense into the polyalgorithms. This is both 
difficult and time consuming as it requires a large num
ber of logical decisions and the collection and retention of 
a large amount of information about the history of the 
polyalgorithm's execution. The automation of problem 
solving in NAPSS-like systems leads inevitably to large 
codes for the numerical analysis procedures. A routine 
using the secant method may take a few dozen Fortran 
statements, but a robust, flexible and convenient nonlin
ear equation polyalgorithm requires many hundreds of 
statements 

INTERNAL SYSTEM ORGANIZATION 

NAPSS and NAPSS-like systems are inherently large. 
The compiler, interpreter, command processor and super
visor are all substantial programs. A polyalgorithm for 
one operator like integration or solution of nonlinear 
equations can easily run to 1000 lines of Fortran code. 
Data structures created during executions may also be 
quite large (e.g., matrices and arrays of functions). The 
organization of this system naturally depends on the 
hardware and operating system environment. The current 
pilot system is organized with three levels of overlays with 
a paging system and runs in a memory of about 16,000 

words (CDC 6500 words have ten characters or 60 bits or 
multiple instructions). Many other configurations are 
feasible and this area does not, in itself, pose a major 
barrier to an acceptable production system. Currently 
NAPSS performs quite well provided one ignores operat
ing system influences, i.e., when NAPSS is the only pro
gram running. However, it is unrealistic to assume that 
NAPSS-like systems have large computers dedicated to 
them or that the operating system gives them preferential 
treatment (compared to other interactive systems in a 
multiprogramming environment). Thus the internal sys
tem organization is determined by outside factors, pri
marily by the requirements of the interface with the 
operating system. 

USER INTERFACE 

A key objective of NAPSS-like systems is to provide 
natural and convenient operation. This means that sub
stantial investment must be made in good diagnostic 
messages, editing facilities, console, and library and file 
storage facilities. These requirements for a NAPSS-like 
system are similar to those of a variety of systems. The 
pilot NAPSS system does not have all these facilities 
adequately developed and the primary effort was on edit
ing, an operating system might provide many of these 
facilities in some cases. 

A more novel requirement here is the need for access to 
a lower level language like Fortran. Note that applications 
of NAPSS-like systems can easily lead to very substantial 
computations. The intent is for these computations to be 
done by the polyalgorithms where considerable attention 
is paid to achieving efficiency. Inevitably there will be 
problems where these polyalgorithms are either inapplic
able or ineffective. Detailed numerical analysis proce
dures (e.g., Gauss elimination) are very inefficient if 
directly programmed in NAPSS and thus some outlet to a 
language with more efficient execution is needed. In such 
a situation, NAPSS is a problem definition and manage
ment system for a user provided numerical analysis pro
cedure. 

There are several limits on this possibility due to differ
ences in data structures and other internal features. An 
analysis of the pilot NAPSS system indicates, however, 
that a useful form of this facility can be provided with a 
reasonable effort. 

NUMERICAL ANALYSIS 

A NAPSS-like system requires at least ten substantial 
numerical analysis procedures: 

1. Integration 
2. Differentiation 
3. Summation of infinite series 
4. Solution of linear systems (and related items like 

matrix inverses and determinants) 



5. Matrix eigenvalues 
6. Interpolation 
7. Least squares approximation (of various types) 
8. Solution of nonlinear equations 
9. Polynomial zeros 

10. Solution of ordinary differential equations 

The objective is to automate these numerical analysis 
procedures so that a user can have statements like: 

AXS~ fF(X), (X~A TO B) 

EQ2: Xi 2*COS(X) -F(X)/(1 +X) =A *B/2 
G(X) =F(X -A1\S)/(1 +X) 
SOLVE EQ2 FOR X 

EQ3: Y"(T)-COS(T) Y'(T) + TY(T) =G(T-X) -AXS 
_SDhYE_RQ3 FOR_Y(l:J_QX (O~2}\VITH Y(O)~O, 

Y(2)~3 

The user is to have confidence that either these proce
dures are carried out accurately or that an error message 
is produced. 

These procedures grow rapidly in size as one perfects 
the polyalgorithms. One polyalgorithm developed for the 
current NAPSS system is about 2500 Fortran statements 
(including comments). This large size does not come from 
the numerical analysis which constitutes perhaps 20 
percent of the program. It comes from simulation of 
common sense (which requires numerous logical and 
associated pieces of information), the extensive communi
cation facilities for interaction with the user and various 
procedures for searching, checking accuracy and so forth, 
aimed at providing robustness and reliability. A further 
source of complexity is the fact that all of these polyalgo
rithms must automatically interface. Thus we must be 
able to interpolate or integrate a function created by the 
differential equation solver as a tabulated function (or 
table valued function), one of the function types provided 
in NAPSS. Since this output is not the most convenient 
(or even reasonable) input to an integration polyalgo
rithm, one must make a special provision for this inter
face. For example in this case NAPSS could have a com
pletely seperate poly algorithm for integrating table val
ued functions or it could use a local interpolation scheme 
to obtain values for the usual polyalgorithm. The latter 
approach is taken by the pilot NAPSS system. 

In addition to numerical analysis procedures, NAPSS 
currently has a symbolic differentiation procedure and 
numerical differentiation is only used as a back-up for 
those functions which cannot be differentiated symboli
cally (e.g., the gamma function). One may use Leibniz 
rules for differentiating integrals and piecewise symboli
cally differentiable functions present may be handled 
symbolically, so the numerical back-up procedure is infre
quently used. It is noted below that future versions of 
NAPSS should have more function types and that there 
should be considerably more symbolic analysis of the 
program. If these features are added, then a number of 
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additional symbolic procedures must also be added 
including at least a reasonable symbolic integration pro
cedure. 

N.A1PSS currently has two basic types of functions, the 
symbolic function and the tabulated (or discrete) func
tion. (There are also the standard built-in functions.) 
Both of these may internally generate substantial data 
structures. Consider, for example, the result of a very 
common process, Gram-Schmidt orthogonalization. The 
program in NAPSS may well appear as: 

/* DEFIXE QUADRATIC SPLIXE * / 
Q(X)~X i 2 FOR X> =0 
~ 

S(X)~.5(Q(X) -3Q(X -1) +3Q(X -2) -Q(X -3» 
/* FIRST THREE LEGEXDRE POLYXO~nALS */ 
i3(X)IoF-=f;-]r(X)[iI~)(BrX5[2]~i.-5XT 2~.5 
/* GRA~I-SCH::\nDT FOR ORTHOGOXAL BASIS */ 
FOR K~3,4,· . ·,21 DO 

T~(K -2)/10-1, TE::\IP(X)~S((X - T)/10) 
TE::\IP(X)~ TE:\,fP(X) - SU:\l ((fTE~lP( Y)B( Y) [J], 
(Y~ -1 TO 1», J~,l,· .. , K-1) 
B(X)[K]~TE:YIP(X)/(fTE~IP(Y) i 2, (Y~ -1 TO 1» 

i .5; 

The result is an array B(X)[K] of 22 quadratic spline 
functions orthogonal on the interval [-1,1]. These state
ments currently cause NAPSS difficulty because all of 
the functions are maintained internally in a form of 
symbolic text. By the time the 22nd function is defined 
the total amount of the text is quite large (particularly 
since S(X) is defined piecewise) and the evaluation time 
is also large because of the recursive nature of the defini
tion. The integrations are, of course, carried out and con
stant values obtained. 

This difficulty may be circumvented in the pilot 
NAPSS by changing the code and a non-recursive text 
representation scheme has been found (but not imple
mented) which materially reduces the evaluation time in 
such situations. These remedies, however, do not face up 
to the crux of the problem, namely many computations 
involve manipulations in finite dimensional function 
spaces. NAPSS should have a facility for such functions 
and incorporate appropriate procedures for these manip
ulations. This, of course, adds to the complexity of the 
language processor, but it allows significant (sometimes 
by orders of magnitude) reductions in the size of the data 
structures generated for new functions and in the amount 
of time required for execution in such problems. Once this 
type function is introduced, then it is natural to simulta
neously identify the case of polynomials as a separate 
function type. Again NAPSS would need appropriate 
manipulation procedures, but then even a simple sym
bolic integration procedure would be valuable and allow 
the program presented above to be executed in a very 
small fraction of the time now required. 
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SYMBOLIC ANALYSIS 

We have already pointed out the usefulness of symbolic 
algorithms (e.g., differentiation, integration), but there is 
also a significant payoff possible from a symbolic analysis 
of the program. This may be interpreted as source lan
guage optimization and, as usual, the goal is to save on 
execution time by increasing the language processing 
time. There are three factors that contribute to this situa
tion. First, NAPSS is a significantly higher level (more 
powerful) language than, say, Fortran and it is much 
easier to inadvertently specify a very substantial compu
tation. Second, NAPSS allows one to directly transcribe 
ordinary mathematical formulas into a program. Many 
mathematical conventions ignore computations and 
hence, if carried out exactly as specified, lead to gross 
inefficiency. Finally, the ultimate class of users are peo
ple who are even less aware of the mechanics and proce
dures of computation than the average Fortran program
mer. Indeed one of the goals of a NAPSS-like system is to 
make computing power easily available to a wider class of 
users. 

The second factor is most ~pparent in matrix expres
sions where everyone is taught to solve linear equations 
by (in NAPSS) X+-A H -1)B and matrix expressions like 
(D+U-IL)-IL-IU are routinely applied to vectors. The 
inefficiencies of computing inverse matrices are well 
known and algorithms have been developed for process
ing each expression without unnecessarily computing 
matrix inverses. Another simple example comes from in
tegration where the statement 

Df-J(JF(X)G(Y), (Xf-O TO 1», (Yf-O TO 1) 

is the direct analog of the usual mathematical notation. 
These two examples may be handled by optimization of 
single NAPSS statements. This presents no extraordinary 
difficulty in the current system, but optimization involv
ing several statements presents severe difficulties for the 
current system design because it is an incremental lan
guage processor and all variables are dynamic. 

Symbolic analysis of groups of statements is worthwhile 
and many of these situations are fairly obvious or corre
spond to optimizations made in common compilers. The 
following group of statements illustrate a situation unique 
to NAPSS-like languages (or any language where func
tions are true variables, i.e., data structures). 

H(X)f-GA'(X -A)/GB'(A -X) 
G(X)f-JF(T), (Tf-O TO X) 
PLOT G(X) FOR Xf-Q TO 10 
SOLVE Y'(T) + G(T) Y(T) = H(T/lO)/(l + G(T» 

FOR Y(T) \VITH Y(0)f-2 OK Tf-Q TO 10 
SOLVE G(W)/W-H(W-A)=TAX(WIA) FOR W 

The first two statements define functions in terms of 
operators implemented by polyalgorithms (assume that 
GA(X) or GB(X) cannot be differentiated symbolically) 

and the last three statements required numerous evalua
tions of these functions. The straightforward approach 
now used simply makes these evaluations as needed by 
the PLOT or SOLVE processors. However, it is obvious 
that very significant economies are made by realizing that 
these functions are to be evaluated many times and thus, 
introducing the following two statements, 

APPROXIMATE H(X) AS HH(X) ON 0 TO 10 
APPROXIMATE G(X) AS GG(X) ON 0 TO 10 

and then by using HH(X) and GG(X) in the last three 
statements. A good symbolic analysis of the program 
would recognize this situation and automatically replace 
the symbolic definition of H(X) and G(X) by the approxi
mations obtained from the approximation algorithm. It is 
clear that a symbolic analysis would not be infallible in 
these situations, but it appears that the savings made in 
the straightforward situations would be significant. 

OPERATING SYSTEM INTERFACE 

The most likely environment (at this time) for a 
NAPSS-like system is a medium or large scale computer 
with a fairly general purpose multiprogramming mode of 
operation. From the point of view of NAPSS the key 
characteristics of this environment are (a) The operating 
system is indifferent to NAPSS, i.e., NAPSS does not 
receive special priority or resources relative to jobs with 
similar characteristics. (b) Central memory is too small. 
(c) Heavy, or even moderate, use of NAPSS in an inter
active mode makes a significant adverse impact on the 
overall operation of the computer. One may summarize 
the situation as follows: NAPSS is too big to fit comforta
bly in central memory for semi-continuous interactive 
use. Thus it must make extensive use of secondary 
memory. The result is that in saving on one scarce 
resource, central memory space, one expends large 
amounts of another equally scarce resource, access to 
secondary memory. 

One may consider five general approaches to the orga
nization of a NAPSS-like system in an effort to obtain 
acceptable performance at an acceptable cost and with an 
acceptably small impact on the operating system. The 
first is to operate in a small central memory area and to 
be as clever as possible in instruction of programs and the 
access to secondary storage. In particular, paging would 
be heavily if not entirely controlled by the NAPSS system 
in order to optimize transfers to secondary storage. This is 
the approach used in the current pilot NAPSS system. 
The second approach is to use the virtual memory facili
ties of the operating and hardware system and then treat 
NAPSS as though it were in central memory at all times. 
The third approach is obtain enough real memory to hold 
all, or nearly all, of NAPSS. This approach includes the 
case of running a NAPSS-like system on a dedicated 
computer. The fourth approach is to limit NAPSS to 
batch processing use. 



The final approach is to use distributed computing 
involving two processors. One processor is for language 
processing. A substantial memory is required because 
quite large data structure may be generated by NAPSS. 
A minicomputer with a disk might be suitable to handle 
a number of consoles running NAPSS. The other proces
sor is that of a medium or large scale computer and its 
function is to execute poly algorithms. These programs 
would reside in this central computer's secondary stor
age rather than in the minicomputer's memory. The 
necessary language and data structures would be trans
ferred to the main computer when a polyalgorithm is to 
be executed. 

The batch processing approach fundamentally changes 
the nature of the system and is hard to compare with the 
others. The other approaches have one or more of the 
following disad'laIliage.s: 

1. The performance (response time) may be slow, 
especially when the computer is heavily loaded. 

2. A very substantial investment in hardware is 
required. 

3. The system is difficult to move to a new environ
ment. 

The performance of the pilot ~APSS system suggests that 
each of these approaches can lead to a useful production 
system. Those that invest in special hardware would no 
doubt perform better, but it is still unclear which 
approach gives the best performance for a given total 
investment (in hardware, software development, execu
tion time and user time). 

PORTABILITY 

The development of the pilot NAPSS system was a 
significant investment in software, perhaps 8 to 12 man 
years of effort. The numerical analysis polyalgorithms 
are reasonably portable as they are Fortran programs 
with only a few special characteristics. Indeed one can 
locate some suitable, if not ideal, already existing pro
grams for some of the numerical analysis. The language 
processor is very specific to the operating system interface 
and the hardware configuration. It is about 90 percent in 
Fortran, but even so changing environments requires 
perhaps 8 to 12 man months of effort by very knowledge
able people. 
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NAPSS-like systems must be portable in order to get a 
reasonable return from the development effort as few 
organizations can justify such a system on the basis of 
internal usage . .I.~ number of approaches to (nearly) ma
chine independent software do exist (e.g., boot strap
ping, macros, higher level languages) which are very 
useful. However, I believe that a survey of widely dis
tributed systems similar to NAPSS in complexity would 
show that the key is an organization which is respon
sible for the portability. This organization does what
ever is necessary to make the system run on an IBM 
360;75 or 370/155, a UNIVAC 1108, and CDC 6600 and 
so forth. No one has yet been able to move such a system 
from sayan IBM 370 to a CDC 6600 with a week or two 
of effort. 

Another approach is to make the system run on 
II!El9-jt!:r!lJ!!l(:Ll~rg~ __ ~U:~_M _ aeQ'_~ __ ~n_d _aLQ'~L( within )standarrl 
configurations) and ignore the rest of the computers. 

The emergence of computer networks opens up yet 
another possibility for portability, but it is too early to 
make a definite assessment of the performance and cost 
of using a NAPSS-like system through a large computer 
network. Networks also open up the possibility of a really 
large NAPSS machine being made available to a wide 
community of users. 
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The correctness of programs for 
numerical computation 

byT. E. HULL 

University of Toronto 
Toronto, Canada 

ABSTRACT 

Increased attention is being paid to techniques for 
proving the correctness of computer programs, and the 
problem is being approached from several different points 
of view. For example, those interested in systems pro
gramming have placed particular emphasis on the impor
tance of language design and the creation of well-struc
tured programs. Others have been interested in more 
formal approaches, including the use of assertions and 
automatic theorem proving techniques. Numerical ana
lysts must cope with special difficulties caused by round 
oft' and truncation error, and it is the purpose of this 
talk to show how various techniques can be brought 
together to help prove the correctness of programs for 
numerical computation. 



The changing role of simulation and 
the simulation councils 

by JOHN MCLEOD 

Simulation Councils, Inc. 
La J olIa, California 

ABSTRACT 

Simulation in the broadest sense is as old as man. 
Everyone has a mental model of his world. Furthermore 
he will use it to investigate-mentally-the possible 
results of alternative courses of action. 

Simulation as we know it, the use of electronic circuits 
to m9del real or ilI!~gi!lary .thi1).g§L beg~n about 3f,i -years 
ago. Since that time we have seen such vast changes in 
both the tools and the techniques of simulation that only 
the underlying philosophy remains unchanged. 

And the uses and abuses of simulation have changed 
radically, too. Seldom has a technology, developed pri
marily to serve one industry-in the case of simulation 
the aerospace industry --so permeated seemingly unre
lated fields as has simulation. Today simulation is used 
as an investigative tool in every branch of science, and in 
many ways that by no stretch of the term can be called 
science. 

These changes have had their impact on our society, 
too. The first Simulation Council was founded in 1952 
after we had tried in vain to find a forum for discussion of 
simulation among the established technical societies. As 
interest grew other Simulation Councils were organized, 
and in 1957 they were incorporated and became known as 
Simulation Councils, Inc. Because the nine regional 
Simulation Councils now comprise the only technical 
society devoted exclusively to advancing the state-of-the
art of simulation and serving those people concerned with 
simulation, we are now known as SCS, the Society for 
Computer Simulation. 

In 1952 the analog computer was the best tool for simu
lation, and not one of the technical societies concerned 
with the up-and-coming digital computers was interested 
in the analog variety. So circumstances, not purpose, 
decreed that the Simulation Councils should become 
thought of as the analog computer society. We are not, 
and never have been; the Society for Computer Simula
tion is concerned with the development and application of 
the technology, not the tool! 
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That being the case, and realizing the applicability of 
the simulation technology to the study of complex sys
tems in other fields, the society fostered the necessary 
technolog-j transfer by soliciting and publishing articles 
describing applications first in medicine and biology, and 
for the last several years, in the social sciences. 

To foster the change in role of simulation from that of a 
tool for the aerospace industry to that of a means for 
studying and gaining and understanding of the problems 
of our society required that the society also change. This 
change was first reflected in the technical content of our 
journal Simulation. It has always been our policy to pub
lish articles describing unusual applications of simula
tion, but until a few years ago that was the only reason 
material describing a socially relevant use of simulation 
appeared in Simulation. Now it is our policy to solicit 
such_ articles, .and.publish as .many as are approved by 
our editorial review board. Therefore much of the mate
rial in our journal is now concerned with socially relevant 
issues. 

The Society for Computer Simulation also publishes a 
Proceedings series. Of the three released to date, all are 
relevant to societal problems. 

The changing role of the society is also evidenced by 
changes in official policy and in the organization itself. 
The change in policy was elucidated by our President in 
an article published in the April 1970 issue of Simulation, 
which stated in part" ... the Executive Committee feels 
that [our society's] primary mission today should be to 
assist people who want to use simulation in their own 
fields and particularly to assist people who are dealing 
with the world's most urgent and difficult [societal] 
problems ... " 

The principal organizational change is the establish
ment of the World Simulation Organization to stimulate 
work towards the development of simulation technology 
applicable to the study of problems of our society from a 
global point of view. 

Concomitant with the spread of simulation to all disci
plines has been the increase in interest within technical 
societies which are only peripherally concerned with 
simulation. Although these societies are primarily dedi
cated to other fields, several have formed committees or 
special interest groups with aims and objectives similar to 
those of the Society for Computer Simulation. 

However, the Society for Computer Simulation remains 
the only technical society dedicated solely to the service 
of those concerned with the art and science of simuiation, 
and to the improvement of the technology on which they 
must rely. That others follow is a tribute to our leader
ship. 



50 National Computer Conference, 1973 

Up, up and away 

by THOMAS NAYLOR 

Duke University 
Durham, North Carolina 

ABSTRACT 

In 1961, Jay Forrester introduced economists, manage
ment scientists and other social scientists to a new meth
odology for studying the behavior of dynamic systems, a 
methodology which he called Industrial Dynamics. Fol
lowing closely on the heels of Industrial Dynamics was 
Urban Dynamics, which purported to analyze the nature 
of urban problems, their cases, and possible solution to 
these problems in terms of interactions among compo
nents of urban systems. More recently, Forrester has 
come forth with World Dynamics. We and the inhabit
ants of the other planets in our universe are now anx
iously awaiting the publication of Universe Dynamics, a 
volume which is to be sponsored by the Club of Olympus, 
God, the Pope, Buddha, Mohammed, and the spiritual 
leaders of several other major religions of this world and 
the universe. Not unlike World Dynamics and other 
books by Jay Forrester, Universe Dynamics will be char
acterized by a number of distinct features. These features 
will be summarized in this paper. 

In this presentation we shall comment on the methodol
ogy used by Forrester in World Dynamics as well as the 
methodology which is being set forth by his disciples who 
publish The Limits of Growth and the other people 
involved in the Club of Rome project. We shall address 
ourselves to the whole question of the feasibility of con
structing models of the entire world and to model struc
tures alternative to the one set forth by Forrester, et al. 

It is first necessary to consider what possible objectives 
one might have in trying to prove programs correct, since 
different correctness criteria can be relevant to any par
ticular program, especially when the program is to be 
used for numerical computation. Then it will be shown 
that careful structuring, along with the judicious use of 
assertions, can help one to organize proofs of correctness. 
Good language facilities are needed for the structuring, 
while assertions help make specific the details of the 
proof. 

Examples from linear algebra, differential equations 
and other areas will be used to illustrate these ideas. The 
importance of language facilities will be emphasized, and 
implications for Computer Science curricula will be 
pointed out. A useful analogy with proofs of theorems in 
mathematics and the relevance of this analogy to certifi
cation procedures for computer programs will be dis
cussed. 

Policy models-Concepts and rules-of
thumb 

by PETER w. HOUSE 

Environmental Protection Agency 
Washington, D.C. 

ABSTRACT 

The desire to build policy models or models for policy 
makers is based on two foundations. First, the need to 
solicit funds to pay for the construction of models means 
that those who want to construct models have to promise 
a "useful" product. Since a large portion of the models 
built are to support some level of policy, public or private, 
there is a deliberate attempt to promise output which will 
be useful to the decision process. Secondly, it is clear 
from history that the advisor to the throne is a coveted 
position and one dreamed of by many scientists. It is also 
clear that the day is coming when models will playa large 
role in making such policy. The advisory role then shifts 
to the model builder. 

Unfortunately, the reality of model development for the 
policy level does not appear to agree with the rhetoric. 
This presentation will review the concept of policy models 
and suggest some rules-of-thumb for building them. 



On validation of simulation models 

by GEORGE S. FISHMAN 

Yale University 
New Haven, Connecticut 

ABSTRACT 

Befere an investigater can claim that his simulatien 
medel is a useful tee 1 fer studying behavier under new 
hypethetical cenditiens, he is well advised to. check its 
censistency with the true system, as it exists befere any 
change is made. The success ef this validatien establishes 
a basis fer cenfidence in results that the medel generates 
under --new- conditions_After-all,- if a model-cannot ;rep-ro
duce system behavier without change, then we hardly 
expect it to. preduce truly representative results with 
change. 

The preblem ef hew to. validate a simulatien model 
arises in every simulatien study in which seme semblance 
ef a system exists. The space deveted to. validatien in 
Nayler's boek Computer Simulatien Experiments with 
Models of Economic Systems indicates both the relative 
importance of the tepic and the difficulty of establishing 
universally applicable criteria fer accepting a simulatien 
model as a valid representatien. 

One way to. approach the validation of a simulation 
model is through its three essential cempenents; input, 
structural representation and eutput. For example, the 
input censist of exegeneus stimuli that drive the model 
during a run. Censequently one would like to. assure 
himself that the probability distributions and time series 
representations used to characterize input variables are 
consistent with available data. With regard to. structural 
representation one would like to. test whether or not the 
mathematical and logical representations do not conflict 
with the true system's behavier. With regard to output 
ene ceuld feel cemfortable with a simulation model if it 
behaved similarly to. the true system when expesed to. the 
same input. 

Interestingly enough, the greatest effort in medel vali
datien ef large econometric medels has concentrated on 
structural representation. No. doubt this is due to the fact 
that regression methods, whether it be the simple least
squares methed or a more comprehensive simultaneous 
equatiens techniques, in addition to providing precedures 
for parameter estimation, facilitate hypothesis testing 
regarding structural representation. Because of the avail
ability of these regression methods, it seems hard to 
believe that at least some part of a medel's structural 
representation cannot be validated. Lamentably, seme 
researchers choose to discount and avoid the use of avail
able test precedures. 

With regard to input analysis, techniques exist for 
determining the temporal and probabilistic characteris
tics of exogeneous variables. Fer example the auteregres-
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sive-moving average schemes described in Box and 
Jenkins' beok, Time Series Analysis: Forecasting and 
Control, are available today in canned statistical com
puter programs. Maximum likeliheed estimation proce
dures are available for mest commen prebability distri
bution and tables based on sufficient statistics have 
begun to appear in the literature. Regardless of how little 
data is available, a medel's use would benefit from a 
conscientious effort to characterize the mechanism that 
produced those data. 

As mentioned earlier a check of censistency between 
model and system eutput in res pense to the same input 
would be an apprepriate step in validation. A natural 
question that arises is: What ferm should the consistency 
check take? One approach might go as fellows: Let Xl> 
... , Xn be the medel's output in n consecutive time inter-
vals-and let Yn . . .; -¥n-OO-tM-system's -0Utput -fuf n con
secutive time intervals in response to the same stimuli. 
Test the hypethesis that the joint prebability distribution 
of Xl> ... , Xn is identical with that ef Y1, ••• , Yn. 

My ewn feeling is that the above test is too stringent 
and creates a misplaced emphasis en statistical exactness. 
I weuld prefer to. frame output validatien in mere of a 
decision making centext. In particular, one questien that 
seems useful to answer is: In response to the same input, 
does the model's output lead decision makers to take the 
same action that they would take in respense to the true 
system's eutput? While less stringent than the test first 
described, its implementation requires access to. decision 
makers. This seems to me to. be a desirable requirement 
for enly through continual interaction with decision 
makers can an investigator hope to gauge the sensitive 
issues to. which his model should be respensive and the 
degree ef accuracy that these sensitivities require. 
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In the beginning 

by HOWARD CAMPAIGNE 

Slippery Rock State Teachers College 
Slippery Rock, Pennsylvania 

ABSTRACT 

The history of computers has been the history of two 
components; memories and software. These two depend 
heavily on each other, and all else depends on them. 

The early computers had none of either, it almost 
seems in retrospect. The Harvard Mark I had 132 words 
of 23 decimal digits, usable only for data. ENIAC had 
ten registers of ten decimals, each capable of doing 
arithmetic. 

It was von Neuman who pointed out that putting the 
program into the memory of ENIAC (instead of reading it 
from cards) would increase the throughput. Thereafter 
computers were designed to have data and instructions 
share the memory. 

The need for larger storage was apparent to all, but 
especially to programmers. EDVAC, the successor to 
ENIAC, had recirculating sounds in mercury filled pipes 
to get a thousand words of storage. The Manchester 
machine had a TV tube to store a thousand bits. 

Then the reliable magnetic core displaced these expedi
ents' and stayed a whole generation. It was only in recent 
times when larger memories became available that the 
programmer had a chance. And of course it is his sophis
ticated software which makes the modern computer sys
tem responsive and effective. 

Factors affecting commercial 
computers system design in the 
seventies 

by WILLIAM F. SIMON 

Sperry UNIVAC 
Blue Bell, Pennsylvania 

ABSTRACT 

The design of a digital computer for the commercial 
market today must, of course, face up to the pervasive 
influence of IBM. But technological maturity in some 
areas is slowing the rate of change so that designs seem to 
converge on certain features. Microprogramming of the 
native instruction set (or sets?) with emulation of a range 
of older systems is such a feature. Virtual memory 
addressing may be another. Characteristics of main stor-

age, random access mass storage devices, data exchange 
media seem to converge while terminals and communica
tions conventions proliferate and diverge. Some reasons 
for these phenomena are evident; others will be suggested. 

Whatever happened to hybrid packaging, thin films, 
large scale integration, and tunnel diodes? The more 
general question is: why do some technologies flourish 
only in restricted environments, or never quite fulfill the 
promise of their "youth?" Or is their development just 
slower than we expected? While these answers cannot be 
absolute, some factors affecting the acceptance of new 
technologies can be identified. 

Factors impacting on the evolution of 
military computers 

by GEORGE M. SOKOL 

US Army Computer Systems Command 
Fort Belvoir, Virginia 

ABSTRACT 

This paper will trace Army experience in ADP for the 
combat environment, with emphasis on the role of soft
ware as a factor in influencing computer organization and 
design. Early Army activity on militarized computers 
resulted in the Fieldata family of computers, a modular 
hierarchy of ADP equipment. Subsequently, ~oftware 
considerations and the evolution of functional require
ments resulted in extended use of commercially available 
computers mounted in vehicles. The balance between 
central electronic logic and peripheral capability is cen
tral to the design of militarized computers, but con
straints of size, weight and ruggedness have greatly lim
ited the processing capability of fieldable peripheral 
equipment. The systems acquisition process also impacts 
on the available characteristics of militarized computers. 
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I:\fTRODUCTION 

The objective of this paper is to present what is at least 
the authors' general assessment of the state-of-the-art of 
modeling and simulation in the process industries, which 
in this context is taken to include the chemical, petro
chemical, pulp and paper, metals, waste and water treat
ment industries but excluding the manufacturing indus
tries such as the automobile industry. Since a number of 
texts l.2.3 are available on this topic for those readers inter
ested in a more technical treatment, this discussion will 
tend to be more general, emphasizing such aspects as 
economic justification, importance of experimental and/ 
or plant data, etc. 

EXAMPLES 

Paper machine 

In the process customarily used for the manufacture of 
paper, an aqueous stream consisting of about 0.25 percent 
by weight of suspended fiber is jetted by a head box onto a 
moving wire. As the water drains through the wire, a cer
tain fraction of the fiber is retained, forming a mat that 
subsequently becomes a sheet of paper. The wire with the 
mat on top passes over suction boxes to remove additional 
water, thereby giving the mat sufficient strength so that it 
can be lifted and passed between press rolls. It then 
enters the dryer section, which consists of several steam
heated, rotating cylinders that provide a source of heat to 
vaporize the water in the sheet. The final sheet generally 
contains from 5 to 10 percent water by weight. 

The paper machine is a good example of a model con
sisting almost entirely of relationships to describe physi
cal processes. The formation of the mat over the wire is a 
very complex physical process.'·5 Initially, the wire has no 
mat on top, and the drainage rate is high but the retention 
(fraction of fiber retained on wire) is low. As the mat 
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builds up, the drainage rate decreases and the retention 
increases. This process continues until all of the free liq
uid has drained through the wire. In general, these proc
esses are not well-understood (especially from a quantita
tive standpoint), and as a result, the equations used to 
describe them have been primarily empirical. 

The action of the suction boxes and press rolls is also a 
physical process, and again are not well-understood. Sim
ilarly, the drying of sheets is also a complex physical 
process .. Initially, the sheet contains a high percentage of 
water, and it is easily driven off. But as the sheet becomes 
drier, the remaining water molecules are more tightly 
bound (both chemically and physically) to the fiber, and 
the drying rate decreases. Quantitatively, the relation
ships are not well-developed, and again empiricism is 
relied upon quite heavily. 

A model of the paper machine should be capable of 
relating the final sheet density (lbs/ft2), sheet moisture, 
and other similar properties to inputs such as stock flow, 
machine speed, dryer steam pressure, etc. 

TNT process 

Whereas the model for the paper machine consists 
almost entirely of relationships describing physical proc
esses, the description of chemical processes forms the 
heart of many models. For example, the manufacture of 
trinitrotoluene (TNT) entails the successive nitration of 
tol uene in the presence of strong concentrations of nitric 
and sulphuric acids. In current processes, this reaction is 
carried out in a two phase medium, one phase being 
largely organic and the other phase being largely acid.6 

According to the currently accepted theory, the organic 
species diffuse from the organic phase to the acid phase; 
where all reactions occur. The products of the reaction 
then diffuse back into the organic phase. 

In this process, the primary reactions leading to the 
production of TNT are well-known at least from a stoichi-
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ometric standpoint. However, many side reactions occur, 
including oxidation of the benzene ring to produce gas
eous products (oxides of carbon and nitrogen). These 
reactions are not well-understood, but nevertheless must 
be included in a process model. Similarly, the relation
ships describing the diffusion mechanism are complex 
and include constants whose quantitative values are not 
available. In this particular process, the solubility of the 
organic species in the acid phase is not quantitatively 
known. 

From a model describing the TNT process, one should 
be able to compute the amount of product and its compo
sition from such inputs as feed flows and compositions, 
nitrator temperatures, etc. 

STEADY-STATE VS. DYNAMIC MODELS 

A steady-state model is capable of yielding only the 
equilibrium values of the process variables, whereas a 
dynamic process model will give the time dependence of 
the process variables. 

Using the paper machine as an example, the design of 
the plant would require a model that gives the final sheet 
moisture, density, and other properties obtained when the 
inputs are held at constant values for long periods of time. 
This would be a steady-state model. On the other hand, 
one of the most difficult control problems in the paper 
industry occurs at grade change.7 For example, suppose 
the machine has been producing paper with a sheet den
sity of 60 lbs/ 1000ft2. Now the necessary changes must be 
implemented so that the machine produces paper with a 
sheet density of 42 lbs/l000ft2. Since virtually all of the 
paper produced in the interim must be recycled, the time 
required to implement the grade change should be min
imized. Analysis of this problem requires a model that 
gives the variation of the paper characteristics with time. 
This would be a dynamic model. 

ECONOMIC JUSTIFICATION 

Due to the complexity of most industrial processes, 
development of an adequate process model frequently 
requires several man-years to develop, significant outlays 
for gathering data, and several hours of computer time. 
Therefore, some thought must be given to the anticipated 
returns prior to the start of the project. In essence, there 
is frequently no return from just developing a model; the 
return comes from model exploitation. 

Virtually every project begins with a feasibility study, 
which should identify the possible ways via which a 
model can be used to improve process performance, esti
mate the returns from each of these, develop specific 
goals for the modeling effort (specify the sections of the 
process to be modeled; specify if the model is to be 
steady-state or dynamic, etc.), and estimate the cost of 
the modeling efforts. Unfortunately, estimating returns 
from model exploitation is very difficult. Furthermore, 
return" e:m be nivined into tangiblf' rf'hlrnR for which 

dollar values are assigned and intangible returns for 
which dollar values cannot readily be assigned. For 
example, just the additional insight into the process 
gained as a result of the modeling effort is valuable, but 
its dollar value is not easily assigned. Perhaps the day 
will come when the value of process modeling has been 
established to the point where models are developed for 
all processes; however, we are not there yet. 

For many processes, the decision as to whether or not to 
undertake a modeling project is coupled with the decision 
as to whether or not to install a control computer, either 
supervisory or DDC. In this context, perhaps the most 
likely subjects are plants with large throughputs, where 
even a small improvement in process operation yields a 
large return due to the large production over which it is 
spread.B Many highly complex processes offer the oppor
tunity to make great improvements in process operation, 
but these frequently necessitate the greatest effort in 
model development. 

Typical projects for which a modeling effort can be 
justified include the following: 

1. Determination of the process operating conditions 
that produce the maximum economic return. 

2. Development of an improved control system so that 
the process does not produce as much off-specifica
tion product or does not produce a product far above 
specifications, thereby entailing a form of "product 
give-away." For example, running a paper machine 
to produce a sheet with 5 percent moisture when the 
specification is 8 percent or less leads to product 
give-away in that the machine must be run slower in 
order to produce the lower moisture. Also, paper is 
in effect sold by the pound, and water is far cheaper 
than wood pulp. 

3. Design of a new process or modifications to the cur
rent process. 

Although many modeling efforts have been in support 
of computer control installations, this is certainly not the 
only justification. In fact, in many of these, hindsight has 
shown that the greatest return was from improvements in 
process operation gained through exploitation of the 
model. In many, the computer was not necessary in order 
to realize these improvements. 

MODEL DEVELOPMENT 

In the development of a model for a process, two dis
tinct approaches can be identified: 

1. Use of purely empirical relationships obtained by 
correlating the values of the dependent process vari
ables with values of the independent process varia
bles. 

2. Development of detailed heat balances, material 
balances, and rate expressions, which are then 
romhinf'n to form the OVPTl'Ill monf'l of the process. 



The first method is purely empirical, whereas the second 
relies more on the theories regarding the basic mecha
nisms that proceed within the process. 

'Nhile it may not be obvious at first, both of these 
approaches are ultimately based on experimental data. 
Since regression is used outright to obtain the empirical 
model, it is clearly based on experimental data. For any 
realistic process, the detailed model encompassing the 
basic mechanisms will contain parameters for which no 
values are available in the literature. In these cases, one 
approach is to take several "snapshots" of the plant, 
where the value of as many process variables as possible 
are obtained. In general, the normal process instrumenta
tion is not sufficient to obtain all of the needed data. 
Additional recording points are often temporarily added, 
and samples are frequently taken for subsequent labora
tory analysis. With this data available, a multivari:,1ble 
search technique such as Pattern13

,14 can be used to deter
mine the model parameters that produce the best fit of 
the experimental data. 

In efforts of this type, the availability of a digital 
computer for data logging can be valuable. The proper 
approach is to determine what data is needed in the 
modeling effort, and then program the computer to obtain 
this data from carefully controlled tests on the process. 
The use of a digital computer to record all possible values 
during the normal operation of the process simply does 
not yield satisfactory data from which a model can be 
developed. 

Another point of contrast between the empirical model 
and the basic model involves the amount of developmen
tal effort necessary. The empirical model can be devel
oped with much less effort, but on the other hand, it 
cannot be reliably used to predict performance outside 
the range within which the data was obtained. Since the 
detailed model incorporates relationships describing the 
basic mechanisms, it should hold over a wider range than 
the empirical model, especially if the data upon which it 
is based was taken over a wide range of process operating 
conditions. 

NUMERICAL METHODS 

In the development and exploitation of process models, 
numerical techniques are needed for the following opera
tions: 

1. Solution of large sets of nonlinear algebraic equa
tions (frequently encountered in the solution of 
steady-state models). 

2. Solution of large sets of nonlinear, first-order differ
ential equations (frequently encountered in the solu
tion of unsteady state models). 

3. Solution of partial differential equations (usually 
encountered in the solution of an unsteady-state 
model for a distributed-parameter system). 

4. Determination of the maximum or minimum of a 
high-order, nonlinear function (usually encountered 
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in either the determination of the model parameters 
that best fit the experimental data or in the determi
nation of the process operating conditions that pro
duce the greatest economic return). 

Only digital techniques are discussed in this section; 
analog and hybrid techniques will be described subse
quently. 

In general, the numerical techniques utilized for proc
ess models tend to be the simpler ones. The characteristic 
that generally presents the most difficulties is the size of 
the problems. For example, the model of the TNT plant 
described in Reference 9 contains 322 nonlinear equa
tions plus supporting relationships such as mole fraction 
calculations, solubility relationships, density equations, 
etc. 

In the solution of sets of nonlinear algebraic equations, 
the tendency is to use direct substitution methods in an 
iterative approach to solving the equations. In general, a 
process may contain several recycle loops, each of which 
requires an iterative approach to solve the equations 
involved. The existence of nested recycle loops causes the 
number of iterations to increase significantly. For exam
ple, the steady-state model for the TNT process involves 
seven nested recycle loops. Although the number of itera
tions required to obtain a solution is staggering, the prob
lem is solved in less than a minute on a CDC 6500. 

A few types of equations occur so frequently in process 
systems that special methods have been developed for 
them. An example of such a system is a countercurrent, 
stagewise contact system, which is epitomized by a distil
lation column. For this particular system, the Theta
method has been developed and used extensively. 10 

In regard to solving the ordinary differential equations 
usually encountered in dynamic models, the simple Euler 
method has enjoyed far more use than any other method. 
The advantages stemming from the simplicity of the 
method far outweigh any increase in computational effi
ciency gained by using higher-order methods. Further
more, extreme accuracy is not required in many process 
simulations. In effect, the model is only approximate, so 
why demand extreme accuracies in the solution? 

Although once avoided in process models, partial differ
ential equations are appearing more regularly. Again, 
simple finite difference methods are used most frequently 
in solving problems of this type. 

Maximization and minimization problems are encoun
tered very frequently in the development and exploitation 
of process models. One very necessary criterion of any 
technique used is that it must be able to handle con
straints both on the search variable and on the dependent 
variables computed during each functional evaluation. 
Although linear programming handles such constraints 
very well, process problems are invariably nonlinear. 
Sectional linear programming is quite popular, although 
the conventional multi variable search techniques coupled 
with a penalty function are also used. 

Over the years, a number of simulation languages such 
as CSMP and MIMIC have been used in simulation. 11 On 
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the steady-state side, a number of process simulation 
packages such as PACER, FLOTRAN, and others have 
appeared. 12 An alternative to these is to write the program 
directly in a language such as Fortran. 

One of the problems in steady-state simulation is the 
need for extensive physical property data. Many of the 
steady-state simulation packages have a built-in or read
ily available physical properties package that is a big plus 
in their favor. However, many prefer to use subroutines 
for physical properties, subroutines for the common unit 
operations, and subroutines to control the iteration proce
dures, but nevertheless write in Fortran their own master 
or calling program and any special subroutine for opera
tions unique to their process. 

For dynamic process models with any complexity, 
Fortran is almost universally preferred over one of the 
simulation languages. 

COMPUTATIONAL REQUIREMENTS 

With the introduction of computing machines of the 
capacity of the CDC 6500, Univac 1108, IBM 360/65, 
and similar machines produced by other manufacturers, 
the computational capacity is available to solve all but 
the largest process simulations. Similarly, currently avail
able numerical techniques seem to be adequate for all but 
the very exotic processes. This is not to imply that 
improved price/performance ratios for computing ma
chines would be of no benefit. Since the modeling effort 
is subject to economic justification, a significant reduction 
in computational costs would lead to the undertaking of 
some modeling projects currently considered unattractive. 

As for the role of analog and hybrid computers in proc
ess simulation, no significant change in the current situa
tion is forecast. Only for those models whose solution 
must be obtained a large number of times can the added 
expense of analog programming be justified. However, for 
such undertakings as operator training, the analog com
puter is still quite attractive. 

SUMMARY 

At this stage of process modeling and simulation, the 
generally poor understanding of the basic mechanisms 
occurring in industrial processes is probably the major 
obstacle in a modeling effort. Quantitative values for dif
fusions, reaction rate constants, solubilities, and similar 

coefficients occurring in the relationships comprIsmg a 
process model are simply not available for most processes 
of interest. 

This paper has attempted to present the state-of-the-art 
of process modeling as seen by the authors. This discus
sion has necessarily been of a general nature, and excep
tions to general statements are to be expected. In any 
case, these should always be taken as one man's opinion 
for whatever it is worth. 
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INTRODUCTION 

Never before has the relevancy of institutions been ques
tioned as critically as today. Many of us have now 
learned what should have always been evident; that the 
key to relevance is the satisfaction of needs. The com
puter industry, and those technical societies that support 
it, should view this new emphasis on service as an oppor
tunity to stimulate its creative talents. The implication of 
the "future shock" concept requires that we must antici
pate problems if we are ever to have enough time to solve 
them. 

But in what way can a technical society serve; should it 
be a responder or a leader? Ironically, to be effective, it 
must be both. It must respond to the requests of individu
als in the technical community to use the society's appa
ratus for the development, review and promulgation of 
needed standards. The development and review stages 
can be done by groups of individuals, but it remains for 
the technical society to exert a leadership role to make 
these standards known and available to all who might 
benefit from them. 

Thus, our purpose here is to bring to your attention two 
new, and we feel exciting, industrial computer standards 
developments that have been undertaken by the Instru
ment Society of America, as well as a discussion of fur
ther actions contemplated in this field. The first is RP55, 
"Hardware Testing of Digital Process Computers." The 
second is the work cosponsored with Purdue University 
on software and hardware standards for industrial com
puter languages and interfaces. This latter work is exem
plified by the ISA series of standards entitled S61, "In
dustrial Computer FORTRAN Procedures," among others. 
Both standards development projects have succeeded in 
furthering ISA's commitment "to provide standards that 
are competent, timely, unbiased, widely applicable, and 
authoritative." 
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ACCEPTA~CE TESTING OF DIGITAL PROCESS 
COMPUTERS 

Needs 

A Hardware Testing Committee was formed in October 
1968 because a group of professionals recognized certain 
specific needs of the process computer industry. The user 
needed a standard in order to accurately evaluate the 
performance of a digital computer and also to avoid the 
costly duplication of effort when each user individually 
writes his own test procedures. Conversely, the vendor 
needed a standard to avoid the costly setting up of differ
ent tests for different users and also to better understand 
what tests are vital to the user. 

Purpose 

The purpose of the committee has been to create a 
document that can serve as a guide for technical person
nel whose duties include specifying, checking, testing, or 
demonstrating hardware performance of digital process 
computers at either vendor or user facilities. By basing 
engineering and hardware specifications, technical adver
tising, and reference literature on this recommended 
practice, there will be provided a clearer understanding of 
the digital process computer's performance capabilities 
and of the methods used for evaluating and documenting 
proof of performance. Adhering to the terminology, defi
nitions, and test recommendations should result in clearer 
specifications which should further the understanding 
between vendor and user. 

Scope 

The committee made policy decisions which defined 
the scope of this recommended practice to: 
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(1) Concern digital process computer hardware testing 
rather than software testing. However, certain 
software will be necessary to perform the hardware 
tests. 

(2) Concern hardware test performance at either the 
vendor's factory or at the user's site. This takes 
into account that it would be costly for a vendor to 
change his normal test location. 

(3) Concern hardware performance testing rather than 
reliability or availability testing. These other char
acteristics could be the subject for a different series 
of long term tests at the user's site. 

(4) Concern hardware testing of vendor supplied 
equipment rather than also including user supplied 
devices. Generally, the vendor supplied systems 
includes only that equipment from the input termi
nations to the output terminations of the computer 
system. 

(5) Consider that specific limits for the hardware tests 
will not exceed the vendor's stated subsystem spec
ifications. 

(6) Consider that before the system contract is Rigned, 
the vendor and user will agree upon which hard
ware testing specifications are applicable. It was 
not the intent of the standard to finalize rigid speci
fications or set specific rather than general accept
ance criteria. This recognizes that there are many 
differences both in vendor product design and in 
user requirements. 

(7) Consider that the document is a basic nucleus of 
tests, but other tests may be substituted based on 
cost, established vendor procedures, and changing 
state of the art. Although requirements to deviate 
from a vendor's normal pattern of test sequence, 
duration or location could alter the effectiveness of 
the testing, it could also create extra costs. 

(8) Consider that the document addresses a set of tests 
which apply to basic or typical digital process 
computers in today's marketplace. Where equip
ment configurations and features differ from those 
outlined in this standard, the test procedures must 
be modified to account for the individual equip
ment's specifications. 

(9) Consider that the document does not necessarily 
assume witness tests (i.e., the collecting of tests for 
a user to witness). This collection mayor may not 
conform to the vendor's normal manufacturing 
approach. There are three cost factors which 
should be considered if a witness test is negotiated: 

a. Added vendor and user manhours and expen
ses. 

b. Impact on vendor's production cycle and 
normal test sequence. 

c. Impact on user if tests are not performed cor
rectly in his absence. 

Recommended test procedures 

It will not be attempted in this paper to detail reasons 
for particular procedures in the areas of peripherals. 

environmental, subsystem and interacting system tests. 
Time will only permit naming the test procedure sections 
and what they cover. In this way you may judge the 
magnitude of this undertaking and the probable signifi
cance of this recommended practice. 

(1) Central Processing Unit-including instruction 
complement, arithmetic and control logic, input/ 
output adapters, I/O direct memory access chan
nel, interrupts, timers and core storage. 

(2) Data Processing Input/ Output Subsystems 
including the attachment circuitry which furnishes 
logic controls along with data links to the input/ 
output bus; the controller which provides the 
buffer between the computer and the input/ output 
device itself; and finally the input/ output devices 
themselves. 

(3) Digital Input/ Output-including operation, signal 
level, delay, noise rejection, counting accuracy, 
timing accuracy and interrupt operation. 

(4) Analog Inputs-including address, speed, ac
curacy/linearity, noise, common mode and normal 
mode rejection, input resistance, input over-volt
age recover, DC crosstalk, common mode cross
talk and gain changing crosstalk. 

(5) Analog Outputs-incl uding addressing, accuracy, 
output capability, capacitive loading, noise, settling 
time, crosstalk and droop rate for sample and hold 
outputs. 

(6) Interacting Systems-including operation in a 
simulated real time environment in order to check 
the level of interaction or crosstalk resulting from 
simultaneous demands on the several subsystems 
which make up the system. 

(7) Environmental-including temperature and 
humidity, AC power and vibration. 

Costs 

The committee constantly had to evaluate the costs of 
recommended tests versus their value. Typical factors 
affecting the costs of testing are: 

(1) Number of separate test configurations required 
(2) Methods of compliance 
(3) Sequence, duration, and location of tests 
(4) Quantity of hardware tested 
(5) Special programming requirements 
(6) Special testing equipment 
(7) Effort required to prepare and perform tests 
(8) Documentation requirements 

The additional testing costs may be justified through 
factors such as reduced installation costs, more timely 
installation, and early identification of application prob
lems. 



Documentation 

Another unique feature of this recommended practice is 
that it has given special attention to documentation of 
evidence of tests performed on the hardware. Three types 
of documentation are proposed in order that the user may 
choose what is most appropriate cost-wise for his situa
tion. 

Type 1 would include any statement or evidence 
provided by the manufacturer that the hardware has 
successfully passed the agreed-upon tests. 
Type 2 would be an itemized check list indicating 
contractually agreed-upon tests with a certification 
for each test that had been successfully performed. 
Type 3 would be an individual numerical data print
out; histograms, etc., compiled during the perform
ance of the tests. 

It is, therefore, the aim to provide maximum flexibility in 
documentation related to the testing. 

Board of review 

The committee was composed of eight vendors, eight 
users, and two consultants. In addition to the consider
able experience and varied backgrounds of the commit
tee, an extensive evaluation by a Board of Review was 
also required. 

Serious effort was given to insuring that a wide 
cross-section of the industry was represented on the 
Review Board. Invitations were sent to the various ISA 
committees, to attendees at the Computer Users Confer
ence, and various computer workshops. Announcements 
also appeared in Instrumentation Technology and Con
trol Engineering. Interest was expressed by approxi
mately 250 people, and these received the document 
drafts. A very comprehensive questionnaire was also sent 
to each reviewer in order that a more meaningful inter
pretation of the review could be made. Subsequently, 117 
responses were received. In addition to the questionnaire 
response, other comments from the Review Board were 
also considered by the appropriate subcommittee and 
then each comment and its disposition were reviewed by 
the SP55 Committee. The magnitude of this effort can be 
judged from the fact that the comments and their disposi
tion were finally resolved on 44 typewritten pages. 

The returned questionnaires indicated an overwhelm
ing acceptance and approval of the proposed documents. 
The respondents, who came from a wide variety of 
industrial and scientific backgrounds, felt that it would 
be useful for both vendors and users alike. They gave the 
document generally high ratings on technical grounds, 
and also as to editorial layout. Some reservation was 
expressed about economic aspects of the proposed testing 
techniques, which is natural considering that more testing 
is caiied for than was previously done. However, ninety
one percent of the respondents recommended that RP55.1 
be published as an ISA Recommended Practice." Only 
three percent questioned the need for the document. The 
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responses were also analyzed for any generalized vendor
user polarity. Fortunately, the percentage of those recom
mending acceptance of the document were in approxi
mate proportion to their percentages as vendors, users, or 
consultants. In other words, there was no polarization into 
vendor, user or consultant classes. 

The recommended practice was subsequently submit
ted to the American National Standards Institute and is 
presently being evaluated for acceptability as an ANSI 
standard. ISA's Standards and Practices Board has met 
with ANSI in order to adopt procedures permitting con
current review by both ISA and ANSI for all future 
standards. 

PRESENT EFFORTS AT PROCESS CONTROL 
SYSTEM LANGUAGE STANDARDIZATION 

As mentioned earlier, standardization has long been 
recognized as one means by which the planning, develop
ment, programming, installation, and operation of our 
plant control computer installations as well as the train
ing of the personnel involved in all these phases can be 
organized and simplified. The development of APT and 
its variant languages by the machine tool industry is a 
very important example of this. The Instrument Society 
of America has been engaged in such activities for the 
past ten years, most recently in conjunction with the 
Purdue Laboratory for Applied Industrial Control of 
Purdue University, West Lafayette, Indiana.4.6 

Through nine semiannual meetings the Purdue Work
shop on Standardization of Industrial Computer Lan
guages has proposed the following possible solutions to the 
programming problems raised above, and it has achieved 
the results listed below: 

(1) The popularity of FORTRAN indicates its use as at 
least one -of the procedural languages to be used as 
the basis for a standardized set of process control 
languages. It has been the decision of the Workshop 
to extend the language to supply the missing func
tions necessary for process control use by a set of 
CALL statements. These proposed CALLS, after 
approval by the Workshop, are being formally 
standardized through the mechanisms of the 
Instrument Society of America. One Standard has 
already been issued by ISA,7 another is being 
reviewed at this writing,8 and a third and last one is 
under final development.9 

(2) A so-called Long Term Procedural Language or 
L TPL is also being pursued. A set of Functional 
Requirements for this Language has been 
approved. Since the PL/ 1 language is in process of 
standardization by ANSI (the American National 
Standards Institute), an extended subset of it (in 
the manner of the extended FORTRAN) will be 
tested against these requirements. 12 Should it fail, 
other languages will be tried or a completely new 
one will be developed. 
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(3) The recognized need for a set of problem-oriented 
languages is being handled by the proposed devel
opment of a set of macro-compiler routines which 
will, when completed, allow the user to develop his 
own special language while still preserving the 
transportability capability which is so important 
for the ultimate success of the standardization 
effort. This latter will be accomplished by translat
ing the former language into one or the other of the 
standardized procedural languages before compila
tion. 

(4) To establish the tasks to be satisfied by the above 
languages, an overall set of Functional Require
ments has been developed. 10 

(5) In order that all Committees of the Workshop 
should have a common usage of the special terms of 
computer programming, the Glossary Committee of 
the Workshop has developed a Dictionary for 
Industrial Computer Programming which has been 
published by the Instrument Society of America 11 

in book form. 

The Workshop on Standardization of Industrial Com
puter Languages is composed entirely of representatives 
of user and vendor companies active in the on-line 
industrial digital computer applications field. Delegates 
act on their own in all Workshop technical discussions, 
but vote in the name of their companies on all substantive 
matters brought up for approval. It enjoys active repre
sentation from Japan and from seven European countries 
in addition to Canada and the United States itself. Proce
dures used in meetings and standards development are 
the same as those previously outlined for the Hardware 
Testing Committee. 

As mentioned several times before, it is the aim and 
desire of those involved in this effort that the Standards 
developed will have as universal an application as possi
ble. Every possible precaution is being taken to assure 
this. 

The nearly total attention in these and similar efforts 
toward the use of higher level languages means that the 
vendor must be responsible for producing a combination 
of computer hardware and of operating system programs 
which will accept the user's programs written in the 
higher level languages in the most efficient manner. A 
relatively simple computer requiring a much higher use of 
softw~re accomplished functions would thus be equiva
lent, except for speed of operation, with a much more 
sophisticated and efficient computer with a correspond
ingly smaller operating system. 

The present desire on the part of both users and ven
dors for a simplification and clarification of the present 
morass of programming problems indicates that some 
standardization effort, the Purdue cosponsored program, 
or another, must succeed in the relatively near future. 

Future possibilities and associated time scales 

The standardized FORTRAN extensions as described 
can be available in final form within the next one to two 

years. Some of those previously made have been imple
mented already in nearly a dozen different types of 
computers. The actual standardization process requires a 
relatively long period of time because of the formality 
involved. Thus, the 1974-75 period appears to be the key 
time for this effort. 

The work of the other language committees of the 
Workshop are less formally developed than that of the 
FORTRAN Committee as mentioned just above. Success
ful completion of their plans could result, however, in 
significant developments in the Long Term Procedural 
Language and in the Problem Oriented Languages areas 
within the same time period as above. 

In addition to its Instrument Society of America spon
sorship' this effort recently received recognition from the 
International Federation for Information Processing 
(IFIP) when the Workshop was designated as a Working 
Group of its Committee on Computer Applications in 
Technology. The Workshop is also being considered for 
similar recognition by the International Federation of 
Automatic Control (IFAC). 

As mentioned, this effort is achieving a very wide 
acceptance to date. Unfortunately, partly because of its 
Instrument Society of America origins and the personnel 
involved in its Committees, the effort is largely based on 
the needs of the continuous process industries. The input 
of interested personnel from many other areas of activity 
is very badly needed to assure its applicability across all 
industries. To provide the necessary input from other 
industries, it is hoped that one or more of the technical 
societies (United States or international) active in the 
discrete manufacturing field will pick up cosponsorship of 
the standardization effort presently spearheaded by the 
Instrument Society of America and, in cooperation with 
it, make certain that a truly general set of languages is 
developed for the industrial data collection and automatic 
control field. 

RECOMMENDED PRACTICES AND 
STANDARDIZATION IN SENSOR-BASED 
COMPUTER SYSTEM HARDWARE 

In addition to the work just described in programming 
language standardization, there is an equally vital need 
for the development of standards or recommended prac
tices in the design of the equipment used for the sensor
based tasks of plant data collection, process monitoring, 
and automatic control. Fortunately, there is major work 
under way throughout the world to help correct these 
deficiencies as well. 

As early as 1963 the Chemical and Petroleum Indus
tries Division of ISA set up an annual workshop entitled 
The User's Workshop on Direct Digital Control which 
developed an extensive set of "Guidelines on Users' 
Requirements for Direct Digital Control Systems." This 
was supplemented by an equally extensive set of "Ques
tions and Answers on Direct Digital Control" to define 
and explain what was then a new concept for the applica
tion of digital computers to industrial control tasks. A re-



cently revised version of these original documents is 
available.6 The Workshop has continued through the 
years, picking up cosponsorship by the Data Handling and 
Computation Division and by the Automatic Control Di
vision in 1968 when it renamed the ISA Computer Con
trol Workshop. The last two meetings have been held at 
Purdue University, West Lafayette, Indiana, as has the 
Workshop on Standardization of Industrial Computer 
Languages described above. 

The ESONE Committee (European Standards of 
Nuclear Electronics) was formed by the EURATOM in 
the early 1960's to encourage compatibility and inter
changeability of electronic equipment in all the nuclear 
laboratories of the member countries of EURATOM. In 
cooperation with the NIM Committee (Nuclear Instru
mentation Modules) of the United States Atomic Energy 
Commission,---they -have--r-ecent1-¥-developed a-co-mpl-etely 
compatible set of interface equipment for sensor-based 
computer systems known by the title of CAMAC.1-3.13 
These proposals merit serious consideration by groups in 
other industries and are under active study by the ISA 
Computer Control Workshop. 

Japanese groups have also been quite active in the 
study of potential areas of standardization. They have 
recently developed a standard for a process control opera
tor's console (non CRT based)l4 which appears to have 
considerable merit. It will also be given careful considera
tion by the Instrument Society of America group. 

It is important that the development of these standards 
and recommended practices be a worldwide cooperative 
endeavor of engineers and scientists from many countries. 
Only in this way can all of us feel that we have had a part 
in the development of the final system and thus assure its 
overall acceptance by industry in all countries. Thus, 
both the ISA Computer Control Workshop and the Lan
guage Standardization Workshop are taking advantage of 
the work of their compatriots throughout the world in 
developing a set of standards and recommended practices 
to guide our young but possible overly-vigorous field. 

While we must be careful not to develop proposals 
which will have the effect of stifling a young and vigor
ously developing industry, there seems to be no doubt 
that enough is now known of our data and control system 
requirements to specify compatible data transmission 
facilities, code and signal standards, interconnection 
compatibility, and other items to assure a continued 
strong growth without a self-imposed obsolescence of 
otherwise perfectly functioning equipment. 

SUMMARY 

This short description has attempted to show some of the 
extensive standards work now being carried out by the 
Instrument Society of America in the field of the applica-
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tions of digital computers to plant data collection, moni
to ring, and other automatic control tasks. The continued 
success of this work will depend upon the cooperation 
with and acceptance of the overall results of these devel
opments by the vendor and user company managements 
and the help of their personnel on the various committees 
involved. 
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IXTRODUCTIOX 

Operating systE'ms generally provide file management sE'rvice 
routines that are employed by usrr tasks to accE'SS secondary 
storage. This paper is conccrnrd with quantitative evaluation 
of several suggested performance improvements to the file 
managemE'nt system of the Xerox Data Systems (XDS) 
opE'rating systems. 

The file management system of the new XDS UnivE'rsal 
Time-Sharing System (UTS) operating systE'm includes the 
same service routines employed by the older operating sys
tem-the Batch Time-Sharing :\Ionitor (BT:\I). :\Iodels for 
both UTSI and BT.1P have been developed to facilitate per
formance investigation of CPU and core allocation strategies. 
These models do not, however, provide capability to investi
gate performance of the file management strategies. 

A \vealth of literature is available on file management sys
tems. A report by Wilbur3 details a ne\v file management de
sign for the Sigma Systems. Other articles havE' been published 
to define basic file management concepts,4,5 to discuss various 
organization techniques4, 5, 6 and to improve understanding of 
the current Sigma file management systE'm.6, 7 HowE'vE'r, there 
is little published \vork on the performance of file management 
systems. 

The task undertaken here is to develop and test a simple 
quantitative method to evaluate the performance of proposed 
modifications to the file management system. :\lodels are 
developed that reproduce current performance levels and 
these models are employed to predict the performance im
provements that will result from the implementation of 
specific improvement proposals. The models are validated 
against measured performance of the :\IcDonnell Douglas 

* Abstracted from an M. S. Thesis of the same title submitted to the 
Sever Institute of Technology of Washington University by T. F. 
McFadden in partial fulfillment of the requirements for the degree of 
Master of Science, May 1972. This work was partially supported by 
National Science Foundation Grant GJ-33764X. 
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Automation Company XDS Sigma 7 running under the 
BT}I opE'rating system. 

The modE'ls developed hE're are extremely simple, detE'r
ministic representations of important aspE'cts of filE' manage
mrnt. This usr of simple models to reprrsent very complex 
systrms is finding incrrasing application in computrr system 
performancE' work. The justification for working \\-ith these 
simple models on this application are twofold: 

1. File management system behavior is not well under
stood and simple models develop understanding of the 
important prOCE'sses. 

2. When applied properly, simple models can quantify 
difficult design decisions. 

The underlying hypothesis to this and other \vork with simple 
models of computer systems is that system behavior must be 
understood at each successive level of difficulty before pro
ceeding to the next. The success demonstrated here in de
veloping simple models and applying them in the design 
process indicates that this present work is an appropriate 
first level in the complexity hierarchy of file management 
system models. 

The work reported here has been abstracted from a recent 
thesis.s Additional models and a more detailed discussion of 
system measurement and model verification are presented in 
Reference 8. 

The paper is organized as follows. The next section de
scribes the XDS file management system; current capabilities 
and operation are discussed and models are developed and 
validatrd for opening and reading a file. Several improvpment 
proposals are then modeled and evaluated in the third section. 

CURREXT XDS FILE :\fAl\AGE:\IEl'-~T SYSTE~I 

This spction is divided into three parts: description of the 
file management capabilities, description of the file manage-
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ment. syst.em structur(', and d('velopm('nt and validation of 
models for t.he open and rf'ad operations. 

Description of capabilities 

A file, as definf'd by XDS,1 is an organized coll('ction of 
space on the sf'condary storage devices that may be creat('d, 
retrieved, modified, or deleted only through a call on a file 
management routine. 

Each file is a collection of records. A record is a discrete 
subset of the information in a file that is accf'ssed by the USf'r 
independent of other records in the file. When the ~le is 
created the organization of the rf'cords must be specIfied. 
Records may be organized in a consecutive, keyed, or random 
format. 

The space uSf'd by a consf'cutivf' or kf'yed filf' is dynamically 
controlled by the monitor; the space used by a random file 
must be requested by the USf'r when the file is created and it 
never changes until the file is relf'ased. . 

Open-When a file is going to be used it must bf' madf' avaIl
able to the user via a file management routine callf'd OPEN. 
When the file is openf'd, thf' user may specify one of the fol
lowing modes: IN, that is, read only; OUT-w~ite only; 
I NOUT-update ; OUTIX-scratch. Whpn a file IS opened 
OUT or OUTIX it is being created; when it is openrd IX or 
INOUT it must alrf'ady exist. Thf' opf'n routine will Sf't some 
in-core pointers to the first record of t.hp file if it has been 
openf'd I~ or I~OUT and to some free spacf' that has bee~ 
allocated for the file if it has been opened OUT or OUTr~. 
These pointf's arf' never ust'd by thp ust'r dirf'ctly. When the 
ust'r reads or writf's a rf'cord tht' in-corf' pointf'rs art' uSf'd by 
file management to tract' the appropriatf' rf'cord. 

Close-Whpn the user has completrd all oprrations on the 
file he must call anothf'r routinp namf'd CLOSE. A filp can 
be closed with RELEASE or with SAVE. If RELEASE is 
specifipd then all spacf' currf'ntly allocatpd to thr filf' is placrd 
back in the monitor's free spacr pool and all pointers are 
deleted. If SAVE is specifipd thpn thp in-core pointt'rs are 
written to file directories maintainrd by the monitor so that 
the file can be found when it is next opened. 

Read and W rite-There are a number of operations that 
may be performed on records. The two that are of primary 
interest are read and write. In a consecutive file the records 
must be accessed in the order in \\'hich they are written. 
Records in a keyed file can be accessed directly, with the as
sociated key, or sequentially. Random files are accessed by 
specifying the record number relative to the beginning of the 
file. Random file records are fixed length (2048 characters). 

When reading or writing the user specifies the number of 
characters he wants, a buffer to hold them, and a key or record 
number. 

File management system structure 

The structures used to keep track of files and records are 
described. 

File Structure-The account number specified by a calling 
prugram is used as a key tu search a table of accounts called 

an account dirrctory (AD). Thrre is an rntry in the AD for 
('ach account on the systrm that has a filp. Thp rpsult of the 
AD sparch is a pointpr to the' fiIP dirpctory. Th('re' is only one 
AD on th<' syst('m and it is maintainpd in the 'linked-sector' 
format (doublr linke'd list of sector size [256 word] blocks). 

Each ('ntry in the AD contains th(' account number and 
the disc addrpss of the file directory (FD). An FD is a 'linkpd
sector' list of filp names in the corresponding account. With 
each file namf' is a pointer to t.he File Information Table 
(FIT) for that file. 

Th<> FIT is a 1024 charactpr block of information on this 
file. It contains security, file organization, and allocation in
formation. The FIT points to the table of keys belonging to 
this file. 

Figure 1 presents a schematic of the file structure. 
Sequential Access and Keyed Structure-In describing record 

access, attE'ntion is rE'stricted to spqupntial accessf's. The struc
ture of consecutive and keyed filps is identical. Both file 
organizations allow sE'quential accesses of records. Because the 
structures are the same and both permit sequential accesses 
there is no true conspcutivp organization. All of the code for 
this organization is imbrdd('d in th(' k('yed file logic. The only 
difference betwE'en the two structures is that records in a 
consecutive file may not be accessed directly. 

Thp r('sult of this implementation is that most processors 
havE' b(,pn written using keyed files rather than consecutive 
files bpcause t here is an additional capability offprpd by 
keyed files and th('re is no diffprE'nce in speed in sequentially 
accessing r('cords on E'ither structure. :\Ieasurements have 
establishpd that only 16 pE'rcpnt of th(' rpads on thE' systpm 
are done on consecutive files while 94 percf'nt of the reads on 
the system arp sequpntial accesses. For th('s(' rpasons, ('mpha
sis is plac('d on improving srqu('ntial accpssf'S. 

Once a filp is opened thf'rp is a pointf'r in thf' monitor Cur
rE'nt Fil(' Us('r (CFU) tablp to a list of kpys called a :\laster 
Index (:\lIX). Each .:\IIX entry points to one of the data 
granules associated ,,·ith th<> file. Data granules arC' 2048 
character blocks that contain no allocation or organization 
information. Figurp 2 is a schematic of the rE'cord structure. 
Each entry in the :\IIX contains the following fields: 

I 

CORE 

ACCOUNT 
DIRECTORY 

ACCTl ~ 
ACCT2 

FILE DIRECTORY 

F ILE 1 ----t--7 
FILE2 --t----' 

FILEn --,------' 

i ~r-" ___ --" 
~ FILEI ~ ••• 

FILE2 ~ ••• 
ACCTn 

~ , ' 
~ ... 

FILE INFORMATION TABLES 

FILEn 
SECURITY 

RECORD POINTER 

Figure l-File "tructufe 



(a) KEY-In a cons('cutive file the keys arc three bytes in 
length. The first key is ahvays zero and all others fol
low and are incrrmrntrd by onr. 

(b) DA-Thc> Disc Addrrss of the data buff~r that con
tains thr nrxt srgmrnt of thp record that is associated 
with this key. Data buffers are always 204:8 characters 
long. Thr disc address field is 4 characters. 

(c) DISP-Thr byte displacrmrnt into thr granule of the 
first charactrr of the rrcord segmrnt. 

Cd) SIZE-Xumber of characters in this record segment. 
(e) C-A continuation bit to indicate whethrr there is 

another rrcord segment in another data granule. 
(f) FAK-First Apprarance of Key-When FAK= 1 then 

this entry is the first with this kpy. 
(g) EOF-When set, this field indicates that this is the 

last key in the ~IIX for this file. End Of File. 

Space Allocation-The Sigma systems have two types of 
secondary storage devicps-fixed head and moving head. 
Thp fixed head device is called a RAD (Rapid Access Device); 
the moving hpad device is a disc. The allocation of space on 
these devices is completely and dynamically controlled by 
the monitor subject to user demands. 

The basic allocation unit is a granule (2048 characters) 
which corresponds to one page of memory. The basic access 
unit is a sector (1024 charactprs). A sector is the smallest 
unit that can be read or ,vritten on both devices. 

The account directories, file directories, filr information 
tables and master indices arp always allocated in units of a 
sector and are always allocated on a RAD if there is room. 
Data granules are allocated in singh> granulp units and are 
placed on a disc if there is room. The S\V AP RAD is never 
used for file allocation. 

Table I presents the characteristics for the secondary 
storage devices referenced here. 

If s is the size in pages of an access from device d, the aver
age time for that access (TAd(s» is: 

TAd(s) = Ld + Sd + 2*s*T~fd 
where: 

Ld is thf' aVf'rage latf'ncy time of drvice d 
Sd is the average seek time of device d 
T~ld is the average multiple sector transfer time of device d. 

When accessing AD, FD, ::\lIX or FIT sectors, the average 
transfer time for a single sector from device d is: 

CORE 

CFU 
FILEI 

- ACCTZ-

MASTER INDEX 

KEYl 
KEY2 

KEYn 

~ 

Figure 2-Record structure 
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File Management Performance Improvements 65 

TABLE I-Speeds of Sigma Secondary Storage Devices 

7242 DISC 
DEVICE 7212 RAD 7232 RAD PACK 

Variable Kame Symbol SRAD RAD DP 

Capacity (granules) 2624 3072 12000 
Latency (average ms) L 17 17 12.5 
Seek Time-average S 0 0 75 ms 

-range 0 0 25-135 ms 
Transfer Time (one sec- T .34 2.67 3.28 

tor) (ms per sector) 
Transfer Time (multiple TM .41 2.81 4.08 

sectors) (ms per sector) 

,,,here: 

Td IS the average single sector transfer time for device d. 

illodels of current operation 

:\fodrls are devf'loped and validated for the open file and 
read rpcord opprations. The model algorithms are closely 
patternf'd after a simple description of system operation such 
as found in Referencf's 3 or 8. Reff'rence 8 also develops a 
model for the write operation and describes in detail the 
measurrmf'nts for specifying and validating the modf'ls. 

Open 111 odel-A simple model for the time it takes to opf'n 
a file is: 

TO = TPC + TOV + TFA + TFF + TFFIT 

,vhere: 

TPC = time to process the request for monitor services. 
TOV = time to read in monitor overlay. 
TFA = timp to search AD and find the entry that 

matches the requested account. 
TFF = time to search FD and find FIT pointer for the 

requested file. 
TFFIT = time to read FIT and transfer the allocation and 

organization information to the CFU and user 
DCB. 

The functions for TOV, TF A, TFF and TFFIT can be re
fined and expressed using the following paramf'tf'rs: 

PADR = probability that an AD is on a RAD instead of a 
disc pack. 

PFDR = probability that an FD is on a RAD instead of a 
disc pack. 

PFITR = probability that an FIT is on a RAD. 
XAD =aVf'rage number of AD sectors. 
XFD = average number of FD sectors per account. 
TADl = time it takes to discover that the in-core AD 

sector does not contain a match. 
TFDl = same as TADl for an FD sector. 
TAD2 = timf' it takes to find the correct f'ntry in the in

corf' AD sector given that the entry is either in 
this Sf'ctor or thf're is no such account. 
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TABLE II -Observable Open Parameters 

PADR 1.00 TO 186.17 ms 
PFDR .872 TAD1 .1 ms 
PFITR .906 TAD2 1.5 ms 
NAD 6 sectors TFD1 .1 ms 
NFD 2.6 sectors TFD2 1.5 ms 
SO 2.5 pages PON .333 

TPC 1.7 ms 

TFD2 = same as TAD2 for an FD sector. 
PON = the probability that, when a request is made for 

the open overlay, it is not in core and therefore 
the RAD must be accessed. 

SO = number of granules occupied by the open overlay 
on the SWAP RAD. 

The time for the open overlay can be expressed as: 

TOV = PON*TAsRAD(SO) 

and the time to find the file directory pointer is: 

NAD 
TFA=PADR* --*(TSRAD +TAD1) 

2 

NAD 
+ (1-PADR)* _. - *(TSDP+TADl) 

2 

+TAD2-TAD1 

and the time to find the file information table pointer is: 

NFD 
TFF=PFDR* -- *(TSRAD+TFDl) 

2 

+ (l-PFDR)* NFD *(TSDP +TFD1) 
2 

+TFD2-TFD1 

and the time to read the file information table is: 

TFFIT= PFITR*TSRAD + (1-PFITR)*TSDP 

Table II contains the values of observable parameters 
measured in the period January through .:\larch, 1972. 

Table III contains the values of computable parameters 
discussed in the open model. 

The difference between the 1\vo figures, the observed and 
computed values of TO, is 33 percent. There are a number of 
ways this figure can be improved: 

(a) When the TO of 186 ms was observed, it was not pos
sible to avoid counting cycles that were not actually 

TABLE III -Computed Open Parameters 

TAsRAD(SO) 
TOV 
TFA 
TFF 
TO 

19.0 ms 
6.3 ms 

60.7 ms 
30.3 ms 

125.4 ms 

being spent on opening a file. The system has symbiont 
activity going on concurrently with all other opera
tions. The symbionts buffer input and output between 
the card reader, on-line terminals, the RADs and the 
line printer. So the symbionts steal cycles which are 
being measured as part of open and they also produce 
channel conflicts. Neither of these is considered by the 
model. 

(b) The figure NFD is supposed to reflect the number of 
file directories in an account. The measured value is 
2.6. Unfortunately there is a large percentage (40 
percent) of accounts that are very small, perhaps less 
than one file directory sector (30 files). These accounts 
are not being used. The accounts that are being used 
90 percent of the time have more than three file direc
tory sectors. Therefore if the average number of FD 
sectors searched to open a file had been observed 
rather than computed, the computed value for TO 
would have been closer to the observed TO. 

Read M odel-To simplify the read model these assumptions 
are made: 

(a) This read is not the first read. The effect of this assump
tion is that all buffers can be assumed to be full. Since 

TPC 
TTR 
TR 

TABLE IV-Observed Read Parameters 

0.65 ms 
1.00 ms 

20.35 ms 

TMS 
PMIXR 
NEM 

2 ms 
0.585 

47.7 entries 

there are an average of 193 records per consecutive 
filf', the assumption is reasonable. 

(b) The record being read exists. This assumption implies 
thf' file is not positioned at the end of file. Again, only 
1 percent of the time will a read be on the first or last 
record of the filf'. 

(c) Thf' rf'cord size is If'sS than 2048 characters. This as
sumption is made so that the monitor blocks the rec
ord. The average rf'cord size is 101.6 characters. 

These assumptions not only simplify the model, but they 
reflect the vast majority of reads. 

The time to read a record can therf'fore be written as: 

TR = TPC + TGE + TTR + PEC*TGE 
where: 

TPC = time to process request to determine that it is a read 
request. This parameter also includes validity 
chf'cks on the user's DCB and calling parameters. 

TGE=time to get the next key entry (even if the next 
entry is in the nf'xt ':\IIX) and make sure that the 
corresponding data granule is in core. 

TTR = time to transfer entire record from monitor blocking 
buffer to user's buffer. 

PEe = the probability that a record has two rntrics
entry continued. 



The probability, PKVr, that the next ~lIX entry is in the 
resident :ynx can be expressed as a function of the average 
number of entries, NE::.Yr, in a MIX sector: 

XEM-1 
PEM= NEM 

The probability, PEG, that the correct data granule is in 
core is a function of the number of times the data granule 
addresses change when reading through the ~UX relative to 
the number of entries in the MIX. 

Table IV presents the observed values of the parameters 
used in the sequential read model. The computed results for 
the read model are found in Table V. 

The difference between the computed and observed values 
for TR is 42 percent. The error can be improved by refining 
the observed values to correct the following: 

(a) The symbionts were stealing cycles from the read rec
ord routines and producing channel conflicts that the 
timing program did not detect. 

Cb) In addition, the observed value of TR includes time 
for reads that were direct accesses on a keyed file. 
These direct accesses violate some of the read model 
assumptions because they frequently cause large scale 
searches of all the ~laster Index sectors associated 
\vith a file. 

~IODELS OF THE PROPOSALS 

In this section, two of the performance improvement pro
posals presented in Reference 8 are selected for quantitative 
evaluation. One proposal impacts the open model and the 
other proposal impacts the read model. The models developed 
previously are modified to predict the performance of the file 
management system after implementation of the proposals. 

A proposal that impacts the open/close routines 

I mplementation Description-To preclude the necessity of 
searching the AD on every open, it is proposed that the first 
time a file is opened to an account the disc address of the 
FD will be kept in one word in the context area. In addition, 
as an installation option, the system will have a list of library 
accounts that receive heavy use. When the system is initial
ized for time-sharing it will search the AD looking for the 
disc address of the FD for each account in its hpuvy use list. 
The FD pointers for each heavy use account will be kept in a 
parallel table in the monitor's data area. 

The result is that bettrr than 9.1 prrcent of all opens and 
closes will be in accounts whose FD pointers are in core. For 
these opens and closes thr AD search is unnecessary. 

TR 
TGE 
PEM 

TABLE V-Computed Read Parameters 

11.8 ms 
9.7 ms 
0.979 

PEC 
PDG 
TRMIX 

0.042 
0.93 

49.18 ms 
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Effect on Open lllodel-For the majority of opens the above 
proposal gives the open model as: 

TO' = TPC + TOV + TFF + TFFIT 
=TO-TFA 
= 125.4-60.7 = 64.7 

This represents a percentage improvement of 51.5 percent. 
(The figures used for TO and TF A are in Table III). 

A proposal that impacts the read/write routines 

I mplementation Description-The significant parameter in 
the read model is the time to get the next entry, TG E. 
There are two expressions in TGE \vhich must be considered: 
the first is the average time to get the next ::\traster Index 
eI:L.try;.th~ f?e.QQnd, i~ the .~y:ex.ag.e time to m.a.kBsure the._correct 
data granule is in core. The levels of these expressions are 
1.03 and 6.7 ms. It is apparent that the number of times that 
data granules are read is contributing a large number of 
cycles to both the read and write models. 

One of the reasons for this, of course, is the dispropor
tionately large access time on a disc pack compared to a 
RAD. Xevertheless it is the largest single parameter so it 
makes sense to attack it. A reasonable proposal to decrease 
the number of data granule accesses is to double the buffer 
size. The model is developed so that the size of the blocking 
buffer parameter can be varied to compare the effect of vari
ous sizes on the read and write model. 

Effect of Proposal on the Read ill odel-The proposal outlined 
above \vill impact only one parameter in the read, PDG. 
PDG represents the probability that the correct data granule 
is in core. Its current value is 0.93. 

XO\v, there are three reasons that a ~laster Index entry 
will point to a different data granule than the one pointed to 
by the entry that preceded it: 

1. The record being written is greater than 2048 charac
ters and therefore needs one entry, each pointing to a 
different data granule, for every 2048 characters. 

2. The original record has already been overwritten by a 
larger record, requiring a second ~raster Index entry 
for the characters that \vould not fit in the space re
served for the original record. The second entry may 
point to the same data granule but the odds are ten 
to one against this because there are, on the average, 
10.6 data granules per file. 

3. There was not enough room in the data granule cur
rently being buffered 'when the record was written. 
When this occurs the first .:\Iaster Index entry points 
to those characters that would fit into the current data 
granule and the second entry points to the remaining 
characters that are positioned at the brginning of the 
next data granule allocated to this file. 

The first two reasons violate the assumptions for the read 
model and are not considered further here. 

The third reason is the only one that will be affected by 
changing the data granule allocation. It follows that if there 
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T.ABLE VI-Impact of Blocking Buffer of Size N Pages on Read Model 

N (pages) PDG (ms) TGE (ms) TR(ms) 

1 .930 9.729 11.78 
2 .955 7.337 9.20 
5 .970 5.903 7.80 

10 .975 5.424 7.30 

are 10.6 dat.a granules per file by doubling the allocation size 
there ,,,ill be 5.3 data 'granulrs' prr filr. This rfff'ctivf'ly di
vides by two the probability that a record had to be continupd 
becausf' of the third itf'm abovr. Tripling thr sizr of thp block
ing buffer and data 'granule' would divide t.he probability by 
three. 

The question to be resolvpd at this point is: What sharp of 
the 7 percent probability that thp data granule addrpss will 
change can bp attributed to the third reason above? 

A reasonable approximation can be dpvplop('d by tIl(> fol
lowing argument: 

(a) There are 2048*n charactE'rs in a data 'granule'. 
(b) There are 101.6 characters per rf'cord. 
(c) Therefore thf're arf' 20.V5*n rE'cords per data 'granule'. 
(d) The 20*n record will have two :\iaster Index entries. 
(e) Then, on the average, one out of every 20*n entries 

will have a data granule address that is different from 
the address of the preceding entry. This probability is 
1/(20.15*n) which is .0496/n. 

Then for n= 1, as in the original read and write models, 5 
of the 7 percf'nt figure for 1-PDG is attributable t.o records 
overlapping data granule boundaries. The actual equation 
for PDG is: 

( 
.05) PDG=l- .02+ ~ 

where n is the number of granules in the monitor's blocking 
buffer. 

The impact of various values of n on the read modE'1 is listE'd 
in Table VI. It is obvious that by increasing the blocking buf
fer size, the performancE' of the read model can be improved. 
However the amount of improvement decreases as n increases. 

If there are no other considerations, a blocking buffer size 
of two promises an improvement of 21 percent in the read 
routine. Perhaps a user should be allowed to set his own block
ing buffer size. A heavy sort user that has very large files, for 
example, can be told that making his blocking buffers three 
or four pages long will improve the running time of his job. 
A final decision is not made here because the profile of jobs 
actually run at any installation must be considered. In addi
tion, there are problems like: Is thpre enough core available? 

Is the swap channel likely to become a bottleneck due to 
swapping larger users? These problems are considrred in 
Rpferrnce 8 and found not to causp difficulty for the opera
tional range considered here. 

COXCLUSIONS 

This paper does not. pretend to dpvelop a completp filp man
agpment systpm model. Such a model would npcessarily con
tain modPl functions for pach file managpmrnt activity and 
some IDPans of combining thpsr functions with the rrlative 
frequency of each activity. The model result would thpn be 
relatpd to systpm pprformancp parametprs such as thr num
bpr of usprs, thp pxppcted intrractive response time and the 
turn-around timr for compute bound jobs. 

Thp dpscribed rpsearch rppresents an pffort to model a file 
management system. Thp modpl is detailed enough to allow 
certain parampters to bp changed and thus show the impact 
of proposals to improve the syst.em. 

The development of the modPl is straightforward, based on 
a relati,Tely detailed knmdedge of the system. This type of 
model is sensitive to changes in the basic algorithms. The 
model is developed both to further understanding of the sys
tem and to accurately predict the impact on the file manage
ment system of performance improvements. 

Work remains to be don£' to integrate the model into overall 
system performance measures. However comparisons can be 
made with this model of different file managrment strategies. 
DevelopmE'nt of similar models for oth£'r systE'ms will facili
tate the search for good file managemf'nt strategif's. 
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A method of evaluating mass storage effects on system 
performance 

by M. A. DIETHELM 

Honeywell Information Systems 
Phoenix, Arizona 

Ii\TRODUCTION 

A significant proportion of the cost and usefulness of a 
computing system lies in its configuration of direct access 
mass storage. A frequent problem for computing installa
tion management is evaluating the desirability of a 
change in the mass storage configuration. This problem 
often manifests itself in the need for quantitative decision 
criteria for adding a fast ( er) direct access device such as a 
drum, disk or bulk core to a configuration which already 
includes direct access disk devices. The decision criteria 
are hopefully some reasonably accurate cost versus per
formance functions. This paper discusses a technique for 
quantifying the system performance gains which could be 
reasonably expected due to the addition of a proposed 
fast access device to the system configuration. It should 
be noted that the measurement and analysis techniques 
are not restricted to the specific question of an addition to 
the configuration. That particular question has been 
chosen in the hope that it will serve as an understandable 
illustration for the reader and in the knowledge that it has 
been a useful application for the author. 

The system performance is obviously dependent upon 
the usage of the mass storage configuration, not just on 
the physical parameters of the specific device types con
figured. Therefore, the usage characteristics must be 
measured and modelled before the system performance 
can be estimated. This characterization of mass storage 
usage can be accomplished by considering the mass stor
age space as a collection of files of which some are perma
nent and some are temporary or dynamic (or scratch). A 
measurement on the operational system will then provide 
data on the amount of activity of each of the defined files. 
The mass storage space is thereby modelled as a set of 
files, each with a known amount of I/O activity. The 
measurement technique of file definition and quantifica
tion of 110 activity for each is described first in this 
paper along with the results of an illustrative application 
of the technique. 

The next step in predicting the system performance 
with an improved (hopefully) mass storage configuration 
is to decide which files will be allocated where in the 
revised mass storage configuration. The objective is to 
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allocate the files in such a manner as to maximize system 
performance. In -tIie case of adding a fast device to the 
configuration, this objective is strongly correlated, within 
reasonable limits, with an allocation policy which maxi
mizes the resulting 110 activity to the fastest device in 
the mass storage configuration. This allocation policy 
can be mathematically modelled as an integer linear 
programming problem which includes the constraint of 
a specified amount of fast device storage capacity. 

Having the file allocations and resulting I/O activity 
profiles for a range of fast access device capacities, the 
expected system performance change can be estimated by 
use of an analytical or simulation model which includes 
the parameters of proportionate distribution of I/O activ
ity to device types and device physical parameters as well 
as CPU and main memory requirements of the job 
stream. The results of application of an analytic model 
are described and discussed in the latter paragraphs as a 
prelude to inferring any conclusions. The analytic model 
is briefly described in the Appendix. 

MASS STORAGE FILE ACTIVITY 
MEASUREMENT 

The first requirement in determining the files to be 
allocated to the faster device is to collect data on the 
frequency of access to files during normal system opera
tion. Thus the requirement is for measurements of the 
activity on the existing configuration's disk subsystem. 
Such measurements can be obtained using either hard
ware monitoring facilities or software monitoring tech
niques. Hardware monitoring has the advantage of being 
non-interfering; that is, it adds no perturbation to normal 
system operation during the measurement period. A 
severe disadvantage to the application of hardware moni
toring is the elaborate, and expensive, equipment 
required to obtain the required information on the fre
quency of reference to addressable, specified portions of 
the mass storage. The preferred form of the file activity 
data is a histogram which depicts frequency of reference 
as a function of mass storage address. Such histograms 
can be garnered by use of more recent hardware monitors 
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which include an address distribution capability, subject 
to, of course, the disadvantages of cost, set up complexity, 
and monitor hardware constrained histogram granularity. 
A more flexible method of gathering the required infor
mation is a software monitor. This method does impose a 
perturbation to system operation but this can be made 
small by design and code of the monitor program. It has 
the strong advantage of capturing data which can be 
analyzed ::lfter the fact to produce any desired reports 
with any desired granularity. A software monitor de
signed to work efficiently within GCOS* was utilized to 
obtain file activity data for the analysis described for 
illustration. 

This 'privileged' software obtains control at the time of 
initiation of any I/O command by the processor and 
gathers into a buffer information describing the I/O 
about to be started and the current system state. This 
information, as gathered by the measurement program 
used for this study includes the following: 

Job Characteristics 
Job and activity identification 
File identification of the file being referenced 
Central Processing Unit time used by the job 

Physical I/O Characteristics 
Subsystem, channel and device identification 
I/O command(s) being issued 
Seek address 
Data transfer size 

The information gathered into the data buffer is writ
ten to tape and subsequently analyzed by a free standing 
data reduction program which produced histograms of 
device and file space accesses, seek movement distances, 
device utilization and a cross reference listing of files 
accessed by job activities. Of primary concern to the task 
of selecting files to be allocated to a proposed new device 
are the histograms of device and file space accesses. 

A histogram showing the accesses to a device is shown 
in Figure 1. This histogram is one of 18 device histograms 
resulting from application of the previously described 
measurement techniques for a period of 2 1/4 hours of 
operation of an H6070 system which included an 18 
device DSS181 disk storage subsystem. The method of 
deriving file access profiles will be illustrated using Figure 
1. The physical definition of permanently allocated files 
is known to the file system and to the analyst. Therefore, 
each area of activity on the histograms can be related to a 
permanently allocated file if it is one. If it is not a perma
nently allocated area, then it represents the collective 
activity over the measurement period of a group of tem
porary files which were allocated dynamically to that 
physical device area. Figure 1 depicts the activity of some 
permanent files (GCOS Catalogs, GCOS-LO-USE, SW
LO-USE, LUMP) and an area in which some temporary 
files were allocated and used by jobs run during the 

" Gcas i::; the acrunym for the General Comprehcn:;i\'c Operating 
Supervisor software for H6000 systems, 
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Figure 1-Histogram of accesses to device 1 space 

measurement period (STI-MISC). The leftmost column 
of the histogram gives the number of accesses within each 
5 cylinder area of the disk pack and consequently is used 
to calculate the number of accesses to each file, perma
nent or temporary, defined from the activity histograms 
for each device. Often the accessing pattern on a device is 
not concentrated in readily discernible files as shown in 
Figure 1 but is rather randomly spread over a whole 
device. This is the case with large, randomly accessed 
data base files as well as for large collections of small, 
user files such as the collection of programs saved by the 
systems' time sharing users. In these cases the activity 
histograms take the general form of the one shown in 
Figure 2. In this case no small file definition and related 
activity is feasible and the whole pack is defined as a file 
to the fast device allocation algorithm. The resulting files 
defined and access proportions for the mentioned moni
to ring period are summarized in Table I. The unit of file 
size used is the "link," a GCOS convenient unit defined 
as 3840 words, or 15360 bytes. Table I provides the inputs 
to the file allocation algorithm which is described in the 
following section. 
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TABLE I-Measured File Activity 

Dual607o--Monitoring Period Approx. 2.25 Hours 
DSS181 (16 used. devices)-149180 Accesses 
Exposure (3D) Workload (6/23/72) 

File Name Size (Links) Activity (%) 

GCOSCAT 80 4.1 
GLOB-HI-USE 18 12.7 
GLOB-LO-USE 140 3.5 
SU-HI-USE 40 0.9 
SW-LO-USE 150 1.7 
SW-SYSLIB 40 1.3 
LUMP 20 0.8 
#P 55 0.9 
#S 200 4.5 
PACK16 750 3.9 
STI-MISC 150 2.8 
-G-WAD-FILES 150 -4.7 
SYOU2 1200 9.1 
DEV. CATS 360 2.6 
PACK 11 1200 3.1 
PACK 10 1200 4.1 
D6SCRATCH 100 3.1 
D7SCRATCH 180 2.0 
D13 C SCRATCH 90 1.4 
D3 SCRATCH 1 150 2.7 
D3SCRATCH2 90 1.0 
D4 MISC 600 3.3 
SYOU 1 1200 9.0 
D7 MISC 600 1.4 
PACK8 1200 2.7 
PACK9 1200 4.0 

OTHER 7940 8.6 

Xote: 1 Link =3840 Words = 15360 bytes. 

OPTIMAL FILE ALLOCATION TO FAST DEVICE 
WITH LIMITED CAPACITY 

Having a set of mass storage files defined as well as a 
measured profile of the frequency of access to each, the 
next step is to postulate an allocation of these files to the 
mass storage subsystems. For purposes of illustration it 
will be assumed that this allocation problem may be 
characterized as the selection of that subset of files which 
will fit on a constrained capacity device. The selected 
files will then result in the maximum proportion of I/O 
activity for the new device being added to the mass stor
age configuration. This problem of selecting a subset of 
files may be formulated as an integer linear programming 
application as follows. 

GIVEN 

A set of n pairs (8i' Ii) , defined as: 

8i= Size (links) of the ith file, 
!i = Fractional frequency of reference to the ith file. 

A maximum size constraint, S, of the proposed fast access 
device. 
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THE PROBLEM 

Select from the given set of files that subset which maximizes 
the sum of the reference frequencies to the selected subset 
while keeping the sum of the selected subset file sizes less 
than or equal to the given fast device capacity limitation. 

lVIATHE::.\1ATICAL FORMULATION 

Define 

{
o - ith file is not selected 

Oi = 1-ith file is selected for allocation to fast device. 

Then the problem is to find, 

:MAX Z= [ :E /i·Oi] 
i=l,n 

Subject to, 

" 8··0·<S L....J l l_ 

i=l,n 

This is an integer linear programming problem for 
determination of the 0,. The Integer Programming appli
cations program available with H6000 systems was used 
to find solutions for various sizes of proposed fast access 
devices. For the same data discussed previously the inte
ger programming solution yielded the results shown in 
Table II and Figure 3. 

Table II shows the same list of files, sizes and access 
frequencies given in Table I but a column has been 
incl uded for each postulated size of fast access device to 
be added to the system configuration. An X in a row indi
cates that that file should be allocated to a fast access 
device of the capacity given by the column heading. Thus 
the X's in each column delineate which files to be allo
cated to the fast access device to provide the maximum 
number of fast device accesses for a specified capacity. 

Figure 3 shows the activity profile for "optimum" file 
allocation as a function of the capacity on a log2 scale. 
The fairly constant slope of approximately 10'(- activity 
increase perdoubling of the capacity is an interesting 
result. In the range of 2-32 million bytes, the same slope 
characteristic has been observed in several applications of 
this technique. 

Application of the preceding technique provides infor
mation on the I/O traffic split between the proposed fast 
access device and the existing mass storage and it also 
dictates which files to allocate to the fast access device to 
provide the maximum activity for a specified capacity. 
The effects of implementing the derived allocations on 
svstem performance must still be quantified. One method 
o'f estimating the resulting system performance is 
described in the following section. 

SYSTEM PERFORMANCE IMPLICATIONS 

The preceding section has discussed a technique for 
selecting a set of files to be allocated to the proposed fast 
access mass storage device. It produced not only the allo-
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TABLE II-"Optimum" File Allocation to Fast Access Device 

File Name Size (Links) Activity (%) 

GCOS CAT 80 4.1 
GLOS-HI-USE 18 12.7 
GLOS-LO-USE 140 3.5 
SU-HI-USE 40 0.9 
SW-LO-USE 150 1.7 
SW-SYSLIB 40 1.3 
LUMP 20 0.8 
#P 55 0.9 
#S 200 4.5 
PACK16 750 3.9 
STI-MISC 150 2.8 
GLOAD FILES 150 4.7 
SYOU2 1200 9.1 
DEV. CATS 360 2.6 
PACK 11 1200 3.1 
PACKI0 1200 4.1 
D6SCRATCH 100 3.1 
D7SCRATCH 180 2.0 
D13C SCRATCH 90 1.4 
D3 SCRATCH 1 150 2.7 
D3 SCRATCH 2 90 l.0 
D4 MISC 600 3.3 
SYOU 1 1200 9.0 
D7 MISC 600 l.4 
PACK8 1200 2.7 
PACK9 1200 4.0 

OTHER 7940 8.6 

19200 100.0 

149180 Accesses 
Approx. 2.25 Hours 
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Figure 3-1;,0 activity resulting from "optimum" file allocation to 
proposed device 

Fast Access Device Capacity (M Bytes) 
2 4 8 16 32 64 
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118L 258L 508L 1028L 2013L 4153 Size 
17.6% 22.0% 28.9% 39.8% 50.7% 66.2% Act. 

cation set but also the resulting proportionate 110 activity 
as a function of the capacity of the proposed device. The 
choice of capacity of the proposed device, or even to pro
cure it, depends not directly on the proportionate activity 
but rather on the system performance that results from 
each possible activity level. In this section the system 
performance is discussed as estimated by an analytical 
model. 

The analytical model used to determine the system 
throughput is described in the Appendix. It specifically 
includes the depth of multiprogramming, the job proces
sor requirement, and the number, type and speed of one 
or two 10 subsystems in the calculation of system 
throughput. The mathematical assumptions made in the 
analytical model are included in the Appendix informa
tion. An additional assumption, operational in nature, is 
that the system always has jobs to work on-it will never 
have to decrease its effective depth of multiprogram
ming due to an insufficient number of jobs being fed into 
it. It is also assumed that the processing and high speed 
channel load on the system due to unit record devices is 
negligible. Similarly, only batch type job streams are 



being modelled, hence no communications subsystem 
overhead is included. As a result of these pragmatic 
assumptions, the determined throughput will be opti
mistic. However, the calculated throughputs for differ
ent configurations should have the same proportional 
relationships as the real systems. 

The inputs required by the analytical model and the 
values used for the illustrative analysis are summarized 
in Table III below. 
The output of the model consists of system throughput in 
terms of job completion rate as well as percentage utiliza
tion factors for the major system resources, e.g., CPU, 
memory and IIO channels. The object of this analysis is 
to determine the effectiveness of alternative mass storage 
configurations. Therefore system performance, in the 
throughput ("work done") sense, will be measured as the 
proportionate utilization of a system resource which is the 
sarnein each-proposed confIguration=i-~ this c~-se the 
processors. The best mass storage configuration, assuming 
a given processor, is that which keeps the given processor 
saturated. This definition of system performance good
ness is only valid, of course, in the throughput sense, cer
tainly it is not necessarily valid in the turn-around or 
response time sense of performance. Regardless of the 
relative merits of this definition of system performance, it 
will suffice for purposes of illustration. As mentioned 
before, any analytical or simulation model of perform
ance commensurate with the analyst's requirements may 
be employed at this step of the analysis procedure. 

Figure 4 shows the normalized system performance 
predicted by the analytical model for a group of system 
configurations which exemplify the possible mass storage 
reconfiguration options. The curves are plotted as a func
tion of the capacity of a proposed, fast, direct access 
device such as a drum or bulk store. The higher curve 
shows system performance as a function of the capacity 
of a device with an average access time (including data 
transfer time) of 1 millisecond. The lower curve is for a 
device with an average access time of 10 milliseconds. 

TABLE III-Model Inputs 

Description 

Central System 
CPU Time Per Physical I/O 
Average Multiprogramming Depth 

Disc SW)fsyslems 
~ umber of Drives 
Number of Physical Channels 
Average Seek Time (ms) 
Average Latency Time (ms) 
Average Data Transfer Time (ms) 

Drum Subsystems 
Average Access Time, including 

Data Transfer (ms) 
Distribution of I/O activity to Disc 

or Drum Subsystems 

Value(s) used 

H6070 
12 milliseconds 
4 and 7 

DSS181 D88190 
18 16 
2 2 

34 30 
12.5 8.3 
7 3 

iVO Specific Product 
1 and 10 

As specified by Figure 3 for 
Drum Capacity 
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16 32 64 

?~OPOSED DEVICE CAPACITY ( 11 BYTES ) 

Figure 4-System performance vs. reconfiguration proposals 

Points on the vertical axis of Figure 4 represent configu
rations which do not include a new, drum type device. 
Point A represents the measured system which had a 
mass storage configuration of DSS181 devices. Point B is 
the predicted system performance resulting from replac
ing the DSS181 subsystem by a DSS190 subsystem which 
also consists of movable arm discs but with faster seek, 
rotation and data transfer capabilities. Point C represents 
the predicted performance for a system whose mass stor
age configuration is unchanged (the original DSS181 
subsystem) but whose main memory has been increased 
to enable a multiprogramming depth of 7 simultaneous 
production batch jobs. Horizontal lines intersecting the 
performance curves for the drum-like configurations have 
been drawn from points Band C. These then show the 
performance cross over points which can be factored into 
a cost trade-off analysis. It can be noted from these that a 
4 megabyte drum produces the same performance 
improvement as upgrading the movable arm subsystem, 
but less than increasing the main memory capacity. To 
equal the performance gain accrued from extending the 
main memory, a drum capacity of at least 16 megabytes 
is required for the example system. 

Cost/performance information can be readily inferred 
by replacing capacities and configuration by relevant cost 
data. This will not be pursued here as it is necessarily 
dependent upon choices of equipment suppliers as well as 
the details of any particular facilities' operations. 

SUMMARY 

The preceding has described a method of using meas
urements and mathematical analysis to determine, quan
titatively, the gains in system throughput to be expected 
from various alternative changes to the system configura
tion. The steps in this method proceed as follows. 

1. Obtain accurate measurements of the access charac
teristics of file activity on the current system during 
real operations. 
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2. Postulate allocations of files to various feasible 
capacities of the proposed new device. This could be 
done by subjective inspection of measurement 
results or, as described in the preceding text, a 
mathematical technique of allocating for maximum 
use of a proposed faster device could be employed. 

3. Using this allocation-activity information predict 
system performance for the various feasible capaci
ties of the proposed device by use of analytic or 
simulation models. This information can then be 
translated into cost-performance relationships for 
use as one of the criteria in the decision process. 

The above procedure is useful and informative. It is 
obviously neither foolproof nor all inclusive. The file 
activity information, as used, represents average activ
ity over a monitoring period which mayor may not be 
representative of "most" periods of system operation. 
Further no sequential relationships (the patterns of ac
tivity shifting from one file to another during the period) 
are utilized although the measurement technique could 
provide this information to a reasonable degree, e.g., a 
Markov transition matrix of access from each file to the 
next one accessed. The pros and cons of any and all ana
lytic and simulation models are also always a subject of 
controversy. Nevertheless it can be concl uded that a sci
entific procedure such as the one described, which uses 
currently available measurement and analysis techniques 
to provide reasonable estimates of system performance 
gives a significant assist to the decision process. 

APPENDIX 

The Queuing Model of System Performance 

There are various techniques of evaluating the perform
ance of computer systems. The two more direct 
approaches are measurement and analysis of models. In 
the case of systems not yet in a productive situation, 
measurement cannot be done. Analysis of models, how
ever, can be used to evaluate performance of even quite 
abstract hypothetical systems. There are two popular 
techniques of computer system modelling. One is simula
tion and the other is analytic mathematical modelling. 
Simulation has proven a successful technique but is typi
cally a major project, costly in both men and computer 
time. Analytical modelling however, usually results in a 
small computer time requirement for system evaluation. 
This p.ermits parametric or sensitivity analyses not 
always economically feasible with a simulation model. An 
analytic model, which includes consideration of the basic 
computing system features (e.g., main memory limitation, 
file subsystems, and processor competition), is a useful 
aid in evaluating system level performance of computer 
systems. 

The particular model used in this analysis was devel
oped by Don R. Rice. * Figure 5 is a sketch of the model 
system. When a job enters the system, it is placed in the 

"D. R Ricl', An AnFllytic-al Model for f'omplltPf Ry<;tpm Pprformancp 

Analysis, Ph D I?issertation, Cniversity of Florida. 1971. 

Job Arrivals 

Job Departures 

System Input Queue 

Finite Memory 
(Maximum of K Jobs) 

Figure 5-The system model. 

system input queue. If there is room in memory (less than 
K jobs already resident) the job immediately is allocated 
to memory. The job then gets, in its turn, alternate proc
essor quantums and I/O services from each device in a 
specified proportion. When its total processing and I/O 
requirements have been met, the job leaves the system. 
This departure leaves an unoccupied slot in memory 
which is immediately allocated to the earliest arriving job 
in the system input queue. 

The mathematical technique of evaluation such a sys
tem requires certain assumptions: 
These are: 

(1) Each user of the system behaves independently of 
all other users. 

(2) All users are statistically identical. 
(3) Arrivals into the system are Poisson distributed. 
(4) Each increment of service by the processor(s) is 

exponentially distributed with mean value C/f 
where C is the mean processor requirement per job 
and f is the mean total number of I/O connects per 
job. 

(5) The time required for each file service is exponen
tially distributed with mean value Fi where Fi is 
the mean effective access time for file device i. 

The described system operation and assumptions permit 
formulation of the problem as a continuous parameter 
Markov chain as a basis for anaiysis, 



The memory bus monitor-A new device for 
developing real-time systems 

by RICHARD E. FRYER 

Naval Weapons Center 
China Lake, California 

I~TRODUCTION 

The memory bus monitor was designed to assist in pro
gram development on dedicated computers. A dedicated 
computer is defined here to be one that is used for only 
one major application and is available to the programmer 
in blocks of time as needed to complete the development 
and checkout of his problem. Because of high cost, few 
large scale computers can be operated in this manner. 
However, many medium scale and virtually all minicom
puters (including airborne and other process control 
computers) are operated this way, at least when assembly 
language code is being written. Most systems classified as 
real-time also fall in this category. 

The cost of such systems hardware is decreasing at 
such a rate that their number is dramatically increasing. 
Progress in reducing software costs is virtually nonexis
tent, even though it is generally regarded as being the 
limiting factor in the development of these systems. 1 

These reasons give economic justification for the develop
ment of tools to assist in the programming task. 

Most instrumentation and monitoring techniques have 
been developed since 1965.2 A survey of bibliographies on 
systems measurements3

.
4 also reveals that software evalu

ation and measurement techniques are being explored at 
a much more intense level than hardware approaches
probably because computer hardware designers and users 
continue to be distinct varieties with relatively little cross
pollination. The predominance of measurement tech
niques has been developed to assist in improving time
sharing systems or to aid comparison of large systems. 
Very little emphasis has been placed on the needs of 
programmers, and even less on applications for medium 
and small scale systems. 

Some instrumentation aids have been in use since the 
early 50's. The breakpoint register has been implemented 
on many systems at least as old as the IBM 6505 and as 
large as the UNIVAC 1108. This register allows the pro
grammer to execute a program at full speed until the 
instruction register (or perhaps a generai register) agrees 
with the breakpoint value; then halt. The user can then 
step through the program one instruction at a time (a 
practice that is probably discouraged at 1108 install a-

75 

tions). In spite of the simplicity of this device, it can be a 
g...reat---hel-p.-.tQ. the-. ..p.!'-ogr-am-mer .. I-thas--been- _r.eimlenteda 
number of times in the last few years by vendors of small 
machines. 

REAL-TIME SYSTEMS DEVELOPME~T 

Development of software systems for real-time applica
tions typically proceeds through definition and specifica
tion, design, implementation and checkout stages. Due to 
difficulties in predicting subprogram size and timing for 
various functions, it isn't usually known if overall size 
and timing goals will be met until the complete system is 
benchmarked. When original design is incomplete or sys
tem specifications are revised, the goals my be exceeded 
by a substantial margin. Then program cycle time or 
memory requirements (sometimes both) must be reduced 
without adversely affecting the other parameter. And this 
optimization must take place while program debugging 
continues. 

Machine software simulators and assembly language 
debugging programs (such as Digital Equipment Com
pany's ODT) are among the tools available at this stage of 
system design. Many aspects of system design can be 
verified with these tools-logical flow, variable scaling 
and correctness of computation, for example-but they 
are rather useless for measuring cycle time, locating 
faults that occur during peak I/O bus loading, detecting 
race conditions in a multiple asynchronous interrupt 
environment and similar problems. A program trace 
recorded on tape can yield data on the actual program 
path taken (at least over short time periods), but is 
expensive to reduce, is not interactive, and can only 
approximate reai execution times. 

The memory bus monitor is intended to supplement 
these and other development tools. It is useful for initial 
testing, checkout, optimization, and system validation. 
Timing and instruction mix data obtained with the sys
tem are also expected to be useful in future system 
designs. 

MEMORY BUS INFORMATIO:-.J 

The information carried on the memory bus of a typi
cal system has a simple format. Address lines specify the 
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memory location to be accessed. Data lines carry the data 
read or to be written, and control information includes a 
Read/Write (R/W) line and sometimes a split cycle line 
for read-modify-write operations. This information is 
adequate for the operation of the memory bus monitor. 
An Instruction/Data (I/D) status line is also sometimes 
available. It specifies how the current bus data word will 
be interpreted; its use is described in the operation sec
tion. Other lines sometimes available include the Direct 
Memory Access control line. While this and other control 
lines can reveal still more information for the user, they 
are not discussed further in this article. 

The stream of addresses and data traveling the memory 
bus, though simple in form, contains much information 
about the execution of a program; information not ordi
narily available to a programmer. The rich content of bus 
information can be extracted using time and address 
correlation of bus traffic. Several specific operations on 
hus data and the program parameters that they measure 
are listed below. 

1. The behavior of any selected variahle is easy to fol
low by identifying when its address is upon the bus. 
Actual instead of intended behavior is observable. 

2. The address(es) holding any specified data word 
that is accessed may also be obtained by monitoring 
data values and treating the address as an unknown. 

3. One of the most valuable artifacts available from the 
bus is the history of addresses just prior to the time 
when a specific location is written. This instruction 
stream tells the programmer what code was execut
ing when an instruction or program constant is acci
dentally destroyed. 

4. Another artifact that is often referred to but rarely 
measured is the instruction mix for a particular sec
tion of code., If the code is short enough, a "static" 
mix may be determined by hand or via a program 
editor. However, large sections of code become 
unmanageable and generally unknown branching 
ratios at decision points make "dynamic" (actual) 
mixes difficult to predict.6 Dynamic mixes are easily 
obtained with the bus monitor. 

5. Branching ratios are also readily extracted from the 
bus. 

6. Accurate and detailed timing information provides 
the most effective way to optimize program cycle 
time. Measuring the actual execution time of a sec
tion of code is easily accomplished using the bus 
monitor, in contrast with conventional techniques 
that, for example, require changing existing instruc
tions (such s NOPs) to uncommitted output 
instructions to generate timing sentinels. 

HARDWARE DESIGN 

A basic system 

The block diagram in Figure 1 shows the essential 
elements of a minimum bus monitor. It can be used to 

Figure I-A basic bus monitor 

display the contents of any memory location as it is read 
or written. The user enters the address of the location to 
be monitored and selects Read, Write, or both. The data 
values read or written are then displayed in the readout. 
A static/dynamic switch (not shown) allows the operator 
to stop the display if the update rate is too fast. A read 
status indicator can be set to blink or latch each time the 
selected location is read. The trigger to the readout regis
ter is also connected to a BNC connector on the front 
panel so that an oscilloscope or digital counter may be 
used for frequency, period, or counting operations. Inter
rupt and I/O rates can be monitored this way, for exam
ple. This signal may be ORed with the halt signal in some 
computers to effect the breakpoint function. 

An intermediate system 

A diagram of the first system constructed appears in 
Figure 2. It was designed for a Varian 622A computer in 
1969, and has one primary feature missing from the pre
vious system. The address stack is added consisting of an 
8 word shift register. Each new address that appears on 
the bus is pushed onto this stack. 

The control logic that is used to latch the display regis
ter can also be routed to freeze the stack. When the 
address compare signal halts the stack, the user can 
manually revolve the stack past the display to inspect 
memory addresses (and thus instruction activity) prior to 

Figure 2-The monitor used on the Varian 622A 



the selected read or write operation. This feature was 
commonly used to locate the section of code responsible 
for destroying a known location. 

The current design of the memory bus monitor 

A simplified block diagram of the Memory Bus Moni
tor appears in Figure 3. In addition to the functions that 
existed in the earlier design, the current design has the 
following features. 

1. The shift register stack is replaced with a 16 word 
Content Addressable Memory (CAM) that is used as 
a stack, a learning memory, or as a 16 word compar
ator depending on mode. 

2. A 16 word data stack is also added with 2 extra bits 
for the R/W stat-us line and the- liD line when avail
able. The data register (number 4 in Figure 3) and 
comparator can generate a trigger when a data word 
equal to the register contents appears on the bus. 
Bits set in the mask register (number 5) inhibit 
comparison of corresponding data bits. That is, they 
become "don't care" bits. 

3. The address detector is expanded to 4 registers 
(numbers 0-3). Register 1 is used with register a to 
bracket sections of code and to straddle branches. 
An output is also generated that combines registers a 
and 1 to detect any address falling between (0) and 
(1), where (n) denotes the contents of register n. 

4. The next two address registers, numbers 2 and 3, are 
enabling fegisters. They are used for arming condi
tions. Comparator pulses from these two are also 
used to set and reset an RS flip-flop. The output of 
this flip-flop can act as a gate to pass other events. 

5. The base address register, number 6, and the asso
ciated adder are used to add a constant to keyboard 
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Figure 3-The current memory bus monitor 
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address entries and to subtract that constant from 
address readouts. This feature is nearly essential for 
effective use with relocated code. 

6. A \vatchdog timer function is implemented with reg
ister 7 and an up-counter. The internal 20MHz 
monitor clock is counted down to supply a 1 micro
second and a 1 millisecond trigger rate for the timer. 
The timer may be operated in either "gate mode" 
that compares the time interval of the RS gate with 
(7) or in a "cycle mode" that compares the time 
duration between pulses. In either case, failures 
(measured intervals greater than the register value) 
generate a trigger. 

7. Finally, though not shown in Figure 3, an octall 
hexadecimal switch controls the keyboard and read
out mode to match the form used by the computer 
under test. 

The current monitor is considerably more sophisticated 
than the earlier design, but is of no more than moderate 
complexity (simpler than a disc controller, for example). 
The unit is constructed using wire-wrap and TTL tech
nology. Approximately 150 SSI and MSI packages are 
required for the design, excluding the interface to the 
memory bus. The bus interface is on a separate board 
that can be easily replaced for transportability between 
various 16 bit computers. For machines with a larger 
address or data word only the corresponding registers and 
display need to be enlarged. The device is mounted in a 
19"X12"X3 1/2"case-one selected to fit along with a 
general purpose counter into a small suitcase. 

The operators panel of the monitor has the following 
features. A hexadecimal keyboard, 2 digit thumbwheel 
switch, and an Address-Data display allow the user to 
load and verify the contents of the 8 registers. Also, the 
CAM storage appears at thumbwheel addresses las to 278 ; 

the data RAM at 308 to 478 • Each comparator output and 
the two derived signals are routed to connectors on the 
panel. Toggle switches adjacent to the connectors allow 
the user to select a combination of these signals to form a 
"master" trigger that is routed to the display and stack. 
The selected signals may be ANDed or ORed to form a 
master trigger. This composite trigger is also routed to 
both a pulse and latching indicator. Control is also pro
vided for the watchdog timer modes and for the condition 
to be used to halt the operation of the monitor. A 7 posi
tion selector switch gives access to the various modes of 
operation. Status lights reflect the condition of the timer 
and halt logic. 

OPERATION MODES AND THEIR USES 

The Regi.ster R/ W mode is used to load or modify reg
isters at the beginning of a run, and to review CAM and 
RAM contents after a run. Pushbuttons on the panel set 
the R/W and liD bits in registers a through 4, and these 
bits are compared with the bus status lines along with the 
address bits. 
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The Bus Monitor mode routes the contents of the 
memory bus address and data registers to the display 
registers. This mode is useful when operating the com
puter in single step mode. 

The Load Stack mode uses the trigger source(s) 
selected by the user to transfer current address and data 
registers to the stacks. These registers are also transferred 
to the display. Typical monitoring operations in this 
mode are described below. 

1. The activity of a specific location is extracted from 
the bus by putting its address in one of the 4 address 
registers and enabling the comparator output to 
generate the master trigger with the corresponding 
toggle switch. More than one register can be used if 
desired (4 is the maximum). The trigger generated 
pushes the bus address and data registers onto their 
respective stacks and also transfers this data to the 
display. The R/W enabling bits for the 4 registers 
need not be the same. The stack continues to load 
until the halt flip-flop is set by the stack full trigger 
or any other trigger selected by the user. 

2. Addresses containing a specific data word may be 
located as this word is read or written by loading 
and enabling register 4. These addresses are dis
played and pushed onto the stack. The mask register 
is used to limit the comparison to, for example, the 
op code field. 

3. Using the data and mask registers in conjunction 
with an address register allows a limited study of 
variable scaling. 

The Halt Stack mode allows all address and data infor
mation to push the stacks, and halts this operation when 
the master trigger occurs. Recent history of bus traffic is 
the most important artifact in this mode. 

1. The instruction stream that references a given word 
can be recovered-particularly useful if a data word 
is destroyed as mentioned for the earlier design. 

2. Registers 2 and 3 are used to set and reset the RS 
flip-flop. The output then enables any other triggers, 
allowing the measurement mentioned above to take 
place only when an event arms the device, or while 
within (or outside) a defined section of code. The (0) 
~ ADDRESS ~ (1) trigger can be similarly used 
for routines or data arrays instead of single words. 

3. When a certain number of tasks must be completed 
in a specific time, the watchdog timer is used to halt 
the stack, allowing the task currently executing to be 
identified. 

System Timing and Counting operations are done in 
both of the above two modes. The connectors on the front 
panel can be connected to a general purpose counter (a 
Hewlett Packard 5325 has been used). Common timing 
operations are described next. 

1. Program loop cycle time is determined by monitor
ing the frequency or period of the trigger from an 
address comparator. 

2. Subroutine (or any section of code) timing is done by 
measuring the period of the RS flip-flop with regis
ters 2 and 3 set to the limits of the routine. 

3. When a section of code calls another routine, is itself 
interrupted, or has multiple exit points the time 
measured using the RS flip-flop as described above 
is in error. The correct value can be determined by 
using the (0) ~ ADDRESS .~ (1) signal, since it 
falls to zero when the address falls outside the limits. 

4. The effective cycle time is determined from the 
memory cycle trigger that is routed from the bus 
interface to the front panel. This measurement can 
aid the user in determining if faster memory would 
speed up his overall system. 

Several specific counting operations that are useful are 
now described. 

1. The branching ratios at a decision point are readily 
determined by setting one register to the branch 
instruction and another to an instruction in one of 
the branches. The counter is operated in the ratio 
mode to give a direct ratio reading. All branches can 
be quickly checked to insure that the sum of all 
ratios is 1. 

2. The number of occurrences of an instruction with a 
given op code may be counted by using registers 5 
and 6 to isolate the op code part of a word. A wait 
loop is often a part of real-time programs, and if the 
idle time is significant, the instruction mix becomes 
contaminated. The address range can then be lim
ited to exclude the wait loop in a manner already 
described. This same technique is used to determine 
a mix for a specific task. 

The monitor trigger that is derived for timing is also 
often useful for synchronizing an oscilloscope during 
hardware checkout. Events within the computer and on 
the 110 bus that result from instruction execution can be 
'anticipated' by the monitor. 

The Address Sieve technique operates the CAM as a 
learning memory. It is used to locate all instructions that 
refer to a specific location. The user derives a trigger in 
the usual way, and it causes the previous address (saved 
in the holding register shown in Figure 3) to be applied to 
the CAM. If that address is not already in the memory, it 
is added. 

The Selective Dump mode uses the CAM as a 16 word 
comparator. The user loads the CAM with up to 16 loca
tions that he wishes to capture; then sets up a halt trigger. 
When the CAM detects a match, the address of the match 
in the CAM (that is, 0 to 15) is supplied to the RAM and 
the data register is stored in the corresponding RAM loca
tion. 



The Watchdog Timer runs in all modes and generates 
triggers that may be combined for the master or halt trig
gers. When the timer mode is selected, however, meas
ured time intervals are pushed onto the stack. The RAM 
and CAM are both loaded to provide 32 values. The user 
may store all counter values or only those that exceed the 
value in register 7. The timer values are also routed to the 
display. 

DIRECTIONS FOR DEVELOPMENT 

When a user wants to know how long a given section of 
code takes to execute, he would really like to know the 
extremes and something about the distribution. The cur
rent monitor is unsuitable for collecting all measurements 
for statistical analysis since it is a manually operated 
device~ Anticipating this problem, some effort was made 
to ease the transition to computer control of the monitor. 
Also, the counter mentioned allows for remote program
ming and data collection. There are many modes and 
instances, however, when the increased cost and complex
ity of a general purpose computer would not be justified. 
Developments in microcomputers make the inclusion of 
such a device in an advanced monitor an attractive option 
to consider, especially if compilers are written for them. 
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We enVISIOn that both manual and automatic monitors 
will find their way into the programmers toolkit. 

SUMMARY 

This paper has briefly reviewed the software development 
problem for real-time and process control applications, 
and has shown how memory bus information may provide 
data to aid the development of these systems. A device is 
described that can extract many different artifacts from 
the memory bus with relative ease. The device is inexpen
sive, small, and can be switched from machine to ma
chine with little effort. 
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INTRODUCTION 

Recent progress of IC and LSI technology and advances 
in microprogramming technique4

.
1o have had a major 

impact on computer architecture. Rapidly decreasing 
logic and memory costs and ever increasing programming 
costs justify more trade-offs being carried out from soft
ware to firmware and/ or hardware, and many 
experimental l •3 ,9.12.16 or commercial 11.14 models, which 
stand for these trade-offs, have been announced. 

However, it seems that only a little is known about 
performance gain obtained by these trade-offs. One of the 
main reasons for the lack of evaluation data is that there 
are only a few tools to quantitatively evaluate quality of 
architecture, firmware or hardware design. There are 
three major approaches to this purpose. 

One approach is the use of software simulators17 which, 
sometimes, are very useful, if appropriate simulation 
models can be established. However, in most cases, it is 
not an easy task to make a good simulation model for 
accurate design evaluation. When one wants to simulate a 
processor in detail, at the register transfer level, for 
example, to evaluate the processor performance using a 
software simulator, it will take a long time both to make a 
simulation model and to set up simulations of many 
parameters. Moreover, there is no way to automatically 
convert a simulation model to an actual model, after the 
desired model has been completely defined. 

Another approach is to make an experimental model on 
a conventional microprogrammed processor12 by replacing 
its microprogram memory with another one representing 
the model. In this approach, a higher simulation speed 
can be obtained and processor speed improvements and 
cost figures can be directly compared with the conven
tional processor on which the model is implemented. Dif
ficulties, however, lie in that available hardware resources 
are limited to the processor used, and that evaluation 
data gathering is difficult unless some measurement 
means are provided. 

The third approach to mathematical or theoretical 
treatmene· 4

•
6 of the model can be used to obtain roughly 

estimated values, and may be of supplementary use at 
this evaluation stage. 
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To cope with above mentioned problems of slow simu
lation speed, . .large .gaJlS--beLween. -evaluation.. models. and .. 
actual models of software simulations, and insufficient 
evaluation data of hardware simulator approach, the 
Computer Design and Evaluation System (CODES), 
described in this paper, has been developed. It can be 
used to evaluate performance gain by a sort of hardware 
simulation approach with rapid simulation speed, a wide 
adaptability range, effective measurement capability and 
usable supporting softwares. 

The system configuration will be described, and appli
cation examples of CODES to the architecture or com
puter design problems will be projected in the subsequent 
sections. 

CODES SYSTEM 

System configuration 

The CODES system consists of cooperable GPMS, 
General Purpose Microprogram Simulator, and SYDAS, 
System Data Acquisition System, operable dependently 
or independently. 

Therefore rapid simulation is attained by means of 
hardware simulator, GPMS, and an accurate and wide 
range of evaluation data can be obtained by means of 
hardware monitor, SYDAS, in addition to the GPMS 
built-in data acquisition capability. 

Prior to simulation, the equivalent GPMS microin
structions, into which a model is translated by the aid of 
MPGS,7 a software system prepared for description of a 
model, are loaded into the GPMS microprogram memory, 
and also sample program and data used for simulation 
are loaded into the main memory. In this case, data 
obtained by SYDAS through the current operating sys
tem may be used for modeling and as initial data. 

While the GPMS has been working as the virtual image 
of a model, evaluation data, for example, the usage of 
microinstructions and hardware registers, are obtained by 
the built-in GPMS acquisition function, according to 
varying selection conditions. 

Simultaneously, SYDAS can obtain more accurate and 
selective evaluation data without disturbing the GPMS 
simulation process, depending on GPMS control signals. 
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Moreover, it is possible for GPMS to control SYDAS 
positively in order that a wide range of more selective 
data can be obtained by SYDAS and on the contrary, it is 
possible for SYDAS to order GPMS so that GPMS ceases 
to simulate at a certain time and brings directly unacces
sible information to the interface. 

Furthermore, SYDAS can control GPMS simulation 
behavior, in detail for some part and in rough for the 
other. 

GPMS 

GPMS15 is a general purpose microprogram controlled 
hardware simulator which rapidly simulates any kind of 
computer. It consists of three major modules; a process
ing module which efficiently simulates a data manipula
tion of a model, a simulation control module which super
vises a simulation process and a data acquisition module 
which measures hardware resource usages. The block 
diagram is shown in Figure 1. 

Processing module 

This module is essentially an arithemetic unit capable 
of sixteen bit data manipulation for simulation. It con
tains a 16K-words core memory used for both a main 
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memory and a microprogram memory, a 256 words IC 
memory, a sixteen bit arithmetic unit and a thirty-two bit 
shift unit, etc. A microprogram memory is writable so 
that the model and evaluation parameters are easily 
changed. A microinstruction is composed of forty bits and 
contains one bit timer control field, which is called an S 
field, in addition to various fields for data manipulation 
and control operation. 

Simulation control module 

This module supervises the exucution behavior of 
microsequences in a microprogram memory, into which 
the control section of a model is translated for simulation 
by MPGS, and consists of System Timer, Microsequence 
State Register, User's Timer, and Sequence Control Flip
Flop. 

System Timer is the eight decimal digit clock in the 
model, which is advanced by one when some GPMS 
microinstructions, equivalent to a basic operation, for 
example a machine cycle, a microinstruction, or a ma
chine instruction, have been executed. Microsequence 
State Register holds control words of up to eight microse
quences, and is used to control the simulation process in 
GPMS. User's Timer is composed of eight 32-bit binary 
counters, which are incremented each time the microin-

Proccs~ing 

Figure I-Biock diagram of GPMS 



Design and Evaluation System for Computer Architecture 83 

struction with the S field set at "1" has been executed. 
User's Timer can interrupt simulation control after the 
preset time period, and so may be used to make a pseudo 
simulation of various interrupt mechanisms. Sequence 
Control Flip-Flop consists of the usual sixteen bit flip
flops, except that each of them can control the microse
quence execution process. 

Data acquisition module 

A capability to acquire evaluation data is built in the 
GPMS, and it measures the usage of some hardware 
resources, such as register, microinstruction and data 
path. It consists of sixteen 16-bit words associative 
memory holding mask patterns and sixteen 32-bit binary 
counters holding the usage. 

SYDAS 

The SYDAS is a hardware monitor, which processes 
the system state signals detected by the high-impedance 
probes attached to the wiring of a computer or specially 
to the GPMS, measures the activities of the working sys
tem without affecting either the hardware or software. 
The use of the associative memory and associated count
ers makes it possible to acquire system data in more flexi
ble ways, and to reduce the volume of the data by extract
ing the data concerned with a specific measurement. 

The SYDAS contains the following major hardware 
components: 

• Probes 
• Level Converter 
• Timer 
• Counters (36-bitX 2) 
• Associative memory (24-bit X 128 tag) and associated 

counters (32-bitX 128) 
• Buffer memory (8kW - 36-bit) 
• Main control 
• Magnetic tape units 
• Minicomputer (NEAC-M4) 

The system configuration of the SYDAS is shown in 
Figure 2. 

System state signals are picked up by high impedance 
probes, which attach to the backboard pins of a computer 
or GPMS. Presently, a total of 60 system state signals are 
selected, as in the following groups. 

• Memory address and its access factor signals 
• Operation code signals 
• 110 channel activity signals 
• CPU status signals 
• Control signals, etc. 

These signals are converted and amplified by the con
verter and are then driven through a cable to the main 
control. Depending upon the data required, which are 
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Figure 2-SYDAS system configuration 

specified by the switches on the control panel, the main 
control determines how to manipulate the system state 
signals. The following four measurement routes are pre
pared for SYDAS. 

Route 1: For measuring the occurrence frequency or 
time duration of the event, the system state signals which 
are selected by the control panel are sent to the counters, 
then, they are measured in the form of time or frequency 
count. The measurement data are displayed on the 
numerical display and also transferred to the minicompu
ter periodically-at intervals of 1 or 10 seconds, as speci
fled by the operation panel. 

Route 2: When system events occur, the system state 
signals are selected by the control panel, and the timer 
values at that event are recorded in the magnetic tape 
through the buffer memory. 

Route 3: The system signals which correspond to the 
watched events are stored in the associative memory 
beforehand. Then the system state signals, sent from a 
computer system or GPMS, are used to interrogate the 
associative memory and an event is found from it. An 
event, extracted in such away, is counted by each asso
ciated counter in the form of the event occurrence fre
quency. The measurement data are recorded in the 
magnetic tape periodically (100 ms, 1 second or 10 sec
onds) or when the measurement was finished. 
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Route 4: In the same way as for route 3, the system 
state and the timer val ue at that event are recorded in 
the magnetic tape for every extracted event. 

It is possible that the various system data can be 
obtained to rearrange the foregoing four routes with the 
system state signals. 

Data acquisition interface 

Together with the GPMS built-in data acquisition 
capability, timely evaluation data in GPMS can be 
obtained by SYDAS through the data acquisition inter
face between GPMS and SYDAS. 

There are two kinds of interface, one is a static inter
face through which SYDAS can acquire fixed, directly 
accessible data. For example, microsequence address 
patterns, microsequence state information, main memory 
address patterns, machine state information and simula
tion system time information can be obtained independ
ently of GPMS. 

The other is a dynamic and universal interface, which 
is installed for GPMS input! output operation. It is used 
to acquire data which SYDAS cannot directly access or 
cannot obtain alone because their meaning has been 
changing during simulation. In this case, required data 
with a control field are edited from that by a GPMS 
microsequence, especially prepared for special data 
acquisition. An example is the intermediate results 
obtained by the built-in GPMS data acquisition module. 

PROBLEM AREA 

Computer systems can be considered to be composed of 
three layers, as is shown in Figure 3. At the top, there are 
application programs with which users communicate, 
then the system software (OS) follows to the first layer, 
and the processors or input/ output devices, which may be 
divided into the firmware and the hardware, are set at the 
bottom. The interface between the first and second layer 
is defined by the OS specification, typically higher-level 
languages, and the other interface is defined by a set of 
processor specifications, which is here defined as com
puter architecture, represented by the machine language. 

Most of the architecture problems can be considered as 
trade-off problems between the second and the third lay
ers, so as to obtain better performance-cost at the state
of-the-art technology. In determining the architecture, at 
least two designs, which must be carefully investigated, 
are required. One is the design of the system software, 
which stands on the architecture, and the other is that of 
the processors. In the scope of this paper, the latter part 
of the design area is to be mainly discussed. This does not 
mean that CODES cannot be applied to evaluating soft
ware, but that the current interest in rapid progress of 
hardware technology emphasizes that part of the design. 
The major processor design problems can also be recog
nized as trade-off problems of determining the firmware 

and the hardware interface. Types of these trade-offs and 
examples of trades are presented in R. 1. Mandell's 
paper.8 

The evaluation of these trade-offs with respect to per
formance-cost is far from trivial, since the performance 
criteria are not clearly established and the performance 
measures differ from system to system. The performance 
measure in this system is primarily defined to be the 
processing speed of the model in a particular working 
environment. The hardware cost is estimated by the 
resources used by the simulation model. Using these 
values, overall system performance-cost can be obtained, 
applying mathematical analysis or system level software 
simulation techniques. 

DESIGN AND EVALUATION USING CODES 

Firmware/ hardware design 

In designing the firmware and! or hardware, a designer 
frequently encounters a problem of trading functions 
performed in the firmware and hardware, or, more gener
ally, trading performance and cost. He has to determine 
the following things so as to optimize the design. 

• Functional capabilities of hardware blocks, such as 
adders, counters, special functional blocks, etc. 

• Operating speed of those functional blocks. 
• Amount of hardware resources 
• Connections between hardware resources. 

When CODES is used in this type of design, the 
designer makes a model, which is described in the MPGS 
language used in CODES. Control part of the model is 
expressed in a form of microprogram, which is translated 
into the equivalent GPMS microprogram executable on 
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the CODES. The model description can be either macro
scopic or microscopic, depending upon evaluation pur
poses. At the early design stages, where roughly estimated 
values are sufficient, a coarse model can work well, and at 
later stages, the model should be described as precisely as 
the production model. CODES provides evaluation data 
by simulating sample programs and data fed into it. The 
following data can be obtained through this simulation: 

• Output of the simulated programs 
• Processing time of the simulated model in executing 

the simulated programs. 
• Processing time in the processing modules or micro

program routines 
• Usage statistics of the hardware resources 

By making use of the above data, the designer can 
re-peatedlye-hange his m-Od-el to--i-m-p-r-<We theper-fGr-mance
cost figure, to obtain which these simulation results are 
interpreted according to his criterion. Instead of simulat
ing the whole machine, it is possible to obtain the model 
performance estimating the module performance figures, 
that are measured by the CODES simulation and statistic 
data which are obtained by the currently operating sys
tems. If the machines are of similar architecture and 
hardware, this approach has great advantages. 

Trade from system software to firmware 

Extensive use of writable microprogram memory fea
tures trading frequently used functions from system soft
ware to the firmware, keeping the rest of the instruction 
repertoire unchanged. The process of performing the 
trade should be started with observation of the current 
systems to investigate the effective trade-off point. The 
CODES measurement facility serves to determine poten
tial trade-off functions by measuring the current systems 
with respect to the module usage data and the time spent 
in each module. Next step is to estimate the performance 
and cost increase or decrease ratio, obtained by the 
CODES simulation, to embed the selected functions on 
the firmware of the system. Finally, the trade is deter
mined, taking adverse effects into account, such as repro
gramming the system software to accomodate the trade. 
Should convenient linkage convention of calling micro
program routines from machine language programs be 
provided, this type of trade-off may be widely accepted. 

When a large amount of reprogramming is acceptable 
another approach 13 can be taken, as is the case de
scribed in the next section. 

Higher level language processor 

Implementation of higher level language (HLL) proces
sors on the firmware/ hardware is a good example of 
major trade-off problems, and experiments of implement
ing many kinds of HLL processors, such as ALGOL,I 
SYMBOL,3 FORTRAN,9 EULER,12 APL,16, etc., have 
been reported. However, the cost-effectiveness of firm-

ware HLL processors relative to conventional software 
implementation is not clearly established. The important 
thing is to define the evaluation measure. An approach, 
which is being carried out using CODES, is comparative 
eval uation. 

At the first stage, relative performance improvement is 
to be measured, by implementing the interpretation 
phase of the HLL compiler on the firmware. The inter
pretation method and the functional definition of the 
firmware implementation should be as close as those used 
in the conventional compiler, in order to fairly compare 
the two processors. Comparison is made between the 
simulation result of the firmware HLL processor and the 
measured data of the conventional one. 

After this comparison is made the further evaluation 
data of firmware-hardware trade-off, which can be evalu
ated keeping the architecture fixed, or-the-evaluation data 
of software-firmware/ hardware trade-off can be trans
lated into the relative performance-cost to the conven
tional HLL processor. 

CONCLUSION 

The CODES system is a powerful evaluation tool for 
architecture and firmware/hardware design, especially, it 
is useful to determine trade-offs, based on quantitative 
evaluation data obtained by CODES simulation. For 
example, as LSI technology advances, the trade-off 
between firmware and hardware becomes of importance. 
CODES simulation greatly helps to determine what kind 
of LSI should be made. Defining better architecture is 
also important, in relation to hardware and software 
progress. Since the architecture stands on the state-of-the
art balance of hardware and software, it is affected by the 
changes in either part. CODES can be of use to determine 
architecture. 

Fast simulation speed have attained in CODES. The 
CODES simulation speed depends on the model complex
ity. Approximate speed ratio of models and the simulator 
is 20-30 to 1 in a small scale model simulation, and 50-
100 to 1 in a medium scale model. This fast simulation 
speed makes it possible to evaluate on various parameters 
and, to some extent, to actually use CODES as a special 
computer. The measurement facility embedded in 
CODES provides plenty of meaningful data for analysis, 
and supporting software helps to make or modify simula
tion models. 

However, CODES is not a completely satisfactory sys
tem for applying it to various design and evaluation prob
lems. One of the deficiencies of CODES is that it takes a 
lot of time to make a large precise model. More design aid 
softwares should be developed to use CODES more effec
tively. It is being planned to connect CODES to a conven
tional computer system on 'line, facilitating to rapidly 
change model description or to retrieve models in the 
files. As the course of the CODES usage experiences 
many design problems, more CODES softwares will be 
developed to effectively use the system. 
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IXTRODUCTIOX 

The si-ze of the inv'estmf'nt ff'quin>d and the comptrxity of 
the time-sharing'-

3 computer systems, TSCS, necessitate a 
good deal of effort to be spent on the analysis of the resource 
allocation problems which are obviously tied to the cost and 
the congestion properties of the system configuration. In this 
paper we study the congestion problems in the multipro
gramming'-

3 TSCS's. 
The activity in the past sixteen years in the analysis of the 

congestion properties of the TSCS's by purely analytical 
means has been concentrated on the study of the cen
tral processing unit (or units), CPU ('s), and the related 
queues. A good survey of the subjf'ct has bf'f'n provided by 
}IcKinney.4 In the meantime more contributions to this area 
have appeared in the literature.5- 11 

There has been a separatf' but not so active interest in the 
study of the congestion problems in the multiprogramming 
systems. Heller'2 and }lanacher'3 employed Gantt charts 
(cf. 12) in the scheduling of the sequential "job lists" over 
different processors. Ramamoorthy et a1.'4 considered the 
same problem with a different approach. A single server 
priority queueing model was applied by Chang et al. ls to ana
lyze multiprogramming. Kleinrock'6 used a 2-stage (each 
stage with a single exponential server) "cyclic qUf'ueing"'7 
model to study the multistage sequential srrvers. Later 
Tanaka'S extended thr 2-stage cyclic queuring model to in
clude the Erlang distribution in one of the stagf's. Gavf'r19 
extendrd the 2-stage cyclic queueing model of multiprogram
ming computer systems furthf'r by including an arbitrary 
number of identical procrssors with rxponrntial service timrs 
in thf' input-output, 10, stagr in providing the busy period 
analysis for the CPU undrr various procrssing distributions. 

Herr wr prrsent a multiprogramming modrl for a genrral 
purpose TSCS, whrrr thr arrival and thf' drparture processes 
of thr programs along with thr main systrm resourcrs, i.e., 
the CPl~'s, thp diffprrnt kind of lOP's and thp finitr main 
memory sizf', are included and their relationships are 
examined. 

:\IODEL 

The configuration of the TSCS wr want to study consists of 
ko~ 1 identical CPU's with m groups of lOP's whf're the ith 
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group has k;~ 1, (i = 1,2, ... ,m) identical processors, as 
shown in Fig. 1. 

Thr nrw programs arp assumed to arrivp to the ith lOP 
group in thf' form of a time-homogene'ous Poisson procpss 
v,,·ith an avprage arrival rate' Ai, (i = 1, 2, ... , m). If thrre is 
less than N programs in thr system a ne'w arrival is accepted 
into the' system and is immediately placed in the common 
queue before thr particular lOP group. If the' numbrr of pro
grams in thp systrm is N, thrn any new arrival is assumrd 
to leave the system and never to rrturn. Th('s(' assumptions 
are justified whrre thrre is practically a large number of pro
gram originating sourcrs and th('sr attrmpt to accrss the 
system, rach time, independent of rach other and the system 
status, otherwisr they rrprrsrnt approximations. 

Hrrr wr consider that f'ach program currrntly in thr sys
tem has one unit of space (or a "page") resrrvf'd for it in the 
main memory. This assumption increases the efficiency of the 
time-sharing policy by making more programs available to 
the CPU's at low systrm administration complrxity, but at 
the same time it may increase the 10 activity between the 
main and the auxiliary memories. In this paprr we do not 
attempt to study this trade-off. 

A program (or a piece of it) after being processed, in the 
ith lOP group according to some sf'rvice discipline (say 
first-come-first-served), either proceeds to queue for CPU 
processing or departs from the system with the probabilities 
Pi and 1- pi, respectively. 

The programs df'manding CPU processing are served by 
ko CPG's in the order of their priorities, in time-sharing 
policy. Thus an idle CPU takrs thr program with thr highest 
priority among the \-... aiting ones in the common CPU-queue 
for processing. Each program is allocated a "time-scale" of 
processing, the length of which deprnds on the priority level 
of the program, each time it is scheduled to be processed by 
a CPU. A program which needs further CPU processing after 
one full time-slice is rrschrduled in the CPU queue with an 
appropriate priority level. Somr programs may not complete 
the full time-slicr of procrssing due to various reasons, such 
as termination, need for data transfer to and from the auxili
ary memory or the programmer, etc. In that case the pro
gram leaves the CPU to join the queue in the ith lOP group 
to be processed, with the probability qi, where 2:i:l qi= l. 
An interrupt from a higher priority program may also cause 
a currently running program to stop. Here we admit only 
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Figure I-System configuration 

preemptive-resume type of interrupt policy where the inter
rupted program sequence continues from the point \vhere it 
was stopped when its turn comes. All the 10 and the CPU 
queues are conceptual and assumed to be formed in the main 
memory. 

In this model the processing times of all the CPU's and the 
lOP's are assumed to be independent and distributed nega
tive exponentially. The processors in the -ith group all have 
the same mean service time 1/ Ili, where i = 0, 1, ... , m. The 
transition probabilities between the lOP groups and the 
CPU group are assumed to be stationary. These assumptions 
have already been used successfully by other authors investi
gating the TSCS in one form or other (cf. 4 and other refer
ences on TSCS). 

yIATHK\IATICAL ANALYSIS 

In this section we present a mathematical analysis of the 
model described in the previous section, by an extension of 
the method presented by Jackson.20 

Let us denote by Ai, -i = 0, 1, ... , m, the average arrival 
rate (both internal and external) of programs to the -ith 
group of processors where the oth group represents the CPU 
group and the groups 1 to m correspond to the lOP groups. 
Then 

where 

and 

m 

Ai=hi+ L riiA;, 
;=0 

ho=O 

i=O, 1, ... , m 

for i = 1,2, ... , m 

for j = 1,2, ... , m 

otherwise. 

(1) 

Let P(no, 711, .•• , nm ; t) denote the probability of the 
state of the system with ni programs in group i (being served 
or waiting) at timet, (i=O, 1 • ... ,m). Then we can write 

the system rquation, following Fell~r,21 by relating the state 
of the system at time t+h to that at time t, as follows: 

m m 

P(no, n1, ... , nm; t+h) = {l- [C L hi+ L Iljaj(nj)]h} 
i=l ;=0 

XP(no, ... , nm; t) 

m 

+ L h;E ihP(nO, ... , n;-I, ... , nm; t) 
;=1 

m 

+ L ao(no+ 1) llorOj E jhP(no+l, ... , l1j-l, .. . , 11m; t) 
;=1 

m 

+ L ai(n;+l)lliTiOE ohP(no-l, ... , n;+I, ... , n m ; t) 
i=1 

m 

+C L ai(ni+l)ll;(I-T;o)h 
i=1 

XP(no, ... , ni+ 1, ... , nm; t) +O(h). (2) 

m 

where C=1 if Lni<N 
i=O 

m 
=0 if Lni~N, 

i=O 

ai(n) =min{n, kd, -i=O,I, ... ,m 

Ei=min{ni' II, i=O, 1, ... , m. 

By the usual procrss of forming the derivative on the left 
hand side and letting it equal to zero for steady-state and 
also replacing P(no, 711, ••• ,11m; t) by P(no, 1l1, ... ,11m), we 
have 

nl- In 

0= - [C L hi+ L Iljaj(nj) ]P(no, ... , nm) 
;=1 ;=1 

m 

+ L hiE iP(nO, ... ,71,.-1, ... , nm ). 
i=1 

m 

+ L ao(no+l)llot]iE ;P(no+l, ... ,n;-I, ... ,nm) 
;=1 

m 

+ L ai(ni+ 1)Il;PiE iP (no-l, ... ,ni+ 1, ... , nm) 
i=l 

m 

+C L ai(n;+I)lli(I-Pi)P(nO, ... , ni+ 1, ... , nm). 
i=l 

(3) 

Here as we deal with ::vIarkov processes of finite states, 
mutually inter-communicating, the normalized solution of 
(3) is a proper and unique probability distribution.22 Then it 
can be shown by substitution, as in Reference 20, that the 
solution to (3) is given by the following theorem which is 
different from the previously proved one20 in that an arbi
trar:v number, X, is permitted in the s~'stem. 



Theorem: Define Pi(n), for (i=O, 1, ... , m) and (n= 
0, 1, ... ,N) as the probability of n programs in the processor 
group i in the above described system in steady state. Then 

lP;(O) (Ai/JLi)n/n! for n=O, 1, ... , k i 

Pi(n) = 

Pi(O) (Ai/JLi)n/ki!kin-k; for n=k i , ki+l, ... ,N. 
Also 

P(no, nl, ... ,nm) =Po(no) ·Pl(nl) ... Pm(nm) 

where 

Pi(o) is determined from the normalizing condition 
N 

L: Pi(n) = 1. 
n=O 

In the Appendix the theorem given above is extended to 
cover general m-stage network as in Reference 20. 

ARRIVAL RATES AND SO:\IE 
SYSTK~Vl MEASURES 

The theorem stated in the previous section suggests that 
at the steady state our model can be decomposed into inde
pendent stages (each stage corresponding to a group of 
processors) of similar configuration ("'ith different param
eters) where each stage can be analyzed in the same way. 

First we determine the average arrival rate, Ai, for each 
stage in terms of the given system parameters. Writing R = 

[riJ, A=[AiJ and A=[AiJ where R is a(m+l) X(m+1) 
square matrix and A and A are column vectors, we can put 
(1) in matrix form, as 

-pm Ao o 

-ql 1 0 0 

-q2 0 1 0 ...... 0 
(4) 

-qm 0 ..................... 0 1 

or 
RA=A. 

When I R I is not identically zero (4) can be uniquely 
solved for A;'s and it can be shown that the solution is given 
by 

Ao=----

(5) 

m m 

L: AjPJ-qj+ (1- L: PJ-qj) Ai 
i=l.irt'i i=l,jrt'i 

for i= 1,2, ... ,m. 
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Figure 2-The average number of programs, Q" in stage i 

The first system measure to be considered is the average 
number of programs, Qi, at stage i, where i = 0, 1, ... , m. 

Let us define 

and 

From the normalizing condition we obtain for the empti
ness probability, Pi(o), for stage i as, 

(6) 

Then Qi can be computed from 

N 

Qi= L: nPi(n) 
n=O 

(7) 

The average number of programs at the stage i, Qi, has 
been plotted as a function of (Xi with parameters k i and N in 
Figure 2. 

Xext we consider the average number of busy processors 
at stage i, Qib, which is given by 

k,-l, N 

Qib= L nPi(n) +k i L P.(n) 
n=O n=k. 

(8) 
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N= 30, K= 3 

Figure 3--The average number of busy processors, Q,b in stage i 

The Qib has been plotted as a function of ai with parameters 
ki and N in Figure 3. 

The average flow time of a program through the system 
can be obtained from Little's result,23 

Q=ATW 

where Q = the average number of programs in the system 
A.T = total mean arrival rate of programs to the system 
W = average flow time of a program 

... 
and A.T= L: Ai. 

i=1 

CONCLUSION 

The analysis presented in this paper provides us with a prac
tical tool to examine the effects of main system resources in 
a TSCS quantitatively. It is possible to extend these results 
in the area of system balancing by taking the cost-revenue 
considerations into account. 

In the systems where the assumptions made in this study 
are not justified, at least approximately, this type of analysis 
may serve as a preliminary to more refined techniques or 
simulation, if ever waranted. 

The results are applicable to a wide range of problems 
where the total common storage space is limited and an out
put from a stage either departs from the system or forms an 
input to another stage. 
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APPENDIX 

The general "network of waiting lines" (network of queues) 
was described in Reference 20. Here we add one more condi
tion to that stated in Reference 20 by allowing no more than 
N customers in the system at any time. If a new customer 
arrives to find N customers already in the system, he departs 
and never returns. 

Then following the previously defined notation in earlier 
sections, we can write the system equation for general net
work of waiting lines as 



m m 

= {l-[C L Ai+ L JLjO!j(nj) Jh}P(nl' "" nm ; t) 
i=1 j=1 

m m m 

+ L AiE ihP(nl, ' , " ni- 1, ' , " nm ; t) + L L (10) 
i=1 i=1 j=1 

m 

+CL O!i(ni+1)JLi(1-Ti)hP(nl, ' , " ni+ 1, ' , " nm ; t) 
i=1 

+O(h), 
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where 

m 

Ti= L Tij, 

i=1 

It can be shown that the solution to (10) in steady state 
is given by the theorem stated earlier, 

In this case it is difficult to obtain a closed form solution 
for 1\ /s, 





Use of the SPAS M soft ware monitor to eval uate the 
performance of the Burroughs B6700 
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INTRODUCTION 

The need for system performance measurement and 
evaluation 

The benefit to be derived from a large multi-purpose 
system, such as the B6700, is that many jobs of very di
verse characteristics can (or should) be processed concur
rently in a reasonable period of time. Recognizing that 
certain inefficiencies may result from improper or un
controlled use, it is necessary to evaluate the computer 
system carefully to assure satisfactory performance. To 
this end, the objective of our work in the area of perform
ance evaluation is to: 

1. determine the location(s) and cause(s) of inefficien
cies and bottlenecks which degrade system per
formance to recommend steps to minimize their 
effects, 

2. establish a profile of the demand(s) placed upon 
system resources by programs at our facility to help 
predict the course of system expansion, 

3. determine which user program routines are using 
inordinately large portions of system resources to 
recommend optimization of those routines 

4. establish control over the use of system r~sources. 

Among the techniques which have been applied to date 
in meeting these objectives are in-house developed soft
ware monitors, benchmarking, and in-house developed 
simulations. This paper discusses the software monitor 
SPASM (System Performance and Activity Softwar~ 
Monitor), developed at the Federal Reserve Bank of New 
York to evaluate the performance and utilization of its 
Burroughs B6700 system. 

THE B6700 SYSTEM 

The B6700 is a large-scale multiprogramming computer 
system capable of operating in a multiprocessing mode 
which is supervised by a comprehensive software system 
called the Master Control Program (MCP).1,2 Some of the 
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features of this system which distinguish it from many 
other systerhs are: - .. . 

• Each task has assigned to it a non-overlayable area 
of memory called a stack. This area provides storage 
for program code and data references* associated 
with the task as well as temporary storage for some 
data, history and accounting information. 

• Multiple users can share common program code via 
a reentrant programming feature. 

• The compilers automatically divide source language 
programs into variable sized program code and data 
segments rather than fixed sized pages. 

• Core storage is a virtual resource which is allocated 
as needed during program execution. (This feature is 
discussed in more detail below.) 

• Secondary storage including magnetic tape and 
head-per-track disk is also allocated dynamically by 
the MCP. 

• Channel assignments are made dynamically; that is 
they are assigned when requested for each physical 
110 operation. 

• I 10 units are also assigned dynamically. 
• Extensive interrupt facilities initiate specific MCP 

routines to handle the cause of the interrupt. 
• The maximum possible B6700 configuration includes 

3 processors, 3 multiplexors, 256 peripheral devices, 
1 million words of memory (six 8-bit characters per 
word or 48 information bits per word), and 12 data 
communications processors. 

The current B6700 system at the Federal Reserve Bank 
of New York shown in Figure 1 includes one processor, 
one 110 multiplexor with 6 data channels, one data 
communications processor and a number of peripheral 
devices. In addition, the system includes a virtual mem
ory consisting of 230,000 words of 1.2 micro-second 
memory, and 85 million words of head per track disk 
storage. 

The management of this virtual memory serves to illus
trate the involvement of the MCP in dynamic resource 

* These references are called descriptors and act as pointers to the 
actual location of the code or data 
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Figure I-Configuration of the Federal Reserve Bank of New York B6700 computer system 

allocation. This process is diagrammed in Figure 2. Main 
memory is allocated by the MCP as a resource to cur
rent processes. When a program requires additional 
memory for a segment of code or data, an unused 
area of sufficient size is sought by the MCP. If it 
fails to locate a large enough unused area, it looks for an 
already allocated area which may be overlaid. If neces
sary, it links together adjacent available and in-use areas 
in an attempt to create an area large enough for the cur
rent demand. When the area is found, the desired seg
ment is read in from disk and the segments currently 
occupying this area are either relocated elsewhere in core 
(if space is available), swapped out to disk or simply 
marked not present. In any case, the appropriate descrip
tor must be modified to keep track of the address in 
memory or on disk of all segments involved in the swap. 
All of these operations are carried out by the MCP; moni
toring allows us to understand them better. For additional 
information on the operation and structure of the B6700 
see Reference 3. 

B6700 PERFORMANCE STATISTICS 

The complexity of the B6700 system provides both the 
lleces~ity to monitor and the ability to monitor. The per" 

vasive nature of the MCP in controlling the jobs in the 
system and in allocating system resources made it neces
sary for the system designers to reserve areas of core 
memory and specific cells in the program stacks to keep 
data on system and program status. This design enables 
us to access and collect data on the following system 
parameters: 

• system core memory utilization 
• I/O unit utilization 
• I/O queue lengths 
• processor utilization 
• multiplexor utilization 
• multiplexor queue length 
• peripheral controller utilization 
• system overlay activity 
• program overlay activity 
• program core memory utilization 
• program processor utilization 
• program I/O utilization 
• program status 
• scheduler queue length 
• response time to non-trivial requests 

These data are vital to the evaluation of our computer 
system. Table I presents examples of the possible uses for 
some of these statistics. 
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1. Space is needed for a 300 word segment for one of the current tasks. 
2. A large enough unused area is not located. 
3. The MCP finds a contiguous location made up of areas 1 through 4 

which is 300 words long. 
4. Area 1 contains a 50 word data segment. The MCP relocates this 

segment into area 5, makes note of its new core address and removes 
area 5 from the unused linkage. 

5. Area 2 is unused. It is removed from the unused linkage. 
6. Area 3 contains a 100 word code segment. There are no unused areas 

large enough to contain it. Therefore, it is simply marked not pres
ent. Since code cannot be modified during execution, there is no rea
son to write it out to disk-it is already there. 

7. Area 4 contains a 100 word data segment. It is written out to disk 
and its new location is recorded. 

8. The 300 word segment is read into core in the area formerly occupied 
by areas 1 through 4 and its location is recorded. 

DESCRIPTION OF THE SPASM SYSTEM 

The B6700 System Performance and Activity Software 
Monitor, SPASM, is designed to monitor the performance 
of the system as a whole as well as that of individual user 
programs. It consists of two separate programs, a monitor 
and an analyzer, both of which are described below. The 
principal criteria governing its design are: 

(a) to make a software monitor capable of gathering all 
the pertinent data discussed in the previous section, 

(b) to minimize the additionai ioad pi aced upon the 
system by the monitor itself, and 

(c) to provide an easily used means of summarizing 
and presenting the data gathered by the monitor in 
a form suitable for evaluation by technical person
nel and management. 

A bility to gather pertinent data 

The Mastor Control Program concept of the B6700 
helps in many ways to simplify the acquisition of the data 
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TABLE I-Examples of Collected Statistics and Their Possible Uses 

Data 

System core memory utilization 

I/O unit utilization, I/O unit queue 
lengths 

Processor queue length and com
position 

System--evoosy--activ-ity 

Job overlay activity 

Job core memory utilization 

Scheduler queue length 

Use 

Determine need for additional 
memory 

Determine need for Disk File Opti
mizer and/or additional disk 
storage electronic units, printers 
or disk file controllers 

Determine need for additional pro
cessor 

Evaluate effect of job priority on 
execution 

Determine processor boundedness 
of mix 

Determine effect of processor uti
lization on demand for I/O (in 
conjunction with I/O unit data) 

- Determine- -need-- -for----additional 
memory 

Determine need for better task 
scheduling 

Determine when thrashing* occurs 
Evaluate program efficiency 
Evaluate system effect on job exe-

cution 
Evaluate program efficiency 
Change job core estimates 
Determine excess demand for use 

of system 
Evaluate MCP scheduling algo

rithm 

* Thrashing is the drastic increase in overhead I/O time caused by the 
frequent and repeated swapping of program code and data segments. It 
is caused by having insufficient memory to meet the current memory 
demand. 

listed in Table 1. Such information as a program's core 
usage, processor and 1;0 time, and usage of overlay areas 
on disk are automatically maintained in that program's 
stack by the MCP. A relatively simple modification to the 
MCP permits a count of overlays performed for a pro
gram to be maintained in its stack. Data describing the 
status of programs are maintained by the MCP in arrays. 

Information on system-wide performance and activity 
is similarly maintained in reserved cells of the MCP's 
stack. Pointers to the head of the processor queue, I; 0 
queues and scheduler queue permit the monitor to link 
through the queues to count entries and determine facts 
about their nature. Other cells contain data on the sys
tem-wide core usage; overlay activity, and the utilization 
of the 1;0 multiplexor. An array is used to store the sta
tus of all peripheral devices (exclusive of remote termi
nals) and may be interrogated to determine this informa
tion. 

All of the above data are gathered by an independently 
running monitor program. The program, developed with 
the use of a specially modified version of the Burroughs 
ALGOL compiler, is able to access all information main
tained by the MCP. The program samples this informa
tion periodically and stores the sampled data on a disk 
file for later reduction and analysis. 
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Minimization of load upon the system 

To minimize the additional load on the B6700, the 
monitor program is relatively simple, and very efficient. 
A somewhat more sophisticated analyzer program is used 
to read back the raw data gathered by the monitor and 
massage it into presentable form. This analysis is gener
ally carried out at a time when its additional load upon 
the system will be negligible. The system log has indi
cated that the monitor does indeed present a minimal 
load requiring about 1/4 of 1 percent processor utilization 
and 2 1/4 percent utilization of one disk I! 0 channel. 

Easy means of analysis and presentation 

The raw data gathered by the monitor can be used 
directly in some cases; however, to serve best the purpose 
for which SPASM was designed (i.e., as a management 
reporting system) several useful presentations have been 
engineered. The analyzer program, which may be run 
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Figure 3-Graph of core usage versus time 
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Figure 4-Histogram of "overlayabie" core usage 

ure 3 presents a graph of core utilization versus time. 
Lines may be drawn connecting the points to aid reada
bility. On this graph three parameters are simultaneously 
plotted, namely "SAVE" core (SYSSVE), "OVERLA YA
BLE" core (SYSOL Y) and "AVAILABLE" core 
(SYSA VL). The key lists mnemonics, symbols plotted 
and the mean values of the plotted parameters. 

To prepare such a graph for presentation, the analyst, 
using a remote terminal, first causes the analyzer to 
"plot" the information on the CRT. The data is then 
scaled to the analyst's preference, perhaps adding or 
deleting specific data curves to improve readability. The 
analyst then re-"plots" the graph on the CRT. When he is 
satisfied he directs this tailored graph to the line printer 
via an input command for hard copy. 

(2) Frequency distribution h~<;tograms are useful in that 
they present a concise picture of the behavior of specific 
parameters. The analyzer will produce, instead of, or in 
addition to time graphs, a histogram of each desired 
parameter. The histogram is automatically scaled to the 
mode of the distribution, and is printed horizontally. The 
axis which represents the observed values may be rescaled 

as above to improve the clarity of the data presenta
tion. These histograms show the distribution of observed 
values of the parameter in question. Figure 4 presents a 
histogram of system "OVERLAY ABLE" core usage. It 
covers a longer period of time than the time graph and 
shows the frequency distribution of this parameter. 

(3) Correlation and regression analyses among data play 
an important role in aiding in the forecasting of future 
needs. If the relationships among several parameters are 
known, then, should a change be projected in one param
eter, its effect on the others can be approximated, and 
suitable adjustments in configuration or scheduling can 
be made. For example, if one determines a relationship 
between the amount of core memory and the overlay rate, 
one can predict the degree of decrease in the overlay rate 
should more core be added. The analyzer will allow corre
lations and/ or regressions to be run among any of the 
parameters. Tables of pertinent statistics are printed as a 
result. 

Figure 5 presents the results of a correlation and regres
sion analysis among core utilization, processor utilization 



98 National Computer C~,nference, 1973 

". A', 
VARTA'ICF: STA ~I. n.v. 

PCII AV ,. ;>"'1"'<)/1 /11 1 ". 1 n,,,, 1)::>1 J.'1I1""RI'i" 

nc '11, A V I. "'I1O:;Q II Q 7n ",70~<11Q?'1 2.lAA?~7Q4 

'.'1",,,,,nIl7 7.Q9QR77Q, 2,11?'14n"" 

C; Y <;5 VF In'lt)7'.(j~1''(\I'''1) ~'I71?~7nl\,3)4?"'l'~ ,,,,,3.'l41\6,,6n 

1 n'i", ~II. A .. ~1I7 11, 7'1217QOII.1I0"~'1"'" ,,,RQ3.MI'QI74" 

(\. 71 'J III 7 ~ I 1l.IIIH'I91 0.11111'14,,7 

Pr.I1LAY '1r. nl A Y UHll.AV sYsc;vr sYc;nLV PRO~IIT 

PCnl.A v 1.()nOnOOllr no 
nr.nLAY <1.JQ/j">"'?<1.-111 1 .1l0OOOOIH' 00 
CnnLH 11.''',,>/jl~qr-nl <).IlQ,c,flHt,'-01 1.00nn'lon. 00 
SVC;SV" ... 'iR4;:>QQ<1.-"11 .... 7;:>7n;:>1"r-Ol /).4/\, Q"J'-01 1 • nnnnnoor no 
sysnLY -?, 7141)'" q~-.,! -'.110 'II)QO ..... - 0 I -7.1117<1,,<14,-01 -1I.Q?Cl900Ir-n, I.Ooooooor 00 

,:001l0001l .. PRnCIJT 1,0<)30;11)11"'.-'" 1.111<1n::>' ..... -01 3.;>'''>~,QQ,-nl '.AQo;II\79r-o' ;:>.21)1145'8(-01 on 

1754 

p"nC'IT 

e;1I~ nr SqIlARrC; M(AN SQ11ARrs 
o;nllRrr nr VA"IATT"N I1R T r. T ... AI. 11'11 T 5 rnRRrLATToN rnR~ OOTr.I'IAL ""'ITe; 

TnT AI 

R[SII1IIAL 

VARtARLE 
PCOLAY 
nCnLAY 
CnOLAY 
Syssvr 
c; YSOI Y 

r.nHrTcIPH 
0.on44RI 
0.0,<:1,,9, •• 

-o.nlal, ... • 
o.onooo" •• 
O.tJ'l1100"' •• 

CrJ'IISTA'JT 

5 •• , Cnfll<;TANT 

T rnNST~"'T 

S .... Ee;TT"ATE 

RHCl 

1.1I0nnoooo 

e;. E. rnrr. 
O.nI)H,n 
o. n07173 
n. nil"!! 7 
o.l1noono 
o.ooonnn 

-".4'510ll44 

".n5 7413R? 

-7./1/"''1701 I 

'1.,/11,1'/1'59 

'"'. <:I'i/'~ 1)4", 

0.000404"5 

RrTA S.·. RrT' 
n.o">l'1,7 o.n'l9Q::>" 1.3n61~/I 
0.;>R391'i O. n0;2 7 19 5.'11341 7 

-0.1197119 0.00;171\0 -2.112",,,3 
0.3791::>5 .1.nlln73 12.2011118 
0.41\13VI o.n'HQl 20.4901",4 

R-<;/l 

An J. R-<;Q 

OIJRIITN OIAT"nN 

r p~nRAIIJL TTY 

1!.43R74141 

T PRnR 
0.'108,11\ 
I.OOOnnO 
0.9791';9 
1.0001100 
I.noo'loo 

11.'54nQI\6QR 

'1.091002'17 

'.tJt)nOOonn 

PART[ aL R 
0.031230 
0.\27'708 
0.050;;130 
0.l'8n\4'5 
0.4/10079 

Figure 5-Results of regression and correlation analysis 

and overlay rate parameters. These results are seen to 
show that, for example, the overlay statistics are highly 
correlated to the amount of "SAVE" core in the system. 
This is understandable since the larger the "SAVE" core 
the greater the chance of needing to swap segments. 

(4) Scanning for peak periods is a necessity in most 
computer systems, especially those operated in a data 
communication environment where the load fluctuates 

widely. The analyzer can scan the entire day's data and 
flag time intervals (of length greater than or equal to 
some specified minimum) during which the mean value of 
a parameter exceeded a desired threshold. For example. a 
period of five minutes or longer in which processor utili
zation exceeded 75 percent can be easily isolated (see 
Figure 6). Using this techniq ue a peak period can be 
automatically determined and then further analyzed III 

more detail. 
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Figure 6-Periods of peak processor utilization 

The design criteria discussed above have been met and 
a software monitoring system has been developed which is 
comprehensive, and easily used, and yet presents a negli
gible load upon the B6700 computer. 

CONCLUSION AND OUTLOOK 

The SPASM system has proven to be very instrumental 
in the performance evaluation of the B6700 system at the 
Bank. Several areas in which it has been and is currently 
being used are as follows: 

• The statistics on processor queue length, multiplexor 
utilization, and disk controller utilization were used 
to aid in the analysis of the need for a second proces
sor*, second multiplexor and additional controllers. 

• The job core utilization data have been used to eval
uate the effect of alternate programming techniques 
on memory use. 

• Disk utilization data have been examined to identify 
any apparent imbalance of disk accesses among the 
disk electronics units. 

• Processor queue data are being used to determine the 
effect of task priority on access to the processor. 

• System overlay data are being used to determine the 
adequacy of automatic and manual job selection and 
scheduling. 

• Processor utilization figures, as determined from the 
processor queue data, were used to determine the 
effect of core memory expansion on processor utiliza
tion. 

Some future possible uses planned for SPASM include: 

• Use of the scheduler queue statistics to evaluate the 
efficiency of the current MCP scheduling algorithm 
and to evaluate the effect changes to that algorithm 
have on the system performance. 

• Use of the response time data to evaluate system 
efficiency throughout the day with different program 
mixes. 

• Evaluation of resource needs of user programs. 
• Evaluation of the effect that the Burroughs Data 

Management System has on system efficiency. 
• Building of a B6700 simulation model using the col

lected statistics as input. 
• Building an empiricai modei of the B6700 system by 

using the collected regression data. 

* See Appendix A for a discussion of how the processor queue data was 
used to determine processor utilization. 

Spasm Software Monitor 99 

The SPASM system has enabled us to collect a great
deal of data on system efficiency and, consequently, a 
great deal of knowledge on how well the system performs 
its functions. This knowledge is currently being used to 
identify system problems and to aid in evaluating our 
current configuration and possible future configurations. 
Mere conjecture on system problems or system configura
tions in the absence of supporting data is not the basis for 
a logical decision on how to increase system efficiency. 
Performance measurement and evaluation are essential to 
efficient use of the system. 
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APPENDIX A 

The use of processor queue data to determine 
proCEssor utilization 

The SPASM system records the length of the processor 
queue periodically. The processor utilization will be based 
upon these examinations, taking into account that the 
monitor itself is processing at this instant of time. If the 
processor queue is not empty, the monitor is preventing 
some other job from processing. Consequently, if the 
monitor were not in the system the processor would be 
busy with some other task at that instant of time. This 
is considered to be a processor "busy" sample. On the 
other hand, if the processor queue is empty at the sample 
time there is no demand for the processor other than the 
monitoring program itself. Therefore, if the monitor 
were not in the system at that instant of time the processor 
would be idle. This is considered a processor "idle" 
sample. Processor utilization can therefore be esti
mated as: 

... No. "busy" samples 
processor utilIzatIOn = ttl N I o a o. samp es 

This sampling approach to determining processor utili
zation was validated by executing controlled mixes of 
programs and then comparing the results of the sampling 
calculation of processor utilization to the job processor 
utilization given by: 

processor utilization = 

processor time logged against jobs in the mix 
elapsed time of test interval 

Table II compares the results of these two calculations. 
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TABLE II-Comparison of Processor Utilization Statistics By Sampling 
Technique and By Processor Time Quotient Technique 

Test Series 1 
Test Series 2 

Average Processor lJtilization (%) 

Sampling Technique 

99.1 
57.6 

Processor Time Quotient 

96.5 
53.5 

In a second type of test, processor idle time was moni
tored (by means of a set of timing statements around the 

idling procedure) to gain a close measure of utilization. 
The total idle time was subtracted from the total elapsed 
time of the test to obtain the processor busy time and 
hence the utilization. Over a period of five hours the re
spective processor utilization calculations were: 

Sampling Technique 
Idle Timing 

46.3% 
48.0% 

These results make us confident of the validity of us
ing the processor queue sampling technique to accumu
late processor utilization statistics during any given time 
interval. 



Evaluation of performance of parallel processors in a 
real-time environment 

by GREGORY R. LLOYD and RICHARD E. MERWI~ 

SAFEGUARD System Office 
Washington, D.C. 

IXTRODUCTIOK 

The use of parallelism to achieve greater processing thruput 
for computational problems exceeding the capability of 
present day large scale sequential pipelined data processing 
systems has been proposed and in some instances hardware 
employing these concepts has been built. Several approaches 
to hardware parallelism have been taken including multi
processorsl ,2,3 which share common storage and input-output 
facilities but carry out calculations with separate instruction 
and data streams; array processors4 used to augment a host 
sequential type machine 'which executes a common instruc
tion stream on many processors; and associative processors 
which again require a host machine and vary from biP to 
'word oriented6 processors which alternatively select and 
compute results for many data streams under control of 
correlation and arithmetic instruction streams. In addition, 
the concept of pipelining is used both in arithmetic pro
cessors7 and entire systems, i.e., vector machines8 to achieve 
parallelism by overlap of instruction interpretation and 
arithmetic processing. 

Inherent in this approach to achieving greater data 
processing capability is the requirement that the data and 
algorithms to be processed must exhibit enough parallelism to 
be efficiently executed on multiple hardware ensembles. 
Algorithms which must bf' executed in a purely sequential 
fashion achieve no benefit from having two or more data 
processors available. Fortunately, a number of the problems 
requiring large amounts of computational resources do 
exhibit high degrees of parallelism and the proponents of the 
parallel hardware approach to satisfying this computational 
requirement have shown considerable ingenuity in fitting 
these problems into their proposed machines. 

The advocates of sequential pipelined machines can look 
forward to another order of magnitude increase in basic 
computational capability bf'fore physical factors will provide 
barriers to further enhancement of machine speed. \Vhf>n this 
limit is reached and ever bigger computational problems 
remain to be solved, it seems likely that the parallel pro
cessing approach will be one of the main techniques used to 
satisfy the demand for greater processing capability. 

Computational parallelism can occur in several forms. In 
the simplest case the identical calculation is carried out on a 
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number of separate data sets (array processing). A more 
eo-mplex ease involves different ealeulationson separate data 
sets (multiprocessing) and finally, the greatest challenge to 
the parallel processing approach occurs \\'hen a single cal
culation on a single data set must be decomposed to identify 
parallel computational paths within a single computational 
unit. A number of mathematical calculations are susceptible 
to this type of analysis, e.g., operations on matrices and 
linear arrays of data. 

The computational support required for a phased array 
radar is represf'ntative of problems exhibiting a high degree 
of parallelism. These systems can transmit a radar beam in 
any direction within its field of view in a matter of micro
seconds and can provide information on up to hundreds of 
observed objects for a single transmission (often called a 
"look"). The amount of information represented in digital 
form which can be generated by this type of radar can exceed 
millions of bits per second and the analysis of this data 
provides a severe challenge to even the largest data pro
cessors. Applications of this radar system frequently call for 
periodic up dates of position for objects in view which are 
being tracked. This cyclic behavior implies that a computa
tion for all objects must be completed between observations. 
Since many objects may be in view at one time, these com
putations can be carried out for each object in parallel. 

The above situation led quite naturally to the application 
of associative paral1el processors to provide part of the com
putational requirements for phased array radars. A number 
of studies9 ,IO,II,I2 have been made of this approach including 
use of various degrees of parallelism going from one bit wide 
processing arrays to word oriented processors. As a point of 
reference this problem has also been analyzed for implementa
tion on sequential pipelined machines. 1o One of the main 
computational loads of a phased array radar involves the 
filtering and smoothing of object position data to both 
eliminate uninteresting objt>cts and providt> more accurat.e 
tracking information for objt>cts of interest. A technique for 
elimination of unintert>sting objects is referred to as bulk 
filtering and the smoothing of data on interesting objects is 
carried out with a Kalman filter. 

The following presf'nts an analysis of the results of the 
above studies of the application of associative parallel pro
cessors to both the bulk and Kalman filter problems. The two 
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criteria used to evaluate the application of parallel hardware 
to these problems are the degree of hardware utilization 
achieved and the increase in computational thruput achieved 
by introducing parallelism. The latter measure is simply the 
ratio of computational thruput achieved by the array of 
processing elements to the thruput possible with one element 
of the array. The Parallel Element Processing Ensemble 
(PEPE) considered as one of the four hardware configura
tions is the early IC model and is not the improved ~iSI PEPE 
currently under development by the Advanced Ballistic 
~1issile Defense Agency. 

Finally, a comparison of hardware in terms of number of 
logical gates is presented to provide a measure of computa
tional thruput derived as a function of hardware complexity. 
The paper concludes with a number of observations relative 
to the application of the various associative parallel hardware 
approaches to this computational requirement. 

FILTER CO~IPUTATIONS 

The bulk and Kalman filters play complementar~T roles in 
support of a phased array radar. The task assigned to the 
radar is to detect objects and identify those with certain char
acteristics e.g. objects which will impact a specified location 
on the earth, and for those objects so identified, to provide 
an accurate track of the expected flight path. The bulk filter 
supports the selection process by eliminating from con
sideration all detected objects not impacting a specified area 
while the Kalman filter provides smoothed track data for all 
impacting objects. Both filters operate upon a predictive 
basis with respect to the physical laws of motion of objects 
moving in space near the carth. Starting with an observed 
position, i.e., detection by a radar search look, the bulk filter 
projects the position of the object forward in time, giving a 
maximum and minimum range at which an impacting object 
could be found in the next verification transmission. Based 
upon this prediction the radar is instructed to transmit 
additional verification looks to determine that this object 
continues to meet the selection criteria by appearing at the 
predicted spot in space following the specified time interval. 

Those objects which pass the bulk filter selection criteria 
are candidates for pr<.>cision tracking by the radar and in this 
case the Kalman filter provides data smoothing and more 
precise estimates of the object's flight path. Again a pre
diction is made of the object's position in space at some future 
time based upon previously measured positions. The radar is 
instructed to look for the object at its predicted position and 
determines an updated object position measurement. The 
difference between the measured and predicted position is 
weighted and added to the predicted position to obtain a 
smoothed position estimate. Both the bulk and Kalman 
filter are recursive in the sense that measurement data from 
one radar transmission is used to request future measure
ments based upon a prediction of a future spatial position of 
objects. The prediction step involves evaluation of several 
terms of a Taylor expansion of the equations of motion of 
spatial objects. DrtaiJed discussion of thr mathC'matical basis 
for thc'se filters can be found ill the: literature UIl jJhas(~d 
array radars. !~"o 

The computations required to support the bulk filter are 
shown in Figure 1. The radar transmissions are designated as 
either search or verify and it is assumed that every other 
trans~ission is assigned to the search function. When an 
object is detected, the search function schedules a subsequent 
verification look typically after fifty milliseconds. If the 
verification look confirms the presence of an object at the 
predicted position another verification look is scheduled 
again after fifty milliseconds. When no object is detected on a 
verification look, another attempt can be made by predicting 
the object's position ahead two time intervals i.e., one 
hundred milliseconds, and scheduling another verification 
look. This procedure is continued until at least M verifica
tions have been made of an object's position out of N attempts. 
If N - M attempts at verification of an object's position 
result is no detection then the object is rejected. This type of 
filter is termed an M out of N look bulk filter. 

Turning now to the Kalman filter the computational 
problem is much more complex. In this case a six or seven 
element state vector containing the three spatial coordinates, 
corresponding velocities, and optionally an atmospheric drag 
coefficient is maintained and updated periodically for each 
tracked object. A block diagram of this computation is shown 
in Figure 2. The radar measurements are input to state 
vector and weighting matrix update procedures. The 
weighting matrix update loop involves an internal update of 
a covariance matrix which along with the radar measure
ments is used to update a ,veighting matrix. The state vector 
update calculation generates a weighted estimate from the 
predicted and measured state vectors. The Kalman filter 
computation is susceptible to decomposition into parallel 
calculations and advantage can be taken of this in imple
mentations for a parallel processor. 

CO~IPUTATIOXAL ~IODELS 

Bulk filter 

The bulk filter is designed to eliminate with a minimum 
expenditurr of computational resources a large number of 
unintrresting objects which may appear in the field of view 
of a phased array radar. A model for this situation requires 
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assumptions for the number and type of objects to be handled, 
efficiency of the filter in eliminating uninteresting objects, 
and radar operational parameters. These assumptions must 
produce a realistic load for the filter "\vhich would be char
acteristic of a phased array radar in a cluttered environment. 
The assumptions, which are based upon the Advanced 
Ballistic ::\'iissile Agency's Preliminary Hardsite Defense 
study, are: 

1. The radar transmits 3000 pulses, i.e. looks, per second 
and every other one of these is assigned to search. 

2. New objects enter the system at a rate of 100 per 10 
milliseconds (Yrs) all of "'\-",hich are assumed to be 
detected on one search look. 

3. Fifteen objects are classified as being of interest, i.e. 
impacting a designated area (must be precision 
tracked), and 85 of no interest (should be eliminated 
from track). 

4. Following detection an attempt must be made to 
locate each object not rejected by the filter every 
50 NIs. 

5. The filter selection criteria is 5 (::.vI) detections out of 
7 (N) attempts. Failure to detect the object three 
timt>.s in the sequence of 7 looks results in rejection. 

6. The filter is assumed to reduce the original 100 objects 
to 70 at the end of the third; 45 at the end of the 
fourth; 30 at the end of the fifth; 25 at the end of the 
sixth; and 20 at the end of the seventh look; thus 
failing to eliminate 5 uninteresting objects. 

Based upon the above assumptions the bulk filter accepts 
500 new objects every 50 ::.vIs. When operational steady state 
is reached, the processing load becomes 100 search and 290 
verify calculations every 10 ::\1s. Each object remains in the 
filter for a maximum of 350 ::\fs and for a 50 ::.vfs interval 1950 
filter calculations are required corresponding to 10,000 new 
objects being detected by the radar per second. 

The above process can be divided into two basic steps. The 
first involves analysis of all radar returns. For search returns 
the new data is assigned to an available processor. For verify 
returns each processor must correlate the data with that 
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Figure 3-Correlation and arithmetic phases 

being processed to determine if it represents new positional 
information for an object being tracked by that processor. 
For all objects in process, new data must be received every 
50 2.\fs or it is considered to have not been redetected and 
hence subject to rejection by the filter. The associative 
processors studied were unable to carry out the required 
calculations·within the pulse repetition rate of the radar 
(330 J.l.sec). To achieve timely response, the processing was 
restructured into correlation and arithmetic cycles as shown 
in Figure 3. During the first 25 msec interval, the processors 
correlate returns from the radar with internal data (predicted 
positions). During the subsequent 25 msec interval, pro
cessors carry out the filter calculations and predict new 
object positions. This approach allmved all required pro
cessing to be completed in a 50 msec interval. Objects which 
fail the selection criteria more than two times are rejected 
and their processor resources are freed for reallocation. 

Ka-Zman filter 

The Kalman filter computation requires many more 
arithmetic operations than the bulk filter. The radar becomes 
the limiting factor in this case since only one object is assumed 
for each look. Assuming a radar capable of 3000 transmissions 
per second and a 50 ::'\ls update requirement for each pre
cision track, a typical steady state assumption ·would be 600 
search looks and 2400 tracking looks per second (corre
sponding to 120 objects in precision track). At this tracking 
load it must again be assumed that the 50 ::\ls update interval 
is divided into 25 :\ls correlation and compute cycles as was 
done for the bulk filter and shown in Figure 3. This implies 
that 60 tracks are updated every 25 .:'\'1s along with the same 
number of verify looks being received and correlated. 

EVALUATION APPROACH 

The three quantities of interest in determining the relation 
between a parallel processor organization and a given 
problem are: resources required by the problem, resources 
available from the processor configuration, and time con
straints (if any). A more precise definition of these quantities 
follows, but the general concept is that the processor capa
bilities and problem requirements should be as closely 
balanced as possible. 

Quantitative resource measures and balance criteria are 
derived from Chen's14 analysis of parallel and pipelined 
computer architectures. Chen describes the parallelism 
inherent in a job by a graph with dimensions of parallelism 
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M 

Figure 4-Hardware and job space diagram 

HARDWARE 
SPACE 
= MTA 

JOB SPACE = 

~WITI~T 

width (number of identical operations which may be per
formed in parallel) and execution time. The ratio p is defined 
for a job as the area under the step(s) showing parallelism 
(width W> 1) divided by the total area swept out by the 
job. Thf' hardware pfficiency factor, '1], is the total job work 
space (defined as the product of execution time and the 
corresponding job width lV summed over all computations) 
over the total hardware work space (defined as the product 
of total execution time and the number, M, of available 
parallel processors). This provides a measure of utilization of 
a particular hardware ensemble for each segment of a com
putation. A modification of Chen's 'I] allows consideration of 
time constraints. Hardware space will now be defined as a 
product of the total time available to carry out the required 
computation times 1t.f, the number of processors available. 
Call this ratio ii. The work space is as defined above except 
that periods of no processor activity may be included, i.e., 
job width W =0. Figure 4 illustrates these concepts showing a 
computation involving several instruction widths carried out 
in an available computation time Ta. The stepwise value of 'I] 

varies during job execution and the average value for the 
whole job becomes: (Ta is divided into N equal time inter
vals =IlT, W(Ti ) >0 forK steps). 

ii=----
MTa 

where T/= ----
MKIlT 

(1,2) 

Note that under this interpretation, ii measures the fit be
tween this particular problem and a given configuration. 
If ii = 1.0 the configuration has precisely the resources re
quired to solve the problem within time constraints, assuming 
that the load is completely uniform (with non-integral ,,'idth 
in most cases). Although ii will be much less than 1.0 in most 
cases, it is interesting to compare the values obtained for 
processors of different organizations and execution speeds, 
executing the same job (identical at least on a macroscopic 
scale). Implicit in the stepwise summation of the instruction 
time-processor width product are factors such as the 
suitability of the particular instruction repertoire to the 
problem (number of steps), hardware technology (execution 
time), and organizational approach (treated in the following 
section) . 

A criterion 11' is expressed as the inverse ratio of time of 
execution of a given job with parallel processors to the 

execution time with only one such processor (speedup over 
the job). Expressing 11' in terms of job width W gives for 
any job step 

sequential processor execution time 
11'= • • = WeT) (3) 

parallel processor executIOn tIme ' 

Similarly, averaging this quantity over an entire job during 
the available time gives: 

N 

L W(Ti)IlTi 
i=O 

ir= ------
Ta 

(4) 

or simply: 
ir=iiM (5) 

which states that the speed of execution of a computation on 
parallel hardware as contrasted to a single processing element 
of that hardware is proportional to the efficiency of hardware 
utilization times the number of available processing elements. 
Again, ir measures the equivalent number of parallel pro
cessors required assuming a uniform load (width = if, 

duration = Ta). 

PROCESSOR ORGANIZATIONS 

General observations 

In the analysis which follows, job parallelism is calculated 
on an instruction by instruction step basis. For the purposes 
of this discussion, consider a more macroscopic model of job 
parallelism. Sets of instructions with varying parallelism 
widths will be treated as phases (lJI i ) , with phase width 
defined as the maximum instruction width within the phase. 
(see Figure 5, for a three phase job, with instructions in
dicated by dashed lines). 

Given this model, it is possible to treat the parallel com
ponent in at least three distinct ways (see Figure 6). The 
simplest approach is to treat a parallel step of width N as N 
steps of width one which are executed serially. This would 
correspond to three loops (with conditional branches) of 
iteration counts Wl, W 2, Wa, or one loop with iteration count 
max[Wl , W 2, W a]. The worst case execution time (macro
scopic model) for width N would be T=Nts. 

Parallel processing, in its purest sense, devotes one pro
cessing element (PE) to each slice of width one, and executes 
the total phase in T = ta, where ta is the total execution time 
for any element. Variations on this basic theme are possible. 
For example, STARAN, the Goodyear Aerospace associative 
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processor,5,9,l2 is actually an ensemble of bit-slice processorslS 

arranged in arrays of 256 each having access to 256 bits of 
storage. The ensemble is capable of bitwise operations on 
selected fields of storage. Since the bulk filter algorithm 
requires 768 bits of storage for the information associated 
with one filter calculation, i.e. track, a "black box" model 
devotes three PE's to each object in track (generally one of 
the three is active at any instruction step). 

The converse of the STARA~ case is exemplified by the 
Parallel Element Processing Ensemble (PEPE) ,6 which 
devotes M PE's to N tracks, Jf <N. In this case, the total 
processing time for one phase would be T = [N -;- ll.f]ta, since 
each PE may process up to [N -;- ~Y] tracks sequentially. 
Xote that for parallel correlation of K returns (associative 
operations such as "between limits search"), at least K PE's 
must be available, since objects which are illuminated by a 
si~~_l:>~l:ill}ffi!1~tJ~~.h~n~l~db.y.sgparateJ)roce,ss.Qrs. 

A third approach is analogous to the pipelining of instruc
tion execution. Assuming that each phase has execution time 
tp, one could use one sequential processor to handle execution 
of each phase, buffering the input and output of contiguous 
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phases to achieve a total execution time of T= (N -l+m)tp 
for an 1l.f stage process. The Signal Processing Element (SPE) 
designed by the US Naval Research Laboratory'5 can utilize 
this strategy of functional decomposition, linking fast micro
programmed arithmetic units under the control of a 
master control unit to achieve tp~M-'ts for "sequen
tial" machines of the CDC 7600, IB1I 370/195 class 
(T~ [~"11-'(N -1) +l]ts). 

One other factor of considerable importance is the number 
of control streams active in each processor array. The simplest 
arrangement is a single control stream, broadcast to all 
elements from a central sequencing unit. Individual PE's may 
be deactivated for part of a program sequence by central 
direction, or dependent upon some condition determined by 
each PE. Dual control units mean that arithmetic and 
correlative operation can proceed simultaneously, allowing 
the t\'"Q .ph~_s~ ~trl1tegy.Qutli:u.e_d. __ .e_a.dier t.o.IDrrk. efficiently 
(one control stream would require an "interruptible arith
metic" strategy, or well defined, non-overlapping, search/ 
verify and arithmetic intervals). These two control streams 
can act on different sets of PE's (e.g. each PE has a mode 
register which determines the central stream accepted by that 
PE), or both control streams can share the same PE on a 
cycle stealing basis (PEPE IC model). 

Configurations considered 

Table I presents the basic data on the four hard,vare con
figurations considered for the bulk filter problem. Sizing 
estimates are based upon the assumptions described previ
ously, i.e. 1950 tracks in processing at any given time (steady 
state). Over any 25 11s interval, half of the tracks are being 
correlated, half are being processed arithmetically. 

The Kalman filter results compare the performance of 
STARAN, PEPE (IC model), and the CDC 7600 in sus
taining a precise track of 120 objects (1 observation each 
50 ::\1s) using a basic model of the Kalman filter algorithm. 
The STARAN solution attempts to take advantage of the 
parallelism within the algorithm (matrix-vector operations). 
Twenty-one PE are devoted to each object being tracked . 
PEPE would handle one Kalman filter sequence in each of its 
PE's, performing the computations serially within the PE. 

CO :VIP ARATIVE RESULTS 

Bulk filter 

Table II presents the values for 'YJ, 71, ir, and execution time 
for each of the 4 processor configurations. As has been ex
plained earlier 'YJ and ij differ only in the definition of hardware 
space used in the denominator of the 'YJ expression. It is 
interesting to note that although the efficiency 71 over the 
constrained interval is not large for any of the parallel 
processors, all three do utilize their hardware efficiency over 
the actual arithmetic computation ('YJ). The implication is 
that some other task could be handled in the idle interval, a 
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TABLE I-Bulk Filter Processor Configuration Comparison 

STARAN 
3 PE/TRACK 

HONEYWELL 
PE/TRACK 

1950 

PEPE (IC model) 
PE/20 TRACK 

100 

CDC 7600 
SEQUENTIAL 

Number of PE's (1950 track load) 

32 bit fixed point Add time/PE 

Control Streams 

30 Arrays =7680 PE's 

18.0,usee 

Single-(Standard op-

.75,usee .25,usec 27.5-55 n.s. (60 bit) 

tion) all PE's correlate 
or perform arithmetic 
functions 

Double-Each PE may 
be in correlation or 
arithmetic mode 

Double-EACH PE may Single pipelined 
perform correlation and 
arithmetic functions 

Approximate gate count/PE (not in- 82 (21,000/256 PEarray) 
cluding storage) 

Gate Count for configuration (PE's 630,000 
only) 

Adds/secX1()6 (",MIPS) 427 

Gates/track 320* 

* Based on a 30 Array configuration-246 are required for the algorithm. 

more sophisticated filter algorithm could be used, or the 
PE's could be built from slower, less expensive logic. It 
should be stressed that the gate counts given are strictly 
processing element gates, not including memory, unit control, 
or other functions. 

Kalman filter 

As noted above, 60 precision tracks must be updated in 
25 ~'ls while 60 track looks are being correlated. Benchmark 
data for the CDC 7600 indicates that a Kalman filter cal
culation consisting of 371 multiplies, 313 add/subtracts, 2 
divides, 6 square roots, and 1 exponentiation will require 
approximately 0.3 ~ls (18 1\1s for 60 tracks). This leaves a 
reserve of 7 ~1s out of a 25 Ms interval for correlation. An 
analysis of the STARAN processor applied to the Kalman 
filter l2 indicates that with 21 processing elements assigned to 
each precision track the calculation can be carried out in 
slightly less than 25 Ms. This performance is achieved by 
decomposing the filter calculation into 56 multiplies, 61 
add/subtracts, 3 divides, 4 square roots and is achieved at 
the cost of 322 move operations. Figure 7 shows the processor 
activity for the first 15 instructions of the Kalman filter 
sequence. One bank of STARAN processing elements (5256 
element arrays) containing 1280 processors is required to 
update tracks for 60 objects in one 25 ::Vls interval and corre
late returns during the other. The PEPE configuration would 
require 60 processing elements (two track files per element) 
taking advantage of this hardware's ability to do arithmetic 
calculations and correlations simultaneously, achieving a 
45 percent loading (11.3 ~ls execution time per Kalman filter 
sequence) of each PEPE processing element. Table III 
summarizes the Kalman filter results. 

OBSERVATIONS AXD COXCLUSIOKS 

It should be emphasized that this study was not an attempt 
to perform a qualitatiyc cyaluation of the procC'~SQr organiza-

simultaneously 

2,400 9,000 170,000 

4.68X106 900,000 170,000 

2600 400 18 

2400 450 87 

tions described in the studies.9 ,IO,1l,12 Each of the proposed 
configurations is more than capable of handling the required 
calculations in the time available. System cost is really 
outside the scope of this paper. In particular, gate count is 
not a good indicator of system cost. The circuit technology 
(speed, level of integration) and chip partitioning (yield, 
number of unique chips) trade-offs possible "ithin the current 
state of the art in LSI fabrication relegate gate count to at 
most an order of magnitude indicator of cost. 

Each of the three parallel processor organizations represents 
a single point on a trade-off curve in several dimensions (i.e. 
processor execution speed, loading, and cost, control stream 
philosophy, etc.). Given an initial operating point, determined 
by the functional requirements of the problem, the system 
designer must define a set of algorithms in sufficient detail to 

TABLE II-Results of Bulk Filter Analysis 

Correlation time 
7J~1 

7I"¢1 

1i~1 

ir~l 
Arithmetic time 
7J~2 

7I"~2 

1i~2 

7I"~2 

Total time 
." 

71" 

ij 

ir 
.".MIPS 
-----

STARAN 
3 PEl 

TRACK 

1.8 msec 
.036 

139 
.0026 

9.9 
14.5 msec 

.66 
2450 

.38 
1470 

16.3 msec 
.30 

2270 
.19 

1480 
128 

CDC 
HONEY- PEPE (IC 7600 SE-

WELL model) PE/20 QUEN-
PE/TRACK TRACKS TIAL 

15.9 msec 2.1 msee 
.035 .68 

34 68 
.022 .057 

22 5.7 
5.1 msec 3.85 msec 

.80 .79 
780 79 

.16 .122 
159 12.2 

21 msec 5.95 msec 22 msec 
.11 .75 1.0 

216 75 1.0 
.093 .18 .88 

181 18 .88 
286 300 18 



convince himself that he can operate 'within any given con
straints. Fine tuning of the system is accomplished by 
restructuring the algorithms, redefining the operating point, 
or both. In the two cases treated in this paper, elapsed time 
is the crucial measure of system performance (in a binary 
sense-it does or does not meet the requirement). The 
purpose of the 7] and 71 calculations, as well as the step by step 
processor activity diagrams is to provide some insight-beyond 
the elapsed time criteria which might be helpful in restruc
turing algorithms, or modifying some aspect of the system's 
architecture such as control stream philosophy. The proper
ties of the processor activity diagrams are of significant 
interest in determining the number of PE's that are required 
to handle the given load (uniform load implies fewer PE's 
and higher 7]). The measures used in this paper are of some 
interest because of the fact that they are functions of problem 
width and instruction execution time) allowing factors such 
as the selection of a particular instruction set to enter into 
the values of the resultant tuning parameters. 

Several more specific observations are in order. First, for 
the particular bulk filter case considered, the CDC 7600 can 
easily handle the computational load. Proponents of the 
parallel processor approach ,,,"ould claim that quantity 
production of PE's, utilizing LSI technology, would enable 
them to produce equivalent ensembles at less than a CDC 
7600's cost. In addition, computation time for the parallel 
ensembles is only a weak function of the number of obj ects in 
the correlation phase, and essentially independent of object 
load in the arithmetic phase. Therefore, it would be simple to 
scale up the capabilities of the parallel processors to handle 
loads well beyond the capability of a single, fast sequential 
processor. The functional pipelining approach advocated by 
the Xaval Research Laboratory would appear to be the 
strongest challenger to the parallel approach in terms of 
capabilities and cost (and to a somewhat lesser extent, 
flexibility). Very rough estimates indicate that the bulk filter 
case presented here could be handled by no more than two 
arithmetic units (each with ,....,.,10,000 gates) and a single 
microprogrammed control unit (,....,.,5,000 gates). Tasks which 
stress the correlative capabilities of parallel arrays rather than 

# ACTIVE 
ElEMENTS 

ELASPED TIME IMICROSECOfl)S} 

Figure 7-STARAN Kalman filter loading (one track, first 15 
instructions) 
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TABLE III-Results of Kalman Filter Analysis 

STARAN PEPE (IC model) CDC 7600 

Time 25 Ms 11.3 Ms 18 Ms 
7f "".5 >.9 1 
11" 640 >54 1 
'ii "".5 .45 .72 
ir 640 27 .72 
7f}LMIPS 36 108 13 
gates/track 875 4500 1400 

NOTE: Correlation time for the Kalman filter is not significant ("" 100 
}Ls) since each track is assigned a unique track number number (120 
total). Accordingly, only total time figures are presented. 

the parallel arithmetic capabilities should show the parallel 
array architecture to its greatest advantage. 
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A structural approach to computer performance 
analysis 

by P. H. HUGHES and G. MOE 

University of Trondheim 
Norway 

IXTRODUCTIOK 

The perfOl'm-aR~-e analysis of computer systems is as yet a 
rather unstructured field in which particular aspects of 
systems or items of software are studied 'with the aid of 
various forms of models and empirical measurements. 
Kimbleton1 develops a more general approach to this problem 
using three primary measures of system performance. The 
approach to be described here represents a similar philosophy 
but deals only with throughput as the measure of system 
performance. This restriction results in a model which is 
convenient and practical for many purposes, particularly in 
batch-processing environments. It is hoped that this approach 
will contribute to the development of a common perspective 
relating the performance of different aspects of the system to 
the performance of the 'whole. 

The present work arises out of a continuing program of 
performance evaluation begun in 1970 on the UNIVAC 1108 
operated by SIXTEF (a non-profit engineering research 
foundation) for the Technical University of Norway (KTH) 
at Trondheim. The status of the Computing Centre has since 
been revised, such that it now serves the newlv formed 
University of Trondheim which includes NTH. v 

Early attention focused on trying to understand EXEC 8 
and to identify possible problem areas. One of the early 
fruits of the work is described in Reference 2. However the 
main emphasis for most of 1971 was on the development of 
benchmark techniques supported by a software monitoring 
package supplied by the University of Wisconsin as a set of 
modifications to the EXEC 8 operating system.3 •4 It was in an 
effort to select and interpret from the mass of data provided 
by software monitoring that the present approach emerged. 

The operation of a computer system may be considered at 
any number of logical levels, but between the complexities of 
hardware and software lies the relatively simple functional 
level of machine code and I/O functions, at ","hich processing 
takes physical effect. The basis of this paper is a general 
model of the processes at this physical level, to which all 
other factors must be related in order to discover their net 
effect on system performance. 

THE GENERAL XATURE OF THE WORKLOAD 

At the level we shall consider, a computer is a network of 
devices for transferring and processing information. A program 
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is a series of requests for action by one or more devices, 
usually in a simple, repetitive sequence. 

The way in which instructions are interpreted means that 
the central processor is involved every time I/O action is to 
be initiated, so that every program can be reduced to a 
cycle of requests involving the CPU and usually one or more 
other devices. 

In a single program system, devices not involved in the 
current program remain idle, and the overlap between CPU 
and I/O activity is limited by the amount of buffer space 
available in primary store. Performance analysis in this 
situation is largely a matter of device speeds and the design 
of individual programs. 

~Iultiprogramming overcomes the sequential nature of 
the CPU-I/O cycle by having the CPU switch between 
several such programs so as to enable all devices to be driven 
in parallel. The effectiveness of this technique depends upon 
several factors: 

(i) the buffering on secondary storage of the information 
flow to and from slow peripheral devices such as 
readers, printers and punches ('spooling' or 'symbiont 
activity') . 

(ii) the provision of the optimum mix of programs from 
those 'waiting to be run so that the most devices may 
be utilised (coarse scheduling). 

(iii) a method of switching between programs to achieve 
the maximum processing rate (dynamic scheduling). 

These scheduling strategies involve decisions about 
allocating physical resources to programs and data. The 
additional complexity of such a system creates its own 
administrative overhead which can add significantly to the 
total v,"orkload. The success of the multiprogramming is 
highly sensitive to the match behveen physical resources and 
the requirements of the workload. In particular there must be: 

(iv) provision of sufficient primary store and storage 
management to enable a sufficient number of pro
grams to be active simultaneously. 

(v) a reasonable match between the load requirements on 
each device and the device speed and capacity so as 
to minimise 'bottleneck' effects whereby a single 
overloaded device can cancel out the benefits of 
multiprogramming. 
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(MAGNETIC TAPE) 

Figure I-Configuration used by the model. Names in parentheses 
denote corresponding equipment 

Such a system, if properly configured and tuned, can 
achieve a throughput rate several times greater than a single 
program system. Performance analysis becomes much more 
complex, but correspondingly more important. 

A ~VIODEL OF THE PHYSICAL WORKLOAD 

We wish to model a number of independent processes, each 
consisting of a cycle of CPU-I/O requests. In real life, the 
nature of these processes changes dynamically in an ex
tremely complex way and we introduce several simplifying 
assumptions: 

(i) the processes are statistically identical and are always 
resident in core store. 

(ii) requests by a process are distributed among devices 
according to a stationary, discrete probability dis
tribution function f. 

(iii) the time taken to service a request on a particular 
device i is drawn from a stationary distribution 
function s. 

Figure 1 illustrates the network we have been using. 
The names in parentheses refer to the particular equipment 
in use at our installation. FH432, FH880, and FASTRAND 
constitute a hierarchy of fast, intermediate, and large slow 
drums respectively. 

We restrict the model to those devices which satisfy the 
constraint that any process receiving or waiting to receive 
service from the device must be resident in core store. If a 
process requires service from a device which does not satisfy 
this constraint (e.g., a user terminal) it is no longer 'active' 
in the terms of the model. Normally it ",ill be replaced in 
core by some other process which is ready to proceed. This 
restriction rules out an important class of performance 
variables such as system response time, but has correspond
ing advantages in dealing with throughput. 

At any instant the number of active, in-core processes p is 
discrete, but the average over a period of time may be non
integer, as the mix of programs that will fit into core store 
changes. In addition p includes intermittent processes such as 
spooling which will contribute fractionally to its average 
value. We will refer to p as the multiprogramming factor. 
This is to be distinguished from the total number of open 
programs (including those not in core store) which is some
times referred to as the degree of multiprogramming. 

In the first instance, all distribution functions have been 
assumed to be negative exponential vlith appropriate mean 

values for each device. First-in first-out queuing disciplines 
are also assumed. This is not strictly valid under EXEC 8 in 
the case of the CPU, but the assumption does not upset the 
general behaviour of the model. 

Throughput and load 

We may define the throughput of such a network to be the 
number of request cycles completed per second for a given 
load. The load is defined by two properties 

(i) the distribution of requests between the various 
devices 

(ii) the work required of each device. 

This 'work' cannot be easily specified independently of the 
ch~racteristics of the device, although conceptually the two 
must be distinguished. The most convenient measure is in 
terms of the time taken to service a request, and the dis
tribution of such service times ",ith respect to a particular 
device. 

For a given load, the distribution of requests among 
N devices is described by a fixed set of probabilities 
fi (i = 1, ... N). The proportion of requests going to each 
device over a period of time will therefore be fixed, regardless 
of the rate at which requests are processed. This may be 
stated as an invariance rule for the model, expressible in two 
forms "ith slightly different conditions: 
For a given load distribution f 

(i) the ratio of request service rates on respective devices 
is invariant over throughput changes and 

(ii) if the service times of devices do not change, the ratio 
of utilizations on respective devices is invariant over 
throughput changes. 

Behaviour of the model 

Figures 2 (a), 2 (b) show how the request service rate and 
the utilization of each device vary with the number of active 
processes p, for a simulation based on the UNIVAC 1108 
configuration and workload at Regnesentret. 

These two figures illustrate the respective invariance rules 
just mentioned. Furthermore the b;o sets of curves are 
directly related by the respective service times of each device 
j. In passing we note that the busiest device is not in this 
case the one with the highest request service rate, \vhich is 
alwavs the CPU. Since we have assumed that service times 
are i~dependant of p (not entirely true on allocatable devices), 
it is clear that the shape .of every curve is determined by the 
same function F(p) which we will call the multiprogramming 
gain function, shown in Figure 2 ( c) . 

This function has been investigated analytically by 
Berners-Lee.5 Borrowing his notation, we may express the 
relationship of Figure 2(b) as 

Xj(p)=F(p)xj for j=1,2, ... N (1) 
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Figure 2-Behaviour of model as a function of the multiprogramming 
factor p 

where Xj(p) is the utilization of device j when p processes 
are active and Xj is identical with Xj(l), the corresponding 
utilization when only one process is active. 

Now when only one process is active, one and only one 
device will be busy at a time, so that 

(2) 

Summing equations (1) for all devices, we have 

N 

L Xj(p) =F(p) (3) 
j=l 

That is, the multiprogramming gain for some degree of 
multiprogramming p is equal to the sum of the device 
utilizations. 

It is instructive to consider the meaning of the function 
F(p) . .:\Iultiprogramming gain comes about only by the 
simultaneous operation of different devices. If there are p 
parallel processes on lv~ devices, then some number of pro-

cesses q satisfying q~min(p, N) are actually being serviced 
at any instant, while (p-q) processes ,vill be queuing for 
service. 

It follows that the time-averaged value of q must be F (p), 
so that one may regard F (p) as the true number of processes 
actually receiving service simultaneously. Since q is limited 
by the number of devices N it follows that the maximum 
value of F (p) must be N which we would expect to be the case 
in a perfectly balanced system, at infinitely large p. 

Improving system throughput 

We shall consider in detail two ways of improving the 
throughput of such a system: 

(i) by increasing the mUlti-programming factor 
(ii) by improving the match between system and workload 

Later we shall encounter two further ways by which 
throughput could be improved: 

(iii) by reducing the variance of request service times 
(iv) by improving the efficiency of the software so that 

the same payload is achieved for a smaller total 
\vorkload. 

Increasing the multiprogramming factor 

We may increase the number of active processes by either 
acquiring more core store or making better use of what is 
available by improved core store management, or smaller 
programs. The latter two alternatives may, of course, involve 
a trade-off with the number of accesses required to backing 
store. 

The maximum gain obtainable in this way is limited by 
the utilization of the most heavily used device-the current 
"bottleneck." If the present utilization of this device is X m , 

and the maximum utilization is unity, then the potential 
relative throughput gain is l/Xm (Figure 3). The practical 
limit will of course be somewhat less than this because of 
diminishing returns as p becomes large. A simple test of 
whether anything is to be gained from increasing p is the 
existence of any device whose utilization approaches unity. 
If such a device does not exist then p is a "bottleneck." 
However, the converse does not necessarily apply if the 
limiting device contains the swapping file, 

Matching system and workload 

This method of changing performance involves two effects 
which are coupled in such a way that they sometimes conflict 
with each other. They are: 

(a) Improvement In monoprogrammed system per
formance 

(b) Improvement in multiprogramming gain 
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Figure 3(a)-The effect of increasing multiprogramming on the 
utilization of the limiting device m 
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Figure 3(b)-The effect of increasing multiprogramming on the 
multiprogramming gain function F(P) 

These two components of system performance are seen in 
(4) where r is the total no. of requests processed per second 
on all devices when p = 1, and R is the corresponding total at 
the operational value of p (Fig. 2(a)). 

R=F(p)r (4) 

Clearly we may improve the total performance R by im
proving either r or F (p), but we shall see that any action we 
take to improve one has some "effect on the other. 

At p = 1 the mean time to perform any request is L fiSi 
hence 

1 
r= LfiSi 

(5) 

In considering the potential mUltiprogramming gain F (p ) , 
it is useful to examine the limiting value F I as p becomes large. 

Applying equation (1) to the limiting device m we have 

and, as p becomes large, 

Xm 
F(p) =-

Xm 

1 
F ,=

Xm 
(6) 

The only way of improving F, is to reduce the mono
programmed utilization xm • But since m is the limiting device 
and 

it follows that Xm must have a lower bound of liN, at which 
point all Xi must be equal to liN and F,=~V. This is the 
condition for a balanced system. 

The limiting throughput corresponding to F I is obtained 
by substituting in (4) using (5) and (6). 

By definition 

so that 

For a balanced system, 

1 1 
Rz=--·-

LfiSi Xm 

1 
R ,=

fmsm 

and from (4) Rz (balance)=Nr 

(7) 

It is important to note that while a balanced system is a 
necessary and sufficient condition for a maximum potential 
multiprogramming gain F

" 
it is not necessarily an appropriate 

condition for a maximum throughput R at some finite value 
of p. This is because of the coupling between F(p) and r. 

We shall now use equations (5) to (8) to examine in
formally the effect, at high and low values of p, of two 
alternative ways of improving the match between system 
and workload. They are 

(i) to reduce device service times 
(ii) to redistribute the load on I/O devices 

Effect of reducing service time 

Let us consider reducing service time Sf on device i From 
(5), r will always be improved, but it will be most improved 
(for a given percent improvement in Sf) when !isf is largest 
with respect to L fiSi i.e. when j = m, the limiting device. 
From (7), if j ¥=m, Rz is not affected by the change but if 
j = m then Rz is inversely proportional to the service time. 

Thus we may expect that for the limiting device, an im
provement in service time will always result in an improve
ment in throughput but this will be most marked at high 
values of p. Speeding up other devices will have some effect 
at low values of p, diminishing to zero as p increases (Fig. 
4(a)) . 

If a limiting device j is speeded up sufficiently, there will 
appear a new limiting device k. We may deal with this as two 
successive transitions with j = m and j ¥=m separated by the 
boundary condition !iSj = fkSk. 

Redistributing the load 

This alternative depends on changing the residence of files 
so that there is a shift of activity from one device to another. 
Here we must bear in mind two further constraints. Firstly 
this is not possible in the case of certain devices, e.g. the CPU 
in a single CPu system. t:;econdly, a conservation rule 
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Figure 4(a)-The effect of reducing service time on device j 
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Figure 4(b)-The effect of redistributing the load from device i to a 
faster device j 

usually applies such that work removed from one device i 
must be added to some other devicej. 
That is 

(9) 

Consider the effect of s"\\'-itching requests from any device i 
to a faster device j. Since Sj<Si, equation (5) tells us that r 
will always be increased. Equation (7) tells us that Rz will 
be improved while i = m, reduced while j = m, and unaffected 
while i~m~j. (Figure 4(b)). The situation is again com
plicated by the fact that as a particular set of requests is 
switched from i to j a new limiting device may appear. In 
this case we may consider the effect as two separate transi
tions separated by the boundary condition fisi = fksk where 
k is the new limiting device. 

The effect of switching requests to a faster device always 
results in a throughput improvement at low values of p. As p 
is increased, the throughput improvement will enlarge if the 
donor device is the limiting device, diminish to zero if the 
limiting device is not affected, and become negative if the 
recipient device is the limiting device. 

We should note that moving requests from a faster device 
j to a slower device i is the exact converse of the above. In 
particular, ifj=m, we can expect a throughput improvement 
at high values of p and a throughput worsening near p = 1. 

In the preceding discussion we have ignored the question 
of device capacity. In practice, the distribution of files and 
the capacity of the respective devices must be matched to 
achieve the most cost-effective I/O load distribution. Con
sideration of Figure 4 (b) will show that the effect of load 

redistribution depends both on the multiprogramming factor 
and on how the load on the limiting device is affected by the 
change. Redistribution is most effective if it reduces the load 
on the limiting device. Successive applications of this criterion 
will eventually lead to one of two situations: 

either 

or 

(1) the CPU becomes the limiting device (CPU-bound 
situation) . 

(2) the I/O load is balanced among devices so that their 
respective utilizations are equal and not less than the 
CPU utilization (balanced I/O-bound situation). 

Further load redistribution ,,-ill be effective at lower values 
of pj where som.e-gmnsGan be mad€.by mo-ving requests from 
slower devices to faster ones. At higher values of p this will 
have a reduced effect in the CPU-bound case and a deleterious 
effect in the balanced I/O bound case. 

One may sum up the criteria for load distribution in a very 
generalised way as follows. If there is low multiprogramming 
one should try to minimise the I/O load by making maximum 
use of the faster devices. If there is high multiprogramming 
and an I/O bound situation, one should try to balance the 
I/O load so that all devices are equally utilized. If there is 
high multiprogramming and a CPU-bound situation, there is 
little to be gained by redistributing the I/O load, except 
perhaps savings on device capacity. Clearly the optimum 
distribution for a particular case cannot be expressed in such 
a rule of thumb, and requires detailed calculation. 

Use of invariance rules 

The effect of a specific change on the behaviour of the 
system may be understood by applying the invariance rules 
governing the ratios of request service rates and utilizations 
on each device. If the service time of a device is reduced 
(without changing the allocation of files between devices), 
e.g., by replacing with a faster device or by optimising arm 
movement, the ratio of utilizations ,,-ill only change in 
respect of that device, and the ratio of request rates to all 
devices ,,-ill remain constant. However, the magnitude of all 
request rates "ill increase. In redistributing the load, the 
same logic applies, except that the ratios of both request 
rates and utilizations will change with respect to the affected 
device::;. 

Determining F (p ) 

The precise '!:"··-:rpe of F (p) for given device utilizations 
depends upon the assumptions we make about the dis
tributions of service times on the various devices, 

. T~e si~ulation results presented so far assume exponential 
dIstrIbutIOns and in this case we may use the formulation 
developed by Berners-Lee. In Reference 5 he shows that 

F(p) =S(p-1)/S(p) (4) 
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Figure 5-Different cpu utilization curves X =xF(p) obtained with 
different distributions of service time s. (The same distribution was used 

on all devices) 

where 
S(p) = L Xln1Xllnz ••• XNnN 

summed over all combinations of ni 

subject to ni~O and nl+1b.!+ ... nN=p 

(5) 

The ni thus represent all possible combinations of queue sizes 
at each device i. 

Using this relationship, F(p) can be economically com
puted by a simple program provided the Xi are knmvn, and 
p and N are small. 

In practice we may monitor the actual device utilizations 
Xi for a real system, and compute the Xi from the relation 

X 1
" b' d X;= -- 0 tame from (1) and (3) 

N 

LXi 
i=1 

We have found this program to be more convenient than the 
simulation when exponential distributions can be assumed. 
It gives precisely the same results. 

Effect of service time distributions 

Different shapes of F (p) are obtained by repeating the 
simulation under different assumptions about the distribution 
of request service times. Figure 5 shows that an observed 
utilization Xl will imply different values of the effective 
number of processes p under the different assumptions. 
Although we can estimate a reasonable range for the true 
value of p there is no means of observing it directly since it 
is a model parameter based on simplifying assumptions. It is 
therefore important in using the model to establish its sensi
tivity to changes in distributions and to establish what 
distributions actually obtain in practice. 

The exponential assumption has yielded results borne out 
by experiment in the two cases to be described, but it is felt 
that there must certainly be many cases where this assump
tion will prove too simplified. 

From the figure we may infer that for a given number of 
parallel processes p, the effectiveness of multiprogramming is 
increased as the variance of the request service times is 
reduced. This is our third way of improving throughput. 

Variance is an important control parameter in the model, 
and allows us to reproduce in a general way many practical 
effects. Some examples of these are: 

• the continuously changing pattern of real workloads 
• alternative queuing disciplines and time-slicing 
• movable-head discs with wide ranges of service times 

Work continues on establishing the effects of variance in 
more detail. 

Interactive loads 

Within its mvn terms of reference the model seems to be 
quite applicable to interactive loads, but applications studied 
so far have had only a small interactive element so it is too 
early to be conclusive about this. 

We have already stressed that in its present form the 
model cannot handle questions involving response time. If 
interactive loads are to be properly considered, it is necessary 
to introduce core allocation and paging or swapping ex
plicitly. Many studies have of course been done in this area. 
One which is rather close to the present approach is described 
by Florkowski.6 

APPLICATIONS 

Expansion of core-store 

During the Spring of 1971 an evaluation was attempted to 
predict the effect on batch throughput of increasing the 
primary core store. The eventual decision to order more core 
was based upon the usual combination of hearsay, ad hoc 
reasoning, and benchmark tests. In this case a certain amount 
of core went into the construction of the benchmark4 and it 
was run under software monitoring. However the insights 
described in this paper had not then been obtained. More 
than one year later we reexamined the records of those tests 
to determine how consistent they were with the behaviour 
of the model. 

In the original core store of 128 k words, the operating 
system EXEC 8 used about half of the space, leaving approxi
mately 64 k words available for user programs. To predict 
the effect of adding a core module of 64 k words, a benchmark 
was run at Computas A/S, Oslo, Norway on a similar con
figuration equipped with 192 k words. For the sake of com
parison, the benchmark was run at the same installation with 
one core module down. In both cases a version of EXEC 8 
including the Wisconsin modifications was used. 

Table I (a) shows the subsystem utilizations obtained with 
the smaller core. From this table we observe that no sub
system has a higher utilization then 0.59. As we have dis-
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TABLE I-Expansion of Core-Store 

(a) Device utilization with 128 k words of core. 
FAST- MAGN. 

CPU FH432 FH880 RAND TAPE 

BENCHMARK 0.59 0.26 0.26 0.56 0.25 

(b) Device utilizations with 192 k words of core. 

CPU 

MODEL 0.79 
BENCHMARK 0.77 

FH432 

0.35 
0.39 

FH880 

0.35 
0.38 

FAST
RAND 

0.75 
0.74 

MAGN. 
TAPE 

0.33 
0.35 

(c) Device utilizations normalised with respect to the CPU to compare 
relative device loads in the two benchmark tests. 

128 k words 
192 k words 

CPU 

1.00 
1.00 

F-H-432-

0.44 
0.51 

FAST- MAGN. 
FH880 - -RAND ~APE 

0.44 
0.49 

0.95 
0.96 

0.42 
0.45 

cussed previously the limit of the utilization of the bottleneck 
subsystem is 1.00 as p is increased. The system is rather far 
from this maximum and a natural explanation is that the 
system has insufficient core store. There are of course other 
possible explanations: 

(i) unsaturated system caused by insufficient backlog 
(ii) too few jobs opened simultaneously 
(iii) the operating system is not able to make full use of 

the available core 

Alternative (i) is eliminated at once because there is a 
significant backlog ,,,hen the benchmark is running except 
for a short period in the beginning and at the end of the test. 
Point (ii) is eliminated if the mean storage requirements of 
open runs exceed the available core. In this case the_ number 
of open runs was set to 4, and the mean program size was 
22k, giving a product in excess of the available 64 k. Point 
(iii) is more difficult to handle. The safest way of investigating 
this alternative is to run a benchmark at an installation 
having bigger core store. In the following we assume that the 
batch throughput is limited by the core store and we will use 
the model to predict the effect of adding 64 k words. 

The system is represented by the queuing network shown 
in Figure 1. 

We assume negative exponential distributed service-times 
and a "first in first out" queuing discipline. Under these 
assumptions the model (in this case the analytical model is 
used) gives the results shown in Figure 6. 

When adding 64 k words of core, the user core space is 
approximately doubled so that it is reasonable to expect a 
system working at a multiprogramming factor equal to twice 
the old one. Although the multiprogramming factor includes 
the EXEC activity as well as the user-activity, it is assumed 
that a certain increase in the user activity causes a corre
sponding increase in the EXEC activity. 

From Figure 6 we observe that a value of 2.7 has to be used 
for the multiprogramming factor to match the model output 
to the figures measured in benchmark ~1ARKl given in 
Table I (a). From Figure 6 \ve also find that if the multi
programming factor is increased to 5.4 the cpu utilization is 
increased to 0.79. The corresponding relative increase in 
throughput is given by 

0.79-0.59 
0.59 =0.34(±0.02) 

The increase in throughput measured by the benchmark ,,,as 
0.28 (±0.05) based on elapsed time. The large error margin is 
due to an end-effect in the small core test whereby one job 
was running alone for 1.7 minutes out of total test time of 24 
minutes. In Table I (b) a comparison is given between the 
subsystem utilizations measured in the large core test and 
the corresponding figures given- by the -mod-et 

The improvement 'predicted' by the model seems a little 
too optimistic, perhaps because our estimation of the new 
value of p is too high. However, in vie,,, of practical difficulties 
with the benchmark tests, the correspondence seems as close 
as can be expected. 

In Table I (c) we given the utilization figures for the tvw 
benchmark tests. The figures are normalized using the cpu 
utilization as a base. All normalized utilization figures for 
the benchmark test run on 192 k words core are higher than 
those for~ 128 k. This observation is partly explained by 
looking at the total cpu-time in the two benchmarks. In the 
first case it is 14.15 minutes, in the second it is 13.90 minutes. 
By further examination of the monitor output we also find 
differences in both number of accesses and service-time for 
the different I/O-subsystems between the two tests. The 
differences are difficult to explain from the available data. 

These discrepancies show that care must be taken in using 
either a benchmark or a model. When using a simple model to 
investigate the effect of system-changes it is easy to overlook 
significant side effects. On the other hand when using a 
benchmark one runs the risk of including undesirable effects 

1 
cp:.J-ucilizatio:1 

1.0 

O. 8 

0.4 

8.2 ~=S.~ 

p 

Figure 6-Cpu utilization as a function of the multiprogramming factor. 
Workload defined by benchmark run with 128 k words core 
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due to changed test conditions. In both cases emphasis must 
be placed on careful analysis of the expected effects of a 
change and, in the case of a benchmark, on the monitor 
output from the test. A combination of the two techniques is 
clearly the safest. 

Redistributing the load 

After the addition of core store which coincided with the 
introduction of a new version of the operating system, it 
became apparent that the Fastrand drum, a movable-head, 
secondary storage of some 200 million characters, and 92 ms 
average access time, was the limiting device. The first re
action was to think in terms of adding a disc system with a 
much shorter net access time (of the order of 30 ms) and 
positioning overlap between disc units. The model predicted 
a throughput improvement of as much as 30 percent with one 
such arrangement. However, following a report from the 
University of Wisconsin, we tested the effect of transferring 
all symbiont activity (i.e., 'spooling' of read and print files) 
from Fastrand to a faster drum, the FH880, which had a very 
low utilization. It turned out that a very large percentage of 
Fastrand accesses were made in connection with these files, 
and some directory accesses seem to have disappeared 
altogether. 

The effect can be seen from a pair of monitored benchmark 
tests run before and after the change. The tests we shall 
compare are: 

Test A Symbiont files on Fa.."ltrand 
Test B Symbiont files on FH880 drum 

The change is effectively a redistribution of the I/O load 
so that we may compare the practical tests "ith the behaviour 
of the model under the appropriate redistribution of f. In 
order to use the model realistically, we need ideally an in-

dependant estimate of the total number of Fastrand accesses 
involved in symbiont activity. Since this is not available, we 
",ill make use of the observed fall in Fastrand accesses 
between the two tests, but we will assume that all of the 
difference is transferred to the FH880 drum, ignoring side
effects that came to light in the course of the tests. 

We shall also assume that the mean service times on each 
device are not effected by the change and that service times 
are distributed exponentially. Then since mean service times 
are constant we may use the device utilizations as coefficients 
of the load distribution for each device. 

Step 1 is to use the utilizations of test A shown in line 1 of 
Table II (a) to determine a value of p for the benchmark. 
This is obtained from curve (a) in Figure 7 which shows the 
variation of CPU utilization with p for test A. The curve was 
obtained from the analytic formulation, using integer values 
of p. The value of p corresponding to the required CPU 
utilization is found by interpolation at 4.5. 

Step 2 is to calculate the "expected" load distribution, 
using the observed fall in Fastrand accesses between tests A 
and B. This is shown in Table II (b). Line 4 of this table 
shows the expected new load distribution. The corresponding 
utilization ratio is then calculated from the device utilizations 
for test A using the relationship. 

expected new accesses 
New coefficient = old coefficient X b ed ld o serv 0 accesses 

This is shown in line 2 of Table II (a). 
Step 3 is to use the new load distribution, stated as a ratio 

of utilizations at some arbitrary value of p, as input to the 
model. The resultant utilization curve for the CPU is shown 
in Figure [7 (b)]. Since p for test A is already determined, 
and is not affected by load distribution, we may read off the 
expected CPU utilization. From our invariance rule, the 
other device utilizations are then obtainable using the known 
ratios of their input values. Expected and observed utiliza
tions are shown in Table II (c). 

TABLE II -Redistribution of Load 

(a) Device utilizations before redistribution and 'expected' ratios after redistribution. 

CPU FH432 FH880 FASTRAND MAGN. TAPE 

Observed utilization (test A) 0.62 0.26 0.14 0.90 0.18 
Expected ratios (test B) 0.62 0.26 0.24 0.57 0.18 

(b) Device Requests-observed and 'expected'. 

CPU FH432 FH880 FASTRAND MAGN. TAPE 

1. Observed (test A) 67024 33626 7351 14763 11284 
2. Observed (test B) 62210 30473 11129 9326 11282 
3. Observed shift -4814 -3153 +3778 -5437 -2 
4. Expected shift 0 0 ( +5437) -5437 0 
5. Expected load (test B) 67024 33626 12788 9326 11284 

(c) Device utilizations after re-distribution-Model 'prediction' and benchmark. 

CPU FH432 FH880 FASTRAND MAGN. TAPE 

Model 'prediction' 0.77 0.32 0.30 0.71 0.22 
Observed (test B) 0.71 O.~!J 0.27 0.G8 0.22 
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Figure 7(a)-Deduction of p from observed cpu utilization 
Figure 7(b)-Deduction of cpu utilization for re-distributed load 

The expected improvement in throughput is given by the 
relative improvement in CPU utilization 

0.77 - 0.62 = 0.24 (±0.02) 
0.62 

The increase in throughput measured by the benchmark is 
0.27 (±0.03) based on elapsed time. There is again an error 
margin in the benchmark figure because of the appearance of 
an end-effect in test B in which only one job was active for 
the last 1.1 minutes. The correspondence between benchmark 
and model results is surprisingly good, in view of the knmvn 
side effects and discrepancies. We will now review these 
briefly. 

Side-effects 

In applying the model to this case, we have deliberately 
ignored known side-effects of the change (Table II, line (3». 
This is because we ·wished to show how the model may be 
used in practice to make a prediction where side-effects would 
not be known. Provided that the loads on the old limiting 
device and the new limiting device are correct, other side 
effects may be quite large without making a significant 
difference to overall performance. 

In the present case these were as follows 

(i) Effect of full Fastrand. 
The Fastrand device at the installation normally 
operates in a heavily loaded condition, with about 
80 percent of its space taken up ·with catalogued files 
and heavy competition for the remaining 20 percent 
by jobs using temporary files. In these circumstances 
the acquisition of space for a new file seems to require 
a great deal of extra directory activity as the available 
space is randomly spread over the device. This 
situation does not pertain on 880 where there is a 
much smaller total area to search. Consequently, of 
the 5437 accesses removed from Fastrand only 3778 
were observed on 880, the remainder being directory 
accesses that were no longer required. Thi" is con
sistent with independant benchmark tests which show 

that the net total of Fastrand accesses is 1800-2000 
less on an empty Fastrand than on a full one. Since 
Read and Print files comprise the majority of tran
sient Fastrand files used by the benchmark, we would 
expect to lose a correspondingly high proportion of 
these accesses. 

(ii) Reduced 432 accesses. 
This effect has not been satisfactorily explained. 

(iii) Reduced CPU requests. 
This effect is really a consequence of the net reduction 
in I/O accesses. CPU requests are not monitored 
directly but it is implicit in the model that the sum 
of CPU requests is equal to the sum of all I/O 
requests. 

Discrepancies in the benchmark 

There are always practical difficulties in obtaining two 
precisely comparable tests with an alteration only in the test 
variable. vVe have already referred to the end-effect in test 
B. There was also a 3 percent loss of CPU time due to a 
program going into error. Other slight discrepancies in 
activity charged to the user amounted to ±3 percent of the 
total load on FH432 and FH880. Another important end
effect is the size of the residual print-backlog at the end of 
each test. The faster test leaves a longer back-log which also 
affects the observed shift of accesses to FH880. 

In spite of the discrepancies, the model 'prediction' is 
quite good because we were able to use good estimates for 
the relative loads on the old and new limiting devices. The 
complementary nature of the model and benchmark tech
niques is again evident, each compensating for the weak
nesses of the other. 

STRUCTURAL PERSPECTIVE 

Factors affecting the basic parameters 

So far 'we have examined system and model behaviour in 
terms of the basic parameters introduced. We shall now take 
a more general look at some of the factors which affect the 
values of these parameters. 

The average number of active processes p is influenced by 

(1) the primary storage requirements of programs 
(2) the number of programs opened in parallel by the 

system 
(3) the management of primary storage, including the 

amount devoted to system resident 
(4) the amount of primary storage available. 

The distribution of service time s for a device is dependent on 
both device speed and the ,york to be performed. 

For I/O devices, service time is influenced by 

(1) the no. of bits to be transferred (e.g. block length or 
buffer size) 
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(2) logical address within the file 
(3) disposition of the file on some device 
(4) the previous position of the readhvrite heads (if a 

movable head device) 
(5) positioning time, latency and transfer rate of the 

device, as appropriate 

For a CPU, service time is influenced by 

(1) the particular instructions, registers and storage banks 
involved 

(2) the time-slice permitted by the dynamic scheduler 
(3) the speed of the CPU logic and storage 
(4) cycle-stealing 

Finally, there is the distribution f of requests among 
devices. Factors affecting this are: 

(1) the basic processing requirements of the user programs 
(2) the additional administrative load imposed by the 

system: e.g. swapping, directory look-up, transfer of 
non-resident executive functions, compiler scratch 
files, program changes etc. 

(3) the allocation of both user and system files to specific 
I/O devices. 

In the case of each of these sets of factors we may dis
tinguish a number of levels at which decisions are taken 
which eventually affect the value of the physical load param
eters. These levels are described in Figure 8. Starting with 
the highest level, they may be designated: 
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Decision Level Associated Input 

5 Programming User Processing 
Requirements 

4 Translation User Payload 
3 Static Resource Generated Workload 

Allocation 
2 Dynamic Resource Physical Workload 

Allocation 
1 Hardware Characteristics Dynamic Workload 

Before dealing with each level in turn, some general 
comments are in order. Firstly, in existing systems these 
levels are hopelessly confused, especially the higher ones. 
Secondly, these levels are not a sequential progression for any 
given program, but rather reflect different kinds of decision 
which should be clearly distinguished. Clearly, decisions 
about static resource allocation are taken at a great many 
different points in the life of a program, some by the user or 
programmer, some by the installation, and some by the 
system itself at run time. Thirdly, the purpose behind making 
these levels distinct is to clarify how different system com
ponents contribute to system performance, what decisions 
can be taken at what level to affect it, and to distinguish 
clearly between different kinds of performance question
e.g., computer selection, the adoption of new levels of the 
operating system, compiler optimization, disc scheduling, 
hardware configuration. From the point of view of a particu
lar installation, the cost-benefit of a given change must 
depend upon the contribution it makes to overall system 
performance through the basic parameters we have presented. 

Level 5 programming 

At this level the users processing requirements are given 
explicit shape in some programming language, or by the 
selection of a particular application package. Processing is 
defined in terms of records, files and algorithms. The net 
result from this level of decision making is the identifiable 
workload of the computer. This is the 'payload', which the 
user wishes to pay for and which the installation seeks to 
charge for. Unfortunately, accounting information provided 
by the system is often only available on a device-oriented 
rather then file-oriented basis, and compounded with effects 
from lower levels in the system. 

This is the level at which benchmarks are prepared for 
purposes of computer selection or testing of alternative con
figurations. In the case of computer selection, the aim must be 
to withhold as many decisions as possible about how the 
users requirements ,,"ill be implemented, since this is so 
dependent upon available facilities. The alternative is to 
follow up the ramifications of each system. Thus in general, 
a quantitative approach to computer selection is either in
accurate or costly, or both. 

Benchmarks for a given range of computers are a more 
feasible proposition since they can be constructed on the 
output of levpl .5, leaving open as man:v rf'source allocation 
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decisions as possible, so that the most can be made of alterna
tive configurations. 

Level 4 translation 

By this is intended the whole range of software including 
input/output routines and compilers by which the punched 
instructions of the programmer are translated into specific 
machine orders and the results translated back again into 
printed output. 

Factors involved at this level 'will include optimization of 
code, efficiency of compilers, buffer sizes determined by 
standard I/O routines. It is clear that these will in turn affect 
the core size of programs, the length of CPU requests and the 
number and length of accesses to different files. The output 
from this stage is the generated \vorkload, and its relation to 
the payload might be thought of as the 'efficiency' of the 
system software. Improving this efficiency is the fourth way 
of improving system performance, referred to in a previous 
section. 

Level 3 static resource allocation 

At this level, decisions are concerned with matching pro
cessing requirements to the capacity of the configuration. 
Decisions are made about the allocation of files to specific 
devices, taking account of configuration information about 
physical device capacity, number of units, etc. We also 
include here the decision to 'open' a job, implying the assign
ment of temporary resources required for its execution. This 
is done by the coarse scheduling routines, which also decide 
on the number and type of jobs to be simultaneously open 
and hence the job mix which is obtained. Both user and 
operator may override such decisions, subordinating machine 
efficiency to human convenience. 

The decisions taken at this level may influence the maxi
mum number of parallel processes and the relative activity 
on different I/O devices. 

Level 2 dynamic resource allocation 

By 'dynamic' we mean decisions taken in real time about 
time-shared equipment, namely the CPu and primary store. 
The number of active parallel processes is that number of 
processes which are simultaneously requesting or using 
devices in the system. To be active a process must first have 
primary store, and the dynamic allocation of primary store 
governs the number of processes active at any instant. 

Given the processes with primary store, the system must 
schedule their service by the CPU, which in turn gives rise 
to requests for I/O devices. The rules for selection among 
processes and the timeslice that th('~· are allo\\-ed "'ill influence 
the instantaneous load on devices. In terms of the model, this 
will influence the shape of the distributions of load f and 
service time s which in turn influence the shape of the gain 
function F (p). 

Level 1 execution 

At this level, the final load has been determined, so that 
the remaining effects on performance are due to the physical 
characteristics of the devices. Unfortunately, it is difficult to 
express the load in terms which are independent of the 
specific device. The function f gives the distributions of 
requests, but the service time s is a compound of load and 
device speed as we have discussed. However, it is at least a 
quantity which can be directly monitored for a given work
load and configuration, and one may estimate how it is 
affected by changes in device characteristics. 

In principle, the important parameters of our model can 
be monitored directly at this level of the system, although 
\ve have not yet succeeded in obtaining an empirical value for 
p. However, the model depends for its simplicity and power 
on the correct use of the distributions of these parameters 
and investigations continue in this area. 

CO~CLUSION 

We have presented a set of concepts which have been de
veloped in an effort to master the performance characteristics 
of a complex computer system. These concepts, together ,,-ith 
the simple queuing model which enables us to handle them, 
have proven their usefulness in a variety of practical situa
tions, some of which have been described. 

The application of these concepts depends upon having 
the necessary information provided by monitoring tech
niques, and conversely provides insight in the selection and 
interpretation of monitor output. While such abstractions 
should whenever possible be reinforced by practical tests, 
such as benchmarks, they in turn provide insight in the 
interpretation of benchmark results. 

In its present form the model is strictly concerned \"ith 
throughput and is not capable of distinguishing other per
formance variables such as response time. This severely 
restricts its usefulness in a timesharing environment, but is 
very convenient in situations where throughput is of prime 
concern. 

Consideration of the distinct types of decisions made 
within the computer complex, suggests that it may be possible 
to assess the effect of different system components on overall 
performance in terms of their effect on the basic parameters 
of the model. 

It is thought that the approach described may be particu
larly useful to individual computer installations seeking an 
effective strategy for performance analysis. 
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Simulation-A tool for performance evaluation in 
network computers 

by EDWARD K. BOWDON, SR., SANDRA A. MAMRAK and FRED R. SALZ 

University of Illinois at Urbana-Champaign 
II rbana, Illinois 

I~TRODUCTION 

The success or failure of network computers in today's 
highly competitive market will be determined by system 
performance. Consequently, existing network computer 
configurations are constantly being modified, extended, 
and hopefully, improved. The key question pertaining to 
the implementation of proposed changes is "Does the 
proposed change improve the existing system 
performance?" Unless techniques are developed for 
measuring system performance, network computers will 
remain expensive toys for researchers, instead of becom
ing cost effective tools for progress. 

In order to analyze and evaluate the effects of proposed 
changes on system performance, we could employ a 
number of different techniques. One approach would be 
to modify an existing network by implementing the pro
posed changes and then run tests. Unfortunately, for 
complex changes this approach becomes extremely costly 
both in terms of the designer's time and the programmer's 
time. In addition, there may be considerable unproduc
tive machine time. 

Alternatively, we could construct a mathematical 
model of the envisioned network using either analytical or 
simulation techniques. Queueing theory or scheduling 
theory could be employed to facilitate formulation of the 
model, but even for simple networks the resulting models 
tend to become quite complex, and rather stringent sim
plifying assumptions must be made in order to find solu
tions. On the other hand, simulation techniques are lim
ited only by the capacity of the computer on which the 
simulation is performed and the ingenuity of the pro
grammer. Furthermore, the results of the simulation tend 
to be in a form that is easier to interpret than those of the 
analytical models. 

To be of value, however, a simulation model must be 
accurate both statistically and functionally. In order to 
ensure that the analysis of proposed changes based on the 
simulation results are realistic, the model's performance 
must be measured against a known quantity: the existing 
network. 

In this paper we present a simulation model for a hypo
thetical geographically distributed network computer. 
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Since the model was developed for a hypothetical net
work, we needed to ensure that the results were valid and 
that no gross errors existed in the model. Our approach 
was to design a general n node network simulator and 
then to particularize the input parameters to describe 
ILLINET (the computer communications network at the 
University of Illinois). For a given period, system 
accounting records provided exact details of the resources 
used by each task in the system including CPU usage, 
input/ output resources used, core region size requested, 
and total real time in the system. Using the first three of 
these parameters as input data, we could simulate the 
fourth. Comparison of the actual real time in the system 
to the simulated real time in the system authenticated the 
accuracy of the model. Extrapolating from these results, 
we could then consider the more general network with 
reasonable assurance of accurate results. 

MODEL DEVELOPMENT 

We begin the development of our network model by 
focusing our attention on ILLINET. This system contains 
a powerful central computer with copious backup mem
ory which responds to the sporadic demands of varying 
priorities of decentralized complexes. The satellite com
plexes illustrated in Figure 1 include: 

(1) Simple remote consoles. 
(2) Slow I/O. 
(3) Faster I/O with an optional small general purpose 

computer for local housekeeping. 
(4) Small general purpose computers for servicing 

visual display consoles. 
(5) Control computers for monitoring and controlling 

experiments. 
(6) Geographically remote satellite computers. 

This network was selected for study because it represents 
many of the philosophies and ideas which enter into the 
design of any network computer. The problems of interest 
here include the relative capabilities of the network, iden
tification of specific limitations of the network, and the 
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Figure l-ILLINET-University of Illinois computer 
communications network 

interrelationship between communication and computing. 
From a long range viewpoint, one of the more interesting 
problems is the effect on system performance of central
ized vs. distributed control in the operating system. 

From a postulation of the essential characteristics of 
our computer network, we have formulated a GPSS 
model for a three node network, illustrated in Figure 2. 
Jobs entering the nodes of the network come from three 
independent job streams, each with its own arrival rate. 

A single node was isolated so that performance could be 
tested and optimized for the individual nodes before 
proceeding to the entire network. A node in a network 

ILl 

Figurr ?-- Hypf)thptir~l nrtwnrk romplltpr 

computer conceptually performs three major functions: 
queue handling and priority assignment; processor alloca
tion; and resource allocation other than the CPU (such as 
main storage, input/ output devices, etc.). 

The goal of the single node optimization was to develop 
a priority scheme that would minimize the mean flow 
time of a set of jobs, while maintaining a given level of 
CPU and memory utilization. The IBM 360/75 was taken 
as the model node, the present scheduling scheme of the 
360;75 under HASP (Houston Automatic Spooling Prior
ity System)! was evaluated, and as a result a new priority 
scheme was devised and analyzed using the simulation 
model. 

NODE DESCRIPTION 

The logical structure of the HASP and OS /360 systems 
currently in use on ILLINET is illustrated in Figure 3 
and briefly described in the following paragraphs. 

Job initiation 

Under the present HASP and O.S. system jobs are read 
simultaneously from terminals, tapes, readers, disks, and 
other devices. As a job arrives, it is placed onto the HASP 
spool (which has a limit of 400 jobs). If the spool is full, 
either the input unit is detached, or the job is recycled 
back out to tape to be reread later at a controlled rate. 

Upon entering the system, jobs are assigned a "magic 
number," Y, where the value of Y is determined as fol
lows: 

Y=SEC+.l*IOREQ+.03*LINES. (1) 

SEC represents seconds of CPU usage, LINES represents 
printed output, and IOREQ represents the transfer to or 
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from core storage of blocks of data. Based on this magic 
number, a "class" assignment is given to each job. 

Anyone of seven initiators can be set to recognize up to 
five different classes of jobs, in a specific order. It is in 
this order that a free initiator will take a job off the spool 
and feed it to O.S. For example, if an initiator is set CBA, 
it will first search the spool for a class C job; if not found, 
it will look for a class B. If there is no B job, and no A job 
either, the initiator will be put in a wait state. Once the 
job is selected, it is put on the O.S. queue to be serviced 
by the operating system. 

o.s. initiation 

After a job is placed on the O.S. queue, there is no 
longer any class distinction. Another set of initiators 
selects jobs on a first-come, first-served basis and 
removes them from the O.S. queue. It is the function of 
these initiators to take the job through the various stages 
of execution. 

The control cards for the first (or next) step is scanned 
for errors, and if everything is satisfactory, data manage
ment is called to allocate the devices requested. The initi
ator waits for completion. 
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The O.S. supervisor is then called to allocate core 
space. The first block of contiguous core large enough to 
contain the step request is allocated to the job. If no such 
space is available, the initiator must wait, and is therefore 
tying up both the O.S. and HASP initiators. No proce
dures in O.S. exist for compacting core to avoid fragmen
tation. Once core is allocated, the program is loaded, and 
the job is placed on a ready queue with the highest non
system priority. 

o.s. scheduler 

Jobs are selectively given control of the CPU by the 
O.S. scheduler. The job with the highest dispatching 
priority is given control until an interrupt occurs-either 
user initiated or system initiated. 

HASP dispatcher 

Every two seconds, a signal is sent by the dispatcher to 
interrupt the CPU, if busy. All of the jobs on the ready 
queue are then reordered by the assignment of new dis
patching priorities based on resources used in the pre
vious 2 second interval. The job that has the lowest ratio 
of CPU time to 110 requests will get the highest dispatch
ing priority. (For example, the jobs that used the least 
CPU time will tend to get the CPU first on return from 
the interrupt.) During this period, HASP updates elapsed 
statistics and checks them against job estimates, termi
nating the job if any have been exceeded. 

Job termination 

When execution of the job is completed, control is 
returned to the HASP initiator to proceed with job termi
nation. Accounting is updated, the progression list is set 
to mark completion, and Print or Punch service is called 
to produce the actual output. Purge servi<;e is then called 
to physically remove the job from the system. The initia
tor is then returned to a free state to select a new job from 
the spool. 

The main goal of the HASP and O.S. system is to 
minimize the mean flow time and hence the mean waiting 
time for all jobs in the system, provided that certain 
checks and balances are taken into account. These 
include prohibiting long jobs from capturing the CPU 
during time periods when smaller jobs are vying for CPU 
time, prohibiting shorter jobs from completely monopoliz
ing the CPU, and keeping a balance of CPU bound and 
II 0 bound jobs in core at any given time. At this point 
the question was asked: "Could these goals be achieved 
in a more efficient way?" 

PROPOSED PRIORITY SCHEME 

In a single server queueing system assuming Poisson 
arrivals, the shortest-processing-time discipline is optimal 
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with respect to mimmizmg mean flow-time (given that 
arrival and processing times of jobs are not known in 
advance of their arrivals). 2 This result is also bound to the 
assumption that jobs are served singly and totally by the 
server and then released to make room for the next job. 

Processing time 

With respect to OS /360 there are several levels and 
points of view from which to define processing or service 
time. From the user's point of view processing time is, for 
all practical purposes, the time from which his program is 
read into HASP to the time when his output has been 
physically produced-punched, filed, plotted and/ or 
printed. Within this process there are actually three levels 
of service: 

(1) The initial HASP queuing of the job, readying it 
for O.S.; a single server process in the precise sense 
of the word. 

(2) The O.S. processing of the job; a quasi single server 
process where the single-server is in fact hopping 
around among (usually) four different jobs. 

(3) The final HASP queueing and outputting of the 
job; again a true single-server process. 

The second level of service was used as a reference point 
and processing time was defined as the total time a job is 
under O.S. control, whether it is using the CPU or not. 
The total time a job is under control of O.S. consists of 
four time elements: 

(1) Waiting for core-this quantity is directly related to 
the region of core requested by a job and can be 
represented by a . R where a is a statistical measure 
of the relationship of core region requests to sec
onds waiting and R is the region size requested. 

(2) Direct CPU usage-this quantity can be measured 
in seconds by a control clock and is denoted by 
CPUSEC. 

(3) Executing I/O-this quantity includes the time 
needed for both waiting on an 110 queue and for 
actually executing 1/0. It is directly related to the 
number of I/O requests a job issues and can be 
represented by {3 . 10 where {3 is a statistical meas
ure of the relationship of the number of 1 I 0 
req uests to seconds waiting for and executing I/O, 
and 10 is the number if I/O requests issued. 

(4) Waiting on the ready queue-this quantity is heav
ily dependent on the current job configuration. 
Since the O.S. queue configuration a job encounters 
is unknown when the job enters HASP, this waiting 
time is not accounted for in the initial assignment. 

The total job processing time, PRT, may be expressed 
as follows: 

PRT=a· R+CPUSEC+{3· 10 (2) 

This number, calculated for each job, becomes an initial 
priority assignment (the lower the number the higher the 

job's priority). A summary of the dynamics of the pro
posed priority scheme is depicted in Figure 4. 

Dynamic priority assignment 

Once the initial static priority assignment has been 
determined for each job, a dynamic priority assignment 
algorithm is used to ensure that the checks and balances 
listed previously are achieved. The restraints which are 
enforced by the dynamic priority assignment are needed 
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before a job enters O.S., so the dynamic priority assign
ment is made while jobs are waiting on the HASP queue. 
The dynamic priority assignment, DPA, was imple
mented by measuring a job's waiting time at its current 
priority. The job's priority is increased if the time spent 
at the current level exceeds an upper limit established for 
that level. 

System balance 

At this point jobs are on the HASP queue, ordered by a 
dynamically adjusted PRT priority assignment, ready to 
be picked up by an initiator that is free. As soon as an 
initiator chooses a job, that job leaves HASP control and 
enters O.S. control. Jobs then move between the O.S. run 
and ready queues under the influence of the HASP dis
patcher discussed earlier. The HASP dispatcher guaran
tees the highest CPU use level possible, given ihaf the set 
of jobs has been initiated according to its DPA values. 
However, CPU and memory utilization may fall below 
some predetermined level because a particular set of initi
ated jobs simply does not maintain system balance. 3 

Therefore, one more dynamic assignment, SBM-System 
Balance Measure, was introduced. An SBM assignment 
enables jobs to take positions in the job queue independ
ently of their DPA. If the utilization of CPU and memory 
is below a predetermined level, the system is said to be 
out of balance, and the next job initiated for processing 
should be the one that best restores balance (where the 
one with the lowest DPA is chosen in case of ties). 

NODE VALIDATION 

The proposed priority assignment was then imple
mented on the simulator and statistics for jobs run on the 
ILLINET system were collected and used to determine 
the frequency distributions for the variables needed to 
create the simulation of the IBM 360;75. The model thus 
created was used for three distinct purposes. The first of 
these uses was as a tool to collect data not directly or eas
ily accessible from the actual ILLINET system. It was in 
this capacity that the simulator yielded a and {3 factors 
needed for the PRT formula. The second use of the model 
was as a tuning instrument for finding the best adjust
ments of values for the DPA and SBM. The third use of 
the model was for evaluating the advantages (or disad
vantages) of the new priority scheme by comparing var
ious system measures for identical job streams run under 
both the old and new schemes. (A fourth use of the model 
might also be included here. The convincing results that it 
provided became the deciding factor in obtaining from 
the system designers the money and personnel needed to 
implement and test the proposed priority scheme under 
real-time conditions.) 

Parameter determinations 

The first step in the proposed priority scheme was to 
assign an initial static priority to a job, based on a predic-
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tion of how much processing time that job required. The 
prediction was to be made from user estimates of the 
resources required by a job. In our previous discussion a 
formula was devised to make this initial priority assign
ment, based on user predictions of CPU seconds. kilo
bytes of core and number of I/O requests and on t~o sta
tistical measures-a and {3. Recall a is a measure of the 
relationship of core region request to seconds waiting for 
this request, and {3 is a measure of the relationship of the 
number of I/O requests to seconds waiting for and exe
cuting this I/O so that 

PRT=a . COREQ+CPUSEC +{3' [0 (3) 

Neither the a nor {3 measure was immediately available 
from the present monitoring data of the 360. The simula
tion was used in two different ways to determine these 
measures. The particular GPSS simulation being used, 
while allocating cote in the same way as the 360, does not 
set up all the I/O mechanisms actually used by the 360 
when a job issues a request. The simulator assigns some 
time factor for the request and links the job to a waiting
for-I/O chain for the duration of the assigned time. The 
approach used in obtaining the {3 factor was to create a 
job stream for which the total time in O.S. was known 
and for which all the components contributing to time in 
O.S. were known except for the 10 factor. Of the four 
factors that contribute to a job's time in O.S. only actual 
CPU time could be positively known. A job stream in 
which jobs did not have to wait for core and in which jobs 
essentially had the CPU to themselves when they were in 
a ready state was required. Thus the equation was 
reduced to: 

Time in O.S. = CPUSEC + (3 . [0 (4) 

where {3 was the only unknown. 
Using a light job stream (average arrival rate of one job 

every 40 seconds and a CPU utilization of 8 percent with 
3 percent of the jobs waiting for core) an exponential dis
tribution of wait times distributed around a mean of 54 
msec gave the closest match between the simulated and 
real O.S. time distributions. {3 was assigned the value 
0.038 seconds per I/O request, since in an exponential 
distribution 50 percent of the values assigned will be less 
than 69 percent of the mean. The simulation was then 
used with a heavier job stream (one job every 15 seconds) 
for the determination of a. Statistics were produced corre
lating the size of a step's core request and the number of 
milliseconds it had to wait to have the request filled. A 
least squares fit of the data yielded the relationship: 

WC=maxIO, . 7K2-100K! (5) 

where Wc is milliseconds of wait time and K is the num
ber of kilobytes core requested. The PRT, in its final 
form thus became: 

PRT=CPUSEC+38iO + max iO, . 7K2-100KI (6) 

where CPUSEC is the number of CPU milliseconds 
required, 10 is the number of I/O requests, and K is kil
obytes of core. 



126 National Computer Conference, 1973 

Dynamic tuning 

The values for the maximum waiting times for jobs 
with given PRTs were determined by putting the PRTs 
into a loose correspondence with the existing class divi
sions. A small job is guaranteed thirty minute turnaround 
time and a slightly larger job is guaranteed a turnaround 
of ninety minutes. Since the simulations generally were 
not set to simulate more than ninety minutes of real time, 
the guaranteed turnaround for very large jobs was set to 
an arbitrarily high value. Since test runs using the PRT 
were showing very satisfactory values for CPU and core 
utilization, about 96 percent and 73 percent respectively, 
a simple system balance measure was adopted. The SBM, 
System Balance Measure, adjustment checks CPU and 
memory use individually every two seconds and signals 
the initiator to choose as its next job the one that would 
best restore the utilization of the respective resource. The 
criterion for resource underuse is less than 30 percent 
utilization. The criterion for choosing a job to restore 
CPU use is the highest CPU /10 ratio. The criterion for 
choosing a job to restore memory use is the largest core 
request that fits into core at the time. 

NODE PERFORMANCE 

After the proposed priority scheme was developed, the 
simulation model was used to evaluate the node perform
ance under each of three conditions: 

(1) Using the existing magic number technique. 
(2) Using the static PRT technique. 
(3) Using the dynamically adjusted PRT (including 

the DPA and SBM measures). 

For each of these tests, an hour of real time was simulat
ed, with identical job streams entering the system. Table 
I illustrates the results of these tests including O.S. and 
turnaround times for the job streams, as well as CPU and 
core utilization values. 

In this evaluation we are particularly interested in 
three measures of system performance: 

(1) Turnaround time-system performance from the 
user's point of view. 

(2) System throughput-system performance from the 
system manager's point of view. 

(3) System balance-system performance from the 
device utilization point of view. 

In particular, we note the striking decrease in overall 
turnaround time for jobs processed under the proposed 
PRT scheduling algorithms. When the resource utilization 
is kept above some critical level and a maximum waiting 
time is specified, we observe that the turnaround time for 
the entire system can, in fact, increase. 

TABLE I -System Performance Measures for Three Priority Schemes 

PRESENT PRT PRT 
SCHEME (Static) (Dynamic) 

Mean HASP Time· 
Class A 100 11 28 

B 100 8 9 
C 100 98 17 
D 

A-D 100 12 18 

Mean O.S. Time· 
Class A 100 74 94 

B 100 54 69 
C 100 47 91 
D 

A-D 100 70 87 

Mean Turnaround Time· 
A-D 100 22 29 

% CPU Utilization 94 96 98 
% CORE Utilization 75 73 73 
Total Jobs Processed 482 560 515 

• Relative time units (times are normalized to 100 units for each priority 
class). 

NETWORK MODELING 

Having developed a simulation model for a single node, 
we now turn to the problem of constructing a model for a 
network of three such nodes as illustrated in Figure 2. 
Jobs entering the system come from three independent 
job streams with different arrival rates. At selected inter
vals, the relative "busyness" of each center is examined. 
Based on this information, load-leveling is performed 
between centers. 

The three node network model was written in IBM's 
GPSS (General Purpose Simulation System),4 and run on 
an IBM 360;75. Once the simulation language and com
puter were selected, the next step was to formulate a 
design philosophy. 

DESIGN PHILOSOPHY 

Simulated time unit 

A major decision regarding any simulation model is the 
length of the simulated time unit. A small time unit 
would be ideal for a computer system simulation. How
ever, other ramifications of this unit must be considered. 
It is desirable to simulate a relatively long real-time 
period in order to study the effect of any system modifi
cations. This would be extremely lengthy if too small a 
time unit were chosen, requiring an excessive amount of 
computer time. Also, depending on the level of simula
tion, the accuracy could actually deteriorate as a result of 
the fine division of time. These and other considerations 
led to the selection of 1 millisecond as the clock unit. 

Using a time unit of 1 millisecond immediately results 
in the problem of accounting for times less than 1 ms. Of 



course, these times could not be ignored, but at the same 
time, could not be counted as a full clock unit. A compro
mise approach was used-that of accumulating all of 
these small pieces into a sum total of "system overhead," 
to be run during initiation/termination.* 

System time chargeable to a job therefore, is executed 
during initiation/termination. Additionally, nonchargea
ble overhead is accounted for at each interrupt of a job in 
the CPU, and at the reordering of dispatching priorities of 
jobs on the ready queue. 

Entity representation 

Before proceeding to write a simulation program, care
ful consideration had to be given to the way in which 
actual system entities were to be represented by the simu
tator~---'ilre-propertiesof a given systemfe-ature--to-lJe-simu--
lated had to be defined and the GPSS function most 
closely matching the requirements selected. For example, 
representation of the HASP Spools was of primary impor
tance, and GPSS offers a number of possibilities
queues, chains, etc. The requirement that transactions be 
re-ordered at any time ruled out the queue representa
tion, and the optional automatic priority ordering possible 
with a user chain led to its selection. Chains also offered 
the best method of communication between nodes of the 
network since it is possible to scan the chains and remove 
any specific job. This is essential for the implementation 
of any load-leveling or system balancing algorithm. 

The structure of GPSS played another important part 
in determining the representation of jobs. A job could 
have been represented as a table (in the literal program
ming and not GPSS sense) that would contain the infor
mation about this job, and be referenced by all other 
transactions in the simulation. This would have led to a 
simulation within the simulation, an undesirable effect. 
Therefore, jobs are represented as transactions which 
keep all pertinent information in parameters. Unfortu
nately, this led to some rather complex timing and 
communication considerations which had to be resolved 
before the simulator could run. 

Timing and communication 

There is no direct method of communication between 
two transactions in GPSS, so whenever such contact was 

* It is impossible to measure accurately (within 10 percent) the amount 
of system time required for a given job. In a period of simulated time T, 
an error Es = TsNse will be accumulated, where Ns is the number of 
relatively short (~1 ms) amounts of system time needed, Ts is the total 
time spent on each of these short intervals, and e is the percentage error 
in the simulated time given to this operation. Similarly, the error for 
long intervals E, can be shown to be Tl~1I.[,e where T, and Ni are as above 
for some longer periods (~1000 ms). The simulation shows the ratio 
TsN,j T,N, is approximately 2, resulting in a greater error with the 
smaller time unit. 
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necessary, alternate procedures were devised. For exam
ple, at some points an initiator must know the size of core 
requested by a given job. The receiving transaction must 
put itself in a blocked state, while freeing the transaction 
from which the information is required. The information 
is then put in a savevalue or other temporary location by 
the sending transaction. After signalling the receiving 
transaction that the information is present, this transac
tion puts itself in a blocked state, and thus allows the 
receiving transaction to regain control of the simulator in 
order to pick up the contents of the savevalue. This proce
dure is non-trivial, since in an event-driven simulation, 
there may be any number of transactions ready to run 
when the sending transaction is blocked. The priorities of 
the ready transactions, and knowledge of the scheduling 
algorithms of the simulation language itself, must be 
anaIY:l~d to en,!;!!l~_GQ!rectr~~_\ll ts. 

During the simulation, the jobs waiting to be executed 
are not the only transactions waiting to use the simulated 
CPU. Transactions representing the scheduler and dis
patcher also require this facility. Therefore, we must 
ensure that only one transaction enters the CPU at any 
given time since this is not a multiprocessing environ
ment. Logic switches are set and facility usage tested by 
every transaction requesting the CPU. 

GPSS IMPLEMENTATION 

With this design philosophy, we proceed to outline the 
representation of the various HASP and O.S. entities at 
each node. The logical structure of the simulation process 
occurring at each node, shown in the flow charts of Fig
ures 5 through 8, is summarized in the following para
graphs.5 

Jobs 

Each job is represented by one GPSS transaction with 
parameters containing information such as creation time, 
number of milliseconds that will be executed, size of core 
requested, etc. The parameters are referenced throughout 
the simulation to keep a record of what was done, and 
indicate what the next step will be. In this way, by mov
ing the transaction from one section of the model to 
another, different stages of execution can be indicated. 

HASP and O.S. initiators 

There are two sets of initiators, one for HASP, and 
another for O.S., each requiring the same information 
about the jobs they are servicing. The HASP initiator for 
a specific job must be dormant while the O.S. initiator is 
running. Therefore, seven transactions are created, each 
of which represents either a HASP or O.S. initiator. Each 
transaction is created as a HASP initiator and put in an 
inactive state awaiting the arrival of jobs. After the initia-



128 National Computer Conference, 1973 

ASSIGN 
NUMBER, 
CLASS 

ASSIGN REQUESTS 
FOR EACH STEP 

(TIME, I la, CORE) 

ON 
SPOOL 

Figure 5-Job creation flow chart 

tor completes initiation of a job and places it on the O.S. 
queue, the HASP initiator becomes the O.S. initiator. 
This O.S. initiator flows through the core allocation and 
other resource allocation routines to request core space, 
and finally places the job on the ready queue to run. This 
initiator then becomes dormant waiting for the job (or job 
step) to complete. At each step completion, the initiator is 
awakened to request resource~ for the succeeding step. 
When the entire job completes, the initiator is returned to 
an inactive state where it again performs its HASP func
tion. \Vhenever an initiator or job is to be put in an inac-

tive state, it must be taken off the current events chain 
and placed on a chain specifically representing that wait 
condition. 

Queues 

All HASP and O.S. queues are represented by user 
chains as discussed earlier. In addition to facilitating 
ordering of objects on the queues, chains gather the 
proper waiting time and size statistics automatically. 

CPU-scheduler 

The scheduler has the responsibility of determining 
which task will next get control of the CPU. The schedu
ler is represented by one high priority transaction that 
unlinks jobs from the ready queue and lets them seize the 
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Figure 6-HASP and O,S. initiator flow chart 
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Figure 7b-CPU-Scheduler flow chart (cont.) 

facility corresponding to the CPU. While this job is 
advancing the clock in the facility, no other transactions 
are permitted to enter. Although GPSS automatically 
permits only one job in each facility, this is not sufficient 
protection against more than one transaction entering the 
CPU. Therefore, this condition is explicitly tested by all 
transactions requesting the CPU. Multiple transactions 
are allowed to enter blocks representing II 0 requests, and 
other system processes, since these functions in the real 
system are actually carried out in parallel. When the 
CPU is released, control is returned to the scheduler, 
which allocates the facility to the next job on the ready 
queue. 

Dispatching priority assignment 

The HASP dispatching priority assignment is carried 
out by one final transaction. Every 2 seconds this transac-
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tion is given control of the simulator, and proceeds to re
assign the dispatching priority of the jobs on the ready 
queue and those jobs currently issuing I/O requests. The 
job in control of the CPU (if any) is interrupted, and 
placed back on the ready queue according to its new 
priority. 

When all of the re-ordering is complete, the scheduler is 
freed, and the dispatcher is made dormant for another 
two seconds. 

NETWORK PERFORMANCE 

After having tested the simulation model, a hypotheti
cal network consisting of three nodes with independent 
job streams and arrival rates, was investigated. Network 
balance was maintained using a load-leveling algorithm 
on the network that periodically (about five times the 
arrival rate of jobs at the busiest center) examined the 
queues at each center. The number of jobs in the queue of 
the busiest center was compared to the number of jobs 
in the queue of the least busy center, and this ratio used 
as the percentage of jobs to be sent from the busiest cen
ter to the lightest center. This distributed the number of 
jobs in the network so that each center would be utilized 
to the maximum possible degree. Naturally, the users 
submitting jobs to the highest center experienced an in
crease in turnaround time, but this is outweighed by 
the increased throughput for the network. 

To demonstrate how the simulator could be used to 
evaluate loadleveling or other network balancing algo
rithms, two simulation runs were made: the first having 
no communication between centers, and the second with 
the load-leveling algorithms implemented as described 
above. Performance data for the two networks, evaluated 
according to the criteria outlined earlier, is illustrated in 
Table II. 

TABLE II -System Perfonnance Measures for a Hypothetical Network 

Without With 
Load Leveling Load Leveling 

Turnaround Time* 
Center 1 99 89 
Center 2 100 80 
Center 3 44 95 

Network 90 87 

A verage Queue Length 
Center 1 125 42 
Center 2 4 25 
Center 3 "'0 23 

Network 43 30 

CPU Utilization 
Center 1 .985 .982 
Center 2 .902 .952 
Center 3 .518 .931 

Network .802 .955 

Core Utilization 
Center 1 .685 .713 
Center 2 .698 .684 
Center 3 .326 .668 

Network .569 .688 

System Throughput** 
Center 1 330 256 
Center 2 196 256 
Center 3 98 234 

Network 624 746 

* Relative time units. 
** Jobs per hour. 



CONCLUSIONS 

NETWORK SIMULATION RESULTS 

Validation 

Our simulation model for a network center is a valid 
tool for measuring and evaluating network performance 
only if we accurately simulate the intercommunication 
among the network centers and the control of jobs within 
each center. Therefore, an essential goal of our simulation 
effort was to verify the accuracy of representing the inter
action among the simulated entities of ILLINET. Fre
quently, spot checks were made and tests were designed 
to ensure that the proper correspondence existed between 
the real and simulated environments. Hence, the evalua
tion measurements taken, effectively predict the expected 
system performance of future networks. 

System evaluation 

The GPSS simulation of the IBM 360;75 was used to 
develop and test a new priority scheme suggested as an 
alternative to the present system used on the 360. An ini
tial static priority assignment was determined which uses 
user estimates of CPU, I/O requests and core required by 
a job. Subsequent priority adjustments are made to 
reward a job for its long wait in the system or to restore 
some minimum level of utilization of the CPU and core. 
Test runs of the new priority scheme on the simulator 
suggest very substantial improvements in terms of min
imizing turnaround time and utilizing system resources. 
The emphasis is on evaluating scheduling disciplines 
since the only degree of freedom open to a network man
ager to affect system congestion is a choice of scheduling 
algorithms with priority assignments. (A network man
ager can seldom affect the arrival rate, service rate or the 
network configuration on a short term basis.) 

The simulation was then extended to a three node 
network to study the effect of implementing load-leveling 
and other network balancing algorithms. Simulation runs 
show an improved turnaround time for heavily loaded 
centers and at the same time a larger increase in total 
throughput and utilization of network resources. 

THE ROAD AHEAD 

Until recently, efforts to measure computer system 
performance have centered on the measurement of 
resource (including processor) idle time. A major problem 
with this philosophy is that it assumes that all tasks are 
of roughly equal value to the user and, hence, to the oper
ation of the system. 
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As an alternative to the methods used in the past, we 
have proposed a priority assignment technique designed 
to represent the worth of tasks in the system. 6 We present 
the hypothesis that tasks requiring equivalent use of 
resources are not necessarily of equivalent worth to the 
user with respect to time. We would allow the option for 
the user to specify a "deadline" after which the value of 
his task would decrease, at a rate which he can specify, to 
a system determined minimum. Additionally, the user 
can exercise control over the processing of his task by 
specifying its reward/ cost ratio which, in turn, deter
mines the importance the installation attaches to his 
requests. The increased flexibility to the user in specify
ing rewards for meeting deadlines yields increased reward 
to the center. The most important innovation in this 
approach is that it allows a computing installation to 
maximize reward for the use of resources while allowing 
the user to specify deadlines for his results. The demand 
by users upon the resources of a computing installation is 
translated into rewards for the center. Thus, the comput
ing installation becomes cost effective, since, for a given 
interval of time, the installation can process those tasks 
which return the maximum reward. 

Using our network simulator to demonstrate the effi
cacy of this technique is the next step in the long road to 
achieving economic viability in network computers. 
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ACCNET-A corporate computer network 

by MICHAEL L. COLEMAN 

Aluminum Company of America 
Pittsburgh, Pennsylvania 

I~TRODUCTION 

The installation of a Digital Equipment Corporation DEC 
ro, in close proximity to an existing IBM 370/165, initi
ated an investigation into the techniques of supporting 
communication between the two machines. The method 
chosen, use a mini -computer as an interface, suggested 
the possibility of broadening the investigation into a study 
of computer networks-the linking of several large com
puter systems by means of interconnected mini-comput
ers. This paper explains the concept of a network and 
gives examples of existing networks. It discusses the justi
fications for a corporate computer network, outlines a 
proposed stage by stage development, and analyzes and 
proposes solutions for several of the problems inherent in 
such a network. These include: software and hardware 
interfaces, movement of files between dissimilar ma
chines, and file security. 

WHAT IS A NETWORK? 

A computer network is defined to be "an intercon
nected set of dependent or independent computer systems 
which communicate with each other in order to share 
certain resources such as programs or data-and/ or for 
load sharing and reliability reasons."19 In a university or 
a research environment, the network might consist of 
interconnected time-sharing computers with a design goal 
of providing efficient access to large CPU s by a user at a 
terminal. In a commercial environment a network would 
consist primarily of interconnected batch processing 
machines with a goal of efficiently processing a large 
number of programs on a production basis. One example 
of the use of a network in a commercial environment 
would be preparing a program deck on one computer, 
transmitting it to another computer for processing, and 
transmitting the results back to the first computer for 
output on a printer. 

OTHER NETWORKS 

Functioning networks have been in existence for several 
years.4.19.36 These include: CYBERNET, a large commer
cial network consisting of interconnected Control Data 
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Corporation machines;38 the Distributed Computer Sys
tem (DCS) at the University of California at Irvine; IS the 
Michigan Educational Research Information Triad, Inc. 
(MERIT), a joint venture' between Michigan State U ni
versity, Wayne State University, and the University of 
Michigan;2.12.30 the OCTOPUS System at the Lawrence 
Berkeley Laboratory;41 the Triangle Universities Compu
tation Center (TUCC) Network, a joint undertaking of 
the Duke, North Carolina State, and North Carolina 
Universities;,'4 ad the TSS Network, consisting of inter
connected IBM 360/67s.39.47.53 But perhaps the most 
sophisticated network in existence today is the one cre
ated by the Advanced Research Projects Agency (ARPA), 
referred to as the ARPA network.9 )''>,20.22.28.33.34.40.42.44.46 The 
ARPA network is designed to interconnect a number of 
various large time-shared computers (called Hosts) so 
that a user can access and run a program on a distant 
computer through a terminal connected to his local 
computer. It is set up as a message service where any 
computer can submit a message destined for another 
computer and be sure it will be delivered promptly and 
correctly. A conversation between two computers has 
messages going back and forth similar to the types of 
messages between a user console and a computer on a 
time-shared system. Each Host is connected to the net
work by a mini-computer called an Interface Message 
Processor (IMP). A message is passed from a Host to its 
IMP, then from IMP to IMP until it arrives at the IMP 
serving the distant Host who passes it to its Host. Relia
bility has been achieved by efficient error checking of 
each message and each message can be routed along two 
physically separate paths to protect against total line 
failures. 

The ARPA network was designed to give an end-to-end 
transmission delay of less than half a second. Design 
estimates were that the average traffic between each pair 
of Hosts on the network would be .5 to 2 kilobits per sec
ond with a variation between 0 and 10 kilo bits per second 
and the total traffic on the network would be between 200 
and 800 kilobits per second for a 20 IMP network. 20 To 
handle this load, the IMPs were interconnected by leased 
50KB lines. 

For the initial configuration of the ARPA network, 
communication circuits cost $49,000 per node per year 
and the network supports an average traffic of 17 kilobits 
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per node. Each IMP costs about $45,000 and the cost of 
the interface hardware is an additional $10,000 to 
$15,000.23 The IMPs are ruggedized and are expected to 
have a mean time between failures of at least 10,000 
hours-less than one failure per year. They have no mass 
storage devices and thus provide no long term message 
storage or message accounting. This results in lower cost, 
less down time, and greater throughput performance.46 

TYPES OF NETWORKS 

There are three major types of networks: Centralized, 
Distributed, and Mixed. 19 

A Centralized network is often called a "Star" network 
because the various machines are interconnected through 
a central unit. A network of this type either requires that 
the capabilities of the central unit far surpass those of the 
peripheral units or it requires that the central unit does 
little more than switch the various messages between the 
other units. The major disadvantage of a network of this 
type is the sensitivity of the network to failures in the 
central unit, i.e., whenever the central unit fails, no 
communication can occur. The most common example of 
this type of network is one consisting of a single CPU 
linked to several remote batch terminals. 

A Distributed network has no "master" unit. Rather, 
the responsibility for communication is shared among the 
members; a message may pass through several members 
of the network before reaching its final destination. For 
reliability each unit in the network may be connected to 
at least two other units so that communication may con
tinue on alternate paths if a line between two units is out. 
Even if an entire unit is disabled, unaffected members 
can continue to operate and, as long as an operable link 
remains, some communication can still occur. The ARPA 
network is an example of a Distributed network. 

A Mixed network is basically a distributed network 
with attached remote processors (in most cases, batch 
terminals) providing network access to certain locations 
not needing the capability of an entire locally operated 
computer system. These remote locations are then 
dependent on the availability of various central CPUs in 
order to communicate with other locations. 

Within a network, two types of message switching may 
occur: circuit switching and packet switching. Circuit 
switching is defined as a technique of establishing a 
complete path between two parties for as long as they 
wish to communicate and is comparable to the telephone 
network. Packet switching is breaking the communication 
into small messages or packets, attaching to each packet 
of information its source, destination, and identification, 
and sending each of these packets off independently to 
find its way to the destination. In circuit switching, all 
conflict and allocation of resources must be resolved 
before the circuit can be established thereby permitting 
the traffic to flow with no conflict. In packet switching, 
there is no dedication of resources and conflict resolution 
occurs during the actual flow. This may result in some" 
what uneven delays being encountered by the traffic. F 

WHY A NETWORK? 

By examining the general characteristics of a network 
in the light of a corporate environment, specific capabili
ties which provide justification for the establishment of a 
corporate computer network can be itemized.25 These are: 

load balancing 
avoidance of data duplication 
avoidance of software duplication 
increased flexibility 
simplification of file backup 
reduction of communication costs 
ability to combine facilities 
simplification of conversion to remote batch terminal 
enhancement of file security 

Load balancing 

If a network has several similar machines among its 
members, load balancing may be achieved by running a 
particular program on the machine with the lightest load. 
This is especially useful for program testing, e.g., a 
COBOL compilation could be done on any IBM machine 
in the network and achieve identical results. Additionally, 
if duplicate copies of production software were main
tained, programs could be run on various machines of the 
network depending on observed loads. 

Avoidance of data duplication 

In a network, it is possible to access data stored on one 
machine from a program executing on another machine. 
This avoids costly duplication of various files that would 
be used at various locations within the corporation. 

Avoidance of software duplication 

Executing programs on a remote CPU with data sup
plied from a local CPU may, in many cases, avoid costly 
software duplication on dissimilar machines. For exam
ple, a sophisticated mathematical programming system is 
in existence for the IBM 370. With a network, a user 
could conversationally create the input data on a DEC 10 
and cause it to be executed on the 370. Without a net
work, the user would either have to use a more limited 
program, travel to the 370 site, or modify the system to 
run on his own computer. 

Flexibility 

Without a network each computer center in the corpo
ration is forced to re-create all the software and data files 
it wishes to utilize. In many cases, this involves complete 
reprogramming of software or reformatting of the data 
files. This duplication is extremely costly and has led to 
considerable pressure for the use of identical hardware 



and software systems within the corporation. With a 
successful network, this problem is drastically reduced by 
allowing more flexibility in the choice of components for 
the system. 

Simplification of file backup 

In a network, file backup can be achieved automati
cally by causing the programs which update the file to 
create a duplicate record to be transmitted to a remote 
machine where they could be applied to a copy of the 
data base or stacked on a tape for batch update. This 
would eliminate the tedious procedure of manually trans
porting data from one machine to another; the resulting 
inherent delay in the updates would be eliminated. 11 

Reduction of communication costs 

The substitution of a high bandwidth channel between 
two separate locations for several low bandwidth channels 
can, in certain cases, reduce communication costs signifi
cantly. 

A bility to combine facilities 

With a network, it is possible to combine the facilities 
found on different machines and achieve a system with 
more capability than the separate components have indi
vidually. For example, we could have efficient human 
interaction on one machine combined with a computa
tional ability of a second machine combined with the 
capability of a third machine to handle massive data 
bases. 

Simplification of conversion 

Converting a site from its own computer to a remote 
batch terminal could be simplified by linking the com
puter at the site into the network during the conversion. 

Enhancement of file security 

By causing all references to files which are accessible 
from the network to go through a standard procedure, 
advanced file security at a higher level than is currently 
provided by existing operating systems may be achieved. 
This will allow controlled access to records at the element 
level rather than at the file level. 

EXISTING SITUATION 

The existing configuration of the DEC 10 installation 
provides a 300 (to be extended to 1200) baud link to the 
370 via a COMTEN/60, a mini-computer based system 
which provides store-and-forward message switching 
capability for the corporate teletype network. This link is 
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adequate to support the immediate needs of a Sales Order 
Entry System but is totally inadequate for the general 
capability of making the computational power and the 
massive file storage of the 370 available to a usei on the 
DEC 10. 

Five DATA 100 terminals provide remote batch service 
into the 370 for users at various locations including three 
plants and a research center. Most of the other plants 
have medium scale computer systems to support their 
local data processing needs. All make extensive use of 
process control mini-computers and two have UNIVAC 
494 systems which can handle both real-time control and 
batch data processing. 

Approximately 25 interactive CRTs scattered through
out various sales offices across the country have recently 
been installed to upgrade our Sales Order Entry System. 
Each terminal is connected to the DEC 10 on a dial-up 
300 baud line. 

PROPOSED SOLUTION 

The most obvious solution to the problem of 370-DEC 
10 communication would be to connect the DEC 10 to the 
370 in a "back-to-back" fashion. To provide an upward 
flexibility, however, it is proposed that rather than con
necting the machines in that way, they will be connected 
using a mini-computer as an interface. By designing the 
system which controls their interaction with a network 
approach, additional communication links may be 
obtained with a relatively small software investment. For 
example, if in the future, our research center obtains a 
large computer that they wish to incorporate into the 
communications process of the other two, an additional 
mini-computer would be placed there and connected via a 
communication line to the other. 

This approach has several advantages. First, by going 
through a mini-computer, each of the two interfaces can 
be very carefully debugged in isolation and thus not affect 
the other machine. Second, once an IBM interface to the 
mini-computer is designed, one can connect any IBM 
machine into the network without rewriting any of the 
other interfaces. We would not have to write an IBM to 
UNIVAC interface, an IBM to CDC interface, an IBM to 
Honeywell interface, etc. Third, the only change neces
sary in the existing portion of the network, as the network 
expands, would be to inform the mini-computers of the 
presence of the other machines. 

System description 

In order to effectively describe a system as potentially 
complex as this one, we shall make use of techniques 
being developed under the classification of "Structured 
Programming."17.37.48,55,56 The system will be broken down 
into various "levels of abstraction," each level being 
unaware of the existence of those above it, but being able 
to use the functions of lower levels to perform tasks and 
supply information. When a system is specified in terms 
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of levels, a clear idea of the operation of the system may 
be obtained by examining each level, starting from the 
top, and continuing down until further detail becomes 
unimportant for the purposes of the specification. 

Let us now examine the first few levels of a portion of 
the proposed system. The top-most level is level 6, under 
that is level 5, and so on. We shall look at what occurs in 
the case of a user at a terminal on the DEC 10 submitting 
a program to a distant IBM 370 under HASP. 

• Level 6 

On level 6 is found user and program processes. All 
interaction with the user or with a program written 
by the user occurs on this level. In fact, after this 
level is completely specified, the User Manual for the 
system can be written. In our example, an examina
tion of what is happening would show the following 
<;;teps: 

User creates the input file and a file for the 
output; 

User logs onto the network specifying his ID 
number; 

User types "SUBMIT" command specifying the 
input file, the output file, and the Host on which 
the program is to be run. This submit command 
calls on the HASP Submit-Receive function on 
level 5; 

User waits a brief period until he gets an "OK" 
from the terminal signifying that the program 
has been submitted. He is then free to either 
perform other actions or to sign off of the net
work; 

At some later time the user receives an "output 
ready" message on his terminal; 

User can now examine his output file. 

• Level 5 

On level 5 is found the HASP Submit-Receive 
function, HSR, and functions to perform network 
access control, file access control, and remote pro
gram contr'ol. Let us examine the actions of the HSR 
function applied to our example: 

The HSR function obtains the name of the 
HASP-READER process of the specified Host. 
It then calls on a level 4 function to pass the 
input file to that process. When the level 4 func
tion which controls process-to-process communi
cation is completed, it will return a value corre
sponding to the job number that HASP has 
as:;igned; 

The HSR function sends an "OK" to the user. It 
then obtains the name of the HASP-WRITER 
process on the specified Host and calls on a level 
4 to pass the job number and to specify the 
output file to the HASP-WRITER. Control 
returns when the output file is complete; 

The HSR function then sends an "OUTPUT 
READY" message to the user . 

• Level 4 

On level 4 is found the functions which control the 
file descriptors, file access, and process-to-process 
communication. Examining the actions of the proc
ess-to-process communication function, PPC, applied 
to our example, we find: 

The PPC function converts the name of the 
process into a "well-known port" number and 
then establishes a logical link to the desired 
process; 

It then formulates a message containing the 
information to be passed and uses a level 3 func
tion to transmit the message; 

It then receives a message in reply (which con
tains the job number in one case, and the output, 
in another). It passes this up to level 5 after 
destroying the links. 

• Level 3 

Level 3 contains, among others, the function which 
transfers a message from one Host to another. To do 
this it: 

Takes the message, breaks it into pages, and 
calls a level 2 function to transmit each page; 

When the last page has been transmitted, it waits 
for an acknowledgment; 

If the acknowledgment indicates that a reply is 
being sent, it receives each page of the reply and 
passes up to level 4. 

• Level 2 

On level 2 IS handled the passing of pages. The 
steps are: 

The page is transferred from the Host to its 
IMP; 

The page is then translated into the standard 
neti'\'ork representation and broken into packet,,; 



A level 1 function IS called to transmit each 
packet. 

• Levell 

At level 1 is handled the details of transmitting a 
packet from IMP to IMP. This includes retransmis
sion in case of errors. 

Stages of development 

In order to allow the concept of a corporate computer 
network to be evaluated at minimum expense, it is desira
ble to break the development into discrete stages, each 
stage building on the hardware and software of the pre
vious stage to add additional capability. 

• Stage 1 

This first stage would connect the DEC 10 to the 
local IBM 370/165 by using a single mini-computer. 
It would allow a user on the DEC 10 to conversation
ally build a program on a terminal and submit it to 
the 370 to be run under HASP. His output would be 
printed either at the 370, at the DEC 10, or at his 
terminal. This stage would also support the transfer 
of files consisting solely of character data to be trans
ferred from one machine to the other. 

The mini-computer hardware required for the 
stage would include: one CPU with 16-24K of mem
ory, power monitor and restart, autoload, and tele
type; two interfaces, one to the 370 and one to the 
DEC 10; a real time clock; and a cabinet. The 
approximate purchase price would be $25,000 to 
$35,000 with a monthly maintenance cost of ap
proximately $300. In addition, a disk and controller 
should be rented for program development. This cost 
is approximately $500 per month and would be car
ried for the remaining stages. 

• Stage 2 

The second stage would remove the restriction on 
file transfer and allow files consisting of any type of 
data to be accessed from the other machine. At this 
stage, strict security controls would be integrated into 
the system. 

The additional hardware required for this stage 
would include an additional CPU with 8K of memory 
and adaptors to interconnect the two CPUs. The 
approximate purchase cost would be $9,000-$12,000, 
with a monthly maintenance cost of approximately 
$75. 

• Stage 3 

This stage would expand the network to include 
computers at other locations. Additional hardware at 
the original site would include one synchronous 
communication controller for each outgoing line at a 
cost of $2,000-S2,500 with a maintenance cost of $25, 
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and appropriate modems. Total cost for the original 
site, assuming two outgoing line~, would be between 
$36,000 and $49,500, excluding disk rental, modems, 
and communication lines. 

• Stage 4 

This stage could be developed in parallel with stage 
3. It would add the capability for a user on a termi
nal attached to one machine to submit and interact 
with a program executing on the other machine. )Jo 
additional hardware would be required. 

• Stage 5 

This stage consists of the design and implementa
tion of automatic back-up procedures. Most of the 
preliminary analysis can be done in parallel with 
stages 2-4. These procedures would automatically 
create duplicate transactions of updates to critical 
files and have them routed to an alternate site to be 
applied to the back-up data base. ~o additional 
hardware is required. 

HANDLING OF FILES IN A NET\VORK 

The handling of files in a non-homogeneous, distributed 
network poses several complex problems. These include 
control of access and transfer of information between 
dissimilar machines. 

Control of access 

That any system supporting multiple, simultaneous use 
of shared resources requires some sort of flexible, easy to 
use method of controlling access to those resources seems 
obvious to everyone (with the possible exception of the 
designers of IBM's OS/360), the main problem being how 
to provide the control at a reasonable cost. Restricting 
ourselves just to file access control, we see many potential 
methods with varying degrees of security and varying 
costS.JO· 13

,14,31.43 All provide control at the file level, some at 
the record level, and others at the element level. By 
designing our system with a Structured Programming 
approach, it should be possible to modify the method we 
choose, upgrading or downgrading the protection until a 
cost-benefit balance is reached. 

Most designers of file access control systems have 
mentioned encryption of the data-we shall be no differ
ent. Apparently finding the cost prohibitive, they have 
failed to include this capability in their final product. In 
the proposed network, however, translation between the 
data representations of dissimiliar machines will be per
formed (see below), so the added cost of transforming 
from a "scrambled" to an "unscrambled" form will be 
small. 

Each file access control system is based on a method 
which associates with each user-file pair a set of descrip
tors listing the rights or privileges granted to that user for 
that file (e.g., Read Access, Write Access, Transfer of 
Read Access to another user). Conceptualized as entries 
in a matrix, these descriptors are almost never stored as 
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such due to its sparceness. Rather, they are stored as lists, 
either attached to each element of a list of users or 
attached to each element of a list of files. 

Assuming that we have a system for controlling file 
access, one design question for a distributed network is 
where to store the file access descriptors? For example, let 
us look at a network with three machines: A, B, and C, 
and a file, F, located at A but created by a user at B. To 
be accessible from the other machines, the file must be 
known by them and therefore, each machine must have a 
file descriptor stating that file F is located at A. If we also 
distribute the file access descriptors, an unauthorized 
user at C could gain access to the file by obtaining control 
of his machine and modifying the file access descriptors. 
Hence, each file access descriptor should be stored at the 
same location as the file it protects. 

Transfer of information 

The complexity of transferring information between 
two machines is increased by an order of magnitude when 
dissimilar machines are involved.1.7·s Using ASCII as the 
standard network code allows the interchange of files 
containing character data but does not address the prob
lem of different representations of numerical data, e.g., 
packed decimal, short floating point, long floating point, 
etc. 

Two alternatives present themselves: either allow each 
machine to translate from the representation of every 
other machine to its own or use a standard network repre
sentation and have each machine translate between its 
own and the network's. The first is attractive when only a 
few different types of machines will be allowed on the 
network (If there are N different types of machines, then 
N(N-l) translation routines might have to be written). 
The second alternative requires more effort in developing 
the standard network representation, but is really the 
only choice when the number of different types is larger 
than three or four. 

Another problem is the large amount of translation that 
must take place. It may not be desirable to place this 
CPU laden task on a time-sharing machine for fear of 
degrading response time so the solution seems to lie in 
executing the translation within the IMPs. If performing 
translation interferes with the ability of the IMP to per
form communication, an additional CPU can be attached 
to each in order to perform this task. With hardware costs 
decreasing 50 percent every two or three years, this seems 
an attractive solution. 

INTERFACES 

IAfJD--JIost interface 

The ARPA network is optimized toward supporting 
terminal interaction. 28 A commercial network must be 
optimized toward maximizing throughput of lengthy data 
files which produces large peak loads requiring high 

bandwidth channels between each Host and its IMP. In 
order to allow an IMP to communicate with its Host with 
a minimum of CPU intervention by either party, data 
must be transferred directly between the memory of the 
IMP and the memory of the Host. This can be achieved 
by connecting to an equivalent of the memory bus of the 
DEC 10 or multiplexor channel of the 370. With this type 
of interconnection, it will be necessary to configure the 
software so that each member of the communicating 
partnership appears to the other member as if it were a 
peripheral device of some sort, presumably a high-speed 
tape drive. Communication, therefore, would take place 
by one member issuing a READ while the other member 
simultaneously issues a WRITE. 24 

IAfJD-IAfJD interface 

The IMPs will be linked by standard synchronous 
communication interfaces. Initial plans call for 40.8KB 
full duplex leased lines, but 19.2KB lines could also be 
used. A Cyclical Redundancy Check will provide detec
tion of errors and cause the offending packet to be 
retransmitted. 

Software interfaces 

One of the main reasons for using mini-computers 
between the Hosts is to insure that the number of inter
face programs which must be written only grows linearly 
with the number of different types of Hosts. The effort in 
writing subsequent versions of the IMP-Host interface 
can be minimized by at least two methods: 

1. Put as much of the system software as possible into 
the IMPs. Make use of sophisticated architecture3 

(e.g., multi-processor mini-computers, read-only 
memory) to obtain the power required. 

2. For that portion of the system which resides in the 
Host, write the software using a standard, high-level 
language (e.g., FORTRAN) for as much of the code 
as possible. 
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A system of APL functions to study computer networks 

by T. D. FRIEDMAN 

IBM Research Laboratory 
San Jose, California 

A collrction of programs and procrdural ('onvrntions will 
be dC'scribrd which wrrr devPloppd as part of a largpr study 
of modf'ling and dpsign of eomputpr nptworks. This work 
was condlli'trd undpr Xavy Contract XOO14-72wC-0299, and 
was based on approaches developed by Dr. R. G. Casry, to 
whom I am indebtpd for his hrlpful suggrstions and rn
couragement. The programs arp written on the APL ter
minal system. For proper understanding of the programming 
language uspd, it is drsirable' for thp rf'adpr to refe'r to Ref
erener 1. 

Thpsp programs make' it possible to crpatr, modify and 
evaluatp graph theorptic rf'presentations of computpr npt
works in minutes whilp working at t he terminal. 

COXCEPTUAL FRA:\IEWORK 

The ovprall concpptual framr\york for rrprpsent.ing net.
works \vill first bp discusspd. 

We assume a spt of fixpd nodps locatpd at gpographically 
dispprspd locations, somp of which contain copies of a given 
data file. Cprtain nodes are interconnrct.ed by transmission 
links. Togrthpr, t.he nodrs and links constitutp a particular 
network configuration. Each node is assignrd a unique 
idrnt.ification number, and the links are likewise idrnt.ified 
by link numbers. An arbitrary configuration of an n-node 
ident.ifird by link numbers. An arbitrary configuration of 
an n-node network is represented by a link list, which con
sists of an m-by-3 array of the m link numbrrs, rarh of 
\yhich is followrd by the identification of thp t,,"O nodes it. 
connects. For example, a six-node network with all possible 
links providpd would be represented by the following link 
list: 

1 1 2 
2 1 3 
3 1 4 
4 1 ,j 

,j 6 
6 2 3 
'7 2 4 I 

8 2 5 
9 Li 6 

10 3 4 
11 3 5 
12 3 6 

141 

13 
14 
I.j 

4 
4 
5 

,j 

6 
6 

This nptwork is depicted sehpmatieally in Figurr 1. (Xote 
that. paLh link is rpprpsentpd in thp .figure by thr least sig
nificant digit of its idpntification numbrr.) 

Any othrr configuration of a six-node network is npces
sarily a subset of thr prpceding nC'twork. Onp such subset 
is thp follO\ying configuration, representing the network 
shown in Figure 2. 

1 
4 

10 
14 
15 

1 
1 
3 
4 
5 

2 
5 
4 
6 
6 

For certain operations, it is useful to rpprf'sent a network 
by its connection matri.r, in which the ith element of the jth 
row idpntifies the link connecting node i to j. If no link is 
prf'sent, or if i = j, then the element is zero. 

Thus, the fully connf'cted six-node nehvork described 
above would be characterized by the connection matrix: 

0 1 2 3 4 5 
1 0 6 7 8 9 
2 6 0 10 11 12 
3 7 10 0 13 14 
4 8 11 13 0 15 
5 9 12 14 15 0 

Likf'wise, the configuration represented in Figure 2 would 
be characterized by the conneetion matrix 

0 1 0 0 4 0 
1 0 0 0 0 0 
0 0 0 10 0 0 
0 0 10 0 0 14 
4 0 0 0 0 15 
0 0 0 14 15 0 

BASIC NETWORK FUXCTIOXS 

In this section, functions for modeling and evaluating 
the networks are described. 
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Figure 1 

}V eiwork topology 

An APL function, FORMC:VI, creates the connection 
matrix as output when given the link list and the node 
count. 

The function OKC)'1 determines "\vhether a network 
configuration connects all nodes together. It is possible to 
determine whether all nodes are connected by calculating 
the inner product of a Boolean form of the connection ma
trix, repeated n-l times for an n-node network. However, 
the OKC}1 function carries out this determination with 
somewhat less processing, by performing n-l successive 
calculations of 

C:VIS~C:YIS V V /(GMS V . ;\BC:YI)/BC:VI, 

where BC:\! is a Boolean form of the connection matrix, 
GM, i.e., BC:Jl[I ;J] = 1 if CM[I ;J];;cO or if I =J; BC)'l 
[I ;J] = 0 otherwise; and C:VIS is initially defined as BC:\P. 
OKCM determines that all nodes are connected if and only 
if at the conclusion C}IS consists only of 1 'so 

The function U~ION finds the union of two link lists, 
and presents the link list of the result in ascending order. 
For example, if we define LIXKSI as 

2 1 3 
4 1 5 
6 2 3 
7 2 4 

10 3 4 
11 3 5 
1.5 5 6 

and LIXKS2 as 

1 1 2 
4 1 .5 

10 3 4 
14 4 () 

I.!) 5 6 

then, LINKSI UNION LINKS2 results in: 

1 
2 
4 
6 
7 

10 
11 
14 
15 

1 
1 
1 
2 
2 
3 
3 
4 
5 

2 
3 
5 
3 
4 
4 
5 
6 
6 

The CSP program searches for the shortest path spanning 
two nodes in a given network. It operates by first seeking a 
direct link between the nodes if one exists. If one does not, 
it follows each link in turn which emanates from the first 
node, and calls itself recursively to see if the second node can 
eventually be reached. A control parameter C is needed to 
limit the depth of recursion so as to avoid infinite regress. 

SPAN is a function to call CSP without requiring the 
user to specify the recursion control parameter, C. SPAN 
operates by calling CSP with the control parameter set to 
the node count minus 1, since at most n-l links are required 
for any path in an n-node network. 

CSP and SPAN return only one set of links spanning the 
two given nodes, and this set consists of the fewest number 
of links possible. However, more than one such set of that 
number of links may be possible. The function MCSP 
operates exactly like CSP, except it finds all sets of the 
minimum number of links which span the two nodes. ~ISP AN 
corresponds to SPAN by allowing the user to omit the con
trol terms, but calls ~ICSP rather than CSP. 

X etwork traffic 

We assume that the average amount of query and update 
activity emanating from ('ach node to each file is known. 
This information is provided in a table called FILEACT, 
i.e., file activity. 

(1) 44444 44 4 4 4"4 44444 4 4 44 44" 4 4" 44 44 44 44 44 44 44 44 44 44 44 44 4 4 "4 4" 44 44 ( 5 ) 
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On the basis of these data, the activity on each link of the 
network can be calculated when the location of the files is 
specified. The function LCACT calculates the link update 
activity; using CSP to find the sets of links between each 
node and each copy of the file. It then adds the appropriate 
update activity from the FILEACT table to the total trans
mission activity of each link. 

The function LQACT derives the query activity on each 
link using a similar approach. However, a query from a 
node need only be transmitted to the nearest copy of the 
file. A function, PATH, finds the set of links connecting a 
node to the nearest copy of a file located at one or more 
nodes. LQACT uses PATH to select the links affected, then 
accumulates the total query activity on all links. 

LACT finds the total activity on all links as the sum of 
LUACT and LQACT. 

In the experiments run to date, five separate transmission 
capaCIties were available for each link, namely,' 100; 200, 
400, 1000 and 2000 kilo bits per second. It is most economic 
to employ the lowest capacity line needed to handle the 
activity of each link. The function ~IINCAP accomplishes 
this goal by examining the activity of all links as determined 
by LUACT and LQACT, and it then calculates the minimal 
capacity needed in each link. If the activity of any link ex
ceeds the maximal capacity possible, this is noted in an 
alarm. 

Cost calculations 

It is assumed that the costs are known for maintaining 
each possible link at each possible capacity in the network. 
This information is kept in TARTABLE, i.e., the tarriff 
table. In addition, the costs to maintain any file at any node 
are given in the F~IAIXT table. 

By reference to the TARTABLE, the function FOR::\IL
TAR determines the monthly cost of all links, called L TAR. 
Using LTAR and the FJIAIKT table, the function TARRIF 
calculates the monthly cost of a configuration when given 
the nodes at which the files are located. 

A function, GETTARRIF, derives this same cost data 
starting only with the link list and the locations of the 
files. In turn, it calls FOR::\ICJI to develop the connection 
matrix, then it calls LQACT and LUACT to determine 
activity on all links, then ::\II~CAP to determine minimal 
link capacities, then FOR::\ICTAR to derive LTAR, and 
finally it calls T ARRIF to determine the total cost. 

An abbreviated version of the latter function, called 
GETLTF, derives the link costs but does not find the total 
file maintenance cost. 

XETWORK JIODIFICATIOX FUXCTIOXS 

The cost of maintaining a network may on occasion be 
reduced by deleting links, by adding links, or by replacing 
certain links with others. 

The function SXIP removes links from a network when
ever this 10\\"('rs cost or leaves the cost. unchanged. SXIP 
must have the nodes specified at which files are located, and 

the link list. It proceeds by calculating the link activity, 
then it calls ::\UXCAP to determine the capacity of each 
link. It deletes all links that carry no traffic. Then it at
tem pts to delete each of the remaining links from the net
\vork, starting with the least active link. At each step, it 
calls OKC::VI to check that all nodes remain connected in 
the network-if not, that case is skipped. Mter it determines 
the cost effects of all possible deletions of single links, the 
one link (if any) is deleted which lowers cost most (or at 
least leaves it unchanged). Mterwards, it repeats the entire 
process on the altered network and terminates only when it 
finds that no additional links can be removed without in
creasing cost or disconnecting the nehvork. 

The function JOIN will add the one link, if any, to a 
specified node 'which most reduces cost. Mter one link is 
added, it repeats the process to determine if any others may 
also be added to that node. It follO\vs a scheme similar to 
S~IP, except that a link will not be added 'if the' cost is 
unchanged as a result. 

JOIXALL accomplishes the same process on a net\vork
,vide basis, i.e., a link will be added anywhere in the net
'work if it reduces the cost. 

REPLACE substitutes ne\v links for old ones whenever 
this reduces cost. It begins by calling SNIP to delete all 
links whose removal will not raise costs, then it selectively 
attempts to delete each of the remaining links and attach 
a new link instead to one of the nodes that the old link had 
connected. Mter trying all such possible replacements and 
calculating the resulting costs, it chooses the one replace
ment, if any, which lowers the cost the most. Then, the 
whole process is repeated on the modified network, and 
terminates only when no further cost reduction is possible. 

:\IESSAGE-COST-ORIEXTED FUXCTIOXS 

The preceding functions assume an "ARPA-type" de
sign2 ,3 in which total costs are based on fixed rental rates for 
transmission lines for the links according to transmission 
capacities, plus the cost of maintaining files at specific 
nodes. However, networks may also be considered in which 
the costs are calculated according to message traffic across 
links. A family of functions have been written similar to the 
functions described above, but for \vhich costs are calculated 
according to the moment-to-moment transmission activity. 
Those functions are described in this section. 

A table, TC, specifies the transmission cost for sending 
messages over each link. It is assumed that the link capaci
ties are fixed, and are given by the parameter LCAP. A 
function, FOR~ILCOST, uses TC and LCAP to create 
LCOST, the list of message transmission cost rates for the 
links. 

Rather than simply finding a shortest set of links con
necting hvo nodes, in this case it becomes necessary to com
pare the different total transmission costs for each possible 
set of links. The function ECSP is provided to do this. 
ECSP is similar to JICSP, but instead of returning all sets 
of the minimal number of links connecting two given nodes, 
it returns only the most eeonomical single set of links. 
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Figure 3 

Like ::.Yrcsp, ECSP requires a recursion control param
eter. ESP (which corresponds to ~lSPAN) calls ECSP, 
and provides the recursion control parameter implicitly as 
the node count minus 1. 

LINKUACT and LINKQACT correspond to LUACT 
and LQACT but the links between nodes are chosen by 
ECSP rather than CSP so as to obtain lowest cost. LQACT 
calls ROUTE, which operates like PATH except that it 
chooses the most economic set of links connecting a node to 
one of several copies of a file. LINKACT corresponds to 
LACT in the same way. 

The function COST corresponds to T ARRIF, but it 
calculates the cost according to the total activity on each 
link times the component of LCOST corresponding to that 
link. The function TOTCOST calculates the sum of the 
costs over all links calculated by COST, and the function 

ALLCOSTS drrivrs a tablr, COST~lATRIX, gIvmg the 
total eosts for f'aeh file whrn locatpd at f'aeh possiblf' node. 

FICO ('rratrs a tablf' of eosts for all possiblr combinations 
of a filp at difff'rl'nt nod('s, shown in Figurf' 3. Thp first. column 
speeifif's thr nodf's at which t.hf' file is locatf'd and column 2 
supplies thp cost. The configuration uSf'd to derive this 
table was a fully connpctpd six-node network. 
FOR~IQ~I usrs LIXKQACT to cre>atf' a tablf' of query 

costs for each filf' when located at rach node. FOR~lUM 
forms a similar tablf' for update costs. 

TRL\l corrf'sponds to SXIP, and deletes links from a 
network until the cost no longf'r drops. 

SUPP (for supplement) corresponds to .JOI~ALL, and 
adds links to a network until t he cost no longer drops. 

DIAGRA}nn~G FUXCTIONS 

Functions are provided to diagram nehYork configura
tions developf'd by the prrcrding functions. The diagram is 
prf'parf'd as a matrix of blank characters, with nodes in
dicah'd by parenthf'sizrd numbrrs, and links indicatrd by 
a linf' compoS<"d of a numbf'r or other character. Figures 1 
and 2 arf' f'xamplf's of such diagrams. 

DEPICT crf'ates such a matrix when given the dimen
sions and the positions in the matrix at which the nodes 
are to be located. 

BLAZE draws a line betwf'rn any two elements in the 
matrix, "'hen given the location of thr elements and the 
sprcial charactrr with which the> linE' is to be drawn. 

COXXECT dra\ys a line, using BLAZE, betw(,f'n two 
nodf's, looking up the locations of f'ach nodf' in thf' picture 
matrix to do so. 

COXXECTALL diagrams an f'ntirf' network configura
tion whf'n givf'n its link list as an argumf'nt. Each link is 
drawn using thf' If'ast significant digit of thf' link number. 
Figurf's 1 and 2 Wf're producf'd by CONXECTALL. 

A function caIlf'd SETUP is used to initializf' the link list, 
connection matrix and node> count parameter for various 
preassigned network configurations. The statement "SETUP 
5" for rxample initializes the prespecified network con
figuration number five. 

~IE~10-PAD FUNCTIONS 

Provisions were made for a memorandum-keeping system 
which may be of interest to other APL users, inasmuch as 
it is not restricted just to the network study. 

The "niladic" function NOTE causes the terminal to 
accept a line of character input in which the user may write 
a comment or note for future references. The note is then 
marked with the current calendar date and filed on the top 
of a stack of notes (called XOTES). The function ~fEl\lO 
displays all previous notes with their dates of entry, and 
indexes each with an identification number. Any note may 
be deleted by the SCRATCH function. The user simply 
fo11O\vs the word SCRATCH by the indices of notes to be 
deleted. 
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These functions have proven useful for keeping re('ords 
of currrnt activities, ideas, and problems from one work 
session to the next. 

EXA:\IPLES OF EXPERL\IEXTS WITH THE 
SYSTE:\I 

In this section, thrr(' sample experiments "'ill br> dis
cussed. The records of the terminal st'ssion art' included in 
an Appendix to show how the experiments were conducted. 

In the first run, we start with configuration five, by issuing 
the command 

SETUP .1. 

The system responds by typing IICASE ;) IS XOW SET 
UP." This establishes the link list and connection matrix 
of the configuration shown in Figure 4a. 

We then issue the statement 

o REPLACE 3 
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which signifies that a file is located at the 3rd node, and 
that alternative links are to be tested in the network to 
find configurations which are less costly. 

In the listing of the terminal session, a partial trace is 
made of REPLACE and of SNIP, called by REPLACE, 
to show the cost of each configuration as it is calculated 
Each time a configuration is discovered which has a 10weI 
cost than any of the preceding cases, its link list is dis
played. 

Thus, we start \vith the configuration shown in Figure 4a. 
SNIP finds it cannot delete any links. The cost of this 
configuration is 2700. REPLACE then attempts to change 
a link, but the resulting cost is 2750, and because it is more 
expensive than the original case, it is discarded. REPLACE 
then tries a second alteration, the cost of which is found to 
be 2550, which is less than the original cost. The link list 
of this configuration is displayed, and the revised network 
is shown in Figure 4b. The reader can note that link 1 has 
been replaced by link 7. 

Following this, three more modifications are examined 
and the first two are found more expensive than the last ac
ceptable change. The third, however, costs 1550 and thus 
is noted, and is shown in Figure 4c. Here we see that link 4 
in the original configuration has been replaced by link 2. 

A large number of additional modifications are examined, 
but only when it arrives at the configuration shown in 
Figure 4d is a more economic case found. Finally, RE
PLACE discovers that the configuration in Figure 4e is 
lower in cost than any others preceding it, costing 1300. 
Several additional cases are examined, following this, but 
none is lower than this last configuration, which is then 
displayed at the conclusion of execution. 

Npxt., in a second run, we attempt to add links to the 
final configuration derived in the first run to see if a still 
cheaper case could be discovered. JOIN ALL was called 
with the file specified at node 3, but each new link it at
tempted to add failed to decrease the cost below 1300. Thus, 
no change was made. 

In a third run, a fully connected network was specified, 
as shown in Figure 5a. REPLACE was called, again with 
the file at node 3. REPLACE called SNIP, which removed 
ten links to produce the configuration shmvn in Figure 5b, 
having a cost of 1500. REPLACE then modified the network 
to produce the structure in Figure 5c, having a cost of 1350. 
Thus, we see that sometimes an arbitrary configuration 
such as that in the first run may be a better starting point 
for REPLACE then a fully connected network, since the 
first run resulted in a more economic configuration than did 
the third. 
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Fi rst Run 

A P PEN 0 I X -------

SETUP 5 
CASE 5 IS 110rl SET UP 

o REPLACE 3 
SNIP[2] 

1 1 2 
415 

10 3 4 
14 4 6 
15 5 6 

SNIP[4] 2700 
REPLACE[3] 

112 
415 

10 3 4 
14 4 6 
15 5 6 

REPLACE[18] 2750 
REPLACE[18] 2550 
REPLACE[22] 

415 
724 

10 3 4 
14 4 6 
15 5 6 

REPLACE[18] 2750 
REP LA C l' [ 1 8 ] 2 8 5 0 
REPLACE[18] 1550 
REPLAC8[22] 

112 
213 

10 3 4 
14 4 6 
15 5 6 

REPLACE[18] 1800 
REPLACE[18] 2800 
REPLACE[18] 2700 
REPLACE[18] 2400 
REPLACE[18] 3250 
REPLACE[18] 2400 
REPLACE[18] 2400 
REPLACE[18] 2600 
REPLACE[18] 2950 
REPLACE[18] 2100 
REPLACE[18] 2300 
REPLACE[18] 2000 
REPLACE[18] 2000 
REPLACE[18] 3150 
REPLACE[18] 3250 
REPLACE[18] 1700 
REPLACE[18] 1750 
REPLACE[18] 2050 
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REPLACE[18] 1700 
REPLACE[18] 1800 
REPLACE[18] 1900 
REPLACE[18] 2000 
REPLACE[18] 1500 
REPLACE[18] 1550 
REPLACE[18] 2000 
REPLACE[18J 2100 
REPLACE[18] 1650 
RE'PLACE[ 18J 1550 
REPLACE[18J 1500 
REPLACE[18J 1450 
REPLACE[18J 1700 
RBPLACE[18J 1800 
REPLACE[18J 1500 
REPLACE[18] 1850 
REPLACE[18] 2550 
REPLACE[18] 1650 
REPLACE[18J 1450 
REPLACE[18] 1550 
REPLACE[18] 1550 
REPLACE[18] 1650 
REPLACE[18J 1550 
REPLACE[18J 1650 
REPLACE[18J 1350 
REPLACE[18] 1400 
REPLACE[18] 2150 
REPLACE[18] 2250 
REPLACE[18] 1500 
REPLACE[18] 1400 

112 
213 

10 3 4 
11 3 5 
1'2 3 6 

REPLACE[18] 2050 
REPLACE[18] 1800 
R8PLACE[18] 2700 
REPLACE[18J 2800 
REPLACE[18J 1850 
REPLACE[18] 1600 
REPLACE[18] 1500 
REPLACE[22] 

1 1 2 
2 1 3 

12 3 6 
14 4 6 

'15 5 6 
REPLACE[18] 2300 
REPLACE[18J 2650 
REPLACE[18] 1300 
REPLACE[22] 

1 1 2 
2 1 3 

10 3 4 
13 4 5 
15 5 6 

REPLACE[18] 2400 
REPLACE[lB] 2500 
REPLACE[18] 1400 
REPLACE[18J 1700 
REPLACE[18] 1800 
REPLACE[18J 1500 
REPLACE[18J 1350 
REPLACE[18J 1450 
REPLACE[18J 1500 
REPLACE[18] 1700 
REPLACE[18] 1900 
REPLACE[18J 1550 
REPLACE[18] 2100 
REPLACE[18] 2650 
REPLACE[18J 1600 
REPLACE[18] 1400 
REPLACE[18] 1500 
REPLACE[18] 2050 
REPLACE[18] 2400 
REPLACE[18] 1550 
REPLACE[18] 2200 
REPLACE[18] 2300 
REPLACE[18] 1400 
REPLACE[18] 2150 
REPLACE[18] 2250 
REPLACE[18] 1350 
REPLACE[18] 1350 

112 
213 

10 3 4 
13 4 5 
15 5 6 
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APPENDIX 

Second Run Third Run o REPLACE 3 
SNIP[2] 

1 1 2 
2 1 3 

lIL+O JOINALL 3 3 1 4 

JOINALL[3] 4 1 5 

1 1 2 5 1 6 
2 1 3 6 2 3 

10 3 4 7 2 4 

13 4 5 8 2 5 
15 5 6 9 2 6 

JOINALL[5] 1300 10 3 4 
JOINALL[10] 1300 11 3 5 
JOINALL[10J 2200 12 3 6 
JOINALL[10] 2150 13 4 5 
JOINALL[18] 7 14 4 6 
JOINALL[10] 1450 15 5 6 
JOINALL[10] 1300 SNIP[4] 1500 
JOINALL[10] 1300 REPLACE[ 3] 

JOINALL[10] 2250 2 1 3 

JOINALL[18] 7 6 2 3 

JOINALL[10] 1400 10 3 4 

JOINALL[10] 1350 11 3 5 

JOIiVALL[18] 7 12 3 6 

JOINALL[10] 1350 REPLACE[ 18] 1650 

JOINALL[18] 7 REPLACE[ 18] 1650 

JOINALL[18] REPLACE[18] 1900 
REPLACE[18] 2000 

HL REPLA CE[ 18] 1350 

1 1 2 REPLACE[22] 
2 1 3 1 1 2 

10 3 4 2 1 3 

13 4 5 10 3 4 

15 5 6 11 3 5 
12 3 6 

REPLACE[18] 1450 
REPLACE[18] 1700 
REPLACE[18] 1800 
REPLACE[18] 1800 
REPLACE[18] 190 a 
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INTRODUCTION 

Two basic trends can be observed in the modern evolution 
of computer systems. They are the development of com
puter systems dedicated to a single task or user 
(minicomputers) where the sophistication of large com
puter systems is being applied to smaller units, and the 
trend of very large systems that locate the user remotely 
from the computer and share resources between more and 
more locations. It is to the latter case that this paper is 
directed. This trend reaches its culmination in the design 
of distributed computer systems, where many individual 
computer components are located remotely from each 
other, and they are used to jointly perform computer 
operations in the solution of a single problem. Systems 
such as these are being developed in increasing numbers, 
although they are yet only a small fraction of the total 
number of computer systems. Examples of such systems 
range from those that are National and International in 
scope (the United States' APRANET,l Canada's CANU
NET,z the Soviet Union's ASUS system3 and the Euro
pean Computer Network Project4

), the statewide systems 
(the North Carolina Educational Computer System''; and 
the MERIT Computer Network6

), to single site systems 
(The Lawrence Radiation Laboratory Network' and Data 
Ring Oriented Computer Networks8

). These systems and 
others have been designed to solve problems in the areas 
of research, education, governmental planning, airline 
reservations and commercial time-sharing. Taken 
together they demonstrate a capability for computer utili
zation that places more usable computer power in the 
user's control than he has ever had before. The challenge 
is to make effective use of this new tool. 

Development of this new mode of computer usage has 
followed the same set of priorities that has prevented 
effective utilization of previous systems. A large body of 
information has been collected on the hardware technol
ogy of network systems,9 but little effort has been 
expended on the development of software systems that 
allow the average user to make effective use of the net
work. A systematic examination of the requirements and 
a design for a language that uses the full facilities of a 
number of computer networks is needed. 
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NETWORK LANGUAGE REQUIREMENTS 

After the language design had begun, it developed that 
the concept of what a computer network was, and how it 
was to be used, was not well understood. An effort was 
therefore begun to classify computer networks and their 
operations. This classification scheme indicated that a 
language for computer networks would have to be con
stantly changing because networks evolve from one form 
to another. It is this dynamic behavior that makes the 
design of a single language for different types of networks 
a high priority requirement. 

Types of computer networks 

A classification scheme was developed based on the 
resource availability within the computer network and 
the network's ability to recover from component failure. 
The scheme consists of six (6) different modes of network 
operatioI) with decreasing dependability and cost for the 
later modes. 

1. Multiple Job Threads: This consists of a system 
where all components are duplicated and calcula
tions are compared at critical points in the job. If a 
component should fail, no time would be lost. 
Example: NASA Space Flight Monitoring 

2. Multiple Logic Threads: This is identical with the 
previous mode except peripherals on the separate 
systems can be shared. 

3. Multiple Status Threads: In this mode only one set 
of components performs each task. However, other 
systems maintain records of system status at various 
points in the job. If a component should fail all work 
since the last status check must be re-executed. 
Example: Remote Checkpoint-Restart 

4. Single Job Thread: In this mode one computer sys
tem controls the sequencing of operations that may 
be performed on other systems. If a system failure 
occurs in the Master computer, the job is aborted. 

5. Load Sharing: In this mode each job is performed 
using only a single computer system. Jobs are trans
ferred to the system with the lightest load, if it has all 
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necessary resources. If the system fails you may lose 
all record of the job. Example: HASP to HASP job 
transfer. 

6. Star: In this mode only one computer system is 
available to the user. It is the normal time-sharing 
mode with a single computer. If the system is down 
you can't select another computer. 

All presently operating networks fall within one of the 
above modes of operation, and additional modes can be 
developed for future networks. Operation within the first 
two and last two modes require no additional language 
features that are not needed on a single (non-network) 
computer system. Thus, the language to be described will 
be directed toward utilizing the capabilities of networks 
operating in modes 3 and 4. In order to evaluate its use
fulness, implementation will be performed on both the 
ARPANET and MERIT Networks. Both networks can 
operate in modes 3 and 4, and possess unique features 
that make implementation of a single network language a 
valid test of language transferability. 

Computer network operations 

In designing the language we recognized three (3) types 
of operations that the network user would require. 

1. Data Base Access: Four operations are necessary for 
this type of usage. The user can copy the entire data 
base from one computer system to another, or he 
could access specific elements in the data base, or he 
could update the data base, or he could inquire 
about the status of the data base. Decisions on 
whether to copy the data base or access it element 
by element depend on data transfer speeds and the 
amount of data needed, therefore they must be 
determined for each job. 

2. Subtask Execution: Tasks may be started in one of 
four different modes. In the Stimulus-Response 
mode a task is started in another machine while the 
Master computer waits for a task completion mes
sage. In the Status Check mode the subtask executes 
to completion while the Master task performs other 
work. The subtask will wait for a request from the 
Master to transmit the result. The third mode is an 
interactive version of status checking where the 
status check may reveal a request for more data. 
The final mode allows the subtask to interrupt the 
master task when execution is completed. Most 
networks do not have the facilities to execute in 
mode four, however all other modes are possible. 
The novice will find mode one easiest, but greater 
efficiency is possible with modes two and three. 

3. Network Configuration: This type of usage is for the 
experienced network user. It provides access to the 
network at a lower level, so that special features of a 
specific network may be used. Programs written 

using these type commands may not be transferable 
to other networks. These type commands allow 
direct connection to a computer system, submission 
of a RJE job, reservation of a system resource, 
network status checking, select network options, 
access to system documentation, and establishment 
of default options. 

The network language must allow the user to perform all 
these operations by the easiest method. Since the average 
user will know very little about the network, the system 
must be supplied with default parameters that will make 
decisions that the user does not direct. These defaults can 
be fitted to the network configuration, the individual user 
or a class of problems. 

User operations must be expressible in a compressed 
form. Operations that the user performs very often should 
be expressed by a single command. This will prevent 
programming errors and it will allow for optimization of 
command protocol. As new operations are required they 
should be able to be added to the language without affect
ing already defined commands. 

Additional language constraints 

Three of the six constraints used to design the network 
language have already been described. The list of features 
that were considered necessary for a usable language are: 

1. All purely systems requirements should be invisible 
to the user. 

2. The language should be easily modified to adapt to 
changes in the network configuration. 

3. The language should provide easy access to all fea
tures of the network at a number of degrees of 
sophistication. 

4. The language should provide a method for obtaining 
on-line documentation about the available resources. 

5. The fact that the system is very flexible should not 
greatly increase the system's overhead. 

6. The language syntax is easy to use, is available for 
use in a non-network configuration, and it will not 
require extensive modification to transfer the lan
guage to another network. 

These requirements are primarily dictated by user needs, 
rather than those required to operate the hardware/soft
ware system. It is the hope that the end result would be a 
language that the user would use without knowing that he 
was using a network. 

The demand for on-line documentation is particularly 
important. Most software systems are most effectively 
used at the location where they were developed. As you 
get farther from this location, fewer of the special features 
and options are used because of lack of access to docu
mentation. Since most of the systems to be used will 
reside on remote computers, it is important that the user 
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be able to obtain current documentation while he uses the 
system. That documentation should reside on the same 
computer as the code used to execute the system. 

Options used to determine which computer system you 
are communicating with should not have to exist in inter
pretable code. This generality often leads to heavy over
head that defeats the advantages of a computer network. 
An example of this was the Data Reconfiguration Service 
created by Rand 10 as a general data converter that could 
be used when transferring data from one computer to 
another on the ARPANET. Because it was written to 
execute interpretly, data conversion can only be per
formed at low speed. While high-speed and low-overhead 
were not conditions of their implementation, an opera
tionallanguage should not produce such restricted condi
tions of usage. 

The final condition that the language be easily used 
and operate on a single computer, led to the investigation 
of available extendable languages. Using an already 
developed language has certain advantages, people will 
not need to learn a new language to use the network, pro
gram development can continue even when the network is 
not operating, and network transparency is heavily dic
tated by the already designed language syntax. It was a 
belief that a network language should not be different in 
structure than any other language that led to the investi
gation of a high-level language implementation. 

THE NETWORK LANGUAGE 

An available language was found that met most of the 
requirements of our network language. The language is 
called SPEAKEASYll and it consists of a statement inter
preter and a series of attachable libraries. One set of these 
libraries consist of linkable modules called "linkules" 
that are blocks of executable code that can be read off 
the disk into core and executed under control of the inter
preter. This code, that may be written in a high-level 
language such as FORTRAN, can be used to perform the 
necessary protocols and other system operations required 
by the network. Thus, the user would not be required to 
know anything other than the word that activates the 
operation of the code. Each user required operation could 
be given a different word, where additional data could be 
provided as arguments of the activating word. 

Since there are almost no limitations on the number of 
library members, and each user could be provided with 
his own attachable library, the language can be easily 
extended to accommodate new features created by the 
network. Linkules in SPEAKEASY could be created that 
communicate with ind{vidual computer systems or that 
perform similar operations in more than one system. 
Where the latter is implemented, an automatic result 
would be the creation of a super control language. Since 
one of the factors that prevent the average user from 
using more than one computer system is the non-uni
formity of the operating systems, the development of a 

network language will eliminate this problem. Using data 
stored in other libraries, the network language could 
supply the needed control syntax to execute a specified 
task. This operation is not very much different from what 
the user does when he is supplied control cards by a con
sultant that he uses until it is outdated by systems 
changes. 

The SPEAKEASY language presently provides the 
facility to provide on-line documentation about itself 
based on data in attachable libraries. This would be 
extended to allow the SPEAKEASY interpreter to read 
from libraries resident on a remote computer. Therefore, 
the documentation could be kept up-to-date by the same 
people responsible for developing the executing code. 

Since SPEAKEASY linkules are compiled code, and 
there may exist seperate modules that are only loaded 
into core--whEm needed, minimal overhead is provided by 
adding new operations to the system. This is the same 
technique used to add operations to the present system, 
therefore no difference should be detectable between resi
dent and remote linkules. 

NET\VORK MODULE PROTOCOLS 

Where a single computer version of SPEAKEASY has 
an easy task to determine how a command should be 
executed, a multi-computer version makes more complex 
decisions. Therefore it is necessary that there be estab
lished a well defined pattern of operations to be per
formed by each linkule. 

Linkule order of operations 

Each linkule that establishes communication with a 
remote (slave) computer system should execute each of 
the following ten operations, so as to maintain synchroni
zation between the Master task and all remote subtasks. 
No module will be allowed to leave core until the tenth 
step is performed. 

1. Determine System Resources Needed. 
2. Establish the Network Connections. 

a) Select the Computer Systems that will be used. 
b) Establish the System Availability. 
c) Perform the Necessary Connect & Logon Pro

cedures. 
3. Allocate the Needed Computer System Resources 

to the Job. 
4. Provide for System Recovery Procedures in the 

case of System Failure. 
5. Determine what Data Translation Features are to 

be used. 
6. Determine whether Data Bases should be moved. 
7. Start the main task in the remote computer execut

ing. 
8. Initiate and Synchronize any subtasks. 
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9. Terminate any subtasks. 
10. Terminate the remote task and close all related 

system connections. 

In the present single computer version of SPEAKEASY 
only tasks 3 and 7 are executed, and a more limited form 
of task 4 is also performed. Where the overhead in open
ing and closing network connections is greater then the 
cost of leaving the connections open, the 10th task will not 
terminate any connection once made, allowing the next 
linkule to check and find it open. 

Information on the systems availability can be 
obtained by inquiry from the network communications 
software. Procedures and resource information can be 
obtained from data stored in local or remote data set, by 
inquiry from the user, or by inquiry from the system. All 
allocation procedures will be performed by submitting the 
appropriate control commands to the standard operating 
system on the relevant computer. 

Since the SPEAKEASY system will have the necessary 
data about the origination and destination computers for 
any unit of data being transfered, it can link to a linkule 
that is designed for that translation only. This linkule 
could take advantage of any special features or tricks that 
would speed the translation process, thus reducing over
head during the translation process. 

Requirements for network speakeasy 

The minimal requirements to execute the Network 
version of SPEAKEASY is a computer that will support 
the interpreter. At the present time that means either an 
IBM 360 or 370 computer operating under either the O/S 
or MTS operating systems, or a F ACOM 60 computer 
system. The network protocols for only two operations are 
required. The Master computer must be able to establish 
a connection to a remote computer and it must be able to 
initiate execution of a job in the remote computer system. 

The remote site should provide either a systems routine 
or a user created module that will perform the operations 
requested by the Master computer. This program, called 
the Network Response Program, is activated whenever a 
request is made to the remote computer. There may be 
one very general Network Response Program, or many 
different ones designed for specific requests. Figure 1 
shows the modular structure of the Network Language in 
both the Master and Slave (Subtask) computing systems. 

Because the network features of the language are 
required to be totally transparent to the user, no exam
ples of network programming are shown. The reader 
should refer to previously published papers on Speakeasy 
for examples of programming syntax. 

SUMMARY 

A network version of the SPEAKEASY system is 
described that consists of a series of dynamically linked 

"ASTER cOIIPUTER SLAVE COMPUTER 

Figure I-The modular structure of the Network Speakeasy 
System. Dotted lines indicate dynamic linkages, dashed 
lines are telecommunications links, and solid lines are 

standard linkages. 

modules that perform the necessary language and system 
protocols. These protocols are transparent to the user, 
producing a language that has additional power without 
additional complexity. The language uses attached librar
ies to provide the necessary information that will tailor 
the system to a specific network, and to supply on-line 
documentation. Since the modules are compiled code, the 
generality of the system does not produce a large over
head. 
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A resource sharing executive for the ARP ANET* 
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INTRODUCTION 

The Resource Sharing Executive (RSEXEC) is a distrib
uted, executive-like system that runs on TENEX Host 
computers in the ARPA computer network. The 
RSEXEC creates an environment which facilitates the 
sharing of resources among Hosts on the ARPANET. The 
large Hosts, by making a small amount of their resources 
available to small Hosts, can help the smaller Hosts pro
vide services which would otherwise exceed their limited 
capacity. By sharing resources among themselves the 
large Hosts can provide a level of service better than any 
one of them could provide individually. Within the envi
ronment provided by the RSEXEC a user need not con
cern himself directly with network details such as com
munication protocols nor even be aware that he is dealing 
with a network. 

A few facts about the ARPANET and the TENEX 
operating system should provide sufficient background 
for the remainder of this paper. Readers interested in 
learning more about the network or TENEX are referred 
to the literature; for the ARPANET References 1,2,3,4; 
for TENEX. References 5,6,7. 

The ARPANET is a nationwide heterogeneous collec
tion of Host computers at geographically separated loca
tions. The Hosts differ from one another in manufacture, 
size, speed, word length and operating system. Communi
cation between the Host computers is provided by a 
subnetwork of small, general purpose computers called 
Interface Message Processors or IMPs which are inter
connected by 50 kilobit common carrier lines. The IMPs 
are programmed to implement a store and forward 
communication network. As of January 1973 there were 
45 Hosts on the ARPANET and 33 IMPs in the subnet. 

In terms of numbers, the two most common Hosts in 
the ARPANET are Terminal IMPs called TIPs12 and 
TENEXs.9 TIPss.9 are mini-Hosts designed to provide 
inexpensive terminal access to other network Hosts. The 
TIP is implemented as a hardware and software augmen
tation of the IMP. 

TENEX is a time-shared operating system developed 
by BBN to run on a DEC PDP-10 processor augmented 

* This work was supported by the Advanced Projects Research Agency 
of the Department of Defense under Contract No. DAHC15-71-C-0088. 
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with paging hardware. In comparison to the TIPs, the 
TENEX Hosts are large. TENEX implements a virtual 
processor with a large (256K word), paged virt_~_~L_I!l~_ITI~ 
ory for -each user process. In addition, it provides a multi
process job structure with software program interrupt 
capabilities, an interactive and carefully engineered 
command language (implemented by the TENEX 
EXEC) and advanced file handling capabilities. 

Development of the RSEXEC was motivated initially 
by the desire to pool the computing and storage resources 
of the individual TENEX Hosts on the ARPA~ET. We 
observed that the TENEX virtual machine was becoming 
a popular network resource. Further, we observed that for 
many users, in particular those whose access to the net
work is through TIPs or other non-TENEX Hosts, it 
shouldn't really matter which Host provides the TENEX 
virtual machine as long as the user is able to do his 
computing in the manner he has become accustomed*. A 
number of advantages result from such resource sharing. 
The user would see TENEX as a much more accessible 
and reliable resource. Because he would no longer be 
dependent upon a single Host for his computing he would 
be able to access a TENEX virtual machine even when 
one or more of the TENEX Hosts were down. Of course, 
for him to be able to do so in a useful way, the TENEX 
file system would have to span across Host boundaries. 
The individual TENEX Hosts would see advantages also. 
At present, due to local storage limitations, some sites do 
not provide all of the TENEX subsystems to their users. 
For example, one site doesn't support FORTRAN for this 
reason. Because the subsystems available would, in effect, 
be the "union" of the subsystems available on all 
TENEX Hosts, such Hosts would be able to provide 
access to all TENEX subsystems. 

The RSEXEC was conceived of as an experiment to 
investigate the feasibility of the multi-Host TENEX 
concept. Our experimentation with an initial version of 
the RSEXEC was encouraging and, as a result, we 
planned to develop and maintain the RSEXEC as a 
TENEX subsystem. The RSEXEC is, by design, an evo-

* This, of course, ignores the problem of differences in the accounting 
and billing practices of the various TENEX Hosts. Because all of the 
TENEX Hosts (with the exception of the two at BBN) belong to ARPA 
we felt that the administrative problems could be overcome if the tech
nical problems preventing resource sharing were solved. 
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lutionary system; we planned first to implement a system 
with limited capabilities and then to let it evolve, expand
ing its capabilities, as we gained experience and came to 
understand the problems involved. 

During the early design and implementation stages it 
became clear that certain of the capabilities planned for 
the RSEXEC would be useful to all network users, as well 
as users of a multi-Host TENEX. The ability of a user to 
inquire where in the network another user is and then to 
"link" his own terminal to that of the other user in order 
to engage in an on-line dialogue is an example of such a 
capability. 

A large class of users with a particular need for such 
capabilities are those whose access to the network is 
through mini-Hosts such as the TIP. At present TIP users 
account for a significant amount of network traffic, 
approximately 35 percent on an average day. IO A frequent 
source of complaints by TIP users is the absence of a 
sophisticated command language interpreter for TIPs 
and, as a result, their inability to obtain information 
about network status, the status of various Hosts, the 
whereabouts of other users, etc., without first logging into 
some Host. Furthermore, even after they log into a Host, 
the information readily available is generally limited to 
the Host they log into. A command language interpreter 
of the type desired would require more (core memory) 
resources than are available in a TIP alone. We felt that 
with a little help from one or more of the larger Hosts it 
would be feasible to provide TIP users with a good 
command language interpreter. (The TIPs were already 
using the storage resources of one TENEX Host to pro
vide their users with a network news service. IO

.
11 Further, 

since a subset of the features already planned for the 
RSEXEC matched the needs of the TIP users, it was 
clear that with little additional effort the RSEXEC sys
tem could provide TIP users with the command language 
interpreter they needed. The service TIP users can obtain 
through the RSEXEC by the use of a small portion of the 
resources of several network Hosts is superior to that they 
could obtain either from the TIP itself or from any single 
Host. 

An initial release of the RSEXEC as a TENEX subsys
tem has been distributed to the ARPANET TENEX 
Hosts. In addition, the RSEXEC is available to TIP users 
(as well as other network users) for use as a network 
command language interpreter, preparatory to logging 
into a particular Host (of course, if the user chooses to log 
into TENEX he may continue using the RSEXEC after 
login). Several non-TENEX Hosts have expressed interest 
in the RSEXEC system, particularly in the capabilities it 
supports for inter-Host user-user interaction, and these 
Hosts are now participating in the RSEXEC experiment. 

The current interest in computer networks and their 
potential for resource sharing suggests that other systems 
similar to the RSEXEC will be developed. At present 
there is relatively little in the literature describing such 
distributing computing systems. This paper is presented 
to record our experience with one such system: we hope it 

will be useful to others considering the implementation of 
such systems. 

The remainder of this paper describes the RSEXEC 
system in more detail: first, in terms of what the 
RSEXEC user sees, and then, in terms of the implemen
tation. 

THE USER'S VIEW OF THE RSEXEC 

The RSEXEC enlarges the range of storage and com
puting resources accessible to a user to include those 
beyond the boundaries of his local system. It does that by 
making resources, local and remote, available as part of a 
single, uniformly accessible pool. The RSEXEC system 
includes a command language interpreter which extends 
the effect of user commands to include all TENEX Hosts 
in the ARPANET (and for certain commands some non
TENEX Hosts), and a monitor call interpreter which, in 
a similar way, extends the effect of program initiated 
"system" calls. 

To a large degree the RSEXEC relieves the user and 
his programs of the need to deal directly with (or even be 
aware that they are dealing with) the ARPANET or 
remote Hosts. By acting as an intermediary between its 
user and non-local Hosts the RSEXEC removes the logi
cal distinction between resources that are local and those 
that are remote. In many contexts references to files and 
devices* may be made in a site independent manner. For 
example, although his files may be distributed among 
several Hosts in the network, a user need not specify 
where a particular file is stored in order to delete it; rath
er, he need only supply the file's name to the delete 
command. 

To a first approximation, the user interacts with the 
RSEXEC in much the same way as he would normally 
interact with the standard (single Host) TENEX execu
tive program. The RSEXEC command language is syn
tactically similar to that of the EXEC. The significant 
difference, of course, is a semantic one; the effect of 
commands are no longer limited to just a single Host. 

Some RSEXEC commands make direct reference to 
the multi-Host environment. The facilities for inter-Host 
user-user interaction are representative of these com
mands. For example, the WHERE and LINK commands 
can be used to initiate an on-line dialogue with another 
user: 

<-WHERE (IS USER) JONES** 
JOB 17 TTY6 USC 

JOB 5 TTY14 CASE 
<-LINK (TO TTY) 14 (AT SITE) CASE 

* Within TENEX, peripheral devices are accessible to users via the file 
system; the terms "file" and "device" are frequently used interchangea
bly in the following. 
** "+--" is the RSEXEC "ready" character. The words enclosed in paren
theses are "noise" words which serve to make the commands more 
understandable to the user and may be omitted. A novice user can use 
the character ESC to cause the RSEXEC to prompt him by printing the 
noise words. 



Facilities such as these play an important role in 
removing the distinction between "local" and "remote" 
by allowing users of geographically. separated Hosts to 
interact with one another as if they were members of a 
single user community. The RSEXEC commands directly 
available to TIP users in a "pre-login state" include those 
for inter-Host user-user interaction together with ones 
that provide Host and network status information and 
network news. 

Certain RSEXEC commands are used to define the 
"configuration" of the multi-Host environment seen by 
the user. These "meta" commands enable the user to 
specify the "scope" of his subsequent commands. For 
example, one such command (described in more detail 
below) allows him to enlarge or reduce the range of Hosts 
encompassed by file system commands that follow. 
Another "meta" command enableshirn to spe.cify _a set of 
peripheral devices which he may reference in a site inde
pendent manner in subsequent commands. 

The usefulness of multi-Host systems such as the 
RSEXEC is, to a large extent, determined by the ease 
with which a user can manipulate his files. Because the 
Host used one day may be different from the one used the 
next, it is necessary that a user be able to reference any 
given file from all Hosts. Furthermore, it is desirable that 
he be able to reference the file in the same manner from 
all Hosts. 

The file handling facilities of the RSEXEC were desig
nated to: 

1. Make it possible to reference any file on any Host by 
implementing a file name space which spans across 
Host boundaries. 

2. Make it convenient to reference frequently used files 
by supporting "short hand" file naming conventions, 
such as the ability to specify certain files without 
site qualification. 

The file system capabilities of the RSEXEC are designed 
to be available to the user at the command language 
level and to his programs at the monitor call level. An im
portant design criterion was that existing programs be 
able to run under the RSEXEC without reprogramming. 

File access within the RSEXEC system can be best 
described in terms of the commonly used model which 
views the files accessible from within a Host as being 
located at terminal nodes of a tree. Any file can be speci
fied by a pathname which describes a path through the 
tree to the file. The complete pathname for a file includes 
every branch on the path leading from the root node to 
the file. While, in general, it is necessary to specify a 
complete pathname to uniquely identify a file, in many 
situations it is possible to establish contexts within which 
a partial pathname is sufficient to uniquely identify a 
file. Most operating systems provide such contexts, 

A Resource Sharing Executive for the ARPA~ET 157 

designed to allow use of partial pathnames for frequently 
referenced file, for their users. * 

It is straightforward to extend the tree structured 
model for file access within a single Host to file access 
within the entire network. A new root node is created with 
branches to each of the root nodes of the access trees for 
the individual Hosts, and the complete pathname is 
enlarged to include the Host name. A file access tree for a 
single Host is shown in Figure 1; Figure 2 shows the file 
access tree for the network as a collection of single Host 
trees. 

The RSEXEC supports use of complete pathnames 
that include a Host component thereby making it possible 
(albeit somewhat tedious) for users to reference a file on 
any Host. For example, the effect of the command 

~AI>PENP (FJL~) [CASEIDSK:<THOMAS>DATA. 
NEW (TO FILE) [BBN]DSK: <BOBT>DATA.OLD** 

is to modify the file designated CD in Figure 2 by append
ing to it the file designated (2) . 

To make it convenient to reference files, the RSEXEC 
allows a user to establish contexts for partial pathname 
interpretation. Since these contexts may span across sev
eral Hosts, the user has the ability to configure his own 
"virtual" TENEX which may in reality be realized by the 
resources of several TENEXs. Two mechanisms are 
available to do this. 

The first of these mechanisms is the user profile which 
is a collection of user specific information and parameters 

Figure I-File access tree for a single Host. The circles at 
the terminal nodes of the tree represent files 

* For example, TENEX does it by: 
1. Assuming default values for certain components left unspecified in 
partial pathnames; 
2. Providing a reference point for the user within the tree (working 
directory) and thereafter interpreting partial pathnames as being rela
tive to that point. TENEX sets the reference point for each user at login 
time and, subject to access control restrictions, allows the user to change 
it (by "connecting" to another directory). 

** The syntax for (single Host) TENEX path names includes device. 
directory, name and extension components. The RSEXEC extends that 
syntax to include a Host component. The pathname for@specifies: the 
CASE Host; the disk ("DSK") device; the directory THOMAS; the 
name DATA; and the extension NEW. 
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Figure 2-File access tree for a network. The single Host access tree from Figure 1 is part of this tree 

maintained by the RSEXEC for each user. Among other 
things, a user's profile specifies a group of file directories 
which taken together define a composite directory for the 
user. The "contents" of the composite directory are the 
union of the "contents" of the file directories specified in 
the profile. When a pathname without site and directory 
qualification is used, h is interpreted relative to the user's 
composite directory. The composite directory serves to 
define a reference point within the file access tree that is 
used by the RSEXEC to interpret partial pathnames. 
That reference point is somewhat unusual in that it spans 
several Hosts. 

One of the ways a user can reconfigure his "virtual" 
TENEX is by editing his profile. With one of the "meta" 
commands noted earlier he can add or remove compo
nents of his composite directory to control how partial 
pathnames are interpreted. 

An example may help clarify the role of the user pro
file, the composite directory and profile editing. Assume 
that the profile for user Thomas contains directories 
BOBT at BBN, THOMAS at CASE and BTHOMAS at 
USC (see Figure 2). His composite directory, the refer
ence point for pathname interpretation, spans three 
Hosts. The command 

<-APPEND (FILE) DATA.NEW (TO FILE) DATA.OLD 

achieves the same effect as the APPEND command in a 
previous example. To respond the RSEXEC first consults 
the composite directory to discover the locations of the 
files, and then acts to append the first file to the second; 
how it does so is discussed in the next section. If he 
wanted to change the scope of partial pathnames he uses, 
user Thomas could delete directory BOBT at BBN from 
his profile and add directory RHT at AMES to it. 

The other mechanism for controlling the interpretation 
of partial pathnames is device binding. A user can 
instruct the HSEXEr tn interpret subspquent use of ::l 

particular device name as referring to a device at the Host 
he specifies. After a device name has been bound to a 
Host in this manner, a partial pathname without site 
qualification that includes it is interpreted as meaning 
the named device at the specified Host. Information in 
the user profile specifies a set of default device bindings 
for the user. The binding of devices can be changed 
dynamically during an RSEXEC session. In the context 
of the previous example the sequence of commands: 

+-BIND (DEVICE) LPT (TO SITE) BBN 
+-LIST DATA. NEW 
<-BIND (DEVICE) LPT (TO SITE) USC 
<-LIST DATA.NEW 

produces two listings of the file DATA.NEW: one on the 
line printer (device "LPT") at BBN, the other on the 
printer at USC. As with other RSEXEC features, device 
binding is available at the program level. For example, a 
program that reads from magnetic tape will function 
properly under the RSEXEC when it runs on a Host 
without a local mag-tape unit, provided the mag-tape 
device has been bound properly. 

The user can take advantage of the distributed nature 
of the file system to increase the "accessibility" of certain 
files he considers important by instructing the RSEXEC 
to maintain images of them at several different Hosts. 
With the exception of certain special purpose files (e.g., 
the user's "message" file), the RSEXEC treats files with 
the same pathname relative to a user's composite direc
tory as images of the same multi-image file. The user 
profile is implemented as a multi-image file with an image 
maintained at every component directory of the com
posite directory. * 

'" The profile is somewhat special in that it is accessible to the user only 
through the profile erliting rommands. and is otherwise transparent. 



Implementation of the RSEXEC 

The RSEXEC implementation is discussed in this sec
tion with the focus on approach rather than detail. The 
result is a simplified but nonetheless accurate sketch of 
the implementation. 

The RSEXEC system is implemented by a collection of 
programs which run with no special privileges on TENEX 
Hosts. The advantage of a "user-code" (rather than 
"monitor-code") implementation is that ordinary user 
access is all that is required at the various Hosts to devel
op, debug and use the system. Thus experimentation with 
the RSEXEC can be conducted with minimal disruption 
to the TENEX Hosts. 

The ability of the RSEXEC to respond properly to 
users' requests often requires cooperation from one or 
more remote Hosts. When such cooperation is necessary, 
tile RSEXEC program interacts with RSEXEC "service" 
programs at the remote Hosts according to a pre-agreed 
upon set of conventions or protocol. Observing the proto
col, the RSEXEC can instruct a service program to per
form actions on its behalf to satisfy its user's requests. 

Each Host in the RSEXEC system runs the service 
program as a "demon" process which is prepared to pro
vide service to any remote process that observes protocol. 
The relation between RSEXEC programs and these 
demons is shown schematically in Figure 3. 

The RSEXEC protocol 

The RSEXEC protocol is a set of conventions designed 
to support the interprocess communication requirements 
of the RSEXEC system. The needs of the system required 
that the protocol: 

Figure 3-Schematic showing several RSEXEC programs 
interacting, on behalf of their users, with remote server programs 
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1. be extensible: 
As noted earlier, the RSEXEC is, by design, an 
evol utionary system. 

2. support many-party as well as two-party interac
tions: 
Some situations are better handled by single multi
party interactions than by several two-party interac
tions. Response to an APPEND command when the 
files and the RSEXEC are all at different Hosts is 
an example (see below). 

3. be convenient for interaction between processes 
running on dissimilar Hosts while supporting effi
cient interaction between processes on similar Hosts: 
Many capabilities of the RSEXEC are useful to 
users of non -TENEX as well as TENEX Hosts. It is 
important that the protocol not favor TENEX at 
the expense of other Hosts. 

The RSEXEC protocol has two parts: 
1. a protocol for initial connection specifies how pro

grams desiring service (users) can connect to pro
grams providing service (servers); 

2. a command protocol specifies how the user program 
talks to the server program to get service after it is 
connected. 

The protocol used for initial connection is the standard 
ARPANET initial connection protocol (ICP).12 The 
communication paths that result from the ICP exchange 
are used to carry commands and responses between user 
and server. The protocol supports many-party interaction 
by providing for the use of auxiliary communication 
paths, in addition to the command paths. Auxiliary paths 
can be established at the user's request between server 
and user or between server and a third party. Communi
cation between processes on dissimilar Hosts usually 
requires varying degrees of attention to message format
ting, code conversion, byte manipulation, etc. The proto
col addresses the issue of convenience in the way other 
standard ARPANET protocols have. 13

,14.15 It specifies a 
default message format designed to be "fair" in the sense 
that it doesn't favor one type of Host over another by 
requiring all reformatting be done by one type of Host. It 
addresses the issue of efficiency by providing a mecha
nism with which processes on similar Hosts can negotiate 
a change in format from the default to one better suited 
for efficient use by their Hosts. 

The protocol can perhaps best be explained further by 
examples that illustrate how the RSEXEC .uses it. The 
following discusses its use in the WHERE, APPEND and 
LINK commands: 

-WHERE (IS USER) JONES 
The RSEXEC querie~ each non-local server program 
about user Jones. To query a server, it establishes 
connections with the server; transmits a "request for 
information about Jones" as specified by the protocol; 
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and reads the response which indicates whether or not 
Jones is a known user, and if he is, the status of his 
active jobs (if any). 

--APPEND (FILE) DATA.NEW (TO FILE) 
DATA.OLD 
Recall that the files DATA.NEW and DATA.OLD are 
at CASE and BBN, respectively; assume that the 
APPEND request is made to an RSEXEC running at 
USC. The RSEXEC connects to the servers at CASE 
and BBN. Next, using the appropriate protocol 
commands, it instructs each to establish an auxiliary 
path to the other (see Figure 4). Finally, it instructs 
the server at CASE to transmit the file DATA. NEW 
over the auxiliary connection and the server at BBN 
to append the data it reads from the auxiliary connec
tion to the file DATA.OLD. 

+-LINK (TO TTY) 14 (AT SITE) CASE 
Assume that the user making the request is at USC. 
After connecting to the CASE server, the RSEXEC 
uses appropriate protocol commands to establish two 
auxiliary connections (one "send" and one "receive") 
with the server. It next instructs the server to "link" 
its (the server's) end of the auxiliary connections to 
Terminal 14 at its (the server's) site. Finally, to com
plete the LINK command the RSEXEC "links" its 
end of the auxiliary connections to its user's terminal. 

The RSEXEC program 

A large part of what the RSEXEC program does is to 
locate the resources necessary to satisfy user requests. It 
can satisfy some requests directly whereas others may 
require interaction with one or more remote server pro
grams. For example, an APPEND command may involve 

AUXILIARY 
/ CONNECTION 

Figure 4-configuration of RSEXEC and two server programs required 
to satisfy and APPEND command when the two files and the 

RSEXEC are all on different Hosts. The auxiliary connection is used 
to transmit the file to be appended from one server to the other 

interaction with none, one or two server programs 
depending upon where the two files are stored. 

An issue basic to the RSEXEC implementation con
cerns handling information necessary to access files: 
in particular, how much information about non-local 
files should be maintained locally by the RSEXEC? The 
advantage of maintaining the information locally is that 
requests requiring it can be satisfied without incurring 
the overhead involved in first locating the information 
and then accessing it through the network. Certain highly 
interactive activity would be precluded if it required 
significant interaction with remote server programs. For 
example, recognition and completion of file names* would 
be ususable if it required direct interaction with several 
remote server programs. Of course, it would be impracti
cal to maintain information locally about all files at all 
TENEX Hosts. 

The approach taken by the RSEXEC is to maintain 
information about the non-local files a user is most likely 
to reference and to acquire information about others from 
remote server programs as necessary. It implements this 
strategy by distinguishing internally four file types: 

1. files in the Composite Directory; 
2. files resident at the local Host which are not in the 

Composite Directory; 
3. files accessible via a bound device, and; 
4. all other files. 

Information about files of type 1 and 3 is maintained lo
cally by the RSEXEC. It can acquire information about 
type 2 files directly from the local TEi'TEX monitor, as 
necessary. No information about type '* files is main
tained locally; whenever such information is needed it is 
acquired from the appropriate remote server. File name 
recognition and completion and the use of partial path
names is rest ricted to file types 1, 2 and 3. 

The composite directory contains an entry for each 
file in each of the component directories specified in the 
user's profile. At the start of each session the RSEXEC 
constructs the user's composite directory by gathering 
information from the server programs at the Hosts speci
fied in the user profile. Throughout the session the 
RSEXEC modifie!' the composite directory. adding 
and deleting entries, as necessary. The composite direc
tory contains frequently accessed information (e.g., Host 
location, size, date of last access, etc.) about the user's 
files. It represents a source of information that can be 
accessed without incurring the overhead of going to the 
remote Host each time it is needed. 

* File name recognition and completion is a TENEX feature which 
allows a user to abbreviate fields of a file pathname. Appearance of ESC 
in the name causes the portion of the field before the ESC to be looked 
up, and, if the portion is unambiguous, the system will recognize it and 
supply the omitted characters and/ or fields to complete the file name. If 
the portion is ambiguous, the system will prompt the user for more 
characters by ringing the terminal bell. Because of its popularity we felt 
it important that the RSEXEC support this feature. 



The RSEXEC regards the composite directory as an 
approximation (which is usually accurate) to the state of 
the user's files. The state of a given file is understood to 
be maintained by the TENEX monitor at the site where 
the file resides. The RSEXEC is aware that the outcome 
of any action it initiates involving a remote file depends 
upon the file's state as determined by the appropriate 
remote TEKEX monitor, and that the state information 
in the composite directory may be "out of phase" with the 
actual state. It is prepared to handle the occasional fail
ure of actions it initiates based on inaccurate information 
in the composite directory by giving the user an appropri
ate error message and updating the composite directory. 
Depending upon the severity of the situation it may 
choose to change a single entry in the composite directory, 
reacquire all the information for a component directory, 
ox rebuild the entire composite directory. 

The service program for the RSEXEC 

Each RSEXEC service program has two primary re
sponsibilities: 

1. to act on behalf of non-local users (typically 
RSEXEC programs), and; 

2. to maintain information on the status of the other 
server programs. 

The status information it maintains has an entry for each 
Host indicating whether the server program at the Host is 
up and running, the current system load at the Host, etc. 
Whenever an RSEXEC program needs service from some 
remote server program it checks the status information 
maintained by the local server. If the remote server is 
indicated as up it goes ahead and requests the service; 
otherwise it does not bother. 

A major requirement of the server program implemen
tation is that it be resilient to failure. The server should 
be able to recover gracefully from common error situa
tions and, more important, it should be able to "localize" 
the effects of those from which it can't. At any given time, 
the server may simultaneously be acting on behalf of a 
number of user programs at different Hosts. A malfunc
tioning or malicious user program should not be able to 
force termination of the entire service program. Further, 
it should not be able to adversely effect the quality of 
service received by the other users. 

To achieve such resiliency the RSEXEC server pro
gram is implemented as a hierarchy of loosely connected, 
cooperating processes (see Figure 5): 

1. The RSSER process is at the root of the hierarchy. 
Its primary duty is to create and maintain the other 
processes; 

2. REQSER processes are created in response to 
requests for service. There is one for each non-local 
user being served. 
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Figure 5-Hierarchical structure of the RSEXEC service program 

3. A ST ASER process maintains status information 
about the server programs at other sites. 

Partitioning the server in this way makes it easy to local
ize the effect of error situations. For example, occurrence 
of an unrecoverable error in a REQSER process results in 
service interruption only to the user being serviced by 
that process: all other REQSER processes can continue 
to provide service uninterrupted. 

When service is requested by a non-local program, the 
RSSER process creates a REQSER process to provide it. 
The REQSER process responds to requests by the non
local program as governed by the protocol. When the non
local program signals that it needs no further service, 
the REQSER process halts and is terminated by RSSER. 

The STASER process maintains an up-to-date record 
of the status of the server programs at other Hosts by 
exchanging status information with the STASER proc
esses at the other Hosts. The most straightforward way to 
keep up-to-date information would be to have each 
ST ASER process periodically "broadcast" its own status 
to the others. Unfortunately, the current, connection
based Host-Host protocol of the ARPANET16 forces use of 
a less elegant mechanism. Each STASER process per
forms its task by: 

1. periodically requesting a status report from each of 
the other processes, and; 

2. sending status information to the other processes as 
requested. 

To request a status report from another STASER proc
ess, STASER attempts to establish a connection to a 
"well-known" port maintained in a "listening" state by 
the other process. If the other process is up and running, 
the connection attempt succeeds and status informa-
tion is sent to the requesting process. The reporting proc
ess then returns the well-known port to the listening 
state so that it can respond to requests from other proc-
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esses. The requesting process uses the status report to up
date an appropriate status table entry. If the connection 
attempt does not succeed within a specified time pe.riod, 
the requesting process records the event as a mIssed 
report in an appropriate status table entry. 

When the server program at a Host first comes up, the 
status table is initialized by marking the server programs 
at the other Hosts as down. After a particular server is 
marked as down, STASER must collect a number of sta
tus reports from it before it can mark the program as up 
and useful. If, on its way up, the program misses several 
consecutive reports, its "report count" is zeroed. By 
requiring a number of status reports from a remote server 
before marking it as up, STASER is requiring that the 
remote program has functioned "properly" for a while. As 
a result, the likelihood that it is in a stable state capable 
of servicing local RSEXEC programs is increased. 
ST ASER is willing to attribute occasionally missed re
ports as being due to "random" fluctuations in network 
or Host responses. However, consistent failure of a re
mote server to report is taken to mean that the program 
is unusable and results in it being marked as down. 

Because up-to-date status information is crucial to the 
operation of the RSEXEC system it is important that 
failure of the STASER process be infrequent, and that 
when a failure does occur it is detected and corrected 
quickly. STASER itself is programmed to cope with 
common errors. However error situations can arise from 
which STASER is incapable of recovering. These situa
tions are usually the result of infrequent and unexpected 
"network" events such as Host-Host protocol violations 
and lost or garbled messages. (Error detection and control 
is performed on messages passed between IMPS to insure 
that messages are not lost or garbled within the IMP 
subnet: however, there is currently no error control for 
messages passing over the Host to IMP interface.) For all 
practical purposes such situations are irreproducible, 
making their pathology difficult to understand let alone 
program for. The approach we have taken is to ~ckn?wl
edge that we don't know how to prevent such sIt~atI?ns 
and to try to minimize their effect. When functIOnmg 
properly the ST ASER process "reports in" periodicall~. 
If it fails to report as expected, RSSER assumes that It 
has malfunctioned and restarts it. 

Providing the RSEXEC to TIP users 

The RSEXEC is available as a network executive pro
gram to users whose access to the network is by way of a 
TIP (or other non-TENEX Host) through a standard 
service program (TIPSER) that runs on TENEX Hosts.* 
To use the RSEXEC from a TIP a user instructs the TIP 
to initiate an initial connection protocol exchange with 
one of the TIPSER programs. TIPSER responds to the 

* At present TIPSER is run on a regular basis at only one of the 
TENEX Hosts; we expect several other Hosts will start running it on a 
ff'gnl:H hH~i~ "hortly. 

ICP by creating a new process which runs the RSEXEC 
for the TIP user. 

CONCLUDING REMARKS 

Experience with the RSEXEC has shown that it is capa
ble of supporting significant resource sharing among the 
TENEX Hosts in the ARPANET. It does so in a way that 
provides users access to resources beyond the boundaries 
of their local system with a convenience not previously 
experienced within the ARPANET. As the RSEXEC 
system evolves, the TENEX Hosts will become more 
tightly coupled and will approach the goal of a multi-Host 
TENEX. Part of the process of evolution will be to pro
vide direct support for many RSEXEC features at the 
level of the TENEX monitor. 

At present the RSEXEC system is markedly deficient 
in supporting significant resource sharing among dissimi-
1ar Hosts. True, it provides mini-Hosts, such as TIPs, 
with a mechanism for accessing a small portion of the 
resources of the TENEX (and some non-TENEX) Hosts, 
enabling them to provide their users with an executive 
program that is well beyond their own limited capacity. 
Beyond that, however, the system does little more than to 
support inter-Host user-user interaction between Hosts 
that choose to implement the appropriate subset of the 
RSEXEC protocol. There are, of course, limitations to 
how tightly Hosts with fundamentally different operating 
systems can be coupled. However, it is clear that the 
RSEXEC has not yet approached those limitations and 
that there is room for improvement in this area. 

The RSEXEC is designed to provide access to the 
resources within a computer network in a manner that 
makes the network itself transparent by removing the 
logical distinction between local and remote. As a result, 
the user can deal with the network as a single entity 
rather than a collection of autonomous Hosts. We feel 
that it will be through systems such as the RSEXEC that 
users will be able to most effectively exploit the resources 
of computer networks. 
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Avoiding simulation in simulating computer 
communication networks* 

by R. VAN SL YKE, W. CHOU, and H. FRANK 

Network Analysis Corporation 
Glen Cove, ~ew York 

INTRODUCTION 

Computer communication networks are complex systems 
often involving human operators, terminals, modems, 
multiplexers, concentrators, communication channels as 
well as the computers. Events occur at an extraordinary 
range of rates. Computer operations take place in micro
seconds, modem and channel operations take place on the 
order of milliseconds, while human interaction is on a 
scale of seconds or minutes, and the mean time between 
failures of the various equipments may be on the order of 
days, weeks, or months. Moreover, many systems are 
being designed and built today which involve thousands 
of terminals, communication links, and other devices 
working simultaneously and often asynchronously. 

Thus, in addition to the ordinary difficulties of simula
tion, the particular nature of computer communication 
networks gives rise to special problems. Blind brute force 
simulations of systems of this degree of complexity 
usually result in large, unwieldy, and unverifiable simula
tion programs only understood by the creator (if by him) 
and/ or statistically insignificant estimates due to unac
ceptable computational time per sample. 

In order to obtain useable results careful attention 
must be paid to determining the key features of the sys
tem to be considered before the simulation is designed 
and approximating, ignoring or otherwise disposing of the 
unimportant aspects. In this paper, we discuss three 
approaches we have found useful in doing this. While 
these ideas may seem obvious especially in retrospect, our 
experience has been that they have often been overlooked. 
The first technique takes advantage of situations where 
the significant events occur infrequently. A common 
example is in studies involving infrequent data errors or 
equipment failures. The second idea is the converse of the 
first and arises from simulations in which the significant 
events occur most of the time and the rare events are of 
less importance. The final idea is to make as much use as 
possible of analytic techniques by hybrid simulations 
reserving simulation for only those aspects not amenable 

* This work was supported bv the Advanced Research Projects Agency 
of the Department of Defense under Contract No. DAHC 15-73-C-0135. 
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to analysis. In the next three sections we give many illus
trations drawn from practice of these ideas. 

IMPORTANT RARE EVENTS 

In a computer communication environment there co
exist various events occurring at widely varying rates. 
Often the activities of interest are events which occur 
rarely or are the result of composite events consisting of a 
relatively infrequent sequence of events. This suggests the 
possibility of ignoring or grossly simplifying the represen
tation of interim insignificant events. For this the simula
tor has one big advantage over the observer of a real sys
tem in that he can "predict" the future. In a real opera
tional environment there is no way to predict exactly the 
next occurrence of a randomly occurring event; in a simu
lated environment often such an event can be predicted 
since the appropriate random numbers can all be gener
ated in advance of any calculation (if their distribution is 
not affected by generating the next random number). 
Once the future occurrence time is known, the simulated 
clock can be "advanced" to this time. The intervening 
activities can either be ignored or handled analytically. 
Extending this idea further the clock in the usual sense 
can be dispensed with and time can be measured by the 
occurrence of the interesting events much as in renewal 
theory. 

Example J-Response time simulation of terminal
concentrator complexes 

In performing response time simulations for terminals 
connected by a multidrop polled line connected to a con
centrator or central computer one can often save large 
amounts of computer time by avoiding detailed simula
tion of the polling cycle in periods of no traffic. Unless the 
traffic load is very heavy, large time intervals (relative to 
the time required for polling) between two successive 
messages will occur rather frequently. In a real transmis
sion system, the concentrator just polls terminals during 
this period; if the simulation does the same, large 
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amounts of computer time may be wasted. In a simula
tion program, after one message is transmitted, the time 
the next message is ready to be transmitted can be pre
dicted. 

Therefore, the program may advance the clock to the 
time when the next message is ready and determine 
which terminal should be polled at that time (ignoring the 
polling that goes on in the interim). 

For each terminal v. hich is not waiting for a reply 
message from the concentrator, the program can predict 
the time when it has an inbound message to send to the 
concentrator by generating as the inter-message time at 
the terminal, a random number based on input informa
tion. For the concentrator, the program can predict in the 
same way when it has a reply message to deliver. Among 
these messages the time the first message is ready to send 
is determined. The time elements involved in polling one 
terminal is usually deterministic and known. Therefore, if 
Tl is the time at the end of the current complete message 
transaction, and T2 is the time when the next message 
begins to wait for transmission, the terminal being polled 
at T2 can be determined. Let this terminal be ID. The 
concentrator did not start to poll ID at exactly T2 but 
started at some earlier time Ta. In the simulation pro
gram, the clock can be advanced to Ta and no activities 
between Tl and T2 need be simulated. ID is polled at Ta 
and the simulation is resumed and continues until the 
transaction for the next message is completed. 

INSIGNIFICANT RARE EVENTS 

In contrast to the situation in the previous section 
where rare events were of critical importance, often activ
ities resulting from rare events are of little interest in the 
simulation. These often numerous insignificant rare 
events can lead to difficulties both in the coding of the 
simulation and its execution. Firstly, an inordinate 
amount of coding and debugging time can be spent in 
representing all the various types of insignificant events. 
On the other hand, in the operation of the system, the 
rare events often can occur only when more significant 
events of much higher frequency also occur. Thus, each 
time such frequently occurring events are realized, one 
must check for the occurrence of the rare events which 
can grossly increase the computer time of the simulation. 
To reduce these undesirable effects, one may either elim-
inate the insignificant rare events from the simulation 
completely, or at least simplify the procedures relevant 
to the insignificant events so as to reduce the coding 
efforts and shorten running time. 

Example 2-Detecting and recovering from transmission 
errorsa 

In using a simulation program to predict terminal 
response time on a polled multidrop line, the transmission 
of all messages and their associated control sequence is 
simulated. For each type of transmission, errors may 
appear in a variety of different forms, such as no ac-

knowledgment to a message transmission, unrecognized 
message, the loss of one or more crucial characters, and 
parity errors. For each of them, there may be a different 
way to react and a different procedure for recovery. In a 
typical system, there are over forty different combina
tions of errors and procedures for their treatment. There
fore, it is impractical and undesirable to incorporate 
every one of the procedures into the program. Even if all 
the error handling procedures were simulated in the 
program, there is only limited effect on the response 
time under normal conditions (i.e., the message trans
mission error rate and the terminal error rate should be 
at least better than 10-a) but the program complexity 
and the computer running time would both be increased 
by a factor of 10 to 100. With respect to response time, 
the errors can be easily handled in the program. What
ever the form of error, it must stem from one of the 
following three sources: a line error during the trans
mission of the original message; an error caused by a 
malfunctioning terminal; or a line error during the 
transmission of an acknowledgment. The error prolongs 
the response time by introducing the extra delay caused 
by either the retransmission of the message and its 
associated supervisory sequences or by a time-out. If the 
timer is expired and the expected reply or character has 
not been detected by the concentrator, action is taken to 
recover from the error. This action may be a retrans
mission, a request for retransmission, or a termination 
sequence. The time-out is always longer than the total 
transmission time of the message and the associated 
supervisory sequences. Rather than considering the 
exact form of an error and its associated action, when
ever the simulated transmission system detects an 
error, a delay time equal to the time-out is added to the 
response time. 

With these simplifications introduced into the simula
tion program, the error handling procedures still require a 
large percentage of overall computer time. When a leased 
line is initially installed, the errors are very high mainly 
due to the maladjustment of the hardware. However, 
when all the bugs are out, the error rate has a very lim
ited effect on the response time. Therefore, for a slight 
sacrifice in accuracy the program may be run neglecting 
errors to save computer time. 

Example 3-Network reliability in the design and 
expansion of the ARPA computer network (SJCC; 
1970), (SJCC; 1972) 

It was desired to examine the effect on network per
formance of communication processor and link out
ages. 10

.
11 The initial design was based on the deterministic 

reliability requirement that there exist two node disjoint 
communication paths between every pair of communica
tion nodes (called Interface Message Processors, IMPs) in 
the net. A consequence of this is that in order for the 
network to become disconnected at least two of its ele
ments, communication links or IMPs must fail. Since the 
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IMPs and communication lines are relatively reliable 
(availability on the order of .98) disconnectiom are quite 
rare so a simulation model appropriate for the analysis of 
the communication functions of the network would have 
to run an enormously long time before a single failure 
could be expected, let alone two failures. To illustrate the 
ideas involved, let us consider the simplified problem of 
determining the fraction of the time, h(p), the network is 
disconnected given that links are inoperable a fraction p 
of the time. (We assume for purposes of illustration that 
IMPs don't fail. Depicted in Figure 1 is a 23 IMP, 28 link 
version of the ARPA network.) An obvious method of 
determining h(p) would be to generate a random number 
for each link i of the network; if the number ri is less than 
p the link is removed, otherwise it is left in. After this is 
done for each link the connectivity of the remaining 
})etwork is determined. Tbis is done many tim.es and the 
fraction of the times that the resulting network is discon
nected provides an estimate of h(p). Unfortunately, a 
good part of the time ri>p for each i, occasionally ri~p 
would hold for one i, and only rarely would ri~p for two or 
more i; thus, many random numbers would be generated 
to very little purpose. An effective way to sort out the sig
nificant samples is by using a Moore-Shannon expansion 
of h(p). We have 

m 

h(p)=L C(k)pk(l-p)m-k 

where m is the number of links and C(k) is the number 
of distinct disconnected subnetworks obtained from the 
original network by deleting exactly k links. Clearly, 

O~C(k)~(;). Thus we have partitioned the set of pos

sible events into those in which 0 links failed, 1 link failed 
and so on. In practice, it turns out that only a few of 
these classes of events are significant, the values of C(k) 
for the remaining classes are trivially obtained. Thus 
it takes at least n - 1 links to connect a network with n 

nodes so that C(k)=(;) for k=m-n, "', m. Simi

larly, C(O)=C(l)=O for the ARPA network because at 
least 2 links must be removed before the network be
comes disconnected. For the network depicted in Figure 
1 where m = 28, n = 23 the only remaining terms which 
are not immediately available are C(2), C(3), C(4), C(5), 
and C(6) (See Table 1). C(2) and C(3) can be obtained 
rather quickly by enumeration and the number of sub
trees is obtainable for formula giving C(6), thus leav-

Figure I-Network for reliability analysis 

TABLE I-Exactly Known C(k) for 23 ~ode 28 Link ARPA Net 

Number Number 
of links of links Num.ber of Number of 

Operative Failed Nets Failed Nets 

0 28 1 1 
1 27 28 28 
2 26 378 378 
3 25 3276 3276 
4 24 20475 20475 
5 23 98280 98280 
6 22 376740 376740 
7 21 1184040 1184040 
8 20 3108105 3108105 
9 19 6906900 6906900 

10 18 13123110 13123110 
11 17 21474180 21474180 
12 16 30421755 30421755 
13 15 37442160 37442160 
14 14 40116600 40116600 
15 13 37442160 37442160 
16 12 30421755 30421755 
17 11 21474180 21474180 
18 10 13123110 13123110 
19 9 6906900 6906900 
20 8 3108105 3108105 
21 7 1184040 1184040 
22 6 376740 349618 
23 5 98280 
24 4 20475 ? 
25 3 3276 827 
26 2 378 30 
27 1 28 0 
28 0 1 0 

Notes: a: not enough links to connect 23 nodes. 
b: number of trees calculated by formula. 
c: enumerated. 
d: less failed links than minimum cutset. 

Method of 
Determi-

nation 

a 

a 
b 

c 
c 
d 
d 

ing only C(4) and C(5) undetermined. These can be ob
tained by sampling; in general, by stratified sampling. 

Thus we have not only been able to dispose of fre
quently occurring but unimportant events corresponding 
to C(O), and C(l) but also to the rare and unimportant 
events corresponding to C(7) through C(28). 

HYBRID SIMULATIONS 

Hybrid simulations refer to models which involve both 
analytic techniques and simulation techniques. Since 
analytic techniques are often more accurate and faster 
than simulation, it is usually worth the effort to model as 
much of the system as is possible analytically. 

A complete computer communication system is in 
general a composite system of many complicated subsys
tems, involving the interaction of a variety of computer 
subsystems, terminal subsystems and functiona lly inde
pendent transmission subsystems. Many of these systems 
are complicated and not well defined. For example, there 
is no simple macroscopic characterization of the hardware 
and software in a computer system or of how the hard-
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ware and software interact with each other while dealing 
with message traffic. It is therefore practically speaking 
impossible to simulate a whole ~ystem without using some 
analytic representations or employing some approxima
tions. In place of simulation, the functioning of a subsys
tem can often be represented by an empirical model. 

In deriving analytic models, however, simplification is 
always necessary to make formulation manageable. For 
example, message flow is often assumed to follow a Pois
son pattern, and the message length distribution is some
times approximated by an exponential distribution. 
Analytic approaches can give quite acceptable results, if 
the problem is properly modeled. 

Example 4-Throughput analysis of distributed networks 

In the topological design of distributed computer net
works such as the ARPA network a rapid method for 
analyzing the throughput capacity of a design under con
sideration is essential. Analyzing the traffic capacity in 
detail is a formidable task, involving modeling the traffic 
statistics, queuing at the IMPs, the routing doctrine, error 
control procedures, and the like for 30 or 40 IMPs and a 
comparable number of communication links. In order to 
examine routing methods, Teitelman and Kahn9 devel
oped a detailed simulation model with realistic traffic 
routing and metering strategy capable of simulating small 
versions of the ARPA Network. Since, in the design of the 
topology, traffic routing is performed for hundreds of 
possible configurations, such a simulation is impractical 
so that a deterministic method of traffic analysis was 
developed! requiring orders of magnitude less in comput
ing times and thus allowing its repeated use. The two 
models were developed independently. Based on a 10 
IMP version of the ARPA Network shown in Figure 2, 
average node-to-node delay time is plotted versus network 
traffic volume in Figure 3. The curve is from the deter
ministic analytic model while the x's are the results of 
simulation. The analytic results are more conservative 
than the simulation results due to the simplification 
introduced in the analytic model but the results are strik
ingly close.6 

The topological design is chosen with respect to some 
predicted traffic distribution from the computers in the 
network. Since such predictions are highly arbitrary, it is 

Figure 2--~etwork for throughput analysis 

Figure 3-Throughput for network shown in Figure 2 

necessary to determine how robust the design is with 
respect to errors in the prediction of traffic. This was 
done by choosing the average traffic levels at each com
puter randomly4 and using the analytic throughput ana
lyzer to evaluate the network for varying input traffic 
patterns. Thus, the availability of a quick throughput 
analyzer allowed a more macroscopic simulation than 
would have been computationally feasible if the through
put would have had to be calculated by simulation. 

Example 5-Time spent at a concentrator 3 

In the study of a general centralized computer commu
nication network, one of the most difficult tasks is to 
estimate accurately the time span between an inbound 
message's arrival at the concentrator and the time the 
reply is ready for transmission back to the terminal which 
generated the inbound message. 

The system we model for this example has several 
concentrators and one central computer. Several multi
drop lines, called regional lines, are connected to a con
centrator, called a regional concentrator terminal (RCT). 
Each RCT is connected to the central computer system 
(CPS) via a high speed trunk line. After an inbound 
message reaches the RCT it undergoes the following proc
esses before the reply is transmitted back to the terminal: 
(1) waiting for processing by the RCT, (2) processing by 
the RCT, (3) waiting for access to the inbound trunk 
(from RCT to CPS), (4) transmitting on the inbound 
trunk, (5) waiting for processing by the CPS, (6) CPS 
processing the inbound message to obtain the reply, (7) 
reply waiting for access to the outbound trunk, (8) trans
mitting on the outbound trunk, (9) waiting for RCT to 
process, (10) processing by the RCT, (11) waiting for 
access to the regional line. 
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In our application, the RCT is under-utilized while the 
CPS is highly utilized. Items (1), (2), (9) and (10) are 
times relevant to the RCT and are negligibly small. Items 
(4) and (8) are transmission times and can be obtained by 
dividing message length by the line speed. The network 
control procedure in our model does not allow a second 
message to be delivered if the reply to the first has not 
been returned. Therefore, there is no waiting for the reply 
to access the regional line, and item (11) is zero. A combi
nation of an analytic model and an analytic function is 
used to obtain item (3), as shown below. An empirical 
distribution is used for the combination of items (5) and 
(6). An analytic function is used for determining item (7). 

When an inbound message arrives at the RCT, it is 
processed and queued at the output buffer for transmis
sion to the CPS. The waiting time for access to the 
inbound trunk line from the RCT to the CPS depends on 
the traffic load of other regional lines connected to the 
same RCT. To determine how long the message must 
wait, the number of regional lines having a message wait
ing at the RCT for transmission to the CPS must be 
determined. We assume that the average transaction rate 
(which is the sum of the transaction rates of all terminals 
connected to the same RCT) on the trunk connecting the 
RCT to the CPS is known and that the message arrivals 
to the trunk have a Poisson distribution and their length 
has an exponential distribution. Then, the probability of 
N or more messages is ps where P is the trunk utilization 
factor, i.e., the ratio of average total traffic on the 
inbound trunk to the trunk speed. A random number with 
this distribution can be generated from one uniformly 
distributed random number by inverting the cumulative 
distribution function. 

These messages include those waiting at terminals and 
those at the RCT. A random number for each of these 
inbound messages is generated to determine which 
regional line the message is from. The number of regional 
lines having inbound messages in waiting is thus deter
mined. The network flow control procedure in our model 
allows no more than one inbound message from each of 
these regional lines at the RCT. Therefore, the number of 
non-empty buffers is no more than the number of lines 
having inbound messages in waiting. Conservatively, the 
former number is set to be equal to the latter. The wait
ing for access to the trunk is then equal to the number so 
obtained multiplied by the time required to transmit one 
average inbound message from the RCT to the CPS. 

The time interval between the time at the end of the 
transmission of an inbound message to the CPS and the 
time the reply has returned to the RCT, depends on the 
CPS occupancy and the trunk utilization. The CPS occu
pancy is a direct consequence of the transaction rate of 
the whole system. The trunk utilization is a direct result 
of the transaction rate input from all the regional lines 
connected to the ReT. In our model the time waiting for 
processing at the CPS and the processing time for each 
message is given as an empirical distribution. With the 

help of a random number generator, the time spent at 
CPS can be determined. The time a reply or an outbound 
message spends in waiting for the trunk is conservatively 
estimated by using the following analytic formula 

Probability (waiting time>t) =Pe· (l-Plt A~·:-; 

where p is the trunk utilization factor and A VS is the 
average time required to transmit an outbound message.s 

CONCLUSION 

Computer communication networks can be quite large 
and immensely complex with events occurring on a vast 
time scale. Rarely can all aspects of such a system be 
simulated at once for any but the most trivially small and 
simple systems. Therefore, simulations must be designed 
for relatively restricted purposes and careful attention 
must be paid to ways and means of simplifying and ignor
ing factors not directly pertinent to the purposes. Here we 
have suggested three ways to avoid unnecessary simula
tion: (1) by not simulating in detail insignificant events 
which occur at a much higher rate than the significant 
ones, (2) by ignoring rare events of little practical signifi
cance and (3) by using hybrid simulations with extensive 
use of analytic modeling where applicable. A number of 
examples drawn from practice illustrate the application 
of these ideas to computer communication systems. 
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An implementation of a data management system on 
an associative processor 

by RICHARD MOULDER 

Goodyear Aerospace Corporation 
Akron, Ohio 

INTRODUCTION 

Recent years have witnessed a widespread and intensive 
effort to develop systems to store, maintain, and rapidly 
access data bases of remarkably varied size and type. 
Such systems are variously referred to as Data Base 
Management Systems (DBMS), Information Retrieval 
Systems, Management Information Systems and other 
similar titles. To a large extent the burden of developing 
such systems has fallen on the computer industry. The 
problem of providing devices on which data bases can be 
stored has been reasonably well solved by disc and drum 
systems developed for the purpose and commercially 
available at the present time. The dual problem of pro
viding both rapid query and easy update procedures has 
proved to be more vexing. 

In what might be called the conventional approach to 
DBMS development, sequential processors are employed 
and large, complex software systems developed to imple
ment requisite data processing functions. The results are 
often disappointing. 

A promising new approach has been provided by the 
appearance of the Associative Processor (AP). This new 
computer resource provides a true hardware realization of 
content addressability, unprecedented I/O capability, 
and seems ideally suited to data processing operations 
encountered in data management systems. Many papers 
have been written about the use of associative processors 
in information retrieval and in particular about their 
ability to handle data management problems. l To the best 
of the author's knowledge no actual system has been pre
viously implemented on an associative processor. 

This paper will detail the author's experience to date in 
implementing a data management system on an associa
tive processor. It should be noted that the data manage
ment system to be described in the following pages is not 
intended as a marketable software package. It is research 
oriented, its design and development being motivated by 
the desire to demonstrate the applicability of associative 
processing in data management and to develop a versa
tile, economical data base management system concept 
and methodology exploiting the potential of an associative 
processor and a special head per track disc. The remain-
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der of this paper will describe the hardware configuration 
of the- author's facility, the data stor-age-scheme-,--the 
search technique, the user oriented data definition and 
manipulation languages, and some of the benefits and 
problems encountered in utilizing an Associative Proces
sor for DBMS. 

HARDWARE CONFIGURATION 

This section will describe the computer facility 
employed by the author and available to Goodyear Aero
space Corporation customers. The STARAN* Evaluation 
and Training Facility (SETF) is a spacious, modern, well 
equipped facility organized around a four-array 
STARAN computer. Of particular significance to DBMS 
efforts is the mating of ST ARAN to a parallel head per 
track disc (PHD). The disc is connected for parallel I/O 
through STARAN's Custom Input/Output Unit (ClOU). 
Of the 72 parallel channels available on the disc, 64 are 
tied to STARAN. The switching capability of the CIOU 
allows time sharing of the 64 disc channels within and 
between the ST ARAN arrays. (The SETF ST ARAN is a 
4 array machine, each array containing 256 words of 256 
bits each.) The switching provision allows simulations of 
AP /PHD systems in which the number of PHD channels 
are selectable in multiples of 64 up to 1024 total parallel 
channels. 

In order to provide for rather general information 
handling applications and demonstrations, the ST ARAN 
is integrated, via hardware and software, with an XDS 
Sigma 5 general purpose computer, which in turn is inte
grated with an EAI 7800 analog computer. Both the 
ST ARAN and the Sigma 5 are connected to a full comple
ment of peripherals. The Sigma 5 peripherals include a 
sophisticated, high-speed graphics display unit well 
suited for real time, hands-on exercising of the AP / PHD 
DBMS. A sketch of the SETF is given in Figure l. 

The Custom Input/Output Unit (CIOU) is composed of 
two basic sections. One section provides the communica
tion between the Sigma 5 and the AP. This communica
tion is accomplished by the Direct Memory Access capa-

* TM. Goodyear Aerospace Corporation, Akron, Ohio 44315 
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Figure l-STARAN evaluation and training facility 

bility of the Sigma 5 computer. The second section of the 
CIOU is composed of the Parallel Input/ Output Unit 
(PIOU). This unit interfaces the AP with the PHD. As 
previously mentioned the PHD is composed of 72 tracks 
of which 64 tracks are tied to STARAN. The disc is 
composed of one surface which is sub-divided into 384 
sectors consisting of 64 tracks, each track having a bit 
capacity of 256 bits per sector. The time per revolution 
for the disc is approximately 39 msec. It should be noted 
that Goodyear Aerospace Corporation did not manufac
ture this disc and that there are several manufacturers 
providing parallel head per track devices. Given this 
hardware configuration, a data storage scheme was devel
oped. 

DATA STORAGE SCHEME 

A hierarchical data structure was chosen for our initial 
effort since it is probably the structure most widely used 
for defining a data base. In order to utilize the parallel 
search capabilities of the AP and the parallel communi
cation ability of the AP /PHD system, it was decided to 
reduce the hierarchical structure to a single level data 
base. The method used was similar to the one suggested 
by DeFiore, Stillman, and Berra. I In this method each 
level of the hierarchy is considered a unique record type. 
Associated with each record type are level codes indicat
ing the parentage of the particular record. The association 
of level numbers with record type is purely logical and 
does not imply or require a correspondingly structured 
data storage scheme. 

It should be noted that each record contains a level 
code for each of the preceding levels in the hierarchical 
structure. The different records are stored on the PHD in 
a random fashion. No tables or inverted files are intro
duced. Only the basic data file is stored on the disc. Since 
we have an unordered and unstructured data base, it is 
necessary to search the entire data base in order to 
respond to a query. The searching of the entire data base 
presents no significant time delays because of the parallel 
nature of both the AP and the PHD. This data storage 
scheme was selected because it provides an easy and effi
cient means of updating the dHtH hHse dl1P to the lHck of 

multiplicity of the data. It should be emphasized that this 
scheme is not necessarily the best approach for all data 
bases. It appears to be well suited for small to moderately 
sized data bases having hierarchical structure with few 
levels. Data bases which are to be queried across a wide 
spectrum of data elements are especially well suited for 
this type of organization since all data elements can par
ticipate in a search with no increase in storage for 
inverted lists or other indexing schemes. Since there is no 
ordering of the data base and no multiplicity of data 
values, updating can be accomplished very rapidly with a 
minimum amount of software. 

SAMPLE DATA BASE 

The data base selected for the AP jPHD DBMS devel
opment program is a subset of a larger data base used by 
the SACCS/DMS and contains approximately 400.000 
characters. It is a four-level hierarchical structure com
posed of command, unit, sortie, and option records. 

A tree diagram of the selected data base is shown in 
Figure 2. 

Figure 3 gives an example of an option record. 
Definitions for the option record are as follows: 

(1) Record Type-indicates the type of record by 
means of the level number; also indicates the word 
number of this record. If a logical record requires 
more than one array word, these words will be 
stored consecutively with each word being given a 
word number. 

(2) Level Codes-these codes refer to the ancestry of 
the particular record. They consist of an ordinal 
number. 

(3) Data Item Names-These are elements or fields of 
one particular record type. Each field has a value. 
There may not be any two or more fields with the 
same name. 

(4) Working Area-This is that portion of an array 
word not being used by the data record. 

Figure ?-Tree rlil'lgmm of ~E'le('teo oMa hasp 
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SEARCH TECHNIQUE 

In order to search the entire data base, the data will be 
arranged in sectors consisting of 64 tracks. Each track 
will be composed of 256 bits. The ST ARAN Associative 
Processor employs 256 bit words; each associative array 
being composed of 256 such words. A PHD sector will 
therefore contain one fourth of an array load. In our 
current system we are utilizing the first 64 words of the 
first array for data storage. With the addition of more 
tracks on the PHD we could utilize a greater portion of an 
array with no additional execution time due to the paral
lel nature of our input. (The AP can of course time share 
the 64 tracks currently available in order to simulate 
larger PHD's.) With this technique it is possible to read 
in a sector, perform the required search, then read in 
another sector, perform a search, continuing in this fash
ion until the entire data base is searched. 

For our current PHD, the time for a sector to pass 
under the read/ write heads is approximately 100 J,Lsec. 
Preliminary studies have shown that complex or multi
searches can be performed in this time span. Utilizing 
this fact it should be possible to read every other sector on 
one pass of our disc. With two passes the entire data base 
will have been searched. This assumes that the entire 
data base is resident on one surface. Additional surfaces 
would increase this time by a factor equal to the number 
of surfaces. 

Figure 4 shows an associative processor array and the 
every other sector scheme employed when searching the 
PHD. It should be emphasized that due to the hierarchi
cal structure of the data base more than one data base 
search will be required to satisfy a user's request and that 
the time to search and output from the associative array 
is variable. In order to minimize the time to search the 
disc when a 100 J,Lsec is not sufficient time to process an 
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array, a bit map of searched sectors is kept. This bit map 
will allow minimization of rotational delay. 

DATA BASE MANAGEMENT SYSTEM 

The DBMS software is composed of four modules: the 
Data Definition, File Create, Interrogation and Update 
modules. Since our DBMS is intended for research and 
not a software product package, we have not incorporated 
all the features that would be found in a generalized 
DBMS. Our system will provide the means to create, 
interrogate and update a data base. The following discus
sion will briefly describe each module. 

Data definition module 

This module defines a file definition table. This table 
relates the data structure as the user views it, to a data 
storage scheme needed by the software routines. Every 
data base will have only one file definition table. This 
table will contain the following information. 

(1) File name-the name of the particular data base 
(2) Record name-the name of each logical record type 
(3) Data items-the name of each attribute in a given 

logical record type 
(4) Synonym name-an abbreviated record or attri

bute name 
(5) Level number-a number indicating the level of the 

record 
(6) Continuation number-this number is associated 

with each attribute and indicates which AP word of 
a multi-word record contains this attribute 

(7) Starting bit position-the bit position in an AP 
word where a particular attribute starts 

(8) Number of bits-the number of bits occupied by an 
attribute in an AP word 

(9) Conversion code-a code indicating the conversion 
type: EBCDIC or binary 

The language used to define the data definition table is 
called the Data Description Language (DDL). The 
DDL used in our system has been modeled after 
IBM's Generalized Information System DDL. 

File create module 

Once the file definition table has been created, the file 
create module is run. This module populates a storage 
medium with the data values of a particular data base. 

Interrogation module 

This module is the primary means for interrogating the 
data base. Since our DBMS is intended to demonstrate 
the applicability of Associative Processors in DBMS, we 
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have developed a user oriented language. This Data 
Manipulation Language (DML) is modeled after SDC's 
TDMS system. It is conversational in nature and requires 
no programming experience for its utilization. At present 
there is only one option in the interrogation module 
implemented in our DBMS. This option is the print 
option. 

The print option is used to query the data base. The 
user is able to query the data base using any data item(s) 
as his selection criteria. The form of a query follows: 

Print Name(s) Where Conditional Expression(s) 

• Name(s)-Any data item name or synonym 
• Conditional Expression (CE)-Selection criteria for 

searches 

The form of the CE is: 

Data Item Name Relational Operator Value 

Relational Operators 
EQ-Equal to 
NE-Not equal to 
L T - Less than 
LE-Less than or equal to 
GT -Greater than 
GE-Greater than or equal to 

Logical Operators (LO )-link conditional expressions 
together: 

CE Logical Operator CE Logical operators 
• AND-Logical And 
• OR-Inclusive Or 

At present the output from a query will be in a fixed 
format. It is anticipated that a formatting module will be 
added to the system. An example of the print option and 
its output are shown below. 

Query 
Print Unit Name, Sortie Number where 
Option Number EQ 6 and Weapon Type NE Mark82 
and Country Code EQ USA * 

Output 
Unit Name-303BW 
Sortie Number-1876 

Update module 

This module performs all the updating of the data base. 
There are four options available to the user. These are 
change, delete, add, and move. These options are 
described helow. 

Change option 

The change option performs all edits to the data base. 
All records satisfying the change selection criteria are 
updated. The form of the change option follows: 

Change Name to Value Where Conditional Expres
sion(s) 

• N ame-Any data item name or synonym 
• Value-Any valid data value associated with the 

above name; this is the new value 
• Conditional Expression-same as the print option . 

An example of the change option follows: 

Change Unit Name to 308BW Where 
Unit Number EQ 1878 And Option Number GE 6* 

It should be noted that all records that satisfy the unit 
number and option number criteria will have their unit 
names changed to 308BW. 

Delete option 

This option will delete all records that satisfy the condi
tional expression. All subordinate records associated with 
the deleted records will also be deleted. The form and an 
example of the delete option follows: 

Delete Record Name Where Conditional Expression(s) 

Record Name-any valid record name (e.g. com
mand, unit, sortie, option) 

Conditional Expression(s)-same as print option 

Example: 
Delete Sortie Where Sortie Number EQ 7781 * 

In this example all the sortie records with sortie num
ber equal 7781 will be deleted. In addition all option 
records having a deleted sortie record as its parent will 
also be deleted. 

Add option 

This option adds new records to the data base. Before a 
new record -is added to the data base, a search will be ini
tiated to determine if this record already exists. If the 
record exists a message will be printed on the graphic 
display unit and the add operation will not occur. The 
form of the add option follows. 

Add Record Name to Descriptor Where Description of 
Data 

• Record Name-any valid record name (i.e. com
mand, unit, sortie, option) 

• Descriptor-special form of the conditional expres
!';ion in whirh 'EQ' is the only allowed relational 



operator; the descriptor describes the parentage of 
the record being added to the data base. 

• Description of Data-This item is used to define the 
data base; the form of this item is the same as a 
conditional expression with the requirement that 
'EQ' is the only allowed relational operator. 

An example of the add option follows: 
Add Unit To Name EQ 8AF Where 
Unit Name EQ 302BW And Unit Number EQ 1682 
And Aircraft Possessed EQ 85* 

In this example the command record for the 8AF must 
be in the data base before this unit record can be added 
to the data base. In the case of a command record being 
added to the data base, the descriptor field is omitted 
from the above form. 

Move option 

This option allows the user to restructure the data base. 
The move option will change the level codes of the 
affected records. The affected records are those satisfying 
the conditional expression, in the move command, as well 
as all subordinate records. The move option has the fol
lowing form: 

Move Record Name to Descriptor Where Conditional 
Expression 

• Record Name-any record name 
• Descriptor-this item describes the new parentage of 

the record that is to be moved; the form is the same 
as the add option 

• Conditional Expression-same as the print option 

An example of the move option follows: 
Move Sortie to Name EQ 12AF and Unit Number 

EQ 2201 
Where Sortie Number EQ 41 and Option Number 

GT 12* 

In this example all sortie records which have a sortie 
number equal to 41 and an option record with option 
number greater than 12 will have its parentage (i.e., level 
codes) changed to the 12AF and 2201 unit. Also included 
in this restructuring will be all option records which have 
the changed sortie record as a parent. 

Status 

Currently the Data Definition and the Create Module 
are operational and our sample data base has been cre
ated and stored on the PHD. A simplified version of the 
Interrogation Module is running and performing queries 
using the AP and PHD. In this version the translator for 
the query is executed on the Sigma 5 and a task list is 
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constructed. This task list is transmitted to the AP where 
the desired searches are performed and the output of the 
searches are transmitted to the Sigma 5 via Direct Mem
ory Access. In the simplified version of the Interroga
tion Module no optimation of the software has been 
attempted. At the moment the number of disc sectors 
skipped between reads during a search of the data base is 
governed by the size of the task list and is not modified 
by the actual time available to process the task list. No 
sector bit map has been implemented. It is anticipated 
that future versions of the Interrogation Module will be 
optimized and a bit map will be introduced into the sys
tem. 

The change and delete options of the Update Module 
are also operational. The search routines currently 
employed in the Update Module are the same routines 
found in the Interrogation Module. With a continuing 
effort, the attainment of our design goals and the comple
tion of our research data base management system should 
be realized. Further progress reports will be issued as our 
development efforts are continued. 

CONCLUSION 

Preliminary results indicate that an AP working in con
junction with a sequential computer affords the best con
figuration. With this marriage comes the best of two 
computer worlds, each performing what it is best capable 
of doing. With the ability to rapidly search the entire data 
base we have provided the user extreme flexibility in 
constructuring his search criteria. We have provided this 
with no additional storage for inverted files and no sacri
fice in update time. Associative processing brings to data 
base management designers and users the ability to query 
and update data bases in a fast and efficient manner with 
a minimum amount of software. 

With proper programming of AP's, multi-queries can 
be processed during a single array load, thus greatly 
increasing the throughput of the system. The future holds 
great promise for associative processors and we are striv
ing to lead the way. Many questions must be answered 
such as: 

(1) how to use conventional storage devices in combi
nation with PHD's, 

(2) what hardware requirements must be provided for 
a minimum configured AP; 

(3) the role of the sequential and AP computers in a 
hybrid configuration, and 

(4) how much software is required to provide a data 
management capability on AP's. 

In the near future these problems and others will have 
answers. Subsequent reports will elaborate on the per
formance of the system. Our work to date has sh~wn 
that associative processors truly provide an attractive 
alternative to conventional approaches to data retrieval 
and manipulation. 
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Aircraft conflict detection in an associative processor 

by H. R. DOWNS 

Systems Control, Inc. 
Palo Alto, California 

PROBLEM DESCRIPTIO~ 

A major problem in Air Traffic Control (ATC) is 
detecting when two aircraft are on a potential collision 
course soon enough to take some corrective action. Many 
algorithms are being developed which may lead to auto
mating the process of conflict detection. However, these 
algorithms typically require large amounts of computing 
resource if they are to be performed in real-time. This 
paper describes some techniques which may be used by 
an associative processor to perform the conflict detection 
operation. 

Conflict detection 

In a terminal ATC environment, each aircraft in the 
area will be tracked by a computer which contains a state 
estimate (position and velocity) for each aircraft within 
the 'field of view' of the radar or beacon. The information 
available on each aircraft may vary (e.g., elevation may 
be available for beacon-equipped aircraft) but some form 
of estimate will be kept for each aircraft under considera
tion. The conflict detection algorithm typically considers 
each pair of aircraft and uses their state estimates to 
determine whether a conflict may occur. The algorithm 
may perform one or more coarse screening processes to 
restrict the set of pairs of aircraft considered to those 
pairs where the aircraft are 'near' each other and then 
perform a more precise computation to determine 
whether a conflict is likely. 

The algorithm is typically concerned with some rather 
short interval of time in the future (about one minute) 
and it must allow for various uncertainties such as the 
state estimate uncertainty and the possible aircraft 
maneuvers during this time interval. 

As an example of the kind of algorithms being consid
ered for detection of conflicts between a pair of aircraft. a 
simple algorithm will be described. The relative distance 
at the initial time, DR, is computed. Then, the scalar 
quantity relative speed, SR, is computed for the initial 
time. If T is the iook-ahead time, then the estimated miss 
distance MD is 

177 

If MD is less than a specified criterion the aircraft are 
assumed to be in danger of conflict. 

More complicated algorithms are also under study. 
These involve altitude;turning rates, etc. 

Associative processors 

An associative processor is a processor which may 
access its memory by 'content' rather than by address. 
That is, a 'key' register containing some specific set of 
bits is compared with a field in each word of memory and 
when a match occurs, the memory word is 'accessed' (or 
flagged for later use). This type of memory is typically 
implemented by having some logic in each memory word 
which performs a bit-serial comparison of the 'key' with 
the selected field. 1 

Many associative processors have enough logic asso
ciated with each memory word to perform inequality 
compares (greater or less than) and some arithmetic 
operations. In others, memory words may be turned on or 
off; that is, some words may not be active during a partic
ular comparison. This associative processor may be 
viewed as a parallel-array computer where each word of 
memory is a processing element with its own memory and 
the 'key register' is contained in a control unit which 
decodes instructions and passes them to the processing 
elements. Some examples of this type of computer are the 
Sander's OMEN,2 the Goodyear Aerospace STARAN,3 
and the Texas Instruments SIMDA. 

Some additional capabilities which these computers 
may have are: (1) the ability to compare operands with a 
different key in each processing element (both compare 
operands are stored in one 'word') and (2) some form of 
direct communication between processing elements. 
Typically, each processing element can simultaneously 
pass data to its nearest neighbor. More complex permuta
tions of data between processing elements are also possi
ble. 

These processors are often referred to as associative 
array processors, though parallel-array is perhaps more 
descriptive. 

SOLUTIO~ APPROACHES 

This section presents several ways to solve the conflict 
detection problem with the use of an associative processor 
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and provides some estimate of the order of each 
approach. (The order is a measure of how the computa
tion time increases as the number of aircraft increases.) 

Straightforward associative processing approach 

The data for each aircraft under consideration can be 
placed in a separate processing element of the associative 
processor and each aircraft can be simultaneously com
pared with the remaining aircraft. This technique 
requires each aircraft to be compared with all other air
craft. 

If there are n aircraft under consideration there must 
be at least n processing elements (or associative memory 
words). The data on a single aircraft is placed in the key 
register and compared with the appropriate field in each 
processing element. Each compare operation in this algo
rithm is actually fairly complex, involving some arithme
tic computations before the comparison can be made. 

This approach compares every aircraft with every other 
aircraft (actually twice) and appears to use the computing 
resources of the associative array rather inefficiently. In 
fact, the entire algorithm must be executed n times. Since 
n comparisons are made each time the algorithm is exe
cuted, a total of n2 comparisons are made. (There are n(n 
-1) / 2 unique paris of aircraft to be considered.) 

It is more efficient to consider the associative processor 
for performing some sort of coarse screening procedure, 
and for all pairs which the AP determines may conflict to 
be passed to a sequential processor for a more detailed 
check. This assumes that the sequential processor can 
execute the complicated algorithm more quickly than a 
single processing element of the AP and that the AP can 
significantly reduce the number of pairs under considera
tion. 

An efficient algorithm for a serial processor 

One approach which has been suggested for solving this 
problem is to divide the area under consideration into 
boxes and to determine whether two aircraft are in the 
same or neighboring boxes. If they are then that pair of 
aircraft is checked more carefully for a possible conflict. 
This process is an efficient method for decreasing the 
number of pairs of aircraft to be checked in detail for a 
possible conflict. These boxes help to 'sort out' the air
craft according to their positions in the sky. 

The boxes can be described in a horizontal plane and 
may have dimensions of 1 or 2 miles on a side. An aircraft 
can be assigned to a box by determining a median posi
tion estimate for some time and choosing the box which 
contains this estimate. If the aircraft turns or changes 
velocity, then it may not arrive at the expected point at 
the time indicated but it cannot be very far from this 
point. For terminal area speeds and turning rates, an 
aircraft will typically not be more than about one box 
width away from the expected location. 

To check for conflicts, it is necessary to check possible 
conflicts in the same box and in boxes which are adjacent 
or near to the given box. If all aircraft in each box are 
compared with all other aircraft in this box and with all 
aircraft in boxes to the north, east and northeast, then all 
possible pairs are checked. By symmetry, it is not neces
sary to check boxes to the west, south, etc. 

The exact size of the boxes and the number of boxes 
checked for possible conflicts are determined by the air
craft speeds and measurement uncertainties. It is desira
ble to make them large enough so that only neighbors one 
or two boxes away need to be checked and yet small 
enough so that the number of aircraft per box is usually 
one or zero. 

Note, that this scheme does not check the altitude. If 
aircraft densities increased sufficiently and the altitude 
were generally available, then it might be desirable to 
form 3 dimensional boxes, accounting for altitude. 

Sort boxes on an associative processor 

A similar operation can be performed on an associative 
processor by assigning each box to a single processing 
element. If the boxes are numbered consecutively in rows 
and 'consecutive boxes are assigned to consecutive proc
essing elements, then adjacent boxes can be compared by 
translating the contents of all processing elements by an 
appropriate amount. For a square area containing 32 X 
32 (= 1024) boxes, the numbering scheme shown in Figure 
1 will suffice. 

In this numbering scheme, all aircraft in Box 1 are 
compared with the aircraft in Box 2, Box 33 and Box 34. 
Similarly, all aircraft in Box 2 are compared with the 
aircraft in Box 3, Box 34, and Box 35. When these com
parisons have been completed, all possible pairs within a 
box and in neighboring boxes will be detected. 

If only one aircraft were in each box, then each aircraft 
data set would be stored in the appropriate processing 
element and comparisons with neighboring boxes would 
be carried out by transferring a copy of each data set 
along the arrows shown in Figure 2 and comparing the 
original data set with the copy. When these neighboring 
boxes have been checked, then all possible conflicting 
pairs have been discovered. 

1 2 3 . 32 

33 34 35 64 

. 

1-g93 . " 1024 

Figure I-Boxes in 32X32 surveillance area 



When there is more than one aircraft in a box, then 
additional processing is required. The first aircraft which 
belongs in a box is stored in the proper processing element 
and a flag (bit) is set indicating this is its proper box. Any 
additional aircraft are placed in any available processing 
element. A pointer is set up linking all aircraft belonging 
in a specific box. In an associative processor, all that is 
necessary is to store the I.D. of the next aircraft in the 
chain in a particular processing element. The contents of 
various fields of a word and the links to the next word are 
shown in Figure 3. 

When the data is stored as indicated above, then every 
aircraft in box i can be retrieved by starting with process
ing element i. If the I.D. in Field B is not zero, then the 
next aircraft data set is located by performing an equality 
test using Field B from processing element i in the key 
register and comparing with Field A in all processing 
elements. 

When comparing the aircraft in one box with those in 
another box, every aircraft in the first box must be com-

neighbor on right 
association L:'\r'\ c:-'\ c"' c"'"'---r _____ ~ 

L' II I i I ~ 
1 ' 2 ~ 132 33134 I 35 · ] 
-~~ /'-7-/-'-::7,.-L--:;'~...-!--n-e-i g-h-bo-r-bel ow 
---~~~--/ association 

Associative Array Processor 

Figure 2-Data transfer for comparison with neighboring boxes 

pared with every aircraft in the other box. This is done by 
making a copy of the state estimates for each aircraft pair 
and placing each pair of state estimates in a single proc
essing element. When the conflict detection algorithm is 
executed, all the pairs are checked simultaneously. That 
is, each processing element operates on a pair of state 
estimates and determines, by a fairly complicated algo
rithm, whether the aircraft pair represented in this proc
essing element may be in danger of colliding. 

If the memory available in each processing element 
pair is sufficient, then one pair can be stored in each 
element. In this case, the array is used very efficiently 
since many elements can execute the detailed conflict 
detection algorithm simultaneously. If there are more 
processing elements than pairs, then the detailed conflict 
detection algorithm need only be executed once in order 
to check all pairs for possible conflict. 

If there are no processing elements available for storing 
a potentially conflicting pair, then the algorithm is exe
cuted on the pairs obtained so far, non-conflicting pairs 
are deleted and conflicting aircraft are flagged. The pruc
ess then continues looking for more conflicting pairs. 

The algorithm just described is similar to the one 
described for sequential computers but takes advantage 
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Figure 3-Storage of A/C state estimates for A/C in Box #i 

of the parallel and associative processing capabilities of 
an associative array computer to speed up the execution 
of the algorithm. If the associative processor has more 
elements than there are boxes and than there are pairs to 
check, then the algorithm requires essentially one pass. 

A sliding correlation algorithm 

Another approach to restricting the number of pairs of 
aircraft is possible on an associative array processor. This 
approach requires that the aircraft be arranged in order 
of increasing (or decreasing) range in the processing ele
ments. That is, the range from the radar to the aircraft in 
processing element i is less than the range to the aircraft 
in processing element i+ 1. A number of techniques are 
available for performing this sort. They are discussed in 
the next section. 

The technique consists of copying the state estimates 
and I.D.'s of each of the aircraft and simultaneously 
passing them to the next adjacent processing element. 
Each element checks the two aircraft stored there for a 
possible conflict and flags each of them if a conflict 
occurs. The copied state estimates are then passed to the 
next processing element and another conflict check 
occurs. The process continues until all aircraft pairs in a 
given processing element are more than r nautical miles 
apart in range (where r is the maximum separation of two 

rrocess i ng 
.... _.--- e]er~c'nt 

llur1ber 

initio'] st2te 
estilirote 

copied state 
estinwte 

Figure 4-Storage during the kth conflict comparison 
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aircraft state estimates when a conflict might conceivably 
occur during the specified time interval). Since the air
craft are range ordered, there is no point in testing any 
additional pairs. Also, due to the symmetry of the algo
rithm, it is not necessary to check the other way. 

Ordering the state e.'dimates 

In the algorithms described earlier, a certain ordering 
of the aircraft state estimates in the processing elements 
was required. 

The ordering can be performed by checking the 
arrangement of the data each time a track update is per
formed. Each aircraft which has moved to a new box has 
its corresponding state estimate moved to the appropriate 
processing element at this time. It is assumed that the 
track update rate is sufficiently high so that state esti
mates need only move to neighboring boxes. This assump
tion improves the efficiency with which data is moved 
since many state estimates can be moved simultaneously. 
For instance, all objects which moved one box to the east 
can be simultaneously transferred to their new box. Simi
larly, for objects moving in other directions, a single 
transfer is necessary. 

The second, third, etc., aircraft in a box must be han
dled separately. Also, when a box is already occupied, 
then special handling is required to determine where the 
new state estimates are stored. Since most boxes contain 
only one or fewer aircraft, the amount of special handling 
will be small. 

The sorted list described in the previous section may 
also be done by keeping the list stored and performing 
minor iterations each time the state estimates are 
updated. This process is quite straightforward. 

A more interesting method is to perform a total sort of 
the state estimates. This can be done fairly efficiently by 
using a 'perfect shuffle' permutation of the processing 
element data. The algorithm is described in Stone4 and 
requires log2 n steps (where n is the number of aircraft). 

SUMMARY 

Comparison of techniques 

The algorithm in the section "Straightforward Asso
ciative Processing Approach" is quite inefficient and 
requires n passes through the pairwise conflict detection 
algorithm. This can be quite expensive if n is large and 
the algorithm is complex. 

The algorithm in the section "Sort Boxes on an Associa
tive Processor" greatly reduces the number of executions 
of the pairwise conflict detection algorithm at the expense 
of some data management overhead. If the box sizes can 

be chosen appropriately this is quite efficient. Some stud
ies have shown that a few percent of the pairs need to be 
checked. That is, the number of potentially conflicting 
pairs after checking for box matching is p. n(n - 1) /2 
where p is about .05. If a total of four boxes must be 
checked for conflicts (nearest neighbor boxes only), then 
the number of times the pairwise conflict detection algo
rithm must be executed is quite small. There are about 
n2 /40 potentially conflicting pairs and if the number of 
processing elements is large enough, these can all be 
checked at one time. 

The algorithm described in the preceding section has 
been estimated to check about 10 percent of the poten
tially conflicting pairs. Comparing with the section 
"Straightforward Associative Processing Approach," this 
requires one-tenth the time or about n/l0 pairwise con
flict detection executions (plus the sort). This is more 
than the sliding correlation algorithm previously dis
cussed, but the data management is less and fewer proc
essing elements are required. Depending on the execution 
time of the pairwise conflict detection algorithm one of 
these approaches could be chosen, the first one if the 
pairwise algorithm is expensive and the second if the 
pairwise algorithm is cheap. 

Conclusions 

This paper has presented some approaches to organiz
ing the conflict detection algorithm for Air Traffic Con
trol on an associative array processor. The relative effi
ciencies of these approaches were described and some of 
the implementation problems were explored. 

Other techniques of real-time data processing on a 
parallel-array computer have been described in Refer
ence 5. The problem described here illustrates the fact 
that developing efficient algorithms for novel computer 
architectures is difficult and that straightforward tech
niques are often not efficient, especially when compared 
with the sophisticated techniques which have been devel
oped for serial computers. The techniques described here 
may also be applicable to other problems for associative 
arrays. 
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I~TRODUCTION 

There are a wide variety of data management systems in 
existence.I-3.6.7.10-V; These systems vary from those that are 
fairly general to those that are very specific in their per
formance characteristics. The former systems tend to 
have a longer life cycle, while sacrificing some efficiency, 
whereas the latter are more efficient but tend to become 
obsolete when requirements are modified.9 

In addition, current data management systems have 
generally been implemented on computers with random 
access memories, that is, the data is stored at specified 
locations and the processing is address oriented. In con
trast, using associative or content addressable memories, 
information stored at unknown locations is processed on 
the basis of some knowledge of its content. Since much of 
the processing of data management problems involve the 
manipulation of data by content rather than physical 
location, it appears that associative memories may be 
useful for the solution of these problems. 

In order to demonstrate the feasibility of utilizing a 
hardware associative memory, a data management sys
tem called Information Systems For Associative Memo
ries (IF AM) has been developed and implemented. After 
presenting a brief description of associative memories, the 
implementation and capabilities of IF AM are described. 

DESCRIPTIO~ OF ASSOCIATIVE MEMORIES 

Associative memories differ considerably from random 
access memories. 16 Random access memories are address 
oriented and information is stored at known memory 
addresses. In associative memories, information stored at 
unknown locations is retrieved on the basis of some 

* This research partially supported by RADC contract AF 30(602)-
70-C-0190, Large Scale Information Systems. 
** Present Address, Headquarters, DCA. Code 950, NSB, Washington. 
D.C. 
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knowledge of its content. The information stored at 
unknown locations can be retrieved on the basis of some 
knowledge of its content by supplying the contents of any 
portion of the word. 

An associative memory contains a response store asso
ciated with every word which is at least one bit wide. Its 
purpose is to hold the state of events in the memory. The 
response store, provides an easy way of performing boo
lean operations such as logical A~D and OR between 
searches. In the case of logical AND for example, in a 
subsequent search only those words whose response store 
were set would take part in the search. In addition boo
lean operations between fields of the same word can be 
performed by a single search. The applicability of boo
lean operations is a most important requirement for a 
data management system since the conditional search for 
information in a data base requires their use. 

The instruction capabilities of associative memories are 
usually grouped into two categories: search instructions 
and arithmetic functions. The search instructions allow 
simultaneous comparison of any number of words in the 
memory and upon any field within a word. A partial list 
of search instructions include the following: equality, 
inequality, maximum, minimum, greater than, greater 
than or equaL less than, less than or equal. between lim
its, next higher, and next lower. All of these instructions 
are extremely useful for data management applications. 
For example, the extreme determination (maximum/ 
minimum) is useful in the ordered retrieval for report 
generation. An associative memory can perform mass 
arithmetic operations, such as adding a constant to spe
cific fields in a file. The type of operations are as follows: 
add, subtract, multiply, divide, increment field and dec
rement field. 

IFAM IMPLEMENTATION 

IF AM is an on-line data management system allowing 
users to perform data file establishment, maintenance, 
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retrieval and presentation operations. Using this system it 
is easy for users to define a meaningful data base and 
rapidly achieve operational capability. Discussed below 
are the hardware and software aspects of IF AM. 

Hardware 

IF AM is implemented on an experimental model asso
ciative memory (AM) at Rome Air Development Center 
(RADCl. The AM, developed by Goodyear, is a content 
addressable or parallel search memory with no arithmetic 
capability. It contains 2048 words where each word is 48 
bits in length. The search capability consists of the 11 
basic searches described previously, all performed word 
parallel bit-serial. As an example of the timing, an exact 
match search on 2048-48 bit words takes about 70 micro
seconds. 

The AM operates in conjunction with the CDC 1604 
Computer via the direct memory access channel as shown 
in Figure 1. Information transfers between the AM and 
the 1604 are performed one word at a time at about 12 
microseconds per word. 

The CDC 1604 computer is a second generation com
puter with 32000-48 bit words and a cycle time of 6.4 
microseconds. It has various peripheral and input/ output 
devices. one of which is a Bunker Ramo (BR-85) display 
console. The display unit is capable of visually presenting 
a full range of alphabetic, numerical or graphical data. 
The console allows direct communication between the 
operator and the computer. The display unit contains a 
program keyboard, an alphanumeric keyboard, a control 
keyboard, curser control. and a light gun. The IFAM user 
performs his tasks on-line via the BR-85 display console. 

Software 

Both the operational programs and the data descrip
tions used in IF AM are written in JOVIAL, the Air Force 
standard language for command and control. 

The operational programs manipulate the data in the 
AM and are utilized in the performance of retrieval and 

/
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• 48 !lIT HORD 
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DISPLAY 
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• ALPHA:Ilr.!ERIC KEYBOARD 

DIRECT MEMORY 

• 48 BIT \fORD 

• 2048 WORDS 

• WORD PARALLEL BIT SERIAL OPER.ATIO~ 

• 70 HI CROS ECOt>D EXACT MATCE 

Figure I-HADe a~~ociative memorY computer ~v~tem 

update operations. These programs are written as 
JOVIAL procedures with generalized input! output 
parameters which operate on data in the AM. By chang
ing the parameters, the same procedures can be used for 
many different operations resulting in a more general and 
flexible data management system. 

The data descriptions are used to specify the format of 
the data such as the name of a domain, its size, type, 
value, the relation to which it belongs, etc. They are used 
in conjunction with the operational programs to process 
information within IFAM. The data descriptions specify 
the data format to the operational program which then 
performs the desired task. Providing an independence 
between these two means the information and the infor
mation format can change without affecting the programs 
that operate on the information and conversely. 

In addition, the data and data descriptions are main
tained separately from the data. This separation means 
that multiple descriptions of the same data are permitted 
and so the same data can be referred to in different ways. 
This can be useful when referencing data for different 
applications. 

The next section describes the capabilities of IF AM 
using a personnel data base as a test model. 

IF AM CAPABILITIES 

Test Model Description 

As a test model for IF AM a data base has been imple
mented containing information about personnel. The data 
structure for the test model, shown in Figure 2, is as fol
lows: 

PERSONNEL (NAME, SOCIAL SECURITY NUM
BER, CATEGORY, GRADE, SERVICE DATE, 
DEGREES) 
DEGREES (DEGREE,DATE). 

For this structure PERSONNEL is a relation that con
tains six domains and DEGREES is a relation that con
tains two domains. The occurrence of the domain degrees 

PERSONNEL 

NA.'ffi SSN GRADE CATEGORY 

DEGREE DATE 

Figure 2-Hierarchical structure for data base 



A Data Management System utilizing An Associative Memory 183 

in the PERSON:\EL relation is a non-simple domain 
since it contains two other domains namely degree and 
date. All other domains are called simple domains since 
they are single valued. A method and motivation for elim
inating the non-simple domain is given in Reference 4. 
Essentially the procedure eliminates each non-simple 
domain by inserting a simple domain in its place and 
inserting this same simple domain in all subordinate 
levels of the structure. Through the application of this 
procedure, the data structures now contain only simple 
domains and therefore are amenable to manipulation on 
an associative memory. 

When this procedure is applied to the above data struc
ture, the result is as follows: 

PERSON~EL (NAME, SOCIAL SECURITY NUM
BER, CATEGORY, GRADE, SERVICE DATE, 0'1) 
DEGREES (DEGREE, DATE, 0'1), 

where (\'1 is the added simple domain. 
The storage structure showing one n-tuple of the per

sonnel relation and one n-tuple of the degrees relation 
appears in Figure 3. Five associative memory (AM) words 
are needed to contain each n-tuple of the personnel rela
tion and two AM words are needed to contain each n
tuple of the degrees relation. 

Since the capacity of the Goodyear AM is 2000 words, 
any combination of n-tuples for the two relations not 
exceeding 200 words can be in the AM at anyone time. 

PERSO:,~EL: 

1 CHARACTER 7 CHARACTERS 

HORD 0 I OOOxxx 

WORD 1 NAME (CONTINUED) 

WORD 2 I OlOxxx SOCIAL SECURITY NUMBER (CONTINUED) 

WORD 3 I Ollxxx GRADE ICATEGORY I SERVICE DATE 

WORD 4 1100xXX 
C::l<''RUTrl:' T"IA'T""J::;" I EXTRA (C~~~I;uiD)~ I "I 

DEGREES: 

WORD 0 DATE EXTRA 

WORD 1 IllOXXX DEGREE I EXTRA 

Figure 3-Data base storage structure 

That is, at anyone time the AM could contain a combina
tion of n-tuples such as the following: 400 personnel and 
no degrees, 1000 degrees and no personnel. 200 personnel 
and 500 degrees, etc. Whenever the number of n-tuples 
exceeds the capacity of the AM, additional loading is 
required. 

The first three bits of each word are the word identifi
cation number and are used to determine which group of 
AM words participate in a search. For example, consider 
a case where both the personnel and degrees relations are 
in the AM, and suppose it is required to perform an exact 
match on the first two digits of social security number 
(see Figure 3), In this case only word one of each person
nel n-tuple participates in the search. In order to insure 
that this is so, a 001 is placed in the first three bits of the 
comparand register. This corresponds to words in the 
personnel relation that contain the first two digits of 
social security number. The remainder of the comparand 
contains the search argument, which in this case is the 
desired social security number. This method assures that 
only the proper AM words participate in a search. Also, 
as shown in Figure 3, word 4 character 4 of the PERSON
NEL relation and word 1 character 7 of the DEGREES 
relation contain (\'3 domains. 

Query and update method 

A dialog technique exists within IF AM in which an 
inquirer interacts with a sequence of displays from the 
BR-85 to accomplish the desired task. In this way the 
user does not have to learn a specialized query language 
thereby making it easier for him to achieve operational 
capability with a data base. 

The first display appears as shown in Figure 4. Assum
ing Button 1 is selected, the display appears as shown in 
Figure 5. Observe that although the degrees relation is 
embedded in the personnel relation, a retrieval can be 
performed on either relation directly (i.e., one does not 
have to access the personnel relation in order to get to the 
degrees relation). Assuming button 2 G~AME) is selected, 
the next display appears as in Figure 6, in which the 11 
basic searches available in the system are shown. Assum-

Press Button 1 For Retrieval 

Press Button 2 For Update 

Figure 4-First display 
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(1) 

(10) 

Personnel 

(2) Name 
(3) Social Security Number 
(4) Grade 
(5) Category 
(6) Service Date 

Degrees 

(11) 
(12) 

Degree 
Date 

Press button of item you wish to specify 
(only one button may be pressed) 

Press button 20 to terminate 

Figure 5-Second display 

ing button 2 (EQUAL) is chosen, the next display appears 
as shown in Figure 7. This display is usen to specify the 
search arguments and the AND or OR operation for con
ditional searches. Assuming that an "E" is typed in the 
second position, then all personnel with names which 
have E as the second letter will be retrieved from the 
system and the next display appears as shown in Figure 
8. This display gives the inquirer the option of terminat
ing his request, having been given the number of respon
ders, or having the results displayed. Assuming it is 
desired to display the results, button 1 is selected and the 
next display appears as shown in Figure 9. 

In Figure 9 the n-tuples of the personnel and degrees 
relations satisfying the request are displayed. Observe 
that each name has an E as the second letter and that all 
the degrees a person has are displayed (e.g., Mr. Feate 
has 3 degrees). At the completion of this display the sys-

You have chosen 
(2) Name 

The operators available are: 

1. Between Limits 
2. Equal 
3. Greater than or equal 
4. Greater than 
5. Less than or equal 
6. Less than 
7. Maximum value 
8. Minimum value 
9. Not equal 

10. Next higher 
11. Next lower 

Press button of operation you wish to specify 

Press button 20 to terminate 

Figure ti--Third dIsplay 

you have chosen 

Name Equal 

Specify values below if required 

C~ _______ _ 

(-------------

Input xxx to terminate 

Also specify fu~D. OR operation from previous search 

Blanks specify neither ( __ _ 

Figure 7-Fourth display 

tern recycles and begins again with the first display as 
shown in Figure 4. 

Using IFAM it is easy to perform operations involving 
the ~nion or intersection of data items. For example, 
conSIder ANDing together SSN, Name and Degree such 
that the 2nd, 4th, 5th, and 9th digits of the SSN are eq ual 
to 3, 9, 0, 5 respectively, the second letter of the name is 
equal to K, and the degree begins with B, as shown in 
Figure 10. This is performed as a routine request in 
IF AM in the following way. In one access those records 
satisfying the specified SSN are found by placing the 
desired SSN in the comparand register and the fields to 
be searched in the mask register. Of those records, only 
the ones in which the second letter of the name is equal to 
K are found in one memory access using the AND 
connector between searches. For those records the (\:') 
values are used to set the corresponding values in the 
degree file A0JDed together with the records in which the 
de~ree begins with B. The records in this final set satisfy 
thIS complex request. Other systems either have to antici
pate such a request and provide the necessary program
ming and indexing to accomplish it, or would have to 
perform a sequential search of the data base. 

On-line updating is provided in IFAM and operates in 
conjunction with retrieval. Retrieval is used to select the 
portion of the data to be altered. Once selected the items 
are displayed on the BR-85 and any of the domains of a 
relation including the (Y s can be changed and put back 
into the data base. Using IFAM, updates are performed 
in a straightforward manner with no directories, point
ers, addresses or indices to change. 

There are 4 responders to your query 

Do you wish to display them? 

If Yes press Button 1 

If No press Button 2 
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~~,;:t:: S5, CATeGORY GRADe S':RVICE DATZ J~GREE DATE 

.)erg ·~31711.! 32 13 570725 BS 49 

:-15 31 
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Feate 425626582 11 510820 BS S5 

MS 58 

Ph.D. 62 

~eed 057254321 to 480530 8S 47 

Figure 9-Sixth display 

CONCLUSION 

This paper has described the utilization of an associative 
schemata for the solution of data management problems. 
There are advantages and disadvantages in utilizing asso
ciative memories for data management. Among the 
advantages shown by this implementation are that this 
method superimposes little additional structure for ma
chine representation and eliminates the need for index
ing. From an informational standpoint, an index is a 
redundant component of data representation. In the as
sociative method, all of the advantages of indexing are 
present with little data redundancy. A comparison be
tween IF AM and an inverted list data management sys
tem given in Reference 4 shows that the inverted list 
technique requires 3 to 15 times more storage. 

Also provided in Reference 4 is a comparison between 
IF AM and inverted lists in the area of query response 
time. It is shown that queries using inverted lists take as 
much as 10 times longer than IFAM. In the inverted list 
technique, as more items are indexed response time to 
queries tend to decrease, whereas update time normally 
increases. This is so because directories and lists must be 
updated in addition to the actual information. Since 
IF AM does not require such directories, the overhead is 
kept at a minimum and updating can be accomplished as 
rapidly as queries. In addition, the associative approach 
provides a great deal of flexibility to data management, 
allowing classes of queries and updates to adapt easily to 
changing requirements. Thus, this system is not likely to 
become obsolete. 

One of the disadvantages of associative memories is the 
cost of the hardware. The increased cost is a result of 
more complex logic compared to conventional memories. 
This cost is justified in instances such as those described 
above. On the other hand, if factors such as speed and 
flexibility are not important, then the less costly current 
systems are preferable. 

3 0 --.L 
SOCIAL SECURITY /',lJMBER 

K 

NAME 

_B_ 

DEGREE 

Figure lO-Sample retrieval request 
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by RICHARD R. LINDE, ROY GATES, and TE-FU PENG 

System Development Corporation 
Santa Monica, California 

INTRODUCTION 

This paper describes a research study concerning the 
potential of associative processing as a solution to the 
problem of real-time data management. 1 The desired out
come of the research was an evaluation of the comparative 
advantages of associative processing over conventional 
sequential processing as applied to general real-time 
Data Management System (DMS) problems. The specific 
DMS application framework within which the study was 
carried out was that of the data management functions of 
the U.S. Air Force Tactical Air Control Center (TACC). 

The primary feature used to select an associative proc
essor (AP) configuration was "processing efficiency," by 
which is meant the number of successful computations 
that can be performed in a given time for a certain cost. 
In DMS applications, processing efficiency is influenced 
by large-capacity storage at low cost per bit, the record 
format, search speed, and the ability to search under logi
cal conditions and to combine search results in Boolean 
fashion. The primary technique used for comparing an 
AP's performance with that of a sequential processor was 
to arrive at a set of actual execution rates for the class of 
real-time data management problems. These execution 
rates, coupled with the assumption that parallel comput
ers cost four or five times more than their equivalent 
sequential computer counterparts, will yield an estimate 
of an AP's cost-effectiveness for the DMS problem. 
Obviously, the more data that can be processed in paral
lel, the greater the processing efficiency; and DMS appli
cations, by their nature, have a high degree of parallelism 
and, hence, they dictated the type of parallel processor 
used for the comparisons. As a result, we dealt with 
machines that fit into the general category of the associa
tive processors.2 These are machines that execute single 
instruction streams on multiple data paths; or, viewed 
another way, they are machines that can execute a pro
gram on a (large) set of data in parallel. The classical 
array processors, such as the ILLIAC-IV and PEPE 
machines, are characterized by a relatively small number 
of sophisticated processing elements (e.g., a network of 
mini-computers), each containing several thousand bits of 
storage.3 In order to obtain a high processing efficiency 
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for data management applications, we have described a 
machine that has-many more processing elements than 
the classical array processors and whose processing ele
ments are smaller (256 bits) and, hence, provide more 
distributed logic. For cost reasons, our machine cannot be 
fully parallel, having logic at every bit; for efficiency 
reasons, however, we selected a byte-serial, external-byte
logic machine design as opposed to the bit-serial proces
sors that are widely described in the literature. For 
example, three cycles are required for this type of ma
chine to perform an 8-bit add, whereas 24 cycles are 
required for the bit-serial, external-logic machines, yet 
the byte-serial logic cost is very little more than that of 
the equivalent bit-serial logic. 

Past studies have shown that data management sys
tems implemented on an AP can become I/O-bound quite 
quickly due to the AP's microsecond search operations 
relative to slow, conventional, I/O-channel transfer rates. 4 

Hence, for our associative memory (AM), we have 
hypothesized a large, random-access data memory for 
swapping files to and from the AMs at a rate of 1.6 billion 
bytes/ sec. Other studies have considered the use of asso
ciative logic within high-capacity storage devices (logic
per-track systems) such as fixed-head-per-track disc 
devices.2

•
5 

Thus, for reasons of efficiency, at a reasonable cost, we 
have described a byte-serial, word-parallel machine, 
called the Associative Processor Computer System 
(APCS), that consists of two associative processing units, 
each having 2048 256-bit parallel-processing elements. 
This machine is linked to a conventional processor that is 
comparable to an IBM 370/145 computer. In order to 
compare this machine with a sequential machine, we 
have programmed several real-time problems for both 
machines and compared the resultant performance data. 
The set of problems for the study were derived in part 
from an analysis of the TACC testbed developed at Han
scom Field, Mass. The TACC is the focal point of all air 
activity within the Tactical Air Control System (TACS). 
The TACS is a lightweight, mobile surveillance and 
detection system, assigned to a combat area at the dis
posal of Air Force Commanders for making real-time air 
support and air defense oriented decisions. 
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The TACC is divided into two divisions: Current Plans 
and Current Operations. Current Plans is responsible for 
developing a 24-hour fragmentary (FRAG) order that 
defines the air activities within the combat area during 
the next 24-hour period, and Current Operations monitors 
those activities in real time. Some of the Current Opera
tions functions were programmed for the IBM 1800 
computer at the testbed, and an analysis· was made of a 
scenario, relating to a testbed demonstration, for deter
mining those functions critical to Current Operations and, 
therefore, important candidates for our study. 

Also, a study was made of several data management 
systems (SDC's DS/2, CDMS, and CONVERSE, and 
MITRE'S AESOP-B) to arrive at a set of associative 
processor DMS primitives.6

.
7

.
8

,9 Those primitives that 
appeared to be most important to DMS functions were 
evaluated. We used the primitives required by update 
and retrieval applications for writing APCS programs, 
and compared the APCS performance result::> against 
conventional programs, written for data bases stored 
physically in random-access fashion. 

A relational data-structure model provided us with a 
mathematical means of describing and algorithmically 
manipulating data for an associative processor. Because 
relational data structures are not encumbered with the 
physical properties found in network or graph-oriented 
models, they provide independence between programs 
and data. The T ACC testbed data structure provided us 
with examples for describing and logically manipulating 
relational data on the APCS in a DMS context. 

The study results enabled us to make re~ommendations 
for further studies directed toward arriving at cost-effec
tive parallel-machine solutions for real-time DMS prob
lems. APCS-like machine descriptions will continue to 
evolve for the next several years. We do not recommend 
that the APCS or the various future versions (which, like 
the APCS, will have to be fixed for comparison purposes 
even though their structures may not be optimally cost
effective) be considered a cost-effective solution to the 
DMS problem. Instead, we hope that they will serve as 
starting points for the machine evolution studies that will 
have to precede any attempt to describe the "ultimate" 
solution for data management. 

ASSOCIATIVE PROCESSOR COMPUTER SYSTEM 

A complete associative processor computer system 
(APCS) for a real-time data management application is 
shown in Figure 1. It is not a so-called "hybrid" system, 
with an interconnection of serial and associative proces
sors; rather, it is a totally integrated associative com
puter. The central processor functions as an active 
resource that controls the overall system and performs 
information transformation. The memory system acts as 
a passive resource for the storage of information. Numer
ous data paths are provided between the central processor 
and various memory and external units for efficient infor
mation movement. 

The central processor is an integration of five units: two 
associative processing units (APUs), a sequential process
ing unit (SPU), an input/output channel (IOC), and a 
microprogrammed control memory. The APU s provide a 
powerful parallel processing resource that makes the sys
tem significantly different from a conventional one. From 
a conventional system-architectural point of view, the 
APU s can be viewed as a processing resource that has a 
large block of long-word local registers (in this case, 4K X 
256 bits) with data manipulation logic attached to each 
word; an operation is performed on all registers simulta
neously, through content addressing. Actually, the central 
processor has three different processors-II 0, sequential, 
and parallel-and all three can operate simultaneously. 
The three processors fetch instructions from the program 
memory, interpret the microprograms from control 
memory, and manipulate the data from data memory. 

The memory system consists of three units: primary 
memory, control memory, and secondary storage. The 
data management functions and the data base of the data 
management system are independent of each other; for 
this reason, the primary memory is subdivided into pro
gram memory and data memory for faster information 
movement and for easy control and protection. This sepa
ration is another special feature of the system. The pro
gram memory is assumed to be large enough to store 
executive routines, data management functions, and user 
programs for the three processing units; consequently, 
program swap operations are minimized. The data mem
ory can store the data base directory and several current 
active data files. 

Finally, two additional resources, terminals and dis
plays and other peripherals, are added to make up a 
complete real-time system. The other peripherals include 
tape units and unit-record devices such as line printers, 
card readers, and punches. 

The reading and writing of AP words are controlled by 
tag vectors. The word logic is external to each AM word 
for actual data operations and control. The word logic 
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Figure I-Associative processor computer system (APCSi 
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consists of two main portions: byte operation logic and tag 
vectors. The byte operation logic includes byte adders, 
comparison logic, and data path control logic. There are 
three types of tag vectors: hardware tag vectors, tag vector 
buffers, and tag vector slices. The hardware tag vectors 
consist of four hardware control tag columns: word tag 
vector (TVW), control tag vector (TVC), step tag vector 
(TVS), and response tag vector (TVR). The TVW indi
cates whether a corresponding AM word is occupied; it is 
set as the AM is loading and reset when it is unloading. 
The TVC controls the actual loading and unloading of 
each AM word in a way analogous to that in which mask 
bits control the byte-slice selection, except that it operates 
horizontally instead of vertically. The setting of TVS 
indicates the first AP word of a long record (one contain
ing more than one AP word). The use of the TVR is the 
same as the familiar one, where a c9rr~,sponding tag bit. is 
set if the search field of an AP word matches the key. In 
addition, most tag-manipulation logic (such as set, reset, 
count, load, store, and Boolean) is built around the TVR. 
The status and bit count of the TVR vector can be dis
played in a 16-bit tag vector display register (TVDR) to 
indicate the status of various tag vectors for program 
interpretation. These four hardware tag vectors are 
mainly controlled by hardware, which sets and resets 
them during the actual instruction execution. In addition, 
they can also be controlled by software for tag vector ini
tiation or result interpretation. The contents of various 
hardware tag vectors can be stored temporarily in the 
eight tag vector buffers if necessary. This is particularly 
useful for simultaneous operations on multiple related 
data files or for complex search operations that are used 
for multiple Boolean operations on the results of previ
ous tag-vector settings. The use of the five tag vector 
slices is similar to that of the tag vector buffers except 
that they can be stored in the DM along with the cor
responding AP words and loaded back again later. 

A RELATIONAL DATA MODEL FOR THE TACC 
TESTBED 

Let us now consider a data structure for the APCS in 
terms of the TACC testbed DMS. 

Set relations provide an analytical means for viewing 
logical data structures on an associative processor.lO.lL12 
Given sets (8,82, ••• , Sn). If R is a relation on these sets, 
then it is a subset of the Cartesian Produce 8 l X82 • •• 8 n , 

and an n-ary relation on these sets. The values of ele
ments in this relation can be expressed in matrix form 
where each jill column of the matrix is called the jill 
domain of R and each row is an n-tuple of R. Domains 
may be simple or non-simple. A simple domain is one in 
which the values are atomic (single valued), whereas non
simple domains are multivalued (i.e., they contain other 
relations). As an example of set relations applied to asso
ciative processing, consider the example of the TACC 
testbed. 
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Figure 2-T ACC tested storage structure on the APCS 
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The testbed defines a "property" as one item of in for
mation (e.g., one aircraft type for a designated base). An 
"object" is a collection of properties all relating to the 
same base, unit, etc. Objects are the basic collections of 
data within a file (e.g., an air base file would have one 
object for each designated base, and each object would 
contain all properties for one base). A complex property is 
a collection of properties (such as data and time) that are 
closely related and that can be accessed either individu·· 
ally or as a group (date/time). 

The data base files are structured to show property 
number, property name, complex property indicator, 
property type, EBCDIC field size, range/values, and 
property descriptions. They are self-described and con
tain both the data (the property values) and the descrip
tions of the data. The descriptive information constitutes 
the control area of the file, and the data values constitute 
the object area of the file. The control area contains an 
index of all objects in the file (the object roll), and an 
index and description of all properties in the file (the 
property roll). The object roll contains the name of every 
object in the file, along with a relative physical pointer to 
the fixed-length-record number containing its data; the 
property roll defines the order of property-value data for 
each object and points to the location of the data within 
the object record. 

Figure 2 illustrates how AM #1 might be used to logi
cally represent a testbed file control area. It contains two 
relations: 

and 

which represent an index of all the files in the testbed 
(R l ) and a list of all the property descriptors associated 
with the file (R 2 ). The first domain (file name) of relation 
R I is the primary key; that is, it defines a unique set of 
elements (or n-tuples) for each row of R I • 
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Figure 3-TACC testbed property values on the APCS 

The domain labeled "Vector" contains the address of 
the tag vector that delineates the property values for the 
file; they are contained in AM #2. The domains labeled 
"AM #" and "Words/Record" contain the AM number 
for the property values and the number of physical AM 
words per record. The domain labeled "Property ID" 
contains a marking value that identifies the property 
descriptors in relation R2 for each file name of primary 
key in relation R I • Tag vectors TVO and TV1 mark those 
words in AM #1 containing relations RI and R 2 , respec
tively; this is necessary because two domains of the 
respective relations may be of the same size and content, 
thus simultaneously satisfying search criteria. The pro
grammer must AND the appropriate vector, either TVO 
or TV1, with TVR after such a search to obtain the rele
vant set of N-tuples. 

Since the APCS uses a zero-address instruction set, 
parameter lists must be defined in control memory for 
each APCS instruction to be executed. Obviously, control
memory parameter lists are needed to define search cri
teria for relations R1 and R2 and table definitions (not 
shown) for creating these lists before the descriptors con
tained iIi AM #1 can be used to define another set of lists 
for accessing the property values in AM #2 (see Figure 3). 

Figure 3 illustrates the relations that describe the 
Fighter Assignment File (FTRASGN) and the Immediate 
Close Air Support Frag Order File (lCASFRAG) property 
values. They are represented by n-ary relations contain
ing a set of simple domains, 1 through n, which contain 
the actual data values for the elements: first mission 
number, last mission number, aircraft/type, etc. The 
domain labeled UNIT is the primary key for the relation 
and corresponds to the unit number contained in the 
testbed object roll. 

H the domain representing aircraft type contained 
more than one aircraft and a set of simple domains 
describing each aircraft, then a non-simple domain would 
occur in a primary relation. That is, there might be F104 
and F105 fighter aircraft and parameters relating to their 

flight characteristics (range, speed, etc.) occurring within 
the primary relation. To normalize this relation, the 
primary key or a unique marker is inserted in the non
simple domain, the non-simple domain is removed from 
the primary relation, and the sequence is repeated on the 
secondary relation, tertiary relation, etc., until all non
simple domains have been removed. DeFiore lo has 
described and illustrated this technique on an AP and 
calls the data structure containing only simple domains 
the Associative Normal Form (ANF). 

SEARCH AND RETRIEVAL COMPARISONS 

A search and retrieval comparison was performed using 
the APCS and a sequential computer, the IBM 370/145, 
as the comparative processors. Two problems involving 
fact and conditional search and retrieval were coded. A 
random-access storage structure was chosen for the con
ventional case; the conventional dictionaries were unor
dered. The data structure for the APCS can be shown by 
the relation 

It is an ll-tuple requiring two words per record. 
Branching or updating more than one word per record 
presents no particular problem.1o.13.14 Table I contains 
data (normalized to the 370/145) from these measures. 
The APCS was between 32 and 110 times faster than the 
sequential processor, depending upon the algorithm and 
the number of keys searched. However, system overhead 
time to process the 1;0 request and to transfer the data 
from disc to data memory (no overlap assumed) was 
charged to the sequential and associative processors. 
Therefore, after 4000 keys, the APCS times tended to 
approximate those of the sequential processor since an 
IBM 2314 device was required for swapping data into the 
DM. 

UPDATE COMPARISONS 

In the conventional case, the measurements involved 
ordered and unordered dictionaries; in the associative 
case, no dictionary was used. For both cases, we used 
fixed-length records, 64 bytes/ record, and assumed that 
update consisted of adding records to the file, deleting 
records from it, and changing fields within each record. 
As in retrieval, the personnel data base was used for the 
measurements. It consists of a set of simple domains 
shown by the general relation R1 (an, a12, .. " a1n ). 

Updating the data base involved a series of searches on 
the domain a 1n such that a subset of al!t was produced: the 
list of length I r1n I. 

The set of n-tuples in the relation R can be changed 
using the APCS Store Data Register command in 

Nir1n I insertions, where N in the APCS measurements 
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TABLE I-Retrieval Measurements (Data Normalized to 370/145) 

FACT RETRIEVAL CONDITIONAL SEARCH AND RETRIEVAL 
APCS Tl 370/145 T2 RATIO T2/Tl APCS 370/145 RATIO T2/Tl 

1000 .341 ms 10.888 ms 31.8 .695 ms 53.135 ms 76.5 
2000 .401 18.345 45.6 1.098 105.928 96.4 
4000 .613 36.617 60.0 1.926 211.810 110.0 
8000 913.1 1,011.853 1.11 915.35 1,335.624 1.45 

• APCS EASIER TO PROGRAM, ALTHOuGH IT TOOK MORE CODE 
• APCS REQ"GIRED 15% LESS STORAGE 

consists of three domains: department number, division, 
and employee ID. In each case, a batch update technique 
was used, and one-half the data records were modified: 20 
percent changed, 15 percent added, 15 percent deleted. 
Since no dictionary was needed in the associative case, 
there was a 15 percent savings for data storage for the 
APCS. The system calls and tables used in the Search 
and Retrieval calculation were used in the Update meas
ures, as well. 

Assuming that the list r 1n and the Update list are both 
in sorted order, data values could be inserted into the list 
r1n using the parallel transfer capabilities of the APCS in 
m times the basic cycle time, where m is the number of 
bytes in the set of n-tuples to be changed. 

Table II shows the normalized (to the 370/145) timings 
for the APCS and a conventional computer (370/145) for 
the Update measurement. The measurements for the 
conventional case involved ordered and unordered dic
tionaries. 

The search algorithm for the conventional case was 
applied to an ordered dictionary, where a binary search 
technique was used involving (rIog2 v(x)) -1 average 
passes; v(x) denotes the length of the dictionary. For the 
unordered case, it was assumed that a linear search tech
nique found the appropriate dictionary key after a search 
of one-half the dictionary entries. 

Since the Search and Retrieval measurements were 
severely limited by conventional I/O techniques, the 
Update measures were projected for mass storage devices 
(semi-conductor memory) holding four million bytes of 
data. Hypothetically, such devices could also be bubble 
and LSI memories or fixed-head-per-track discs; in either 

case, the added memories are characterized by the paral
lel-by-word-to-AM transfer capability. 

Since N/2 records were updated over an N-record data 
base, the conventional times increased as a function of 
N2/2, whereas the APCS times increased as a function of 
N. Even though a four-megabyte semiconductor memory 
would probably not be cost effective for conventional 
processing, it was hypothesized as the storage media for 
the conventional processor so as to normalize the influ
ence of conventional, channel-type I/O in the calcula
tions. Even so, the APCS showed a performance improve
ment of 3.4 orders of magnitude over conventional proc
essing for unordered files consisting of 64,000 records. 

SEARCH AND RETRIEVAL WITH RESPECT TO 
HIERARCHICAL STRUCTURES 

A comparison was made between the associative and 
sequential technologies using hierarchically structured 
data. Consider a personnel data base containing employee 
information, wherein each employee may have repeating 
groups associated with his job and salary histories. The 
non-normalized relations for this data base are: 

employee (man #, name, birthdate, social security num
ber, degree, title, job history) 

job history (jobdate, company, title, salary history) 
salary history (salary date, salary, percentile) 

The normalized form is: 

employee (man #, name, birthdate, social security num
ber, degree, title) 

TABLE II-Execution Times-Update-APCS vs. Conventional Times 
(Normalized to 370/145) 

CONVENTIONAL (T2) DICTIONARIES RATIOS (T2/Tl) DICTIONARIES 
NUMBER OF 

RECORDS APCS (Tl) UNORDERED ORDERED UNORDERED ORDERED 

1000 .046 sec. 2.874 .719 sec. 62.4 15.6 
2000 .108 11.386 2.912 105.0 26.9 
4000 .216 4.5.326 10.26.'3 210.0 43.5 
8000 .433 180.861 38.091 416.0 87.9 

16000 .865 722.422 146.440 825.0 169.0 
64000 2.916 11 ,548.198 2,271.915 3,875.0 770.0 
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job history (man #, jobdate, company, title) 
salary history (man #, jobdate, salary date, salary, per

centile) 

and the Associative Normal Form is: 

RI(a ll , a 12, ala, a 14, a 15 , a 16 , 0'1) 

R 2(a 21 , a22, a2S, O'll 0'2) 

Rs(as h as2, aaa, 0'1, 0'2) 

The total number of searches, nl, required for the rela
tion RI is the sum of the number of possible search argu
ments for each domain in R I • Similarly, the number of 
searches for R2 and Ra can be represented by n2 and na. 
The number of words, or processing elements (PEs), sat
isfying a search on RI is I kll, and for R2J I k21. Since the 
0' I values from the PEs satisfying the search conditions 
for R I are used as arguments for searching R 2 , the total 
number of ~earchei" po~sible for R2 is equal to n2+ I kJ I: 
analogously, the total number for Ra is equal to na+ I k21. 
Therefore, the total number of searches for one APCS 
data load required for the three relations hi: 

T=n l +n2+ns+IkII+lk2 1· 

The first comparison dealt with a search and retrieval 
problem for a personnel data base consisting of the three 
relations R I , R2 , and Ra. These relations required 50,000 
records, each contained within two PEs. The problem 
dealt with the query: 

PRINT OUT THE MAN #, SALARY DATE, AND 
SALARY FOR THOSE EMPLOYEES LQ 40, WITH MS 
DEGREES, WHO ARE ENGINEERS, AND WHO 
HAVE WORKED AT HUGHES. 

In the associative case, the total number of searches 
required was: 

where N = number of APCS data loads. (Note: the 
multi-conditional search on RI can be made with one 
search instruction.) 

For the total data base, it was assumed that varying 
numbers of records satisfied the RI search, i.e., 

(EMPLOYEES LQ 40, DEGREE EQ MS, TITLE EQ 
ENGINEER); 

and that a variable number of the records marked after 
the 0'1 search satisfied the R2 search for 'HUGHES'. 

For the conventional case, it was assumed that a ran
dom-access storage structure existed and that an unor
dered dictionary was used for calculating record 
addresses if needed. An index in R I was used to access the 
records belonging to R 2 , and an index in Ra was used to 
obtain the values to be printed. The total number of 
Search Compare instructions required was a function of 

the length of RI (il), the number (C) of comparison criter
ia, and the length ( IPII ) of the list formed after a search 
of RI times the average number of items, a, in the simple 
domain a21 • This is represented by: 

Holding the term C II constant in T2 and examining the 
two equations TI and T2 it can be seen that, for this par
ticular query, as the number of responding PEs increases, 
the associative performance improvement ratio will 
decrease; that is, as the number of 0'1 and 0'2 searches 
increases, as a result of an increase in the number of PEs 
responding to primary and secondary relation multi-con
ditional searches, the performance improvement ratio for 
the APCS decreases. This is illustrated by Table III. 
However, as the number of records increases (C 11-> 'Xl), 
the performance ratio increases for the APCS when hold
ing the number of responding PEs constant over the 
measures. 

Based on the search and retrieval problems that have 
been investigated, it can be concluded that with respect to 
conventional random-access storage structures, the per
formance improvement for the APCS is affected by the 
amount of parallelism inherent within a search, the 
number of multi-field searches spread over a set of 
domains, and the degree of hierarchical intra -structure 
manipulation, with respect to 0'1 and 0'2 searches, invoked 
by the query. 

A set of queries that tends to produce the following 
effects will improve the APCS performance ratio: 

• Queries invoking an increase in the number of PEs 
participating in a series of searches. 

• Queries requiring an increasing number of multi
field searches. 

• Queries requiring increasing volumes of data 
(assuming that high -speed parallel I/O devices are 
available for loading the APCS). 

The APCS performance ratio decreases as the queries 
tend to produce: 

• A decreasing number of PEs invoked by a series of 
searches. 

TABLE III-Hierarchical Search and Retrieval 
(50,000 Records) (Normalized to 370/145) 

al AND a2 IBM 370/145 
SEARCHES APCS TIME (Tl) TIME (T2) 

11 6.167 MS 901.951 MS 
110 14.785 910.51 
600 50.87 952.6 

1100 81.87 989.8 
2300 150.07 1077 .3 

RATIO 
T2/Tl 

150 
62 
18 
12 
7 
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• An increasing number of 0'1 and 0'2 searches with 
respect to hierarchy. 

• An increase in the use of slow, conventional channel 
I/O techniques. 

TACC APPLICATION SYSTEM AND ASSOCIATIVE 
PROCESSING ANALYSIS 

After having looked at specific DMS subfunctions on 
an AP, it is of interest to see their importance applied to 
the processing activities of a real-time system and to 
evaluate an AP's impact from a total system viewpoint. 

The desired outcome of this study is to have a capabil
ity to evaluate the impact of associative processing on the 
future data automation efforts of the Tactical Air Control 
System (TACS). A portion of the data management sys
-tem-p-rocessingoperations were defined;forthe purpose of 
this study, in the context of the on-going Advanced Tacti
cal Command and Control Capabilities (ATCCC) Stud
ies. The results presented below were derived from an 
analysis of a scenario for the T ACe Current Operations 
Division that was under investigation on a testbed facility 
at Hanscom Field, Massachusetts. The testbed consisted 
of functional software for the Current Operations and a 
data management system operating on an IBM 1800/ 
PDP-8 distributed system. 15 

A real-time associative processor data management 
system (AP / DMS) study model was developed with 
equivalence to the T ACC testbed system in mind. A prac
tical comparison was made between the two systems in 
order to determine which system better meets TACC data 
management requirements. The AP IDMS design also 
serves as a basis for projections of the future effects of 
sophisticated application of associative processing tech
nology on hardware, data structures, and future data 
management systems. The following describes the API 
DMS and the comparison methodology and results. The 
comparison measurements are normalized to bring the 
hardware, data structures, and data management systems 
to equivalent levels. 

The testbed system (running on the IBM 1800 com
puter) and the AP IDMS (running on the APCS) were 
compared first with both using IBM 2311 discs as periph
eral storage, then with both using IBM 2305 fixed-head
per-track discs. In the first case, the number of instruc
tion executions for both systems was multiplied by the 
average instruction time for the IBM 1800; in the second, 
the multiplier was the average instruction for the APCS. 

AP/DMS 

The AP I DMS was req uired to provide a data manage
ment environment for the comparison of associative proc
essing techniques with the sequential techniques used in 
conventional data management systems. It was aimed at 
the development of cost-effectiveness and performance 

ratios and as a background for the analysis of advanced 
associative processors. 

This general statement of requirements was used to 
derive a set of general capability and performance 
requirements for the system. The equivalence between 
the testbed system and the API DMS was the overriding 
requirement. The testbed data base and scenario were 
kept in the same form to achieve the desired results. The 
user language was tailored to match both the testbed sys
tem and the AP IDMS. The notion of normalizing com
puter instruction times implies a similarity in the soft
ware and the data flow. The I/O requirements were 
accorded separate but equal status to provide an ability 
to make both simple and complex changes to the system 
configuration. 

System organization 

The concern for system equivaience pervades all phases 
of system design-starting with the system's logical organ
ization and physical configuration. An API DMS system 
organization aimed at meeting the requirements discussed 
above was established. The basic organizational concept 
was that the data processing capability should be concen
trated in the associative processor. Such a system organi
zation offers better and faster response to user queries 
and provides a capability for system growth and change 
and favorable conditions for system design and imple
mentation. 

The APCS computer performs the following functions: 

1. Generation, storage, and maintenance of the sys
tem data base. 

2. Storage of general-purpose and application pro
grams. 

3. Dynamic definition of data base organization. 
4. Execution of message processing programs and, in 

support of those programs, retrieval from and manipula
tion of data base files. 

5. Message reformatting-specifically, conversion from 
data base format to display format. 

6. Immediate response to message and data errors, 
reducing the processing time for inconsistent users quer
ies. 

Measurements 

The AP/DMS was coded in JOVIAL-like procedures 
using the APCS instruction set. An instruction path 
derived from the testbed scenario was given to a counting 
program, and a comprehensive set of statistics was gener
ated for the AP / DMS. Similar measurements were made 
from several SDC testbed documents to derive a set of 
testbed ~tatistics. 

Table IV presents the test-run results. The total time 
for the TACC testbed was 29.9 seconds; the TACC API 
DMS time was 11.8 seconds. These times were normal-
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TABLE IV-Comparison Normalized to IBM 1800-2311 Base 

TACC AP/DMS 
TESTBED 
SP ONLY AP+SP AP SP 

AVG. TIME PER 4810 4810 4810 4810 
OPERATION 

NO. OF OPERA- 2,161,700 994,300 217,000 777,300 
TIONS 

OPERATION 10,397,777 4,782,583 1,043,770 3,738,813 
TIME 

I/O OPERA- 19,589,770 7,063,731 8,731 7,055,000 
TION TIME 

TOTAL TIME 29,987,547 11,846,314 1,052,501 10,793,813 

RATIO TESTBED: AP/DMS 2.5:1 

ized to the IBM 1800/2311 operational times. Table V 
was normalized to APCS/2305 operational times. In the 
latter case, the performance ratio was approximately 3:1; 
that is, the AP performed the equivalent task three times 
faster than the conventional processor. 

Statistics showed that the APCS spent 80 percent of its 
time in parameter· definition and passing functions, 
whereas the testbed computer spent 3.8 percent of its 
time with such functions. The APCS defined its instruc
tion operands from data definition parameters located in 
an AM-resident dictionary, and sequences of code pas~ed 
these parameters from JOVIAL procedure to procedure. 

The associative processor does use more parameters 
than the sequential processor, but not 20 times as many; 
statistics showed that 73.7 percent of the AP /DMS time 
was spent in dictionary operation. It can be concluded 
that there were too many calls to the dictionary, causing 
too many parameters to be used and passed. Another 
factor in the AP / DMS performance is the use of the 
JOVIAL procedure call technique. This technique uses 
elaborate register and address saving and restoring code. 
This code is unnecessary, particularly for one AP proce
dure calling another AP procedure. 

When we reduce the parameter passing and dictionary 
calls by 90 percent and disregard I/O times, the perform
ance ratio is approximately 30: I-however, we can im
prove this ratio even more. 

The TACC data base used by the AP /DMS was biased 
in favor of sequential computing. The size of the data 
base was 400KB, consisting of 50 files containing 1850 
domains which involved an average of 68 processing 
elements. Cost-effective parallel computation techniques 
favor the reverse-68 domains spread over 1850 process
ing elements. The T ACC data base can be reduced to 500 
domains, which would have the net effect of involving 
more parallel processing elements and reducing the time 
spent in parameter setup, producing a 60: 1 CPU gain 
over sequential processing for the TACC problems. 

CONCLUSIONS AND RECOMMENDATIONS 

In order to investigate real-time DMS functions on an 
associative processor, a hypothetical Associative Proces
sor Computer System (APCS) was described. The 
description was carried to the instruction level in order to 
have an associative machine on which to code Air Force 
Tactical Air Control Center (TACC) and update and 
retrieval problems for comparison with corresponding 
conventional (sequential) codings. 

A T ACC testbed scenario describing an operational 
demonstration of the T ACC Current Operation functions 
was analyzed and from this analysis it was concluded that 
of the DMS functions most able to use an associative 
processor, the great majority of tasks in an operational 
situation fell in the three data management areas of 
retrieval, update, and search, with 60 percent of the total 
processing tasks being associated with data search and 
retrieval. 

For this reason, it was decided to investigate Search 
and Retrieval and Update subfunctions on the APCS. 
This investigation involved coding Search and Retrieval 
and Update problems for the APCS and for a conven
tional computer, an IBM 370/145. From an analysis of 
various conventional physical data organizations, the 
random-access storage structure was chosen for compari
son with the APCS because of its similarity to testbed 
data organizations, because of its widespread use in other 
systems,16 and because of other studies relating to list 
organizations. 1o Hierarchical and non-hierarchical record 
structures were investigated. 

APCS performance improvements, normalized to the 
IBM 370/145 computer, varied from 32 to 110 times 
faster for Search and Retrieval and from 15 to 210 times 
faster for update; this assumes that a half-million-byte 
mass storage device (semi-conductor memory) with a 
parallel I/O bandwidth of 1.6 billion bytes/second exists 
for loading the associative memory. By increasing the size 
of this device, more cost-effective performance ratios were 
achieved for the two DMS measures; other mass storage 
devices which may be more cost-effective for associative 
memories are bubble memories, fixed head-per-track 
discs,17 and LSI memories. 

TABLE V-Comparison Normalized to APCS-2305 Base 

TACC AP/DMS 
TESTBED-----------------
SP ONLY AP+SP AP SP 

A VG. TIME PER OPERA- 291 291 291 291 
TION 

NO. OF OPERATIONS 2,161,700 994,300 217,000 777,300 
OPERATION TIME 829,055 289,341 63,147 226,194 
I/O OPERATION TIME 1,756,270 587,351 351 587,000 
TOTAL TIME 2,585,325 876,692 63,498 813,194 

RATIO TESTBED: AP/DMS 3.0:1 
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From the testbed scenario analysis, three critical real
time functions were selected to provide us with a real Air 
Force problem to investigate. We obtained program list
ings for these functions and converted them to analogous 
APCS code. The JOVIAL language, augmented with 
APCS instructions, was used for coding the functions. 
Due to the data structuring and coding tehniques used, a 
3: 1 improvement, normalized to the testbed IBM 1800 
computer, was initially shown for the APCS. This 
improvement ratio was due to the fact that almost a lit
eral translation was made for converting testbed data 
structures to the APCS. Also, the JOVIAL techniques 
used for coding the APCS required twenty-five times as 
much overhead for passing parameters between subrou
tines as did the testbed code. By restructuring the testbed 
data in order to gain more parallelism and by reducing 

-the-parameter passing overhead to that of the testbed, we 
concluded that a 60:1 improvement could be gained for 
the APCS, and we would expect to obtain that ratio upon 
repeating the measures. This assumes that a sufficient 
quantity of mass storage exists for swapping data into the 
AMS with a bandwidth of 1.6 billion bytes/sec. Based on 
our study, recommendations are made for future associa
tive processor research studies relating to high-order 
languages, firmware implementation techniques, general
ized tag operations, LSI design and AP cell implementa
tion, and memory organization and data movement. 
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A computer graphics assisted system for management 

by ROHI CHAUHAN 

Tektronix, Incorporated 
Beaverton, Oregon 

U\TRODUCTIOK 

Everyone agrees that a "picture is worth a thousand 
words". However, it is not yet obvious that it would make 
good business sense for managers to make liberal use of 
Computer Graphing in almost all phases of business deci
sion-making. This paper asserts that it is convenient and 
practical where something worthwhile can be gained by 
study of variation of such important parameters as 
demand, inventory level, or sales, with time or with 
respect to another independent variable. This assertion is 
predicated on the assurance that: 

A. Graphs can be obtained easily as soon as they are 
needed and in the form they are needed. 

B. Graphs are very easy to obtain and modify, and 
C. Graphing is cost effective. 

Some examples of activity areas where business data 
graphing is known to be definitely profitable are corporate 
planning, purchasing, resource allocation, production 
scheduling, and investment portfolio analysis. However, 
today, only in a very few management decision -making 
processes can it be said that computer data graphing is 
being used as a daily routine. Reasons are primarily that 
the three conditions mentioned above have not so far 
been met to users' satisfaction. 

The need for easy graphing with desired flexibility dic
tates use of computer assisted graphing on display ter
minals providing both graphic output as well as graphic 
input and hard copy capabilities. Management systems 
involving such Computer Display Terminals have been, 
until recently, quite expensive,l·2 and difficult to justify 
for common business applications. Also, the choice of 
computer display terminal suppliers and their product 
lines were very limited. The software packages that would 
really make the job of a "business programmer" easy 
were practically non-existent. As such, the application of 
Display Terminal Graphics in business decision-making 
has remained limited to a very few places, like IBM,3 

and there too apparently on somewhat of an experimental 
basis. A significant number of industries have been us
ing plotter type graphics, 4 but only sparingly because of 
inconvenience, lack of flexibility, and expense. 
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However, after introduction of a less than $4,000 Com
puter Display Terminal by Tektronix, Inc., in October 
1971, the use of high speed interactive graphing terminals 
in several phases of business planning and control activi
ties has now become an economically practical reality. 
Several companies are known to have implemented, 
rather quickly, some simple but elegant and profitable 
graphics assisted systems. Two companies that have 
publicly talked about their applications are U niroyaP 
and International Utilities.6 

This paper will suggest how it is possible to configure 
simple low cost Decision Support Systems, via descrip
tion of a system called GAMA-1 for Graphics Assisted 
Management Applications. This system is being used at 
Tektronix Inc., Beaverton, Oregon, for corporate plan
ning and production scheduling purposes. The discussion 
is focused on characteristics of such business systems, 
software architecture, simplicity of design, and ease of 
its usage, all of which, of course, is with reference to the 
GAMA-l. 

SYSTEMS CONFIGURATION 

The GAMA-1 system is an imaginative attempt at 
exploiting capabilities furnished by modern computers in 
timesharing environment. Tektronix 4010 type computer 
display terminals, Tektronix 4610 type hardcopy units for 
the 4010's, knowledge of quantitative methods that are 
frequently used in decision-making process, simple data 
organization concepts, and FORTRAN are utilized. Fig
ure 1 shows a multi-terminal GAMA-1 system's configu
ration. The computer system presently being used is a 
PDP-10. 

FUNCTIONAL REPRESENTATION 

As depicted in Figure 2, the GAMA-l system can be 
functionally used in three ways, i.e., 

1. Graphing of user data files (complete with specified 
annotation), movement of the produced pictures as 
desired to fit suitably on the screen, and finally, 
making hard copies for a report. 

2. Manipulation of user data, e.g., adding and subtract
ing of two series, updating, smoothing, etc., and then 
performing the task described above, in step 1. 
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t' 
T /S COMPUTER 

SYSTEM 

.1 

4010 

:~ 

4010 iOMPlITER ~:. 
OISPLAY TERMINAL(,/ 

4610 HARD COpy UNIT 

Figure I-GAMA-l system's configuration 

3. Statistical analysis of the user data, systematic 
making of forecasts, and generation of reports as in 
atep 1. 

For data manipulation, analysis, and forecasting, sev
eral useful techniques such as adaptive exponential 
smoothing, census method X-II, pairing, and regression 
analysis are furnished, together with the simple but 

) DATA FIlES 
GRAPHING AND 

PICTURE f--
MANIPULATION 

8-1/2xll 

~ DATA 
-~ 

REPORTS 
MANIPULATION 

-

OATA ANALYSIS 
~ AND ---FORECASTING 

Figure 2-GAMA-l functional representation 

commonly used methods of moving averages, forecasting 
by graphing and inspection. Also, hooks have been 
designed, into GAMA-l, so that programs of other desira
ble techniques can be integrated into the system. 

SOFTWARE ATTRIBUTES 

The GAMA-l software has been designed to provide the 
following most desired features into the system. 

1. An ease of use as reflected by the self-guiding, con
versational nature of the system. A conversational 
program is normally thought of as one where the 
user responds to the queries from the system, one at 
a time. However, this standard can be surpassed by 
making all possible choices open to the user known 
to him at all times. This has been accomplished in 
the GAMA-l software by extensive display of menus 
of the available choice~ and use of the graphic 
cross hair for selection of the chosen menu item. 

2. Ability to combine usage of several data manipula
tion, analysis, and forecasting techniques as desired, 
i.e., adaptability to varying user requirements. 

3. Liberal use of graphing throughout the system for 
easy comprehension of results of various GAMA-l 
operations. 

4. Easy interfaceability with user's own programs fur
nishing capability of further growth of the system. 

5. No need for the GAMA-l users to do any applica
tions programming. 

6. Mechanism for saving, if so desired, the results that 
are generated during a GAMA-l session in the for
mat in which they can be directly fed back as data 
into the subsequent GAMA-l sessions. 

7. Extensive report generation capabilities allowing the 
user easily to compose his report pages consisting of 
graphs of original data as well as the results of the 
GAMA-l analysis programs saved before. Complete 
control over the size and positioning of the graphs, 
form of the axes, grid super-imposition, alphanu
meric annotations (both vertical and horizontal), 
and movement of the report element on a page is 
provided. Also, any page of a saved report may be 
retrieved, modified, and saved again. This feature 
can be exploited for storing the frequently used 
preformatted report pages, retrieving them later as 
needed, filling the blanks (with graphs of new data 
or annotations) for making up a new report. 

SYSTEMS ARCHITECTURE 

The GAMA-l is a file oriented system designed to func-
tion in one of the five GAMA modes at anyone time, i.e., 

1. Option Select Mode (OSM): 
2. Data Manipulation Mode (DMM), 
3. Analysis and Forecasting Mode (AFM), 
4. Report Generation Mode (RGM)' or 
5. Help Mode 



As illustrated in Figure 3, OSM is the central interface 
mode which must be entered before any other mode can 
be invoked. A typical GAMA-l session will mostly consist 
of operations in one or more of the three work modes, i.e., 
the DMM, AFM, and RGM. The system's activity in any 
of these three work modes is performed by a set of appli
cations programs whose purpose is related to the nomen
clature of the modes. 

During a normal conversational session the system uses 
three types of disk files, namely, 

GAMA FILE, 
DATA FILE, and 
REPORT FILE, 

whose simplified functional relationships are shown in 
Figure 3. 

Gama file 

The GAMA FILE is the central work file used for 
conducting information flow between various modules of 
the GAMA-1 software. It is read by the programs in 
DMM, AFM, and RGM, and it can be modified by the 
program in DMM and AFM. It can have several seg
ments in it, each of them being a binary representation of 
the original data or the data resulting from operations on 
a GAMA FILE SEGMENT by one of the applications 
programs. Use of this technique saves information storage 
costs and adds to run time efficiency. 

Figure 4 describes the general design philosophy of the 
GAMA FILE. It is simple. A complete display normally 
consists of more than one display element, which can be 
added to, removed from, or moved on the display screen, 
but may not be subdivided. The display elements may be 
either "Graph" or an "Annotation", as defined below. 

GJl.~A FILE 
(SEGMENTS) 

DATA FILE 

Figure 3-GAMA-l file relationships 
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Graph-Binary representation of data, both numeric 
(to be graphed) and alphanumeric, that must be treated 
as one unit. For example, a GAMA FILE segment gener
ated from a DATA FILE (Figure 5) would contain only 
one element which would be of type "GRAPH". 

Annotation-A display element created by the GAMA-
1 programs during DMM, AFM, or RGM under user 
control. Annotations do not have names. Annotations 
cannot exist outside of RGM unless they are associated 
with a graph. Annotations may be either graphic or 
alphanumeric. 

Alphanumeric Annotation-It is a string of alphanu
meric characters, alternately referred to as labels. Multi
ple lines are permitted, in both horizontal and vertical 
configurations. 

Graphic Annotation-Lines or points that have been 
added to a "Graph", by graphic cursor input. 

Data file 

The DATA FILES, to be created from raw data by 
using computer system's text editor, contain data to be 
analyzed by GAMA-l in character strings. The data is 
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classified under four categories, which must follow after 
declaration of the headers by the same name. Figure 5 
shows an example of the DATA FILE. 

/TITLE "XYZ COMPANY"; "ABC DIVISION"; 

"CONSOLIDATED SALES" 

/TYPE* MONTHLY FROM 6706 to 6805 

/ YUNITS "THOUSANDS $" 

/XUNITS "YEARS" 

/DATA 

255 179 87 140 82 53 31 

76 98 29 80 16 100 

Figure 5-A DATA FILE using one year data 

It is to noted that: 

• A character string following a "/", until a blank 
space is encountered, constitutes the HEADER. 
Once a header has been declared, it is associated 
with the data following it until a new header is de
clared or an end of file is encountered. 

• All information is entered in free format separated 
by blanks. The entry of each line is terminated by a 
carriage return. 

• The actual numbers representing data must start on 
the next line following the header / DATA. Also, the 
data must be the last entry. 

• Length and order of /TITLE, /TYPE, /XU:NITS, 
and/YUNITS type information is arbitrary inas
much as it occurs before I DATA. Any of these types 
may also be omitted. 

• A ";" in the TITLE type information indicates the 
beginning of a new line. 

The DATA FILES can be generated either by using a 
text editor, from raw data, or from a GAM A FILE seg
ment by using the INTERPRT command in DMM. A 
DATA FILE is read only by using the CREATE com
mand in DMM for generation of a GAMMA FILE seg
ment; it is the GAMA FILE segment which is read or 
written by all other applications programs. After a 
GAMA FILE segment has been made, the corresponding 
DATA FILE can be deleted because it can always be 
re-created by selection of the INTERPRT command in 
the DMM when required. 

* Possible types are DAILY, WEEKLY, MONTHLY, PERIODICAL, 
QUARTERLY, YEARLY, and PAIRS. In case of PAIRS the format 
will be ,'TYPE PAIR nnn, where nnn is the number of pairs; then, in 
the lJATA all the X components ot the paw; are llsted firlit iollowed by 
the Y components. 

Report file 

In the Report Generation Mode (RGM), a report page 
is first composed in a one dimensional real array, called 
Display Data Array (DDA), and later saved as a page in 
the REPORT FILE. A report page, i.e., DDA of the 
RGM, consists of all information that is on display on the 
screen, with exception of the GAMA-1 system prompts. 
While in the RGM the DDA always contains all informa
tion that is necessary to reproduce the current display. 
When a display is saved the DDA is written into the 
REPORT FILE on disk with the specified page number. 

The DDA may be filled up gradually, via usage of 
RGM commands, from information in the GAMA FILE 
segments or it can be loaded from an existing page in the 
REPORT FILE. 

It is to be noted that the information in the DDA is 
organized in form of one or more linked display elements. 
Each of these elements can be manipulated (i.e., deleted, 
moved, etc.) as one unit by the RGM commands. Also, 
the other types of display elements have been linked via 
pointers to allow one refresh* routine to scan through and 
redraw the complete display in DMM, AFM or RGM. 
This feature has been made possible by choice of identi
cal structures of the display elements in both GAMA 
FILE segments and the display data array. 

GAMA-l USAGE CONSIDERATIONS 

Because of the system's self-guiding, responsive, and 
conversational nature, a GAMA-1 session is naturally 
very creative and interesting. Unlike most systems, a user 
of GAMA-l is not required to guess and key in the 
answers at every stage. All alternatives available to a user 
are displayed before him as a menu on the right hand 
margin of the display terminal screen, as shown in Figure 
6. A selection of any menu item can be readily made by 
positioning just the horizontal line of the graphic cross
hair cursor over the desired item and touching a key. 
Quite often, selection of one menu item results in the 
display of a subsidiary menu comprising the alternatives 
that are available in relationship to the previously 
selected activity. For example, with reference to Figure 6, 
once the RGM's DISPLAY command in menu I is cho
sen, the menu II appears. A convenient mechanism for 
transfer of control from one set of activities to another is 
built into the system. For example, input of a "$" charac
ter in response to any input request, anywhere, results in 
cancellation of the going activity and the main menu of 
that mode is activated. 

After a while in a GAMA-1 session, a display often gets 
cluttered because of systems prompts and menus. For 
such situations, a clean, clutter-free, and current display 
(i.e., showing effect of MOVE and DELETE commands 
and addition of any new display elements) can be 

* Selection of the REFRESH command clears the entire screen and 
displays a fresh page. It is uflen used to redi"play the "amI" informatiull 
after erasing the screen. free of the unnece~!'ary clutter. 
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Figure 6-Some of the GAMA-l menus 

obtained by either selection of the REFRESH command 
or typing an "*,, followed by a carriage return. 

Default options 

Inasmuch as an extensive usage of the menu mecha
nism furnishes complete control over selection of data 
manipulation, analysis, and forecasting techniques, and 
picture (i.e., graph and annotations) manipulation 
(Figure 7), certain default options are also available to 
the users. For example, referring again to Figure 6, when 
menu II is active, selection of END draws the picture 
with the alternatives that have been chosen in menu II 
and returns control to the main RGM menu, i.e., menu I. 
If no alternatives, in menu II, are chosen before END is 
activated, a graph using the default options is produced. 
As is evident from Figure 6, a GRAPH command for a 
quick look at graphic representations of data, without the 
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bother of choosing any display options whatsoever, is also 
provided in the DMM and AFM so that application of 
right techniques can be facilitated. 

Control file option 

It may be desirable to speed up a GAMA-1 session by 
cutting down on the bulk of conversation with the system. 
Such a facility is implemented via a control file option. If 
this option is selected, completion of a normal GAMA-1 
session results in saving of a control file which can later 
be executed any number of times to reproduce the same 
GAMA -1 session with different sets of data. The system, 
when run as governed by a control file, asks only a mini
mum number of necessary questions. such as identifica
tion of the new data, etc. 

This option will be particularly appreciated by manag
ers and those users who do not have a need to get into the 
"nitty gritty" of the GAMA-l system. They can have a 
control file for a session tailored to their requirements by 
an analyst and execute it, with their data, for results with 
just about no questions asked. 

HELP TO USERS 

While in the Option Select Mode (OSM), users have a 
choice of selecting the HELP Mode for a reasonably 
detailed description of the GAMA-1 system. In this mode, 
an attempt is made to advise users of the system's various 
capabilities and to furnish adequate guidance for their 
usage in a conversational style. 

A limited (one page only) amount of information per
taining to a particular work mode (e.g., DMM, AFM, or 
RGM) is also available if the HELP command is selected 
out of the main menu in the respective mode. 

THE GAMA-1 RESULTS 

Results generated during activities in DMM and AFM 
can be saved into the GAM A FILE as new segments or as 
replacement of the existing segments. Each of the final 
report pages can be saved, with respective page numbers, 
into the REPORT FILE. 

Figures 8 and 9 are reproductions of true hard copies of 
three pages, for example, of a report generated in the 
RGM. Tabular outputs are produced separately by each 
applications program. 

SUMMARY 

At last, the long awaited usage of Computer Graphics in 
business decision-making is here. It is now also cost
effective. Looking ahead, it appears certain that after five 
years, if not sooner, we will be able to say that the largest 
numbers of applications of computer graphing terminals 
are in business, not in computer aided design as today. 

Svstems such as GAMA-1 are on the threshold of emer
gen~e all over. They are very versatile in being potentially 
applicable to a variety of business environments, sepa-
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rately as well as a functional module of complex Corpo
rate Information Systems. 

Future developments will be in the area taking advan
tage of distributed computing in business decision sup
port systems, exploiting minis or intelligent terminals for 
processing of pictures and small applications functions, 
locally, leaving the large number crunching jobs to the big 
computers in remote locations. The possibility of simple 
turnkey systems using a large mini is also very promising. 
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On the use of generalized executive system software 

by WILLIAM GORMA~ 

Computer Sciences Corporation 
Silver Spring, Maryland 

INTRODUCTION 

The characteristic of third generation computing systems 
that most distinguishes them from previous ones is that 
they are designed to perform multiprogramming. The 
purpose of multiprogramming is cost-effective utilization 
of computer hardware, which is achieved by reducing the 
CPU time otherwise lost waiting for completion of I/O or 
operator action. An operating system is necessary to 
achieve multiprogramming: to schedule jobs, allocate 
resources, and perform services such as 1/0. 

Since these systems must be very generalized in order 
to accommodate the vast spectrum of potential applica
tion program requirements, they require some specific 
information from the user if they are to perform effec
tively. To supply the needed information and intelligently 
(efficiently) use the system, then, the user must have 
some understanding of the operating system's function as 
related to his particular needs. 

A third generation computing system has so much 
generality that to use or understand it one must wade 
through stacks of manuals that seem neither clear nor 
convenient. Problems plague users, who get caught in a 
juggling act with executive system control language. The 
unwary become hopelessly involved, generating endless 
control card changes, with attendant debugging problems 
and loss of valuable personnel time. Other users have 
gotten almost mystic about their job control language 
(JCL), taking an "it works don't touch it" attitude. With 
indirection such as this, even competent organizations can 
become very inefficient, using far more hardware, soft
ware, and human resources than are actually needed for 
the work at hand. 

Before we surrender and send out an appeal for the 
"save money" salesmen, let's examine the purposes of 
executive system software and determine if the applica
tion of a little horse-sense doesn't go a long way toward 
solving our dilemma. Randal}! notes in his excellent paper 
on operating systems that the quite spectacular improve
ments that are almost always made by tuning services 
"are more an indication of the lamentable state of the 
original system, and the lack of understanding of the 
installation staff, than of any great conceptual sophistic a -
tion in the tools and techniques that these companies 
use." Clearly, the key to effective use is understanding of 
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the operating system and of its interface between a job 
and the hardware available to perform that job. 

It is the purpose of this paper to suggest ways to effec
tively use a third· generation operating system. Most of 
the examples used will be from the most generalized and 
complicated of them all-IBM OS/360. Our examination 
of operating systems will begin with the typical hardware 
resources of a computing plant and the OS response to 
those resources. A brief overview of the user tools sup
plied by the operating system will then be presented, fol
lowed by discussions on bugs and debugging and other 
problems of performance. 

Our conclusion will cover the most valuable and can
tankerous resource of all-human. Lack of space prevents 
a complete tutorial, but it is the author's hope that many 
questions and ideas will be raised in the reader's mind. 
Perhaps a thoughtful user may see ways to regain effec
tive use of his computing facility, or as Herb Bright says, 
"Learn to beat OS to its knees." 

HARDWARE RESOURCES 

CPU time 

The first and most val uable resource we shall examine 
is that of computer time itself. Emerson has said, "Econ-
0my is not in saving lumps of coal but in using the time 
whilst it burns." So it is with computer time. Most large 
computer shops run their computers 24 hours a day, yet 
typically their central processing units are doing useful 
work for far too small a percentage of that time. 

Cantrell and Ellison3 note that "The second by second 
performance of a multiprogrammed system is always 
limited by the speed of the processor or an I/O channel or 
by a path through several of these devices used in 
series. . .. If some limiting resource is not saturated, 
there must be a performance limiting critical path 
through some series of resources whose total utilization 
adds up to 100%." To achieve the theortical potential of 
a computing system, we must manipulate it so as to in
crease the percentage of resource use. Analysis of the 
bottlenecks that cause idle time generally reveals that 
resource needs of companion runs are in conflicting de
mands in such a manner as to gain greater use of the 
CPU. 
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There are three states of CPU time: wait, system, and 
active. System wait time is time when the CPU is idle. 
System time is that time spent in supervisory routines, 
I/O and other interrupt processing, and error handling
most of which is considered overhead. Active time is the 
time spent executing problem programs. Any reduction of 
system or wait time makes more time available for prob
lems, thus contributing to greater efficiency. 

I/O channel time 

The channel handles the transfer of information 
between main storage and the I/O devices and provides 
for concurrency of I/O and CPU operation with only a 
minimum of interference to the CPU. Whenever I/O 
activity overloads a CPU, idle time can result because the 
CPU might be forced to wait for completion of I/O activ
ity in order to have data to process. Such cases might be 
an indication of poor job mix. 

Problems also result from the frequency and duration 
of I/O activity. When data is moved in many small 
bursts, competition for channels and devices can mark
edly slow the progress of the operating system. 

Main storage 

Main storage, or memory, is probably the most expen
sive and limiting resource in a computing systtm, besides 
the CPU itself. Many programs use huge amounts of 
memory-often more than is available. Since the con
sumption of memory by programmers seems, like Parkin
son's Law, to rise with availability, it is doubtful that 
expansion of memory will alone solve the average main 
storage problem. Expansion of memory without a corre
sponding increase in the average number of jobs resid
ing in memory at execution time is a dubious proposition. 

Certain portions of the operating system must reside 
permanently in main memory in order to execute; but the 
basic system is too large, with many portions too infre
quently used, to make it all resident. Memory not used by 
the system then serves as a pool of storage from which the 
system assigns a partition or region to each job step as it 
is initiated. 

One memory scheme used by the 360 breaks memory 
up into fixed-length parts or partitions, and the user pro
gram is allocated the smallest available partition that will 
accommodate it. Another 360 scheme has the system allo
cate (de-allocate) memory at execution time in the spe
cific amounts requested. This method is more complicat
ed, with more overhead, but it permits a greater variation 
in the number and size of jobs being executed. 

The most common abuse of memory that I have 
observed is over-allocation, or more simply the request 
for greater amounts of memory than are used. Fragmen
tation, a particularly frustrating problem, results from 
the requirement that memory be allocated to user jobs in 
single continuous chunks. As jobs of varying size are given 
memory, the memory assignments are at first contiguous 

to one another. When a job finishes, the space it occupied 
is freed and can be assigned to another job or jobs. How
ever, if subsequent jobs require less than the full amount 
vacated, small pieces or fragments of unused memory 
occur and must wait until jobs contiguous to them are 
ended and can be combined back into usable size. As a 
result, when we wish to execute programs with large stor
age needs, the operator often must intervene and delay 
the initiation of other jobs until enough jobs terminate to 
create the necessary space. Thus, our CPU can become 
partially idle by virtue of our need to assemble memory 
into a single contiguous piece large enough to start our 
job. 

Direct-access storage4 

Direct-access storage is that medium (drum, disk, or 
data cell) where data can be stored and retrieved without 
human intervention. Modern computing demands could 
not be met without direct-access storage, and operating 
systems could never reach their full potential without it. 

The operating system uses direct-access to store system 
load modules and routines for use upon demand. Control 
information about jobs waiting to be processed, jobs in 
process, and job output waiting to be printed or punched 
is stored on direct-access devices by the operating system. 
The system also provides facilities whereby user pro
grams have access to temporary storage to hold interme
diate data. 

Magnetic tapes 

Data can be recorded on magnetic tape in so many 
different forms that we frequently sacrifice efficiency 
through lack of understanding. We often encounter diffi
culty with I/O errors not because of bad tapes, but rather 
due to incorrect identification to the operating system of 
recording format and such trivial things as record size. 
Further errors can develop from contradictions between 
our program's description and the JCL description of the 
same data. 

We generally inform the operating system of the 
recording format, etc., through JCL parameters. The 
system provides many services in the handling of tapes, 
one of the more important ones being the ability to iden
tify data sets on tape by comparing JCL parameters with 
labels written as separate files in front of the data being 
identified. In my diagnostic work, I have identified more 
I/O errors as due to bad JCL and wrong tape mounts 
than as legitimate I/O errors. Due to the perishable 
nature of tape, provision for backup must also be made. 

Unit-record devices 

Printers, card readers, and punches all fit into this 
category. The operating system rarely reads or writes user 
data directly from user programs to these units. Normal
ly, data input from a card reader or output to a punch or 



printer is stored as an intermediate file on direct-access 
devices, so that the system can schedule the use of these 
relatively slow devices independently of the programs 
using them. High volume and slow speed can occasionally 
cause system degradation. 

SOFTWARE TOOLS 

Many of the tools of the operating system are indepen
dently developed segments or modules collected into li
braries for use by the system and the user. Additional 
libraries are created to contain installation-developed 
routines, programs, and utilities. 

Utilities 

Supplied with our operating system are numerous ser
vice programs or utilies for performing frequently used 
operations such as sorting, copying, editing, or manipulat
ing programs and data. Among the services supplied are 
programs to update and list source files, print or punch 
all or selected parts of data sets, and compare sets of 
data. 

Generally these programs are easy to use once learned, 
are control card driven, and have" ... the priceless ingre
dient of really good software, abrasion against challenging 
users."2 They are generally stable from operating system 
release to release. 

User-written utilities 

This brings us to the subject of user-written utilities 
and programs. A search that I personally made at one 
installation uncovered over 20 user-written utilities, all 
occupying valuable disk space and all performing the 
same function-updating program source files. The only 
reason for this that I could discover was that the user was 
unable or unwilling to understand the utility already 
available. Despite what I termed waste, the writers, to a 
man, thought their approach sensible. 

Many useful utilities have been user-written, and often 
copies can be secured from the writers at no charge or low 
charge. 

Programming languages and subroutine libraries 

Programming languages have been developed to reduce 
the time, training, expense, and manpower required to 
design and code efficient problem programs. Essentially 
they translate human-readable code into machine-reada
ble instructions, thus speeding up the programming proc
ess. With these language translators come subroutine 
libraries of pretested code to handle functions such as 
deriving the square root of a number of editing sterling 
currency values. 

It is beyond the scope of this paper to discuss language 
selection, but one note seems in order. When only one or 
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two programmers in an installation are using a compli
cated higher-level language, those users can encounter 
serious debugging problems for which no help is available 
from fellow programmers, due to a lack of expertise in 
that language. 

Input/output control systems 

The IOCS portion of the system automatically synchro
nizes 1;0 operations with the programs requesting them, 
provides built-in automatic error handling, and is further 
extended by system schemes to handle queues of 1;0 
requests from many totally unrelated programs. The 
system also permits the user to change his output medium 
with only a simple change to JCL. Users need to write 
1;0 code at the device level only when introducing 
unique, special-purpose hardware to a system. 

Linkers and loaders 

The 360 linkage editor combines program segments 
that were compiled or assembled separately into a single 
program ready to be loaded. We can therefore make 
changes without recompiling an entire program. The link
age editor also permits us to create a program too large 
for available hardware by breaking it into segments that 
can be executed and then overlaid by other segments yet 
to be executed. 

The loader handles minor linkage tasks and physically 
loads into main storage the programs we wish to execute. 

JCLASA GLUE 

Operating system job control languages (JCL) have 
been established to enable us to bypass the operator and 
define precisely to the system the work we wish to per
form. JCL reminds me of glue: used properly, it's effec
tive; used poorly, it's a mess. 

I look upon the differences between the major operat
ing systems as trade-offs between simplicity and flexibil
ity. UNIVAC and most of the others have opted for sim
plicity, while IBM has stressed flexibility. For example, 
UNIVAC uses a very simple control language with single
letter keys that identify the limited range of options 
permitted via control card. IBM, on the other hand, 
allows extreme flexibility with literally dozens of changes 
permitted at the control card level-a not very simple 
situation. 

I consider 360 JCL to be another language-quite flexi
ble, but unfortunately a little too complicated for the 
average user. To execute a job on the 360 we need three 
basic JCL cards: a job card to identify our job and mark 
its beginning, an execute card to identify the specific 
program we wish to execute, and data definition (DD) 
cards to define our data sets and the 1;0 facilities needed 
to handle them. 

When we supply information about a data set via JCL 
rather than program code, it becomes easier to change 
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parameters such as block size, type of 1/0 device used, 
etc., than it would be with other control languages, simply 
because· no recompilation is required as is frequently so 
with the other approaches. However, due to the complex
ity of the process we can unknowingly make mistakes. 
For example, to create printed output under 360 OS we 
need only code SYSOUT=A on the DD card describing 
the data set. Since printed output is usually stored on 
intermediate disk files, a block size is needed; but unless 
block size is specified, the output may end up unblocked. 
Also we might not be able to estimate the volume of 
printed output that would be generated before our job 
fails for lack of space allocated to handle the printed 
output. 

Numerous and extremely troublesome problems are 
generated when our use of JCL is uninformed or haphaz
ard. The large number of JCL parameters required to 
properly execute a job introduces error possibilities due to 
sheer volume and an inability to remember every detail 
required by a large process. Even proficient JCL users 
may require several trial runs to iron out bugs, while 
uninformed users frequently give up and instead borrow 
JCL that allegedly works, even though that JCL may not 
really match their needs. It therefore becomes imperative 
that we devise ways to help users assume their proper 
responsibilities and get away from JCL as much as possi
ble. 

IBM assists by making provisions for cataloged librar
ies of JCL called procedures. To invoke a p.i'Ocedure, a 
user need supply only a job card and an execute card for 
each procedure we wish to execute. Within a procedure, 
necessary details can be coded in symbolic form, with the 
procedure equating our symbols to proper JCL values. 
Any value so defined can be changed merely by indicat
ing the symbol and its new value on the execute card 
invoking the procedure. We can also add or override DD 
cards and DD card parameters by supplying additional 
cards containing values to be changed or added. 

BUGS AND DEBUGGING 

Diagnosing bugs 

Diagnosing bugs in user programs requires a clear 
understanding of the relationship between system services 
and problem programs. 

Bugs call to mind complicated dumps and endless 
traces, 110 errors that aren't 110 errors at all, and other 
frustrating experiences. Certain higher-level languages 
include debugging facilities, trace facilities, and other 
diagnostic capabilities that can further complicate the 
diagnostic process whenever they are unable to properly 
field and identify an error. 

Our problem, then, in debugging is the rapid reduction 
of bugs to their simplest terms, so that proper corrections 
can be easily and simply made. Here we see the need for 
informed diagnosticians. 

Worthwhile procedures for debugging 

Often there is more than one path to a problem solu
tion. We should avoid the trial-and-error, pick-and
choose methods because they are expensive and generally 
unproductive. 

Here is a quick overview of my formula for diagnosing 
abnormal terminations ("ABEND"s). 

First, examine the operating system's reported cause 
for the ABEND. Try to get a clear understanding of why 
the operating system thought an error occurred. If any 
point is not clear, consult the appropriate reference 
manuals. Research the ABEND description until it is 
understood. 

Before progressing, ask these questions: Can I in gen
eral identify the instructions subject to this error? Can I 
recognize invalid address values that would cause this 
error? If either answer is yes, proceed; if no, dig some 
more. 

Next, examine the instruction address register portion 
of the program status word (PSW) which reveals the 
address of the next instruction to be executed. Check the 
preceding instruction to see if it was the one that failed. If 
this process does not locate the failing instruction, per
haps the PSW address was set as the result of a branch. 

Check each register at entry to ABEND. Do they look 
valid or do they look like data or instructions? Are a rea
sonable percentage of them addresses within our region of 
memory? 

If register conventions are observed, tracing backwards 
from the error point might reveal where a program went 
awrv. The beautv of higher-level languages is that they 
con;istently follo~ some sort of register use convention. 
Once these are learned, debugging becomes simpler. 

The process just described continues point by point 
backwards from the failure to the last properly executed 
code, attempting to relate the progress of the machine 
instructions back to the original language statements. If 
this process fails, attempt to start your search at the last 
known good instruction executed and work forward. 

The same kind of process is followed with 1/0 errors 
and errors in general: first identifying the exact nature of 
the error which the system believes to have occurred; next 
identifying via register conventions pertinent items such 
as the data set in error-going as far back into the ma
chine level code as necessary to isolate the error type. 

I have a whole string of questions that I ask myself 
when debugging and it seems that I'm forced to dream up 
new ones constantly. Let me sum up my approach with 
four statements: 

• Get a clear understanding of the nature of the error. 
• Ask yourself questions that bring you backwards 

from failure point to the execution of valid code. 
• If this yields nothing, try to approach the error for

ward, working from the last known valid execution of 
code. 



• If none of these approaches gets results, try re
creating the error in a small case. Perhaps you'll find 
that the first step-undertanding the error-was not 
really completed. 

PERFORMANCE PROBLEMS 

The improvement of system performance and the elim
ination of bottlenecks has attracted wide attention of late 
perhaps because economy and good business practic~ 
dictate that it be so. Unfortunately, no cookbook 
approach yet exists, and it remains up to us to discover 
one for ourselves. The tools are legion,5.6 and are some
times quite expensive and difficult to interpret. The tools 
include accounting data, failure statistics, operator shift 
reports, various types of specially developed system inter
rogation reports, simulations, and hardware and software 
monitors. The availability of tools and the level of sophis
tication of systems personnel may dictate whether these 
tools are handled in-house or contracted out on a consult
ing basis. 

Our first step is to outline each system resource to 
determine its fit into the overall system scheme and how 
our use may affect that fit. A manager might begin this 
process with a sort of time and motion study, eliminating 
as many handling problems associated with introduction 
of jobs to the computer as possible and smoothing the 
work flow between users, schedulers, messengers, opera
tors, etc., and the computing system itself. The worst 
bottleneck might, in fact, be the one that prevents a tape 
or a card deck from being where needed when needed. 
Assuming that these things have been accomplished, we 
then poll the operators and the users for their impressions 
of how well the system serves their needs, at which time 
we might be forced to reexamine our work procedures. 

Our next step properly belongs to systems program
mers. Their study should concentrate on those aspects of 
the system that consume the greatest asset of all-time. 
There are many techniques and packages available that 
measure system activity, and these should be put to work. 
Since the system contains the most heavily used code, our 
systems programmer places the most active system mod
ules in main memory, intermediate-activity modules in 
the fastest available secondary storage hardware such as 
drums, and lower-activity modules in larger-volume, 
lower-speed (and lower traffic-density) hardware, per
haps large disks or tape. The direct-access addresses of 
the most frequently fetched routines ought to be resident 
to eliminate searches for them, and where possible these 
data sets should reside on the devices with the fastest 
access speeds. System data sets on direct-access devices 
with movable arms should have the most active of these 
routines stored closest to their directories, so that seek 
arm travel is kept to a minimum. Educated trial and 
error is necessary before reasonable balance in these 
areas can be achieved. 
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N ext we study each of the online storage facilities and 
their use. Questions as to adequacy, reliability, method of 
backup, and recovery ought to be asked. Criteria for the 
allocation of direct-access space should be established 
based upon criticality of use, volume and frequency of 
use, and cost-effectiveness when compared with available 
alternatives. 

Follow this with the determination and elimination of 
unused facilities which should be identifiable through the 
tools previously mentioned. 

After our system examination comes an examination of 
user programs and processes. In this part of our improve
ment cycle we first look at production programs, starting 
with the heaviest users of computer time and resources. 
Many times we find them in an unfinished state with 
improvements possible through the elimination of ~nnec
essary steps. An important item to observe is the use of 
unblocked records or the operation of production pro
grams from source rather than from object or executable 
load modules. Production programs that require the 
movement of data from card to disk or tape to disk pre
paratory to use should be avoided when a simple change 
to JCL makes this same data available directly to the 
program without the intervening steps. What is required 
is that an experienced, knowledgeable, and objective eye 
be brought to bear upon production programs and other 
user processes. 

Production programs should be examined to determine 
where the most CPU time is spent in executing and, con
sequently, what code could be improved to yield the best 
results. 

With OS 360, users can reduce wait time, system time, 
channel time, and device time by assembling records into 
blocks set as close as possible to addressable size. This 
reduces the number of times the I/O routines are 
invoked, as well as the number of channel and device 
requests and the seek time expended. With blocking, 
fewer I/O operations are needed and our programs spend 
less time in a nonexecutable state waiting on I/O comple
tion. We gain additionally because blocking permits 
greater density on the storage devices. Many users are 
unaware of the fact that gaps exist between every record 
written on a track of a direct-access device. For example, 
the track capacity on an IBM 2314 disk is 7294 charac
ters. If 80-byte card images are written as one block of 
7280 characters, only one write is required to store 91 
records on a track; yet if these records are written 
unblocked, only 40 records will fit on a track because of 
the inter-record gaps, and 40 writes are invoked to fill 
that track. 

Using large block sizes and multiple buffers introduces 
additional costs in terms of increased memory required 
for program execution. Obviously, we should balance 
these somewhat conflicting demands. 

A frustrating problem encountered by users of some 
systems is that of proper allocation of direct-access space. 
Since printed or punched output is temporarily stored on 
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direct-access, such a job's output volume needs to be 
known so, that the user can request the necessary space 
through his JCL. Jobs can abnormally terminate if insuf
ficient space is allocated to data sets being created or 
updated. Over-allocation is wasteful and reduces space 
available for other jobs, as well as permitting excessive 
output to be created without detection. The space 
required should if possible be obtained in one contiguous 
chunk, as less CPU time and access time are used than if 
data is recorded in several pieces scattered across a unit. 

Another problem is locating files or even individual 
records within files. The system provides catalogs to point 
to the unit upon which a specific data set resides, but 
improper use or nonuse of these catalogs or of suitable 
substitutes can prevent a job from executing, due to an 
inability to identify where the data set resides. The use of 
a catalog introduces the problem of searching the catalogs 
for the individual data set's identity; and if these catalogs 
are excessively long, useful time (both CPU and II 0) can 
be lost, since every request for a data set not specifically 
identified as to unit results in a search of the system cata
logs. 

Because of the changing nature of user requirements, a 
data set occupying permanently allocated space might 
occupy that space long after it is no longer used, simply 
because we are unaware of the fact. Techniques exist to 
monitor space, but users can easily cheat them. 

Proper estimation and allocation of direct-access space 
needs is a must, as is the release of unused or temporary 
space as soon as its usefulness has ceased. At nearly any 
installation one can find unused data sets needlessly tying 
up valuable space and sometimes forcing the system to 
fragment space requests due to the volume of space so 
wasted. 

Proper tape handling is mainly a user problem. Block
ing should be employed for efficiency's sake. Data should 
be blocked to the largest sizes possible, consistent with 
memory availability, to reduce the amount of tape 
required to contain a data set and the average I/O trans
fer time consumed per record. Use of the highest densities 
provides for faster data transfer and surprisingly greater 
accuracy because of the built-in error recovery available 
with high density techniques. 

To protect tapes from inadvertent destruction the use 
of standard-label tapes is encouraged as a site-imposed 
standard. This permits the operating system to verify that 
the tape mounted by the operators is the one requested by 
the user's program. 

When processing multiple volume files, two tape drives 
should be allocated, if available, to permit a program to 
continue processing rather than wait for the mounting of 
subsequent tapes when earlier tapes are completed. Fur
ther, users should free tape drives not being used in sub
sequent steps. 

Systems programmers usually provide for blocking of 
card input and certain output types through default val
ues and control card procedure libraries. Users ought not 
to unblock this 1/ O. 

Careful reduction of the volume of printed data to that 
actually needed by the ultimate recipient serves both the 
user and the system by reducing output volume. A typical 
high speed printer can consume some 35 tons of paper a 
year, and I can't even estimate the average consumption 
of cards for a punch unit. Perhaps, like me, you flinch 
when you observe the waste of paper at a typical com
puter site. To further reduce the waste of paper, users are 
well advised to go to microfilm where these facilities exist, 
particularly for dictionary type output. 

It is amazing how many users are still dependent on 
punched cards in this generation. Processing large vol
umes of cards requires many extra 110 operations and 
machine cycles that could be avoided by having these 
data sets on tape or disk. True, to update a card deck one 
only needs to physically change the cards involved; but 
the use of proper update procedures with tape or disk is a 
far more efficient and accurate use of computer and 
human time. 

This brings us to the subject of software tool usage. The 
most frequent complaints associated with vendor-sup
plied utilities are that they are difficult to use and that 
the documentation is unclear. This is probably due to 
their generality. Another difficulty is finding out what is 
available. 

To answer the difficulty-of-use problem, we might 
point out that it is simpler and more productive to try to 
understand the utilities available than to write and debug 
new ones. A small installation cannot afford the luxury of 
user-developed utilities when existing ones will do the job. 
Often it is better to search for what one is sure must exist 
than to create it. Still another avenue to investigate would 
be whether other installations might have the required 
service routine developed by their users. 

Since available utilities are usually more or less 
unknown to installation users, consideration might be 
given to assigning a programmer the responsibility of 
determining the scope of the utilities available and how to 
use them. This information could then be passed on to 
fellow programmers. In fact, a good training course would 
justify its costs by eliminating unnecessary programming 
and enabling installations programmers to select and use 
utilities that perform trivial tasks quickly. With vendor
supplied utilities, the first use or two might appear diffi
cult, but with use comes facility. 

The use of programming languages ought not be an ego 
trip. Programmers should be forced to practice "egoless 
programming"7 and to follow recognized practices. Effi
ciency dictates that programs be written in modular form 
and that they be straightforward, well documented, and 
without cute programming gimmicks or tricks, lest the 
next release of the operating system render the program 
nonexecutable. Programmers themselves should realize 
that they cannot escape later responsibility for the prob
lems of "tricky" programs, as long as they work for the 
same employer. 

Our eval uation process then continues with research 
into how new programs and problem program systems are 



tested and developed. It is the writer's experience that 
only rarely has much consideration been given to the effi
ciency of program development and testing. Frequently 
the heaviest consumers of computer resources are pro
grammers with trial-and-error methods of debugging and 
complex or "clever" coding. Again, understanding the 
system can yield us an insight into relative inefficiencies 
of program development and how they might be over
come. 

Once we have attempted everything within our means, 
we might then consider outside performance improve
ment or consulting services. 

A final suggestion on resource consumption is a point 
regarding cost allocation. If a resource does not cost the 
user, he or she is not likely to try hard to conserve it. 
Proper allocation of cost in relation to resource use is both 
a form of control and an attempt to influence users to 
adjust their demands to the level most beneficial to the 
system. In short, users ought not to be given a free ride. 

A CASE FOR SPECIALISTS 

Merging the many parts of a third generation comput
ing system into an effective problem-solving instrument 
requires that we inform the system of a myriad of details. 
Efficiency and economy in their most basic forms dictate 
that we simplify our work as much as possible. Some way 
must be devised to supply to the system with the detail it 
needs without typing up some 40 percent (as has actually 
happened-I cannot bear to cite a reference) of program
mer time with JCL and associated trivia. What we are 
striving for is a lessening of the applications program
mer's need to know operating system details. 

As already noted, the first step is to have knowledgea
ble system programmers supply as many efficient proce
dures and other aids as possible and to have them gener
ate a responsive system. Also, those same systems people 
can generate libraries of control language to cover all the 
regular production runs (and as many of the development 
and other auxiliary processes as are practical after suffi
cient study). 

I propose, however, that we go one step further in this 
area. 

Chief programmer team 

One exciting concept to emerge recently has been that 
of the Chief Programmer Team.s Significantly increased 
programmer productivity and decreased system integra
tion difficulties have been demonstrated by the creation 
of a functional team of specialists, led by a chief pro
grammer applying known techniques into a unified meth
odolog-y. Managers of programming teams would do well 
to study this concept. Properly managed, this process has 
the programmer developing programs full-time, instead of 
programming part-time and debugging JCL part-time. 
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Programmer assistance9 

Our examination of the use of third generation systems 
has continually pointed out the need for including suffi
ciently knowledgeable people in the process of system use. 
A focal point for users needing assistance should be cre
ated. This is usually done anyway informally, as users 
search out fellow programmers and systems people who 
might have answers to their problems. I propose that 
experienced, knowledgeable, and systems oriented people 
be organized into a team to answer user questions and to 
provide diagnostic assistance. This same group could aid 
in developing standards, optimizing program code, and 
teaching courses tailored to user needs. My own experi
ence in a programmer assistance center has shown that 
such services greatly increases the productivity of a DP 
installation's personnel. 

Diagnostic services 

A cadre of good diagnostic programmers should be used 
to assist programmers who are unable to isolate their 
program bugs or who need assistance with utilities, JCL, 
or any other aspect of the operating system. Such a group 
should keep a catalog of the problems encountered for 
handy future reference and as a way for determining 
personnel training needs or system enhancements. The 
group could aid in locating and correcting software errors 
by creating small kernels or test programs designed solely 
to re-create the error. Through the use of such kernels, 
various error solutions could be tested without disturbing 
the users main program or process. 

Program optimization service 

These same personnel might also be charged with 
research into and development of simple and efficient 
programming techniques. These techniques could then be 
implemented in the optimization of the most heavily used 
programs or systems. Once we identify our largest pro
gram consumers of computer time and their most heavily 
used routines, we can find it cost-effective to thoroughly 
go over such code, replacing the routines identified with 
more efficient ones. 

Known programming inefficiencies and their correction 
might be identified by an occasional thorough review of 
the computer-generated output. For example, the entire 
output of a weekend might be reviewed in search of poor 
use of I/O processing. Runs with poor system usage might 
then be earmarked, and the programmers responsible, 
notified and given suggestions for possible improvements. 
The most frequently encountered poor practices might 
then be subjects of a tutorial bulletin or training session 
for programmers. 

Conventions and standards 

"Standards" is a dirty word to many people, but when 
large numbers of programming personnel are found to be 
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employing poor practices, our systems group would be 
charged with developing optimum alternatives. Effective 
streamlining of frequently used facilities could be accom
plished through the publication of tested techniques and 
standards or conventions. With standards for guidance, 
the user has a yardstick to determine if his utilization of 
system resources meets a minimum acceptable level. 
Prior to the design of new problem program systems, 
these standards would play an important role in ensuring 
that optimum use of available facilities was achieved. 

"Structured Programming"IO,ll and other developing 
techniques for making the programming practice manage
able should be researched and used as the basis for devel
oping usable installation standards. 

Instructors 

The accumulation of expertise within a single group 
would be almost wasteful if this knowledge were not dis
seminated among the users of the system. A logical exten
sion to our assistance group, then, would be the assign
ment of instructors who would conduct tutorial seminars 
and develop tailored training courses and user manuals. 

SUMMARY 

I have attempted in this paper to give you my views on 
coping with a highly generalized operating system. I have 
found that complexity is the main problem facing users of 
third generation systems. My formula suggests that we 
insulate the general user I programmer from OS detail to 
the maximum extent possible, and that we provide the 
user community with a technically competent consulta
tive group to assist in fielding problems with which the 
user need not be concerned. 
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It may strike you as a truism to note that if the solution 
to a problem depends upon too many variables, we are 
apt to reduce the multiplicity of variables to one, base an 
important decision upon that one, and thereafter proceed 
as though there had never been, and would never be, any 
reasonable alternative to our choice. 

This approach, when applied to the problem of choos
ing a programming language with which to implement a 
given class of problems, results in advice of the following 
sort: For scientific and engineering problems, use FOR
TRAN; for problems with large data bases, use COBOL; 
for command-and-control, use JOVIAL; and for systems 
implementation, use PLj S. Except for academic work 
avoid ALGOL; and with respect to those opposite ends of 
the spectrum, APL and PLj 1, merely report that you are 
waiting to see how they work out. Now, obviously, advice 
of this type might be correct, but just as clearly, it will 
sometimes be erroneous, primarily because it ignores 
most of the variables involved. 

It would seem only prudent, therefore, to examine some 
of those dimensions along which languages might be 
compared, with a view toward increasing our understand
ing of their relative importance in the decision process. 
However, there are four items which we should discuss in 
some detail first. These are: 

1. How a programmer spends his time. 
2. The difference between local and global inefficiency. 
3. The role of the expansion ratio. 
4. Variance in programmer productivity. 

For the first item, I will use the best data of which I am 
aware, from an unpublished study of Fletcher Donald
son,l done some years ago. Without presenting the details 
of his study, we note that his measurements of program
mers in two different installations, when reduced to hours 
of programming activity per 40 hour week, yielded the 
following figures. 

A. Understanding Objective 
B. Devising:vI ethods 

Bl. Finding Approach 
B2. Flow Charting 

Group 1 
3 

4 
3 

Group 2 
1.24 Hours/Week 

5.90 
1.24 
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C. Implementation 
Cl. Writing Program (Cod- 8 5.60 

ing) 
C2. Preparing Test Data 2 1.24 

D. Testing 
D1a. Finding :\1inor (Syn- 4 7.45 

tactic) Errors 
D1b. Correcting }1inor Er- 1 4.95 

rors 
D2. Eliminating Test 1 .31 

Data Errors 
D3a. Finding }lajor (Log- 6 6.18 

ical) Errors 
D3b. Correcting }Iajor Er- 3 1.24 

rors 
E. Documenting 3 1.24 
Totals 40 40.00 

From these data, let us combine those activities which 
are almost certainly independent of any language which 
might be chosen: Understanding the Objective, and Find
ing an Approach. For installation 1 this gives 7 hours, and 
for installation 2 it gives 7.14 hours, or roughly one day 
per week. From this it is apparent that, no matter how 
much improvement might be expected from a given lan
guage, it can only operate upon the remaining four days 
per week. 

With respect to the problem of global versus local inef
ficiencies in programs, there are even fewer data, but the 
broad outlines are clear, and of great importance. Let us 
look first at local inefficiency. This is the inefficiency in 
object code produced by a compiler which results from 
the inevitable lack of perfection of its optimizing pass. 
According to a beautiful study reported by Knuth,2 the 
difference to be expected from a "finely tuned FOR
TRAK -H compiler" and the "best conceivable" code for 
the same algorithm and data structure averaged 40 per
cent in execution time. This is not to say that the differ
ence between well written machine code and code com
piled from FORTRAN will show an average difference of 
the fun 40 percent, for even short programs wili seldom 
be "the best conceivable" code for the machine. 

With the present state of measurements in this area it 
is too soon to expect a high degree of accuracy, but let us 
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accept for the moment a figure of 20 percent for the aver
age inefficiency introduced by even the best optimizing 
compilers. Now this inefficiency is the only one we are in 
the habit of examining, since it applies linearly to small 
as well as to large programs, and we are usually forced to 
compare only small ones. 

The other form of inefficiency is global, and much more 
difficult to measure. This is the inefficiency introduced 
by the programmer himself, or by a programming team, 
due to the size and complexity of the problem being 
solved. It must be related to the amount of material 
which one person can deal with, both strategically and 
tactically, at a given time. Consequently, this form of 
inefficiency does not even appear in the small sample 
programs most frequently studied. But because programs 
in higher level languages are more succinct than their 
assembly language counterparts, it is responsible for the 
apparent paradox which has been showing up in larger 
tests for more than a decade. This paradox probably first 
appeared to a non-trivial group during the AF ADA Tests3 

in 1962, in which a Command-and-Control type program 
was done in six or seven languages and the results of each 
compared for efficiency against a "Standard" done in 
assembly language. When the initial results demonstrated 
that many of the higher level language versions, despite 
their obvious local inefficiencies, had produced object 
code programs which were measurably more efficient 
than the "Standard," the paradox was attributed to pro
grammer differences, and the entire test was redone. In 
the second version, the assembly language version was 
improved to reflect the best algorithm used in a higher 
level language, and the paradox dissappeared. As recently 
as 1972, the paradox was still showing up, this time in the 
Henriksen and Merwin study. 4 In that study, several 
operating programs which had been written in assembly 
language were redone in FORTRAN. 

If we direct our attention to their comparison of 
FORTRAN V and SLEUTH, the assembly language for 
the 1108, we find that two of their three programs gave 
the same execution times, while for the third they report: 

"In actual performance, the FORTRAN version ran 
significantly better than the SLEUTH version. If the 
SLEUTH version were to be recoded using the 
FORTRAN version as a guide, it is probable that it 
could be made to perform better than the FORTRAN 
version." 

While the dimensions of global inefficiency have not 
yet been well established, it tends to become more impor
tant as the size of a job increases. Since it is a non-linear 
factor, it overtakes, and eventually overwhelms, the local 
inefficiency in precisely those jobs which concern all of us 
most, the large ones. 

This brings us, then, to a consideration of the Expan
sion Ratio, the "one-to-many" amplification from state
ments to instructions, provided by computer languages 
and their compilers. Since the global inefficiency varies 

more than linearly with program size, it follows that 
anything which will make an equivalent program 
"smaller" in its total impact upon the minds of the pro
grammers will reduce its global inefficiency even more 
rapidly than the reduction in size itself. With an ex
pansion ratio of about four, it appears that the effects of 
local and global inefficiencies balance for programs of 
about 50 statements or 2000 instructions, but these fig
ures are extremely rough. 

The fourth item listed for discussion, the variance in 
programmer productivity, enters the language picture in 
several ways. First, of course, it is because of the large 
size of this variance that many of the measurements 
needed in language comparisons have been so inconclu
sive. But this need not blind us to another facet. Since the 
time, perhaps 15 years ago, when it was first noted that 
chess players made good programmers, it has been recog
nized that programming involved a nice balance between 
the ability to devise good over-all strategie~, and the abil
ity to devote painstaking attention to detail. While this is 
probably still true in a general way, the increasing power 
of computer languages tends to give greater emphasis to 
the first, and lesser to the second. Consequently, one 
should not expect that the introduction of a more power
ful language would have a uniform effect upon the pro
ductivity of all of the programmers in a given installation. 

On the basis of the preceding discussion of some of the 
general considerations which must be borne in mind, and 
leaning heavily upon a recent study by Sammet,5 let us 
now consider some of the bulk properties which may vary 
from language to language. While it is true that for many 
purposes the difference between a language and a particu
lar compiler which implements it upon a given machine is 
an important distinction, it is the combined effect of both 
components of the system which must be considered in 
the selection process. For that purpose, the costs of some 
nine items directly related to the system must somehow 
be estimated. These will be discussed in order, not of 
importance, but of occurrence. 

1. Cost of Learning. If one were hiring a truck driver to 
drive a truck powered by a Cummins engine, it 
would be irrelevant as to whether or not an appli
cant's previous experience included driving trucks 
with Cummins engines. It would be nice if prior 
familiarity with a given language were equally 
unimportant to a programmer, but such is not quite 
the case. The average programmer will still be learn
ing useful things about a language and its compiler 
for six months after its introduction, and his produc
tion will be near zero for the first two weeks. Accord
ing to a paper by Garrett,6 measurements indicate 
that the total cost of introducing a new language, 
considering both lost programmer time and lost 
computer runs, was such that the new language must 
show a cost advantage of 20 percent over the old in 
order to overcome it. Since those data were taken 
quite a long while ago, it is probably safe to estimate 



that increasing sophistication in this field has 
reduced the figure to 10 percent by the present time. 

2. Cost of Programming. Obviously, this is one of the 
most important elements of cost, but difficult to 
estimate in advance. If we restrict this item strictly 
to the activity classified as C1 in Donaldson's study, 
then it would appear to be directly related to the 
average expansion ratio obtained by that language 
for the average application making up the program
ming load. Here the average job size also becomes 
important, and for a given installation this appears 
to increase. In fact, some years ago Amaya7 noted 
through several generations of computers, it had 
been true that "The average job execution time is 
independent of the speed of the computer." 

3. Cost of Compiling. While it has been customary to 
calculate this item from measurements of either 
source statements of object instructions generated 
per unit machine time, some painstaking work by 
Mary Shaw8 has recently shown that this approach 
yields erroneous results. She took a single, powerful 
language, and reduced it one step at a time by 
removing important capabilities. She then rewrote a 
number of benchmark programs as appropriate for 
each of the different compilers. She found that when 
compilation time was measured for each of the sepa
rate, equivalent programs, then the more powerful 
compiler was slower only if it contained features not 
utilizable in a benchmark. For those cases in which 
a more powerful statement was applicable, then the 
lessened speed per statement of the more powerful 
compiler was dramatically more than compensated 
for by the smaller number of statements in the 
equivalent benchmark program. 

4. Cost of Debugging. Here again, since debugging var
ies directly with the size and complexity of a pro
gram, the more succinctly a language can handle a 
given application, the greater will be the reduction 
in debugging costs. While the debugging aids in a 
given compiler are important, their help is almost 
always limited to the minor errors rather than the 
major ones. 

5. Cost of Optimizing. Since a compiler may offer the 
option of optimizing or not optimizing during a given 
compilation, it is possible to calculate this cost 
seperately, and compare it to the improvements in 
object code which result. For example, FORTRAN
H9 has been reported to spend 30 percent more time 
when in optimization mode, but to produce code 
which is more than twice as efficient, FORTRAN
hand, Frailey lO has demonstrated that, under some 
conditions optimization can be done at negative cost. 
This condition prevails whenever the avoidance of 
nonessential instructions can be accomplished with 
sufficient efficiency to overcompensate for the cost 
of generating them. 

6. Cost of Execution. If, but only if, a good optimizing 
compiler exists for a given language, then it can be 
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expected that the local inefficiencies of different 
high level languages will be roughly comparable. 
The inevitable global inefficiencies will still exist, 
however. It is here, as well as in programming cost, 
that a language well suited to the application can 
yield the greatest savings. Again, the data are inade
quate both in quantity and quality, but cost savings 
of a factor of two are well within my own experience. 
This does not apply to those languages which are 
primarily executed in interpretive mode, such as 
SNOBOL, where large costs of execution must be re
covered from even larger savings in programming 
costs. 

7. Cost of Documentation. In general, the more power
ful, or terse, or succinct a language is for a given 
application, the smaller the amount of additional 
documentation that will be required. While this is 
true enough as a general statement, it can be pushed 
too far. It seems to break down for languages which 
use more symbolic operators than some rough upper 
limit, perhaps the number of letters in natural lan
guage alphabets. Allowing for this exception in the 
case of languages of the APL class, it follows that the 
documentation cost of a language will vary inversely 
with the expansion ratio obtainable in the given 
applications area. 

8. Cost of Modification. Since it is well known that any 
useful program will be modified, this item is quite 
important. Here any features of a language which 
contribute to modularity will be of advantage. Block 
structures, memory allocation, and compile time 
features should be evaluated in this area as well as 
for their effect on initial programming improvement. 

9. Cost of Conversion. Since hardware costs per opera
tion have shown continual improvements as new 
computers have been introduced, it is only reasona
ble to expect that most applications with a half-life 
of even a few years may be carried to a new com
puter, hence this element of potential cost should 
not be overlooked. If one is using an archaic lan
guage, or one that is proprietary, then the cost of 
implementing a compiler on a new machine may 
well be involved. While this cost is much less than 
it was a decade ago, it can be substantial. Even with 
the most machine-independent languages, the prob
lems are seldom trivial. Languages which allow 
for the use of assembly language inserts combine 
the advantage of permitting more efficient code 
with the disadvantage of increasing the cost of 
conversion. As noted by Herb Bright,11 a proper 
management solution to this problem has existed 
since the invention of the subroutine, and con
sists of properly identifying all such usage, and 
requiring that it comform to the subroutine linkage 
employed by the language. 

In examining the preceding nine elements of cost, it is 
apparent that many of them depend upon the expansion 
ratio of a language in a given application area. In deciding 
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upon a new language, or between two candidates, it might 
be useful to attempt to plot them upon a globe, with longi
tude representing possible application areas, and latitude 
representing any convenient function of the expansion 
ratio. The plot should look something like Figure 1, where 
it can be seen that languages range from machine lan
guage, in which any application may be handled, girdling 
the equator, through general purpose, procedure ori
ented languages in the tropics, to highly specialized, 
problem oriented languages in the arctic. The pole, 
which implies an infinite expansion ratio for all appli
cations areas, must be reserved for programming via 
mental telepathy. 

While there is some current research under way12 
which may yield more basic insight into the problems in 
this area, it is only a year or so old, and the most that can 
be said is that it is not yet sufficiently developed to be 
of present assistance. 

A very interesting technique which has moved part of 
the way from research to practice, however, should be 
mentioned in conclusion. This involves a practical 
approach to the problem of language extension. Unlike 
the extensible-language approach, which seemed to open 
the door to a dangerous, undisciplined proliferation of 
overlapping and even incompatible dialects within a sin
gle installation, this alternate approach to language exten
sion is based upon the older concept of precompilers. As 
suggested by Garrett6 and demonstrated by Ghan,12 
dramatic savings in programming costs can be achieved 
in shops having sufficient work in any narrow application 
area. This has been done by designing a higher level, 
more specialized language, and implementing a translator 
to convert it to a standard procedure oriented language. 
In this process, the higher-level language may readily 
permit inclusion of statements in the standard procedure 
oriented language, and merely pass them along without 
translation to the second translator or compiler. This 
process, by itself, has the obvious inefficiency that much 
of the work done by the first translator must be repeated 
by the second. While the process has proved economical 
even with this inefficiency, Nvlin!4 has recently demon
strated the ability to reorganize, and thereby remove the 

redundant elements, of such a preprocessor-compiler 
system automatically, provided that both are written in 
the same language. 

In summary, let us first note that we have not offered a 
simple table with line items of preassigned weights, nor a 
convenient algorithm for producing a yes-no answer to the 
question "Should I introduce a language specifically to 
handle a given class of programming jobs." Instead, we 
realize that, with the current state of the art, it has only 
been feasible to enumerate and discuss those areas which 
must be considered in any sound management decision. 

From those discussions, however, we may distill at least 
four guidelines. First, it is abundantly clear that great 
economies may be realized in those cases in which the 
following two conditions prevail simultaneously: 

(1) There exists a language which is of considerably 
higher level with respect to a given class of applica
tions programs than the language currently in use, 
and 

{2} The given class of applications programs represents 
a non-trivial programming work load. 

Secondly, there is important evidence which suggests 
that a higher level language which is a true superset of a 
high level language already in use in an installation may 
merit immediate consideration. 

Thirdly, it must be remembered that data based upon 
comparisons between small programs will tend to under
estimate the advantage of the higher level language for 
large programs. 

Finally, the potential costs of converting programs writ
ten in any language to newer computers should neither be 
ignored, nor allowed to dominate the decision process. 
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A national scientific and technical 
information system for Canada 

by JACK E. BROWN 

National Science Librarian 
Ottawa, Canada 

ABSTRACT 

Canada is in the process of developing a national scien
tific and technical information (STI) system. It is 
designed to ensure that scientists, researchers, engineers, 
industrialists and managers have ready access to any 
scientific or technical information or publication required 
in their day-to-day work. In 1970 impetus was given the 
program when the National Research Council (NRC) was 
assigned formal responsibility for planning and develop
ment, with the National Science Library (NSL) serving as 
the focal point or coordinating agency for local STI serv
ices. During the last two years, emphasis has been placed 
on the strengthening of two existing networks-a network 
of 230 libraries linked to the NSL by the "Union List of 
Scientific Serials in Canadian Libraries"-the CANjSDI 
network, a national current awareness service at present 
using 12 data bases, and linked to the NSL by 350 Search 
Editors located in all parts of Canada. This service is 
being expanded to provide remote access to the CANjSDI 
data bases by an interactive on-line system. In recent 
months, steps have been taken to establish regional refer
ral centres and link into the system little used pockets of 
subject expertise and specialized STI resources. 

Global networks for information, 
communications and computers 

by KJELL SAMUELSON 

Stockholm University and Royal Institute of Technology 
Stockholm, Sweden 

ABSTRACT 

When working with the concept of worldwide or global 
networks a clear distinction should be made between at 
least three different aspects. First of all, information 
networks based on globally distributed knowledge has a 
long time bearing on accumulated information and data. 
Secondly, computer networks that are gradually coming 
into existence provide various means of processing new or 
already existing information. For some years to come, 
computer networks will only to a limited extent provide 
adequate information and knowledge support. Thirdly, 
communication networks have existed for decades and 
are gradually improved by advancements in technology. 
The combined blend of all three kinds of international 
networks will have a considerable impact on global socio
economical and geo-cultural trends. If bidirectional 
broadband telesatellites and universal, multipoint person
to-person communications are promoted, there is hope for 
"free flow" of information. It appears recommendable 
that resources should be allocated to this trend rather 
than an over-emphasis on "massaged" and filtered data 
in computer networks. 





A position paper-Panel session on intelligent 
terminals-Chairman's introduction 

by IRA W. COTTON 

National Bureau of Standards 
Washington, D.C. 

Intelligent terminals are those which, by means of 
stored logic, are able to perform some processing on data 
which passes through them to or from the computer sys
tems to which they are connected. Such terminals may 
vary widely in the complexity of the processing which 
they are capable of performing. The spectrum ranges 
from limited-capability point-of-sale terminals through 
moderately intelligent text-oriented terminals up to pow
erful interactive graphics terminals. The common thread 
that ties all these types of terminals together is their proc
essing power and the questions relating to it. 

What, for example, is the proper or most effi
cient division of labor between the terminals and 
the central computer? 
What are the limits, if any, to the power which 
can be provided in such terminals? 
Need we worry about the "wheel of reincarna
tion" syndrome < ME68 > in which additional 
processing power is continually added to a termi
nal until it becomes free-standing ... and then 
terminals are connected to it? 

This session was planned to at least expose to critical 
discussion some of these questions, if not answer them. 
Position papers were solicited to cover each of the three 
points on the spectrum identified above. 

Thornton of the Bureau of Standards points out 
the need to take a total systems approach and to 
develop relevant standards-specifically for 
point-of-sale terminals, but the argument applies 
to the more sophisticated terminals as well. 

Engelbart at Stanford Research Institute dis
cusses his experiences with "knowledge work
shop" terminals, and predicts the widespread 
acceptance of such terminals by knowledge 
workers of all kinds. That day may be nearer 
than some might think: two of the three papers 
for this session were transmitted to the chairman 
via remote terminal, and one was actually 
reviewed online in a collaborative mode. In the 
latter case, author and reviewer were separated 
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by some 3000 miles, and the U. S. Postal Service 
would not have sufficed to meet publication 
deadlines. 
Van Dam and Stabler of Brown University dis
cuss the opportunities presented by a super intel
ligent terminal, or "intelligent satellite" in their 
terms. Such systems offer the most power, but 
also require the most caution, lest this power be 
misused or dissipated through poor system design. 

It is, of course, impossible to report in advance on the 
panel discussion which is part of the session. The position 
papers raise most of the issues that I expect will be dis
cussed. Perhaps some means can be found to report on 
any new points or insights gleaned from the discussion. In 
addition, all of the work is ongoing, and all of the authors 
(and the chairman) welcome further discussion beyond 
the confineS of this conferenCe. 

The standards program at NBS requires partici
pation by manufacturers and users. 
Englebart specifically invites inquiries regarding 
his system in general and the mouse in particu
lar. 
The academic community has always been the 
most open for critical discussion and the 
exchange of ideas. 

In short, we recognize that a session such as this may 
well raise as many questions as it answers, but we hope 
that it may serve as a stimulus to further discussion. 
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National Bureau of Standards 
Washington, D.C. 

The electronic point-of-sale terminal is the newest form 
of computer technology being introduced into the retail 
industry. Industry interest in the terminal is focused on 
its potentially great advantages for retailers in improving 
their productivity and performance in merchandise con
trol and credit customer control. The electronic point-of
sale terminal's appeal over the standard cash register lies 
in its potential for impacting the total merchandise sys
tem through increasing the speed and accuracy of trans
actions and providing a method of capturing greater 
quantities of data essential to the effective management 
of the merchandise system. At the check-out counter, the 
terminal equipped with an automatic reading device and 
credit verification equipment will permit the rapid com
pletion of the sales transaction and, at the same time, 
capture and enter into the central system all the data 
necessary for closer, more effective control of the mer
chandise system. 

The full potential of the electronic point-of-sale termi
nal cannot be realized by simply trying to insert it into 
the retail environment as a replacement for the electro
mechanical cash register. The terminal must be effec
tively integrated into an overall systems approach to the 
entire merchandising system. It must be equipped with 
an effective capability to automatically read merchandise 
tickets and labels; this, in turn, requires the adoption by 
the retail industry of merchandise identification stand
ards and either a single technology or compatible technol-
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ogies for marking merchandise and automatically reading 
the tickets and labels. Further, the terminal must be 
effectively integrated with supporting computer systems, 
which raises still other needs related to data communica
tions interconnections, network design and optimization, 
data standards, and software performance standards and 
interchangeability criteria. Without a thorough systems 
approach encompassing the entire merchandising system, 
the great promise of the electronic point-of-safe terminal 
may never be realized; indeed, the terminal could become 
the costly instrument of chaos and widespread disruption 
in the retail industry. 

The ~ational Retail Merchants Association is taking 
steps to insure that the proper preparations are made to 
smooth the introduction of the electronic point-of-sale 
terminal on a broad scale. The Association's first major 
objective is to develop merchandise identification stand
ards by the end of 1973. At the request of the NRMA, the 
National Bureau of Standards is providing technical 
assistance to this effort. Equipment manufacturers, other 
retailers, merchandise manufacturers, tag and label 
makers, and other interested groups are also involved. 

Given the merchandise identification standards, the 
emphasis will shift to the implementation of the stand
ards in operational systems where primary effort will be 
focused on network design, data communications and 
interfacing terminals with computers, and software devel
opment. 





Design considerations for knowledge workshop 
terminals 

by DOUGLAS C. ENGELBART 

Stanford Research Institute 
Menlo Park, California 

IN"TRODUCTION 

The theme of this paper ties directly to that developed in 
a concurrent paper "The Augmented Knowledge Work
shop," 1 and assumes that: "intelligent terminals" will 
come to be used very, very extensively by knowledge 
workers of all kinds; terminals will be their constant 
working companions; service transactions through their 
terminals will cover a surprisingly pervasive range of 
work activity, including communication with people who 
are widely distributed geographically; the many "com
puter-aid tools" and human services thus accessible will 
represent a thoroughly coordinated "knowledge work
shop"; most of these users will absorb a great deal of 
special training aimed at effectively harnessing their 
respective workshop systems-in special working meth
ods, conventions, concepts, and procedural and operating 
skills. 

Within the Augmentation Research Center (ARC), we 
have ten years of concentrated experience in developing 
and using terminal systems whose evolution has been 
explicitly oriented toward such a future environment; 
from this background, two special topics are developed in 
this paper: 

(1) What we (at ARC) have learned about controlling 
interactive-display services, and the means we have 
evolved for doing it-the partiuclar devices (mouse, 
keyset, key board), feedback, and protocol/skill 
features; and design data, usage techniques, learna
bility experience, and design data, usage tech
niques, learnability experience, and relevant needs 
and possibilities for alternatives and extensions. 

(2) Our considerations and attitudes regarding the dis
tribution of functions between terminal and 
remote shared resources-including assumptions 
about future-terminal service needs, our network
ing experience, and foreseen trends in the asso
ciated technologies. 

References 2-19 include considerable explicit descrip
tion of developments, principles, and usage (text, photos, 
and movies) to support the following discussion. Annota-
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tion is included, not only to provide a guide for selective 
follow up, but also to supplement the substance to the 
body of the paper by the nature of the commentary. 

CONTROL MEANS 

Introduction 

Our particular system of devices, conventions, and 
command-protocol evolved with particular requirements: 
we assumed, for instance, that we were aiming for a VI:ork
shop in which these very basic operations of designating 
and executing commands would be used constantly, over 
and over and over again, during hour-after-hour involve
ment, within a shifting succession of operations support
ing a wide range of tasks, and with eventual command 
vocabularies that would become very large. 

THE MOUSE FOR DISPLAY SELECTION 

During 1964-65 we experimented with various 
approaches to the screen selection problem for interactive 
display work within the foregoing framework. The tests6

•
7 

involved a number of devices, including the best light pen 
we could buy, a joy stick, and even a knee control that we 
lashed together. To complete the range of devices, we 
implemented an older idea, which became known as our 
"mouse," that came through the experiments ahead of all 
of its competitors and has been our standard device for 
eight years now. 

The tests were computerized, and measured speed and 
accuracy of selection under several conditions. We 
included measurement of the "transfer time" involved 
when a user transferred his mode of action from screen 
selection with one hand to keyboard typing with both 
hands; surprisingly, this proved to be one of the more 
important aspects in choosing one device over another. 

The nature of the working environment diminished the 
relative attractiveness of a light pen, for instance, because 
of fatigue factors and the frustrating difficulty in con
stantly picking up and putting down the pen as the user 
intermixed display selections with other operations. 
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The mouse is a screen -selection device that we devel
oped in 1964 to fill a gap in the range of devices that we 
were testing. It is of palm-filling size, has a flexible cord 
attached, and is operated by moving it over a suitable 
hard surface that has no other function than to generate 
the proper mixture of rolling and sliding motions for each 
of the two orthogonally oriented disk wheels that com
prise two of the three support points. 

Potentiometers coupled to the wheels produce sig
nals that the computer uses directly for X- Yposition
ing of the display cursor. It is an odd-seeming phe
nomenon, but each wheel tends to do the proper 
mix of rolling and sideways sliding so that, as the 
mouse is moved, the wheel's net rotation closely 
matches the component of mouse movement in the 
wheel's "rolling" direction; one wheel controls up
down and the other left-right cursor motion. 

Exactly the same phenomenon, applied in the me
chanical integrators of old-fashioned differential 
analyzers, was developed to a high degree of ac
curacy in resolving the translation components; we 
borrowed the idea, but we don't try to match the 
precision. Imperfect mapping of the mouse-move
ment trajectory by the cursor is of no concern to the 
user when his purpose is only to "control" the posi
tion of the cursor; we have seen people adapt un
knowingly to accidental situations where that map
ping required them to move the mouse along an arc 
in order to move the cursor in a straight line. 

That the mouse beat out its competitors, in our tests 
and for our application conditions, seemed to be based 
upon small factors: it stays put when your hand leaves it 
to do something else (type, or move a paper), and re
accessing proves quick and free from fumbling. Also, it 
allows you to shift your posture easily, which is important 
during long work sessions with changing types and modes 
of work. And it doesn't require a special and hard-to
move work surface, as many tablets do. A practiced, 
intently involved worker can be observed using his mouse 
effectively when its movement area is littered with an 
amazing assortment of papers, pens, and coffee cups, 
somehow running right over some of it and working 
around the rest. 

ONE-HANDED, CHORDING KEYSET AS 
UNIVERSAL "FUNCTION" KEYBOARD 

For our application purposes, one-handed function 
keyboards providing individual buttons for special 
commands were considered to be too limited in the range 
of command signals they provided. The one-handed 
"function keyboard" we chose was one having five piano
like keys upon which the user strikes chords; of the 
thirty-one possible chords, twenty-six represent the letters 
of the alphabet. One is free to design any sort of alpha
betic-sequence command language he wishes, and the 
user is free to enter them through either his standard 
(typewriter-like) keyboard or his keyset. 

The range of keyset-entry options is extended by co
operative use of three control buttons on the mouse. Their 
operation by the mouse-moving hand is relatively inde
pendent of the simultaneous pointing action going on. We 
have come to use all seven of the "chording" combina
tions, and for several of these, the effect is different if 
while they are depressed there are characters entered
e.g. (buttons are number 1 to 3, right to left) Button 2 
Down-Up effects a command abort, while "Button 2 
Down, keyset entry, Button 2 Up" does not abort the 
command but causes the computer to interpret the 
interim entry chords as upper case letters. 

These different "chord-interpretation cases" are shown 
in the table of Appendix A; Buttons 2 and 3 are used 
effectively to add two bits to the chording codes, and we 
use three of these "shift cases" to represent the characters 
available on our typewriter keyboard, and the fourth for 
special, view-specification control. ("View specification" 
is described in Reference 1.) 

Learning of Cases 1 and 2 is remarkably easy, and a 
user with but a few hours practice gains direct operational 
value from keyset use; as his skill steadily (and naturally) 
grows, he will come to do much of his work with one hand 
on the mousp. and the other on the keyset, entering short 
literal strings as well as command mnemonics with the 
keyset, and shifting to the typewriter keyboard only for 
the entry of longer literals. 

The key set is not as fast as the keyboard for continuous 
text entry; its unique value stems from the two features of 
(a) being a one-handed device, and (b) never requiring 
the user's eyes to leave the screen in order to access and 
use it. The matter of using control devices that require 
minimum shift of eye attention from the screen during 
their use (including transferring hands from one device to 
another), is an important factor in designing display 
consoles where true proficiency is sought. This has proven 
to be an important feature of the mouse, too. 

It might be mentioned that systematic study of the 
micro-procedures involved in controlling a computer at a 
terminal needs to be given more attention. Its results 
could give much support to the designer. Simple analyses, 
for instance, have shown us that for any of the screen 
selection devices, a single selection operation "costs" 
about as much in entry-information terms as the equiva
lent of from three to six character strokes on the keyset. 
In many cases, much less information than that would be 
sufficient to designate a given displayed entity. 

Such considerations long ago led us to turn away com
pletely from "light button" schemes, where selection 
actions are used to designate control or information entry. 
It is rare that more than 26 choices are displayed, so that 
if an alphabetic "key" character were displayed next to 
each such "button," it would require but one stroke on 
the keyset to provide input designation equivalent to a 
screen-selection action. Toward such tradeoffs. it even 
seems possible to me that a keyboard-oriented scheme 
could be designed for selection of text entities from the 
display screen, in which a skilled typist would keep his 
hands un keybuard and his eye~ U11 the :;creen at all time:;, 
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where speed and accuracy might be better than for 
mouse-keyset combination. 

NOTE: For those who would like to obtain some of 
these devices for their own use, a direct request to us is 
invited. William English, who did the key engineering on 
successive versions leading to our current models of 
mouse and key set is now experimenting with more 
advanced designs at the Palo Alto Research Center 
(PARC) of Xerox, and has agreed to communicate with 
especially interested parties. 

LANGUAGE, SKILLS AND TRAINING 

I believe that concern with the "easy-to-learn" aspect 
of user-oriented application systems has often been 
wrongly emphasized. For control of functions that are 
done-very frequently ,- payoff in higher efficiency warrants 
the extra training costs associated with using a sophisti
cated command vocabulary, including highly abbreviated 
(therefore non-mnemonic) command terms, and requiring 
mastery of challenging operating skills. There won't be 
any easy way to harness as much power as is offered, for 
closely supporting one's constant, daily knowledge work, 
without using sophisticated special languages. Special 
computer-interaction languages will be consciously devel
oped, for all types of serious knowledge workers, whose 
mastery will represent a significant investment, like years 
of special training. 

I invite interested skeptics to view a movie that we have 
available for loan,13 for a visual demonstration of flexibil
ity and speed that could not be achieved with primitive 
vocabularies and operating skills that required but a few 
minutes (or hours even) to learn. No one seriously expects 
a person to be able to learn how to operate an automobile, 
master all of the rules of the road, familiarize himself 
with navigation techniques and safe-driving tactics, with 
little or no investment in learning and training. 

SERVICE NETWORK 

One's terminal will provide him with many services. 
Essential among these will be those involving communica
tion with remote resources, including people. His terminal 
therefore must be part of a communication network. 
Advances in communication technology will provide very 
efficient transportation of digital packets, routed and 
transhipped in ways enabling very high interaction rates 
between any two points. At various nodes of such a net
work will be located different components of the net
work's processing and storage functions. 

The best distribution of these functions among the 
nodes will depend upon a balance between factors of 
usage, relative technological progress, sharability, pri
vacy, etc. Each of these is bound to begin evolving at a 
high rate, so that it seems pointless to argue about it now; 
that there will be value in having a certain amount of 
local processor capability at the terminal seems obvious, 

as for instance to handle the special communication 
interface mentioned above. 

EXTENDED FEATURES 

I have developed some concepts and models in the past 
that are relevant here, see especially Reference 5. A 
model of computer-aided communication has particular 
interest for me; I described a "Computer-Aided Human
Communication Subsystem," with a schematic showing 
symmetrical sets of processes, human and equipment, 
that serve in the two paths of a feedback loop between the 
central computer-communication processes and the 
human's central processes, from which control and infor
mation want to flow and to which understanding and 
feedback need to flow. 

There are the human processes of encoding, decod
ing, output transducing -(motor actions), aiid--input 
transducing (sensory actions), and a complementary 
set of processes for the technological interface: physi
cal transducers that match input and output signal 
forms to suit the human, and coding/ decoding proc
esses to translate between these signal forms in pro
viding I! 0 to the main communication and computer 
processes. 

In Reference 5, different modes of currently used 
human communication were discussed in the frame
work of this model. It derived some immediate possi
bilities (e.g., chord keysets), and predicted that there 
will ultimately be a good deal of profitable research 
in this area. It is very likely that there exist different 
signal forms that people can better harness than they 
do today's hand motions or vocal productions, and 
that a matching technology will enable new ways for 
the humans to encode their signals, to result in signif
icant improvements in the speed, precision, flexibili
ty, etc. with which an augmented human can control 
service processes and communicate with his world. 

It is only an accident that the particular physical 
signals we use have evolved as they have-the evolu
tionary environment strongly affected the outcome; 
but the computer's interface-matching capability 
opens a much wider domain and provides a much 
different evolutionary environment within which the 
modes of human communication will evolve in the 
future. 

As these new modes evolve. it is likely that the trans
ducers and the encoding/ decoding processes will be 
built into the local terminal. This is one support 
requirement that is likely to be met by the terminal 
rather than by remote nodes. 

To me there is value in considering what I call "The 
User-System, Service-System Dichotomy" (also discussed 
in 5). The terminal is at the interface between these two 
"systems," and unfortunately, the technologists who 
develop the service system on the mechanical side of the 
terminal have had much too limited a view of the user 
system on the human side of the interface. 
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That system (of concepts, terms, conventions, 
skills, customs, organizational roles, working 
methods, etc.) is to receive a fantastic stimulus and 
opportunity for evolutionary change as a consequence 
of the service the computer can offer. The user sys
tem has been evolving so placidly in the past (by 
comparison with the forthcoming era), that there 
hasn't been the stimulus toward producing an effec
tive, coherent system discipline. But this will change; 
and the attitudes and help toward this user-system 
discipline shown by the technologists will make a 
very large difference. Technologists can't cover both 
sides of the interface, and there is critical need for 
the human side (in this context, the "user system") 
to receive a lot of attention. 

What sorts of extensions in capability and application 
are reasonable-looking candidates for tomorrow's "intelli
gent terminal" environment? One aspect in which I am 
particularly interested concerns the possibilities for digi
tized strings of speech to be one of the data forms handled 
by the terminal. Apparently, by treating human speech
production apparatus as a dynamic system having a lim
ited number of dynamic variables and controllable 
parameters, analysis over a short period of the recent
past speech signal enables rough prediction of the forth
coming signal. and a relatively low rate of associated data 
transmission can serve adequately to correct the errors in 
that prediction. If processors at each end of a speech
transmission path both dealt with the same form of 
model, then there seems to be the potential of transmit
ting good quality speech with only a few thousand bits per 
second transmitted between them. 

The digital-packet communication system to which the 
"computer terminal" is attached can then become a very 
novel telephone system. But consider also that then stor
age and delivery of "speech" messages are possible, too, 
and from there grows quite a spread of storage and 
manipulation services for speech strings, to supplement 
those for text, graphics, video pictures, etc. in the filling 
out of a "complete knowledge workshop." 

If we had such analog-to-digital transducers at the dis
play terminals of the NLS system in ARC, we could eas
ily extend the software to provide for tying the recorded 
speech strings into our on-line files, and for associating 
them directly with any text (notes, annotations, or tran
scriptions). This would allow us, for instance, to use cross
reference links in our text in a manner that now lets us by 
pointing to them be almost instantly shown the full text of 
the cited passage. With the speech-string facility, such an 
act could let us instantly hear the "playback" of a cited 
speech passage. 

Records of meetings and messages could usefully be 
stored and cited to great advantage. With advances in 
speech-processing capability, we would expect for 
instance to let the user ask to "step along with each press 
of my control key by a ten-word segment" (of the speech 
he would hear through his speaker), or "jump to the next 
occurrence of this word". Associated with the existing 

"Dialogue Support System" as discussed in Reference 1, 
this speech-string extension would be very exciting. There 
is every reason to expect a rapid mushrooming in the 
range of media, processes, and human activity with which 
our computer terminals are associated. 

ACKNOWLEDGMENTS 

During the 10 year life of ARC many people have con
tributed to the development of the workshop using the 
terminal features described here. There are presently 
some 35 people-clerical, hardware, software, informa
tion specialists, operations researchers, writers, and 
others-all contributing significantly toward our goals. 

ARC research and development work is currently 
supported primarily by the Advanced Research Projects 
Agency of the Department of Defense, and also by the 
Rome Air Development Center of the Air Force and by 
the Office of Naval Research. Earlier sponsorship has 
included the Air Force Office of Scientific Research, and 
the National Aeronautics and Space Administration. 
Most of the specific work mentioned in this paper was 
supported by ARPA, NASA, and AFOSR. 

REFERENCES 

1. Engelbart, D. C., Watson, R. W., Norton, J. C., The Augmented 
Knowledge Workshop, AFIPS Proceedings National Computer 
Conference, June 1973, (SRI-ARC Journal File 14724) 

2. Engelbart, D. C., Augmenting Human Intellect: A Conceptual 
Framework, Stanford Research Institute Augmentation Research 
Center, AFOSR-3223, AD-289 565, October 1962, (SRI-ARC Cata· 
log Item 3906) 
The framework developed a basic strategy that ARC is still follow
ing-"bootstrapping" the evolution of augmentation systems by 
concentrating on development~ and applications that best facilitate 
the evolution and application of augmentation systems. See the 
companion paper' for a picture of today's representation of that 
philosophy; the old report still makes for valuable reading, to my 
mind-there is much there that I can't say any better today. 

In a "science-fiction" section of the report, I describe a console 
with features that are clear precedents to the things we are using 
and doing today-and some that we haven't yet gotten to. 

3. Engelbart, D. C., A Conceptual Framework for the Augmentation 
of Man's Intellect Vistas," in Information Handling, Howerton and 
Weeks (Editors), Spartan Books, Washington, D. C., 1963, pp. 1-
29, (SRI-ARC Catalog Item 9375) 
This chapter contains the bulk of the report2; with the main exclu
sion being a fairly lengthy section written in story-telling, science
fiction prose about what a visit to the augmented workshop of the 
future would be like. That is the part that I thought tied it all 
together-but today's reader probably doesn't need the help the 
reader of ten years ago did. I think that the framework developed 
here is still very relevant to the topic of an augmented workshop 
and the terminal services that support it. 

4. Engelbart, D. C., Sorenson, P. H., Explorations in the Automation 
of Sensorimotor Skill Training, Stanford Research Institute. 
NAVTRADEVCEN 1517-1, AD 619 046, .January 1965, (SRI-ARC 
Catalog Item 11736). 
Here the objective was to explore the potential of using computer
aided instruction in the domain of physical skills rather than of 
conceptual skills. It happened that the physical skill we chose, to 

make for a manageable instrumentation problem, was operating 



Design Considerations For Knowledge Workshop Terminals 225 

the five-key chording key set. Consequently, here is more data on 
keyset-skill learnability; it diminished the significance of the 
experiment on computerized skill training because the skill turned 
out to be so easy to learn however the subject went about it. 

S. Engelbart, D. C., Augmenting Human Intellect: Experiments, 
Concepts, and Possibilities-Summary Report Stanford Research 
Institute, Augmentation Research Center, March 1965, (SRI-ARC 
Catalog Item 9691). 
This includes a seven-page Appendix that describes our first keyset 
codes and usage conventions-which have since changed. Two 
main sections of about twelve pages, each of which is very relevant 
to the general topic of "intelligent terminal" design, are discussed 
above under "Extended Features." 

6. English, W. K, Engelbart, D. C., Huddart, B., Computer Aided 
Display Control-Final Report Stanford Research Institute, 
Augmentation Research Center, July 1965, (SRI-ARC Catalog 
Item 9692). 
About twenty percent of this report dealt explicitly with the screen
selection tests (that were published later in [7]; most of the rest 
provides environmental description (computer, command lan
guage,hierarchical file-structuring conventions,etc.) that is inter
esting only if you happen to like comparing earlier and later stages 
of evolution, in what has since become a very sophisticated system 
through continuous, constant-purpose evolution. 

7. English, W. K, Engelbart, D. C., Berman, M. A., " Display-Selec
tion Techniques for Text Manipulation," IEEE Transactions on 
Human Factors in Electronics, Vol. HFE-8, No.1, pp. 5-15, March 
1967, (SRI-ARC Catalog Item 9694). 
This is essentially the portion of [6] above that dealt with the 
screen-selection tests and analyses. Ten pages, showing photo
graphs of the different devices tested (even the knee-controlled 
setup), and describing with photographs the computerized selection 
experiments and displays of response-time patterns. Some nine 
different bar charts show comparative, analytic results. 

8. Licklider, J. C. R., Taylor, R. W., Herbert, E., "The Computer as a 
Communication Device," International Science and Technology, 
No. 76, pp. 21-31, April 1968, (SRI-ARC Catalog Item 3888). 
The first two authors have very directly and significantly affected 
the course of evolution in time-sharing, interactive-computing, and 
computer networks, and the third author is a skilled and experi
enced writer; the result shows important foresight in general, with 
respect to the mix of computers and communications in which 
technologists of both breeds must learn to anticipate the mutual 
impact in order to be working on the right problems and possibili
ties. Included is a page or so describing our augmented conferenc
ing experiment, in which Taylor had been a participant. 

9. Engelbart, D. C., Human Intellect Augmentation Techniques, 
Final Report Stanford Research Institute, Augmentation Research 
Center, CR-1270, N69-16140, July 1968, (SRI-ARC Catalog Item 
3562). 
A report especially aimed at a more general audience, this one 
rather gently lays out a clean picture of research strategy and envi
ronment' developments in our user-system features, developments 
in our system-design techniques, and (especially relevant here) 
some twenty pages discussing "results," i.e. how the tools affect us, 
how we go about some things differently, what our documentation 
and record-keeping practices are, etc. And there is a good descrip
tion of our on-iine conferencing setup and experiences. 

10. Engelbart, D. C., "Augmenting Your Intellect," (Interview With D. 
C. Engelbart), Research Development, pp. 22-27, August 1968, 
(SRI-ARC Catalog Item 9698). 
The text is in a dialog mode-me being interviewed. I thought that 
it provided a very effective way for eliciting from me some things 
that I otherwise found hard to express; a number of the points 
being very relevant to the attitudes and assertions expressed in the 
text above. There are two good photographs: one of the basic work 
station (as described above), and one of an on-going augmented 
group meeting. 

11. Engelbart, D. C., English, W. K, "A Research Center for Aug
menting Human Intellect," AFIPS Proceedings-Fall Joint Com-

puter Conference, Vol. 33, pp. 395-410, 1968, (SRI-ARC Catalog 
Item 3954). 
Our most comprehensive piece, in the open literature, describing 
our activities and developments. Devotes one page (out of twelve) 
to the work-station design; also includes photographs of screen 
usage, one of an augmented group meeting in action, and one show
ing the facility for a video-based display system to mix camera
generated video (in this case, the face of Bill English) with com
puter-generated graphics about which he is communicating to a 
remote viewer. 

12. Haavind, R., "Man Computer 'Partnerships' Explored," Electronic 
Design, Vol. 17, No.3, pp. 25-32, 1 February, 1969, (SRI-ARC 
Catalog Item 13961). 
A very well-done piece, effectively using photographs and diagrams 
to support description of our consoles, environment, working prac
tices, and experiences to a general, technically oriented reader. 

13. Augmentation of the Human Intellect-A Film of the SRI-ARC, 
Presentation at the 1969 ASIS Conference, San Francisco, (A 3-
Reel Movie). Stanford Research Institute, Augmentation Research 
Center, October 1969, (SRI-ARC Catalog Item 9733). 

14. Field R. K., "Here Comes the Tuned-In, Wired-Up, Plugged-In, 
Hyperarticulate Speed-of-Light Society-An Electronics Special 
Report: No More Pencils, No More Books-Write and Read Elec
tronically," Electronics, pp. 73-104, 24 Kovember, 1969, (SRI
ARC Catalog Item 9705). 
A special-feature staff report on communications, covering com
ments and attitudes from a number of interviewed "sages." Some 
very good photographs of our terminals in action provide one 
aspect of relevance here, but the rest of the article does very well in 
supporting the realization that a very complex set of opportunities 
and changes are due to arise, over many facets of communication. 

15. Engelbart, D. C., "Intellectual Implications of Multi-Access 
Computer Networks," paper presented at Interdisciplinary Confer
ence on Multi-Access Computer Networks, Austin, Texas, April 
1970, preprint, (SRI-ARC Journal File 5255). 
This develops a picture of the sort of knowledge-worker market
place that will evolve, and gives examples of the variety and flexi
bility in human-service exchanges that can (will) be supported. It 
compares human institutions to biological organisms, and pictures 
the computer-people networks as a new evolutionary step in the 
form of "institutional nervous systems" that can enable our human 
institutions to become much more "intelligent, adaptable, etc." 
This represents a solid statement of my assumptions about the 
environment, utilization and significance of our computer termi
nals. 

16. Engelbart, D. C., SRI-ARC Staff, Advanced Intellect-Augmenta
tion Techniques-Final Report, Stanford Research Institute, 
Augmentation Research Center, CR-1827, July 1970, (SRI-ARC 
Catalog Item 5140). 
Our most comprehensive report in the area of usage experience and 
practices. Explicit sections on: The Augmented Software Engineer, 
The Augmented Manager, The Augmented Report-Writing Team, 
and The Augmented Presentation. This has some fifty-seven screen 
photographs to support the detailed descriptions; and there are 
photographs of three stages of display-console arrangement 
(including the one designed and fabricated experimentally by 
Herman Miller, Inc, where the keyboard, keyset and mouse are 
built into a swinging control frame attached to the swivel chair). 

17. Roberts, L. C., Extensions of Packet Communication Technology 
to a Hand Held Personal Terminal, Advanced Research Projects 
Agency. Information Processing Techniques, 24 January, 1972. 
(SRI-ARC Catalog Item 9120). 
Technology of digital-packet communication can soon support 
mobile terminals; other technologies can soon provide hand-held 
display terminals suitable for interactive text manipulation. 

18. Savoie, R., Summary of Results of Five-Finger Keyset Training 
Experiment, Project 8457 -21, Stanford Research Institute, Bioen
gineering Group, 4, p. 29, March 1972, (SRI-ARC Catalog Item 
11101). 



226 National Computer Conference, 1973 

Summarizes tests made on six subjects, with an automated testing 
setup, to gain an objective gauge on the learnability of the chording 
keyset code and operating skill. Results were actually hard to 
interpret because skills grew rapidly in a matter of hours. General 
conclusion: it is an easy skill to acquire. 

19. DNLS Environment Stanford Research Institute, Augmentation 
Research Center, 8, p. 19, June 1972, (SRI-ARC Journal File 
10704). 
Current User's Guide for ARC's Display Online :::System (DNLS). 
Gives explicit description on use of the keyset, mouse, and the 
basic interaction processes. 

APPENDIX A: MOUSE AND KEYSET, CODES 
AND CASES 

Note: We generally use the keyset with the left hand; 
therefore, "a" is a "thumb-only" stroke. Of the three but
tons on the mouse, the leftmost two are used during key
set input effectively to extend its input code by two bits. 
Instead of causing character entry, the "fourth case" 
alters the view specification; any number of them can 
be concatenated, usually terminated by the "P' chord to 
effect a re-creation of the display according to the al
tered view specification. 

~Iouse Buttons: 000 010 100 110 
Case -0- -1- -2- -3-

Keyset Code 
0 0 0 0 X a A show one level less 
0 0 0 X 0 b B show one level deeper 
0 0 0 X X c C # show all levels 
0 0 X 0 0 d D $ show top level only 
0 0 X 0 X e E % current statement level 
0 0 X X 0 f F & re-create display 
0 0 X X X g G branch show only 
0 X 0 0 0 h H ( goff 
0 X 0 0 X I ) show content passed 
0 X 0 X 0 j J @ i or k off 
0 X 0 X X k K + show content failed 
0 X X 0 0 1 I show plex only 
0 X X 0 X m M show statement numbers 
0 X X X 0 n N / hide statement numbers 
0 X X X X 0 0 frozen statement windows 
X 0 0 0 0 p p 0 frozen statement off 
X 0 0 0 X q q 1 show one line more 
X 0 0 X 0 r R 2 show one line less 
X 0 0 X X S 3 show all lines 
X 0 X 0 0 t T 4 first lines only 
X 0 X 0 X u U 5 inhibit refresh display 
X 0 X X 0 v V 6 normal refresh display 
X 0 X X X w W 7 all lines, all levels 
X X 0 0 0 x X 8 one line, one level 
X X 0 0 X y Y 9 blank lines on 
X X 0 X 0 z Z blank lines off 
X X 0 X X < (nothing) 
X X X 0 0 > (nothing) 
X X X 0 X (nothing) 
X X X X 0 / ALT centerdot 
X X X X X SP TAB CR (nothing) 

APPENDIX B: PHOTOGRAPHS 

Figure I-Our current standard work station setup: Mouse in right 
hand controls cursor on screen: keyset under left hand supplements 

keyboard for special, two-handed command execution operation. 
Separation of control and viewing hardware is purposeful, and 

considered by us to be an advantage enabled by computerized work 
stations. 

Figure 2-Closeup of Keyset. Finger pressure and key travel are quite 
critical. It took many successive models to achieve a really satisfactory 

design. 

Figure 3-Closeup of Mouse. There are characteristics of the "feel," 
depending upon the edging of the wheels, the kind of bearings, etc. that 

can make considerable difference. We happened to hit on a good 
combination early, but there have been subsequent trials (aimed at 
improvements, or where others more or less copied our design) that 

didn't work out well. The play in the buttons, the pressure and actuating 
travel, are also quite important. 
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Figure 4-Clostmp of underside of mouse (old model), showing 
orthogonal disk-wheels. We now bring the flexible cable out the "front." 

Size and shape haven't changed, in later models. Bill English (the 
operator in Fig. 1, and mentioned in the text above) is now 

experimenting with new mouse sizes and shapes. 
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INTRODUCTION 

Semantics 

In the last four or five years it has become increasingly 
fashionable to speak of "intelligent," "smart," or "pro
grammable" terminals and systems. Very few mainframe 
or peripheral manufacturers omit such a device from 
their standard product line. Although "intelligence," 
like beauty or pornography, is in the eye of the beholder, 
the adjective generally connotes that the device has a 
degree of autonomy or processing ability which allows it 
to perform certain (classes of) tasks without assistance 
from the mainframe to which it is connected. Many such 
devices are programmable by virtue of including a mini, 
microprogrammable or micro computer.** 

While operational definitions are pretty hazy and non
standard, we call a device a terminal if a user interacts 
with a mainframe computer (host) through it (e.g., a tele
type or an alphanumeric display console). Hobbs 15 

lists 6 classes ofterminals:** 

(1) keyboard/ printer terminals; 
(2) CRT terminals; 
(3) remote-batch terminals; 
(4) real-time data-acquisition and control terminals; 
(5) transaction and point-of-sale terminals; 
(6) smart terminals. 

We consider the terminal to be intelligent if it contains 
hard, firm, and/ or software which allows it to perform 
alphanumeric or graphic message entry, display, buffer
ing, verifying, editing, and block transmissions, either on 

* The research described in this paper is supported by the National 
Science Foundation, Grant GJ -28401X, the Office of Naval Research, 
Contract N00014-67-A-0191-0023, and the Brown University Division of 
Applied Mathematics. 

** A synonym is the "Computer on a Chip," e.g., the INTEL 8008. 

* * * Rather than repeating or paraphrasing the several excellent surveys 
on terminals here, the reader is referred directly to them. Suggested are 
References 4,6,15 and 19, as well as commercial reports such as those 
put out by Auerbach and DataPro. 
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mainframe or human command. Xote that if the terminal 
contains a mini, micro or microprogrammable computer 
which runs a standard program to service the terminal, 
and not arbitrary, user loaded programs, the terminal has 
a fixed function and is still just an intelligent terminal by 
our definitiont (e.g., a VIATRON, or SYCOR alphanu
meric display). Only when the device contains a general 
purpose computer which is easily accessible to the ordi
nary user for any purpose and program of his choice, do 
we promote the terminal to an intelligent satellite 
(computer). Note that this notation is in conflict with that 
of Hobbs who calls this last category smart or intelligent 
terminal, and does not discuss our class of intelligent 
terminals. Machover's19 definition tallies more with ours 
since his intelligent terminal could be constructed purely 
with nonprogrammable hardware (e.g., the Evans and 
Sutherland LDS-l display). 

Our view of the idealized intelligent satellite is one 
which is powerful enough to run a vast number of jobs 
(e.g., student programs) completely in stand alone mode. 
In satellite mode it uses the host less than 50 percent of 
the time, as a fancy "peripheral" which supplies an archi
val (possibly shared) database, massive computational 
power (e.g., floating point matrix inversion for the analy
sis part of the application), and input/ output devices 
such as high speed printers, plotters, microfilm recorders, 
magnetic tape, etc. 

Distributed computing 

The term "distributed computing" refers both to 
devices at remote locations, and logic up to the point of a 
programmable computer, which has been used to enhance 
the intelligence of the devices.t Such distributed or 

t This is true even if the program can be modified slightly i or replaced 
in the case of Read Only Memory) to allow such things as variable field 
definitions on a CRT displayed form, etc.) 

:j: Note that the development of ever more sophisticated channels and 
device controllers started the trend of distributing intelligence away 
from the CPU. (Programmable) data concentrators and front end proc
essors are further extensions of the principle. 
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decentralized computing with remote intelligent terminals 
and especially satellites is a fact of life today. This is so 
despite the attempts by most computer center adminis
trators in the middle and late 1960's to have individual 
and department funds pooled to acquire a large, central, 
omni-purpose computer satisfying everyone's needs. 
Indeed, the hardware architects,12 (ACM 72 National 
Conference panel participants) are predicting even more 
decentralization, with complete mini or micro computers 
in homes, offices, and schools, both to provide program
mable intelligence to terminals and peripherals, and to 
serve as local general purpose computers for modest proc
essing tasks. Some of the reasons for this phenomenon are 
psychological, others technical: 

(1) The hardware technology has made it possible; the 
price of mass produced logic and memory (even of 
small disks and drums) has decreased dramati
cally, and more so for mini's than for mainframe 
hardware; even Foster's "computer on a chip"12 is a 
reality before his predicted 1975 date. Conse
quently, minis (and even midis) have become 
widely affordable; OEM minis may be part of sci
entific equipment or of terminals costing under 
$7,000! This is partially due to the pricing structure 
of the mini manufacturers who do not tack on main
frame manufacturer's type overhead for such frills 
as universal software and customer services. 

(2) The advantages of distributed (remote) logic and 
computing are indisputable: 
(a) the convenience and psychological advantage of 

having a terminal or remote job entry station in 
or near your office, especially if it can do sim
ple things like accumulate messages and print 
or edit them locally. 

(b) in the ideal case, the even greater convenience 
and sense of power rightfully restored to some
one who controls the destiny of his very own 
little, but complete, computer system. No more 
fighting with the computing center, or contend
ing with other users for scarce resources; pre
sumably less lost data and fewer system 
crashes since there's no interuser interference 
within a fragile operating system. (To be fair, if 
the local machine is then hooked into the cen
tral host in satellite mode, the problems of reli
ability may be worse, due to communications 
errors for example.) 

(c) The advantage of avoiding extraneous user 
effort by being able to build a message or a 
picture* locally, and immediately verify and 
edit it, before entering information into the 
mainframe; this convenience is in contrast to 
cycles of enter I verify I correct steps which are 
separated in time. 

" Let alone scaling and rotating it, doing lightpen tracking to build it. 
etc. 

(d) The corresponding conservation of resources, of 
both mainframe and communications link, due 
to fewer and more compact interactions and 
transmissions; the vastly superior user response 
time (especially given the saturated multi-pro
grammed or time-shared operating systems 
typical today); and the real or "funny" money 
savings of not unnecessarily using the host. 

(e) The ability to do (significant) work, minimally 
message composition using simple cassettes, 
while the host is down or a core partition for 
the applications program is not available. 

(f) Returning to the transmission link, the advan
tage of being able to live without its constant 
availability; incurring fewer errors due to lesser 
use; being able to be satisfied with a lower 
speed and therefore less delicate, more widely 
available and lower cost link. 

(g) The ability, with sufficient intelligence, to 
emulate existing older devices, to the point of 
providing with one device "plug for plug com
patible" replacements for several existing ones. 

(h) And finally, the enormous advantage of having 
locally, hopefully general purpose, processing 
power for arbitrary customization. 

An outline of potential problem areas 

While distributed logic and computing offer genuinely 
enhanced capability and cost effectiveness, a number of 
problems which the user ought to be aware of do crop up. 

Hardware problems 

(a) Either you choose among the many off-the-shelf 
software supported, but unchangeable devices, * * or 

(b) you build yourself, in hardware, or preferably in 
firmware, a customized terminal just right for your 
application. You then have to implement your 
device and the supporting software, both probably 
incompatible with anybody else's gear. 

Inte rfacing problems 

(a) If you buy a standard device, connected over a 
standard (channel or front end) interface, you 
might be lucky and have no operating system sup
port problems. The non-standard device might need 
a special purpose interface and might not be recog
nized (the "foreign attachment" gambit). Even 
standard interfaces are notorious for crashing oper
ating systems. In any case, "mixed systems" con
taining multiple vendor hardware are coming of 
age, but lead to many "our system works, it must 

** Note that if the device does contain a user accessible general purpose 
computer, inflexibility may be tempered with appropriate software. 



be their system" traumas. As an aside, mainte
nance on the device may not be cheap, so many 
installations use "on call" arrangements. 

(b) To make interfacing easy, obtain flexible remote
ness, and avoid the foreign attachment mainte
nance support problem, telephone communications 
links are very popular. Modems and lines are 
expensive for more than 1200 baud transmission, 
however, and even low speed lines are notoriously 
noisy (especially in rainy weather)! 

Host operating system support 

Terminal systems today generally are supported with a 
host operating system: minicomputers rarely are. Home
brew customized systems, by definition, are not. Provid
ing your own host support at the II 0 level for such sys
tems is usually a reasonable task for experienced systems 
programmers; higher level, truly integrated support, 
however, may be a real research problem. 

Local software support 

This type of support ranges from minimal (say a local 
assembler) to reasonably complete; for a mini it is often a 
full disk operating system, with FORTRAN and, if you're 
very lucky, a cross compiler for a higher level procedural 
language, which compiles on the host, and produces code 
for the satellite. Even if a standard language like FOR
TRAN is available on both host and satellite, thereby 
obviating having to learn to program in two languages, the 
versions will be incompatible, due to differences in archi
tecture and instruction set of the machines, and in com
piler implementation. 

Reserving host resources 

Making sure that real (or virtual) core and disk space 
are available for the new device is an often overlooked or 
underestimated problem. 

THE EVOLUTION FROM TERMINAL TO 
SATELLITE 

Despite all the facilities intelligent terminals provide, 
they still contribute only a relatively small (but possibly 
quite sufficient) amount of processing power to the total 
needs of the program or system. For example, display 
regeneration and housekeeping, communications han
dling, and simple local interrupt fielding are typical tasks 
which can be allocated to an intelligent terminal for inter
active graphics. Such functions can be lumped together 
into an area we will call "hardware enhancement." This 
term is meant to indicate that the basic goal to which the 
intelligence of the terminal is being directed is the sim ula
tion of a more sophisticated piece of hardware. Raising 
the level of the interface which the terminal presents to 

Intelligent Satellites for Interactive Graphics 231 

Figure 1 

the mainframe effectively lightens the load placed on the 
mainframe by simplifying the requirements of the low 
("access method" or "symbiont") level support for the 
terminal. 

The operational distinction we have made between 
intelligent terminals and satellites is the use to which the 
intelligence of the remote terminal system is put. For 
intelligent terminals this intelligence is primarily directed 
into areas such as hardware enhancement and low level 
support. On the other hand, the intelligence of a satellite 
is sufficiently high to allow it to be applied directly to the 
processing requirements of the application program. 
(Some hardware implications of this requirement are 
discussed below.) 

The transformation of an intelligent terminal into a full 
satellite is a long and, as Myer and Sutherland have 
pointed oueo somewhat addictive process (" ... for just a 
little more money, we could ... "). For example, in the 
graphics case, one first adds a data channel to mainframe 
core to service the display. Then special display registers 
and channel commands are incrementally added. A local 
memory is inserted to free mainframe core. The display is 
given its own port (i.e., primitive data channel) into the 
local memory, and the wheel of reincarnation is rolling. 
The end result of this process is a system of the general 
form shown in Figure 1. 

THE SATELLITE CONFIGURATIO~ 

The diagram in Figure 1 says nothing about the power 
or complexity of the various components. As Foley 11 has 
pointed out, there are many ways in which the pieces of 
such a satellite system can be chosen. and the implemen
tation of an optimal (highest cost/ performance ratio) 
configuration for a particular application may entail the 
examination of hundreds or even thousands of different 
combinations of subsystems. In the following, we are not 
as concerned with optimality as with defining a lower 
bound on the total processing power of the satellite below 
which it becomes infeasible to view the satellite as a gen
eral processor (at least for the purpose of satellite graph
ics). 

The argument for having a satellite system as opposed 
to an intelligent terminal is to do nontrivial local process
ing (real-time transformations and clipping, local atten
tion handling, prompting. providing feedback, data-hase 
editing, etc.), while leaving large-scale computation and 
data-base management to the mainframe. In order to 
perform satisfactorily for a given (class of) job(s), the 
satellite must possess "critical intelligence." Analogous to 
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the "critical mass" concept, critical intelligence defines a 
threshold of local power which allows the majority of 
tasks to be executed locally without recourse to the main
frame; it is a complex and application-dependent figure 
of merit describing such parameters as the architecture 
and instruction set of the processor, and the primary and 
secondary storage capacity and access time. It is unfortu
nately not readily expressed quantitatively, although 
Foley does try to quantize trade-offs for several classes of 
applications. Below critical intelligence, i.e., if the satel
lite does not have (reasonably fast) secondary storage, 
sufficient local memory, and a powerful instruction set, it 
simply may not be able to do enough processing fast 
enough to make the division of labor worthwhile. Many 
minicomputers used as satellites have too few general
purpose registers and core, inadequate bit and byte 
manipulation instructions, and minimal operating sys
tems. On such machines, it is seldom possible to handle 
non-trivial applications programs in stand-alone mode 
satisfactorily (i.e., not just drawing, but handling data 
structure editing as well), manufacturers' claims notwith
standing.* 

In some cases, the shortcomings of a standard mini
computer can be overcome by the use of microprogram
ming. Microprogrammed processors have a very real 
advantage over those which are hardwired in that it is 
frequently possible to redefine a weak architecture or 
instruction set. Hardware deficiencies such as minimal 
core may be offset by, for example, an instruction set 
which has been designed to accommodate often used algo
rithms. Entire subroutines or their most critical parts 
may be put in the firmware. An example of the consider
able savings in core and execution time which can be 
achieved with thoughtful firmware instruction set design 
is described in Reference 2. 

Given a satellite system sufficiently powerful to run 
stand-alone applications, the question arises, "Why go 
on?" If the satellite has gone once around the wheel and 
has become self-sufficient, we no longer have a satellite, 
but another mainframe, and the need for satellite/main
frame interaction disappears. Indeed, this approach was 
taken, for example, by Applicon, Inc., whose IBM 1130/ 
storage tube system has been carefully and cleverly tai
lored to a modest application (lC layout), providing one 
of the few money making instances of computer graphics.3 

ADAGE'sI3 more powerful midi systems also were 
enhanced for example with a fast, high-capacity disk to a 
point where they support a wide variety of graphic appli
cations without recourse to an even larger computer. 

If stand-alone mode is no longer sufficient, the local 
system may again be enhanced, but in most cases a dupli
cation of facilities with an existing large mainframe is not 

* Yet it is astonishing how many programmers who would not dream of 
writing a program in 32 kilobytes of 360 user core, with the powerful 360 
instruction set and good disks behind it, have the chutzpah (typically 
justly rewarded) to write the same program for a 32-kilobyte mini with a 
slower, more primitive architecture and instruction set and a painfully 
,.,luw tli"h.. 

cost effective, and a crossover point is reached at which 
communication with the mainframe becomes cheaper 
than satellite enhancement. In a sense, the satellite is a 
saddlepoint (an optimal strategy) in the range of config
urations bounded at one end by simple display terminals 
and at the other by full stand-alone graphics processors. 

SOFTWARE STRATEGIES AND APPLICATIONS 

Given the typical hardware configuration outlined 
above, it is interesting to examine some of the ways in 
which such systems have been utilized. These will be pre
sented roughly in order of increasing utilization of the 
satellite's intelligence. 

Hardware enhancement 

At the low end of the spectrum, the facilities of the sat
ellite system are used soley to complement capabilities of 
the display processor. In such systems, the display proc
essor can typically do little more than display graphic 
data out of a contiguous data list in core. All other display 
functions-subroutining, transformations, windowing, 
clipping, etc.-are performed by the satellite processor. 
Little if any processing power is left over for more appli
cation-oriented processing. In fact, there is little differ
ence between a satellite used in this manner and an intel
ligent terminal; the approach is noted here only because 
some intelligent terminals may have the hardware struc
ture described in Figure 1. 

Device simulation/emulation 

Another "non-intelligent" use of a satellite is to emu
late and/ or simulate another display system. The ration
ale for this is almost always the presence of a large pack
age of existing software for the display being emulated. 
Rather than discard many man-years of software devel
opment, the choice is made to under-utilize the facilities 
of the satellite system in order to support the existing 
applications. Another reason for using the satellite in 
simulation/ emulator mode is that it may be possible to 
provide higher performance and access to new facilities 
for existing programs (e.g., control dial and joystick input 
for a 2250 program). In addition, satellite simulation may 
allow remote access graphics (over telephone lines or a 
dedicated link) where not previously possible. * * 

At Brown, we have implemented three such systems to 
provide support for IBM 2250 Mod 1 and Mod 3 pro
grams. Two of these were simulators using an IBM 1130/ 
2250 Mod 427 and an Interdata Mod 3/ ARDS storage 

** As a commercial example, ADAGE is now offering a display system 
with simulator software incorporating man\' of these ideas [ADAGE, 
Ul7:2J. 



tube;26 and one now being completed is an emulator using 
a Digital Scientific Meta 4 and a Vector General display 
system. Our experience has indicated that it is indeed 
useful to be able to continue to run old programs while 
developing more suitable support for the new system. In 
addition, we have found that device emulation is a good 
"benchmark" application for gaining experience with and 
assessing the capabilities of the new system. On the other 
hand, in no instance have we found that device emulation 
made full use of the satellite facilities. 

Black box approaches 

We are now to the point of considering programs which 
require the full services of the mainframe! satellite config
uration. Such -programs are characterized by a need for 
the graphics capability of the satellite processor and a set 
of other requirements (computing power, core, bulk sec
ondary storage, etc.) which cannot be completely satisfied 
by the satellite. In addition, we will assume that the satel
lite possesses the critical intelligence referred to above. 

It is at this point that the "division of labor" problem 
arises, i.e., determining the optimal way in which the 
various subtasks of a large application should be allo
cated to the two processors. This question has as yet 
received no adequate treatment (a possible approach is 
outlined below), and it is indicative of the difficulties 
inherent in the problem that no current system for satel
lite graphics provides a truly general solution. 

The most common treatment of the satellite processor 
is as a black box. GIN031 and SPINDLE16 typify this 
approach in which all hardware and operating system 
details of the satellite are hidden from the applications 
program. The satellite is provided with a relatively fixed 
run-time environment which performs tasks such as dis
play file management, attention queueing, light-pen 
tracking, and data-structure management (in conjunction 
with mainframe routines). Access to these facilities from 
the application program is usually in the form of a sub
routine library callable from a high -level language (e.g., 
FORTRAN). 

This approach has the attractive feature of "protect
ing" the applications programmer from getting involved 
in multiple languages, operating system details, and 
hardware peculiarities. In addition, a well-designed sys
tem of this type can be easily reconfigured to support a 
new satellite system without impacting the application 
program. On the other hand, defining a fixed satellite! 
mainframe task allocation may incur unnecessary sys
tems overhead if the allocation should prove to be inap
propriate for a particular application. Particularly in the 
case of high-powered satellites, it may be difficult to pro
vide access to all the facilities of the satellite without 
requiring the applications programmer to "get his hands 
dirty" by fiddling with various pieces of the system. 
Worst is poor use (inadequate use) of local facilities, 
wasting power and incurring charges on the mainframe. 
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Systems for interconnected processing 

While the black-box approach hides the satellite from 
the programmer, interconnected processor (lCP) systems 
(connecting one or more small satellites to a large host) 
allow (and sometimes require) cognizance of both the 
mainframe and satellite processors. At the lowest level, 
such a "system" consists of no more than a communica
tions package or access method. At a slightly higher level 
are packages such as IBM's processor-to-processor 
(PTOP) routines for 360! 1130 communications.22 These 
routines provide a high-level communication interface 
together with data conversion capabilities. 

More sophisticated systems are exemplified by Bell 
Labs' GRIN _27 and UNIVAC's Interactive Control Table 
(ICT) approach.B In these systems, a special-purpose 
language is provided with which the application program
mer specifies the detailed data structure manipulation 
and! or attention handling which is to take place during 
an interactive session. Once this specification has been 
made, it becomes part of the system environment of both 
processors. The Univac system allows this environment to 
be changed at runtime by providing for the dynamic load
ing of new satellite programs for full attention handling 
and data structure manipulation. Thus the programmer 
has at least some control over the activities of the satellite 
processor. 

A very general system of this type has been outlined by 
Ross et al./4 in which a Display Interface System (DIS) 
is described. The DIS consists of "minimal executives" in 
both the satellite and mainframe processors. These execu
tives act in conjunction to provide attention and program
handling mechanisms in both machines. Additional fea
tures, such as satellite storage management and display 
file handling, are available in the form of system-pro
vided routines which can be allocated to either processor. 
Effectively, the DIS provides a "meta-system" which can 
be used by a systems programmer to tailor the appear
ance of the mainframe! satellite interface to provide 
optimal utilization of the satellite configuration. While a 
full DIS system has not yet been implemented, the basic 
design principles were used with apparently good success 
in the design of the GINO package.31 

What objections to the preceding systems can be 
raised? The Univac system requires bi-linguality and the 
overhead of a local interpreter, a deficiency recognized by 
the implementers.9 This particular system also failed to 
achieve critical intelligence since the hardware on which 
it was implemented lacked mass storage, general purpose 
registers, and a decent instruction set. The Grin-2 experi
ment is somewhat more ambiguous, with in-house users 
apparently satisfied and some outsiders dissatisfied, with 
such features as a fixed (ring) data structure, an 
unwieldy programming language, not enough local core, 
etc. The GINO satellite system, though used very success
fully, has had only relatively minor housekeeping and 
transformation functions executed locally, thereby not 
saving very much on host resources in this intelligent 
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terminal mode. Thus, a truly general purpose, flexible, 
easy to use, and cost effective system for host-satellite 
communication is yet to be achieved. 

A SYSTEM FOR STUDYING SATELLITE 
GRAPHICS 

The Brown University graphics system (BUGS) 

For the past eighteen months the Graphics Project at 
Brown University has been implementing a laboratory 
system for the investigation of a variety of questions 
relating to satellite graphics. The salient features of the 
system (shown in Figure 2)* are as follows.** 

The local processor: The general-purpose processor of 
the system is a microprogrammable Digital Scientific 
Meta 4. It has been provided with a 360'-like firmware 
defined instruction set with additions and modifications 
to enhance the ability of the processor to meet the needs 
of the operating system and graphics applications. 

The display processor: A second Meta 4 was chosen to 
serve as a programmable display processor to drive the 
Vector General display. While the Vector General itself is 
a relatively powerful processor, this "level of indirect
ness" was added to allow complete freedom in designing 
(and altering) the display instruction set seen by the user. 

The SIMALE-It was determined that even with the 
high speed of the Meta 4, it would not be possible to pro
vide full three-dimensional transformations (with win
dowing and clipping) at a speed sufficient to display 
1000-2000 vectors. For this reason, we have designed the 
SIMALE (Super Integral Microprogrammed Arithmetic 
Logic Expediter) to perform homogeneous transforma-

* A PDP 11/45 with a Vector General display is a cheaper commercial 
system sharing many of the characteristics of the BUGS system. We are 
providing a FORTRA::-.r based graphics subroutine package for this svs-
tern, both for standalone and for 360/370 satellite mode. -

** For more complete information about the system, see References 2 
:mri ~8 

tions, windowing, and clipping. SIMALE is a high -speed 
parallel processor with writeable control store! Webber, 
1973!. 

The 360 Interface-The communications link to the 
mainframe (an IBM 360;67 under CP67;CMS) is a mul
tiplexer channel interface. The interface, which is driven 
from firmware, is non-specific, that is, it can appear as 
any IBM -supported device. Eventually, this link will be 
downgraded to a medium to low speed (e.g., 1200 BAUD) 
communications line. 

The local operating system-The operating system 
which runs on the local processor was built using the "ex
tended machine" or "structured" approach typified by 
Dijkstra's THE System. 10 With this approach, the operat
ing system is developed as a series of distinct levels, each 
level providing a more intelligent "host" machine to the 
next level. The design of the system facilities the vertical 
movement of various facilities between levels as experi
ence dictates. As facilities become stabilized on the lowest 
level, they can be moved into the firmware with no 
impact on user programs. 

An environment for interconnected processing 

The system outlined above, which admittedly has gone 
around the wheel of reincarnation several times, has been 
designed with the goal of keeping each subsystem as 
open-ended as possible, thus allowing maximum flexibil
ity in subsystem/task allocation. This approach is also 
being taken in the design of system software to support 
graphics applications requiring both satellite and main
frame facilities. 

With currently extant systems, the ramifications of 
splitting an application between the mainframe and the 
satellite are many and frequently ugly. Minimally, the 
programmer must become acquainted with a new instruc
tion set or an unfamiliar implementation of a higher-level 
language. In addition, the vagaries of the satellite operat
ing system must be painfully gleaned from Those-in-the
Know. With luck, there will be some sort of support for 
110 to the mainframe, but probably no good guidelines on 
how best it should be used. Most importantly, the pro
grammer will have little or no knowledge about how to 
split his application between the two processors in such a 
way as to make optimal use of each. In other words, mis
takes are bound to occur, mistakes of the kind which 
frequently require a significant amount of recoding and; 
or redesign. 

The basic goal of the ICP system outlined below is to 
alleviate these problems while placing minimal con
straints on the programmer's use of the two processors. 
The aim is to provide not merely a high-level access 
method or system environment through which the satel
lite can be referenced, but rather a set of tools which will 
allow the programmer to subdivide an applications pro
gram or system between the satellite and the mainframe 
",,'jthout constant reference to the fact that he is working 



with two dissimilar processors. These tools include the 
following: * 

• A completely transparent I/O interface between the 
mainframe and the satellite. I/O between the two 
processors should take place at a purely logical level 
with no consideration of communications protocol, 
interface characteristics, or timing dependencies. 

• A run-time environment to support inter-process 
communication as described below. In the limit, this 
environment should be sufficiently powerful to allow 
dynamic (run time) redefinition of the task/proces
sor allocation. 

• A high-level language with translators capable of 
generating code for both machines. Minimally, this 
language should let the programmer disregard as far 
as possible differences in the hardware and operating 
system defined characteristics of the two proc
essors.** Optimally, the language should provide 
constructs to maximize the ease with which the vari
ous tasks of a large application can be moved from 
one processor to the other. 

The language for systems development 

Of the tools mentioned above, the most important is the 
high-level language in which the application is going to be 
written. Indeed, the language is the heart of our approach 
to ICPing since it provides the uniform environment in 
which the programmer can work with little or no regard 
for the final task/processor subdivision of the application. 
If he wishes, the language will also let him hand-tool each 
routine for the processor on which it will run. 

The language which we are using for both the Iep sys
tem and application programs is the Language for Sys
tems Development (LSD).5 LSD is a general-purpose 
procedure-oriented language with many of the features 
and much of the syntax of PL/I. In contrast to PL/I, 
however, the language enables the programmer to get as 
close as he wants to the machine for which he is program
ming rather than hiding that machine from him. Thus, 
while the ordinary applications programmer can simply 
use it as a FORTRAN replacement, a systems program
mer can explicitly perform operations on main memory 
locations and registers; he can intersperse LSD code with 
assembly language or machine language (through the 
CODE/ENCODE construct). LSD also will provide a 
variety of extension mechanisms to permit the user to 
tailor the language to specific problems or programming 
styles. Some of the features of LSD which make it an 
ideal vehicle for the ICP system are the following: 

* The approach taken is similar to that of J. D. Foley in his current 
National Science Foundation sponsored research in computer graphics; 
the envisiuned run-time environments and facilities, however, are quite 
dissimilar, as will be described below. 

** Note that microprogramming is a very handy implementation tool for 
making the satellite architecture and instruction set somewhat similar to 
that of the host, thereby reducing the load on the compiler design team. 
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• The ability to completely redefine the compile-time 
code generators. This allows implementation of a 
compiler which will generate code for either the satel
lite or the mainframe. 

• Extensibility mechanisms. In particular, semantic 
extensibility allows the definition of new data types, 
storage classes, and scopes for variables. 

• The ON ACCESS mechanism. This facility, which is 
similar to PL/l's CHECK statement, allows compile
time definition of routines which are to be invoked 
whenever a particular variable is accessed at run 
time. 

• Operating system independence. The constructs 
which are generated by the compiler have been 
designed to be as independent as possible of the 
operating system under which they are to run. In 
addition, the run-time environment required by an 
LSD program has been kept as small as possible. 

• Run-time symbol table access. Complete information 
about the scope, type and storage class of all varia
bles is available at run time. 

LSD extended for the ICP system 

The fundamental extension to be made to LSD for 
ICP'ing is the addition of a new scope for variables and 
procedures. Currently, an LSD variable may have one of 
three scope attributes-LOCAL, GLOBAL, or EXTER
NAL. A LOCAL variable is accessible only within the 
procedure in which it is allocated. A GLOBAL variable 
may be known to all procedures in the system. EXTER
NAL indicates that the variable has been defined as a 
GLOBAL in some other procedure which is external to 
the current procedure. A procedure can be either external 
or internal. An internal procedure is defined within 
another procedure. An external procedure is the basic 
unit of programming within the system; that is, it can be 
compiled separately from all other procedures with no 
loss of information. 

For the use of ICP applications, a new scope will be 
defined which will be referred to here as ICPABLE. A 
declaration of ICPABLE defines the named variable or 
procedure as one which may reside in the other proces
sor. t This declaration· will force the compiler to take the 
following actions: 

• On variable access or assignment, a run-time routine 
must be called which has the task of returning the 
value (or address) of the variable, possibly accessing 
the other processor to obtain the current value of the 
variable. 

• On a call of a procedure which has been declared 
ICPABLE, a similar check must be made as to the 
current whereabouts of the procedure. If the proce-

t This definition is similar to Foley's GLOBAL; however, assignments 
between processors are not run-time alterable in Foley's system, a sig
nificant and far reaching difference. 
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dure is in the other processor, an appropriate mecha
nism for passing of control and parameters must be 
invoked. 

The end effect of this extension will be that the pro
grammer need have only very vague ideas about the even
tual disposition of his programs and data. During pro
gram development, any unclear areas can be resolved by 
declaring all affected variables and routines as ICPA
BLE. If the referenced object is in the same processor as 
the "referencor," overhead will be minimal; if it is not, 
overhead beyond the necessary communications delay 
will hopefully still be minimal. * Once the application has 
been shaken down, this minimal overhead can be 
removed by suitable redeclarations of the ICPABLE 
variables and procedures. 

The run-time environment 

As currently envisioned an application requiring satel
lite graphics will run in an environment consisting of five 
levels. 

• At the lowest level will be a set of routines (in each 
processor) which handle the lowest level physical 
I/O. A standard interface will be defined between 
these routines and higher levels to ensure flexibility 
with respect to the variety of possible satellite/ 
mainframe links. 

• Above the low level I/O package will be an (LSD 
callable) access method for explicit use by the LSD 
programmer as well as the routines supporting 
implicit inter-process communication. Also at this 
level will be any system supplied routines which are 
found necessary to interface with the lowest level 
facilities on the two processors (e.g., a routine to 
actually start display regeneration). 

• The access method will be used for the most part by 
a third level of routines in charge of performing all 
necessary data transmission and conversion. 

• Between the data conversion routines and the actual 
LSD program will be a supervisory package which 
keeps track of the current procedure/variable/proc
essor assignment. When dynamic movement of varia
bles and procedures between processors becomes 
feasible, it also will be undertaken at this level. 

• The highest level of the run-time environment will 
consist of a "meta-system" which is used for system 
resource utilization, response measurements, and 
dynamic reconfiguring of the application program. 
The idea here is to provide a logical "joystick" with 
which the programmer (or user) can make real-time 
decisions as to the optimal deployment of the various 

* The overhead inflicted by various flavors of special purpose run-time 
environments is notoriously unpredictable: the "minimal" overhead for 
ICPABLE variables and procedures could prove to be entirely unac
ceptable. 

pieces of the application. By moving the stick in the 
"360 direction" he causes some of the modules to be 
loaded and executed in that machine; by moving in 
"the other direction," he causes modules to be 
shifted to the satellite. Observing response or some 
graphically displayed resource utilization and cost 
data, he can manipulate the stick, trying for a 
(temporal) local optimum. 

A hypothetical example 

In order to illustrate a use of the system described 
above, we offer for consideration a piece of a larger appli
cation consisting of four procedures-DISKIO, DSUP
DATE, BUFFGEN, and ATTNWAIT-together with a 
MAINLINE representing the rest of the application. 
DISKIO is a routine which handles I/O to bulk storage 
on the mainframe; DSUPDATE is in charge of modifying 
and updating the graphic data structure; BUFFGEN 
generates a display file from the data structure; and 
ATTNW AIT processes attentions from the graphic input 
devices. 

While the programmer is writing these routines, he 
disregards the eventual destinations of these routines, and 
programs as if the system were to appear as:*'* 

MAINFRAME 

MAINLINE 
+ 

BUPFGEN 
... 

DISKIO 
t 

DSUPDATE 
t 

ATTNWAIT 

SATELLITE 

Figure 3 

However this disregard while implementing does not 
mean that the programmer is unaware of the fact that he 
is indeed working with two processors, and that at some 
point certain processor/task assignments are going to be 
made. While he is reasonably certain that DISKIO is 
going to run in the mainframe and ATTNW AIT in the 
satellite, he is less sure about BUFFGEN and DSUP
DATE and therefore declares these routines ICPABLE. 
He then (in effect) tells the compiler, "Compile DISKIO 
for the mainframe, ATTNW AIT for the satellite, and 
DSUPDATE and BUFFGEN for both processors." 

When the system is ready for testing, he invokes the 
highest level of the run-time environment and requests 

•• Arrows represent call;;; system routilles have beeIl omitt.ed for clarity. 



his program be run with a trial allocation of tasks as fol
lows: 

MAINFRAME 

MAINLINE 

• BUFFGEN 
~ 

DISKIO 
t 

DSUPDATE 

SATELLITE 

ATTNWAIT 

Figure 4 

After running with this allocation for a while, the pro
grammer reenters the "meta-system" level to see what 
kind of statistics have been gathered during the session. 
The statistics indicate that during those times when some 
demand was being made on the total system (i.e., periods 
during which the total application was not quiescent 
while waiting for a user action), the satellite processor was 
relatively idle. The programmer therefore decides to try a 
reallocation of tasks by moving the BUFFGEN routine 
into that satellite, resulting in: 

MAINFRAME I, SATELLITE 

MAINLINE 

BUFFGEN 

i 
ATTNWAIT 

DISKIO 

i 

Figure 6 

This configuration improves the utilization of the satel
lite, and the programmer returns to the application envi
ronment for further experimentation. 

After a while, response time degrades drastically. On 
investigation it is found that two systems and four PL/ I 
compiles are currently running in the mainframe, To 
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make the best of a bad situation, the programmer moves 
the DSUPDATE routine into the satellite: 

MAINFRMtI-E 

DISKIO 

SATELLITE 

BUFFGEN 

i 
ATTNWAIT 

i
DSUPDATE 

Figure 6 

While the satellite may now be overloaded (e.g., overlays 
may be needed), response time is still improved since less 
work is being done in the currently "crunched" main
frame. 

Hopefully this example gives some idea of the power we 
envision for the full Iep system. Obviously this descrip
tion has glossed over many of the difficulties and imple
mentation probiems which we will encounter. In particu
lar, the problem of data base allocation and the transport
ing of pieces of a data structure between the two proces
sors with different machine defined word sizes presents a 
formidable problem. Since we do not want to "inflict" a 
built-in data structure facility on the user it may become 
necessary to require of him more than minimal cogni
zance of the two processors for problems involving data 
structure segmentation. 

CONCLUSIONS 

Decentralization and distribution of computing power is 
coming of age, and is expected to be the standard of the 
future, with perhaps several levels and layers of hosts and 
satellites, embedded in a network. Special-purpose-appli
cation dedicated intelligent terminals are already prolif
erating because they are cost effective and their hard
ware / firmware / software design is straightforward. Intel
ligent satellite computing, on the other hand, is still in its 
infancy, especially in its full generality where there is a 
genuine and changeable division of labor between host 
and satellite. Few design rules of thumb exist beyond the 
"buy-Iow/sell-high" variety (for example, interactions on 
the satellite, number-crunching and data base manage-
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ment on the host). Even fewer tools exist for studying 
varying solutions, and their implementation is a far from 
trivial task. 

We hope to be able to report some concrete results of 
our investigation into this important problem area in the 
near future. 
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Fourth generation data management systems 

by KEVIN M. WHITNEY 

General Motors Research Laboratories 
Warren, Michigan 

I~TRODUCTION AND HISTORY 

Many hundreds of programming systems have been 
developed in recent years to aid programmers in the 
management of large amounts of data. Some trends in the 
development of these data management systems are fol
lowed in this paper and combined with ideas now being 
studied to predict the architecture of the next generation 
of data management systems. The evol ution of data 
management facilities can be grouped into several genera
tions with fuzzy boundaries. Generation zero was the era 
when each programmer wrote all his own input, output, 
and data manipulation facilities. A new generation of 
facilities occurred with the use of standard access meth
ods and standard input/ output conversion routines for all 
programs at an installation or on a particular computer 
system. The second generation of data management was 
the development of file manipulation and report writing 
systems such as RPG, EASYTRIEVE, and MARK IV. 
Much more comprehensive facilities for the creation, 
updating, and accessing of large structures of files are 
included in the third generation of generalized data 
management systems such as IMS/2, IDS, and the 
CODASYL specifications. Each of these generations of 
data management systems marked great increases in 
system flexibility, generality, modularity, and usability. 
Before speculating on the future of data management, let 
us survey this history in more detail. 

Standard access methods, such as ISAM, BDAM and 
SAM which formed the first generation data management 
facilities were mainly incorporated in programming lan
guages and merely gathered some of the commonly per
formed data manipulation facilities into standard pack
ages for more convenient use, The main benefit of these 
standard facilities was to relieve each application pro
grammer of the burden of recoding common tasks. This 
standardization also reduced program dependency on 
actual stored data structures and formats. Although these 
access methods and input/ output conversion routines 
were often convenient to use, they could only accommo
date a limited number of different data structures and 
data types. 

As computer systems became more common, more 
widely used, more highly depended on, and eventually 
more essential to the functioning of many businesses, a 
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second generation of data management facilities became 
available to speed the job of generating reports and writ
ing new application packages. These report generators, 
file maihtenance packages, and inquiry systems provided 
easy-to-use facilities for selecting, summarizing, sorting, 
editing, and reporting data from files with a variety of 
formats. A user language simple enough for non-pro
grammers to use was sometimes provided, although using 
more advanced system facilities often required some 
programming aptitude. This second generation of data 
management systems brought non-procedural user lan
guages and a greater degree of program independence 
from data formats and types. 

Much more general capabilities were incorporated into 
third generation systems such as IDS, IMS, and the 
CODASYL report specifications. l All of these systems 
emphasize the effective management of large amounts of 
data rather than the manipulation or retrieval of data 
items. All have facilities to manage data organized in 
much more complicated data structures than the sequen
tial structures used by earlier systems. Relationship's 
among data items in many different files are expressible 
and manipulable in the data management systems. Provi
sions for the recovery from many different types of sys
tem errors, head crashes, erroneous updates, etc. are inte
gral parts of these systems. Audit trails of modifications 
of the data base are often automatically maintained, and 
new file descriptions are handled by standard system 
facilities. In general, many of the functions which pre
vious generations of data management systems left to the 
operating system or to user application programs are 
automatically incorporated in these systems. Many of the 
third generation systems provide a convenient user 
inquiry language, a well-defined interface for user appli
cation programs, and new language facilities to aid the 
data administrator in the description and maintenance of 
the data base. 

A fourth generation data management system will con
tinue the development of all these trends toward generali
ty, flexibility, and modularity. Other improvements will 
result from theories and concepts now being tried in 
experimental systems. Much greater degrees of data 
independence (from user program changes, from data 
description and storage changes, from new relationships 
among the data) will be common; user languages will 
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APPLI CA Tl ON APPLI CATION QUERY TELEPROCESS I f'XJ 

PR(XJRAM PRCNRAM LANGUAGE MJNITOR 

USER DATA DESCRIPTION AND MANIPULATION DBA 

SERVICES FACILITIES SERVICES 

DATA ACCESS AND CONTROL FACILITIES 

Figure I-Information management system structure. 

become much less procedural; and data manipulation 
facilities for use in writing application programs will 
become simpler and more powerful. Concepts from set 
theory and relation theory will become more widely used 
as the advantages of a sound theoretical basis for infor
mation systems become more widely appreciated. 
Increasingly, information management systems will make 
more of the optimization decisions relating to file organi
zation and compromises between different user require
ments. The trend to bending the computer toward user 
requirements rather than bending the user to the require
ments of the computer will continue resulting in progres
sively easier to use systems. 

One organization of the facilities of an information 
management system may be the division into modules 
shown in Figure 1. This modularity may represent soft
ware or hardware (or both) boundaries and interfaces. A 
data access and control module is needed to manage data 
flow to and from the storage media. This data manage
ment module is used by the data description and manipu
lation module in providing data description and manipu
lation at a level less dependent on the storage structure of 
this data. The user can access data through application 
processors or through a system provided query language 
processor. A variety of system services are grouped into 
the user services module and the data base administrator 
services module. User services include such conveniences 
as on-line manuals, help and explain commands, and 
command audit trails. Data base administrator services 
include facilities to load and dump data bases, to perform 
restructuring of data and storage organizations, to moni
toring performance, and to control checkpointing and 
recovery from errors. 

Impacting the fourth generation information manage
ment systems are the theories and methodologies of data 
description and manipulation, the relational view of 
information, the establishment of sound theoretical foun
dations for information systems, and the development of 
networks of cooperating processors. Each of these topics 
will be discussed in one of the following sections. Follow
ing those sections is a description of our experiences with 
RDMS, a relational data management system which 
illustrates some of these new theories and methodologies. 

DATA DESCRIPTION AND MANIPULATION 

Certainly the most complex and difficult problem fac
ing the designers, implementers, and users of an informa
tion management system is the selection of language facil
ities for the description and manipulation of data. 
Although many attempts have been made to separate 
data description from data manipulation, it must be 
noted that data description and data manipulation are 
inextricably intertwined. While the declarative state
ments which describe a data base may indeed be kept 
separate from the statements in application programs 
which manipulate the data in the data base, nevertheless 
the data description facilities available determine and are 
determined by the data manipulation facilities available. 
Descriptive statements for vectors aren't very useful 
without vector manipulation statements, and vice versa. 

The description of data may be done at a wide variety 
of level~ of generality ranging from general statements 
about the relationships between large sets of data items to 
explicit details about the actual storage of the data items. 
Information management systems of the next generation 
will have data description facilities at a variety of levels 
to serve different classes of users. At least three main 
levels of data description can be distinguished, the infor
mation structure for the users, the data structure for the 
data base administrators, and the storage structure for 
the system implementers and the system. 

The information structure which determines the user's 
view of the data is (ideally) quite abstract, indicating the 
relationships among various types of data items, but 
omitting details such as data item types, precisions, field 
lengths, encodings, or storage locations. The user should 
also be free of system performance considerations such as 
indexing schemes or file organizations for efficient 
retrieval of the data items, particularly since his access 
requirements may conflict with those of other users. In 
any event the system or the data administrator is in a 
better position than anyone user to make those arbitra
tions. An example of the information structure for some 
data described by a relational model is shown in Figure 2. 

A second level of data description is necessary to spec
ify the structure (logical) of the data which will facilitate 
the efficient retrieval of the data representing the infor
mation in the data base. This second level of description 
is the data structure and represents additional informa-

PEOPLE (NAME. AGE. HEIGHT. WEIGHT) 

S H I R T S (S H I R T #, COL 0 R, S I Z E, COL L A R ) 

S LAC K S (S LAC K S #, COL 0 R, S I Z E, F A B RIC) 

OWN S - S H I R T S (N A M E, S H I R T # ) 

o VI N S - S LAC K S (N A ['1 E, S LAC K S # ) 

Figure 2-An information structure specified by a relational model 



tion about the patterns of retrieval expected for informa
tion in the data base. The set occurrence selection facility 
of the CODASYL proposal is an example of this level of 
data description. CODASYL schema data description 
statements for the information structure of Figure 2 are 
shown in Figure 3. 

A still more detailed level of data description is the 
storage structure of the data which represents the actual 
organization of the data as stored in the system's storage 
media. At the storage structure level, items of concern 
include field types, lengths, encodings, relationship point
ers and index organizations. Figure 4 shows a diagram of 
pointers and storage blocks specifying a storage structure 
for the data described in Figure 3. 

Data manipulation facilities must also exist at a variety 
of levels corresponding to the data description levels. As 
data description becom€s more general, the corresponding 
data manipulation becomes less procedural and more 
descriptive. E. F. Codd's relational model of datal 
described in the next section provides an example of a 
highly non-procedural data manipulation language. 

A RELATIONAL MODEL FOR INFORMATIO~ 

Information management systems deal fundamentally 
with things such as people, ages, weights, colors, and sizes 
which are represented in a computer by integers, floating 
point numbers, and character strings. A collection of 
items of similar type is called a domain. Domains may 
overlap, as for example with the domains of people and of 
children. 

SET IS PEOPLE; M~ER IS SYSID1. 
M:MBER IS PERSON DUPLICAlES ooT AUJ)h'8) FOR NJVv1E. 

RECORD I S PERSON. 
NA'1E 
P6E 
HEIGHT 
WEIGHT 
#SHIRTS 
#SLACKS 
SHIRTS 

2 COLOR 
2 SIZE 
2 COLLAR 

SLACKS 
2 COLOR 
2 SIZE 
2 FABRIC 

1YPE CHARAClER 12. 
lYPE FIXill; CHECK R.AnJE 5, SO. 
1YPE FlXEJJ. 
1m: FlXill. 
lYPE FlXill. 
1YPE FlXill. 
OCCURRS #SHI RTS. 
TYPE BIT 4: 8~CODI~ crABLE. 
PICTURE 99. 
PICTURE 93. 
OCOJRRS #SLACKS. 
1YPE BIT 4: ENCODIf\G crABLE. 
PICTURE 93. 
PICIURE 99. 

Figure 3-A data structure specified in the CODASYL data 
description language 
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~r 0 #SLACKS 
B 
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B B . 

• • • I COLOR C I SIZE BIFABRIC BI 

Figure 4-A storage structure specified by a pointer diagram 

A relationship is an association among one or more not 
necessarily distinct domains. "Is married to" is a rela
tionship associating the domains of men and of women. 
An occurrence of a relationship is an ordered collection of 
items, one from each domain of the relationship, which 
satisfy the relationship. Each occurrence of a relationship 
associating N domains is an ordered collection (John and 
Mary is an occurrence of the relationship "is married to" 
if John is married to Mary). 

A relation is a set of some tuples satisfying a relation
ship. The number of domains of a relation is called its 
degree and the number of tuples of a relation is called its 
cardinality. 

This simple structure is adequate to represent a great 
variety of information structures. Certain data manipula
tion facilities arise naturally from the relational descrip
tion of information. The basic operations are the tradi
tional operations of set theory (union, intersection, differ
ence, etc.) and some new operations on sets of relations 
(projection, join, selection, etc.). Projection reduces a 
relation to a subset of its domains, while join creates a 
relation by combining two component relations which 
have one or more common domains. Selection extracts the 
subset of the tuples of a relation which satisfy some 
restriction on the values of items in a particular domain. 
In combination with the usual control and editing com
mands, these operations provide a convenient and non
procedural data manipulation language. l\.iote that noth
ing need be known about the data or storage structures of 
the information represented by a relational model. The 
user may concern himself entirely with the domains of 
interesting objects and their relationships. 
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THEORETICAL FOUNDATIONS FOR 
INFORMATION SYSTEMS 

As information systems become increasingly complicat
ed, it will be more important to base their designs on 
sound theoretical foundations. Although it has always 
been customary to test a system as comprehensively as 
possible, larger systems can never completely be tested. 
Thus it is important to find other methods of verifying 
that a system will function as specified. Current work in 
proving program correctness has this same aim with 
regard to programs. In this section three contributions to 
the theoretical foundations of information system struc
ture will illustrate some possible effects of new theory on 
system design. D. L. Childs3 has devised an ordering for 
set structures useful in the implementation of set opera
tions. E. F. Codd4 has developed the relational calculus as 
a sound basis for user languages, and W. T. Hardgrave6 

has proposed a method for eliminating ambiguous respon
ses to queries of hierarchical data structures. 

Childs proposed a general set theoretic data structure 
based on a recursive definition of sets and relations. His 
theory guarantees that it is always possible to assign 
unique key values to any set element in such a structure. 
These key values may be used to create an ordered repre
sentation of the data structure. Set operations are much 
more efficient on ordered sets than on unordered sets. 
Thus the theory leads to efficient implementations of 
complex structures. 

In a series of papers, E. F. Codd has developed the 
relational model of data which was explained in the pre
vious section. One important theoretical result of this 
theory is a proof that any relational information in a data 
base of relations can be retrieved by a sequence of the 
basic relational and set operations defined in the previous 
section of this paper. Furthermore, it is possible to esti
mate the system resources necessary to answer the query 
without answering it. Thus a user can be warned if he 
asks a particularly difficult query. Although not all quer
ies on a data base of relations can be answered as rela
tions, the inclusion of functions on relations (counts, 
sums, averages, etc.) guarantee a very wide range of legal 
queries. This theory assures a system design that a gen
eral purpose system will not suddenly fail when someone 
asks an unexpected new query. 

Research into storage structures underlying the rela
tional data model by Date & HopewelP show that a vari
ety of possible anomalies in the storage, updating, and 
retrieval of information do not arise when the information 
is stored in Codd's canonical third normal form. Thus 
by using a relational storage structure for data, certain 
types of consistency are automatically assured. These 
studies show also a variety of efficient methods of imple
menting a relational data model. 

A third investigation into the fundamentals of informa
tion systems design is W. T. Hardgrave's study of infor
mation retrieval from tree structured data bases with 
Boolean logical query languages. Hardgrave analyzed 

anomalies resulting from the use of the "not" qualifier in 
boolean queries. Finding unavoidable problems with the 
usual set theoretic retrieval methods, he formulated addi
tional tree operations which separate the selection of data 
items from the qualification of items for presentation. 
These capabilities may be considered a generalization of 
the HAS clause of the TDMS system. This study not only 
focuses attention on possible multiple interpretations for 
some Boolean requests applied to items at different levels 
of a tree hierarchy, but also presents more severe warn
ings about possible problems with the interpretation of 
network structured data such as in the CODASYL pro
posal. 

NETWORKS OF COOPERATING PROCESSORS 

Continuing decreases in the cost of data processing and 
storage equipment and increases in the cost of data 
manipulation software will bring further changes in the 
architecture of information management systems. The 
example of Figure 5 shows the natural trend from soft-

SOFTWARE MODULARITY 

APPLICATION PROGRAM 

T C A i1 I SAM SSP 

TERMINALS 

HARDWARE MODULARITY 

APPLICATION PROCESSOR 

Ca-t\UNICATION DATA BASE ARRAY 

PROCESSOR PROCESSOR PROCESSOR 

J\. 
T E R i1 I N A L S 

Figure 5-The trend from software modularity toward hardware 
modularity 



ware modularity of third generation systems to hardware 
modularity of fourth generation systems. 

This trend toward hardware modularity has been under 
way for many years. Control Data Corporation has advo
cated the use of independent peripheral processors to 
handle some of the more mundane functions of comput
ing systems such as input/ output spooling, paging, disk 
and drum interfaces, etc. The use of front end processors 
such as the IBM 3705 to handle communications func
tions independently of the central processor is already 
common. IBM uses the Integrated Storage Controller, a 
small independent processor, to control 3330 disk drives. 
Special purpose computer systems for Fourier transforms 
and for matrix manipulation are being used as peripheral 
or attached processors in current computing systems. 

Two specific examples of independent processors in 
data management systems are intelligent remote inquiry 
terminals and the data base computer. While intelligent 
remote terminals are already common, independent data 
base computers are still in research laboratories. These 
data base machines consist of an independent control 
processor and a large storage media. The processor not 
only manages the control commands necessary to handle 
the storage media, but also can perform logical extraction 
or selection of data records to reduce the amount of data 
transmitted to the host processor. As more experience 
with independent data base computers is accumulated, 
they will assume additional tasks such as selecting data 
compaction and compression methods for optimal data 
storage and selecting indexing methods for optimal data 
access. 

RDMS, A RELATIONAL DATA MANAGEMENT 
SYSTEM 

To gain some experience with the advantages and limi
tations of data management using a relational model of 
information, the RDMS system was designed and imple
mented in PL/ I on a large virtual memory computer 
system. The system consists of three main sections, a 
command (query and data manipulation) language inter
preter, set and relational data manipulation facilities, and 
an interface to the operating system. This modular design 
resulted in a readily portable group of set and relation 
manipulation facilities with rigidly defined interfaces to 
the user programs and to the operating system. Sets are 
used internally by the system in self-describing data 
structure which catalogs each user's sets and their charac
teristics. 

Because one of the main benefits of a relational model 
of information is its simplicity, care was taken to keep the 
data description and manipulation languages simple. All 
data managed by RDMS is organized in relation sets 
viewed by the user only as named collections of named 
domains. The user need not concern himself with the type 
of a domain, nor its precision, nor its storage representa
tions. All data manipulation facilities store their output in 
sets which may be manipulated by other RDMS com-
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mands. The command format is simple and consistent 
containing an output set name (if the command produces 
an output set), a keyword identifying the command, and 
the parameters of that command. These parameters may 
be set names, domain names, domain values, and charac
ter strings to label output displays. For example, a 
command which extracts a subset of a set is: "CHEAP_ 
WIDGET _ SET = SUBSET OF WIDGET _ SET 
WHERE COST LT 100.00". Commands are typed on a 
keyboard, and the system responds with a full screen 
graphic display. 

RDMS commands may be grouped in four main 
classes: Set control commands which manipulate entire 
sets (create, destroy, save, catalog, uncatalog, universe, 
etc.); Display commands which display or print the con
tents of sets (list, graph, histogram, print, etc.); Set 
manipulation commands which specify, modify, analyze, 
select, and combine the contents of sets (union, intersec
tion, subset, join, statistics, summary, set, domains, etc.); 
and Special purpose commands which provide miscella
neous facilities for system maintenance, bulk input and 
output, and assorted user conveniences (explain, com
mand list and trace, read from, describe, etc.). 

Several small data analysis and manipulation applica
tions were tried using RDMS to test its adequacy for flex
ible data manipulation. A medical records analysis was 
particularly informative because the problems to be 
solved were specified by persons with neither program
ming nor data base experience. We were given thirty data 
items of eight different data types for each of several 
hundred mother-child pairs and asked to find any effects 
of a particular medication. The large amount of informa
tion displayed on the graphic console and the power of 
individual commands were demonstrated by answering 
an initial set of 41 questions with only 35 commands. 
Some of the more pleasing features of the system are the 
following. Combining individual commands into very 
complex requests is greatly facilitated by maintaining all 
data in sets used both for inputs and outputs of com
mands. Histograms and graphs of data from sets may 
either be displayed on the graphic terminal or printed on 
the printer. A permanent record of all commands, any 
screen display, and the contents of any set can be printed. 
Mistakes can often be undone by the REMEMBER and 
FORGET commands which provide an explicit check
pointing facility for each set. The main complaints from 
users were the paucity of data types available, the diffi
culty of editing erroneous or missing data items, and the 
inability to distinguish missing data by a special null 
code. 

We feel the RDMS system was a successful and useful 
experiment from the viewpoints of both the system user 
and the system implementer. Sets of relations manipu
lated by powerful descriptive commands are usable in 
real information systelns. Notl-programmer~ can readily 
adapt to the relational model of data and the correspond
ing types of data manipulation commands. For the sys
tem implementer, the relational data structure provides a 
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simple and consistent collection of data description and 
manipulation facilities with which to build a variety of 
information systems. 

SUMMARY 

Data management has evolved through at least three dis
tinct stages and is entering a fourth, from access methods, 
to file management systems, to data management sys
tems, and toward information systems. In this evolution, 
the user's facilities for dealing with large amounts of 
information have become more general, flexible, extensi
ble, and modular. Gradually he has been unburdened of 
various tedious levels of detail allowing him to focus his 
attention more directly on the relationships among var
ious types of information and their manipulation. These 
trends will continue, spurred on by advances in informa
tion system design theory and in computing system hard
ware and software. 
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IXTRODUCTION 

Information retrieval systems utilizing Boolean operators to 
manipulate subsets of the data base require an efficient 
method of set representation. Commands in the user language 
permit the selection of subsets by retrieving occurrences in 
the data base that obey user specified conditions. Compound 
conditions may then be obtained by performing the tradi
tional Boolean operators AXD, OR, and XOT to selected 
subsets. Entries in the data base may be assigned identifica
tion numbers in order that the representations of subsets 
mav be in the form of a set of positive identification numbers. 
Th~s, the problem of manipulating large sets of occurrences 
reduces to one of efficiently representing subsets of positive 
integers. 

For example, information stored in nodes structured as 
data trees may be retrieved via a qualification clause which 
selects nodes satisfying an attribute-relation-value (a-r-v) 
triple. The a-r-v triple represents a subset of the universe of 
all nodes in the tree. If the nodes in the data tree are assigned 
cOILSecutive positive integer numbers, then a set of nodes may 
be represented by a set of identification numbers. The 
number of nodes in the universe \\ill be assumed to be no 
more than 231, or approximately two billion, although the 
assumption will also be made that anyone subset ,vill be 
small with respect to the universe. Ho'wever, this assumption 
will not hold for the complement of a set, that is, the result 
of a Boolean KOT. Because sets may be quite large, it is 
necessary to store them as efficiently as possible. One method 
of storing sets of positive integers in order to conserve storage 
space is the Bit Stream Set Representation (BSSR) which 
assigns a single binary digit (bit) in storage to each node in 
the universe. 

BIT STREA:'vI SET REPRESENTATION 

The definitions involving the Bit Stream Set Representa
tion will be followed by the algorithms for performing the 
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Boolean operations on these representations along with 
several examples. 

Definition of a bit stream set representation 

Let P be the set of positive integers. Let S be a subset of 
the set of contiguous integers 1 through k, and let R be a 
Bit Stream Set Representation (BSSR) of S, defined as 
follO\vs: 

such that 
biER, iEP for l::;i::;k. (1) 

and 
bt=O forall iEES. (2) 

if R is in complement form (to be defined later) , (3) 
then bo= 1, other'\\>ise bo=O. 

Thus the BSSR is a one-to-one mapping from the set of 
integ~rs 1 through k to the ordered k+ 1 bits. The inclusion 
of the integer i in the set S is represented by the ith bit 
having the value "1". Likewise, the integer i not in the set S 
is represented by its corresponding ith bit having the value 
"0". Each subset of P has a unique bit stream representation. 
Furthermore, every subset of the integers 1 through k may be 
represented by a bit stream of length k + 1. 

For example, the set {2, 5,100000, 2000000000} is a subset 
of the integers 1 through 231-1 (i.e., 2,137,483,647) and may 
be represented by the BSSR 

(0010010 ... 010 ... 010 ... 0) 
such that 

except where 
~ = bf> = bl()()oOO = b:!ooooooooo = 1. 

In this manner, any subset of the integers 1 through 231_1 
may be represented by a BSSR of length 231. 
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Bit stream set representation w£th directories 

When a set is represented in the bit stream form, a sub
stream of zero bits may be eliminated in order to save space 
with no loss of information. By dividing the BSSR into equal 
length substreams called blocks, it is possible to omit those 
which contain all zero bits. However, in order to maintain the 
contiguous numbering scheme of the bits, it is necessary to 
indicate any omissions with a directory. 

Definition of a block 

Let R be the BSSR of the set S as previously defined. Let 
R be divided into kim distinct substreams Bo,; of length m. 
Then each Bo,; is a block of R and is defined as follows: 

such that 
Bo,j~R for O~j~klm-1. 

In addition, the definition implies the following: 

Bo,on BO,ln ... n Bk /m- 1 = ( ) (1) 

Ro,o UBO,I U ... UBk / m- 1 = R. (2) 

Finally, to indicate a block of all zero bits, the notation 

Bo,j=O 

implies for all biE B j that bi =0 for mj~i~m( j+1)-1. 
In the previous example, the BSSR of the set S may be 

divided into 220 blocks of length m = 211 bits as follows: 

such that 

otherwise 

Bo,o= (0010010 ... 0) 
BO,I= (0... 0) 

BO,4S= (0 ... 010 ... 0) 

BO.9766rtl = (0 ... 010 ... 0) 

BO,I048576= (0 ... 0) 

Definition of a directory 

Let R be a BSSR of the set S and let Bo,o, BO,I, .. , , 
BO,k/m-1 be the blocks of R as defined above. Then the bit 
stream directory DI may be defined as fo11O\\'s: 

DI = (dl,o, dI,I, ' , , , dI,k/m-I) 

such that 

if Bo,j~O, then d1,j= 1 
if Bo,j=O, then dl,j=O for O~j~klm-1. 

In the example, the directory for the BSSR of S is 

D1 = (10 ... 010 ... 010 ... U) 

where 

dl,o = d l ,48 = d1,976562 = 1 
otherwise 

d1,j=0 for 0~j~220_1. 

By prefixing the directory to the three non-zero blocks of the 
BSSR of S, the following unambiguous representation 
results: 

(lD ... OlD ... OlD ... 0 00100lD ... 0 0 ... 010 ... 0 0 ... 0lD ... 0) 

The length of the resulting BSSR is 220+3(211 ) =1,054,720 
which is substantially less than the BSSR without a direc
tory 231. 

The recursive property of directorip,s 

As described above, the directory Dl indicates which 
blocks of the BSSR are omitted in order to conserve storage 
space. However, the length of DI (possibly very large itself) 
may also contain relatively long sub streams of zero bits. 
Thus, by dividing this directory into blocks of length n, a 
higher level directory D2 may be constructed to indicate 
omissions in DI • In fact, the idea of a "directory to a direc
tory" may be applied recursively as many times as desired 
to eliminate all blocks containing all zero bits. 

Definition of a directory block 

A directory block is defined in the same manner as is a 
block of R (i.e., Bo,j). That is, first let the level L directory 
DL be divided into substreams of length nL; then let BL,i be a 
directory block of D L defined as follows: 

such that 

BL,jr;;;.DL for L~ 1 

and 

Defim'tion of higher level directories 

The directory DI is defined to be the lowest level directory 
(L = 1) to R in a BSSR. Using the above definition of direc
tory blocks, a higher level directory DL may be defined 
as follows: 

such that 

if BL_l,j~O, then dL,i = 1 
if B L -1,J=O. then dL.j=O for O~j~maxL' 



The level 1 directory Dl of the example BSSR may be 
divided into blocks of length nl = 211 as follows: 

Bl,o= (10 ... 010 ... 0) 
Bl,l = ( o. . . 0) 

Bl ,428 = ( o ... 010 ... 0) 

B l ,511= ( o ... 0) 

where all blocks except Bl,O and Bl ,428 contain all zero bits. 
Thus, the level 2 directory for the BSSR is 

D2= (10 ... 010 ... 0) 
such that 

and othenvise 

<h,j=O for O::;j ::;29-1. 

Each Dl directory block that contains all zeros may be 
omitted when prefixed by D2• In the example BSSR, the 
representation ,vould then be 

(10 ... 010 ... 0 10 ... 010 ... 0 o ... 010 ... 0 
'----v-----' "-----v---" '------v------' 

B l ,428 

0010010 ... 0 o ... 010 ... 0 o ... 010 ... 0) 
'-v----" '--y-----I '---------v----

Bo,o BO,48 BO,976562 

The length of this stream is k / mnl + nl + 3m = 29 + 211 + 3 (211) = 
8704. Although this length is small in comparison with a 
BSSR without directories (Le., 2,131,483,648), it is somewhat 
long for a representation of only four values. HO\vever, it is 
clear that a much larger number of values could be included 
in the representation without increasing its length. For 
example, if each bit of the three blocks of R were "I" (Dl and 
D2 remaining unchanged), then the number of values repre
sented would be 3(211) =6144. While it is unlikely that any 
subset chosen would "fit" this 'well, it is not unlikely for a set 
of values to be somewhat grouped, although not necessarily 
contiguous (as subsets of the integer valued nodes of a tree 
structured data base). In addition, by selecting different 
block sizes and more levels of directories, it is possible to 
further improve savings in storage requirements. In general, 
the optimum block sizes are dependent upon the universe 
and the characteristics of the types of subsets formed. 

Boolean operations on B88R's 

One of the advantages of representing sets with bit streams 
is the ease with which Boolean operations may be performed. 
The operations AKD and OR are possible by pairing the bits 
of both BSSR's corresponding to each integer value in the 
uuivl'rse, For example, tu perfurm the Buulean AXD OIl 

two subsets 

8 t =12,5;100000,200oo00000} 
82 = /1, 2, 100000} 
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(from the universe 1 through 231 _1), each pair of bits in 
the BSSR's 

BSSRI = (0010010 ... 010 ... 010 ... 0) 
BSSR2 = (0110000 ... 010 . . . 0) 

may be operated on by the Boolean AND. The resulting bit 
stream will be called BSSR*, such that 

BSSR*= (0010000 ... 010 ... 0) . 

The Boolean NOT may be performed by simply reversing 
each binary value (except bo), or by setting bo to the value 
"I" indicating the complement. When bo= 1, the BSSR is 
defined to be in complement form. Both of the following 
BSSR's (without directories) represent the set ",-,81 but only 
the first is said to be in complement form: 

(1010010 ... 010 ... 010 ... 0) 
(0101101 ... 101 ... 101 ... 1). 

For BSSR's 'without directories, the complement " .. -ill require 
exactly the same amount of storage. However, in large uni
verses it is impractical not to use directories to eliminate long 
streams of zeros. In this case, the BSSR for the complement 
of a small subset may be unmanageably large. Thus, it may 
suffice to set the complement flag bo to "I" in order to con
serve storage. Since complements may often be used for inter
mediate, or temporary, results it is more efficient to convert a 
BSSR to its complement only when necessary. 

For BSSR's without directories, Boolean operations are 
straightforward. However, more useful are BSSR's with one 
or more levels of directories ,vhich require algorithms to 
produce the resultant BSSR*. The algorithms to follow 
assume that the BSSR's used in a Boolean operation will 
have common block lengths and levels of directories. (If 
necessary, higher level directories of "all ones" may be 
generated for a BSSR to meet this requirement). The al
gorithms permit operations on BSSR's in complement form 
so that conversion to the actual complement of a BSSR (via 
the Boolean NOT) need not be made. 

Algorithm for the Boolean AND 

If both BSSR's are in complement form, then use the 
algorithm that performs the Boolean OR to obtain a BSSR* 
also in complement form; by theorem ,...",Rl AXD "'-'R2 is 
equivalent to ",-,(R t OR R2)' (Xote that both of these BSSR's 
should be treated in the OR algorithm as if each were not 
in complement form.) 

Step 1: Let L be equal to the number of the highest directory 
level of the two BSSR's. 

Step 2: If neither of the two BSSR's are in complement 
form, then the resultant level L blocks of BSSR* are 
equal to the Boolean AXD of the two BSSR's level 
L blocks. 

If one of the two BSSR's is in complement form, 
then the level L blocks of BSSR * are equal to those 
of the uncomplemented. BSSR. 
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Step 3: If a BSSR is not in complement form, then for each 
dL./=O in DL* such that dL,j= 1 in that BSSR, omit 
the block BL - 1,j from DL - 1• Furthermore, omit all 
lower level blocks (through level zero) within the 
range of BL - 1,j. 

Step 4: If L> 1 then subtract "1" from L and go to Step 2. 
Step 5: If neither BSSR is in complement form, go to Step 6; 

othenvise, replace the level zero blocks of the BSSR 
in complement form with their complement (Boolean 
NOT). Then, for each dl,j* = 1 in D1 * such that 
dl,j=O in D1 of that BSSR, insert the block Bo,j=l 
(which is a stream of all ones) in the proper relative 
position in Do. 

Step 6: The level zero blocks of BSSR * are equal to the 
Boolean AND of the level zero blocks of the two 
BSSR's. 

Algorithm for the Boolean OR 

If both BSSR's are in complement form, then use the 
AND algorithm to obtain the BSSR * in complement form 
since by theorem ,.......,R1 OR ,.......,R2 is equivalent to ,.......,(R1 AND 
R2)' (Again note that both of these BSSR's should be treated 
in the AND algorithm as if each were not in complement 
form.) 

Step 1: Let L be equal to the number of the highest directory 
level of the two BSSR's. 

Step 2: The level L blocks of BSSR * are equal to the Boolean 
OR of each corresponding pair of bits of the level L 
blocks of the two BSSR's. 

Step 3: For each dL,;*= 1 in DL* such that dL.j=O in a BSSR, 
insert the block B L-l,j = 0 in the proper relative 
position in D L-1 in that BSSR. 

Step 4: If L> 1, then subtract" 1" from L and go to Step 2. 
Step 5: If neither BSSR is in complement form, go to Step 6; 

otherwise, replace the level zero blocks of the BSSR 
not in complement form with their complement 
(Boolean NOT). Finally, perform the Boolean AND 
on the level zero blocks of the two BSSR's to obtain 
the resultant level zero blocks of BSSR * in comple
ment form. (Terminate procedure). 

Step 6: The level zero blocks of BSSR * are equal to the 
Boolean OR of the level zero blocks of the two 
BSSR's. 

Example Boolean operations 

The sets 81 and 82 and their complements will be used in 
the examples to follow ,,-here 

8 1={2, 5, 100000, 2000000000} 
8 2 = {l, 2, 100000}. 

Example: 81 AND 82 

BSSR1 : 

(10 ... 010 ... 0 10 ... 010 ... 0 O ... 010 ... 0 
"----v---" "----y-----' '-----y-----" 

BI.428 

0010010 ... 0 0 ... 010 ... 0 0 i .. 010 ... 0) 
'------v----" "----y-----I '----y----.I 

Bo,o BO,48 BO,976562 

BSSR2 : 

(10 ... 0 10 ... 010 ... 0 0110 ... 0 O ... 010 ... 0) 
'-y-----I '----y----.I '--v--" '-----y--' 

Bo,o BO,48 

Step 1: L=2 
Step 2: Find Boolean AND of level 2 directories: 

D2 of BSSR1 = (10 ... 010 ... 0) 
D2 of BSSR2 = (10 . . . 0) 

D2* of BSSR* = (10 . . . 0) 

Step 3: Since lh,428* =0 in D2* and lh,428 = 1 in D2 of BSSR1, 

omit block B1 ,428 from BSSR1• Next omit all blocks 
within the range of B1 ,428 in BSSR1 ; i.e., block 
BO,976562. Thus, BSSR1 = 

(10 ... 010 ... 010 ... 00010010 ... 0 0 ... 010 ... 0) 
'---y-I ~ '---v--'" ~ 

Bo,o BO,48 

Step 4: L=2-1 =1 
Step 2: Find Boolean AND of level 1 directories: 

D1 of BSSR1 = (10 ... 010 ... 0) 
D1 of BSSR2 = (10 ... 010 ... 0) 

D1* of BSSR*= (10 ... 010 ... 0) 

Step 3: (No occurrences) 
Step 4: L=l 
Step 5: (Neither is in complement form so continue to 

Step 6). 
Step 6: Find Boolean AND of level 0 blocks: 

R of BSSR1 = (0010010 ... 0 O ... 010 ... 0) 
R of BSSR2 = (0110000 ... 0 O ... 010 ... 0) 
R of BSSR* = (0010000 ... 0 0 ... 010 ... 0) 

Since lh = blOOOOO = 1, the resulting BSSR * represents 
the set {2, 100000}. 

Example: 81 AND ,.......,82 

BSSR1 is shown in the previous example; BSSR2 is as 
follows in complement form: 

BSSR2 = (10 ... 010 ... 010 ... 01110 ... 0 0 ... 010 ... 0) 
'-v--" ~ '---v--' '---v----' 

Bo,o BO•48 

Step 1: L=2 
Step 2: Since BSSR2 is in complement form, then 

D2* of BSSR*=D2 of BSSR1 = (10 ... 010 ... 0) 
Step 3: C~\o occurrences) 
Step 4: L=2-1=1 
Step 2: Since BSSR2 is in complement form, then 

D1 * of BSSH. * = D1 of BSSR1 

= (10 ... 010 ... 0 O ... 010 ... 0) 
'--v------" '----y----.I 



Step 3: (K 0 occurrences) 
Step 4: L=1 

Step 5: Since BSSR2 is in complement form, then replace its 
level zero blocks ,yith their complement (reverse 
each binary value). 

R of BSSR2 = (0001 ... 1 1 ... 101 ... 1) 
~~ 

Bo.o BO.48 

BSSR2, then insert the block BO.976562 = 1. 

R of BSSR2 = (0001. .. 11. .. 101. .. 11. . . 1) 
'---y---' ~ '---y-----' 

Bo.o BO•48 BO.976562 

Step 6: Find Boolean AND of level zero blocks: 

R of BSSR1 = (0010010 ... 00 ... 0lD ... 00 ... 010 ... 0) 
R of BSSR2 = (0001111. .. 11. .. 101. .. 11. . . 1) 
RofBSSR*= (0000010 ... 00... 00 ... 010 ... 0) 

~~'---y-----' 

Bo.o BO•48 BO.976562 

Since bs = b2000000000 = 1, the resulting BSSR * repre
sents the set {5, 2000000000} . 

Exa.mple: SI OR S2 

The BSSR's for SI and S2 are shown in a previous example. 
Step 1: L=2 

Step 2: Find Boolean OR of level 2 directories: 

D2 of BSSR1 = (10 ... 010 ... 0) 
D2 of BSSR2 = (10. . . 0) 

D2* of BSSR* = (10 ... 010 ... 0) 

Step 3: Since ~.428*= 1 and d2 •428 =0 in BSSR2, insert the 
block B 1•428 into BSSR2• 

Dl of BSSR2 = (10 ... 010 ... 0 o ... 0) 
'----y------' ~ 

Bl,O B 1•428 

Step 4: L=2-1=1 
Step 2: Find Boolean OR of level 1 directories: 

Dl of BSSR1 = (10 ... 010 ... 0 0 ... 010 ... 0) 
Dl of BSSR2 = (10 ... 010 ... 0 o. . . 0) 

Dl* of BSSR*= (10 ... 010 ... 0 o ... 010 ... 0) 
'----y------' '------v--" 

B 1•428 

Step 3: Since dl.976562 * = 1 and dl.976M2 = 0 in BSSR2, insert the 
block BO.976562 = 0 into BSSR2• 

R of BSSR2 = (0110 ... 0 0 ... 010 ... 0 0... 0) 
'---y---' ~ '---y----/ 

Bo.o BO.48 BO.976562 

Step 4: L= 1 
Step 5: Both BSSR's are not in complement form so continue 

to Step 6. 
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Step 6: Find Boolean OR of level zero blocks: 

R of BSSR1 = (0010010 ... 00 ... 010 ... 00 ... 010 ... 0) 
R of BSSR2 = (0110000 ... 00 ... 010 ... 00... 0) 
RofBSSR*= (0110010 ... 00 ... 010 ... 00 ... 010 ... 0) 

'---y----/ ~ '---v----I 

Bo.o BO.48 BO.976562 

Since b1 = b2 = bs = blOOOOO = b2000000000 = 1, the resulting 
BSSR* represents the set {I, 2, 5, 100000, 
2000000000} . 

The BSSR's for SI and rovS2 are shown in a previous 
example. 

Step 1: L=2 
Step 2: Find Boolean OR of level 2 directories: 

D2 of BSSR1 = (10 ... 010 ... 0) 
D2 of BSSR2 = (10. . . 0) 

D2* of BSSR*= (10 ... 010 ... 0) 

Step 3: Since d 2•428*= 1 and d 2 •428 =0 in BSSR2, insert the 
block B 1•428 =O into BSSR2• 

Dl of BSSR2 = (10 ... 010 ... 0 o. . . 0) 
'-v------' '-v----" 

B1•428 

Step 4: L=2-1 = 1 
Step 2: Find Boolean OR of level 1 directories: 

Dl of BSSR1 = (10 ... 010 ... 0 o ... 010 ... 0) 
Dl of BSSR2 = (10 ... 010 ... 0 o. . . 0) 

Dl* of BSSR*= (10 ... 010 ... 0 o ... 010 ... 0) 
'-v------' "----y---/ 

B 1•O B 1•428 

Step 3: Since dl.976562*=1 and dl.976562=0 in BSSR2, insert 
the block BO.976562 = 0 into BSSR2• 

R of BSSR2 = (1110 ... 0 0 ... 010 ... 0 0 ... 0) 

Bo.o BO.48 BO.976562 

Step 4: L=1 

Step 5: Replace the level zero blocks of the BSSR not in 
complement form with their complement (reverse 
each binary value). 

R of BSSR1 = (1101101. .. 11. .. 101. .. 11. .. 101. .. 1) 
'--y-----I '--v-------' '---v---" 

Bo.o BO•48 BO.976562 

X ext, find the Boolean AXD of the level zero blocks: 

R of BSSR1 = (1101101. .. 11. .. 101. .. 11. .. 101. .. 1) 
R of BSSR2 = (1110000 ... 00 ... 010 ... 00... 0) 
RofBSSR*= (1100000 ... 00... 00... 0) 

Since b1 = 1 and bo = 1, then the resulting BSSR * is 
in the complement form representing the set "'" {I } . 
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Algorithm for the Boolean NOT 

In order to perform the Boolean ~OT on a BSSR in 
complement form (as previously defined), simply reverse the 
value of bo = 1 to bo = O. In general, the resultant BSSR *' of a 
BSSR not in complement form will be large for small subsets, 
possibly approaching the size of the universe itself. There
fore, the use of a BSSR in complement form as opposed to 
BSSR*, the result of a ~OT algorithm, should be signifi
cantly more efficient. 

Step 1: Let H be equal to the number of the highest level 
directory of the BSSR, and let L=O. (Note that 
R=Do) 

Step 2: Perform the Boolean NOT on each bit in the level L 
blocks by reversing its binary value (with the ex
ception of bo in Bo.o). 

Step 3: For each BL.j'~O, change its corresponding L+1 
directory bit to "0". 

Step 4: Insert all omitted blocks from DL with blocks of 
"all ones." 

Step 5: Omit all level L blocks where BL.j=O. 
Step 6: Add "I" to L. If L<H go to Step 2. Otherwise 

terminate. 

Example: NOT 8 1 

The BSSR for 81 is shown in a previous example. 
Step 1: H =2 and L=O 
Step 2: Find Boolean NOT of R: 

Do=R= (0010010 ... 0 0 ... 010 ... 0 0 ... 010 ... 0) 
Do*=R*=(0101101. .. 1 1. .. 101. .. 1 1. .. 101. .. 1) 

'----v----" '---v---' '--v-----' 
Bo.o BO•4S BO.9i6562 

Step 3: Since Bo,(j¢O, BO.4S ¢O, and B0 .976562¢O, then dl •0 = 

d1,48 = dt ,976562 = O. 
Dt* = (0 . . . 0 0 . . . 0) 
~~ 

B1•428 

Step 4: Insert all omitted blocks (with blocks of "all zeros") 
into R: 

R* = (0101101 ... 1 1 ... 1 ... 1 ... 101 ... 1 
'--y-----' ~ '----y---/ 

Bo.o BO•I 

1 ... 101 ... 1 . .. 1 ... 1) 
'-----v----" '--v--' 

BO.976562 

Step 5: (each block Bo.j¢O) 
Step 6: L=O+l = 1 

. . . BO.t048576 

Step 2: Find Boolean XOT of Dl*: 

BO•48 

DI * = (1 . . . 1 1... 1 ) 
'----y-----/ '----y-----/ 

Step 3: Since Bl,O¢O and B I •428 ¢O, then ~.O=d2.428=0. 

D2*= (0. . . 0) 

Step 4: Insert all omitted blocks (with blocks of "all ones") 
into DI . 

DI * = (1 ... 1 1 ... 1 .. . 1 ... 1) 

B I •O B1.l ... BI •5l1 

Step 5: (each block B1.j¢O) 
Step 6: L=1+1=2 (Terminate) 
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INTRODUCTION 

The advent of computerized information networks con
notes a change in the normal data processing concept of 
information as a localized object, a disk file tied to com
puter X, for instance. Having available a facility for 
communication between computers it is more natural to 
think of related data files at different sites as elements of 
a single unified data collection. As an example, crime 
reports gathered in various cities across the nation inher
ently constitute an integrated data base of more than 
local interest. In banking, manufacturing, and other 
applications the same is often found to be true; informa
tion gathered and maintained in one geographical area is 
closely related to data collected elsewhere. Computer 
networks offer not only a replacement for unwieldy 
document-oriented methods of communicating between 
distributed data files, but also promise the flexibility 
needed to develop new ways of applying these data collec
tions. 

The technology, particularly the software, for managing 
information on a global scale is still in the future. It is not 
premature, however, to develop descriptive models of 
information networks and to seek rational design tech
niques for specifying key parameters. 

In this paper the overall configuration of an informa
tion network is investigated. Employing estimates of 
users' needs for interaction with the various components 
of a data base, we seek to determine how the data 
resources should be deployed, and what communications 
links should be implemented in order to provide the 
required service at least cost. 

While communications design, even with applications 
to computer networks, has a considerable literature,1.2 we 
shall see that a network of relocatable data files poses 
design questions not answered by conventional analyses. 
We shall show that for at least one important class of 
networks an iteractive algorithm, essentially an extension 
of a reported technique for constructing a net to commu
nicate with a fixed data base, offers promise as an auto
matic design procedure. 

The nature of distributed data networks 

Present-day information networks are often insufficient 
for dealing with large, distributed data bases. In many 

applications (e.g., airline reservations,3 inventory sys
tems) data files are centralized and all interaction in the 
net is between an outlying node and the central facility. 
More flexible networks, e.g., ARPA,4 transact with data 
either by establishing a terminal-type connection between 
it and the user, or else cause whole files to be shipped to 
the users' location. In all these systems the user must 
have precise knowledge of implementational details such 
as data location and format. 

In the field of data management present-day trends are 
toward freeing the user of the need to be familiar with 
device particulars as a prerequisite to accessing data. 5 

Under the concept of "data independence" a user ideally 
would interact with a data collection in natural semantic 
terms rather than by means of a series of hardware 
instructions. We feel confident that this goal will be 
important in the management of distributed data as well 
as in centralized operations. In fact the need will be 
greater since network data bases will be merged facilities, 
with users unfamiliar with either data structures or 
machines at remote locations. 

The concept of an information network postulated here 
is one in which data can be freely allocated. The overall 
data base is assumed to be partitioned into files that can 
be stored independently in the network. If convenient, the 
same file may even be maintained at more than one loca
tion. This type of operation can be carried out with pres
ent day networks given a well-schooled set of users. 
However, as indicated above future network-oriented 
information systems will probably have such flexibility 
built in. 

Configuration design 

We shall approach the task of establishing a network of 
distributed data files as if we were freshly creating such a 
system. In practice this will usually be a poor assump
tion. Typically the data collection, storage, and processing 
activities in question will have been in operation for some 
time, and limited communication will be carried on over 
teleprocessing lines, or at least by mail. Given a flexible 
new tooi for coordinating all these activities and for insti
tuting new applications it may still be desirable to ease 
the transition by gradual conversion to the new system. In 
addition, other pressures than economy and efficient 
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operation may have a determining effect on design 
parameters. Staff competency, company traditions, 
managerial ambitions, and other human elements may 
(and one might hope, will) influence network characteris
tics. It is still reasonable to expect that the network 
administration will want to have at hand an ultimate plan 
for the network, a vision of what would constitute the 
most efficient network, possibly under design constraints 
arising through non-technological factors. 

In the following we provide a method for developing 
such a plan. The objective is to design a network that 
minimizes the cost, in communications channel rentals 
and in data storage and maintenance charges, of carrying 
on a given (estimated) transaction load over the network. 

A MODEL FOR A DISTRIBUTED DATA NETWORK 

The model for network behavior that we investigate is a 
static one. \Ve concern ourselves with average traffic rates 
over the lines. 

In addition we assume that information can be trans
mitted between two locations through intermediate nodes 
that may also be carrying on independent communica
tions using the same channels. Presumably this rules out 
switched line networks. Consequently the data communi
cations net must be of the store-and-forward type in 
which high line utilization can be achieved by transmit
ting arbitrary messages as a series of shorter message 
packets, each having its own destination code. This class 
of operation is in agreement with our view of the network 
as a multi-user, real-time interactive facility. 

Given data 

(1) A list of user node locations and a list of possible 
storage node and processing locations. 

(2) A list of files. 
(3) A matrix of users vs. files listing the average trans

action volume between the two in (a) query mode 
and (b) update mode. 

(4) A matrix of files vs. storage nodes expressing stor
age costs. 

(5) A list of available channel capacities. 
(6) C(i,j,k)=the monthly rental cost of a communica

tion channel having the kth capacity and linking 
nodes i and j. 

Design objectives 

To find an assignment of files to storage sites, and a 
network topology and associated line capacities that will 
carry the resulting traffic load, while minimizing the total 
cost of leasing the lines and storing the files. 

The Appendix expresses in symbols the optimization 
problem posed verbally above. Two features of this model 
distinguish it from conventional problems in network 
design: 

(1) inclusion of a discrete table of line capacities and 
costs. 

(2) file assignment as a design variable. 

The first point above is important in a practical sense, 
since channel capacity is offered in discrete chunks by 
the common carriers,6 and the tariff rate tables defy 
approximation by elementary functions (although this 
has been studied2

). 

The model is nonlinear and contains integer variables 
as well as continuously variable quantities. Standard 
techniques in network flow and linear programming do 
not appear to be directly applicable to the task of finding 
the optimal network. In such a problem area it is neces
sary to turn to heuristic approaches to network design. 

One plausible idea is to treat file assignment parametri
cally; i.e., solve a family of network synthesis problems, 
one for each possible file assignment strategy. In practice 
this would be a time-consuming approach. For instance, 
the 2-file, I8-node example we consider later would pose 
approximately 64 billion such problems. 

We prefer to consider the design problem in the context 
of a search procedure. We assume that a good, if not 
necessarily optimal, network design can be achieved by 
starting with an arbitrary network and iteratively sub
jecting it to elementary transformations, each of which 
improves the cost somewhat. Eventually such a program 
arrives at a point where no elementary transformation 
will reduce cost further. The goodness of this "local opti
mum" relative to the absolute minimum cost design 
depends on three factors: 

(1) the class of elementary transformations employed. 
(2) the initial network. 
(3) the algorithm for performing successive transfor

mations. 

TREE DESIGN 

The design variables we seek to optimize can be ana
lyzed into four distinct groups. 

(1) assignment of each file to a set of locations. 
(2) selection of network topology. 
(3) designation of routing paths between communicat

ing nodes. 
(4) specification of channel capacity for each link of 

the network. 

The solution space for even small networks is immense. 
If there are n nodes, k files, and c capacities (including 
zero capacity) offered for each link then there are: c(~) 
possible link capacity assignment strategies (including 
trivial ones), and there are 2''1 file location strategies. The 
total number of network candidates is greater than the 
simple product of these two quantities, since each net
work will pose a number of alternative routing strategies. 



The magnitude of this solution space is not necessarily 
an absolute block to good design. The ARPA7 design was 
carried out in a space lacking only the file allocation vari
ables, and with a more complex cost criterion (involving 
response time as well as line costs). In the present study, 
however, we seek to optimize over a restricted class of 
networks. In particular we restrict consideration to tree
type networks (networks that are connected but contain 
no loops), with the following gains to compensate for the 
loss of generality. 

(1) Routing decisions are drastically reduced. In a tree 
there is only a single path between any two nodes. 
The only routing decision, then, is which of several 
file copies should be queried by a given user. 

(2) The effect of a local change in tree structure is easy 
to calculate. Thus a fast iterative algorithm is 
achievable. 

(3) Tree networks are of practical interest. The mini
mum cost network to communicate with a central
ized data base is a tree, and these are employed in 
practice.8 

An optimal tree is a useful piece of design knowledge. 
Although not the best network in general (see Figure 1), a 
tree could, for example, be a starting point for a more 
general design procedure introducing criteria such as reli-

(A= 500, B= 500) • • (A= 5000, B= 0) 

(A= 0, B= 5000) • 

o FileA 

6 FileB 

• (A= 500, B= 500) 

Capacity Cost/Mile 

0 
500 

1000 
2000 

Optimum Design: 

Cost = $4000 

Other Possibilities: 

O~f:)\) o '\ 

~ 1000 

$5950 

§~ 
~ 
$5250 

0 
100 
175 
300 

'" 1000 
700

0 

1000"'-

$5950 $7900 

Figure I-A sample problem in distributed network design. Traffic 
generated at each of the nodes (located at corners of a IO-by-lO 

square) is given in parentheses. A high proportion of this traffic is 
assumed to be updated, so that only a single copy of each file is 

stored. The optimal network is not a tree 
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ability or response time. In a companion paper, routines 
for generating more complex nets from an arbitrary start
ing point are described.9 

A NETWORK DESIGN PROCEDURE 

The Esau- Williams algorithm 

In a paper by Esau and Williams lo the problem of 
designing a telecommunications tree network for trans
mitting data from a set of outlying terminals to a single, 
fixed data center is analyzed. A heuristic algorithm for 
network design is presented. Experience with this 
algorithm l

1.12 has shown it to be quite suitable for the 
design task and indeed a programmed version is commer
cially available. 13 

The algorithm operates within the spirit of a search for 
the optimal network using local transformations. It starts 
with a star network, every user directly connected to the 
data center, and tests single reconnections, retaining that 
reconnection that results in the greatest cost reduction. At 
each step a link to the data center is broken and a new 
connection made so as to retain network connectivity and 
reduce cost. 

The problem attacked by the Esau-Williams technique 
has several features in common with the design of a dis
tributed data network: 

(1) the same loading parameters, traffic flow from each 
user to the data base; and (2) the same criterion, 
minimum line cost. 

The chief differences are that only a single line capac
ity is assumed to be available, and the data files exist 
only at the given location. For this latter reason there is 
no need to distinguish between query and update transac
tions since both follow the same flow paths. The telecom
munications design problem can therefore be considered 
to be a highly constrained version of the distributed data 
network design. 

We make use of this relationship in constructing a 
design procedure. We employ the Esau-Williams algo
rithm as an initial step in order to design a centralized 
network, and then relax the constraint on file location and 
duplication in order to design a more general tree net
work. This approach has several advantages: 

(1) It uses the fast, efficient Esa u -Williams technique 
to good advantage in order to produce a network 
candidate for further optimization. 

(2) It affords a direct comparison of the relative costs 
of centralized design vs. distributed design. 

An extended design algorithm 

A flow diagram of the design procedure analyzed here 
is shown in Figure 2. As shown the routine begins with an 
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Figure 2-Flow diagram of the design process 

application of the Esau-Williams algorithm assuming a 
single copy of each file is located at a specified node. The 
data center node is arbitrarily selected, but ordinarily is 
one of the storage nodes near the geographic center of the 
collection of nodes. 

Having designed a centralized data network the next 
step is to relax the centralization constraint. Holding the 
network fixed we seek the optimal location strategy for 
each file in turn. To do this we find, using a previously 
reported algorithm,14 the file assignment policy that 
minimizes the product of distance times bits transmitted, 
summed over all links of the network, and added to file 
maintenance costs. New link capacities are computed for 
this configuration and further improvements in file loca
tion are obtained by trying local perturbations in file 

location (sequentially moving each file copy to a neigh
boring location and recomputing cost). The configuration 
having least cost is retained, and the algorithm now 
attempts to redesign the network topology while holding 
the files in their newly determined locations. At this point 
the problem is not one in centralized network design, for 
the files are presumably scattered across storage sites. 
The network design problem is essayed by means of a 
sequence of local transformations. 

The transformations used are similar to those employed 
in the Esau-Williams algorithm. At each step a candidate 
node is connected to one of its neighbors on a trial basis, 
and an existing connection from this node is broken. 
Establishment of the new link creates a circuit in the 
network (see Figure 3). The link to be removed is the one 
that completes the return path to the candidate node. 
When this is done the network is a tree once more and a 
new distribution of traffic flow and resulting line cost can 
be computed. Because the simple link exchange described 
does not generally alter the flow pattern everywhere in 
the network, the new traffic parameters can be calculated 
rapidly. 

During one design iteration all network nodes are tested 
for possible reconnection. The link exchange that results 
in the greatest cost reduction is put into effect, and the 
process is repeated until no such improvement is found. 

A somewhat more general link exchange procedure15 is 
to determine the network cost that results when each link 
along the circuit of Figure 3 is broken. In this way a fam
ily of local transformations is tested rather than only the 
one-for-one exchange described above. The Esau-Wil
liams algorithm does not do this, nor has it been imple
mented in the experiments reported here, but the concep
tion is worth exploring in future work. 

Link Exchange 

\ 
\ 

I 
I Link to be 

Removed 
Candidate 
Node 

~---!------l 

I 
I 

I New 
Connection 

I 
I 

Figure 3-Link exchange 

, , 

I 
I 



® @ 

@@ 
t7\ 

® 
\:J 

@ ® 
® @) Node X 
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11 90 0 
12 110 35 
13 105 70 
14 115 90 
15 115 60 
16 120 70 

® 17 125 90 
18 125 100 

Figure 4-Sample node locations 

EXPERIMENTS 

In order to test the design algorithm an artificial, 18-
node, 2-file example has been constructed. Each user 
node was considered to be a potential storage site as well 
in this example. Figure 4 shows the geographical distribu
tion of the nodes, while Figure 5 depicts the volume of 
user query and update transactions with each of the files. 
The traffic parameters were chosen randomly with over
all ratio of queries to updates selected to favor multiple 
copies in the network. 

The allowable link capacities are shown in Figure 5. 
The cost Cij (k) of leasing a link having the kth capacity 
and connected from node i to node j is assumed to be a 
linear function of the internode distance, a relationship 
characteristic of present-day tariff rates, although in no 
way required by the model. Storage costs were neglected 
in this example. 

Available Line Capacities 

o 10 16 30 50 96 192 

Cost=A + B x Dist 

Dist is the distance (miles) between nodes. 

A & B are functions of capacity as follows: 

Capacity A B 

o 0 0 
10 55 90 
16 100 120 
30 115 150 
50 250 225 
96 340 300 

192 400 450 

Nodal Traffic 

~ 
Node 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 

Query 16 11 3 11 16 1 9 15 7 8 18 

2 

10 12 3 5 

Update 0 2 1 2 0 2 1 2 2 0 2 2 0 0 

~ 
Node 11 
Query I 9 
Update 0 

2345678 9 

9 5 9 4 029 9 

20022221 

10 11 12 13 14 15 16 17 18 

000915932 

02212121 

Figure 5-Cost and traffic parameters 
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Figure 6-Centralized network 

The design routine shown in Figure 2 was programmed 
in the APL language. Figure 6 shows the centralized 
network obtained using the Esau-Williams algorithm. At 
this point both files are located at node 7; however, a test 
with the file allocation algorithm indicates that the total 
bit-miles of network traffic would be minimized by add
ing a copy of file 1 at node 8. When this is done the actual 
line costs increase, from 92,670 to 97,300. Upon applying 
the link exchange algorithm to the centralized network a 
series of node reconnections is performed, leading to the 
network of Figure 7. In all, the distributed tree provides a 
savings of about 1600 compared with a centralized net. 
The savings (about 2 percent in this case) achieved by 
distributed design tends to increase as the volume of 
query-type messages increases relative to the update 
load. 14 

Several other file locations that scored well in the allo
cation experiment were also tried with the Esau-Williams 
net and the link exchange program. All these trials 
yielded more expensive networks. 

CD 

Cost = 90,620 

Figure 7-Distributed network 
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CONCLUSIONS 

The problem of locating information resources and choos
ing a topology for a network of distributed data files has 
been formulated in a model that, while simple, retains 
important practical features such as discrete capacity 
assignment, economy of scale, and distinction between 
query and update transactions. Even for a simplified 
model it appears that heuristic approaches to design are 
required, and a sample algorithm has been formulated 
and tested for the special case of tree design. The tech
nique can be viewed as an extension of a conventional 
method for automatic synthesis of centralized data nets, 
and seems to offer a useful reference point against which 
to compare future investigations in this area. 

The algorithm presented here should be considered an 
initial attempt in the design of distributed data networks, 
and not a final answer. It is primarily a test of the con
cept of alternating between processes for file allocation 
and topology design. The experiments show that network 
cost reductions can be achieved in this manner. On the 
other hand the two sets of variables interact strongly. 
When a network has been designed for a given disposition 
of data the topology obtained is bound to determine the 
locations at which the files can be gainfully redeployed. 
We have included a complete description of our example 
for the benefit of researchers interested in trying alterna
tive approaches and comparing results. 
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APPENDIX 

Symbolic description of the model 
given data 

processor nodes: k= 1,2, ... ,n 
users: W= 1,2, ... ,n 
files: a= 1,2, ... ,r 
query traffic between wth user and ath file: Qwa 
update traffic" """"": U'lDa 
fixed cost of storing and maintaining a copy of the ath 

file at the kth processor node: Ska 

admissible link capacities: el, t=O, 1,2, ... ,h (where 
eo=O) 

cost of a link of the tth capacity and connecting nodes 
i andj: dii(t) 

(in particular dii(O) =0) 

variables 

X= {Xii: i,j= 1,2, ... , (m+n)} 

where Xii = 0, 1, 2, ... , h is the capacity index assigned 
to the link between nodes i and j. 

Y = {Yka: i= 1,2, ... ,n; a= 1,2, ... ,r} 

where Yka = 1 if a copy of the ath file is stored at the 
kth node 

Yka = ° otherwise 

[

qii(a, w, k)] [query] traffic leaving node i on link 
= (i, j) from wth user and 

uij(a, w, k) update directed to a copy of the ath 
file located at the kth node. 

The network optimization problrm is to specify tho network 
variables X and Y in such a way as to minimize tho cost 
function: 

a, i ;, j 

subject to the following constraints. 



(1) delivery of messages and conservation of messages. 
(a) no messages lost or gained at an intermediate 

node. 
'\."'" I _ 1) A 
£.J qii~ a, W, iC = U 

each i, a, w, k such that i-:;ew, i-:;ek 

L: Uij(a, w, k) =0 

(b) total query traffic from wth user to all copies 
of file a. 

L: qwi(a, w, k) "Yka=Qwa 
i,k 

each w, a 
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(c) total update traffic from wth user to each copy 
of ath file. 

L: uwj(a, w, k) = Uwa"Yak 
i 

each a, w, k 

(d) absorption of query traffic at file nodes 

L qik(a, w, k) "Yka=Qwa each w, a 
k, i 

(e) All updates transmitted to each file copy. 

L uik(a, w, k) = Uwa " Yka 
i 

(2) Capacity constraint: no overloaded links. 

each a, w, k 

L: [I qii(a, w, k) 1 + I Uij(a, w, k) IJ~cxij each 2", j 
a;w.k 
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INTRODUCTION 

. --Societal prob-Iemsand industrial problems, if they are to 
be studied analytically, will require two broad compo
nents: first, a structure or model to analyze the interac
tion of the variables; and second, a large scale data base. 
The data base may be used in various ways, such as vali
dation of the model's parameters, input data for actual 
runs of the model, and simply providing the data itself for 
other interests. While the ability to devise meaningful 
models with appropriate supporting data is of primary 
importance for the advancement of our capacity to serve 
societal and industrial needs, the possibility of integrating 
the data base handling technillues with techniques of 
simulation and optimization will greatly facilitate this 
work. 

With the advent of large scale computers and complex 
operating systems during the last six years, the capacity 
exists for the processing of large scale applications. In 
addition, much work has been done with respect to the 
development of Generalized Data Management Systems 
(GDMS), which were designed to handle and manage 
large data bases. Typically, such systems have been used 
by management of large industrial and military organiza
tions. These systems are used for handling inventory, 
receivables, customer accounting and billing, quality 
control and other administrative tasks. 

Generalized Data Management Systems have contrib
uted to increased use of computers, but a major void still 
exists. The problem of many application programs inter
acting automatically with a single data base remains a 
major barrier to general use of an information system as a 
planning system. 

The use of an information system as a planning system 
will come about only when a methodology exists for 
automatically creating the data files needed by the many 
application programs and answering general queries of 
the data base at the same time. What is needed is a soft
ware system that, as a result of a specific query from a 
user, can: (1) retrieve the data necessary to answer the 
query; and/ or (2) set up the application program or 
model that must be run to answer the query. This 
requires that the data be automatically retrieved and 
arranged in the proper format required by the model. 
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The value of such a software system is based upon: (1) 
the efficiency of storing and retrieving data; and (2) the 
range of services provided through the interactive query 
system. 

The planning system must be designed so that the user 
is freed from the mundane task of data preparation, 
which can be tedious and frought with human errors, in 
order to run a model. Often, the user is not familiar with 
the problems and procedures of data handling, and, in 
most cases, would prefer not being bothered with the data 
handling at all. 

A user who has just queried a data base will have 
gained very little if he must further select, re-arrange, 
reformat, and punch his retrieved data for input to an 
application program or model. Thus what is needed is a 
Generalized Data Base Planning System (GPLAN), 
which results from the extension of a Generalized Data 
Management System to handle the automatic setup of 
models from a Data Base as instructed by the user 
through the Query Language. GPLAN is a natural exten
sion of GDMS and represents the next generation of 
GDMS's. 

In many areas, there has been considerable work on 
development of simulation and optimization packages, 
with the end result that these packages are not really used 
by the people who should be using them. The reasons for 
this huge investment in application packages with little 
resultant usefulness are simple. The packages are so diffi
cult to use, requiring either very much technical knowl
edge in the particular mathematical programming tech
nique and/ or complex file setup and manipulation steps, 
that few people are able to use the package without rely
ing heavily on technical help or considerable education in 
the specifics of each particular package. 

It is obvious that to increase the usefulness of simula
tion and optimization packages, the nontechnical and/ or 
management personnel who are knowledgeable in the 
general area of endeavor should be able to easily use these 
packages. 

What is proposed here is to generalize data base plan
ning systems. For a specific area of human endeavor 
needing such a system, this would mean that it would be 
easy to set up a data base, link it with application pack
ages, and query it in a meaningful manner-in short, it 
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would be easy to set up a generalized planning system. 
This would mean that ad hoc solutions to specific areas 
would be replaced with a generalized approach compre
hensive enough to solve many of the problems occurring 
in setting up specific planning systems. 

In order to take advantage of the knowledge that can be 
gained from the consideration of specific systems, a 
regional water pollution control planning system is 
described briefly and used for some examples throughout 
the rest of the paper. This system is discussed in order to 
develop the proper motivation for a Generalized Planning 
System. 

WATER POLLUTION CONTROL PLANNING 
SYSTEM 

The purpose of the water pollution control planning 
system is to develop a plan that minimizes the cost of 
pollution abatement structures while satisfying a set of 
water quality goals throughout an entire river basin. This 
planning system uses the most prevalent measure of 
water quality in use today, the level of dissolved oxygen 
concentration. 

The constraints of this model are constructed by divid
ing the river into sections and constraining the water 
quality, interpreted as the dissolved oxygen deficit level, 
to be met at the end of each section. Starting from the 
headwaters of the river, new sections are defined when
ever the river parameters change significantly, such as 
effluent flow entering the river, incremental flow entering 
the river (tributary flow, ground water, etc.), the flow in 
the main channel being augmented or diverted, or the 
parameters describing the river changing gradually over a 
longer distance. 

The quality constraints are sequentially dependent in 
that the quality in each section is a function of the quality 
in the preceding section. But the possibility of tributaries, 
flow augmentation, and incremental and effluent flows 
entering at downstream points, complicates the relation
ship between the constraints. 

Three possible treatment techniques are allowed for in 
the model: (1) by-pass piping; (2) regional and on-site 
treatment plants; and (3) flow augmentation. Thus piping 
flows are allowed from each polluter to each river section, 
from each polluter to each treatment plant, and from 
each treatment plant to each river section. 

In addition to quality constraints, flow conservation 
constraints are needed for both the polluters and the 
treatment plants. 

The solution technique of the model is the use of a 
general purpose non-linear algorithm adapted for this 
model. The major problem involved in adapting the algo
rithm was the calculation of the partial derivatives of 
both the constraints and the objective function. These 
partials were necessary to set up a local Linear Program
ming problem to determine the direction of search in the 
stepwise nonlinear problem. Starting with a point in the 

domain of the objective function, a new point is calcu
lated from it by making a step to either reduce the value 
of the objective function, if the original point is a feasible 
solution to the nonlinear programming problem, or obtain 
a "more feasible" solution if the point is an infeasible 
solution ("more feasible" by reducing the value of the 
most infeasible constraint). 

The cost function essentially involves the costs of new 
or upgraded treatment plants, reservoirs for flow augmen
tation, and various costs of new pipes to or from the pol
luters, treatment plants, and river sections. 

DIFFICULTY WITH THE PRESENT APPROACH 

Let us take an example of solving a mathematical pro
gramming problem (although any complex application 
problem would be similar), such as the nonlinear pro
gramming model discussed in the water pollution control 
planning system. A programmer with knowledge of math
ematical programming theory, or a group of people which 
together has the required knowledge, would write and 
check out a program to solve the specific problem. Then 
data would be gathered and stored in the format neces
sary for the program. To check out the data, separate 
programs would have to be written to test each part of the 
input data file for which testing was needed. Several sets 
of corrections to the data file would probably need to be 
made. 

The programmer(user) would then have to fill out some 
control cards giving various parameters of his data. 
Obtaining these parameters might involve some manual 
calculations and may require running some other pro
grams on the original data. 

Finally, the mathematical model could be run and, 
with several iterations and interpretations by the knowl
edgeable mathematical programming person, the problem 
could be solved. A report would have to be written 
explaining the problem and its computer solution. To 
solve a similar problem would take almost the same steps, 
except that a lot of the existing programs could probably 
be used, although major revisions are also possible. 

The existing data on a file for solving this problem is 
most likely usable only for this application, even though 
parts of it may be usable for other applications. 

The time lag between problem recognition and problem 
solution will be too long and the cost will be expensive. It 
is possible that, without countless hours of detailed 
documentation, the program written is unusable except 
for one or a few people. 

If we consider the water pollution control planning 
system, set up as an application program with a file, the 
information on treatment plant cost data and the parame
ters of the rivers cannot be used easily by anyone other 
than the developers of the system, unless the new user 
knows the specific format of the data and how it is stored 
on auxiliary memory. 



MOTIVATION FOR THE DEVELOPMENT OF 
GENERALIZED DATA BASE PLANNING 
SYSTEMS 

We must define what a Generalized Data Management 
System is, before we define the characteristics of a Gener
alized Data Base Planning System. 

Groner and Goel3 define and characterize a Generalized 
Data Management System as follows: 

"A GDMS consists of data, structure, and a set of algo
rithms for manipulating the data and the structure. It 
acts as a communication channel between the user 
community and the data base. Minker4 characterizes a 
GDMS as follows: 'A data management system is consid
ered generalized when it permits the manipulation of 
newly defined files and data with the existing programs 
and systems.' ·[A GDMS]· facilitates reference to data by 
name and not by physical location,' and, '[it] facilitates 
the expression of logical relations among data items.' A 
well designed GDMS permits users to access and manipu
late elements of the data base in a way that is both natu
ral and convenient for them and efficient in terms of its 
system utilization. 

"Much of the benefit derived from a GDMS results 
from the insulation of the people and programs from the 
data. In conventional systems the structure of the data 
must be explicitly embodied in each program accessing 
the data. This limits the application of programs to data 
whose structure has been defined to them. It also limits 
the ability to restructure data in response to new needs 
without modifying every program embodying the old 
structure. These limitations in applicability of programs 
and the flexibility of the data base impose a rigidity upon 
conventional data processing systems. While this rigidity 
is not serious in repetitive well defined tasks such as 
payroll or inventory control, it is a decided obstacle to the 
successful performance of systems that must respond to 
continually changing requirements. 

"GDMS systems evolved from sequential formatted file 
systems. This evolution has been in the direction of more 
complex logical data structures and more complex opera
tions upon them." II 

The work on Generalized Data Management Systems 
until now has focused on two related, but distinctly differ
ent approaches to the design of data management sys
tems.5 The first approach involved the design of a special 
query system for retrieving data from a data base. This 
approach permitted new programmers to readily access 
data and to ask sophisticated questions of the data base. 
The query capability made this approach very popular, 
but it has a serious drawback. Namely, that it is 
extremely difficult to process other applications written 
in FORTRAN, COBOL, PL/ 1, etc., against the data base. 
Examples of the first approach are Informatics Mark IV 
and GIS of IBM. As a result of this deficiency, many 
people preferred the second approach which involved 
extensions to host languages (FORTRAN, COBOL, etc.) 
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that gave the programmer some general file handling 
capability. However, the non-programming user found 
this approach undesirable, since, if he wanted a query 
answered, he had to write the program(s) in the host 
language to retrieve the data. Examples of the second 
approach are General Electric's IDS (Integrated Data 
Store) and Burrough's Disk FORTE (Disk File Organiza
tion Technique). 

N ow the CODASYL Data Base Task Group6 has pro
posed a solution to the problem, but in its specifications 
has given first priority to the host language approach, 
with COBOL as the first language. To interface between a 
host programming language and a data base, a specific 
subschema Data Description Language and an appropri
ate Data Manipulation Language need to be provided. 
When an interface is provided, applications still must be 
implemented in the specific host language system. (While 
this may not be a problem when and if the standardized 
implementation of CODASYL DBTG concepts occurs 
throughout the industry for the major higher level lan
guages, it is quite a drawback for several years to come.) 
Even if CODASYL's concepts were all implemented, we 
are still without a system that a planner or manager could 
easily use. GPLAN is proposed as such a system. 

GPLAN is a synthesis of components from other sys
tems. There are a number of systems that exhibit some, 
but not all, of the features of GPLAN. Examples of some 
of these systems are: 

1. NAPSS: Numerical Analysis Problem Solving 
System.7 

2. SODA: Systems Optimization and Design Algo
rithm.8 

3. Gn~'lS: Generalized Data ivianagement Sys
tems.4.5 .6 

(a) System 2000-MRP 
(b) RAMIS-Mathematica, Inc. lO 

(c) IMS-IBMII 
(d) DISK FORTE-Burroughs Corporation l2 

4. OPTIMA.13 

NUMERICAL ANALYSIS PROBLEM SOLVING 
SYSTEM (NAPSS) 

A system that is a special case of GPLAN is the 
Numerical Analysis Problem Solving System (NAPSS) 
designed and implemented at Purdue University. 

A long recognized goal of Computer Science has been to 
facilitate the stating of problems in languages appropriate 
to the specific fields in which the problems exist, and then 
to provide for this solution without the services of highly 
trained programmers and analysts. These systems are 
"problem solving systems" and their languages are prob
lem-oriented languages. Thus the aim of the NAPSS 
project is to make the computer behave as if it had some 
of the knowledge, ability, and insight of a professional 
numerical analyst. 
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Figure la-NAPSS-Numerical Analysis problem solving system 

A user unskilled in numerical analysis can describe 
relatively complex problems in a simple mathematical 
language. Then the system selects algorithms, performs 
analyses, and gives diagnostics of possible difficulties and 
meaningless results. 

The problem-oriented language of NAPSS uses some of 
the applicable notation of Fortran, Algol, and PL-1, since 
they have quite similar facilities for describing computa
tional algorithms. But it goes beyond these languages to 
include mathematical concepts such an integration, dif
ferentiation, algebraic and differential equations, and 
approximation as part of the basic language. 

The basic approach to the system design is through the 
development of polyalgorithms which become the numeri
cal analysis packages that are the essential elements of 
the problem solving system. "A polyalgorithm is formed 
by the synthesis of a group of numerical methods and a 
logical structure into an integrated procedure for solving a 
specific type of mathematical problem."l The goal of a 
polyalgorithm is to combine a number of algorithms 
(corresponding to numerical methods) with a strategy for 
their selection, and use a procedure which is relatively 
efficient and very reliable. 

The NAPSS system exists as an extension of a proce
dure-oriented language in an environment, permitting 
both on-line and remote use of the system. While NAPSS 
operates most frequently in an online time-sharing envi
ronment, it will accept programs submitted for batch 
processing. Parameter values that are needed by NAPSS 
can be entered at a terminal in conversational mode or 
be present on a standard or user-named input file for 
either conversational or remote mode. 

In Figures 1a and 1b we can see how NAPSS can be put 
into a more general structure with a renaming of its 
components. 

SODA (SYSTEMS OPTIMIZATION AND DESIGN 
ALGORITHM) 

SODA is a computer-assisted decision making system 
for the design of information processing systems. SODA 

generates a complete information systems design, along 
with cost/performance projections of how the designed 
system will perform on a specified hardware/ software 
configuration. SODA consists of four major components: 

SSL:SODA STATEMENT LANGUAGE 
SSA:SODA STATEMENT ANALYZER 
SGA:SODA GENERATOR OF ALTERNATIVES 
SPE:SODA PERFORMANCE EVALUATOR 

SSA is a computer program that analyzes the require
ments of an information processing system stated in SSL. 
The Statement Analyzer also provides feedback informa
tion to the user to assist him in achieving a better prob
lem statement. 

SSA also produces a number of networks which record 
the interrelationships of processes and data and passes 
the networks on to SGA and SPE. 

Each type of input and output is specified in terms of 
the data involved, the transformation needed to produce 
output from input and stored data. Time and volume 
requirements are also stated. SSA analyzes the statement 
of the problem to determine whether the required output 
can be produced from the available inputs. The problem 
statement stored in machine readable form is processed 
by SSA which: 

1. checks for consistency in the Problem Statement 
(PS) and checks syntax in accordance with SSL; i.e., 
verifies that the PS satisfies SSL rules and is con
sistent, unambiguous, and complete. 

2. prepares summary analyses and error comments to 
aid the problem definer in correcting, modifying and 
extending his PS. 

3. prepares data to pass the PS onto SGA, and 
4. prepares a number of matrices that express the 

interrelationship of Processes and Data Sets. 

SGA is a procedure for the selection of a Computer 
System (cpu, core size, auxiliary memory devices) and 
the specification of alternative designs of program struc
ture and file structure. SGA constructs a configuration of 
equipment in order to evaluate performance of the sys
tem. A number of models are used (to compute timing 
estimates) that select timing factors for alternative hard-

Q_-~ 
~ 
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Query 
Analyzer 

Figure Ib NAPSS GPLAN terminology 



ware/software configurations from a data file. SGA simu
lates the jobstream as it would be processed on the 
selected configuration, and, using the factors from the 
hardware/software library, SGA and SPE produce 
detailed cost/performance projection reports so that the 
user can evaluate the final design. 

There are a number of systems similar to some aspects 
of SODA, such as SCERTI4,15 and CASE.16 

In Figures 2a and 2b it is shown how SODA fits into a 
more general structure. 

GENERALIZED DATA MANAGEMENT SYSTEMS 

SYSTEM 2000 

SYSTEM 2000, developed by MRI Systems Corpora
tion, is a general-purpose data base management system. 
The basic system provides a comprehensive set of data 
base management capabilities, including the ability to 
define new data bases, modify the definition of existing 
data bases, and retrieve and update values in these data 
bases. 

In SYSTEM 2000, the basic components of data base 
definitions are data elements and repeating groups. Val
ues are stored in data elements. Repeating groups 
describe a structure for storing multiple sets of data val
ues (data sets) and also serve to link hierarchical levels of 
the definition. 

Values for each element and logical entry (record) may 
vary in length. The user may specify without restriction 
which elements in the data base are to be inverted and 
become key fields, and what hierarchical relationship an 
element will have with other elements in the data base. 
Data security is maintained by password control to the 
data base and additional password control to each compo
nent. 

The Procedural Language feature of SYSTEM 2000 
enables users to manipulate data in a SYSTEM 2000 
data base from COBOL or FORTRAN. This feature pro
vides the mechanism to address any part of the data base 
of interest to the procedural program, to retrieve data in a 

FIGURE 2a-SODA: Systems optimization and design algorithm 
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sequence and format suitable for procedural processing, 
and to update the data base from the program. 

RAMIS: RANDOM ACCESS MANAGEMENT 
INFORMATION SYSTEM 

RAMIS, developed by Mathematica, Inc., is a data 
base management system which permits a user to 
describe and build data bases, maintain the data in the 
data bases through updates, additions, and deletions, 
retrieve information from the data bases and display it in 
meaningful report formats, or pass the information to 
other processing programs.4 

RAMIS is both a report generator and a data manage
ment system, since it has a simple and logical English
like language, which permits the user to both request 
information from data bases, and, at the same time, proc
ess it into finished reports. 

RArvHS organizes the physical placement of data into 
tree structures on random access devices by exploiting the 
hierarchical relationships of the data fields. The user has 
to supply only some minimal information about these 
relationships. User written programs in Fortran, Cobol, 
Assembler, or PL/l can also be linked directly into 
RAMIS. 

IMS: INFORMATION MANAGEMENT SYSTEM 

The Information Management System OMS) is a sys
tem designed to facilitate the implementation of medium 
to large common data bases in a multi-application envi
ronment.5 This environment is created to accommodate 
both online message processing and conventional batch 
processing, either separately or concurrently. The system 
permits the evolutionary expansion of data processing 
applications from a batch-only to a teleprocessing envi
ronment. 

The data base processing capabilities of IMS are pro
vided by a facility called Data Language/I. The data 
base functions supported are definition, creation, access, 
and maintenance. The full data base capabilities of Data 
Language/l can be used in the IMS batch processing or 
teleprocessing environment. 
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Data communication capabilities are characterized by 
the use of input/ output terminals in remote and local 
environments, connected to the computer, which provide 
the user with access to the data base. IMS also has exten
sive message scheduling, checkpoint, and restart facilities. 

DISK FORTE 

Disk FORTE, the Burroughs manufacturer system, is 
programmer-oriented at the most basic level. Nearly all 
features and capabilities of other data management sys
tems must be programmed in Disk FORTE. Yet, it per
mits both hierarchic and network data structures (user
programmed, of course) which make possible more com
plex associations among data. 

Disk FORTE makes its data management capabilities 
available through extensions to COBOL which are han
dled by a pre-compiler. 

Figure 3 shows the generalized structure of SYSTEM 
2000, RAMIS, IMS and DISK FORTE. 

OPTIMA 

OPTIMA is an advanced mathematical programming 
system for the CDC 6000 series computers. It includes 
advanced algorithms and techniques in addition to algo
rithms for standard linear programming formulations. 
User-controlled data and storage management features 
are also provided. 

"The basis of OPTIMA is a revised product-form, 
composite, bounded variable, separable, multipricing, 

simplex, linear programming algorithm." Some of the 
advanced features that OPTIMA provides are: the capa
bility to form a nontrivial starting basis; the ability to 
start a solution using a previous basis; dynamic control of 
the frequency of inversion of the basis matrix; provision 
for partial and multiple pricing; the use of maps to 
exclude or include specified vectors in the basis; and 
elaborate recovery procedures. A dual optimization algo
rithm is available for those problems in which its use 
might be advantageous; and postoptimal analysis of a 
problem can be accomplished as an integral part of 
OPTIMA. 

Through the use of the Applications Control Language 
(ACL), OPTIMA allows dynamic control of the progress 
and execution of the program. ACL has logic and compu
tational capability and provides verbs and phrases for 
modifying various parameters and controlling the prog
ress of the sol uti on. 

An ACL program must be written for any study. This 
program defines the data files to be used and the opera
tions to be performed on these files, sets any parameters 
and controls necessary, and calls various routines 
required to carry out the study. 

Two other languages, the Matrix Generator Language 
(MGL) and the Report Generator Language (RGL) oper
ate within control of the ACL. MGL provides capabilities 
for generating a problem matrix automatically. RGL 
provides the capability for generating reports in any 
desired format, and permits computer-generated solutions 
to be used for further arithmetic and logical computation. 

SUMMARY OF COMPARISONS 

Figure 4 shows the structures of GPLAN. In consider
ing the four information processing systems (1) NAPSS, 

Figure 4-GPLAN-Generalized data base planning system 
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TABLE I-Comparison of information processing system 
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(2) SODA, (3) GDMS, and (4) OPTlIvlA, it is observed 
that we must have at least a query language, a query 
analyzer and a Generalized Data Management System. 
NAPSS and SODA are missing the data management 

capabIlIties; the GDMS's are missing those components 
needed to readily interface models; and OPTIMA is miss
ing the data management and query capabilities. These 
differences are elaborated on in Table 1. 
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COMPONENTS OF A GENERALIZED DATA BASE 
PLANNING SYSTEM 

A synthesis of the previous systems results in the defi
nition of the following nine components of a Generalized 
Data Base Planning System: 

• A Generalized Data Management System (GDMS) 
• Raw Data for the Data Base 
• A Query Language 
• A Query Analyzer 
• A Collection of Application Packages or Models 
• Administrative Report Module 
• User's Interface 
• Extraction Files 
• Users 

Each of these components is discussed in more detail in 
the following sections. An overview of GPLAN for Water 
Pollution Control is shown in Figure 5 and Figure 6. 

A generalized data management system (GDMS) 

A Generalized Data Base Management System that is 
implemented at a particular installation under a specified 
operating system must be available. The GDMS must 
meet minimum requirements as to data structure defini
tion' data base loading, data base updating, and data base 
retrieval, and it must satisfy some minimum set of quer
ies, as specified in the following section. 

Six general functions must be provided by the GDMS: 

Input-the system accepts data values or information 
about nata structurE'S. 

Search-the system searches the data base by examining 
the descriptions of data structures and storage structures 
to ascertain the existence and location of certain data 
values. 
Storage-the system accesses a data base to add, insert, 
modify, or delete data values. 
Maintenance-the system generates or modifies descrip
tions of data, data structures, and storage structures to 
adapt to change. 
Retrieval-the system accesses a data base to obtain data 
values previously stored. 
Output-the system exhibits data values or information 
about data structures and storage structures. 

Raw data for a data base 

The raw data for the planning system must be available 
in whatever form it can be collected. A Data Input Mod
ule is used to conven the raw data into a form necessary 
to be loaded by the GDMS into the data base. 

To refer to the data in the data base, the following 
terms, adapted from the CODASYL Data Base Task 
Group Report, are defined: 

DDL-Data Description Language. A language for defin
ing data and their relationships. The DDL is divided into 
schema and sub-schema. 
Schema-That part of the DDL which defines the "uni
versal" data base. 
Sub-schema-That part of the DDL which describes the 
data known to each application program or model. 

A schema describing the data on the data base must be 
prepared. (Note that the DDL is not necessarily the one 
defined in the DBTG report.) 

While preliminary Data Input Modules would be 
dependent on the format of the raw data and dependent 
on the GDMS, it is hoped that some measure of inde
pendence can be achieved in the same manner as the data 
transformations used in implementing the user interface 
mentioned later. 

Appllcl.tion 

Fignrfl 6-GPLAN-Generalized data base planning system 



A query language 

A Basic Query Language (BQL) defines all those quer
ies that can be handled by the GDMS alone and allows 
the user to request that the DBMS display certain data or 
answer questions about the data. The BQL is a compara
tive and computationally oriented language used to 
compare item values with other item values, or with con
stants, or with results of computations. Arithmetic opera
tors define the computations to be performed, and logical 
operators combine simple expressions into compound 
expressions. The BQL can be extended as application 
packages are added to include questions that are 
answered by the new application packages, i.e., each 
package adds a set of new query components to the BQL. 
The BQL, together with all the query components from 
the applications packages, makes up the Query Language 
(QL). 

General capabilities provided by the QL are: 

Selective retrieval-the user specifies the selection condi
tions to be satisfied in retrieving the desired data. 
Nonselective retrieval-the user specifies unconditional 
retrieval of data. 
Conditional retrieval-the user employs verbs such as 
IF ... ELSE to test items for some qualifying values in 
determining alternative courses of action. 
Statistical retrieval-the user may query the system 
about data. Statistical computations for all the instances 
of one item, for example, would include maximum value, 
minimum value, mean value, median value, mode value, 
standard deviation, and total number of instances. 

The QL thus should provide the capability for easily 
asking questions of the data base and asking questions 
that can be handled by the various application packages. 
By including optimization models in the application 
packages, the policymaker is able to move efficiently 
beyond the "What if' to the "What's best" question. 
Moreover, much additional research needs to be done on 
the query language (and its associated analyzer), since its 
enhancement adds much to GPLAN. 

As an example of the power needed in the query lan
guage, consider the added components of the planning 
model from the Regional Water Pollution Control Plan
ning System. It is able to handle two distinct types of 
planning problems. First, it is able to select a least-cost 
combination of treatment methods, given water quality 
goals and economical, political, and water quality infor
mation from the river basin. The second type of question 
which can be handled is directed toward individual proj
ects. Types of individual planning problems that could 
be analyzed are: 

a. What is the least cost solution for towns X and Y to 
handle their effluent? Should they combine to con
struct and operate a joint treatment plant? 
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b. What would be the least cost solution if considera
tion is given to the political constraints that may 
become operative? 

c. What is the optimal plan for capacity expansion 
giving consideration to the growth and shift of 
population and industrial growth in the basin? 

d. What are the least cost and optimal treatment 
plans that correspond to the task of providing water 
of high enough quality for certain recreation 
activities? 

e. What is the sensitivity of the optimal pollution 
control plan to costs and constraints? 

f. What is the optimal tradeoff between water quality, 
flow and alternative costs? For example, what 
would the difference in costs be if a plan were to 
permit the violation of a water quality standard 
once in 25 years as compared to once in 50 years? 

GPLAN is a methodology for obtaining answers and 
responses to the above type of questions. 

A query analyzer (QA) 

A Query Language Analyzer must be able to analyze 
the BQL and as many application package query compo
nents as are available. A user enters his query in the QL, 
and the Query Analyzer analyzes the question and pro
vides the user diagnostics to help him reformulate his 
question, if necessary. The query stored in machine read
able form is processed by the QA which: 

1. Checks for consistency in the Query and checks 
syntax in accordance with the Query Language; i.e., 
verifies the QL rules and is consistent, unambiguous, 
and complete. 

2. Prepares error comments to aid the user in correct
ing, modifying and extending his Query. 

3. Decides whether to pass the Query to the GDMS or 
one of the application packages. 

4. May request additional information from the user if 
the action to be initiated requires it. 

A collection of application packages or models 

Application packages are simulation and optimization 
models, statistical packages, and other self-contained 
systems currently functioning under a specific computer 
and operating system. 

We want to make it as easy as possible to add applica
tion packages, so we generalize the process by describing 
how we add a specific package. 

We will make several assumptions about application 
packages: First, they are already running as batch jobs 
rather than interactive jobs. They may have quite long 
running times and making them interactive may simply 
mean waiting at the terminal; Second, they require user 
preparation to get the data ready; and third, they require 
other programs to run before the input data is complete. 
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We must know certain characteristics of an application 
package or model before we can consider tying it into 
GPLAN: 

A. Input 
1. For each data input, we must know what kind 

it is (pure data or commands) and the asso
ciated types and formats. 

2. For each data input, we must know what kind 
of device it is assigned to (sequential or ran
dom -access) . 

3. We must know the passes and correct logic 
steps and transformations to go from the data 
base to each input. 

4. For each data input, what must be included in 
system queries to the GDMS for 3 above? 

B. Output 
1. Is the output self-explanatory or does it require 

minor explanation in the form of good docu
mentation in the Query Language description? 

2. Does the output require much technical know
how to interpret the results? If yes, an output 
interpretation module is required (e.g., nonlin
ear river basin model solution). 

C. What query components can it add to the Basic 
Query Language? 

D. Minimal Documentation to be used by: 
1. Systems personnel 
2. Non-programmer researcher 

Administrative report module 

The Administrative Report Module will produce stand
ard reports that must be completed and filed on a routine 
basis. These reports may be automatically triggered by 
queries or specifically requested from the console. 

The standard reports will be supplied with data from 
the extraction file structure. 

User's interface 

Each interface component required for each part of an 
applications package must be defined: 

A. Simple input linkage-direct to the Data Base. 
B. Phased inputs-including self-started and analyzed 

Data Base retrievals. 
C. Any combination of A. and B. 
D. Simple output-direct from package. 
E. Output interpretation module needed. 

Extraction files 

Between the data base and the set of application pack
ages and the Administrative Report Module is a set of 

extraction files containing those items from the data base 
that are used for the packages and reports. Questions to 
be answered on extraction files are: 

A. How many should there be? 
B. What items should they contain? 
C. What should their data structure and storage struc

ture be? 
D. How often should they be updated? 
E. If a new application package or report is added, 

what changes should be made in the extraction file 
structure? 

F. Should some application packages bypass extrac
tion files entirely? 

Users 

There are two types of users connected with GPLAN: 
the technical systems personnel and the nontechnical 
administrator or manager. 

A data administrator and his systems staff are respon
sible for: all original data input; updating of data; re
structuring the Data Base and extraction files as neces
sary; changing machines and operating systems; adding 
new packages, standard reports (Administrative Report 
Module), and other additions or improvements. These 
systems users, taken as a group, must understand fairly 
well every component of GPLAN. They possibly could get 
by with not being familiar with some of the application 
packages, but then would have to get consultation to 
patch up or improve on these. 

The major group of users are non-programming admin
istrators. These are user's who don't know how to pro
gram, probably don't want to learn, and definitely 
shouldn't have to learn. They have a good understanding 
of the area for which the planning system was designed, 
or will have to have some training in this area before 
using GPLAN. Most of the details of the GPLAN imple
mentation should be transparent to these users, and they 
should not notice any changes in the system, except the 
addition of new capabilities (possibly requested by them), 
new efficiency, or new packages. The success or failure of 
GPLAN depends on how well these users are able to carry 
out their querying of the data base and interaction with 
the application packages using only the query language 
and its documentation. 

RFMS and RAMIS easily meet and/ or exceed the 
minimal requirements for a GDMS as specified above. 
Thus all software being developed for GPLAN is being 
implemented on the CDC 6500 and the IBM 370/155. 

Research is proceeding on the Query Language-Query 
Analyzer components in three areas. One area of investi
gation is the relationship between the QL and QA and the 
SODA Statement Language and SODA Statement Ana
lyzer as used in the SODA project. Second, research on 
QL and QA is proceeding as a result of the development 
of the water pollution control models. Finally, the state of 
the art in artificial intelligence is being investigated for 
incorporation into the query language and analyzer. 



STATUS OF GPLAN 

There are two major efforts under way with respect to 
the development of GPLAN: 

• Development and construction of the software for 
GPLAN. 

• Work on a real world planning system (Water Pollu
tion Control) and development of user training aids. 

Development of software for GPLAN 

Two different GDMS systems are being evaluated in 
parallel with the construction of GPLAN. Development. is 
proceeding using RAMIS and RFMS (Remote FIle 
Management System). RFMS is a version of SYSTEM 
2000 that was originally developed at the U nive-rsity of 
Texas at Austin. RFMS has been converted to run under 
the Purdue MACE Operating System, and substantial 
improvements have been added to the original version. 

The two most difficult areas in the development of 
software for GPLAN are the User's Interface and the 
Extraction Files. Thus, a Data Description Language 
schema for data base description, and the Data Descrip
tion Language subschema for the description of applica
tion package and administrative report data require
ments, have been defined. Research is proceeding on the 
automatic mapping between the data base schema and an 
application package's subschema. Included in this map
ping is a set of extraction files to be composed of subsets 
of items from the data base. An integer programming 
model has been defined which relates the data items of 
the data base to those on the extraction files as required 
by the application programs. Also, a cost function repre
senting the cost of operating GPLAN has been defined. 
An important aspect of the problem is the optimization of 
the extraction files by solving for the extraction file 
arrangement which minimizes operating costs. 

Work on a real application 

Data is presently available to us from a previous study 
on the West Fork of the White River in Indiana for the 
development of a demonstration project concerning the 
Water Pollution Data Base Planning System. The insight 
achieved through the development of a specific planning 
system has already proved to be a tremendous aid in the 
accomplishment of the major goal of having a truly easy
to-use system. 

The query system is being implemented in two modes: 

1. Standard 80 column teletype 
2. Graphics Terminal 

The usefulness of GPLAN is enhanced considerably 
through the effective use of a graphical display. The 
graphics terminal offers the obvious advantage of being 
able to output designs, graphs, etc., in a more visi ble and 
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appealing form. But the main advantage of interactive 
graphics is that it offers the user the capability of com
plete user interaction with the planning system. 

Consider, for example, the river basin planning system. 
The optimization models output a diagram of the optimal 
solution to a specific water pollution control problem, 
showing the actual location of treatment plants and cool
ing towers on a computerized representation of the river 
basin, i.e., the actual solution is illustrated on a map of 
the river basin. The user may not have much confidence 
in the results, but he can at least relate to the output in 
this form. However, if he is given the opportunity to 
improve the solution by making adjustments to the 
design, or by changing the location or capacity of a treat
ment plant through the graphical query system, he finds 
that he is part of the decision making or planning process. 
Now, we can let the user input his own design l:.indthen 
compare the value of the objective function for his design 
with the optimal design. GPLAN can then indicate 
whether or not his design is even feasible. The user can 
also be given the opportunity to experiment with the 
values of the constraints and try different water quality 
goals. The result of this interaction is that the user has 
increased confidence in the planning system with a 
unique appreciation of the special talents and capabilities 
of man and machine. 

The user can only be convinced that the mathematical 
solution is "good" if he can't improve on it himself. This 
experience was also supported by observations from a 
project concerned with the location of a major highway in 
southern California. 17 

Interactive graphics allows the user to utilize insight 
that often can't be built into models. This man-machine 
interaction enhances the planning system and brings the 
user into the decision making process. 
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INTRODUCTION 

The advent of transaction-oriented data processing· systems 
has offered a number of new challenges to designers of 
database management systems. Requisites for efficient trans
action processing include (1) a multiprogramming system 
oriented toward maximizing throughput subject to the 
response-time requirement of the interactive environment, 
and (2) an integrated database with centralized access control. 
An integrated database implies .the elimination of redundant 
data processing. Such is necessary (though not sufficient) to 
achieve acceptable performance in transaction processing. 
The necessity of an efficient, responsive multiprogramming 
system is, of course, obvious. But efficiency in the transaction 
environment necessitates certain system provisions peculiar to 
the environment. One of these is the provision for the shared 
use of data. Time-sharing systems, while they generally 
provide for shared procedures, do not generally provide 
elaborate facilities for data sharing, since users typically do 
not require access to files other than their own. In the 
transaction environment, typified by a number of users 
operating on a single integrated database, elaborate provisions 
for database sharing are required. 

In the sense that the use of a database is a privilege 
frequently extended to different users, shared databases are 
quite common. This kind of sharing is done primarily to avoid 
the proliferation of redundant data. But for the purposes of 
this paper, database sharing refers to the granting of simul
taneous access to a database. This kind of sharing is motivated 
by the necessity for efficient, responsive multiprogramming in 
the transaction environment. By making a database available 
to several programs simultaneously, the mean number of 
programs eligible for execution increases, as does the mean 
occupancy of the disk queue, thereby increasing the potential 
for effective utilization of resources. The potential for 
improved performance depends, of course, on the manner in 
which the database is organized on the storage medium. 
Random (physical) organizations are more appropriate in 
transaction processing than the sequential organizations of 
batch processing systems. The potential for improved per
formance like"ise depends on the extent to which the data 
base can be shared. 

The most sophisticated approach to database sharing 
admits concurrent WRITERS as well as READERS. This 
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approach necessitates the most elaborate mechanism for 
regulating access to data within the database. Such mecha
nisms have been described for numerous appih;atinns~l-9 

Indeed the CODASYL DBTG Report/o in its proposed 
specification for a database management systems, details a 
KEEP-FREE mechanism to support concurrent update 
operations. However, the KEEP-FREE mechanism is not 
without shortcomings. The programmer using KEEP-FREE 
is, in essence, availing himself of a facility designed to inform 
him of any untoward interactions vvith other update pro
grams. KEEP-FREE is not a mechanism for "locking" and 
"unlocking" data. While it avoids the "deadlock" problem, 
it does place a significant (perhaps excessive) burden on the 
application programmer insofar as the integrity of the 
database is concerned. 

A LOCK-UNLOCK mechanism enabling the locking and 
unlocking of data for update purposes is a preferable solution. 
In general, however, a LOCK-UNLOCK mechanism is 
substantially more complex, as it introduces the potential for 
deadlock. Where databases are constructed solely on hier
archical structures it may be appropriate to insist that 
consecutive LOCK requests be separated by an UNLOCK 
request, so as to eliminate the possibility of deadlock. 
However, where network structures are exploited, such a 
limitation may be unreasonable. 

In this paper, a LOCK-UNLOCK Mechanism enabling the 
incremental allocation of data elements to processes is 
described, along with an efficient method for detecting 
potential deadlocks. The mechanism prevents inter-process 
interference and permits simple automatic recovery from 
deadlocked processes as well. 

LOCK-UXLOCK 

An environment not unlike that of transaction processing 
is assumed. A number of programs, WRITERS as well as 
READERS, operate concurrently on a single database. In 
this mode of operation, READERS are presumed impervious 
to the effects of concurrent WRITERS. In other words, 
READERS are fully aware of the possibility that the 
database may be altered during the course of their task and 
that information extracted from the database may be 
out-of-date by the time the task is completed. If such is 
unacceptable, an inquiry program may use the LOCK-UN-
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LOCK facility, in \yhich casf' its b('havior is lik('nrd to that of 
a WRITER who locks rf'cords on(' at a timr unt.il h(' has 
acquirf'd f'xclusivf' control ov('r all rf'cords afff'ctf'd by thf' 
intrnded updat('. Whrn thf' update' has b('('n accomplishe'd, 
the records are unlocked via thr UXLOCK Function. For the 
sake of simplicity, we will classify a usrr program as eithpr 
(1) a READER, impervious to changf's in data, or (2) a 
WRITER, who allocates rf'cords for rxclusiv(' use via the 
LOCK Function. It is users in thf' sf'cond category who make 
database sharing a difficult proposition. 

WRITERS, using the LOCK-UXLOCK :\Iechanism, lock 
records one at a time until all the rrcords involv('d in the 
intended operation have been acquired. Hf'ncr, an opera
tional characteristic peculiar to a WRITER is that s('t of 
records allocated for rxclusive use via the LOCK Function. 
For the purposes of this paper this Sf't is known as the lock 
list. Taken as a set, the lock lists of all the WRITERS 
currently active in the system constitutes a listing of all the 
records which cannot be allocated for rxclusive usr. If a 
WRITER happens to request one of these records for his 
exclusive use, he must be placed in a queue for said record. 
Undf'r thf'Sf' circumstances, thp WRITER is said to be 
blocked. The blocked WRITER cannot proceed until the 
record in question has been unlocked. 

Two (or more) WRITERS incrementally allocating records 
to themselves pose the problf'm of deadlock. A blocked 
WRITER is deadlocked when there is no way through normal 
operations for him to become not blocked. To illustrate, 
suppose WRITER 1 has locked record j and wants record k, 
and WRITER 2 has lockf'd record k, and wants record ;'. 
Kf'ither can proceed; the update of WRITER 1, as well as 
that of WRITER 2 is deadlockrd. It is nf'Cf'ssary to "back
track" onf' of thf' stymif'd programs undf'f systf'm rontrol and 
then restart it. 

The detection of incipif'nt dpadlocks can br a more or less 
complex op('ration, d{·pending on the deteetion algorithm. 
The romputational oVf'rhrad of a mf'chanism to solve for 
necessary and sufficient conditions has to date bf'en con
sidf'red intolerable. Simpler mechanisms basf'd on necessary 
(but not sufficient) conditions have bef'n proposed, at the cost 
of increased detection frequency. In this paper, a simple 
algorithm is proposed for deadlock detection based on 
necessary and sufficient conditions. 

THE MODEL 

Thf' algorithm that has been developed for deadlock 
detection is best presented by means of a graphical model of 
data element access under the LOCK-U~LOCK :Mechanism. 
To introduce the model, some graph-theoretic definitions are 
first required. 

A directed graph is a pair < N, A>, where N is an abstract 
set and A~NXN. Each element in N is called a node and 
each pair ( a, b) in A is termed an arc. The arc ( a, b) is said to 
be directed from node b. A path is a sequence of two or more 
nodes (11}, 112,' • " nm ) with each connected to the next by an 
arc. That is, for each ni, 1 ~ i ~ m-1, (n i, ni+l) EA. A path is 
a loop if its first and last nodes are the same. 

From th(' discussion in th(' pr('vious s('ction, it should be 
clear that th(' stat(' of all a('('('ss('s with f('Sp<'ct to a giv('n 
databas(' ('an b(' d('nn('d by d('seribing: 

(1) the allocatable data elempnts (P.g., records) m the 
databas(', 

(2) th(' activ(' processps (WIUTERS), and 
(3) th(' lock list associat('d with each process. 

Thpr('for('; thp state of all accpss('s of a databasp can bp dpfinpd 
by a database access state graph, <P UE, L>. The s('t of nodes 
within paeh of t hps(' graphs consists of th(' union of thp s('t of 
activp proe('ss('s, P, and tl1<' 8('t of allocatablr data ('l('m('nts, 
E. Each lock list is r('prespntPd by a path b('ginning at an 
activ(' proc('ss nod(' and conn<'cting it ,,"ith ('ach data d('mpnt 
allocated to that process. Thus, the set of arcs within the lock 
lists comprises the srt L. 

:\Iore formally, a database acc('ss state graph is a direct('d 
graph <P UE, L> ,,-here 

P = (Pi I Pi is the i-th oldest processl , 
E = (e I e is an allocatable data dement I , and 
L = A UB. 

The set of lock lists, L, is compos('d of the s('t of allocatrd 
elements, 

A = (a, b) I a = Pi and b is the oldest data ('lement 
allocated to pi, or 
A = eij, the j-th oldest data (,lement allocated to Pi 

and (eij_l, eij) E A l , 

and the set of blocked allocation rcquE'sts, 

B = {(a, b) I a=pi or a=eij_l and (eij-2, eii-l) EA with 
process Pi being blocked when f('questing alloration 
of data element b = eij. That is, b = ekl for some 
k=i and I such that either (Pk, b)EA or (ekl-l, b) 
EA} . 

Since each access state of a database is represented by an 
access state graph, operation of the LOCK-UXLOCK 
Mechanism can be modeled by state transition functions that 
map access state graphs to access state graphs. The four 
required functions are: 

(1) The LOCK Function. If database access state 
8= <P UE, L> then LOCK(s) =s'= <P' UE, L>. If 
P= {Pi I Pi is a process, l~i~nl then p'=p U1Pn+d. 
That is, the LOCK Function adds a process node to 
the graph. 

(2) The UNLOCK Function. This function is the inverse 
of the LOCK Function, and its application deletes an 
isolated process node from a graph. 

(3) The ALLOCATE Function. If database access state 
s= <P UE, L>, then ALLOCATE (s, pi, ed =s'. If 
L=A UB then s'= <P UE, L'> and L'=A UB U 
Up.;. e"i) or (ei;-1. eii) 1. This funl'tion flOris fin arr> to 



the graph and thereby models the allocation of a data 
element to a process. 

(4) The DEALLOCATE Function. This function is the 
inverse of the ALLOCATE Function. Its application 
deletes an arc from the graph and thus represents the 
release of a data element from a lock list. 

Figure 1 illustrates the application of the LOCK and 
UXLOCK Functions to a simple database access state. In the 
first graph sho·wn, P = {PI, P2, P3}, E = {dl, d2,···, d9 }, and 
L = the set of paths, {(PI, d7, dg, dg), (P2, d4, d2), (P3, d4)}. The 
arc (Pa, d4) E B indicates P3 is blocked, ,vhile all other arcs are 
elements of A. The figure shows the LOCK Function adding 
process node P4, and the UXLOCK Function is shmvn 
deleting it. Figure 2 gives an example of the application of the 
ALLOCATE and DEALLOCATE Functions. 

In terms .of the model, the normal a.ccess sequence for a 
given process consists first of an application of the LOCK 

LOCK ----
P 

---UNLOCK 
I I 

PROCESSES DA TA ELEMENTS PROCESSES DATA ELEMENTS 

Figure I-The LOCK and LOCK functions 

Function. This is followed by some number of applications of 
the ALLOCATE and DEALLOCATE Functions. At some 
point, the number of applications of ALLOCATE is equaled 
by applications of DEALLOCATE, and the access sequence 
ends with an U~LOCK. 

DEADLOCK DETECTIO~ 

From the discussion above, it should be obvious that the 
ALLOCATE Function is the only function defined that can 
precipitate a deadlock. This is clearly the case, for ALLO
CATE is the only function capable of blocking a process. 

It is now possible to describe a simple and efficient deadlock 
detection algorithm in terms of the model just presented. The 
follmving theorem provides the theoretical basis for the 
detection procedure. 

THEORE~I: If a valid database access state 8 is not a 
deadlocked state, then 

ALLOCATE (8, pi, e) =3' is a deadlocked state if and 
only if 

(1) process Pi is blocked on attempting to allocate data 
element e, and 

Database Sharing 273 

P3 d7 dB dg P d7 dB dg 

~I~I 
I I DEALLOCATE (P2' d3) I I 

PROCESSES DATA ELEMENTS PROCESSES DATA ELEMENTS 

Figure 2-The ALLOCATE and DEALLOCATE functions 

(2) the database access state graph representing 8' con
tains a loop. 

PROOF: To establish these conditions as necessary for 8' to 
be a deadlocked state, notice first that if Pi is not blocked 
then, by definition, 8' is not a deadlocked state. No",-, let 
< P UE, L> be the database access state graph representing 
8 with P= {Pi 11 ~i~n, and n2::2}. Assume ALLOCATE 
(8, pi, e) =8' is a deadlocked state and that 8' = <P UE, L'> 
does not contain a loop. 

Since 8' is a deadlocked state, in 8' there is a set of P d of m 

deadlocked processes, 'v here m ~ 2, and P d = I Pdl, Pd2· •• , Pdm} 
r;;;.P. By definition, each Pdi E P d is blocked. Furthermore, 
each Pdi is blocked by a Pdj E P d, with i ~ j. If Pdi were not 
blocked by some pEP d, then Pdi would have to be blocked by 
a nondeadlocked process; therefore, Pdi ,vould not be dead
locked. Thus, if there are m processes in P d, then Pdi is blocked 
by one of the (m-l) processes {Pd2, pda,···, Pdm}. 

Assume for convenience that Pd2 blocks Pdl. ~ow, Pd2 must 
in turn be blocked by one of the (m - 2) processes {Pd3, 
Pd4, ••• , Pdm}. If not, then Pd2 ,vould have to be blocked by 
Pdl. If Pd2 ,vere blocked by Pdl, then for some data element e' 
the path (Pd2,· •• , e) E A and the arc (e, e') E B while the path 
(Pdl, ••• , e') EA. But since Pdl is blocked by Pd2, this implies 
that for some data element b' the path (Pdl, ••• e', ... , b) E A 
and the arc (b, b') E B while the path (Pd2, ••• , b', ••. , e) EA. 
This, however, violates the assumption that no loop is 
contained in < P UE, L' >, since the path (b' .•• e e' ... 
b, b') is a loop (see Figure 3). Hence, Pd2 mus~ be bl~ck~d b; 
one of the processes {PdS, Pd4, ••• , Pdm}. 

o b' o 
Pd 2 

o 

o 0 
Figure 3-A deadlocked state involving processed Pdl and Pd2 
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:More generally, note that if a sequence of k processes 
PI, P2, "', Pk exists such that each Pi-l is blocked by Pi for 
all 2 ~ i ~ k, then a path exists from PI through elements of 
each p/s lock list to the last element in the lock list of Pk. The 
lock list of each Pi-l is connected to the lock list of Pi by the 
arc representing a blocked request, which is always the last 
arc in a lock list. 

Now consider the j-th process of the m deadlocked processes 
of st.ate s'. Assume for convenience that for 2~i~j, Pdi-l is 
blocked by Pdi. Then, Pdj must be blocked by one of the 
(m-j) processes {Pdh Pdj+l, •• " Pdm}. For if Pdj were blocked 
on allocating b' by some Pdi with 1 ~ i <j, then the path 
(Pdi, "', b', "', b) exists and the arc (b, b') from the lock list 
of Pdj to that of Pdi creates the loop (b', "', b, b')-contrary 
to the assumption that no loop exists. Hence, Pdi must be 
blocked by one of t.he processes {Pdi, Pdi+1, "', P dm} . 

However, for j=m the above implies that (m-m) or zero 
choices remain for the process that blocks Pdm. Therefore, it 
was false to assume that if s' is a deadlocked state, then a loop 
did not exist in < P UE, L' > . 

To establish the sufficiency of the conditions in the 
theorem, suppose that the blocking of Pi creates a loop in the 
access state graph. Since a single lock list cannot contain a 
loop, elements of j lock lists, where j ~ 2, must participate in 
the loop. Since the elements of one lock list can be connected 
to those of another lock list only by an arc representing a 
blocked allocation request, the existence of a loop implies 
that a sequence of processes PI, P2, "', P j exists with each 
Pi-I, ') ~ i ~j, being blocked by Pi and P j being blocked by PI 
In this case a set of processes exist such that each process is 
blocked by a member of that same set; thus, no chance 
remains for them to become not blocked. Therefore, the state 
s' is a deadlocked state, and the theorem is established. 

Straightforward applicat.ion of this t.heorem results in a 
deadlock detection procedure that is both simple and efficient. 
Since a deadlock can occur only when an allocation request 
results in a process being blocked, \vhich is assumed to be an 
infrequent event in a transaction processing environment ,11 

only infrequently will an examination of the database access 
state be necessary. In those instances when a process is 
blocked and it becomes necessary to test for a loop in the 
access state graph, the computation required for the test is 
nearly trivial since (1) the data element requested by the 
blocked process must be in the loop, and (2) the out-degree 
of every node in a database access state graph is one. Thus, 
deadlocked states of arbitrary complexity are easily and 
efficiently detected. 

This detection method has yet another useful characteristic 
-it directly identifies those processes that are responsible for 
the deadlock. The processes that are responsible are, of 
course, those which are blocking each other. In general, 
however, it is possible to encounter a deadlocked access state 
in which an arbitrary number of processes participate, but 
only a small fraction of these are responsible for that state. 
This condition can exist since any number of processes can 
themselves be blocked while either not blocking other pro
cesses or not blocking others in a deadlocked manner (i.e. 
processes participating in the deadlock whose lock lists can be 
removed from :he database access state graph without 

removing the deadlock condition). However, it is obviously 
those processes whose lock lists participate in the loop that 
cause a deadlock condition to exist. By detecting the existence 
of a loop, the algorithm has also isolated the processes 
responsible for the deadlock; and, thus, the method has also 
accomplished the first essential step in the recovery process. 

RECOVERY 

In the context of shared databases, Recovery is the 
procedure by which the effects of a (necessarily) aborted 
process on the object database* are reversed so that the 
process can be restarted. On the detection of a deadlock a 
Recovery Procedure must be invoked. The first element of the 
Recovery Procedure is the determination of which process to 
abort. This decision might be based on any of several criteria. 
For example, it might be advisible to abort the most recent of 
the offending processes, or the process with the fewest 
allocated data elements. In any event, the information 
required for this decision is readily available (see above). 
This decision is, however, a small part of the recovery 
problem. To recover efficiently, the LOCK-UNLOCK Mech
a.nism requires features beyond an efficient detection algo
rIthm. One such feature is a checkpoint facility-a facility 
that records the state of a process and thus enables it to be 
restarted. Clearly, a checkpoint must be performed at each 
LOCK. Furthermore, to enable efficient restoration of the 
database, utilization of a process map is appropriate. 

A process map is basically a map from a virtual addressing 
space t.o a real addressing space, maintained for each process 
in the database access state graph. Database management 
systems are typically characterized by three levels of address
ing: content addressing, logical addressing, and physical 
addressing. Associative references are processed in two steps: 
a ~ontent-to-Iogical address transformation, followed by a 
logical-to-physical address transformation. This "virtual" 
secondary storage characterized by a logical-to-physical 
storage map provides device independence and facilitates the 
e!fi~ient use ~f storage hierarchies. The process map is 
SImIlarly a logical-to-physical storage map. A process map is 
created and associated with process at the execution of a 
LOCK Function. With each execution of an ALLOCATE 
Function, a (physical) copy of the allocated data element is 
created and an entry is made in the associated process map. 
Subsequent references by the process to the database are 
routed through its process map; hence, incremental updates 
are performed on the copies of t.he data elements. The 
DEALLOCATE Function effects a modification** of the 
database storage map and the deletion of the associated entry 
in the process map. ALLOCATE therefore has the effect of 
creating a physical copy of t.he object data element accessible 
only to the allocator, and DEALLOCATE has the effect of 
making the physical copy available to all processes and the 

* The term database as used here includes all data files affected by the 
process, auxiliary files as well as the principal data files. 

** The database storage map is modified so that references to the 
object data element are mapped to the physical copy created at the 
execution of ALLOCATE and subsequently modified by the allocator. 



original available to the database manager as allocatable 
space. 

A process map makes the recovery from a deadlocked 
access state a relatively simple matter. Once a decision is 
reached as to which process to abort, that process is merely 
restarted at the checkpoint performed by the LOCK Func
tion. Implicit in this action is, of course, the restoration of the 
lock list of that process to an empty state. That is, each data 
element that was allocated to the process is released, and the 
copies of these elements are discarded. Clearly, priorities 
must be appropriately arranged to insure that a process 
blocked by the aborted process is allocated the released data 
element for which it was previously blocked. 

No further action by the Recovery Procedure is required, 
for due to the process maps, the actual database was unaltered 
by the aborted process. Note further that the utilization of 
process maps significantly reduces the probability of 
WRITERS interfering with READERS, since references to 
data elements by READERS are always directed to the 
actual database. 

SUMMARY 

The above discussion of the LOCK-UNLOCK Mechanism is 
intended to serve as a functional description of the elements 
of a database management system that are essential in order 
to provide an efficient facility for database sharing. In an 
actual database management system, the LOCK-U~LOCK 
Mechanism could be manifested in the form of LOCK and 
UNLOCK commands used by the programmer. Alternatively, 
the LOCK Function could be assumed implicit in the 
commonly used OPEN command. Under these schemes, 
ALLOCATE could be accomplished via a FIKD command, 
and DEALLOCATE could be implicitly invoked by an 
UNLOCK or CLOSE. 

The occurrence of a deadlock can be translated directly into 
a degradation in system throughput. The ,,,"ork done by a 
process to the point where it is aborted plus the overhead 
required for recovery represent the computational cost of a 
deadlock. Thus the justification of a LOCK-UNLOCK 
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mechanism of the type described here is predicated on an 
acceptably low frequency of occurrence of deadlocked access 
states. Of course, as tasks become small in terms of computa
tional and other resource requirements, the throughput cost 
of deadlocks as well as the probability of their occurrences 
diminishes. 

Any database sharing mechanism can significantly con
tribute to the satisfaction of the requirement for efficient, 
responsive multiprogramming in the transaction environ
ment. The LOCK-UKLOCK :11echanism not only provides 
the potential for efficient database sharing, but it also 
eliminates the requirement for special consideration for 
sharing from the application program. Moreover, this is 
accomplished while the integrity of the database is 
guaranteed. 
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Optimal file allocation in multi-level storage systems* 

by PETER P. S. CHEN** 
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Cambridge, Massachusetts 

IXTRODUCTION 

Storage is an important and expensive component of a 
computer system. ::\Iany types of storage such as semi
conductor, magnetic core, bulk core, disk, drum, tape, etc. 
are available today, each having different cost and physical 
attributes (e.g., access time). To be economical, the storage 
system of a modern computer generally consists of several 
different types of storage devices. Such an assemblage is 
called a multi-level storage system (or a storage hierarchy 
system). 

Since each type of storage has a different cost/performance 
ratio, a series of important problems arise in the design and 
use of multi-level storage systems-for example, ho\v to 
allocate files within a multi-level storage system in order to 
achieve the best performance without considering cost, and 
also ·when the cost is considered. The purpose of this paper is 
to study these problems. 

For simplicity in designing models, the following assump
tions are made: 

(a) Statistics of file usage are assumed to be knO\vn either 
by hardware/software measurements in previous runs 
or by analysis of frequency and type of access to the 
information structure. 

(b) Allocation is done statically (before execution) and 
not dynamically (during execution). 

Although these assumptions are introduced primarily to 
make analysis more tractable, many practical situations fit 
into this restricted case. One example is periodical reorganiza
tion of the data base for airline reservation systems. Another 
is the allocation of user files and non-resident system pro
grams io auxilary devices. 

These file allocation problems have usually been treated 
intuitively or by trial and error. Only recently have some 
analyses been performed in this area.1.2·3 The work done by 
Ramamoorthy and Chandy4 and by Arora and Gall05 is 
particularly interesting; it concludes that the optimal file 

* This work was sponsored in part by the Electronic Systems Division, 
U.S. Air Force, Hanscom Field, Bedford, Massachusetts under Contract 
No. F-19628-70-C-0217. 
** The work reported here will be included in the author's Ph.D. Thesis, 
"Optimal File Allocation," to be presented to Harvard University. 
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allocation strategy is to allocate the more frequently used 
files to faster devices to the extent possible. However, waiting 
time in the request queues is ignored. Thus, this file allocation 
strategy may induce undesirably long reqm'St queues befDre 
some devices. 

By considering queueing delay, a more realistic analysis 
may be performed. We analyze three types of file allocation 
problem. The first one is to allocate files minimizing the mean 
overall system response time without considering the storage 
cost. The second one is to allocate files minimizing the total 
storage cost and satisfying one mean overall system response 
time requirement. The last onp is to allocate files minimizing 
the total storage cost and satisfying an individual response 
time requirement for each file. We propose algorithms for the 
solutions of the first two problems; the third problem is 
considered elsewhere.6 

ANALYSIS 

To design models, it is important to identify the significant 
parameters of the physical systems and to describe the inter
relationships among these parameters. In the following, we 
shall describe the essential characteristics of file allocation 
problems. 

The storage device types concerned in this paper are 
auxilary devices. It is assumed that the block size is fixed for 
each device type, exactly one block of information is trans
fered per input-output request, and a storage cost per block 
is associated with each device type. The service time for a 
request generally consists of two components. One is the data 
transfer time, roughly a constant for each device, and the 
other is the electromechanical delay time, which may vary 
from request to request. Thus, the device service time is 
considered to be a random variable. 

Let M denote the total number of devices in the storage 
hierarchy. For device j (j = 1, 2, ... , M), the cost per block 
is Cj, and request service time is assumed to be exponentially 
distributed \"ith mean l/.uj (Ul~U2~··· ~UM>O): 

Prob [service time ::::;tJ= l-exp( -ujl), t~O 

A file is a set of information to be aiiocated in the storage 
hierarchy. The length of a file may vary from a few words to 
some bound set by the system designer. The file reference 
frequency is assumed to be known by some means. For 
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simplicity, it is assumed that each block of a file has the same 
request frequency (for otherv.ise, we may redefine the files 
to satisfy this condition). 

Let L denote the total number of files. The length of file i 
(i = 1, 2, ... , L) is denoted by N i and the per block request 
frequency by Ii (11 ?/2? ... ?I L) . 

We assume that each block of a file can be assigned to any 
storage device, and there is sufficient storage on each device 
to allocate files in any manner desired. L files (with N i blocks 
each) must be allocated among M storage devices. We are 
interested in the effect of the allocation pattern on the total 
storage cost and response time. 

Let nij denote the number of blocks of file i allocated to 
storage devicej. The nij are integers; however, for simplicity 
we shall assume the nij are continuous variables. (A near
optimal integer solution can be obtained by rounding the 
optimal solution to the nearest integer.) Note that the nij 
are nonnegative: 

Note also that 

i=I, ... ,L, j=I, ... ,M 

M 

L: nij=Ni , 
/=1 

i=I, ... , L 

(1) 

(2) 

Since Cj is the cost per block of storage using device J. and 
~L • ' 
~i=l nij IS the total number of blocks of storage using device 

J, the total storage cost is: 

M L 

c= L: Cj L: nij (3) 
/=1 i=l 

Since the reference frequency for blocks in file i (i = 1 
2, ... ,L) is ii, and there arenij blocks of file i allocated t~ 
storage device j, the total input request rate for device j is: 

L 

Aj= L: nijii (4) 
i=l 

To prevent the queue lengths from growing v.ithout bound 
it is required that ' 

L 

Aj= L: nijli<Uj (5) 
i=l 

That is, the overall arrival rate to a device must be less than 
the device service rate. 

The input requests for each device are assumed to be 
independent and to arrive at random. Thus, the input to 
each device is generated by a Poisson process with mean rate 
Aj. The total mean input rate for the system is the sum of the 
mean input rate for all devices. (It is also the total request 
rate for all files.) That is, 

M M L 

A= L: Aj= L: L: nijli (6) 
j=1 /=1 i=1 

Since the input is generated by a Poisson process, and the 
service time is exponentially distributed, the mean response 
time for a request forwarded to device j is given by7 

Rj=I/(ur"Aj) =1/ (Uj- t, ni11) (7) 

The mean system response time is the weighted sum of the 
mean response time for requests forwarded to each device: 

M M 

R(Al, ... , AM) = L: (Aj/A)Rj = L: [AJ!A(Uj-Aj)] 
/=1 /=1 

or, 

The probability that the response time for a request for
warded to device j exceeds T can be expressed by7 

Pj(t>T) =exp[ - (I-AJ!uj)ujT] 

=exp [(t, nijli-Ui) TJ (9) 

Since nij/ N i is the proportion of requests for file i forwarded 
to device j, the probability that the response time for ·a 
request for file i exceeds T can be expressed as a weighted 
sum of the individual probabilities for each device: 

M 

Pli/(t> T) = L: (nij/Ni)Pj(t> T) 
/=1 

::.vIINLvIIZING THE :vIEAN SYSTE::vr RESPONSE TliVIE 

Problem statement 

Consider the simple case in which the mean system re
sponse time is the only measure of performance, storage cost 
being ignored. The file allocation problem can be stated: 
allocate files such that the mean system response time is 
minimized. This problem is formulated as a nonlinear 
programming problem as follows: 

IHinimize 

subject to 

L 

L: nijii < Uj, 
i=l 

M 

L: nij=Ni, 
j=1 

(lla) 

j=I, ... ,M (llb) 

i=I, ... ,L, j=I, ... ,M (lIc) 

i=I, ... ,L (lld) 

The interpretations of (11) can be found in the derivations 
of (8), (5), (1), and (2). The above will be referred to as 
the type 1 problem. 

Substituting (4) and (6) into (11) in the type 1 problem 
and reorganizing, we get the following system: 



:Minimize 

Subject to 

Aj~O, 

j=I, ... ,M 

j=I, ... ,M 

(12a) 

(12b) 

(12c) 

(12d) 

The above is called the load partition problem: partition a 
given total input load ~~ h'1tO AI, A2, ••. , A.u· for each device 
so that the mean system response time is minimized. 

Optimal solution 

The optimal solution of the load partition problem is 
obtained as follows:8 

For A(k+l) >A~A(k) (k=I, . .. , M), set, 

A/=O, 

where 
k k 

A(k) = L: Uj- Ukl/2 L: U/,2, 

i=1 i=1 

M 

A(M +1) = L: Uj 
j=1 

j=I, ... , k 

otherwise (13) 

k=I, ... ,M 

Theorem 1. The set of input rates obtained by (13) holds 
for every optimal solution to the type 1 problem. 

Proof of this theorem follows immediately from the manner 
in which the load partition problem was obtained from the 
statement of the type 1 problem. 

Utilizing (13), we propose the follo\\ing algorithm for 
solution of the type 1 problem. 

Algorithm 1. 
Step 1. Calculate the total mean input rate A by (6). 
Step 2. Use (13) to obtain the optimal solution 

AI*, ... , XM* for the corresponding load partition problem. 
Step 3. Allocate file blocks in any manner desired, but 

ensure the resulting mean input rate to devicej is equal to Xl. 

The optimality of Algorithm 1 follows directly from Theorem 
1. 

In the following, we illustrate the use of Algorithm 1 by 
a simple example. 

Example 1. Suppose that there are three files (L=3) to 
be allocated to two devices (M" = 2) in order to minimize the 
mean system response time. 
Given: 

13=1 
Na=l00 
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Using Algorithm 1, the total input rate is 

X=3X50+2X80+1 X 100 
=410 

The optimal solution for the corresponding load partition 
problem is 

AI* =400-20( 400+ 100-410) / (20+ 10) 
=340 

A2*=70 

Any file allocation pattern with Xl* = 340 and A2* = 70 will be 
optimal. For instance: 

nll=50 ~1=80 n31=30 (1) 
n12=O ~=O n32=70 

nll=40 ~1=60 n31=loo (2) 
n12=l0 ~=20 n32=O 

A commonly used file allocation strategy is: 

Allocation strategy A. Order files according to their relative 
frequency of access, and allocate files to devices in order, 
starting by allocating the file \vith the highest reference 
frequency to the faster device, etc. (for example, the first 
set of solution in Example 1). 

The second solution stated in the above example provides a 
counterexample to the conjecture that allocation strategy A 
is a necessary condition for the optimal solution of the type 
1 problem. 

:YIINE\IIZING THE STORAGE COST-ONE 1IEAN 
SYSTE11 RESPONSE TIME CONSTRAINT 

Problem statement 

When storage cost is also a factor, the following problem 
arises: allocate the files such that the storage cost is minimized 
and the mean system response time is bounded. That is, 

1Iinimize 

subject to 

L 

L: nij Ii < Uj, 

i=l 

.1{ 

L: nij = lVi, 
pI 

M L 

L: Cj L: nij (14a) 
i=1 i=1 

(14b) 

j=l, ... , Jf (14c) 

i = 1, . , , ,L; j = I, . , , ,J.lf (14d) 

i=l, .. . , L (14e) 

(14a) denotes the total storage cost. (14b) is the mean 
system response time constraint where V is the given bound. 
The above ",ill be referred to as the type 2 problem. 
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Optimal solution 

The following theorems state the properties of the (unique) 
optimal solution for the type 2 problem. Proofs are supplied 
in the Appendix. 

Theorem 2.1. If Cj > Cj+l ( j = 1, ... , M -1) , then the 
optimal solution for the type 2 problem follows allocation 
strategy A. 

In the follo\\ing theorem, we consider the case in which 
there are only two devices (M =2). Let AI" A2' denote the 
mean input rates at the optimum for the type 2 problem with 
M =2, and Al*, A2* denote the mean input rates at the opti
mum for a corresponding load partition problem. Let 

where 

It is easy to see that a solution, !nij}, satisfies (14b)-(14e) 
is equivalent to that corresponding input rates (AI, A2) 
satisfy Al E S. 

Theorem 2.2. For a type 2 problem with M = 2, the mean 
input rates (AI" A2') at the optimum have the following 
property: 

It is easy to see that R (AI, A - AI) is convex on Al in 0 ~ Al and 
A-U1!<AI <Ul. The minimum of R(AI, A-AI) occurs at 
Al = Al*. Thus, A/ is easy to obtain. (In fact, in most cases we 
only need to solve a second order equation.) 

Conventional algorithms usually involve matrix manipula
tions which are time-consuming. In the following, we propose 
an efficient algorithm utilizing Theorems 2.1 and 2.2 for 
M =2. For M~3, we choose a conventional algorithm, and 
propose an easy method for obtaining the initial feasible 
solution. 

Aglorithm 2.1. (for M = 2) 
Step 1. Calculate the total input rate A using (6). 
Step 2. Find AI' by the method stated in Theorem 2.2. 
Step 3. Allocate files according to allocation strategy A, 

ensuring that the mean input rate to the faster device equals 
to At'. 

Algorithm 2.2. (for M 3) 
Step 1. Calculate the total input rate A using (6), and 

the input rates AI*, ... ,AM* using (13). 
Step 2. If R(AI*, A2*, ... , AM*) > 1', terminate. (Xo 

feasible solution exists.) 
Step 3. Use AI*, ... , A](* and allocation strategy A to 

calculate I nij}, the initial feasible solution. 
Step 4. r se this initial feasible solution and the Sequential 

Unconstrained .:\Iinimization Technique (Sl'.~IT) 9 to find 
the optimal ~obltjon. 

MINE\UZING THE STORAGE COST-INDIVIDUAL 
RESPONSE TIME REQUIREMENTS 

Files may have individual response time requirements. 
This means that inequality (14b) is replaced by L individual 
response time requirements (one for each file). In addition, 
there are many situations in which the probability of the 
response time for an individual request exceeding some given 
bound must be limited. Thus, the cumulative response time 
probability distribution must enter the analysis. 

With inequality (14b) replaced by L individual inequalities 
(10), we formulate another important type of file allocation 
problem: allocate files minimizing the storage cost and 
limiting the probability that the response time for file i 
exceeds some given bound T to Qi. That is, 

Minimize 

subject to 

P{i)(t>T) ~Qi, 

L 

L nij/i<uj, 
i=l 

M 

Lnij=Ni , 
j=l 

M L 

LCj Lnii 
i=1 i=1 

i=1, ... , L 

j=1, ... ,M 

i=1, ... , L, j=1, ... ,M 

i=1, ... , L 

This will be refered to as the type 3 problem. 

(15a) 

(15b) 

(15c) 

(15d) 

(15e) 

The type 3 problem is very complicated, exhibiting one or 
more nonconvex feasible regions. A detailed discussion of 
this problem can be found elsewhere.6 We state a theorem 
concerning the optimal solution; the proof of the theorem is 
contained in the Appendix to this paper. 

Theorem 3. The optimal solution for the type 3 problem 
does not necessarily obey allocation strategy A. 

DISCUSSION 

Service time distributions 

The assumption that device service times are exponentially 
distributed is made for simplicity in the analysis. To be more 
realistic, we can assume that the device service times are 
generally distributed with appropriate means and variances. 
The resulting models have similar properties to those pre
sented here, and similar algorithms can be derived to analyze 
them. Some results for the load partition problem with general 
service times are discussed by Chen and Buzen. lO 

Remote storage 

As use of distributed computer networks becomes more 
widesprrad, it will become economical to store some files in 
f'hpap ~toragp at remote ~itp<:; mthpr th::m ~torp them )n(,ftlly. 



Since retrieval time for files at a remote site may not be 
acceptable, determining the tradeoff between storage cost 
and response time will be a problem. 

Our models can be easily adjusted to apply to these 
problems. A simple application of the models is to consider 
each remote storage as part of the storage hierarchy. The 
mean service time for retrieving a file block from that remote 
site is assumed to be exponentially distributed 'with an 
appropriate mean. 

Note that the situation considered here is conceptually 
different from the models developed by Chull and Casey.12 
The latter models are optimized from the point of view of a 
computer network designer. Our model takes the point of 
view of a computer center manager at one site in the network 
who stores files at other sites. 

SUM~IARY 

We have analyzed three types of file allocation problem in 
multi-level storage systems, and proposed algorithms for 
solving t,vo of them. Since effects of queueing delay are given 
proper consideration, this analysis is more precise than 
previous analyses. Considering files with individual response 
time distribution requirements, we have presented a model 
(the type 3 problem) which is suitable for real-time environ
ments. 

One might expect that the optimal strategy al,,-ays allocates 
more frequently used files to faster devices (allocation 
strategy A). This is true in some situations, such as in the 
type 2 problem. However, when each file has an individual 
response time requirement (the type 3 prob1em), this strategy 
may not be optimal. ::\loreover, in the case where storage 
cost is not a factor (the type 1 problem), use of this strategy 
is not essential. 

Finally, \ve have briefly discussed extension to general 
service time distributions, allowing the resulting models to 
fit the practical situation better, and application of the models 
to use of remote storage in a distributed computer network. 
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APPENDIX 

Proof of Theorem 2.1: 

Assume that the optimal solution consists of ni'j~O and 
nij' ~O, where fi >Ii' and Uj >Uj'. That is, some portion of a 
less frequently referenced file i' is allocated to a faster device 
j, and some portion of a more frequently used file i is allocated 
to a slower device j'. Let a = ::\Iin[ni'i fi', nij'li]. Exchanging 
a/fi' blocks of file i' in device j with a/fi blocks of file i in 
device j' will not change the mean request input rate to these 
t,vo devices, nor will it change the mean response time. The 
inequality (14b) is still satisfiable, and so are (14c) - (14e) . 
But this exchange reduces the total storage cost by the 
amount: 

[(a/fi') Cl + (a/fi)C2]- [(a/Ii)cl + (a/fi') C2J 

=a(fi-fi') (CI-C2)/(fi'fd >0 

This contradicts the assumption. Thus, the optimal solution 
of the type 2 problem obeys allocation strategy A. 

Proof of Theorem 2.2: 

Assume that at optimum Al = Ala ~ ::\Iin I Al I Al E S I. \Ve 
can find AlbE S such that Alb<Ala. By Theorem 2.1, the 
optimal solution must use allocation strategy A. By using 
allocation strategy A throughout, the allocation pattern 
with Al = Ala will cost more than the allocation pattern with 
Al = Alb since the latter uses fewer faster storage blocks. This 
contradicts the optimality assumption. Thus, 
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Proof of Theorem 3: 

We state a counterexample to the necessity of the use of 
allocation strategy A. 

Given: 
c1=10 
f1= 3 

N1 = 5 
u1=30 
T= 0.1 

Q1= 1 

C2= 5 
f2= 2 

N2 =1O 
'U2=28 

Q'l.= 0.438 

Q1 = 1 indicates that any allocation pattern will satisfy the 
response time probability distribution constraint for file 1. 
The (unique) optimal solution of this example can be found 
to be 

nu=O 
n12=5 



Interaction statistics from a database management 
system 

by J. D. KRINOS 

United Aircraft Research Laboratories 
East Hartford, Connecticut 

INTRODUCTION 

Increasing attention is being paid to the measurement 
and evaluation of computer systems performance. A 
recent bibliography, 1 laying no claim to completeness, 
lists roughly 250 items all published in the last decade. 
While there is still a lack of unified "theory of computer 
performance" as observed by Johnson/ several tech
niques are being used-primarily analysis, simulation, 
monitoring, and benchmarking. The choice depends 
somewhat on the characteristics of the system under 
examination and on the purposes of the exercise.* 

For effective design of new information processing sys
tems or applications it is necessary to predict with accu
racy the future behavior of the system under load. To do 
this, one needs a model (analytical or simulation), and 
reliable data. The best source of data is from performance 
statistics gathered during actual operation of a system of 
a similar type. 

Once a system is developed and implemented, there is a 
continuing need for monitoring and controlling its usage 
and performance. As in other technological systems, suit
able instrumentation for data collection should be a 
permanent feature of information systems, by being 
incorporated in the initial design process. The instrumen
tation can be external (usually a hardware monitor), an 
internal software data gathering program for continuous 
monitoring or sampling, or a combination of both 
approaches. 

The major components affecting the performance of an 
online database management system are: 

• its hardware and communications environment, 
• its software (applications and systems), 
• its users at the man-machine interface. 

Historically, hardware performance has received most 
attention. This paper concentrates on the software and 
man-machine parameters and presents some empirical 
results derived from operation and use of the UAIl\IS 
real-time system. However, these results are dependent 

* For a good review of the entire field the reader is referred to Lucas.3 
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on the actual hardware characteristics, and care should 
be exercised if they are to be used in predicting perfo.r-m-
ance of any other system environment. 

ONLINE SYSTEM DESCRIPTION 

United Aircraft Information Management System 
(UAIMS) is an interactive computing utility providing 
generalized database management and information proc
essing services to various user groups throughout United 
Aircraft Corporation. UAIMS was developed at the 
Research Laboratories over a number of years. It is 
installed on an IBM System/360 Model 50 computer with 
512K bytes of core memory and a 2314 disk storage facil
ity. The current system4 has been operational since 1970 
and comprises: 

e a teleprocessing executive and task scheduler (TPE), 
• the database management system (DMS), and 
• application programs (AP), both general-purpose 

and specialized. 

As illustrated in Figure 1 UAIMS runs under IBM's 
operating system (OS/MVT), often concurrently with 
other batch-processing jobs. A typical allocation of 2314 
disk-pack drives is shown in the figure. This permits a 
balanced multiprogramming load with one online 
(swapping) partition and a lower priority batch stream. 

The TPE is a version of BEST (Baylor Executive Sys
tem for Teleprocessing)," but extended and modified in
house to provide time-sharing features. It is written in 
assembly language and requires 80K bytes of core. Main
taining one or more online partitions, it supports interac
tive execution of multiple jobs from low-speed terminals . 

User terminals, Sanders 620 CRT displays and Tele
types (Models 33 and 35), are connected to the computer 
by a communications network of cable, private line, and 
dial-up telephone facilities. From any terminal a user 
may access the computer utility by giving the proper 
accounting information and signing on a program. He 
then typically engages in a man-machine conversational 
interaction to enter data into the system, to formulate and 
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TELETYPE 
KSR-33/35 

CPU 205011 MEMORY 
1524,288 BYTES) 

Figure l--UAIMS schematic 

DIRECT STORAGE 
2314180R'VES) 

execute simple interrogations or complex queries, to proc
ess or modify selected data, to produce output reports, or 
otherwise initiate, follow and react to programmed 
instructions. 

All user data bases and programs reside on direct stor
age. The interactive application programs are brought 
into main memory only between the times at which they 
are signed on from a terminal and at which they are ter
minated. User programs are dynamically rolled into main 
core from secondary storage when requests for processing 
are made from terminals. A program using DMS attaches 
it at the time the first call is made. All access to the data
base is through DMS via its own query or updating lan
guage. 

Interactive programs do not necessarily remain in main 
memory for the entire time between sign-on and sign-off. 
With the TPE online swapping capability, when an appli
cation program is waiting for a message from a terminal it 
is rolled out to secondary storage if some other program is 
ready for processing. Also, if processing takes too long and 
there are other programs waiting, a time-slicing feature 
comes into play to ensure equitable service to all system 
users. Two queues are maintained for each online parti
tion to better control the scheduling and swapping of 
application programs. When programs first become ready 
for processing they are placed in the high priority queue 
to get a "quick shot" at the CPU. This allows for quick 
response to short transactions. If, however, the initial shot 
is not enough, time-slicing occurs and the transaction is 
then placed on the lower priority queue for the additional 
processing. 

A typical activity sequence for two full interactive 
cycles is shown as an example in Figure 2. 

TIME-

READ, THINK, TYPE, SEND RFAO 

USER WORKING o o 
I INPUT G I q 

T E R M INAl I ' ~J~~AU\ ci~~:~T ~, 
OUTPUT P : 0 q 

TPE IN CONTROL 1111 ,~:,' ,. III I II ~II~'~'.I~ , i ~ 
PROG ROLL IN/OUT ~; W OTHER INTERRUPTS :;;:; ~l H::: PROG STILL i! 

Rl' HO (TO SERVICE I~R~I~H; ~:: ~o R~l :: IN COkE :: 

PROGRAM I APPl ! ~, 01HERS) ~::~~'~!b-. :JlME:. :-

EXECUTING I OMS' OUEUE : ii:S"C'N~: I 

: -i : ~_.: i 
PROG REQU!RES INPUT : TOMS E1 ~ OMS ET • USER : 

SYSTEM i:;L--USER TURNAROUND TIME-----:S YSTEM RESPONSE TURN AROUN~ 
RESPONSE I ~ : 
~ filA N.MACHINE CyClE-___ --MAN_MACH'NE CYCLE-----' 

Figure 2-Example oftimin~ f:equence 

DATABASE MANAGEMENT 

Many recent publications discuss the concepts and 
capabilities of generalized database management systems 
(GDBMS). Surveys of existing GDBMS have been made 
by CODASYU and others." Fri' establishes the distinc
tion between a GDBMS and other information handling 
system categories such as information storage and retriev
al, real-time fixed-transaction systems, and conventional 
data processing using access methods. Olle 10 reviews cur
rent developments and calls attention to the differences 
between self-contained and host language systems. Early 
systems were usually of the self-contained variety while 
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Figure 3-Information flow 

later developers favor host language designs such as HIS's 
IDS, IBM's IMS, Cincom's TOTAL, and CODASYL's 
DBTG II specification. The host language approach is to 
interface the GDBMS with some other program written in 
a higher level language such as Cobol. This provides an 
open-ended flexible environment for programming but 
usually lacks capabilities oriented toward non-program
ming users, for example general query and updating. 

The latest CODASYL Systems Committee report l1 

expressed the wish that the self-contained and host lan
guage approaches be unified. This was attempted, to some 
extent, in UAIMS, which was designed to incorporate 
desirable features of both types of system organization. 
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Thus a self-contained, non-procedural, general-purpose 
language for data definition, query and updating is avail
able to the programmer within a host language environ
ment; furthermore, the same language can be employed 
by the non-programming user. 

The Data Management Service (DMS) part of UAIMS 
allows a user to define his file structure logically and 
specify multiple keys for secondary indexing as required 
for fast access. The query language can be utilized to 
search and retrieve data from any database. File mainte
nance may take place at the same time as interrogation 
from another time-shared terminal. DMS sets up special 
queues to allow multiple online access and updating of 
the same file from different terminals. Software protect 
keys prevent unauthorized access to the database. 

DMS acts as an extension of an application program, 
written in a higher-level procedural host language 
(Fortran, Cobol or BAL). Interfacing is achieved by 
means of the CALL statement. A total program is thus 
formed, tailored to the needs of the end user and the par
ticular database of interest. Such a total package, includ
ing DMS, works either online or in the batch mode, and 
can usually be handled in a core partition of l;,)OK bytes 
total. DMS itself is coded mainly in Fortran, with a few 
assembly language routines. Utilizing overlays, it requires 
60K out of the total partition. 

The functional organization of DMS is depicted in 
Figure 3, illustrating the information flow generated 
within the system by a message from a terminal user. 

PERFORMANCE DATA COLLECTIO:\ 

Monitoring is essential to evaluate reliability and per
formance and to improve the quality of service provid
ed. 13 In UAIMS, both the TPE and DMS gather data on 
all transactions. 

The software monitor incorporated in the TPE captures 
the time and origin (or destination) of each event as it 
occurs. Events are: 

• the system going on or off the air. 
• a terminal logging on or off, 
• a program starting or terminating, 
• a message being received from or sent to a terminal. 

A postprocessor, initiated when UAIMS goes off the air, 
reads the captured events in sequence, calculates and 
stores appropriate time intervals, and produces a monitor 
log. This log contains information on system availability, 
terminal and program usage, and traffic. Abnormal pro
gram terminations and system crashes are indicated. The 
latter are inferred from the absence of a recorded "system 
off" event and may have been caused by either software 
or hardware malfunctions. The time of the last recorded 
vent provides a good approximation to the actual time of 
crash. 

Weekly and monthly teleprocessing statistical reports 
are produced from the information generated by the 

postprocessor. These reports provide figures for opera
tional reliability and utilization as an aid in the proper 
allocation of resources and to improve operating effi
ciency. Various timings are presented, aggregated by 
terminal, by account number, and by individual com
puter program. Some of these observed statistics will be 
discussed in the following sections of this paper. 

DMS keeps a separate record of all database transac
tions. This includes elapsed time from call to return, CPU 
time, number of disk I/O's performed, file accessed, and 
identification of calling program and terminal location. 
Error returns and no-returns (incomplete transactions) 
are flagged so that a determination of the cause can be 
made later. A summary is prepared of all the files that 
have been changed by online data entry (building) or 
maintenance (delete, change, or add functions) during the 
session, together with the number of updating transac
tions for each and whether any were incomplete. This 
information helps the data administrator maintain file 
integrity, decide the frequency of backup copying, and 
recover from failures. 

Statistical reports from DMS online transaction moni
toring are produced monthly. They include a transaction 
breakdown (query. input, maintenance, etc.), and fre
quency for the period. Distributions of execution time, 
CPU time and number of disk I/O's per transaction are 
tabulated and mean values computed. 

MAN-MACHINE CONVERSATIO~AL BEHAVIOR 

Online time-sharing systems have been in existence for 
several years. Their performance has been measured and 
reported in the literature. A body of knowledge exists and 
predictions can be made with confidence, as long as the 
mode of application remains unchanged. 

Information management systems, as a special class of 
interactive systems, are a more recent occurrence. Their 
performance characteristics have not yet been extensively 
analyzed. The question is, to what extent can predictions 
for the terminal interface behavior be made based on 
general time-sharing results? 

During its operational life UAIMS has served as a test
bed for the study of man-machine conversational behav
ior within a database management environment. The 
timing example in Figure 2 serves to illustrate the process 
and to define some of the more important terms used in 
the analysis. 

System. respon.se is the elapsed time between receiving 
the last character of an input message from a terminal 
and sending the final processor output to the channel for 
transmission to the terminal in response to the message. 
With this conservative definition, initial or intermediate 
responses to the user are not counted even though they 
can make a big difference in user satisfaction. System 
response time* as well as DMS execution time (E. T.), as 

* This is called "processor elapsed time to complete" by Stimler14 who 
reserves the term "response time" to transactions requiring less than 
one time slice. We make no such distinction here. 
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PROGRAM CHARACTERISTICS NON-OMS GENERAL TOOL ALL 

(MEAN VALUES) USERS QUERY + SELECTION PROGRAMS 
OTHER (OMS) 

OMS USERS 

CPU TIME (SEC) 0.2 1.6 3.7 1.3 

NON - CPU TIME (SEC) 3.1 5.3 29.1 6.4 

SYSTEM RESPO"NSE (SEC) 3.3 6.9 32.B 7.7 

USER TURNAROUND (SEC) 14.0 17.3 26.3 17.9 

CYCLE TIME (SEC) 17.3 24.2 59.1 25.6 

NO. OF CYCLES/SESSION 31 37 B 26 

SESSION TIME (MIN) 8.9 14.9 7.B 10.9 

ONLINE USAGE LOAD 33% 50% 17% 100% 

Figure 4-Program usage statistics 

measured here, may also include inactive periods due to 
time slicing. In all cases, only a fraction of the total 
response time is spent for processing, in the CPU. This 
fraction is measured and included in the results but it is 
not shown diagrammatically in Figure 2. 

The user turnaround time corresponds to what is 
commonly referred to as "think time;"lS.IS.17.1B roughly it 
is the time a user requires to complete a new message 
after being requested to provide one by the system. 
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Figure 5-System response versus CPU time 

Observed performance results showed considerable 
variation among application programs. It was possible, 
however, to group them into three distinct classes exhibit
ing significant and meaningful differences in their charac
teristics. 

Figure 4 shows the mean val ues of the statistics 
obtained from all measurements covering a six-month 
period between October 1971 and April 1972. The total 
sign-on or active usage time for all programs was 700 
hours. 

The class of non-DMS users in Figure 4 comprises 
several online programs for programming, editing, data 
entry, and calculation purposes. This class is representa
tive of the conventional time-sharing applications. 

General query and other DMS users are made up of a 
variety of database application programs. Typically they 

35~ 

U 30 
w 
~ 
w 

25 :iii 
t-
o 
:2 
:::I 20 
0 
a: 
« 
:2 
a: 15 
:::I 
t-
a: 
w 
en 10 
:::I 

Z 
« 
w 
:iii 5 

• • 

x 

TOOL SELECTION (OMS) x 

x 
*ALL PROGRAMS x x 

~GENERAL QUERY 
., + OTHER OMS USERS 

• ~NON-OMS USERS 
X 

x OMS-USING AP'S II 

• NON-OMS AP'S 
~---___ ... ---.J 

30 35 
(SEC) 

Figure 6-User turnaround versus system response 

permit a terminal user to interrogate DMS-structured 
files using the DMS query language. After opening a file 
with its protection key, questions can be asked with any 
search conditions and their logical combinations by 
means of Boolean"and", "or" operations. Search criteria 
associate any field name with desired val ues using rela
tional operators "equal", "not equal", "greater than", 
"less than", "between". Searches can also be made for 
data that start with certain characters or that contain the 
given string within the field. All searches take advantage 
of the indexing available within a file whenever po~sible. 
However, it is also possible to request sequential searches 
or other lengthy processing. Thus, system response times 
can occasionally be quite long. 

A special DMS-calling application for tool selection 
enables production engineering designers to choose drills 
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and other manufacturing tools. The program first asks for 
certain inputs from the user and then goes through an 
iterative algorithm to compare the user's needs with 
available tools and come up with an optimum selection. 
During this process the program formulates and sends 
several queries to DMS and analyzes the answers. This 
results in a mean system response time to the terminal 
user of 32.8 seconds, the longest of any program. How
ever, very few interactive cycles are required to solve a 
particular design problem. This can be seen in Figure 4 
by the small number of cycles per session and consequent 
short terminal session time. 

The tabulated results show the decisive importance of 
application type in predicting the system performance. 
The relation between mean system response and mean 
CPU time for various AP's is also shown graphically in 
Figure 5; for illustration it is compared to simulation 
results given by Scherr.15 The average user turnaround 
time versus the mean system response time for the AP's is 
plotted in Figure 6. No obvious correlation seems to exist 
in this case. Both Figures 5 and 6 include average results 
for individual application programs belonging to the pro
gram classes discussed previously. 

No frequency distributions of the timings at the man
machine interface are available. The longest system 
response times were recorded and these reached between 
10 and 20 minutes on a month-by-month basis. It is 
believed that the distributions would follow the hyperex
ponential pattern, which commonly applies to time-shar
ing statistics. This pattern was also found empirically at 
the AP-DMS interface, as discussed later in this paper. 

OPERATING CHARACTERISTICS 

The man-machine statistics were generated during a 
six-month period in which the workload was light and the 
operating conditions remained relatively stable. The 
UAIMS utility was "up" four hours per working day, two 
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Figure 7 - U AIMS workload characteristics 

in the morning and two in the afternoon. Out of the total 
available uptime the system was in use 76 percent of the 
time on the average. "In use" is defined as having one or 
more programs signed on for processing, and may include 
periods of no system activity due to user thinking, etc. 
The mean system response time and terminal loading are 
plotted on a month-by-month basis in Figure 7. As 
expected, there is a correlation between loading and 
response time. But, due to the light workload, the effects 
of secondary storage I/O contention, investigated by 
Atwood,19 were not pronounced and did not cause appre
ciable delays in response. 

Average loading and traffic figures per hour of UAIMS 
availability (uptime) for the six month period of measure
ment are summarized below: 

Occupancy - of CPU 
- of computer system 
- of terminals 

Number of programs signed on 
(terminal sessions) 

Messages received form all terminals 
Number of DMS transactions 
DMS utilization - Execution time 

- Time in CPU 

3.9 minutes 
23.3 minutes 

1.4 hours 
7 

182 
73 
7.4 minutes 
2.2 minutes 

As explained earlier, the numbers for computer system 
occupancy and DMS execution time come from elapsed 
time measurements within programs, i.e., by summing all 
response times. They include, besides the computing 
(CPU) time shown, all secondary storage input/ output 
I/O) and waiting periods when another program may be 
in control. The concept corresponds to what Stevens20 

and Y ourdon21 call "user time." 
The general-purpose database management system, 

DMS, is by far the most important element in UAIMS 
from a load and performance standpoint. It accounts for 
60 percent of total CPU utilization, the rest being distrib
uted among all application programs. The DMS utiliza
tion per hour of UAIMS "in use" (as defined previously) 
is plotted in Figure 8 on a month-by-month basis. Also 
shown are two reliability measures. One is the percentage 
of calls to DMS that were not completed, for any reason 
at all. The non-completion ratio diminished as improve
ments and corrections were made to DMS during the time 
period. The average tends to be about 0.2 percent of 
transactions, and includes the effects of application pro
gram debugging, system faiiures, and canceilations made 
by the computer operator. System crashes (for all reasons 
including hardware failures) are also plotted and pres
ently average around 5 per month. 

DATA MANAGEMENT INTERFACE STATISTICS 

The discussion so far has centered on the man-machine 
interface and its traffic pattern. It was just noted, how
ever, that within this type of real-time information sys-



288 National Computer Conference, 1973 

::fL _____________ D_M_s_C_A_LL_s_P_E_R_H_O_~ __ ~ __ US_E_) ______ ~ ________ ~. 

1.5 

1.0 

0.5 

OMS NON·COMPLETION PERCENTAGE 

::t ~., ,.,~"'" '" .o,~ 
0

6 
~ 

7 B 9 10 11 12 1 2 3 4 5 6 7 B 9 10 11 12 

1971 1972 

TIME (MONTHS) 

Figure 8-Utilization and reliability 

tern another important interface exists. It is the one 
shown in Figure 3 between application programs and the 
DMS software. 

An analysis of 70,000 DMS transactions originating 
from all application programs during the one-year period 
June 1971 through May 1972 yielded the mean response 
statistics and the observed relative loadings tabulated in 
Figure 9. Overall, the average time between call and 
return was 5.6 seconds. Of this time 1.8 seconds were 
devoted to computer processing. Data transfer between 
DMS and the disk files required 23.7 I/O's which amount 
to about 2.6 seconds. * The remaining 1.2 second repre
sents interruptions from OS and the TPE and incl udes 
time-slicing waits (see Figure 2). 

When broken down by function performed, the average 
response statistics vary by a factor of ten or more. In data 
management technology there is a performance trade-off 
between query and updating which poses a design choice. 
Data structures providing multiple access for associative 
searching and fast retrieval respond well to unanticipated 
queries but are time-consuming to build and maintain. 
This is illustrated in Figure 9. For the system described, 
the design choice proved correct since queries represent 
the greatest load on the system. The penalty is paid for 
data entry and modification transactions which take 
much more time. This is largely due to the many IIO's 
required to update the file, its indexes and directories 
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Figure lO-Observed frequency distribution for DMS responses 

which facilitate the query process. At the other extreme 
we have control functions to open and close files, to view 
the data definition tables. etc. These make up a third of 
all transactions and have the fastest response. 

A frequency distribution for all transactions, regardless 
of function, was derived and plotted from measurements 
covering the eight-month period June 1971 - January 
1972 (45,000 transactions). The density and cumulative 
probability are shown in Figures 10 and 11 respectively. 
The distribution of responses follows the familiar shape 
which fits interarrival and service time distributions in 
time-sharing systems.22.23.16.24 These distributions are close 
to exponential but contain too few data near the origin 
and too many in the tail, producing a characteristic 
skewness. This is seen more clearly in Figure 12 which 
compares the observed data with an exponential distribu
tion by plotting the complement of the cumulative proba
bility on a semi-log scale. The empirical curve could be 
mathematically approximated by fitting a hyperexponen
tial distribution to the data, that is a linear combination 
of two or more ordinary exponential distributions. 

CUMULATIVE PROBABILITY 

5% 10% 20% 50% 80,," 90% 95% 99% 99.9% 

EXEC UTION TIME (SEC) 0.6 1.0 1.3 2.0 5.0 10 18 45 220 

CPU OCCUPANCY (SEC) 0.18 0.30 0.45 0.6 12 20 90 

NO OF DISK I/O 5 0.9 1.3 3.2 5.4 17 40 80 260 600 

Figure II-Cumulative frequency distribution of all n:-VlS 
transactions 
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CO~CLUSIO~S 

The man-machine interactive characteristics of a data
base management system can be substantially different 
from those of general purpose time-shared systems. In 
this paper the timings were compared by separating 
UAIMS application programs into groups of non-DMS 
and DMS users. Data management applications on the 
average required more time per interactive cycle for both 
user turnaround to think, etc., (17 vs. 14 sec) and for 
system response (7 vs. 3 sec). They were also far more 
computer-bound (1.6 vs. 0.2 sec CPU time per cycle). 

In order to predict the behavior of a new application in 
a real-time environment it is important to know the type 
of program and its expected transaction mix. This was 
highlighted by one particular DMS application, for tool 
selection, which had to be considered separately because 
of its totally distinct man-machine performance. 

Numerically, the results obtained here are comparable 
to those reported by Scherr!" Bryant23, and others.!7.24 
Depending on the application, mean "think" times range 
between 11 and 32 seconds. Response times, which 
depend on both the hardware and software, average 
between 2 and 33 seconds at the terminal, and between 1 
and 13 seconds at the AP-DMS interface, depending on 
the function requested. At the latter interface, the shape 
of the frequency distribution conforms to the "hyperexpo
nential" pattern described by Coffman & Wood,n and 
found by all investigators. We may infer that the same 
pattern holds for the man-machine parameters of system 
response and user turnaround, making the median values 
considerably less than the means (around halO, Some 
researchers, including Parupudi & Winograd/4 have 
doubted the validity of such results and attempted to 
"normalize" the observed data by discarding the largest 
10 percent. This practice has the effect of artificially 
reducing the mean values and making the distributions 

more like exponential. We would suggest that if the 
hyperexponential pattern continues to be empirically 
confirmed for all interactive environments, then it should 
be accepted at its face value and further investigated by 
the theoreticians so that it may be better explained and 
understood. 
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EDP conversion consideration 

by WILLIAM E. HANNA, JR. 

Social Security Administration 
Baltimore, Maryland 

ABSTRACT 

Conversion from one manufacturer to another is a 
simple phrase that embodies a myriad of changes. There 
are large changes in the obvious. That is, changes in 
hardware and software. This, however, is only the begin
ning. There are sweeping changes to be made in concept, 
DP management, machine operation, systems program
ming, forms and forms control, methods and procedures 
to mention a few. The changes in this case are not analo
gous at all to a change from one automobile manufacturer 
to another. Rather, the change is analogous to a change 
from an automobile to a helicopter. 

The conversion, if it is successfully done, then has a 
sweeping effect on all operations. Special purpose leased 
or written software packages will not work. Extensive 
Systems software that allows the unity of processing on 
multiple machines will not work. Systems and systems 
programmer groups will no longer be backed up to each 
other nor can their efforts be coordinated and shared. 
This will create multiple problems on systems instead of 
duplicate problems for the same equipment. One for one 
conversion will not be a satisfactory method of' program 
change. A complete redesign of application program sys
tems would be necessary to best utilize the hardware and 
software capabilities of a new system. 



The evolution of virtual machine architecture* 

by J. P. BUZEN and U. O. GAGLIARDI 

Honeywell Information Systems, Inc. 
Billerica, Massachusetts 
and 
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Cambridge, Massachusetts 

I~TRODUCTION 

In the early 1960's two major evolutionary steps were 
taken with regard to computing systems architecture. 
These were the emergence of I/O processors and the use 
of multiprogramming to improve resource utilization and 
overall performance. As a consequence of the first step 
computing systems became multiprocessor configurations 
where nonidentical processors could have access to the 
common main memory of the system. The second step 
resulted in several computational processes sharing a 
single processor on a time-multiplexed basis while vying 
for a common pool of resources. 

Both these developments introduced very serious 
potential problems for system integrity. An I/O processor 
executing an "incorrect" channel program could alter 
areas of main memory that belonged to other computa
tions or to the nucleus of the software system. A computa
tional process executing an "incorrect" procedure could 
cause similar problems to arise. Since abundant experi
ence had demonstrated that it was not possible to rely on 
the "correctness" of all software, the multi-processing/ 
multiprogramming architectures of the third generation 
had to rely on a completely new approach. 

DUAL STATE ARCHITECTURE 

The approach chosen was to separate the software into 
two classes: the first containing a relatively small amount 
of code which was presumed to be logically correct, the 
second containing all the rest. At the same time the sys
tem architecture was defined so that aU functionaiity 
which could cause undesirable interference between proc
esses was strictly denied to the second class of software. 

Essentially, third generation architectures created two 
distinct modes of system operation (privileged/non-privi
leged, master/slave, system/user, etc.) and permitted 
certain critical operations to be performed only in the 

* This work was sponsored in part by the Electronic Systems Division, 
U.S. Air Force, Hanscom Field, Bedford, Massachusetts under Contract 
Number F19628-70-C-0217. 
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more privileged state. The critical operations restricted to 
privileged state typically include such functions as chan
nel program initiation, modification of address mapping 
mechanisms, direct monitoring of external interrupts, etc. 
Experience has shown that this solution can be quite 
effective if the privileged software is limited in quantity, 
is stable in the sense that few changes are made over long 
periods of time, and is written by skilled professional 
programmers. 

While this architectural principle has proven its value 
by fostering the development of computing systems with 
true simultaneity of I/O operations and high overall 
resource utilization, it has generated a whole host of prob
lems of its own. These problems arise from the fact that 
the only software which has complete access to and con
trol of all the functional capabilities of the hardware is 
the privileged software nucleus. 

Probabiy the most serious difficulty arises in the area 
of program transportability since non-privileged pro
grams are actually written for the extended machine 
formed by the privileged software nucleus plus the non
privileged functions of the hardware. These extended 
machines are more difficult to standardize than hardware 
machines since it is relatively easy to modify or extend a 
system whose primitives are in part implemented in soft
ware. This has frequently resulted in a multiplicity of 
extended machines running on what would otherwise be 
compatible hardware machines. A user who wishes to run 
programs from another installation which were written 
for a different extended machine is faced with either 
scheduling his installation to run the "foreign" software 
nucleus for some period of time or converting the pro
grams to his installation's extended machine. Neither of 
these alternatives is particularly attractive in the major
ity of cases. 

Another problem is that it is impossible to run two ver
sions of the privileged software nucleus at the same time. 
This makes continued development and modification of 
the nucleus difficult since system programmer~ often 
have to work odd hours in order to have a dedicated 
machine at their disposal. In addition to the inconve
nience this may cause, such procedures do not result in 
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very efficient utilization of resources since a single pro
grammer who is modifying or debugging a system from a 
console does not normally generate a very heavy load. 

A final problem is that test and diagnostic software has 
to have access to and control of all the functional capabil
ities of the hardware and thus cannot be run simultane
ously with the privileged software nucleus. This in turn 
severely curtails the amount of testing and diagnosis that 
can be performed without interfering with normal pro
duction schedules. The ever increasing emphasis on 
computer system reliability will tend to make this an 
even more serious problem in the future. 

THE VIRTUAL MACHINE CONCEPT 

Figure 1 illustrates the conventional dual state 
extended machine architecture which is responsible for 
all the difficulties that were cited in the preceding section. 
As can be seen in the Figure, the crux of the problem is 
that conventional systems contain only one basic machine 
interface* and thus are only capable of running one privi
leged software nucleus at any given time. Note, however, 
that conventional systems are capable of running a 
number of user programs at the same time since the privi-
1eged software nucleus can support several extended 
machine interfaces. If it were possible to construct a priv
ileged software nucleus which supported several copies of 
the basic machine interface rather than the extended 

* A basic machine interface is the set of all software visible objects and 
instructions that are directly supported by the hardware and firmware 
of a particular system. 

machine interface, then a different privileged software 
nucleus could be run on each of the additional basic 
machine interfaces and the problems mentioned in the 
proceding section could be eliminated. 

A basic machine interface which is not supported 
directly on a bare machine but is instead supported in a 
manner similar to an extended machine interface is 
known as a virtual machine. As illustrated in Figure 2, 
the program which supports the additional basic machine 
interfaces is known as a virtual machine monitor or 
VMM. Since a basic machine interface supported by a 
VMM is functionally identical to the basic machine inter
face of the corresponding real machine, any privileged 
software nucleus which runs on the bare machine will run 
on the virtual machine as well. Furthermore, a privileged 
software nucleus will have no way of determining whether 
it is running on a bare machine or on a virtual machine. 
Thus a virtual machine is, in a very fundamental sense, 
equivalent to and functionally indistinguishable from its 
real machine counterpart. 

In practice no virtual machine is completely equivalent 
to its real machine counterpart. For example, when sev
eral virtual machines share a single processor on a time
multiplexed basis, the time dependent characteristics of 
the virtual and real machine are likely to differ signifi
cantly. The overhead created by the VMM is also apt to 
cause timing differences. A more significant factor is that 
virtual machines sometimes lack certain minor functional 
capabilities of their real machine counterparts such as the 
ability to execute self-modifying channel programs. Thus 
the characterization of virtual machines presented in the 
preceding paragraph must be slightly modified in many 
cases to encompass all entities which are conventionally 
referred to as virtual machines. 

Perhaps the most significant aspect of virtual machine 
monitors is the manner in which programs running on a 
virtual machine are executed. The VMM does not per
form instruction-by-instruction interpretation of these 
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programs but rather allows them to run directly on the 
bare machine for much of the time. However, the VMM 
will occasionally trap certain instructions and execute 
them interpretively in order to insure the integrity of the 
system as a whole. Control is returned to the executing 
program after the interpretive phase is completed. Thus 
program execution on a virtual machine is quite similar 
to program execution on an extended machine: the major
ity of the instructions execute directly without software 
intervention, but occasionally the controlling software will 
seize control in order to perform a necessary interpretive 
operation. 

VIRTUAL MACHINES AND EMULATORS 

Figure 2 is not intended to imply that the basic ma
chine interfac-e s-upport-ed by the VMM must be identi
cal to the interface of the bare machine that the VMM 
iUns on. However, these interfaces often are identical in 
practice. When they are not, they are usually members 
of the same computer family as in the case of the origi
nal version of CP-67,1 a VMM which runs on an IBM 
360 Model 67 (with paging) and supports a virtual IBM 
360 Model 65 (without paging) beneath it. 

When the two interfaces are distinctly different the 
program which supports the virtual interface is usually 
called an emulator rather than a virtual machine moni
tor. Aside from this comparatively minor difference, vir
tual machines and emulators are quite similar in both 
structure and function. However, because they are not 
implemented with the same objectives in mind, the two 
concepts often give the appearance of being markedly 
different. 

Virtual machine monitors are usually implemented 
without adding special order code translation firmware to 
the bare machine. Thus, most VMM's project either the 
same basic machine interface or a restricted subset of the 
basic machines interface that they themselves run on. In 
addition, VMM's are usually capable of supporting sev
eral independent virtual machines beneath them since 
many of the most important VMM applications involve 
concurrent processing of more than one privileged soft
ware nucleus. Finally, VMM's which do project the same 
interface as the one they run on must deal with the prob
lem of recursion (i.e., running a virtual machine monitor 
under itself). In fact, proper handling of exception condi
tions under recursion is one of the more challenging prob
lems of virtual machine design. 

Emulators, by contrast, map the basic machine inter
face of one machine onto the basic machine interface of 
another and thus never need be concerned with the prob
lem of recursion. Another point of difference is that an 
emulator normally supports only one copy of a basic 
machine interface and thus does not have to deal with the 
~cheduling and resource aliocation problems which arise 
when multiple independent copies are supported. Still 
another implementation difference is that emulators must 
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frequently deal with more complex I/O problems than 
virtual machine monitors do since the emulated system 
and the system that the emulator is running on may have 
very different I/O devices and channel architecture. 

Modern integrated emulators3 exhibit another differ
ence from the virtual machine monitor illustrated in 
Figure 2 in that an integrated emulator runs on an 
extended machine rather than running directly on a bare 
machine. However, it is possible to create virtual machine 
monitors which also run on extended machines as indi
cated in Figure 3. Goldberg4 refers to such systems as 
Type II virtual machines. Systems of the type depicted in 
Figure 2 are referred to as Type I virtual machines. 

It should be apparent from this discussion that virtual 
machines and emulators have a great deal in common 
and that significant interchange of ideas is possible. For a 
further discussion of this point, see Mallach.5 

ADDITIONAL APPLICATIONS 

It has already been indicated that virtual machine 
systems can be used to resolve a number of problems in 
program portability, software development, and "test and 
diagnostic" scheduling. These are not the only situations 
in which virtual machines are of interest, and in fact vir
tual machine systems can be applied to a number of 
equally significant problems in the areas of security, reli
ability and measurement. 

From the standpoint of reliability one of the most 
important aspects of virtual machine systems is the high 
degree of isolation that a virtual machine monitor pro
vides for each basic machine interface operating under its 
control. In particular, a programming error in one privi
leged software nucleus will not affect the operation of 
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another privileged software nucleus running on an inde
pendent virtual machine controlled by the same monitor. 
Thus virtual machine monitors can localize and control 
the impact of operating system errors in much the same 
way that conventional systems localize and control the 
impact of user program errors. In multiprogramming 
applications where both high availability and graceful 
degradation in the midst of failures are required, virtual 
machine systems can, for a large class of utility functions, 
be shown to have a quantifiable advantage over conven
tionally organized systems.6 

The high degree of isolation that exists between inde
pendent virtual machines also makes these systems 
important in certain privacy and security applications.7

•
s 

Since a privileged software nucleus has, in principle, no 
way of determining whether it is running on a virtual or a 
real machine, it has no way of spying on or altering any 
other virtual machine that may be coexisting with it in 
the same system. Thus the isolation of independent vir
tual machines is important for privacy and security as 
well as system reliability. 

Another consideration of interest in this context is that 
virtual machine monitors typically do not require a large 
amount of code or a high degree of logical complexity. 
This makes it feasible to carry out comprehensive check
out procedures and thus insure high overall reliability as 
well as the integrity of any special privacy and security 
features that may be present. 

The applications of virtual machines to the measure
ment of system behavior are somewhat different in 
nature. It has already been noted that existing virtual 
machine monitors intercept certain instructions for 
interpretive execution rather than allowing them to exe
cute directly on the bare machine. These intercepted 
instructions typically include I/O requests and most 
other supervisory calls. Hence, if it is desired to measure 
the frequency of Ii 0 operations or the amount of supervi
sory overhead in a system, it is possible to modify the 
virtual machine monitor to collect these statistics and 
then run the system under that modified monitor. In this 
way no changes have to be made to the system itself. A 
large body of experimental data has been collected by 
using virtual machine monitors in this fashion. 9

.
lo

.
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EARLY VIRTUAL MACHINES 

Virtual machine monitors for computers with dual state 
architecture first appeared in the mid 1960's. Early 
VMM'SI2.13 were most noteworthy for the manner in 
which they controlled the processor state, main memory 
and 110 operations of the virtual machines which ran 
under their control. This section presents a brief descrip
tion and analysis of the special mapping techniques that 
were employed in these early systems. 

Processor state mapping 

The mapping of processor state was probably the most 
unusual feature of early virtual machine monitors. If a 

VMM did not maintain proper control over the actual 
state of the processor, a privileged software nucleus exe
cuting on a virtual machine could conceivably enter privi
leged mode and gain unrestricted access to the entire 
system. It would then be able to interfere at will with the 
VMM itself or with any other virtual machine present in 
the system. Since this is obviously an unacceptable situa
tion, some mapping of virtual processor state to actual 
processor state was required. 

The solution that was adopted involved running all 
virtual machine processes in the non-privileged state and 
having the virtual machine monitor maintain a virtual 
state indicator which was set to either privileged or non
privileged mode, depending on the state the process would 
be in if it were executing directly on the bare machine. 
Instructions which were insensitive to the actual state of 
the machine were then allowed to execute directly on the 
bare machine with no intervention on the part of the 
VMM. All other instructions were trapped by the VMM 
and executed interpretively, using the virtual system state 
indicator to determine the appropriate action in each 
case. 

The particular instructions which have to be trapped 
for interpretive execution vary from machine to machine, 
but general guidelines for determining the types of 
instructions which require trapping can be identified. 14 
First and most obvious is any instruction which can 
change the state of the machine. Such instructions must 
be trapped to allow the virtual state indicator to be prop
erly maintained. A second type is any instruction which 
directly queries the state of the machine, or any instruc
tion which is executed differently in privileged and non
privileged state. These instructions have to be executed 
interpretively since the virtual and actual states of the 
system are not always the same. 

Memory mapping 

Early virtual machine monitors also mapped the main 
memory addresses generated by processes running on 
virtual machines. This was necessary because each vir
tual machine running under a VMM normally has an 
address space consisting of a single linear sequence that 
begins at zero. Since physical memory contains only one 
true zero and one linear addressing sequence, some form 
of address mapping is required in order to run several 
virtual machines at the same time. 

Another reason for address mapping is that certain 
locations in main memory are normally used by the 
hardware to determine where to transfer control when an 
interrupt is received. Since most processors automatically 
enter privileged mode following an interrupt generated 
transfer of control, it is necessary to prevent a process 
executing on a virtual machine from obtaining access to 
these locations. By mapping these special locations in 
virtual address space into ordinary locations in real 
memory, the VMM can retain complete control over the 



actual locations used by the hardware and thus safeguard 
the integrity of the entire system. 

Early VMM's relied on conventional paging techniques 
to solve their memory mapping problems. Faults gener
ated by references to pages that were not in memory were 
handled entirely by the VMM's and were totally invisible 
to processes running on the virtual machines. VMM's also 
gained control after faults caused by references to 
addresses that exceeded the limits of a virtual machine's 
memory, but in this case all the VMM had to do was set 
the virtual state indicator to privileged mode and transfer 
control to the section of the virtual machine's privileged 
software nucleus which normally handles out-of-bounds 
memory exceptions. These traps were thus completely 
visible to the software running on the virtual machine, 
and in a sense they should not have been directed to the 
VMM at all. More advanced virtual machine architec
tures permit these traps to be handled directly by the 
appropriate level of control. 15.16 

It should be noted that the virtual machines supported 
by early VMM's did not include paging mechanisms 
within their basic machine interfaces. In other words, 
only privileged software nuclei which were designed to 
run on non-paged machines could be run under these 
early virtual machine monitors. Thus these VMM's could 
not be run recursively. 

I/O mapping 

The final problem which early VMM's had to resolve 
was the mapping of I/O operations. As in the case of main 
memory addresses, there are a number of reasons why 
I/O operations have to be mapped. The primarj reason 
is that the only addresses which appear in programs run
ning on virtual machines are virtual (mapped) addresses. 
However, existing I/O channels require absolute (real) 
addresses for proper operation since timing considerations 
make it extremely difficult for channels to dynamically 
look up addresses in page tables as central processors do. 
Thus all channel programs created within a particular 
virtual machine must have their addresses "absolutized" 
before they can be executed. 

The VMM performs this mapping function by trapping 
the instruction which initiates channel program execu
tion, copying the channel program into a private work 
area, absolutizing the addresses in the copied program, 
and then initiating the absolutized copy. \Vhen the 
channel program terminates, the VMM again gains 
control since all special memory locations which govern 
interrupt generated transfers are maintained by the 
VMM. After receiving the interrupt, the VMM transfers 
control to the address which appears in the corre
spo~ding interrupt dispatching location of the appropri
ate virtual machine's memory. Thus I/O completion 
interrupts are "reflected back" to the virtual machine 
in the same manner that out-of-bounds memory excep
tions are. 
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One of the drawbacks of copying channel programs into 
private work areas and executing the absolutized copies is 
that channel programs which dynamically modify them
selves during execution sometimes do not operate cor
rectly. Hence it was not possible to execute certain self
modifying channel programs in early VMM's. However, 
since the majority of commonly used channel programs 
are not self-modifying, this lack of functionality could 
frequently be tolerated without serious inconvenience. 

Channel program absolutization is not the only reason 
for VMM intervention in I/O operations. Intervention is 
also needed to maintain system integrity since an improp
erly written channel program can interfere with other 
virtual machines or with the VMM itself. The need for 
intervention also arises in the case of communication with 
the operator's console. This communication must clearly 
be mapped to some other device since there is normally 
only one real operator's console in a system. 

A final point is that VMM intervention in I! 0 opera
tions makes it possible to transform requests for one 
device into requests for another (e.g., tape requests to 
disk requests) and to provide a virtual machine with 
devices which have no real counterpart (e.g., a disk with 
only five cylinders). These features are not essential to 
VMM operation, but they have proven to be extremely 
valuable by-products in certain applications. 

Summary 

In summary, early VMM's ran all programs in non-privi
leged mode, mapped main memory through paging tech
niques, and performed all I/O operations interpretively. 
Thus they could only be implemented on paged computer 
systems which had the ability to trap all instructions that 
could change or query processor state, initiate I/O opera
tions, or in some manner be "sensitive" to the state of the 
processor. 14 Note that paging per se is not really necessary 
for virtual machine implementation, and in fact any 
memory relocation mechanism which can be made invisi
ble to non-privileged processes will suffice. However, the 
trapping of all sensitive instructions in non-privileged 
mode is an absolute requirement for this type of virtual 
machine architecture. Since very few systems provide all 
the necessary traps, only a limited number of these 
VMM's have actually been constructed.12.13.17.19 

PAGED VIRTUAL MACHI]\;ES 

It has already been noted that early VMM's did not 
support paged virtual machines and thus could not be run 
on the virtual machines they created. This lack of a 
recursive capability implied that VMM testing and devel
opment had to be carried out on a dedicated processor. In 
order to overcome this difficulty and to achieve a more 
satisfying degree of logical completeness, CP-67 was 
modified so that it could be run recursively. 18 
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The major problem which had to be overcome was the 
efficient handling of the additional paging operation that 
took place within the VMM itself. 18

.
20 To put the problem 

in perspective, note that early VMM's used their page 
tables to map addresses in the virtual machine's memory 
into addresses in the real machine's memory. For exam
ple, virtual memory address A' might be mapped into 
real memory address A". However, processes running on 
paged virtual machines do not deal with addresses which 
refer directly to the virtual machine's memory the way 
address A I does. Rather, an address A used by such a 
process must be mapped into an address such as A' by 
the page table of the virtual machine. Thus, in order to 
run a process on a paged virtual machine, a process gen
erated address A must first be mapped into a virtual 
machine memory address A' by the virtual machine's 
page table, and then A' must be mapped into a real 
address A" by the VMM's page table. 

In order to carry out this double mapping efficiently, 
the VMM constructs a composed page table (in which 
virtual process address A is mapped into real address A") 
and executes with this map controlling the address trans
lation hardware. When the VMM transfers a page out of 
memory, it must first change its own page table and then 
recompute the composed map. Similarly, if the privileged 
software nucleus changes the virtual machine's page 
table, the VMM must be notified so that the composed 
map can be recomputed. 

This second consideration poses some difficulties. Since 
the virtual machine's page tables are stored in ordinary 
(virtual) memory locations, instructions which reference 
the tables are not necessarily trapped by the VMM. Thus 
changes could theoretically go undetected by the VMM. 
However, any change to a page table must in practice be 
followed by an instruction to clear the associative mem
ory since the processor might otherwise use an out of date 
associative memory entry in a subsequent reference. 
Fortunately, the instruction which clears the associative 
memory will cause a trap when executed in non-privi
leged mode and thus allow the VMM to recompute the 
composed page table. Therefore, as long as the privileged 
software nucleus is correctly written, the operation of a 
virtual machine will be identical to the operation of the 
corresponding real machine. If the privileged software 
nucleus fails to clear the associative memory after chang
ing a page table entry, proper operation cannot be guar
anteed in either case. 

TYPE II VIRTUAL MACHINES 

VMM's which run on an extended machine interface 
are generally easier to construct than VMM's which run 
directly on a bare machine. This is because Type II 
VMM's can utilize the extended machine's instruction 
repertoire when carrying out complex operations such as 
I I O. In addition, the VMM can take advantage of the 
extended machine's memory management facilitie~ 

(which may include paging) and its file system. Thus 
Type II virtual machines offer a number of implementa
tion advantages. 

Processor state mapping 

Type II virtual machines have been constructed for the 
extended machine interface projected by the UMMPS 
operating system.21 UMMPS runs on an IBM 360 Model 
67, and thus the VMM which runs under UMMPS is able 
to utilize the same processor state mapping that CP-67 
does. However, the instruction in the VMM which initi
ates operation of a virtual machine must inform UMMPS 
that subsequent privileged instruction traps generated by 
the virtual machine should not be acted on directly but 
should instead be referred to the VMM for appropriate 
interpretation. 

Memory mapping 

The instruction which initiates operation of a virtual 
machine also instructs UMMPS to alter its page tables to 
reflect the fact that a new address space has been acti
vated. The memory of the virtual machine created by the 
VMM is required to occupy a contiguous region beginning 
at a known address in the VMM's address space. Thus 
UMMPS creates the page table for the virtual machine 
simply by deleting certain entries from the page table 
used for the VMM and then subtracting a constant from 
the remaining virtual addresses so the new address space 
begins at zero. If the virtual machine being created is 
paged, it is then necessary to compose the resulting table 
with the page table that appears in the memory of the 
virtual machine. This latter operation is completely anal
ogous to the creation of paged virtual machines under CP-
67. 

I/O mapping 

I/O operations in the original UMMPS Type II virtual 
machine were handled by having UMMPS transfer con
trol to the VMM after trapping the instruction which ini
tiated channel program execution. The VMM translated 
the channel program into its address space by applying 
the virtual machine's page map if necessary and then 
adding a constant relocation factor to each address. After 
performing this translation the VMM called upon 
UMMPS to execute the channel program. UMMPS then 
absolutized the channel program and initiated its execu
tion. 

In addition to the overhead it entailed, this mapping 
procedure made it impossible for the virtual machine to 
execute a self-modifying channel program. A recent modi
fication to the UMMPS virtual machine monitor has 
been able to alleviate this situation.22 This modification 
involves positioning the virtual machine's memory in real 



memory so that the virtual and real address of each loca
tion is identical. This eliminates the need for channel 
program absolutization and thus improves efficiency 
while at the same time making self-modification of chan
nel programs possible. 

One of the difficulties that had to be overcome when 
making this change to the VMM was that the real coun
terparts of certain virtual machine memory locations 
were already being used by UMMPS. The solution that 
was adopted was to simply re-write the virtual machine's 
privileged software nucleus so that most of these locations 
were never used. A more detailed discussion of this point 
is provided by Srodawa and Bates.22 Parmelee ll describes 
a similar modification that has been made to CP -67. 

SINGLE STATE ARCHITECTURE 

One of the more unusual approaches to the problem of 
creating virtual machine architectures is based on the 
idea of eliminating privileged state entirely.lo.n The pro
ponents of this approach argue that the primary-and in 
fact only essential-function of privileged state is to pro
tect the processor's address mapping mechanism. If the 
address mapping mechanism were removed from the 
basic machine interface and thereby made totally invisi
ble to software, there would be no need to protect the 
mechanism and therefore no need for privileged state. 

In these single state architectures all software visible 
addresses are relative addresses and the mechanism for 
translating these relative addresses to absolute addresses 
always concealed. That is, each software level operates in 
an address space of some given size and structure but has 
no way of determining whether its addresses correspond 
literally to real memory addresses or whether they are 
mapped in some fashion. Since all addressing including 
110 is done in this relative context, there is really no need 
for software to know absolute address and thus no gener
ality is lost. 

The central feature of this architecture is the manner in 
which software level N creates the address space of soft
ware level N + 1. Basically, level N allocates a portion of 
its own address space for use by level N + 1. The location 
of the address space of level N + 1 is thus specified in 
terms of its relative address within level N. After defining 
the new address space, the level N software executes a 
special transfer of control instruction which changes the 
address mapping mechanism so that addresses will be 
translated relative to the new address space. At the same 
time, control passes to some location within that new 
space. 

Note that this special instruction need not be privileged 
since by its nature it may only allocate a subset of the 
resources it already has access to. Thus it cannot cause 
interference with superior levels. Level N can protect 
itself from level N + 1 by defining the address space of 
level N + 1 so that it does not encompass any information 
which level N wishes to keep secure. In particular, the 
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address map that level N sets up for level N + 1 is 
excluded from level N+1's address space. 

When an addressing fault occurs, the architecture traps 
back to the next lower level and adjusts the address map 
accordingly. Thus the system must retain a complete 
catalog of all active maps and must be able to compose 
and decompose them when necessary. This is relatively 
easy to do when only relocation/bounds maps are 
permitted 15 but more difficult when segmentation is 
involved.23 

Since each level sees the same bare machine interface 
except for a smaller address space, each level corresponds 
to a new virtual machine. Mapping of processor state is 
unnecessary, mapping of memory is defined by the level 
N VMM relative to its own address space and is com
pletely invisible to level N + 1, and mapping of 110 is 
treated as a special case of mapping of memory. The two 
published reports on this architecture are essentially pre
liminary documents. More details have to be worked out 
before a complete system can be defined. 

THE VIRTUAL MACHINE FAULT 

The single state architecture discussed in the preceding 
section provides a highly efficient environment for the 
creation of recursive virtual machine systems. However, 
the basic machine interface associated with this architec
ture lacks a number of features which are useful when 
writing a privileged software nucleus. These features, 
which are present to varying degrees in several late third 
generation computer systems, include descriptor based 
memory addressing, multi-layered rings of protection and 
process synchronization primitives. 

A recent analysis24 of virtual machine architectures for 
these more complex systems is based on an important 
distinction between two different types of faults. The first 
type is associated with software visible features of a basic 
machine interface such as privilegedlnonprivileged sta
tus, address mapping tables, etc. These faults are handled 
by the privileged software nucleus which runs that inter
face. The second type of fault appears only in virtual 
machine systems and is generated when a process 
attempts to alter a resource map that the VMM is main
taining or attempts to reference a resource which is avail
able on a virtual machine but not the real system (e.g., a 
virtual machine memory location that is not in real 
memory). These faults are handled solely by the VMM 
and are completely invisible to the virtual machine 
itself. * 

Since conventional architectures support only the 
former type of fault, conventional VMM's are forced to 
map both fault types onto a single mechanism. As already 
noted, this is done by running all virtual machine proc-

* Faults caused by references to unavailable real resources were not 
clearly identified in this paper. The distinctions being drawn here are 
based on a later analysis by Goldberg. 16 
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esses in non-privileged mode, directing all faults to the 
VMM, and having the VMM "reflect" all faults of the 
first type back to the privileged software nucleus of the 
virtual machine. 

An obvious improvement to this situation can be real
ized by creating an architecture which recognizes and 
supports both types of faults. A preliminary VMM design 
for a machine with this type of architecture has been 
proposed.24 The design relies on static composition of all 
resource maps and thus requires a trap to the VMM each 
time a privileged process attempts to alter a software 
visible map. However, the privileged/non-privileged dis
tinction within a virtual machine is supported directly by 
the bare machine and a privileged process is allowed to 
read all software visible constructs (e.g., processor state) 
without generating any type of fault. The major value of 
this design is that it can be implemented on an existing 
system by making only a relatively small number of 
hardware,! firmware modifications. 

DYNAMIC MAP COMPOSITION-THE HARDWARE 
VIRTUALIZER 

The clear distinction between virtual machine faults 
(handled by the VMM) and process exceptions (handled 
by the privileged software nucleus of the virtual machine) 
first appeared in a Ph.D. thesis by Goldberg. 16 One of the 
essential ideas of the thesis is that the various resource 
maps which have to be invoked in order to run a process 
on a virtual machine should be automatically composed 
by the hardware and firmware of the system. Since map 
composition takes place dynamically, this proposal elimi
nates the need to generate a virtual machine fault each 
time a privileged process running on a virtual machine 
alters a software visible map. Thus the only cause of a 
virtual machine fault is a reference to a resource that is 
not present in a higher level virtual or real machine. 

The thesis contains a detailed description of a "hard
ware virtualizer" which performs the map composition 
function. It includes a description of the virtualizer itself, 
the supporting control mechanisms, the instructions used 
for recursive virtual machine creation, and the various 
fault handling mechanisms. These details will not be 
considered here since they are treated in a companion 
paper.25 

It is interesting to note that the work on single state 
architecture 15.23 can be regarded as a special case of the 
preceding analysis in which process exceptions caused by 
privileged state are completely eliminated and only vir
tual machine faults remain. Similarly, the earlier work of 
Gagliardi and Goldberg24 represents another special case 
in which map composition is carried out statically by the 
VMM and where additional virtual machine faults are 
generated each time a component of the composite map is 
modified. By carefully identifying the appropriate func
tionality and visibility of all the maps involved in virtual 
machine operation. Goldberg's later analysis provides a 

highly valuable model for the design of virtual machine 
architectures and for the analysis of additional problems 
in this area. 

CONCLUSION 

A number of issues related to the architecture and imple
mentation of virtual machine systems remain to be 
resolved. These include the design of efficient I/O control 
mechanisms, the development of techniques for sharing 
resources among independent virtual machines, and the 
formulation of resource allocation policies that provide 
efficient virtual machine operation. Many of these issues 
were addressed at the ACM SIGARCH-SIGOPS Work
shop on Virtual Computer Systems held recently at 
Harvard University's Center for Research in Computing 
Technology. * 

In view of the major commitment of at least one large 
computer manufacturer to the support of virtual machine 
systems,27 the emergence of powerful new theoretical 
insights, and the rapidly expanding list of applications, 
one can confidently predict a continuing succession of 
virtual machine implementations and theoretical 
advances in the future. 
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An efficient virtual machine implernentation* 

by RONALD J. SRODAWA and LEE A. BATES 

Wayne State University 
Detroit, Michigan 

I:\,TRODUCTION 

Wayne State University has traditionally combined all 
computational facilities, for administrative as well as 
research and educational uses, in one central center. At 
times all services have been provided under a single 
hardware and software system. At other times adminis
trative services have been provided on a hardware and 
software system distinct from that used for research and 
educational services. 

In recent past, these services were provided by two 
similar, but distinct hardware systems and two distinct 
operating systems. The administrative services were pro
vided by an on-line teleprocessing system developed by 
Wayne State University running under the IBM OS/360 
using MVT.l This system (called the Administrative Data 
Systems Teleprocessing System-ADS-TP) was run on an 
IBM System/360 Model 50. On the other hand, the 
research and educational services Were provided by the 
WRAP system running under IBM OS /360 using MFT. 
(WRAP was an antecedent to the IBM TSC for OS/360 
and was developed at Wayne State University.) WRAP 
was run on a System/360 Model 65. Two independent 
hardware systems were used to assure the security of the 
administrative data base which was on-line to the ADS
TP system. 

The above configuration did not provide sufficient serv
ices for research and education. This situation was alle
viated by exchanging the System/360 Model 65 running 
WRAP for a System/360 Model 67 half-duplex running 
the Michigan Terminal System (MTS). (MTS is a time
sharing system developed at the University of Michigan 
for the IBM System/360 Model 67. It utilizes the address 
translation and multi-processor features of that hardware 
system.) 

It was decided to consolidate the above hardware con
figuration (a Model 50 and a Model 67 half-duplex) into a 
single hardware system-a System/360 Model 67 full
duplex. (A half-duplex system has a single central proces-

* A preliminary version of this paper \vas presented at the limited 
attendance Workshop on Virtual Computer Systems, sponsored by 
ACM SIGARCH-SIGOPS and held at Center for Research in Comput
ing Technology, Harvard University, Cambridge, Massachusetts, March 
26-27, 1973. 
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sor while a full-duplex system possesses two central proc
essors.) One consideration in this decision was availability 
-even if several hardware components fail simultane
ously a filiI-duplex system can g-enerally be configured 
into a usable subsystem. The other consideration was uti
lization of the central processors-MTS was approaching 
saturation of its single central processor while OS /360 
generally utilized very little of its central processor. As an 
interim measure the hardware was configured as two dis
joint subsystems with one software system assigned to 
each subsystem. The singular advantage to this scheme 
was that the consolidation could be achieved with no 
changes to software. The goal of additional hardware 
availability was achieved immediately. The second goal 
of enhanced central processor utilization, of course, could 
not be attained until the two software systems could be 
integrated into a single system. The security of the 
administrative data base was still assured by the configu
ration of the hardware as two disjoint subsystems. 

The final goal was to run MTS and OS /360 within a 
single software system. This was not an easy task to 
accomplish because of the large amount of code contained 
in the ADS-TP system and its heavy reliance on many of 
the features of OS /360. Much of the code in ADS-TP 
interfaced at a low level with the Supervisor and Data 
Management services of OS/360. The terminal access 
method was an original package written to interface with 
OS/360 at the EXCP (execute channel program) level,2 
The indexed sequential access method3 (ISAM), parti
tioned datasets, the ability to catalog magnetic tape 
datasets, and conditional jobstep control were other fea
tures of OS/360 which were utilized by the administrative 
data base applications. 

Three alternatives were proposed for supporting ADS
TP and MTS within a single operating system. These 
were: 

(1) MTS and OS/360 as co-equal systems. 
(2) Required OS/360 features installed into MTS. 
(3) Virtual Machine support in MTS. (A virtual ma

chine is a simulation of a hardware system upon a 
similar hardware system. A virtuai machine does 
not have the poor performance typical of simula
tion because most of the instruction set is inter
preted by the host hardware system. The most 
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well-known virtual machine implementation is CP-
67. 4 

The third alternative was chosen for several reasons: 

(1) Least coding effort. OS/360 would be left unper
turbed and MTS changes would be minimal. 

(2) Software Reliability. OS/360 code (considered less 
reliable than MTS code) would not be incorporated 
into MTS. Most new code and all of as /360 would 
operate within a single MTS task. 

(3) Demonstrated feasibility. A virtual machine 
existed in MTS which supported OS/ 360 with some 
restrictions. 

( 4) Isolation. as /360 would be isolated within a single 
MTS task. In addition to reliability considerations, 
this assures the security of the administrative data 
base, since input/ output devices cannot be shared 
between tasks in MTS. 

Certain performance goals were required from the 
resulting system. The ADS-TP system was to perform 
overall as if it were running on an independent System/ 
360 Model 50. It would be quite easy to measure the cen
tral processor degradation against this goal. However, the 
measure of adequate teleprocessing response is much 
more subjective. Here a degradation of 30 percent as 
compared to response on the System/360 Model 67 half
duplex subsystem was considered the maximum accepta
ble degradation. Standard teleprocessing scripts were 
developed for the measurement of this degradation. These 
scripts originate from an MTS task running on one Model 
67 subsystem while the system under test (either OS/360 
under a virtual machine or as /360 on the real machine) 
is run on the other subsystem. This is accomplished by 
connecting teleprocessing line adapters between the two 
subsystems. Degradation is measured in terms of the total 
elapsed time to complete the scripts. 

IBM SYSTEM/360 MODEL 67 FEATURES 

I t is necessary to understand the special features of the 
IBM System/360 Model 67 before describing the imple
mentation of MTS and the virtual machine. It is assumed 
that the reader is familiar with the basic architecture of 
the IBM System/360.5 The Model 67 features are 
described in detail in the IBM Functional Characteristics 
Manual.6 

The pertinent hardware features are: 

(1) The Model 67 possesses two level address transla
tion-segmentation and pagination. The segment is 
the natural unit of memory to share, since two 
segment table entries may point to the same page 
table. 

(2) Channel programs must contain real memory 
addresses, not virtual addresses. A supervisor must 

translate the addresses contained in channel pro
grams presented to it by tasks. 

(3) The Model 67 does not incorporate memory protec
tion into the segment and page tables, but rather 
uses the standard System/360 scheme. 

MTS ARCHITECTURE 

This section describes those elements of the MTS archi
tecture which must be understood in order to read the 
remainder of the paper. Alexander7

.
8 contains more infor

mation on this topic. 

UMMPS 

The heart of the MTS system is UMMPS-the supervi
sor. Every active MTS user, terminal or batch, is serviced 
by a single task independent of any other task. There are 
several additional tasks which provide basic system serv
ices, such as spooling. The concept of a task in MTS is 
similar to a task in as /360 or a process in M ultics. Tasks 
are always executed in problem state. That is, they can
not execute the System/360 privileged instructions. Tasks 
are usually executed with a non-zero protection key. This 
allows a storage key of zero to be used to protect memory 
regions from change by tasks. 

The resident system is that portion of the MTS system 
which remains in real memory at all times-it is never 
paged. The major component of the resident system is 
UMMPS and its various tables. The resident system is 
assigned to the beginning of real memory, starting with 
the Prefix Storage Area (PSA). 

Task addres~ space 

A task possesses an address space consisting of nine 
segments. Table I describes the contents of these seg
ments. Shared segments are protected from task pro
grams by a storage key of zero. Private segments are 
generally assigned a storage key of one. Inter-task protec
tion of private storage is achieved by the address transla
tion mappings. 

Task input/output 

An input/ output operation is started on a device by 
means of an SVC instruction similar to Execute Channel 

Segment 

0-1 
2 
3 

4-8 

TABLE I-MTS Segment Usage 

Attributes 

not paged, shared 
paged, shared 
paged, private 
paged, private 

Contents 

Resident System 
Initial Virtual Memory 
Virtual Machine Memory 
rser program and data 



Program (EXCP)in OS/360. The identification of the 
device (a task may own more than one) and a channel 
program are passed as arguments to the SVC instruction. 
A task may either wait for the end of the operation 
(synchronous) or enable a task interrupt for the end of 
the operation on the device (asynchronous). In either case 
the request is made by means of a second SVC instruc
tion. 

The channel program presented to UMMPS is written 
in terms of virtual memory addresses. UMMPS then 
generates an equivalent channel program which refer
ences the data areas by their real memory addresses. 
Channel commands referencing data areas which straddle 
page boundaries may require translation into two or more 
chained channel commands. 

Task interrupts 

Ul\1l\1PS provides a facility through which tasks may 
enable interrupts which are taken when certain asyn
chronous conditions are sensed by UMMPS. A task may 
enable end of operation, attention, and PCI (Program
Controlled Interrupts) for specific input/ output devices. 
Tasks may also enable interrupts for abnormal events 
such as timer interrupts and program interrupts. The 
general processing at the time of the interrupt consists of 
pushing the current state of the task onto a stack and 
changing the state of the task so that it continues with the 
first instruction of the interrupt routine. The interrupt 
routine returns by means of an SVC instruction which 
restores the previous state of the task. A task may be 
interrupted by a different condition while still processing 
a previous interrupt, to any practical level. 

THE MADDEROM VIRTUAL MACHINE 

The first virtual machine for MTS was developed by 
Peter Madderom at the University of British Columbia. 
The particular implementation was unsuitable for the 
support of a production operating system. However, the 
basic architecture of all succeeding virtual machines has 
remained the same. This virtual machine was used to run 
restricted versions of OS/360, stand-alone direct access 
device initialization and restoration programs (DASDI 
and Dump/Restore), and test versions of MTS. 

The SWAPTRA SVC in::;truction 

The crux of the virtual machine in MTS is an UMMPS 
SVC instruction which changes the address space of the 
task which issues it. The arguments to this SVC instruc
tion are an Interrupt Control Block, the right-hand half of 
a PSW, and a vector of sixteen full-words. In response to 
the SWAPTRA SVC instruction, UMMPS changes the 
segment table for the task so that what normally is Seg
ment Three becomes Segment Zero and all of the other 
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segments disappear. UMMPS then sets the general pur
pose registers of the task to the contents of the vector 
argument. The right-hand half of the task's PSW is set to 
the contents specified as an argument. The task is then 
scheduled for use of a processor in the normal fashion. 
These changes are depicted in Figure 1. Processing con
tinues in this manner until the task program either issues 
an SVC instruction or causes a program interrupt. At that 
time the address space of the task reverts back to normal 
and the task is interrupted. 

The utility of this mechanism should be obvious. Seg
ment Three of a task's address space is used as an image 
of the virtual machine's address space. The SWAPTRA 
SVC instruction is executed by a program to enter the 
mode in which the virtual machine's program is run. An 
interrupt to the original program will be generated at just 
precisely that point where some function of the virtual 
machine must be siniulatea:(e.g., the execution of a privi
leged instruction by the virtual machine program). Thus, 
the problem state instructions of the virtual machine's 
program will be executed by the Model 67 processor while 
privileged instructions will cause an interrupt to the pro
gram which invoked the virtual machine mode. 

The virtual machine monitor 

The virtual machine is initiated by loading and execut
ing a program called the Virtual Machine Monitor. This 
program is a typical MTS program, except that it issues 
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the SWAPTRA SVC instruction. The Monitor program 
accepts commands from the operator which allow him to 
specify the virtual machine configuration and control the 
virtual machine. The control functions provided by the 
Virtual Machine Monitor parallel those available at the 
operator's console of a System/360 (e.g., the Initial Pro
gram Load (lPL) button, the Start and Stop buttons, the 
ability to display and alter the virtual machine's memory, 
registers, and PSW). 

Input/output simulation 

Input/ output simulation is handled in two ways by the 
Virtual Machine Monitor. 

Several devices (card readers, printers, and punches) 
may be completely simulated by the Virtual Machine 
Monitor. In this case the Monitor interprets the channel 
program and transfers data by means of the standard 
MTS input/ output functions. Input; output done in this 
manner is synchronous. 

Input/ output operations may also be performed by 
acquiring a real physical device for use by the virtual 
machine. When the virtual machine's program executes a 
Start I/O (SIO) instruction for a real device, the Virtual 
Machine Monitor issues an UMMPS SVC instruction to 
request the start of the input/output operation, enables 
the end of operation condition for that device, and returns 
control to the virtual machine's program. When the Vir
tual Machine Monitor is entered by the interrupt signal
ling the end of the operation, it either simulates an input/ 
output interrupt immediately or posts the interrupt until 
the virtual machine enables the channel for interrupts. 

It is necessary for the Virtual Machine Monitor to 
generate a new channel program equivalent to the virtual 
machine's channel program, since the virtual machine's 
channel program is in terms of its restricted address 
space while the Monitor must use the full nine segment 
address space. 

Interval timer 

The Madderom Virtual Machine Monitor decremented 
the virtual machine's interval timer by one second after 
each second of task CPU time (including overhead). The 
timer had, therefore, a low resolution in comparison to 
the standard System/360 interval timer. 

VOS VERSION 1 

A new virtual machine, called VOS, for virtual machine 
support of OS/360, was developed at Wayne State Uni
versity to support a production OS /360 system. The 
development of VOS-l required 18 manmonths. VOS-l is 
described in this section. 

Self-modifying channel programs 

The Madderom virtual machine did not allow self
modifying channel programs. Since self-modifying chan-

nel programs are used by OS/360 for the Indexed 
Sequential Access Method (ISAM), it was essential that 
they be supported, at least for direct access devices. 

The major difficulty to self-modifying channel pro
grams is that the channel program executed by the chan
nel is not the same channel program set up by the virtual 
machine's program-it is a new channel program contain
ing real memory addresses. That portion of UMMPS 
which translates channel programs was modified to recog
nize when a channel command modifies the channel pro
gram. This command, when translated, would be followed 
by an invalid command. When the channel program 
abnormally terminated, UMMPS would reprocess the 
virtual machine's channel program starting at the point 
just after the command which modified the channel pro
gram. Thus the channel program would be executed III 

small segments, from one self-modification to the next. 

Improved channel program translation 

In the original virtual machine, each channel program 
was translated twice, once by the Virtual Machine Moni
tor to addresses in Segment Three, and again by UMMPS 
to real addresses. Both of these steps were incorporated 
into the UMMPS algorithm, thus removing the transla
tion performed by the Monitor. 

Storage protection 

The Madderom virtual machine did not support the 
System/360 storage protection mechanism. UMMPS was 
changed to allow a task to specify the storage keys of its 
storage and the protection key with which it desired to 
execute. The storage keys of the virtual machine's mem
ory were then set in accordance with the Set Storage Key 
instructions executed by OS/360. The protection key of 
the task was also set in accordance with the protection 
key of the virtual machine's simulated PSW. 

There were ramifications to the security of MTS caused 
by this. The Virtual Machine Monitor was forced to exe
cute with a protection key of zero so that it could refer
ence the virtual machine's PSA in Segment Three (OS/ 
360 protects its PSA with a storage key of zero). Since the 
Monitor executes with the standard address space, it was 
trusted to not disturb the contents of segments 0, 1, and 2. 

Interval timer 

The support of a production OS/360 system required 
that: (1) the CPU time charged to OS /360 tasks not be 
increased by any overhead in the Monitor or UMMPS, 
(2) the time of day as computed by OS/360 remain accu
rate, and (3) the precision of the interval timer be 
increased. 

The major difficulty is caused by the first two con
straints. The general technique used in VOS-l was to 
record the processor time charged to the MTS task in two 



categories: that used by the virtual machine's program 
and that used by the Monitor and UMMPS. Normally 
the Monitor would decrement the simulated interval 
timer by only the former figure. However, whenever the 
virtual machine entered wait state, the Monitor would 
decrement the simulated interval timer by the elapsed 
time spent in wait state and the sum of the two categories 
of processor time charged to the MTS task. Thus the time 
of day as computed by OS/360 would lag during periods 
of sustained processor activity in the virtual machine, but 
would catch up when the virtual machine entered wait 
state. 

Virtual model 67 

The Madderom virtual machine supported a virtnal 
Model 67 in addition to a standard System/360. Since 
as 1360 did not use these features they were removed to 
improve the performance of the virtual machine. 

Combined SVC instructions 

It was found that the Virtual Machine Monitor fre
quently issued a sequence of two or three UMMPS SVC 
instructions one after another. Since each SVC instruc
tion is a source of overhead, due primarily to the saving 
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and restoring of task status, several SVC instructions 
were added to UMMPS which incorporated the function 
of popular combinations of SVC instructions. This 
yielded an appreciable reduction in the processor time 
required to perform the combined functions. 

vas VERSION 2 

The second development period was initiated to 
respond to two shortcomings of VaS-I. The first was that 
performance, although noticeably improved over the 
Madderom Virtual Machine, was still inadequate. Figures 
2 and 3 give timing comparisons between the Madderom 
Virtual Machine (labeled V67) and VOS-I. The second 
was the degree of uncertainty about the rather inelegant 
support of self-modifying channel programs. These design 
efforts required 24 manmonths and were focused in four 
major areas. 
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Allocation of 08/360 virtual memory 

The first, and most complex change was the installation 
of what we call OS/360 with a hole. Earlier measure
ments showed that the majority of overhead was asso
ciated with input/ output. A large amount of processor 
time is spent relocating channel programs. Additional 
time is spent relating the ending status of an input/ output 
operation to the original channel program. Another con
sideration was that the method chosen to handle self
modifying channel programs was designed for the specific 
types of channel programs used by OS /360 and could 
conceivable fail with later releases of ISAM. The solution, 
simply stated, was to assure that OS virtual memory 
addresses would be identical to their assigned real mem
ory addresses so that the relocation of channel programs 
would not be necessary. 

The MTS system has been designed under the assump
tion that UMMPS and other real memory programs are 
allocated at the beginning of real memory. This, coupled 
with the fixed locations of primary and alternate Prefix 
Storage Areas (PSA's) dictated that no portion of OS/360 
could be assigned to a real memory address less than 
X'052000' (We will write hexadecimal values in the 
notation used by the System/360 Assembler language 
for self-defining terms). Any area above X '052000' 
could be reserved for OS use. 

OS/360 has its own set of constraints upon its address 
space. It requires that its first pages (five at WSU) begin 
at address X'OOOOOO' due to its use of halfword address 
constants and its addressing of its PSA with no base regis
ter. Therefore, it is necessary for these five pages of OS/ 
360 to be relocated. 

The entire OS/360 address space is treated in the fol
lowing manner: 

(1) The first five pages (X'OOOOOO' through X'004FFF') 
are relocated to an arbitrary set of five contiguous 
pages in real memory. These pages are not paged 
from real memory. 

(2) Every page in the address space from X'005000' 
through X'051FFF' is mapped into a single real 
memory page. Steps are taken to assure that OS/ 
360 does not use this region for any useful purpose. 

(3) The remaining OS /360 address space (X '052000' 
through X'OFFFFF') is mapped into real memory 
addresses X'052000' through X'OFFFFF'. (We 
refer to this as virtual = real.) 

The above address mapping eliminates the relocation of 
channel programs referencing input/ output areas whose 
address is above X'052000'. Channel program relocation 
is simplified for those channel programs referencing areas 
below X'052000'. Since all self-modifying channel pro
grams and their data areas are located above X '052000', 
they need not be relocated and require no special process
ing. The resulting useful OS/360 address space (parts 1 
and 3 from above) is 716K in length. Figure 4 depicts the 

OS/360 memory allocation and Figure 2 illustrates the 
nineteen percent reduction in I/O overhead due to this 
approach. 

Modifying OS/360 to conform to this address space was 
trivial. An ORG pseudo instruction was added to the 
SYSGEN macros used to generate the OS/360 I/O Super
visor and related control blocks. This change forces the 
last section of control blocks to start at address X'052000'. 
The nucleus was then reassembled and link-edited into 
an alternate nucleus. 

Code was added to the Virtual Machine Monitor to 
permit selection of either the normal nucleus or the alter
nate nucleus when OS/360 is initially loaded. 

An SVC was added to UMMPS to initialize the page 
table and reserve the appropriate real memory regions for 
the OS /360 virtual memory. The size of the region to be 
allocated to OS /360 is specified as an argument to the 
SVC-it cannot exceed a segment (one megabyte) but 
may be smaller if so desired. 

UMMP8 virtual machine support 

The second design change incorporated some of the 
support of the virtual machine in UMMPS. The UMMPS 
first level interrupt handlers were modified to reduce the 
overhead associated with simulating SVC interrupts and 
non-I/O privileged instructions. 

SVC interrupts and storage key instructions are always 
simulated in the UMMPS interrupt handlers. Instruc
tions enabling OS to receive interrupts (LPSW and SSM) 
are simulated in UMMPS unless the Virtual Machine 
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Monitor indicated that an interrupt was pending. In those 
instances, an asynchronous exit to the Monitor is effected 
and the pending External or I/O Interrupt is simulated. 
The resulting reduction in overhead is shown in Figure 3. 
Whenever the UMMPS interrupt handlers encounter an 
event that could result in an OS/360 MVT task switch, 
the virtual interval timer is decremented to accurately 
reflect the amount of CPU time spent while the Virtual 
OS/360 was running. This results in accurate CPU 
charges for OS/360 jobs. 

Memory protection alterations 

The third area of design incorporated a hardware 
extension to functions provided by main storage. While 
the model 67 virtual memory addressing mechanism 
serves to prevent OS/360 programs (and OS) from access
ing non-OS memory, the channels on a System/360 have 
only storage keys to limit the damage incurred by an 
errant channel program. In order to insure the integrity of 
the MTS tasks, all as /360 protect key zero channel pro
grams would have to be translated in their entirety to 
insure that only OS/360 memory would be referenced. 
This, of course, would result in giving up most of the 
performance improvements gained via the virtual = real 
memory arrangement. 

This situation arose at the same time we were negotiat
ing the specifications for the replacement of main storage 
with a Fairchild LSI Modular Main Memory. The addi
tion of a rather simple feature enabled us to eschew 
complete channel program translations. Protect key eight 
was implemented as a sub-master protect key. This fea
ture, which is activated by a switch on the memory con
troller, allows the key zero user (UMMPS) to continue 
accessing all of memory, and a key eight user (aS super
visor) to access all memory having a protect key of eight 
or higher. 

MTS tasks run under a protect key of one and as /360 
assigns protect keys from 15 downward. As long as we 
permit no more than seven concurrent OS/360 problem 
programs, the as /360 memory integrity is assured and 
the isolation of the two operating systems is accom
plished. 

Modification of 08/360 

The fourth effort was directed toward the OS/360 1/ a 
supervisor itself. A performance oriented modification 
was made which is not required for the virtual system to 
work. The change involved the simulation of a channel
end condition after as /360 issues a stand-alone seek 
command to a disk drive. OS/360 normally executes a 
Test-I/O (TIO) privileged instruction a short time after 
issuing a stand -alone seek to determine if the channel is 
free. This change to the I; 0 Supervisor deletes the TIO 
instruction and assumes the channel is free. This removes 
the overhead of simulating the TIO instruction in this 
situation. 
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CONCLUSIONS 

Figures 5 and 6 summarize performance measurements 
taken in January, 1973. They attempt to show how the 
Virtual as /360 system performs in comparison with the 
real as /360 system, and the percentage of degradation. 
ADS-TP can be supported on a virtual system while 
running an as; 360 output writer and batch job stream 
within the 30 percent degradation permitted. 
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The batch job streams, consisting of COBOL compila
tions which are primarily I/O bound, show high levels of 
degradation. The reduced batch throughput was consid
ered secondary when compared to the increased CPU 
availability to MTS users during periods of high time
sharing activity. 
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Architecture of virtual machines* 

by R. P. GOLDBERG 
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Billerica, Massachusetts 
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IXTRODUCTIOK 

Virtual machine (V~f) systems are a major development in 
computer systems design. l By providing an efficient facsimile 
of one or more complete computer systems, virtual machines 
have extended the multi-access, multi-programming, multi
processing systems of the past decade to be multi-environ
ment systems as well. Thus, many of the advantages in ease 
of system use previously enjoyrd only by application pro
grammers have been made available to systems programmers. 

Some of these advantages include support of the following 
activities concurrently with production uses of the system: 

• improving and testing the operating system software2 

• running hardware diagnostic check-out softwarel 

• running different operating systems or versions of an 
operating system3.4 

• running with a virtual configuration ,,,hich is different. 
from the real system, e.g., more memory or processors, 
different I/O devices5 

• measuring operating systems6 •7 

• adding hardware enhancements to a configuration with
out requiring a recoding of the existing operating 
system(s) 3 

• providing a high degree of reliability and security / 
privacy for those applications which demand it.8.9.lo 

'While several virtual machine systems have been con
structed on contemporary machines,3,7.11.12.13.14 the majority 
of today's computer systems do not and cannot support 
virtual machines. 15 The few virtual machine systems cur
rently operational, e.g., CP-67, utilize awkward and inade
quate techniques because of unsuitable architectures. 

Recent proposals of computer architectures specifically de
signed for virtual machines, i.e., virtualizable architectures, 

* This work was sponsored in part by the Electronic Systems Division, 
U.S. Air Force, Hanscom Field, Bedford, Massachusetts under Contract 
Number F19628-70-C-0217. A preliminary version of this paper was 
presented at the limited attendance Workshop on Virtual Computer 
Systems, sponsored by ACM SIGARCH-SIGOPS and held at Center for 
Research in Computing Technology, Harvard University, Cambridge, 
Massachusetts, March 26-27,1973. 
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have suffered from two \veaknesses. Either they have been 
unable to support modern complex opC'rating systems di
rectly on the virtual machines16 •17 or they have been unable 
to avoid all of the traditional awk\:rardness associated with 
virtual machine support.18 

A new proposaP9 called the Hardware Virtualizer, avoids 
the weaknesses of the previous designs while at the same time 
incorporating their strong points. Thus, the Hardware Vir
tualizer applirs to the complete range of conventional com
puter systems and eliminates the a\ykwardness and overhead 
of significant software intervention. The Hardware Virtual
izer may either be added to an existing computer system 
design or incorporated directly into a future system design. 

In this paper, we develop a model which represents the 
mapping and addressing of resources by a process executing 
on a virtual machine. By deriving properties of the model, 
we can clarify and contrast existing virtual machine systems. 
However, the most important result of the model is that its 
proper interpretation implies the Hardware Virtualizer as the 
direct natural implementation of the virtual machine model. 
We develop some of the characteristics of the Hard\vare 
Virtualizer and then illustrate the operation through the use 
of a concrete example. 

MODEL OF A PROCESS RUNNING ON 
A VIRTUAL ::\IACHINE 

In order to derive the underlying architectural principles 
for virtual machines, we develop a model that represents the 
execution of a process on a virtual machine. Since we want 
these principles to be applicable to the complete range of 
conventional computer systems-from minicomputers, 
through current general purpose third generation systems, 
and including certain future (possibly fourth generation) 
machines-it is necessary to produce a model which reflects 
the common points of all of these systems. The model should 
not depend on the particular map structures visible to the soft
ware of the machine under discussion. Features such as 
memory relocation or supervisor state are characteristics of 
the existing system and occur whether or not we are dis
cussing virtual machines. 
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To introduce virtual machines we must define a different, 
independent mapping structure which captures the notions 
common to all virtual computer systems. The unifying 
theme is the concept of a virtual machine configuration and 
a set of virtual resources. These resources, e.g., the amount of 
main memory in the virtual machine, are a feature of all 
virtual machines regardless of the particular virtual proc
essor's form of memory relocation, etc. Thus, the key point 
is the relationship between the resources in the configuration 
of the virtual machine and those in the configuration of the 
real (host) machine. Only after this relationship has been 
fully understood need we treat the complexities introduced 
by the existence of any additional mapping structure. 

The resource map f 

We develop a model of virtual machine resource mapping 
by defining the set of resources l' = (vo, VI, ••• , vm ) present 
in the virtual machine configuration and the set of resources 
R = (ro, rl, ... , rn) present in the real (host) configuration. 
[Resource spaces, both real and virtual, are always repre
sented as squares in the figures.] The sets V and R contain 
all main memory names, addressable processor registers, 
I/O devices, etc. However, in the discussion which follows, 
for simplicity, we treat all resource names as if they are 
memory names. As Lauer and Snow16 have observed, mem
ory locations can be used to reference other resource names 
such as processor registers, e.g., DEC PDP-lO, or I/O de
vices, e.g., DEC PDP-H. Therefore, no generality is lost by 
treating all resource names as memory names. 

Since we assume no a priori correspondence between vir
tual and real names, we must incorporate a way of associat
ing virtual names with real names during execution of the 
virtual machine. To this end, we define, for each moment of 
time, a function 

f: V~RU{n 

such that if y E V and z E R then 

fey) ={z if z is the real name for virtual name y 
t if y does not have a corresponding real name 

The valuef(y) =t causes a trap or fault to some fault han
dling procedure in the machine whose resource set is R, i.e., 
the machine R. For clarity we always term this event a 
V M -fault, never an exception. 

We call the function f a resource map, virtual machine 
map, or f-map. The software on the real machine R which 
sets up thef-map and (normally) receives control on a VM
fault is called the virtual machine monitor (V1\(jl,1). 

The model imposes no requirement that the f-map be a 
page map, relocation-bounds (R-B) map, or be of any other 
form. However, when speaking of virtual machines we norm
ally restrict our attention to those cases where both the 
virtual machine is a faithful replica of the real machine and 
the performance of the virtual system can be made compar
able to the real one. 

Recursion 

The resource map model developed above extends directly 
to recursion by interpreting V and R as two adjacent levels 
of virtual resources. Then the real physical machine is level 
o and the f-map maps level n+ 1 to leven n. 

Recursion for virtual systems is not only a matter of con
ceptual elegance or a consideration of logical closure,16,17 it is 
also a capability of considerable practical interest.18 ,2o In its 
simplest form, the motivation for virtual machine recursion 
is that although it makes sense to run conventional operating 
systems on the virtual machine, in order to test the VM.21f 
software on a V M, it is also necessary to be able to run at 
least a second level virtual machine. 

In the discussion which follows, we use a PL/I-style quali
fied name tree-naming convention in which a virtual machine 
at level n has n syllables in its name.18 ,19 This tree-name is 
used as a subscript for both the virtual resource space, e.g., 
1'1.1, and corresponding f-map, e.g., f1.1. 

Thus, if 
fl: Vl~R 

f1.1: V l.l~ VI 

Then a level 2 virtual resource name y IS mapped into 
fl(f1.l(y» or fl of 1.1(y).* See Figure la. 

In this function'!l of 1.1, we identify two possible faults: 

(1) 

(2) 

(a) 

(b) 

(c) 

The level 2 resource (virtual machine) fault to the 
VMM of level, 1, i.e.,!1.l(Y) =t. See Figure lb. 
The level 1 resource (virtual machine) fault to the 
VMM of level 0 (the real machine), i.e., fl of l.l(y) = t. 
See Figure lc. 

I·ro d 
R 

Figure I-Recursive i-map 



In general, a composedf-map may cause either fault. How
ever, there exists a class of maps, called inclusive maps, which 
can only cause the first fault (level 2 fault). The relocation
bounds map (R-B map) is inclusive but the page map is not. 
The inclusive property implies the possibility of simple re
cursive implementation. 16 ,19 

For the general case of level n recursion, we have n-Ievel 
virtual name y being mapped into 

fl of 1.10 • .• of 1. .... I(Y)· 
See Figure Id. 

The present model may be used to describe the proposals 
of Lauer and SnowI6 and of Lauer and vVyethI7 for single 
state recursive virtual machines. In the former case, the map 
isf=R-B; in the latter case, it is f= segmentation. See dis
cussion of Table I. 

The process map cJ> 

The model as currently developed represents only the map
ping of resources in a computer system. This machinery is 
sufficient to discuss virtualization of certain mini-computers, 
e.g., DEC PDP-8, which do not exhibit any local mapping 
structure. However, most current (third generation) general 
purpose systems have additional software-visible hardware 
maps. This additional structure may be as simple as super
visor/problem states (IB::\I System/360) and relocation
bounds registers (DEC PDP-lO and Honeywell 6000), or as 
complex as segmentation-paging-rings2I (::\lultics-Honey
well 6180). In future fourth generation systems, the maps 
\villlikely be even more complex and might feature a formal 
implementation of the process mode122 ,23 in hardware
firmware. 

The crucial point about each of these hardware (sup
ported) maps is that they are software visible. In certain 
systems, the visibility extends to non-privileged software. I5 

However, in all cases the maps are visible to privileged 
software.Is 

Typically, an operating system on one of these machines 
'will alter the map information before dispatching a user 
process. The map modification might be as simple as setting 
the processor mode to problem state or might be as complex 
as changing the process's address space by switching its seg
ment table. In either case, however, the subsequent execu
tion of the process and access to resources by it will br af
fected by the current local map. Therefore, in order to faith
fully model the running of processes on a virtual machine, 
we must introduce the local mapping structure into the 
model. 

vVe develop a model of the software-visible hardware map 
by defining the set of process names P= Ipo, PI, ... ,pjl to be 
the set of names addressable by a process executing on the 
computer system. [Process spaces are always represented as 
circles in the figures.] Let R= Iro, rI, ... , rnl be the set of 
(n"al) fPSUUfCt' Ilam(-'s, as Lefurf'. 

Thrn, for the active process, wr provide a way of associat
ing procrss names with resource names during process exe
cution. To this end, via all of the software visible hardware 
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mapping structure, e.g., supervisor/problem state, segment 
table, etc., we define, for each momC'nt of time, a function 

¢: P---+RU(el 

such that if xEP, yER, then 

cjJ(x) ={y if y is the resource name for process name x 
e if x docs not have a corresponding resource. 

The value cjJ(x) =e causes an exception to occur to some 
exception handling procedure, presumably to a privileged 
procedure of the operating system on this machine. To avoid 
confusion with Vll1-faults (see above), procpss traps will al
ways be called exceptions. 

'We call the function cjJ a process map or cjJ-map. The term 
process map is applied regardless of what form the cjJ-map 
takes. In future (fourth generation) systems, cjJ might ac
tually represent the firmware implementation of proceSBe~ 
although this is not necessary. The important point about 
cJ> is that unlike f, which is an inter-level map, rP is a local or 
intra-level map and does not cross a level of resource mapping. 

Running a virtual machine: f 0 cjJ 

Running a process on a virtual machine means running a 
process on a configuration with virtual resources. Thus, if a 
process P= {Po, PI, ... , pjl runs on the virtual machine 
V = {vo, VI, ••. , vml then 

as before, with virtual resource names, V, substitutrd for 
real ones in the rrsource range of the map. 

Thr virtual resource names, in turn, arr mapprd into their 
real equivalents by thr map, f: V ---+R. Thus, a process name 
x corresponds to a real resource f (cjJ (x) ). In general, process 
names are mapped into real resource names under the (com
posed) map 

focjJ: P---+RU(tIU{el. 

This (composed) map can fail to take a process name into 
a real resource name in O1W of two ways. In the event of a 
process name exception (Figure 2a), control is givrn, with
out V.MJl1 knowledge or intervention, to thr privileged soft
ware of the operating system within the same level. A virtual 
name fault, however, causes control to pass to a process in a 
lower level virtual machine, without the operating system's 
knowledgr or intervention (Figure 2b). vVhile this fault 
handling softv.-are in the V.LVIll1 is not subject to an f-map 
since it is running on the real machine, it is subject to its 
cjJ-map just as any other process on the machine. 

The cjJ-map may be combined with the recursive f-map re
sult to produce the "grnrral" composed map 

fl of 1.1 0 ... of 1.1 ... 1.1 0 cjJ. 

Thus, for virtual machines, regardless of the level of rrcur
sian, th('rr is only one application of th(' cjJ-map followed by 
11 applications of an f-map. This is an important result that 
comes out of the formalism of distinguishing the f and cjJ 
maps. Thus, in a system with a complex cjJ-map but with a 
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Figure 2-Process exception and VM-fault 

simple f-map, n-Ievel recursion may be easy and inexpensive 
to implement. 

In the model presented,J-maps map resources of level n + 1 
into resources of level n. It is equally possible to define an 
f-map in which resources of level n + 1 are mapped into proc
ess names of level n (which are thpn mapped into resource 
names of level 11). This new f-map is called a Type II f-map 
to distinguish it from the Type I f-map which is discussed in 
this paper. 19 .24 

I nterpretation of the model 

The model is very important for illustrating the existence 
of two very different basic maps in virtual machines. Previ
ous works have not clearly distinguished the difference or 
isolated the maps adequately. The key point is that f and 1> 
are two totally different maps and serve different functions. 
There is no a priori requirement that f or 1> be of a particular 
form or that there be a fixed relationship bet\veen them. The 
q,..map is the interface seen by an executing program whereas 
the f-map is the interface seen by the resources. In order to 
add virtual machines to an existing computer system, 1> is 
already defined and only f must be added. The choice of 
whether the f-map is R-B, paging, etc., depends upon how 
the resources of the virtual machines are to be used. In any 
case, the f-map must be made recursive whereas 1> need not 
be. 

If a new machine is being designed, then neither 1> nor f is 
yet defined. 1> may be chosen to idealize the structures seen 
by the programmer whereas f may be chosen to optimize the 
utilization of resources in the system. Such a "decoupled" 

view of system d('sign might lead to systems with 1> = seg
mentation andf=paging. 

Another intrinsic distinction betw('('n the maps is that the 
f-map supports levels of r('sourc(' allocation betw('('n virtual 
machines, while thf' 1>-map establishf's layers (rings, master/ 
slave mode) of privil('ge within a single virtual machine. 

The virtual machine model may be used to analyze and 
charactrriz(' diffrrent virtual machines and architectures. I9 

As can be seen from Table I, none of the existing or previ
ously proposed systems providps direct support of completely 
general virtual machines. CP-67 has a non-trivial1>-map but 
no direct hardware support of the f-map; thE' approach of 
Lauer and Snow provides direct hardware support of the 
f-map but has a trivial 1>-map, i.e., 1> = identity. Therefore, 
CP-67 must utilize software plus the layer relationship of 
the 1>-map to simulatE' levels, whereas Lauer and Snow must 
utilize softvlare plus the level relationship of the f-map to 
simulatr layers. * 

The Gagliardi-Goldberg "Venice Proposal" (VP) 18 sup
ports both the layer and level relationships explicitly. How
ever, since the VP does not directly provide hardware sup
port for f (it supports 1> and f 01», certain software inter
vention is still required. 

In the next section, we shall discuss a design, called the 
Hardware Virtualizer (HV), which eliminates the weaknesses 
of the previous designs. As can be seen from Table I, the 
HV is based directly upon the virtual machine model which 
we have developed. 

HARDWARE VIRTUALIZER (HV) 

Despite the value of the virtual machine model in providing 
insight into existing and proposed systems, perhaps its most 
important result is that it implies a natural means of imple
menting virtual machines in all conventional computer sys
tems. Since the f-map and q,..map are distinct and (possibly) 
different in a virtual computer system, they should be repre-
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* This is not to suggest that the Lauer and Snow approach is inferior. It 
is only less general in that it will not support modern operating systems 
running directly on the individual virtual machines. 



sented by independent constructs. When a process running 
on a virtual machine references a resource via a process 
name, the required real resource name should be obtained by 
a dynamic composition of the f-map and ¢-map at execution 
time. Furthermore, the result should hold regardless of re
cursion or the particular form of f and ¢. We call a hardware
firmware device which implements the above functionality a 
Hardware Virtualizer (HT'). The HV may be conceptually 
thought of as either an extension to an existing system or an 
integral part of the design of a new one. 

HV design and requirements 

The design of a Hardware Virtualizer must consider the 
following points: 

(1) The databas-e to store f 
(2) A mechanism to invoke f 
(3) The mechanics of map composition 
(4) The action of a V M-fault. 

In the discussion which follO\vs, we shall develop the basis 
for a Hardware Virtualizer design somewhat independently 
of the particular form of the f-map or ¢-map under consider
ation. We assume that the ¢-map is given (it could be the 
identity map) and we discuss the additional structure asso
ciated with the f-map. Although we shall refer to certain 
particular f-map structures, such as the R-B or paging form 
of memory map, the actual detailed examples are postponed 
until later . 

Da tabase to represent f 

The V2l1M at level n must create and maintain a database 
\vhich represents the f-map relationship between two adja
cent levels of virtual machine resources, namely level n + 1 to 
level n. This database must be stored so that it is invisible 
to the virtual machine, i.e., level n+l, including the most 

VMCB PAGE TABLE 

ROOT MEMORY MAP 

PROCESSOR MAP 

I/O MAP 

STATUS 

Figure 3-The VMTAB and VMCB's 
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privileged software. Let us assume that for economic reasonsl8 

the database must be stored in main memory. Then f may 
not be in the (virtual) memory of level n+l, but it must be 
in the (virtual) memory of level n. 

The only requirement on where the f-map is stored in 
level n memory is that it be possible for the HV to locate it 
by applying a deterministic algorithm from the beginning 
(ROOT) of level n memory. The f-maps corresponding to 
different virtual machines at the same level may be identified 
either implicitlyl6 or explicitly.l8 For explicit identification, 
we assume a virtual ~Iachine Table (V:\ITAB), the ith 
entry of which points to the Virtual :\Iachine Control Block 
(v.:VrCB) of virtual machine i (supported at level n). See 
Figure 3. 

The V:\ICB provides the representation of the f-map for 
the virtual machine. It contains the memory map, processor 
map, and I/O map. In addition, there may be other status 
and/or accounting data for the virtual machine.* The specific 
form of the V:\ICB is dependent upon the f-map actually 
used, e.g., R-B, paging, etc. 

Additional information possibly kept in the V:\ICB in
cludes capability information for the virtual processor indi
cating particular features and instructions, present or absent. 
These capability bits include, for example, scientific instruc
tion set or virtual machine instruction set (recursion). If re
cursion is supported, then the V~ICB must include sufficient 
information to automatically restart a higher level virtual 
machine on a lower level V.2\f-fault (Figure lc). 

Mechanism to invoke f 

In order to invoke the f-map, the HV requires an addi
tional register and one instruction for manipulating it. The 
register is the virtual machine identifier register (V~nD) 
which contains the "tree name" of the virtual machine cur
rently executing. The V~nD is a multisyllabic register, 
whose syllables identify all of the f-maps which must be 
composed together in order to yield a real resource name. The 
new instruction is LV.:\IID (load V':\IID) which appends a 
new syllable to the V.:\IID register. This instruction should 
more accurately be called append V.:\IID but L V.:\IID is re
tained for historical reasons. 

For the hardware virtualizer design to be successful, the 
V:\UD register (and the LV.:\IID instruction) must have 
four crucial properties. l8 .l9 

(1) The V.:\fID register absolute rontents may neither be 
read nor written by software. 

(2) The V.:\IID of the real machine is the null identifier. 
(3) Only the LV.:\IID instruction may append syllables 

to the V~IID. 
(4) Only a V.il1-fault (or an instruction which terminates 

the operation of a virtual machine) may remove 
syllables from the V~IID. 

* As noted earlier, mapping of I/O and other resources may be treated 
as a special case of the mapping of memory. Under these circumstances, 
the VMCB reduces to the memory map component. 
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Figure 4-L VMID instruction 

Figure 4 sketches the operation of the LV::\lID instruction 
while avoiding implementation details related to a specific 
choice of map. In the flowchart, we use the V.:\IID as a sub
script to indicate the current control block, V:\1CB [V.MID]. 
Thus SYLLABLE, the operand of the LV::\lID instruction, 
is stored in the NEXT_SYLLABLE field of the current 
VMCB. SYLLABLE is appended to the V~UD and this new 
virtual machine is activated. If the NEXT_SYLLABLE 
field of the new V::\ICB is NULL, indicating that this level 
of machine was not previously active, then the LV::\IID in
struction completes and execution continues within this vir
tual machine. Otherwise, if it is not null, the lower level was 
previously active and was suspended due to a V2lf-fault at a 
still lowpr level. In this case, ex('cution of the LV::\IID in
struction continups by appending the );EXT_SYLLABLE 
fjpld of thr new V:\ICB to the V~IID. 

Map composer 

A map composer is needed to provide the dynamic com
position of the q,-map (possibly indentity) and the active 
i-maps on each access to a resource. The q,-map is known and 
the active i-maps, i.e., the VMCB's, are determined from the 
VMID register. Figure 5 sketches the map composition 
mechanism while avoiding implementation details related to 
specific choice of maps. As can be seen, the composer accepts 
a process name P and develops a real resource name R or 
causes a V M -fault. 

VM-fault 

A V..Ll.f-fault occurs when there does not exist a valid map
ping between two adjacent levels of resources. As shown in 
Figure 5, a VM-fault causes control to be passed to the V.Al.ilI 

Figure i'i--··Map composition and VM-fault 



superior to the level which caused the fault. This is done by 
removing the appropriate number of syllables from the 
V1VlID. 

Preformance assumptions 

The performance of the Hardware Virtualizer depends 
strongly upon the specific f-map, </J-map, and HV imple
mentation technique used. However, there are basic reasons 
why processes can execute on a virtual machine with effi
ciency approaching that of the real machine. Most current 
systems which employ memory mapping (in the cp-map) 
make design assumptions concerning program behavior. We 
will observe that these assumptions are applicable to virtual 
machines as well. 

From the initial notion of "program locality", Madnick25 

has generalized and identified two specific aspects of locality. 

(1) Temporallocality 
If the logical addresses (aI, a2, •.. ) are referenced dur
ing the time interval t- T to t, there is a high proba
bility that these same logical addresses will be refer
enced during the time interval t to t+ T.25 

(2) Spatial locality 
If the logical address a is referenced at time t, there is 
a high probability that a logical address in the range 
a-A to a+ A will be referenced at time t+ 1.25 

In modern operating systems, because of the cost to "start 
up" a process or to change the </J-map, it is likely that the 
scheduler and dispatcher will enforce an additional locality : 

(3) Process locality 
If the </J-map value of the process executing at time t is 
</J*, then there is a high probability that it will be </J* 
at time t+ 1. 

Virtual machines and the Hardware Virtualizer add a new 
notion. 

(4) Virtual machine locality 
If the V.:\fID of the currently executing virtual ma
chine at time t is XI.X2 . ..• . Xn-l.Xn, then there is a high 
probability that the VJIID "vill be XI.X2 . •.• • Xn-I.Xn at 
time t+ 1. Furthermore the VJIID may change only 
on a V.Llf-fault or an Lv:~nD instruction. 

Combining all of these locality notions, we determine that 
with proper implementation, multi-level recursive virtual 
machines need not have significantly different performance 
from real machines. Another way of phrasing this observa
tion is: 

Temporal and spatial locality are name invariant. 

Regardless of what a block of memory is called, or how many 
times it gets renamed (via composedf-maps) there is still an 
intrinsic probability of reference to it by an executing pro
gram. Thus, a virtual machine supported by a map composer 
and associative store should enjoy comparable performance 
to the real machine. I9 
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If the f-map and </J-map are sufficiently simple then the 
associator may not be needed. For example, if f=R-B, </J= 
identity, then it may be sufficient for the HV to provide 
"invisible scratchpad registers" to maintain statically com
posed R-B values which are altered only on a level 
change.16 •19 

If </J involves paging or segmentation, then the real ma
chine itself probably required an associator for performance 
reasons. 26 The HV associator will replace it. If the f-map is 
simple, e.g., f=R-B, then the HV associator will be very 
similar; if f includes paging it will be somewhat different. The 
choice of whether to include the VJlID or level as part of the 
search key of the associator can be made for price-perform
ance reasons. 

Interpretation of the HV 

As indicated earlier, the Hardware Virtualizer can serve as 
the central mechanism in the design of a new computer sys
tem or as an expansion to an existing computer system. In the 
latter case, we assume a computer system jlf with a given 
</J-map. The HV construction, i.e., additional data structures, 
new instruction (LV~nD), V21f-fault etc., defines a new 
machine M' with added functionality. The Hardware Vir
tualizer guarantees that M' is a recursive virtual machine 
capable of supporting a hierarchy of 1\1[' machines with 1'v! 
machines as terminal nodes ,,,,here desired. 

EXA~1PLE OF A HARDWARE VIRTUALIZER 

In order to clarify the operation of the Hardware Virtual
izer, we demonstrate one example of its use. In the example, 
we present some features of a typicai third generation archi
tecture, indicate the extensions introduced by the Hardware 
Virtualizer, and then illustrate the execution of some in
structions. ~'lany other examples have been developed in 
greater detail, including those for very complex (fourth gen
eration) architecturesI9 but the principles involved are the 
same. 

Existing architecture 

This example is developed around a canonical third gener
ation computer system, similar to the Honeywell 6000, DEC 
PDP-lO, or IBJI System/360. The salient featurf's of thf' 
architecture are (1) the privileged/non-privileged mode dis
tinction (master/slave, supervisor/problem, etc.) as part of 
the instruction counter (IC), (2) a single relocation-bounds 
register (R-B) whose absolute contents may be loaded in 
privileged mode, and (3) some fixed locations in main mf'm
ory where the old and new R-B and IC registers are swapped 
on a process exception. 

To simplify the example we will assume the R-B rf'gister 
is active, even in privileged mode. Furthermorf', all instruc
tions will be assumed to be executing in privilegf'd mode. 
Since mode violations are local process exceptions and are 
treated identically to R-B violations, there is no need to 
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illustrate them both. The example illustrates execution of 
central processor instructions only. The extension of the ex
ample to include a homogeneous treatment of I/O is pos
sible 17.19 but introduces additional issues of both mechanisms 
and policies that are best treated in a subsequent paper. 
Thus, in this example, the R-B map is the q,..map. 

Extensions to architecture 

The Hardware Virtualizer requires extensions to the third 
generation architrcture. We will illustrate the modifications 
introduced by the addition of a page f-map (in the memory 
domain). We will assume WOO-word pages. (See Figure 6.) 
The modifications include: 

(1) database to store f--Bome fixed known location, say 
0, in the memory of level n points to the virtual 
machine table (V::\.fTAB) which describes the virtual 
machines of level n + 1. In this example, each virtual 
machine control block (V::\iCB) illustratrs a memory 
map (page table) and a processor map. The procpssor 
map includes storage for level n+1's IC and R-B. 
Also included but not illustrated is the level n +2 
NEXT SYLLABLE which is stored whf'nrver If'vel 
n+l issups an LV~IID instruction. 

(2) a mechanism to invokf' f-A multi-syllable V::\UD 
register and a LV::\IID instruction are added. When a 
virtual machine is activated, its IC and R-B are 
loaded from its control block (V~ICB). 

(3) a composer--A hardware-firmware compospr sup
ported with scrutchpad m(IIllory and ussociutor (for 

performance reasons) is added. We do not discuss the 
details of the implementation. 

(4) the action on a VM-fault-The IC and R-B are 
stored in their VMCB, the appropriate syllable(s) are 
removed from the VMID and control passes to a fixed 
known location, say 1, in the VMM. 

Note that this example illustrates a Type I f-map in which 
resources of level n + 1 are mapped into resources of level n. 
Thus, the relocation-bounds register value of level n does not 
enter into the mapping. In this example when L VMID is exe
cuted, relocation is coincidentally zero, but need not be. 

The example 

Figure 6 shows the state of main memory in our hypo
thetical hardware virtualized machine. We show V:31CB's to
gether with a number of instructions and data. For purposes 
of illustration, we assume the existence of a simple instruc
tion, LOAD, that accesses memory. Figure 6 also shows the 
three registers, V:MID, R-B, and IC, but their values are 
not indicated. Instead, Table II shows six sets of values for 
Vl\fID, R-B, and IC. For each set, we identify the instruc
tion which is executed and the evaluation sequence used in 
developing an absolute physical memory address. The table 
entry includes indication of a process exception, VM-fault, 
and any change to the VMID. The R-B register values are 
represented as r-b where r is the relocation (in thousands of 
words) and b is the amount of contiguous allocation (in 
thousands of words). 

The six lines of Table II divide into three sets, Lines 1-3, 
4, and 5-6. Within these sets, Lines 1-3 execute consecutively 
and Lines 5-6 also execute consecutively. 
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,! 
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Referring to Figure 6 and Table II, let us step through the 
first several evaluation sequences. In Line 1, we are in the 
VMM running on the real machine. All control blocks have 
been set up and it is time to activate virtual machine 1. The 
instruction counter value is 2000. Since the R-B map is 
0-14, we add zero to 2000 and obtain </>(2000) =2000. The 
VMID is NULL. Therefore, the resource name 2000 is a real 
resource and we fetch the instruction at physical location 
2000, L VMID 2800. We apply the R-B map to 2800 and 
eventually fetch 1 which is loaded into the VMID register. 

Virtual machine 1 is now activated and its IC and R-B 
registers are loaded from VMCB1. Thus, IC is now 2100 and 
R-B is 1-3. Even though the memory of virtual machine 1 
is 5000 words (as can be seen from its page table) the R-B 
register limits this active process to addressing only 3000 
words. This limit was presumably set by the operating sys
tem of virtual machine 1 because the active process is a 
standard (non-monitor) user. 

K ow we are in Line 2 and the IC is 2100. To apply the 
<l>-map, we add 1000, checking that 2100 is less than 3000, 
and obtain </>(2100) =3100. Since the V11ID is 1, we must 
apply Jl to map the virtual resource 3100 to its real equiva
lent. The page table, pointed at by VMCB1, indicates that 
virtual page 3 is at location 4000. Therefore, Jl (3100) = 4100 
and the LOAD 128 instruction is fetched. 

The other sequences may be evaluated in the same manner. 
Line 3 illustrates a process exception to the local exception 
handler of V:111, Line 5 illustrates activation of recursion, 
and Lines 4 and 6 illustrate VM-faults to the fault handler 
of their respective V2lf21.fs. 

It should be noted that we have added a paged J-map 
which is invisible to software at level n. The pre-existing 
R-B </>-map remains visible at level n. Thus, operating sys
tems \vhich are aware of the R-B map but unaware of the 
page map may be run on the virtual machine without any 
alterations. 

X ote that the addition of an R-B J-map instead of the 
paged J-map is possible. This new R-B J-map would be dis
tinct from and an addition to the existing R-B 4>-map; it 
would also have to satisfy the recursion properties of J-maps.19 
Similarly, a paged J-map added to a machine such as the 
IB:\I 360/67 would be distinct from the existing paged 4>-map. 

CONCLUSIOX 

In this paper we have developed a model which represents 
the addressing of resources by processes executing on a vir
tual machine. The model distinguishes two maps: (1) the 
4>-map which maps process names into resource names, and 
(2) the J-map which maps virtual resource names into real 
resource names. The </>-map is an intra level map, visible to 
(at least) thf' privileged software of a given virtual machine 
and expressing a relationship within a single level. The J-map 
is an intrr-Ievel map, invisible to all soft\'.-are of the virtual 
machine and establishing a relationship between the re
sourcrs of two adjacrnt levels of virtual machines. Thus, 
running a process on a virtual machine consists of running it 
under t he composed map J 0 4>. 
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Application of the model provides a description and inter
pretation of previous virtual machine designs. However, the 
most important result is the Hardware Virtualizer which 
emerges as the natural implementation of the virtual machine 
model. The Hardware Virtualizer design handles all process 
exceptions directly within the executing virtual machine 
without software intervention. All resource faults (VM
faults) generated by a virtual machine are directed to the 
appropriate virtual machine monitor without the knowledge 
of processes on the virtual machine (regardless of the level of 
recursion) . 

A number of virtual machine problems, both theoretical 
and practical must still be solved. However, the virtual ma
chine model and the Hardware Virtualizer should provide a 
firm foundation for subsequent work in the field. 
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The computer-aided design environment project 
(COMRADE) 

by THOMAS R. RHODES* 

Naval Ship Research and Development Center 
Bethesda, Maryland 

BACKGROUND 

Since 1965, the Naval Ship Engineering Center 
(NA VSEC) and the Naval Ship Research and Develop
ment Center (NSRDC), sponsored by the Naval Ship 
Systems Command, have been actively involved in devel
oping and using computer facilities for the design and 
construction of naval ships. The overall goals of this 
effort, known as the Computer-Aided Ship Design and 
Construction (CASDAC) project, have been twofold
first, to achieve significant near term improvements in 
the performance of ship design and construction tasks, 
and second, to develop a long term integrated CASDAC 
system for all phases of the ship design and construction 
process.! 

While pursuit of the first goal has achieved notable cost 
savings,! it has also produced a situation tending to delay 
the attainment of the second goal, that of an integrated 
CASDAC system. There soon were many individual 
batch-oriented computer programs, designed and oper
ated independently of each other, involving relative sim
plicity, low cost, and short-term benefits, all of which 
contrasted against the complications, high cost, and pro
jected benefits of an interactive integrated-application 
system. But yet, it was considered that a quantum 
improvement in the time and cost of performing ship 
design could only be realized through a coordinated and 
integrated approach. The real question facing the Navy 
was whether such an approach was technically and eco
nomically feasible. 

In an attempt to demonstrate the feasibility of an inte
grated approach, members of the Computer-Aided Design 
Division (CADD) and the Computer Sciences Division 
(CSD) of NSRDC joined with members of the CASDAC 
office of NAVSEC to investigate and develop a prototype 
system. 

The phase of ship design known as concept design was 
chosen to be modeled as an integrated system and to 
provide the macrocosm for studying system requirements. 

* The views and conclusions contained in this document are those of the 
author and should not be interpreted as necessarily representing the 
official policies, either expressed or implied, of the Department of the 
Navy. 
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Some of the characteristics favoring choice of this phase, 
were: 

• that as an initial phase of ship design, wherein basic 
features such as ship type and size, weapons and 
electronics systems, propulsion machinery and major 
shipboard arrangements were determined, it repre
sented a critical phase where optimization over many 
alternatives could result in improved ship perform
ance and lower development costs; 

• that as an activity with a high level of creativity and 
analysis, in which operational requirements were 
transformed into a feasible engineering reality, it 
could be enhanced through application of computer 
aids; 

• that as an activity with extensive interaction and 
information exchange among a multiplicity of engi
neers representing different disciplines (e.g., naval 
architecture, marine, mechanical, electrical, etc., 
engineering), it produced a dynamic atmosphere that 
was considered a "natural" for an integrated solu
tion; and, 

• that with relatively few engineering tasks and data 
requirements compared to later ship development 
phases, it offered a tractable situation for analysis 
and application of existing computer technology. 

SYSTEM REQUIREMENTS 

The initial study effort led the engineers and applica
tion programmers of CADD and the systems program
mers and analysts of CSD along different, but compie
mentary paths in viewing the system requirements-one 
view reflecting the engineering requirements of concept 
design and the other, the imposed computer require
ments. 

The engineering analysis sought to identify the various 
tasks, their contribution to the overall design process, 
their relationships, dependencies, data input and output 
requirements, and the role of the engineer throughout the 
design process. Each task was further divided to reveal 
the major steps and to explore the computer implementa-
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tion of them. TNhile a "building-block" approach to prob
lem solving, involving a strong interaction between the 
engineer and the system, was desired, questions were 
raised as to how much flexibility the system should pro
vide. Should the designer work at a low level with "atom
ic" engineering functions to incrementally describe and 
solve his problem, or should the designer work within a 
pre-established set of alternatives, where major decision 
points have been defined, and he should have only to 
choose and sequence among a variety of algorithmic pro
cedures in which much of the problem structure has been 
imbedded within the program logic? While the "atomic" 
approach appeared more flexible and was conceivably 
more adaptable to new design situations, the latter 
approach was favored for the initial effort since, under 
this approach it was deemed that satisfactory design 
results could still be obtained for a broad set of problems, 
many existing application programs were amenable for 
use, and less sophistication was required to develop and 
use the system. 

From the analysis of the overall design process, a good 
indication of program and designer data requirements 
was obtained. The required data was organized to reflect 
various logical associations, producing a large and com
plex data structure. 2 To minimize data redundancy a dis
tinction was made between data describing the character
istics of a particular ship and data that was common to 
many ships. This resulted in separate ship and catalog 
files and in having data associations both within and 
between files. This separation of data was favored also 
because the catalog files would be less subject to change 
during the design process than the relatively volatile ship 
file. and less queuing would be required during process
ing. 

The data base was considered to be the crucial link 
through which information would be shared among 
designers and programs, and hence it represented the key 
element in an integrated system. The demand for infor
mation required that data management capabilities be 
made available to both the application program during 
execution, and to the designer working directly with the 
data base at the terminal. The large and complex data 
structure indicated that efficient and flexible techniques 
would be necessary to structure, store, access, and manip
ulate this data, and finally, some means of controlling 
access to the files would be required to preserve data 
integrity. 

In addition to the analyses of the design process engi
neering requirements, consideration was also given to 
coordinating or controlling the overall design process. 
Although the designer would be responsible for perform
ing design tasks, he would do so under the general direc
tion of the project leader or design administrator. Task 
assignments and final acceptance of design results would 
normally be under the purview of this member of the 
design team, which implied that the system would need to 
be responsive to the administrator's role by providing 
controls over program and file access. and reports on the 
design statur-; ~nrl systpm l1S~gf> 

While the engineering analysis was directed toward 
identifying the elements and requirements of an inte
grated ship-concept design system, the computer sci~nce 
effort was directed toward providing general mechamsms 
that were adaptable to ship design and to similar situa
tions where it was necessary to coordinate and integrate 
many users, programs, and data files. 

The effort to produce a prototype ship-concept design 
system was termed the Integrated Ship Design System 
(ISDS) project, * while the effort to develop a framework 
of capabilities for constructing integrated systems was 
termed the Computer-Aided Design Environment 
(COMRADE) project. 

SYSTEM DESCRIPTION 

From the analysis done during 1970, design and devel
opment of a prototype system was scheduled to begin t.he 
following year using NSRDC\; CDC-6700 computer WIth 
the SCOPE 3.3 Operating System. 

The NSRDC computer configuration, shown in Figure 
1, provides remote access from interactive graphic, con
versational keyboard, and batch stations to high-speed 
dual processors with extensive secondary storage. Conver
sational teletype (TTY) and medium speed batch (200 
UT) capabilities are provided through the CDC INTER
COM Time-Sharing software, while high-speed remote 
batch and interactive graphic communications are serv
iced by the CDC EXPORT -IMPORT software. This 
configuration appeared satisfactory for a prototype effort; 
however, the relatively small main memory resource and 
the separate job schedulers for interactive graphics and 
conversational keyboards were considered major prob
lems for program development and integrated operations. 
To minimize difficulties in a first level effort, exclusive 
attention was given to use of the more available conversa
tional keyboard (TTY) as the principal designer interface 
to the system rather than to the more desirable interac
tive graphic terminal. However, some graphic applica
tions were planned and these would interface with the 
data base for test purposes. 

From a consideration of the ISDS requirements and an 
examination of related efforts, such as the Integrated 
Civil Engineering System (lCES)3, COMRADE pro
ceeded to design and develop three major software com
ponents: an Executive system; a Data Management sys
tem' and a Design Administration system. References 4, 
5 6' and 7 describe these components in greater detail, 
h~w~ver, the following summary gives an indication of 
their functions and capabilities: 

• Executive System-An interactive supervisor pro
gram, functioning under the INTERCOM Time
Sharing system, that interprets and processes com
mand procedures. Through supporting software, 

* "The Integrated Ship Design System, Model I-System Development 
Plan," internal document of Computation and ~lathematics Depart
m p11 t, ,-SRDC, Fcbru:1r:: 1071. 
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known as the Procedure Definition Language (PDL), 
command procedures are defined as the complex 
sequence of computer operations necessary to per
form a corresponding design task. Operations that 
can be automatically performed include: printing 
tutorials or data at the terminal; reading data from 
the terminal and passing it to programs through a 
System Common Communication area, and vice 
versa; setting default data values in system common; 
attaching, unloading, and purging files; initiating 
programs for time-shared or batch execution; execut
ing most SCOPE control statements; and, altering 
the sequence of operations through conditional or 
unconditional transfers. Capabilities are also pro
vided to control command usage through command
locks and user-keys, and to define unique "subsys
tems" of related commands. 

puter actions can be dynamically altered during com
mand processing, considerable flexibility for user deci
sion-making can be provided. Finally, during execution of 
an application program step, the Executive is removed 

Through the Executive capabilities, command proce
dures representing design tasks can be defined in such a 
way as to present a problem-oriented interface to the user 
and to hide distracting computer operations. Since com-
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~ ~ SUBSYSTEM DEVELOPERS: .~ATALOG PROGRAM 
i= r-[ENGINEERS & PROGRAMMERS] • ENTER COMMAND PROCESS 
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• SIGNS-ON tJlLES 
• ENTERS COMMANDS 
• FOLLOWS INSTRUCTIONS 
• SELECTS OPTIONS & ENTERS DATA 
• OBTAINS RESULTS 

Figure 2-COMRADE command definition and execution phases 
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from main memory, permitting larger residency by the 
application module. Upon termination of the module 
execution, control is returned to the Executive. (In Figure 
2, the command definition and execution phases are fig
uratively shown as steps 2 and 3.) 

• Data Management System-A library of FOR
TRAN -callable subroutines and user-oriented 
command procedures that provide data management 
capabilities to both the programmer and terminal 
user. Users may store, update, and retrieve data by 
name, retrieve data via queries on data attributes, 
cross-link data in different files through pointers, 
and in general define and process large, complex file 
and data structures. 

The COMRADE Data Management System (CDMS) is 
hierarchically structured into three levels: 

(1) The foundation or interfaces with the SCOPE I/O 
operations consists of the direct access technique 
and directory processing programs. Variable length 
logical records can be accessed by name, where 
each name is "hashed" to form an index into a 
directory that can reference up to 516,000 data 
records. Previously used disk space is reallocated 
and a paged, circular-buffer is used to store and 
process data records. 

This set of programs, called the COMRADE 
Data Storage Facility (CDSF), can be used by a 
programmer to store and retrieve data records or 
blocks by name; however, at this level, he would be 
required to do his own internal record structuring 
and processing. 

(2) Built on this foundation are system procedures, 
called the Block-Type Manipulation Facility 
(BTMF), that enable the data record contents to be 
defined, stored, retrieved, and updated by name, 
thus enabling the programmer to logically define 
and process records without regard to the internal 
structure. At this level, the format of each unique 
block-type is defined before the data file is generat
ed, and then, subsequently it is used to build and 
process corresponding data blocks. Each block-type 
can be logically defined as subblocks of named 
data elements. Each element can be of real, integer, 
character, or pointer data type, and can be single
or multi-valued (i.e., array). Single-valued ele
ments can be "inverted" and used as keys for a 
query-language retrieval, and pointer-elements are 
used to form relationships among data records 
within one or several files. Sets of elements can be 
grouped together under a group name, with the 
group repeated as needed (i.e., repeating groups). 

U sing the BTMF programs. the user can then 
process data logically by name while the system 
identifies and resolves the internal record struc
ture. 
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Figure 3-File definition and processing using COMRADE data 
management system 

(3) While the second level capabilities were provided 
as subroutines for programmer use, the third level 
consists of user-oriented command procedures for 
terminal use. Utilizing the BTMF routines, these 
programs enable terminal users to define data 
records; to load and update files; to retrieve data 
by name or through a query language; and to 
obtain information on file characteristics, such as 
size, record names, block-types and inverted 
attribute names and ranges. 

In Figure 3, the various CDMS components for file defi
nition and processing are shown. 

• Desigh Administration System-A set of command 
procedures and program capabilities to assist the 
design project leader or administrator to: 
• identify valid subsystem users and assign appropri

ate command and file access keys; 
• identify subsystem files and assign appropriate file 

locks and passwords; 
• selectively monitor and receive reports on subsys

tem activities, such as, names of subsystem users, 
dates and times, commands used, significant 
events, estimated cost of processing, etc. 

Additional functions are provided to allow programs 
to dynamically attach and unload files during execution, 
and to prepare and cleanup necessary files during sub
system sign-on and sign-off. 
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STATUS 

In the Spring of 1972, testing of the described COM
RADE software began, using a selected set of ship design 
programs and data necessary to verify operational capa
bilities and to demonstrate the formation of an ISDS. 
Various interactive design commands were implemented, 
together with ship and catalog data files of limited size, 
for evaluation purposes. Figure 4 illustrates the functional 
components involved in the system development effort. 
During testing, engineers and ship designers who saw and 
used these capabilities and who were not involved with 
implementation, generally approved the system interface 
and the capabilities provided. Correspondingly, subsys
tem developers found the COMRADE capabilities to be 
convenient and necessary, but not always sufficient, thus 
providing feedback for corrections and further develop
ment. 

While the current ISDS effort is directed toward con
structing a set of design commands and data files suffi
cient to engage in actual ship concept design studies, 
COMRADE efforts have been concentrated on evaluating 
performance, "tuning" components for more efficient 
operation, documenting existing work, and planning 
major enhancements. For example, work planned for the 
coming year, includes: 

• developing an interface between the Executive and 
the interactive graphics terminal for a balanced sys
tem environment; 

• developing a report generator facility to conveniently 
retrieve and format data file information; 

• developing a PERT -like facility to conveniently 
define, schedule, and monitor a subsystems activity; 
and, 

• considering application of computer-networks for a 
computer-aided design environment. 

While enhancements and improvements are planned, 
application of COMRADE capabilities to other areas of 

c::]) HISTORICAL SHIP FILES 

ship design, engineering, logistics, etc., will also be inves
tigated.s For example, planning is under way to develop a 
Computer-Aided Piping Design and Construction 
(CAPDAC) system which will integrate shipyard plan
ning, design, and fabrication activities related to piping 
systems.* 

SUMMARY 

In response to the Navy requirements for an integrated 
ship design system the Computer-Aided Design Environ
ment project has developed an initial set of general soft
ware capabilities, not merely limited to ship design, that 
provide a framework for assembling and coordinating 
programs, data, and their users into an integrated subsys
tem. The three major COMRADE components are: the Ex
ecutive System, an interactive program operating under 
the INTERCOM time-sharing system of the CDC-6700 
computer at NSRDC, which can process a complex and 
varying sequence of computer operations in response to 
user-defined commands; the Data Management System, 
a direct access capability to process large complex file 
and data structures via subroutines or terminal com
mands; and, the Design Administration System, a set of 
subroutines and terminal commands used to control 
subsystem and file access, and to optionally monitor and 
report on selected information, such as user-names, date 
and time, commands used, cost estimates, etc., during 
subsystem operations. 

These capabilities have been applied to several proto
type application systems, most notably the Integrated 
Ship Design System, and several other application sys
tems are being planned. 

While the COMRADE mechanisms have been shown to 
work, they are merely "tools" in constructing integrated 
systems and therefore depend on careful system planning 
and judicious use by subsystem developers to achieve an 
effective man-machine system. Many other factors, such 
as the performance and capabilities of the computer sys
tem, the application of software engineering techniques to 
modular program construction, the organization of data 
files and data communication regions for programs and 
users, and the efficiency of program elements are all par
ticularly significant in determining the appearance and 
performance of an integrated system. 

The COMRADE capabilities, in conjunction with the 
ISDS project, have demonstrated the technical feasibility 
of constructing a convenient and effective computer tool 
that will provide guidelines and direction for continuing 
and similar efforts toward achieving a completely inte
grated CASDAC system. 

* Sheridan, H., "Formulation of a Computerized Piping System for 
Naval Ships," internal technical note, Computation and Mathematics 
Department, :-.rSRDC, June 1971. 
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Use of COMRADE in engineering design 

by JACK BRAININ* 

Naval Ship Research and Development Center 
Bethesda, Maryland 

INTRODUCTION 

The Naval Ship Research and Development Center began 
formal work in computer aided design in 1965. The initial 
tasks undertaken were the develop-me-nt of individual 
batch application programs which were little more than 
the computerization of manual design methods. The pro
grams developed included those shown in Figure 1. 

These programs were used by those people acquainted 
with them, and many programs existed in various agen
cies in a number of versions. New users had to determine 
the version most suitable for their purpose by individual 
contact and then had to prepare the necessary data 
inputs, often in a rather laborious manner. Occasionally, 
users linked a number of batch programs together to form 
a suite of programs. Such suites could deal with modest 
segments of a technical problem. Existing or independ
ently developed suites would deal with other segments of 
the problem. The interfaces between suites was very diffi
cult, unwieldy, and sometimes impossible. The resulting 
system was inflexible, running time tended to be exces
sive and no user-directed interaction was possible. Gener
ally, computer-aided design lacked what might be called 
an overall strategy. 

OVERVIEW OF I~TEGRATED SYSTEMS 

Integrated systems provide computer-aided design with 
an overall strategy and greatly reduce the time required 
to execute a design. Such systems permit data transfer 
between various functional design disciplines and provide 
the engineer with the means to use the computer as a 
productive tool without the requirement that he also 
become a programmer. 

The integrated systems approach facilitates the work of 
designers and managers by: 

a. permitting communication between users via a pre
formatted design file. 

b. providing tools for the project leader to maintain 
control over the programs to be used, the personnel 

* The views and conclusions contained in this document are those of the 
author and should not be interpreted as necessarily representing the 
official policies, either expressed or implied, of the Department of the 
Navy. 
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• Feasibility studies for destroyers, 5ub:-.1a.rines and auxiliary shi?s 

• Structures - Ship ::lidship section design 
- Ship hull lines fa~ring and plate development 

• Ship propulsion system design - Propeller, shafting, reduction gear 
and vibration and dynanic shock analysis 

• Steano po;;er plant - Heat balance 
- Condenser design 

• Jesign of :Jiping systens for co:opressible and incompressible flow 

• Elect:-ical - Pm·;er distribution .Jna:!.ysis 
- Cable sizing 

• Electronics - AntE::nn.:1 r.1..J.tching net-"vor~s 

• InterJctiv(: gro.T'hiC:s - :;ac.hincry .J.r:-.::I.ngcnents 
- Dctl:ction Df (:le:ctror:1agnetic hJzards 
- E1C:C"tronic sysU.:r.l block di3.grd:-r.s 
- C'l:-::p:l:-t,ent .:lrrangt:r:1c.:nt &. £l:Jod.J.blc 

l"ngths 

• Construction - Scil(;duling npl:rati,ms 
- :.;_CIL::-i:~!: l.Jl1l:"l)j 'lr!,!~ldlions 

Figure I-CAD Computer programs have been developed for the above 

to be employed and by permitting him to set up 
target dates for tasks and generate performance 
reports via the computer. 

c. permitting the exhange of data between programs 
via computer files which are automatically created 
for the user in any integrated suite of programs. 

d. permitting tasks to be initiated by engineers using 
simple language statements at computer terminals. 

e. providing program instructions and program 
descriptions to engineers directly from the teletype 
terminal. 

f. permitting engineers to exercise their disciplines 
without having to acquire programmer expertise. 

g. demanding programs to be standardized for inclu
sion in the system and hence inducing homogeneity 
into routine processes. 

h. aiding in the building of compatible suites of pro
grams. 

HISTORY OF INTEGRATED SYSTEMS/COMRADE 

A number of integrated systems have been envisioned 
over the last five years. In the Navy, these systems 
included an Integrated Ship Design System (ISDS) for 
the preliminary design of naval ships and a Ship Inte-
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grated System (SIS) for detail ship design and ship con
struction. Associated with the SIS are a number of func
tional subsystems dealing with: 

electrical! electronics 
hull structure 
ship arrangements 
piping 
heating, ventilation and air conditioning 
stores and replenishment 
document generation and control 

The Integrated Ship Design System for preliminary 
design has been under development at the Naval Ship 
Research and Development Center since 1969 and it 
provided a focal point for COMRADE! in the real world. 
The development of the Ship Integrated System is part of 
the engineering development plan under the Computer
Aided Design and Construction Project within the 
Department of the Navy. 

In addition to the use of COMRADE for the Integrated 
Systems noted in the foregoing, the COMRADE ideas 
have provoked discussion and investigation for use by: 

a. The National Aeronautics and Space Administra
tion's Integrated Preliminary Aerospace Design 
System.2 The feasibility of this system is currently 
being investigated by two aerospace contractors. 

b. The Navy's Hydrofoil Program Office. This office 
has determined to use COMRADE for its Hydrofoil 
Design and Analysis System3 now being initiated. 

COMRADE is capable of application to the design and 
construction of more or less any complex manufactured 
product. 

COMPONENTS OF AN INTEGRATED SYSTEM 

The development of an integrated system may be bro
ken down into three major areas of development: System 
Software Development; File Development; and Applica
tion Program Development. 

The System Software Development effort, in the case of 
COMRADE, has been subdivided into an executive 
system,4 a data management system,5 and a design 
administration system.6 The executive, among other 
things, provides an interface between the engineering user 
at a remote terminal and the computer system. The data 
management system supports the transfer of data 
between users, programs and files, and provides a com
mon data handling capability. The design administration 
system logs system usage, generates usage reports and 
specifies and controls access to the engineering system, its 
commands and files. 

The file development effort may be thought of as being 
broken into a catalog file and a design file. The catalog 
would contain standard engineering data which may be 
used in the construction of a number of products. In con-

trast, a design file will contain data pertaining specifically 
to the particular product being designed. 

While the System Software Development effort may be 
applied to a number of product lines the application pro
gram development is product dependent. For example, an 
application program to fair the lines on a ship would not 
be the same program that would fair the lines on an aero
space vehicle. Similarly, a ship design file would differ 
from an aerospace design file. 

APPLICATION OF COMRADE 

Figure 2 cites the application of the COMRADE Sys
tem Development effort to the case of a building design. 
For greater generality a building was chosen, rather than 
a ship, to further illustrate the potential application of the 
system. In this instance, the design file is a BUILDING 
design file and contains building design data. An engi
neering user sitting at a teletype enters a simple English 
language command (e.g., BUILDING) to identify that he 
would like to design a building. A BUILDING subsystem 
of COMRADE is automatically initiated if the COM
RADE design administration system recognizes the ter
minal user as a valid user of the subsystem BUILDING. 
The procedure definition language of COMRADE then 
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Figure 2-Integrated building- design 



issues a tutorial to the terminal user which queries: 
"WHAT BUILDING?" The engineer responds to the 
question, with an English language statement specifying 
the building type and name (e.g., skyscraper 123, private 
dwelling 102, or bank 149). The design administration 
system compares a list of valid users of each building 
design with the name of the terminal users. As an illustra
tion, assume the user enters the command BANK1. If the 
user is permitted to work on BANK1, there will be a 
match and the user will be permitted to proceed into the 
selection of a design procedure. A user may have access 
privileges to BANK1 but not to BANK2 or BANK3. If a 
user enters BANK2 and has not been authorized to oper
ate on BANK2, a diagnostic message will be returned to 
the user informing him, "YOU ARE NOT A UTHOR
IZED TO USE BANK2." This provides another level of 
access control which prevents people who may be working 
on the system, but are not working on this particular 
bank, from gaining access to this bank's files. Upon 
approval of the design administration system the user is 
accepted as a valid user of the BUILDING subsystem 
and the BANK1 design. However, this still does not per
mit the user to arbitrarily use any command within the 
system (all users of the BANK subsystem will not be able 
to access the details of the alarm system) nor does it 
permit him to gain access to all of the files within the 
system as each command and file has associated with it a 
command access key or a file access key which must be 
matched by the user input. 

The tasks required to design a bank are stored in a 
library of application programs (structural details, secu
rity systems, power and lighting systems, ventilation, 
furniture and vault arrangements, etc.) The user selects 
and enters an English language command, from the 
library, which is the name of the design procedure he 
would like to execute. For illustrative purposes, he may 
enter ELEC PWR DIST to indicate that he is designing 
an electrical power distribution system. Upon approval of 
the design administration system the user will be 
accepted by the system as a valid user of the named 
command procedure (ELEC PWR DIST). The user is 
offered a choice of prompting messages, either complete 
or abbreviated. The user's response is dependent on his 
familiarity with the program. A new user will normally 
select the complete tutorial option and an experienced 
user will normally select the abbreviated option. A con
vention has been established that the user's response is 
selected from the choices enclosed in parentheses. 

The execution of the design procedure is an interactive 
iterative procedure involving a dialogue between an engi
neer at the terminal communicating with the tutorial 
directions which are typed step-by-step by the teletype to 
the user, who no longer needs to be a computer expert but 
rather a reasonable engineer with good engineering judg
ment. These tutorials which are "human-readable" are 
produced by the Procedure Definition Language of the 
COMRADE executive. During the terminal session the 
user is given choices as to the source of the input data. 
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Data may be input from a catalog file (which would con
tain data such as motors, generators, cables and their 
corresponding impedances), a design file (data pertaining 
to the BANK being designed, such as the physical space 
available to locate a vault), a card deck, an old file, or 
from the user at the terminal (who would enter data such 
as the path and length of cables). The user of a given 
design need not manually input all required data if this 
data is already within the system as a result of a pre
viously executed design procedure. Figure 3 illustrates a 
hypothetical user-system interaction for the design proce
dure ELEC PWR DIS. The terminal user merely 
responds to the tutorials by providing the underlined 
values. The user begins by entering the design procedure 
name (ELEC PWR DIS) and from then on the user and 
system interact as shown. 

The ELEC PWR DIS design procedure consists of four 
program modules (represented as A, B, C and D in Figure 
4) which may be combined in a number of ways to per
form an electrical power distribution analysis. Module A 
calculates the impedance matrix of the input circuit; B 
performs a short circuit analysis; C performs a load flow 
analysis; and D performs a transient stability analysis. 

???? BUILDING 

WHAT BUILDING? BANK I 

???? ELEC PWR DIS 

WOULD YOU LIKE COOPLETE (COOP) 

OR ABBREVIATED (ABBR) TUTORIALS? COOP 

(OLD) OR (NEW) CIRCUIT? NEW 

DESCRIBE NEW CIRCUIT: 

IS DATA TO CCME FROM (CARDS), (OLD FILE) OR (TERM)? TER.'1 

IDENTIFY ELEMENT, LEADING NODE, TRAILING NODE AND RETURN CARRIAGE 

TYPE DONE TO INDICATE CIRCUIT IS COOPLETE 

ELI? GENI, 0, 1 

EL2? GEN2, 0, 2 

EL3? 

EL4? 

EL5? DONE 

IMPEDANCE MATRIX CALCULATION IS COOPLETE 

WHICH DESIGN MODULE: 

(SC) SHORT CIRCUIT 

(LF) LOAD FLCM 

(TS) TRANSIENT STABILITY 

(END) EXIT FRCM ELEC PWR DIS 

E1~ER TYPE or SHORT (3) ') nUAC"'C' ("\" f" 
...J J.J.Ln. ... )J..:.. VJ..'\.. \.LJ 

1 nUACC' l..Tf'\n't" T 1'\ 
J.. J..1J.o:'l.LJ.I.J., .i.1VJ../':"" ..I..eU. 
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Figure 3-Sample terminal session for design procedure ELEC 
PWR DIST 
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Figure 4-Electrical power distribution analysis 

Possible control flow through the modules is indicated by 
the connecting arrows. For example, after calculating the 
impedance matrix (A), it is possible to perform a short 
circuit (B) or a load flow (C) analysis, but not a transient 
stability analysis (D). 

Data is retrieved for use by design procedures from the 
design file and the catalog files by the subroutine calls of 
the COMRADE data management system. This is possi
ble only if the files are structured in the data block for
mat readable by the COMRADE data management sys
tem. 

The data blocks are defined by the data block defini
tion facility of COMRADE and the data is loaded into the 
data blocks using the COMRADE bulk load capability 
from a batch terminal. COMRADE also provides an 
interactive update capability for the terminal user to 
modify the contents of a data base providing the user has 
the appropriate passwords. 

Design procedures are called from a library of applica
tion programs. The output of the applications programs 
which may serve as input to other design procedures is 
stored in the design file. However, each user engineer 
cannot be granted access to this critical file in order to 
ensure the integrity of the design. Therefore, the engineer
ing user would obtain the results of his design procedure 
either at a terminal or from a high speed printer and he 
would analyze the acceptability of the results. If the 
results are acceptable to the engineer he would inform his 
project manager, who would then execute an update 
command to update the design file. In the case of ELEC 
PWR DIS, the project manager would execute the com
mand UP ELEC PWR DIS which would place the 
BANK1 data resulting from the ELEC PWR DIS design 
procedure on the design file, thus this data is made avail
able to other engineers to use as input data to other design 
procedures such as for generator foundation design and 

for arrangements. As more and more programs are exe
cuted the design file will grow, and when it is complete it 
will contain a complete digital description of the building 
being designed . 

COMMENTS AND CONCLUSIONS 

The development of integrated design systems using 
COMRADE is gaining substantial acceptance in the 
Navy. With its introduction, attention is directed to fur
ther considerations which will require careful scrutiny. 

The system attracts user acceptance because of the 
tutorial features readily available to the user. On occa
sion, users have executed successfully new programs at 
the first attempt. However, the development work is 
arduous and requires workers competent in engineering 
design, workers competent in computer systems and 
workers competent in COMRADE software. In addition, 
a limited number of people are required with consider
able expertise in all three areas! 

Consideration must be given to system portability. The 
bulk of the COMRADE software is written in FORTRAN 
but the structure rests on the INTERCOM facilities asso
ciated with the Scope 3.3 system of the CDC 6700 com
puter. Other computers have similar facilities but the 
effort involved in conversion to another machine has not 
yet been addressed. 

Consideration must be given to the size and storage cost 
of the files involved for application to particular engineer
ing problems. For regular application to ship design and 
construction. it is envisaged that an on-line mass storage 
device will be required. 

Consideration must be given to the place of graphics in 
the particular design application. Interactive and passive 
graphics facilities are expected in COMRADE but are not 
available as vet. 

In concl~sion, COMRADE has demonstrated its 
acceptability as a base for integrated systems. COM
RADE permits the development of an efficient man
machine team, the man always having control over the 
design process. 

Programs gain substantial user acceptance because of 
the step-by-step tutorial features, because commands are 
user-oriented and simple to use, and because designs may 
be executed in a directed logical sequence. Communica
tion between engineers of various disciplines is vastly 
improved since access to the design file at any time pro
vides authentic information about the current state of 
development of the design project. Design progress is 
accelerated and the design manager has tools he may use 
to direct and monitor design progress. 
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The COMRADE executive system 

by ROBERT W. TINKER and IRA L. A VRUNIN* 

Naval Ship ReseaiCh and Development Center 
Bethesda, Maryland 

IKTRODUCTION 

The role of the executive system 

The role of the Executive System \vithin the Computer
Aided Design Environment (CO~IRADE) has been to 
provide the focus for the coordination of the overall system 
capabilities. Such a task is especially difficult given the 
dynamic atmosphere of the design process. 1,2 Typically one 
must deal with a multiplicity of concurrent users operating in 
a highly interactive fashion with large volumes of data, a 
variety of file types, and an ever increasing array of user 
programs. In the case of COYIRADE, the issue was further 
complicated by required implementation on a large scale, 
third generation computer** whereon the users of COMRADE 
formed only a small portion of the total user community. 
This implied that the CO~iRADE Executive could take no 
special liberties with the computer operating system but was 
constrained to function within installation imposed 
conventions. 

The duties of the Executive \vithin an integrated design 
system are typically to supervise the execution of the various 
operational modules, to provide system security features, and 
to directly or indirectly account for a battery of software 
support functions such as program management, file manage
ment, menu selection, etc. The structure of the Executive 
often accounts for the external appearance of the computer
aided design system as a whole. Inevitably it reflects the 
prejudices and pre-suppositions of its designers. Too often, 
however, an Executive constrains the functioning of the rest 
of the system by imposing a philosophY or methodology 
which limits capabilities for system modification or expansion. 
Such limitations must be avoided at all cost. This is especially 
important in an area as vaguely defined as computer-aided 
design where the detailed specification of requirements is 
exceedingly difficult to formulate. 

An approach toward reconciling these difficulties is to insist 
that the Executive be constructed in a fashion which promotes 
the modularity and extensibility of the entire system. If this 

* The views and conclusions contained in this document are those of the 
authors and should not be interpreted as necessarily representing the 
official policies, either expressed or implied, of the Department of the 
Navy. 

** CDC 6700, SCOPE/ INTERCOM Operating System 
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can be accomplished, one then has a very general purpose 
Executive-one which can provide a logical framework for 
building systems and which does not pre-suppose the exact 
nature of those systems or how they might wish to grow. In 
fact, such an Executive is now not confined to serving the 
needs of computer-aided design only, but may be of use 
wherever the systemization of related programs is desired. 
The overriding goal of the COJIRADE Executive was to 
embody these qualities of modularity and extensibility and 
thus inherit as general a nature as possible. In so doing the 
CO~'iRADE Executive has achieved the ability to support 
any number of independent subsystems regardless of their 
individual areas of concern. 

To make such an Executive work, it is imperative that 
capabilities for "operation definition" be available as a 
fundamental aspect of the system. Although the Executive 
does not pre-suppose the nature of subsystems implemented 
under it, clearly decisions regarding their form and appear
ance must be made at some point. Such decisions may lead to 
rigorously defined and highly integrated systems or to more 
loosely defined systems of relatively independent operational 
modules. The CO~RADE Executive provides capabilities, 
as an adjunct to the Executive itself, for defining sequences of 
computer processing events which it will perform in response 
to user requests. The nature of these event sequences, the 
degree to which they are inter-related, and the external 
characteristics they exhibit to the user ultimately determine 
the form, the appearance, and the utility of the subsystem 
which they embody. 

System users 

With these considerations it becomes instructive to note 
that there are actuaily several classes of CO::\IRADE 
Executive "users." First there is the subsystem designer. 
Given the initial need for an integrated system he performs 
the requisite analysis, determines what the system capabilities 
should be, and designs or secures the operational modules to 
perform the required tasks. ~Ioreover, he must answer 
questions respecting system characteristics. ::VIodule size, 
running time, degree and form of user interaction, and 
myriad other topics must be considered. When these questions 
have reached an acceptable level of resolution, the subsystem 
designer may authorize a first cut at implementation using the 



332 National Computer Conference, 1973 

definition capabilities provided in conjunction with the 
COMRADE Executive. In any event he may be assured that 
his system will inherit capabilities for growth or change, that 
program modules or event sequences may be added, deleted, 
or altered in a relatively painless manner. 

The second class of COMRADE Executive System users is 
comprised of programmer-implementers. Working to the 
specifications of the subsystem designer, their primary 
responsibility is coding the operational modules which make 
up the heart of the subsystem. They are also responsible for 
the mechanics of encoding the various event sequences to be 
performed in response to each user request. To accomplish 
this they must be apprised of the operation definition 
facilities, communication conventions, and utility modules 
offered by the Executive system. 

The ultimate raison d'etre of CO~IRADE and indeed of all 
computer-aided integrated systems is to service the third and 
most important class of users. This class is comprised of 
engineers, managers, personnel administrators-individuals 
whose duties may be greatly facilitated through the use of the 
computer and more specifically through the use of a carefully 
constructed and consistent system of computer tools. Such 
individuals are generally not computer specialists. They 
seldom are interested in the details of computer control 
language or in the mechanics of program loading and 
execution. Generally they are interested in solving their 
problems-and doing so in a way that seems natural to them. 
Hopefully, this is a major goal of a computer-aided system: to 
bring to bear upon a specific task area all the data storage and 
computational power of the computer and to do so in a 
manner whereby a specialist in that task area can make use of 
that power without needing to know the operational details 
involved. 

co~n.rAXD IXTERPRETATIOX 

Command procedures 

The CO~IRADE Executive functions in response to 
requests issued by users situated at keyboard type terminals. 
Each request initiates a sequence of computer activities-the 
"event sequence" mentioned previously. For example, such a 
sequence might be: 

(1) Obtain input file: FILE1 
(2) Obtain input file: FILE2 
(3) Execute program to merge files 
(4) Save resulting output file 

Or the sequence might be more complex involving user 
decisions and logical branching, thus: 

(1) Ask user for name of input file 
(2) Accept. name of file from user 
(3) Obtain r£'quired file from library 
(4) Ask user for file disposit.ion 

(Analyze or Display) 

(5) Accept disposition from user 
Analyze? Yes, go to 12 
Display? Yes, go to 6 

(6) Ask user where to display file 
(Teletype or High Speed Printer) 

(7) Accept display mode from user 
Teletype? Yes, go to 8 
High Speed Printer? Yes, go to 10 

(8) Execute teletype display routine 
(9) Stop 

(10) Route copy of file to high speed printer 
(11) Stop 
(12) Execute analysis module 
(13) Stop 

Each such sequence of computer activities is termed a 
"command procedure," and each command procedure is 
identified by a unique name. 

The COMRADE user requests the initiation of a command 
procedure simply by typing in the identifying command 
procedure name. This form of the user request-a single word 
entry-in some cases sacrifices convenience for generality. In 
some systems, for example, the user request takes the form 
of a command name generally followed by a number of 
parameters. These parameters may be optional, multiple 
choice, or data value entries. If the kinds of requests in such 
a system are very closely interrelated, and if the words which 
form the requests are oriented toward a particular discipline, 
we have what is called a "problem-oriented language."3 If the 
requests are of a more general nature and are more specifically 
computer-oriented, this is usually called a "command 
language." An advantage of such language-like constructions 
is fairly obvious: the user can enter both the request (the 
command name) and the required parameters on the same 
input line. Hence, there is no delay while the computer 
prompts for the parameter inputs. On the other hand, there 
are several disadvantages to such language oriented 
approaches: 

(1) The user is forced to remember, along with the 
command names, the kinds of input parameters, their 
order, and their formats. 

(2) If the action to be performed by a given command is 
reasonably complex, a considerable number of input 
parameters may be required. These might well be 
difficult to accommodate within the format of a single 
command. 

(3) The structure of the commands is often limited by the 
kind of general parsing that takes place. Delimiters, 
data types, etc. are usually pre-established for all 
commands. 

Clearly, command or problem-oriented languages are useful 
where the actions associated with each command are short, 
where the number of parameters is small, and ,,,here the 
format of these parameters is not complex. However, the 
command procedure approach of the CO:\IRADE Executive 
is considerably more general, as: 



(1) The user is prompted for required inputs during the 
course of command procedure execution. 

(2) Substantial amounts of data can be input in a wide 
variety of formats. 

(3) Tutorials, warnings, etc. can be issued before the user 
enters important data items. 

(4) Complex sequences of events requiring many levels of 
user interaction can be initiated through a single 
command procedure. 

Figure 1 shows the user-system dialogue for a typical 
command procedure, named, in this case, "RETRIEVAL." 
User input entries are underlined. 

Communication regions 

In order to direct the flow of control throughout the 
execution of a command procedure, it is often necessary for 
the CO}IRADE Executive to communicate with the various 
operational modules involved and also with the terminal user. 
For example, the next step to be executed in a command 
procedure event sequence might well depend upon prior 
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Figure 1-Command proced ure RETRIEVAL 
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results arrived at by an operational module or upon a 
decision made by the user at his terminal. Such results and 
decisions are communicated to the Executive through two 
types of communications areas: (1) System Common, and (2) 
Subsystem Common. Both of these areas are linear arrays, 
each element within them being referenced by its ordinal 
displacement from the start of the respective array. :\foreover, 
the two regions are basically scratch areas in that they are 
local to each terminal user and values within them are not 
saved from one terminal session to another. 

System Common is internai to the CO~1RADE Executive 
and exists for a given user from sign-on to sign-off. It is used 
by the Executive itself to record important items relating to 
the terminal session, such as the user name, his account 
number, the name of the subsystem under which he is 
currently operating, the name of the command procedure 
which is being executed, etc. It may also be used_ by any of the 
various utility modules resident with the Executive for 
temporary storage of input or output parameters. 

Subsystem Common, on the other hand, is external to the 
CO}IRADE Executive and exists only for the duration that 
a user operates under a specific CO~i[RADE subsystem. If a 
user should switch subsystems in the middle of a terminal 
session, a new Subsystem Common region (associated with 
the new subsystem) ,,,"ould be initialized for him at that time. 
Subsystem Common resides on a disk file and is referenced by 
random access methods. Routines are provided, in conjunc
tion with the CO:YIRADE Executive, to store and retrieve 
values in Subsystem Common by element number. These 
routines may be combined as necessary ,vith the various 
operational modules which comprise a subsystem in order for 
the modules to communicate among themselves or with the 
Executive. 

It should be pointed out that the .. vay in which Subsystem 
Common is used can be an important factor in the design of 
a subsystem. In a subsystem dealing with ship hull design, 
for example, different portions of the Common file could be 
allocated, for the duration of the terminal session, to store 
different design parameters, such as hull offsets, water-lines, 
or curves of form. Of course, the operational modules involved 
,vould have to be carefully constructed to honor the 
pre-defined areas and eliminate conflicts. On the other hand, 
subsystems which may be comprised of largely independent 
operational modules might wish to use Subsystem Common 
only sparingly, perhaps simply to communicate control 
information to the CO~IRADE Executive. 

It should also be noted that Subsystem Common, since it is 
sequentially organized and relatively transient, is not meant. 
to take the place of a large-scale structured data base such as 
is needed for an integrated system of some size. Such capabili
ties are amply provided for in another area of the overall 
CO~IRADE Project: The CO~IRADE Data ~Ianagement 
System. 4 

Procedure control blocks 

The CO}IRADE Executive executes a command procedure 
by interpretively processing control information contained in 
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what are called "procedure control blocks." Each command 
procedure is represented by an ordered set of such procedure 
control blocks. Their interpretation by the Executive effects 
the event sequence associated with the corresponding com
mand procedure. 

There are six specific types of procedure control blocks, 
each representing a specific and very primitive function. The 
six functions are: 

(1) Preset values in System or Subsystem Common. Real, 
integer, alphanumeric, or octal values may be used. 
This function is employed to establish input param
eters within the Common regions for use by Executive 
System utility routines or by subsystem operational 
modules. 

(2) Move values from one location to another within the 
Common regions. Values may be moved within System 
Common, within Subsystem Common, or between the 
two regions. The move function is generally used to 
gather parameters output from a given utility routine 
or operational module, and to place them where they 
can be stored or used for input by another utility 
routine or operational module. 

(3) Perform an unconditional branch. The COMRADE 
Executive normally processes the procedure control 
blocks for a given command procedure in a sequential 
fashion. The branch function causes sequential inter
pretation to be interrupted and resumed at some other 
point. 

(4) Perform a conditional branch. Values within the 
Common regions are tested against each other or 
against pre-established constants. Branching as above 
will take place only if specified relational conditions 
are met. The usual relational operators are allowed: 
equal, not equal, greater than, less than, etc. 

(5) Execute a program. This function causes a specified 
utility routine or operational module to be executed 
immediately. The program may be core resident with 
the Ex~cutive (typically a short utility routine useful 
to all subsystems) or it may be a substantially larger 
operational module pertinent to a specific subsystem 
and residing externally on a disk file. In the former 
case, the Executive simply transfers to the required 
routine. In the latter case, the appropriate file is made 
available, the COMRADE Executive is swapped out, 
and the required operational module is loaded and 
executed. Upon completion of the operational module, 
the CO~1RADE Executive is recalled and procedure 
control block interpretation continues. 

(6) Halt procedure control block interpretation. This 
function signifies the end of a given command pro
cedure. The Executive prepares for the user to issue 
a new command procedure name. 

Note that it is the very atomic nature of these functions which 
largely contributes to the generality of the CO~fRADE 
Executive. For if, instead, the procedure control blocks 
represented large macro-level functions, the command pro
cedures embodied by them would be more or less compelled to 

adopt the characteristics imposed by those high level func
tions. For example, if a given type of procedure control block 
of itself invoked, say, terminal I/O, then it could be con
cluded that such I/O would be accomplished in a specific and 
unalterable manner; namely, according to the nature of the 
routine executed ,,,hen this procedure control block was 
encountered. But if, on the other hand, terminal I/O is 
accomplished (as indeed it is) by an execute block (type 5, 
above) specifying the name of a module to perform the I/O, 
then we are free to add other such modules to perform, as we 
like, different styles of terminal I/O. We might, for instance, 
have two terminal I/O modules, one of which performs 
FORTRAN-like formatted I/O, and another which is used to 
provide a free-format capability. The important point is that, 
at the level of command procedure interpretation, no pre
judgments are made respecting the nature of the various 
modules which might be executed. 

COYIRADE SUBSYSTEyIS 

Subsystem characteristics 

A COMRADE subsystem is comprised of a set of command 
procedures possessing some measure of commonali~y. For 
example, a ship hull design subsystem would contam com
mand procedures which initiated events related to that 
discipline, while the command procedures of an information 
retrieval subsystem would likely deal ,vith the manipulation 
of a particular kind of data base and, perhaps, with report 
generation. A CO:\fRADE subsystem, generally, is also 
associated with a particular set of users. It is unlikely that a 
civil engineer working on a highway design project would 
have the need or desire to issue command procedures con
cerned with pipe sizing aboard a destroyer. Hence the civil 
engineer would be an acknowledged user of subsystem 
"ROADS" but not of subsystem "PIPES." Still a third 
characteristic of a subsystem is the set of operational modules 
which are used by the command procedures to perform the 
required tasks within that subsystem. These three groupings 
-a set of command procedures, users, and operational 
modules-may be thought of as logically defining a COM
RADE subsystem. 

While it is generally true that a particular set of 
COMRADE users may be associated with a particular 
subsystem, it might also be true that not all of these users are 
allowed to use all command procedures implemented under 
the subsystem. For example, it might be desirable that only 
a single individual have the power to make crucial updates to 
the master design file within a preliminary ship design 
subsystem. It is only after careful and critical inspection of 
the updating data (provided by design engineers with the aid 
of the available command procedures) that this individual 
would initiate a special command procedure to accomplish 
the required update. This special command procedure, then, 
is usable only by the authorized data administrator and not 
by the other users of the subsystem. To provide this often 
needed user-command procedure control, the CO:YIRADE 



Executive uses a simple "lock and key" mechanism. Each 
command procedure is associated \vith a specific access lock 
which is established \vhen the command procedure is defined; 
and each user, when he enters a subsystem, is assigned a 
specific access key. Without going into the details involved, 
suffice it to say that if a user's key "fits" a command pro
cedure's lock, then the user may employ that command 
procedure. 

Subsystem general 

A signed-on CO::\IRADE user may operate under only one 
subsystem at a time (i.e., employ only that subsystem's 
command procedures). However, if he is authorized to use 
more than one subsystem it is a simple matter to switch from 
one to another within the same terminal session. In general, 
of course, he would rarely have the need or desire to do so. An 
exception to this, however, concerns a somewhat special 
subsystem, called the "GEKERAL" subsystem. 

When a user first signs-on to CO::.\IRADE, the Executive 
places him in the GE~ERAL subsystem (special procedures, 
hmvever, may allmv a user to go directly into a pre-specified 
subsystem). The GEXERAL subsystem contains a number 
of command procedures not specifically related to a particular 
discipline but of more general use to all CO::\IRADE users. In 
fact, even after he has signed-on to another subsystem, the 
CO}IRADE user may still employ the command procedures 
defined under the GEXERAL subsystem! The GEKERAL 
subsystem is unique in this respect. 

Subsystem sign-on procedures 

Among the command procedures available under the 
GENERAL subsystem is a special group called "subsystem 
sign-on procedures." These command procedures are em
ployed by CO::\1RADE users whenever they wish to enter a 
subsystem (from GE~ERAL) or to switch from one sub
system to another. The names of these command procedures, 
as might be expected, are in fact the names of the subsystems 
recognized by the CO::\{RADE Executive. Thus, if a user 
wishes to enter the Integrated Ship Design System (ISDS), 
he merely issues command procedure "ISDS" immediately 
after signing-on to COMRADE. 

The subsystem sign-on procedures implemented under 
subsystem G EXERAL are expected to follow a standard 
protocol as they go about the business of signing a user on to 
a subsystem. Among their required tasks are: (1) sign-off the 
previous subsystem, if necessary; (2) verify that the user may 
use this subsystem; (3) assign the user a command procedure 
access key; (4) initialize Subsystem Common; and (5) locate 
the procedure control blocks for the subsystem. Actually, 
a wide latitude is given the various subsystem sign-on 
procedures respecting what they might accomplish. They may 
be fairly simple or quite complex. However the steps listed 
above are indicative of some of the tasks that they must 
carry out. The COMRADE Executive provides a number of 
resident utility modules which are useful in abetting these 
tasks. 
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CO::\1::\1A...~D PROCEDURE DEFINITION 

A command procedure is encoded as an ordered set of 
procedure control blocks. When a CO::\1RADE user requests 
the execution of a command procedure, the correct set of 
blocks is located, and the Executive begins to interpret and 
process them. This processing effects the event sequence 
associated with the command procedure. 

Before the command procedure can be executed however 
it must have been previously defined; that is, the 'procedur~ 
control blocks must have been established. This is accom
plished with the aid of a speciai ianguage: the Procedure 
Definition Language (PDL). PDL programs are coded by 
subsystem designer/implementers to define the command 
~rocedures within a subsystem. The output of a PDL program 
IS a set of procedure control blocks corresponding to a 
command procedure. 

The Procedure Definition Language consists of two kinds 
of statements: Phase I statements, -and Phase II statements. 
A one to one correspondence exists between the Phase I 
statements and the functions represented by the procedure 
control blocks as described previously. The Phase II state
~ents exist sim~ly for convenience. The functions which they 
Incorporate can In each case be represented by an appropriate 
sequence of Phase I statements. 

Following is a description of the format and use of the 
PDL statements. Items enclosed in brackets [ ] are optional; 
braces I } denote repeatable quantities; and elements listed 
vertically 

indicate that one of the elements must be selected. 
Capitalized items are written as shmvn; lower case elements 

are variable. 
The general form of a PDL statement is: 

[lable;] OPERATIOX 6. operand(s) 

where: "label" is a variable name which may be used to 
identify any PDL statement. Control may be 
transferred to any labeled statement through the 
GOTO statement described below. 

"OPERATION" is a keyword which indicates the 
statement function. 

"operands" are statement parameters which 
vary in form according to the 
statement type. 

The Phase I PDL statements are used and coded as 
follows: 

(1) statement name: PRESET 
function: establish values in System or Subsystem 

Common 

~ -r.".-r-o"'ET (S. 'I. rorm: rl:t~;:; lC. ordinai = value [(quantity)]!, 

I, etc. 
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where: "S." indicates System Common 
"C." indicates Subsystem Common 
"ordinal" is the common element number to be 

set 
"value" is the real, integer, octal, or alpha

numeric value to which the common element 
is set. 

"quantity" is the number of consecutive ele
ments within Common (beginning with 
"ordinal") to be assigned the indicated 
"value." If omitted, 1 is assumed. 

example: To set Subsystem Common location 25 to the 
character string "HORSEPOWER," and to 
load System Common locations 56 through 
60 with the value "25.8," one would code: 
PRESET C.25 = 'HORSEPOWER,' 

S.56 = 25.8(5) 
(2) statement name: MOVE 

function: Move values within or between System and 
Subsystem Common 

form: MOVE {~. ordinal - ~'. ordinal [(qUantity)]}, 

}, etc. 

where: "quantity" is the number of consecutive 
elements (beginning with "ordinal") to be 
moved. If omitted, 1 is assumed. Other 
parameters are described above. 

example: To move three values from System Common 
locations 65-67 to Subsystem Common loca
tions 533-535, and to move one value from 
System Common location 12 to System 
Common location 24, one would code: 
~10VE S.65 - C.533(3), S.12 - S.24 

(3) statement name: unconditional GOTO 
function: Perform an unconditional branch 
form: GOTO label 
where: "label" is the statement label to which control 

is transferred 
example: To interrupt sequential command procedure 

interpretation and to resume with another 
PDL statement labeled "THERE," one 
would code: 
GOTO THERE 

(4) statement name: conditional GOTO 
function: perform branching as above only if the 

parenthesized condition is true 

( v~~) 
S. ordinal S. ordinal 

form: GOTO label C d' l' reI. C d' 1 . or ma . or ma 

where: "reI" is one of the following logical 
operators
EQ-equal 
KE-not equal 
L T -less than 

GT-greater than 
LE-Iess than or equal 
GR-greater than or equal 

other parameters are as described previously 
example: To branch to a PDL statement labeled 

"ERROR" if System Common location 261 
is not equal to zero, one would code: 
GO TO ERROR (S.261 .NE. 0) 

(5) statement name: EXECUTE 
function: locate, load, and execute the utility routine 

or operational module whose name is found 
in System Common locations 6-9. 

form: EXECUTE [program name] 
where: "program name," if present, is first PRESET 

into System Common locations 6-9 by the 
Executive System before the EXECUTE 
function is performed. 

example: To execute an operational module, named 
"INTERACTIVEUPDATE," one would 
code: 
EXECUTEINTERACTIVEUPDATE 

(6) statement name: STOP 
function: terminate processing of this command pro

cedure 
form: STOP 

The Phase II PDL statements are used and coded as 
follows: 

(1) statement name: CONTROL 
function: execute one or more operating system control 

statements 
form: CONTROL {control statement}, I I, etc. 

where: "control statement" is an operating system 
control statement 

example: To rewind and unload a file, named 
"CD~ISDB," one would code: 
CONTROL REWIND(CDMSDB), 
UNLOAD(CDMSDB) 

(2) statement name: PRINT 
function: perform terminal output using FORTRAN 

formatting 

form: PRINT '(format), [,{~. ordina{(qUantity) ]}, 

}, etc. 
where: "format" represents a FORTRAN output 

specification other parameters are as de
scribed previously 

example: To print the character string "WEIGHTS 
ARE:" followed by five values in Subsystem 
Common locations 600-604, one could code: 
PRINT '(*'VEIGHTS ARE:* 5FlO.4),' 
C.600(5) 



Statement Comment 

PRINT ' (* FILE NAME?-*)' Ask for file name 

READ ' (4A10)', S .263 (4) Read response 

PRESET S.262 = 'INFILE' If file known to COMRADE, 

EXECUTE PF get passwords 

GOTO ERl(S.26l • NE. 0) Error if file not known 

EXECUTE ATIX Get file from library 

GOTO ER2 (S.26l .NE. 0) File not in library error 

PRINT ' (*DISPOSITION?-*)' Ask user for disposition 

READ' CUD)', 5.200 Read response 

GOTO ANALYZE (S.200 .EQ. 'ANALYZE') Branch if "analyze" 

PRINT' (*WHERE(TTY ,HSP)?-*)' Ask user where to display 

READ '(A3)', S.200 Read response 

GOTO TTY (S.200 .EQ. 'TTY') Branch if "teletype" 

CONTROL BATCH, INFILE ,PRINT. Print file at central site 

STOP End procedure 

TTY; CONTROL COPY,INFILE,OUTPUT. Print file at teletype 

STOP End procedure 

ANALYZE; EXECUTE STATISTICALANALYSIS Analyze data file 

STOP End procedure 

ERl; PRINT ' (*FILE NOT KNOWN*)' Error message 

STOP End procedure 

ER2; PRINT '(*FILE IDT IN LIBRARY*) Error message 

STOP End procedure 

Figure 2-PDL example 

(3) statement name: RE AD 
function: perform terminal input using FORTRAX 

formatting 

form: READ '(format),' {~ ordinal [(qUantity)]}, 

}, etc. 
,vhere: parameters are as in the "PRINT" state

ment 
example: To input three alphanumeric values from the 

terminal and store them into System Com-
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mon locations 300-302, one could code: 
READ '(AlO),' S.3OO(3) 

Figure 2 shows a sample PDL program which could be 
used to effect the second event sequence noted at the start 
of the seco:qd section of this paper. 

SUM:VIARY 

The CO::.vIRADE Executive System is a general purpose 
interactive supervisor. It facilitates the definition and con
struction of subsystems of integrated programs by providing 
a framework under which they may operate. Since no a 
priori assumptions are made regarding the nature of these 
programs, no restrictions are imposed respecting the charac
teristics of the subsystems which they embody. The 
CO~'lRADE Executive can support highly integrated sub
systems where the programs involved are typically molecular 
and where communication among them is crucial, or more 
loosely organized subsystems comprised of independent 
modules. 

The Executive services its ultimate users by initiating 
possibly complex sequences of programs, perhaps as modified 
by user decisions, in a manner whereby the user is not 
burdened with the computer-related details involved. 
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INTRODUCTION 

The Executive system of COMRADE! has provided the 
basic "living quarters" for all members of the computer
aided design team. Three distinct types of individuals 
have finally been united in this environment: the user, 
the person with little or no computer experience, possibly 
an aeronautical engineer or naval architect who received 
his training before electronic data processing was in 
vogue; the application programmer, not necessarily the 
recipient of any schooling regarding the design he is help
ing to implement; and the subsystem designer, the link 
between the other two, the person who must be part engi
neer, part computer scientist, and-most important-part 
nursemaid, soothing the inevitable wounds of the other 
team members, each of whom is a little too close to his 
own area of specialization to see, at all times, the design 
system in a completely objective manner. 

But now an obvious problem arises with respect to the 
role of the subsystem designer. This subsystem designer is 
neither ever-present nor all-knowing. He can perhaps 
plan a smooth design as tasks proceed from the initial 
feasibility model to the finished product, but he can most 
assuredly not monitor the immense flow of data that is 
emerging from the design: data produced by one design 
module for use in several other design modules; data 
which is output from a design module and must be 
immediately available upon request by the engineer-user 
to aid in his decision-making process; data which serves 
as the only means of communication between designers in 
different disciplines within an integrated system; and 
finally, data which represents the finished product, the 
design of a nuclear submarine, a supersonic jet, or a 
multi-minion dollar medical school and hospital. 

There must be a data base management system to 
handle the vast number of data items considered to be the 
output of the preliminary design stage of a U.S. Navy 
ship.2 This data base management system must provide 
capabilities for the creation and management of complex 

* The views and concl usions contained in this document are those of the 
authors and should not be interpreted as necessarily representing the 
official policies, either expressed or implied, of the Department of the 
Navy. 
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file and data structures; the storing of enormous quanti
ties of data; the selective, "item by item" update of this 
information; and the rapid retrieval of data.base informa~ 
tion either directly by name or by conditional expres
sions. 

Moreover, these capabilities should not only be 
extremely easy to use by non-computer-oriented person
nel, but should also be efficient (both in processing time 
and main memory utilization) when dealing with great 
quantities of data; such efficiency is expected by the 
application programmer and subsystem designer, both of 
whom are responsible for the overall use of computer 
resources within the design system. 

The different backgrounds and needs of the people 
involved in computer-aided design cannot be emphasized 
too much, for it was the existence of such diversity that 
led to the development of the COMRADE Data Manage
ment System (CDMS). 

The CDMS capabilities are built upon two major soft
ware components, these being the 

• Data Storage Facility-Programs to build and ran
domly process user-named blocks of data on disk 
storage; and programs to build and process "in
verted" element lists for retrieval by value; and the 

• Block Type Definition Facility-A mechanism for 
naming, defining, and specifying individual data 
fields within a block, thereby enabling conversational 
use of the data base. 

Building upon these components, the CDMS has 
attempted to satisfy the requirements of the developers 
and users of a computer-aided design system by providing 
various functional capabilities suited to different process
ing modes: 

• Interactive commands 
• Stand-alone batch programs 
• Subroutine library 

This introduction has tried to bring home the fact that 
it is no simple job to satisfy all members of the computer
aided design team at the same time. In particular, papers 
on computer-aided design are rarely equally valuable to 



340 National Computer Conference, 1973 

all involved in the design effort. For this reason, the 
remainder of this paper has been written primarily with 
only one type of user in mind, the ultimate user of the 
system, the design engineer. The focus is on capabilities
what are they, and how are they used? Explanations of 
programming techniques, for the most part, are omitted. 
Therefore, the Data Storage Facility, the mechanism for 
creating and maintaining data blocks (logical records) 
and "inverted" lists is not discussed in this paper. That 
facility is discussed, however, in Reference 3. 

BLOCK TYPE DEFINITION FACILITY 

While it is possible for one person, responsible for his 
own programs and data files, to employ a storage manage
ment capability such as the COMRADE Data Storage 
Facility, he then must be aware of the address and data 
structure of each block for use in data processing. The 
complexity of computer-aided design data bases, the 
multiplicity of users and design tasks, and the diverse 
roles of the members of the design team in an integrated 
system, however, render such an approach to data man
agement impractical. 

And so, enter the COMRADE Block Type Definition 
Facility (BTDF)! If the Data Storage Facility is the 
"thought," then the BTDF is the "voice," providing the 
means of communication between the engineer-user and 
the subsystem designer, the subsystem designer and the 
application programmer, the programmer and the pro
grams, and, in general, between all of these data users 
and their data bases. 

The BTDF is the mechanism by which the so-called 
data administrator defines the formats of all data blocks 
within the data base, thereby giving names by which each 
data item may be referenced. A CDMS data base may 
consist of a number of block type definitions. Some sub
set of the total number of data blocks within the data 
base will be thought of as belonging to each block type. 
For example, Figure 1 illustrates a "Presidents" Data 
Base, * in which five block types are defined and relation
ships structured. A printout of one of these types-the 
block type PRES-is shown in Figure 2. For block type 
PRES, which describes the personal information regard
ing each United States president, George Washington 
through Lyndon Johnson, there are 35 data blocks. There 
are 45 data blocks of type ELECTION, one for each pres
idential election between 1789 and 1964; 53 data blocks 
of type ADMIN; 90 of type CONGRESS; and 50 of type 
STATES. Thus five "block types" define the format of all 
273 data blocks within the data base. 

A block type, and therefore all data blocks of this type, 
consists of named data elements, repeating groups, and 
sub-blocks. A data element-the smallest quantity that 
may be referenced within a CDMS data base-may be 
defined as one of four data types: alphanumeric, real, 
integer, or pointer. An element of any of these types may 

* A data base containing information regarding the e.S. Presidents has 
been used as the basis for all examples in this paper. 
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Figure l-"Presidents" data base structure 

be defined to be a single value or an array. In addition, 
every single-valued element mayor may not be inverted. 
Therefore, every element appearing in a block type defi
nition will have one status out of a possible twelve. 

There may be a need in some data blocks to store more 
than one occurrence of a data element or elements. To 
this end, a set of consecutively defined elements may be 
united by membership within a named "repeating 
group." For example, a set of points (Xi' Y;,Zi) on a curve 
may be defined as three single-valued real elements, all 
members of repeating group COORD. The user is now 
free not only to request the retrieval of all X's, or of a 
specific Y or Z, but also to retrieve, say, the third point on 
a curve by asking for the third "occurrence" of repeating 
group COORD. Although the name "repeating group" 
implies repetition, this is by no means necessary. It is 
sometimes very handy for a higher level name to be 
assigned to a group of data elements even if there can 
never be more than one occurrence for the group within 
the data block (e.g., elements STREET, CITY, STATE, 
ZIPCODE might be grouped under the repeating group 
ADDRESS). 

The elements of a block type may be divided into sub
blocks. The use of sub-blocks is twofold. First, it pro
vides still another level of data element grouping so that 
one name may be used to refer to perhaps 20 or 30 data 
elements, thereby greatly simplifying a retrieval request. 
In addition, if a retrieval or update request on an element 
indicates its sub-block membership, the transaction will 
be processed in a more efficient manner than if the block 
type were not partitioned in this way or if no sub-block 
information were provided. 

The mechanics of block type definition are indeed triv
ial. The "define block type" program prompts the user 
for a block type name, number of sub-blocks and first 
sub-block name. The user then defines the elements of 
the first sub-block (i.e., element name, status). When all 
elements are defined, the user types END. The program 
then asks for repeating group definitions (i.e., name and 



BLOCK TYPE - PRES 
NUMBER OF SUB-BLOCKS-
SUB-BLOCK 1 DEFINITION -

NAME-PERSONAL 
ELEMENT 1 - SU~NAME ALPHA INVERTED 

ELEMENT 2 - FIRSTNAH ALPHA 
ELEMENT 3 - INITIAL ALPHA 
ELEMENT 4 - MONTHB ALPHA 
ELEMENT 5 - DAYS IN TEGER 
ELEMENT 6 - YEAKS IN TEGER INVERTED 

ELEMENT 7 - STATEB ALPHA INVERTED 

ELEMENT 8 - STATEPTR FOIt-iTER 
ELEHENT 9 - HEIGHT ALPHA 

ELEMENT 10 - PARTY ALPHA INVERTED 

ELEMENT 11 - COLLEGE ALPHA 
ELEHENT 12 - ANCESTRY ALPHA INVERTED 

ELEHENT 13 - RELIGION ALPHA INVERTED 

ELEMENT 14 - OCCUR ALPHA ARRAY 

ELEHENT 15 - MONTHD ALPIiA 
ELEMENT 16 - DAYD INTEGER 

ELEMENT 1.7 - YfARD INTEGER 
ELEMENT 18 - CAUSE ALPIiA 
REPEATING GROUP 1 DEFINITION -
NAME-t-iAME 

ELEMENT 
ELEMENT 
ELEMENT 

REPEATING GROUP 2 DEFINITION -
NAME-BIRTH 

ELEMENT 4 
ELEHENT 5 
ELEMENT 6 
ELEMENT 7 

REPEATING GRCUP DEFINITION -
NAME-DEATH 

ELEHENT 15 
ELEHENT 16 
ELEHENT 17 
ELEHENT 18 

SUB-BLOCK 2 DEFINITION -
NAME-FAMILY 
ELEHENT 1 - FATHER ALPHA 
ELEHENT 2 - MOTHER ALPHA 
ELEHENT 3 - WIFE ALPHA 
ELEMENT 4 - MONTHM ALPHA 
ELEMENT 5 - DAYM INTEGER 
ELEME'lT 6 - YEARM INTEGER 
ELEMENT 7 - CHILDREN INTEGER 
REPEATING GRCUP 1 DEFINITION -
NAME-MARRIAGE 

ELEMENT 3 
ELEMENT 4 
ELEMENT 5 
ELEMENT 6 
ELEMENT 7 

SUB-aLaCK 3 DEFINITION -
NAME-HISTORY 
ELEMENT 1 - ELECTION POINTER ARRAY 
ELEMENT 2 - ADMIN POINTER ARRAY 
ELEHENT 3 - CONGRESS POINTER ARRAY 

Figure 2-Block type "PRES" 

the ordinal positions of the member elements). The defi
nition of repeating groups is also terminated by END at 
which point the second sub-block (if any) will ensue. 
When all sub-blocks have been defined, the program asks 
for another block type. When the last block type has been 
defined, the user once more types END, this time to ter
minate program execution. This program is part of an 
interactive command procedure, BTMAINT, which also 
includes programs to modify and display block type defi
nitions. BTMAINT is indicative of all data management 
command procedures in its handling of file retrieval and 
cataloging functions; that is, it relieves the user of a great 
deal of the "bookkeeping" burden by submerging this 
aspect of data base processing behind a front of everyday 
conversation. Figure 3 illustrates a typical session with 
this command procedure. 

MODES OF USING CDMS 

Batch programs 

COMRADE is basically a software system for the inter
active designer and CDMS is basically a data manage-
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Figure 3-Processing block types using command BTMAIl\T 

ment system for the interactive user. However, certain 
data management tasks are more suited to stand-alone 
batch processing. The first such task that comes to mind 
is a massive data base loading procedure. This procedure 
might occupy the central processor for minutes and some 
other resources of the computer system for hours. There
fore, such a run would best be made at a low-priority rate 
during non-prime time for financial reasons. The 
COMRADE Bulk Data Loader is such a program. This 
program will accept card image input specifying data 
blocks to be defined and values to be assigned to elements 
within these data blocks. A new data base may be created 
by the Bulk Data Loader or data blocks may be added to 
an existing data base. 

The input to this program consists of Block Type 
records (only when the next block to be defined is of a 
different type than the previous block), Block Name 
records, and, optionally, Sub-block records. The majority 
of the input, however, is found in the Data records. Each 
Data record may define a variable number of data fields 
of the format 

element name/value (for single-valued elements) 
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Figure 4-Input to bulk data loader for block type "PRES" 

or 
element name / dimension/ val ue value ... (for array 

elements) 

Alphanumeric values must be surrounded by quotes. The 
flags $ENDRGO, $ENDER, and $EXIT signify the end 
of a repeating group occurrence, the end of a data block, 
and the end of the input stream, respectively. 

Figure 4 is the Bulk Data Loader input for data blocks 
LINCOLN and WILSON. The definition of block type 
PRES in the previous section might help the reader to 
follow the input stream. 

The user is by no means required to load all defined 
data elements in all data blocks for a given block type. On 
the contrary, it is not uncommon to load data "currently 
available," leaving large gaps in every data block in the 
entire data base for future use. To fill these gaps, the user 
has at his disposal the COMRADE Bulk Data Modifier, 
another program to be used in the batch mode. This pro
gram permits the user to add, modify, and delete data in 
existing data blocks while using an input format almost 
identical to that of the Bulk Data Loader. 

Subroutine library 

Much of the COMRADE development effort paralleled 
the development of the Integrated Ship Design System 
(lSDS) at NSRDC. * ISDS, a computer-aided design 
system which was to use the COMRADE software, pro
vided many specific requirements that influenced the 
direction taken by the COMRADE team. In this respect 
data management was no exception. The pilot model of 
ISDS, demonstrated in the spring of 1970, revealed sev
eral drawbacks in the data management techniques then 
being employed. The most glaring of these deficiencies 
was the inability of the ISDS application programs to 

* Informally documented in two reports, the first by R. Stevens and T. 
Rhodes (Jan 1969); the second bv T. Corin and T. Rhodes (Feb 1971). 

dynamically access the data base during execution. What 
this meant was that all data that might be needed from 
the data base for a given design task had to be retrieved 
and stored on a temporary working file for subsequent 
application processing. In some cases, large quantities of 
data were retrieved, and then, due to a design decision 
that could not be made prior to retrieval, more than 50 
percent of this data went unused in the processing of the 
design task. Likewise, the update of the ship design data 
base was interrupted by "the middle man," a temporary 
file for storing update transactions during the gap in time 
between the termination of the applications program and 
the execution of an independent update procedure. 

Clearly, a library of subroutines was required that 
permitted dynamic data base retrieval and update from a 
FORTRAN applications program. The examination of 
several existing software packages* that did provide this 
FORTRAN interface, but at a primitive level, led to the 
conclusion that the development of a data management 
system which satisfied the requirements of both the 
FORTRAN applications programmer and the terminal 
user, the design engineer, was indeed necessary. 

Interactive command procedures 

While CDMS provides a FORTRAN-callable subrou
tine library for application programmers to build, proc
ess, and retrieve data, the ultimate user of a computer
aided design system is the design engineer. Once a design 
subsystem of COMRADE reaches the production mode, 
the application programmer and the subsystem designer 
fade into the background as much as is possible, while the 
design engineer steps forward. He is the man who works 
at the remote terminal day after day performing his 
design tasks. Just as he must be able to communicate 
with his applications in a conversational manner. so must 
he be able to "converse" with his data base through gen
eral purpose data management programs. 

To this end, COMRADE has provided three interactive 
command procedures, BTMAINT, UPDATE, and 
RETRIEVAL. BTMAINT, the procedure for defining, 
modifying, deleting, and displaying block types is not 
really intended for use by the design engineer; rather, its 
use would probably be restricted to the subsystem 
designer or data administrator, the person or people 
responsible for the data base structure. 

The primary purpose of the UPDATE command proce
dure is the selective inspection and modification of data 
items within the data base. The two programs comprising 
this procedure are the Basic Retrieval Program and the 
Interactive Update Program. In both programs the user 
specifies a data block name and a particular "item" 
within that block, and the programs will display (Basic 
Retrieval) or modify (add, delete) the item (Interactive 
Update). An "item" may be 

* The examination of these software packages is discussed in the Corin 
and Rhodes informai report referenced eariier. 



• a non-repeating group element 
• one or all of the occurrences of an element within a 

repeating group 
• one or all of the existing occurrences of an entire 

repeating group 
• a new repeating group occurrence to be added 
• a sub-block 
• an entire data block 

The Basic Retrieval Program may also be found in the 
command procedure RETRIEVAL. Another program 
accessible through this procedure is the File Statistics 
Program. This program retrieves and displays informa
tion regarding the data base, such as 

• name and size of all data blocks 
• name and description of any or all block types 
• name and value range of all inverted elements 

While the CDMS Basic Retrieval Program provides a 
mechanism for data retrieval of a certain nature, namely 
by physical location, the COMRADE Query Processor 
satisfies another type of retrieval request, i.e., retrieval by 
condition. The goal of the Query Processor was to provide 
the user with a language, not totally unlike English, with 
which he could conditionally query the data base on both 
element values and file structure. This program is truly 
the union of all features within CDMS: the Data Storage 
Facility which contains the software necessary to process 
"inverted" element lists thereby, providing the rapid 
response necessary to an on-line query system;3 the Block 
Type Definition Facility, essential to the expression of a 
query; and file structure traversal via elements of the 
"pointer" data type. 

The syntax of a query is 

VERB OBJECT LIST OF CLAUSE WHERE 
CLAUSE; 

VERB-The destination of the output of a particular 
query is governed by the user's choice of verb. PRINT 
will direct all output to the user's terminal. FILE will 
return only diagnostics directly to the user and write all 
query results on a scratch file. Prior to the completion of 
command procedure RETRIEVAL, the user will have the 
opportunity to dispose of this file as he sees fit, either to 
have it printed at one of several remote sites, or to keep 
this file for further use. 
OBJECT LIST-The object list is simply a list of those 
items to be printed or filed for all "hit" blocks, i.e., for all 
data blocks satisfying the conditions of the query. Valid 
object list items are 

• element names 
• repeating group names 
• BN (block name) 
• BT (block type) 

The appearance of a repeating group name in the object 
list will result in the output of all member elements for 
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the "hit" data blocks. A maximum of twenty items may 
be requested, with a repeating group name counting as 
one, regardless of the number of member elements. 
OF CLAUSE-.OF. search path 
where 'search path' consists of a starting data block name 
and a sequence of element names separated by slashes, 
each element being of "pointer" data type. This arbitrary 
path will be traversed, with all terminal data blocks con
sidered to be "hits." The search path may consist of zero 
to eight pointer names, with zero signifying a basic 
retrieval operation. 
Examples 

(a) PRI~T WIFE .OF. LI~COLN; 
This is simply a basic retrieval. The element 
WIFE in data block LINCOLN will be retrieved 
and printed. 

(b) PRINT WIFE .OF. E1960jPRESPTR; 
The data block E1960 is of block type ELEC
TION. One of the elements, PRESPTR, of the 
block type, is a pointer to the data block con
taining the personal information regarding 
the man who won that election, i.e., Kennedy. 
Therefore the "answer" is Jacqueline. 

(c) PRINT CAPITAL .OF. E1960j 
PRESPTRj ST ATEPTR; 
In data block KENNEDY (i.e., E1960jPRES
PTR), there is an element STATEPTR, a pointer 
to JFK's state of birth, Massachusetts. Hence 
the output of the query is Boston. 

These simple examples do not illustrate the possibility 
of a rapidly expanding tree structure such as 

.OF.BLOCK1jPTRAjPTRB 

where BLOCK 1 has a 100 word pointer array PTRA, and 
each of the data blocks referenced by this array contains 
a 100 word pointer array, PTRB. Quickly this search 
path has produced a "hit" list of 10000 data blocks. 

Now, a final word on the OF CLAUSE. If the user 
would like to specify the same search path in consecutive 
queries, he need only type .OF. SAME in the second 
query. 
WHERE CLAUSE-.WHERE. conditional expression 

In this part of the query, the user establishes the condi
tions a data block must satisfy to be considered a "hit" 
via inverted list searching. The simplest conditional 
expression is a relational expression. A relational expres
sion is defined as 

element relational operator value 

where the operator IS one of the following: .EQ., .NE., 
.GE., .GT., .LE., .LT. 
or, 

element .BET. valuel, value2 

Since both alphanumeric and pointer values are char
acter strings, alphanumeric values must be surrounded 
by quotes to differentiate between these two data types. 
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Numeric values may be represented with or without the 
decimal point; however, exponential notation is not per
mitted. 
Examples of legitimate relational expressions are 

WEIGHT .NE. 100 
AREA .BET. 18., 29.2 
NAME .EQ. "JOHN SMITH" 

More complex conditional expressions may be formed 
by joining up to five relational expressions with the Boo
lean operators .AND. and .OR. As in FORTRAN, the 
natural precedence of .AND. first, .OR. second, may be 
altered by parenthesizing parts of the expression. Finally 
the Boolean operator .NOT. may be used to form the 
complement of all or part of the conditional expression. 

For example, 

(a) WEIGHT .LT. 20 .AND .. NOT.(NAME .EQ. 
"SMITH" .OR. NAME .EQ. "JONES") 

(b) .NOT.{A.EQ.10 .A)JD. XPTR .NE. BLOCK12) 

QUERY? 

PRINT NAME .WHERE. YEARB .IT. 1755; 
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Figure 5-Sample queries 

Just as .OF. SAME specifies a repeated search path, 
.WHERE. SAME specifies a repeat of the previous condi
tional expression. Not only does this feature save time on 
query input, but processing time is reduced in that the 
"hit" list from the last inverted list search has been 
saved. 

Figure 5 presents a variety of queries on the Presidents 
Data Base thereby illustrating the range of capabilities of 
the COMRADE Query Processor. 

SUMMARY 

A successful computer-aided design system is a mixture 
of diverse design tasks, administrative tasks, and people. 
Every task and person possesses certain data manage
ment requirements. Application programmers require 
efficient dynamic data base access from their design 
programs. The data administrator requires a facility for 
describing an arbitrary data and file structure suited to 
his design. Project leaders and design engineers require a 
natural means of communication between themselves and 
their data bases. 

The COMRADE Data Management System was devel
oped with the idea that these requirements can in no way 
be compromised. Unless all personnel using the data base 
can do so comfortably and efficiently, the design effort 
will suffer. Therefore, COMRADE has attempted to pro
vide a data management system which offers a wide vari
ety of capabilities to be used in a wide variety of opera
tional modes by a wide variety of users. 
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Plex data structure for integrated ship design 

by BERKARD M. THOMSON* 

Naval Ship Research and Development Center 
Bethesda, Maryland 

INTRODUCTION 

The true computer-aided integrated design system must 
comprise more than a collection of related design pro
grams; one essential element in such a system is a data 
system capable of passing mutual data among programs 
with minimum effort required of the user. A large and 
diverse integrated design system places numerous 
requirements on its central data file. This paper discusses 
these requirements as encountered in developing the 
Integrated Ship Design System, and describes the struc
ture of the Ship Design File which has evolved to satisfy 
these requirements. 

The Integrated Ship Design System (ISDS)l is a collec
tion of batch, interactive, and graphics applications pro
grams in various engineering disciplines, coupled together 
through a common executive system2 and a shared, cen
tral repository of data called the Ship Design File (SDF). 
The SDF is a digital description of the ship and its com
ponents, complete to the level of detail required to sup
port and document the preliminary phase of ship design 
for the U. S. Navy. The SDF solves the data communica
tions problem among previously independent design pro
grams by providing a single, common, current compen
dium of design information. The SDF provides input to, 
and receives output from, applications programs dealing 
with concept feasibility, surface definition of the hull 
form, powering requirements, electronic and mechanical 
system design, space and weight summaries, and numer
ous other ship design problems. Data entities include 
hierarchies of shipboard hardware systems, subsystems 
and components; surface definitions of decks, bulkheads 
and the ship's hull itself; hierarchies of space, weight, and 
cost classifications; and a hierarchical spatial breakdown 
of the ship into its compartments. 

The various design disciplines view the ship from dif
ferent perspectives, and require common data to be orga
nized in a variety of different ways. The SDF employs a 
plex structure** which relies upon sundry types of pointers 

" The views and conclusions contained in this document are those of the 
author and should not be interpreted as necessarily representing the 
official policies, either expressed or implied, of the Department of the 
~avy. 

** A plex structure is the most general form of data structure in which 
any given node may be related to any other. 
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to connect data blocks in the various relationships 
required by the user engineers and the applications pro
grams. 

The SDF is required to be responsive to the associative 
data requirements of interactive graphics programs and 
to inquisitive perusal by engineers, as well as to the sup
port of numerous number-crunching analysis programs. 

REQUIREMENTS ON SHIP DESIGN FILE 

The task of designing the Ship Design File (SDF) began 
with an analysis of summary documentation presently 
used to record the results of Navy preliminary designs. 
This documentation typically contains a number of 
arrangements drawings, schematic drawings of weapons 
and electronics systems, equipment lists, and the results 
of various engineering analyses. The SDF must contain 
data to duplicate this documentation, and must also 
include any other intermediate data derived and used in 
the course of the preliminary design. This aggregate of 
data can effectively be classified in three parts: 

• Catalog Data: Any data which are not dependent 
upon a particular ship design are catalog data. Such 
data include physical properties of off-the-shelf 
equipment, structural properties of steel shapes, and 
other standard design data. 

• Results of Analyses: Various engineering analyses, 
such as computing the hydrostatic properties of the 
hull and estimating propulsion requirements, result 
in specific numeric "answers" which are parametric 
measures of the ship's performance. Values for the 
same parameters, more or less, are derived for all 
ships, and these parameters may be assigned fixed 
"homes" in the SDF and referenced on all ships by 
the same standard data element names. 

• Physical Ship Data: The physical ship must be 
defined in terms of its hull shape, its decks and 
bulkheads, the compartments into which it is divid
ed, and the equipment with which it is outfitted. This 
third type of data presents the most problems in 
structuring the SDF, and it alone is the subject of the 
remainder of this paper. 

Analysis of the physical ship data determined that it 
was possible to represent all of it using a relatively few-
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perhaps a dozen-types of data entities. Examples of 
these entities are: 

• Systems, subsystems or components of shipboard 
equipment, e.g., weapons systems, propulsion sys
tems, piping systems 

• Decks 
• Bulkheads 
• Weight classification groups 
• Compartments (rooms) on the ship 

The most significant characteristic of the SDF is that 
most data elements have several distinct relationships to 
other data elements. For instance, a piece of electronic 
equipment may belong to a sonar system, may be located 
in the Sonar Control Room, may be classified in weight 
group 412, and may be physically connected to various 
other components in the sonar system and in the electri
cal distribution system, the water cooling system, and the 
fire control system. The data structure must allow the 
electronic component to be referenced via any of the 
above relationships. This requirement reflects the inclina
tion of various disciplines to view the ship from different 
perspectives, and it dictates a high degree of interconnec
tivity and flexibility within the SDF. 

This requirement for multi-relationship access of data, 
along with the high volatility and large size of SDF, 
demand a random access file. Reference 3 describes the 
COMRADE Data Management System (CDMS) which 
has been developed as the software to access and main
tain the SDF. 

DESCRIPTION OF FILE STRUCTURE 

Early experience with a list structured Ship Design File 
revealed that such a structure was too restrictive for the 
requirements of ISDS. Subsequent study indicated that 
other specialized data structures such as rings and asso
ciative structures were also too inflexible, and it was 
accepted that a very general plex structure was required. 
Furthermore, it was decided that the optimum file struc
ture should utilize many small data blocks, each contain
ing a few elements of attribute data (e.g., the name, area, 
and volume of a compartment) and a number of pointers 
to other data blocks which constitute the logical inter
block relationships. Thus, the basic unit of data is the 
CDMS data block, and each block consists of a number 
of named data elements which are the particular attri
butes and pointers of the block. Calls to CDMS routines 
enable the Fortran programs to retrieve or update a single 
element or a group of elements at one time. 

A CDMS "block type" is defined for each entity 
required to represent physical ship data. Examples of 
block types are Arrangement Blocks (representing com
partments) and Equipment Blocks. Each block type has a 
unique set of attribute elements and pointer elements 
defined for it. 

The remainder of this paper describes a few of the 
representative block types and inter-block relationships 
which were defined and assembled to produce the ISDS 
Ship Design File. 

The SDF is really a plex structured file in which any 
block may be defined to point to any other block. For 
ease of comprehension, however, it is best represented as 
in Figure 1 as a cross-connected tree structure. Each 
major branch of the tree represents one form of organiza
tional hierarchy, and most branches consist of data 
blocks of a single block type. Pointers in each block con
tain the relationship information to represent the hierar
chical branches and to relate each block to appropriate 
blocks in other branches. 

Ship systems branch 

Blocks in the Ship Systems Branch are referred to as 
equipment blocks. Each block at the bottom of the 
branch represents one "component" of equipment-a 
pump, a radar console, a table, a missile launcher, etc. 
The components are organized hierarchically into subsys
tems, systems and groups of systems. There is no prede
termined number of levels in the equipment hierarchy; 
the cognizant engineers are free to structure this branch 
in as many levels as are convenient to represent the 
complexity of the various systems. We would expect more 
levels in the systems branch of an aircraft carrier, for 
example, than would be used for a shipyard tug. 

Figure 2 is the Equipment Block format. The elements 
are grouped into two sub blocks-one for attribute data, 
another for pointers. Attribute data include the alphanu
meric name of the equipment, the X, Y, and Z location of 
the equipment in the ship coordinate system, and three 
rotation angles to orient the equipment relative to the 
ship. Note that no physical attributes of the equipment 
itself are represented. These data reside in a block on an 
equipment catalog which may be accessed by following 
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Figure I-Partial overview of ship design file structure 



the CL pointer* which is part of the equipment block. 
This scheme consolidates catalog data for ease of mainte
nance and eliminates the duplication which would occur 
when a particular item of equipment appears many times 
on a ship. 

Other pointers represent relationships with other blocks 
on the SDF: The CM pointer* indicates the block of the 
compartment in which the equipment is located. The SW 
pointer* relates to a block in the Ship Work Breakdown 
Structure (SWBS) Branch, used for cost and weight 
accounting. The PR pointer is the parent pointer to the 
equipment block immediately above in the Equipment 
Branch, and the element EQ is a repeating group of point
ers to equipment blocks immediately below. The 
NOTEPTR and CONNPTR pointers are used for associa-
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Pointer to parent equipment block 

Pointers to sub-equipment blocks 

Pointer to notes block 

Pointer to connection data block 

Figure 2-Equipment block format 

tion with auxiliary blocks containing, respectively, 
alphanumeric notes respecting the equipment, and data 
defining the physical connections (piping, wiring, etc.) 
with other equipment components. 

Figure 3 shows a portion of the Ship Systems Branch in 
more detail, illustrating the relationship between equip
men blocks, catalog blocks, and notes blocks. 

Ship work breakdown structure branch 

The total weight, center of gravity, and moments of 
inertia of the finished ship determine her static displace-

* See Figure 2 
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Figure 3-Data structure in ship design branch 
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Equipment 
Blocks 

Notes 
Blocks 

ment, trim and heel, and the dynamic characteristics 
affecting her maneuverability and motic;ms in a seaway. 
A traditionally basic aspect of naval architecture is the 
meticulous accounting of the weight and location of each 
piece of material which constitutes the ship. All weight 
items on a ship are classified according to the Ship Work 
Breakdown Structure (SWBS) for the purposes of weight 
budgeting and accounting. The same SWBS organization 
is used for cost accounting and for cost and man-hour 
estimating. 

Figure 4 is a portion of the SWBS classification, which 
extends for three and sometimes four levels of hierarchy. 
This standard hierarchy will automatically form the 
upper levels of the SWBS Branch of the SDF, and engi
neers will be able to expand the SWBS Branch through 

Group 3~0 ElectriC Plant 

• • 
310 Electric Power Generation 

311 Ships Service Power Generation 

311.1 Ship Service Generators 

311.2 Ship Service/Emergency (Diesel) 

311.3 Ship Service/Emergency (Gas Turbine) 

312 Emergency Generators 

314 Power Conversion Systems 

Figure 4-Portion of ship work breakdown structure 
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Figure 5-Illustration of sheer and camber 

any of the terminal third or fourth level S\VBS blocks by 
defining additional SWBS blocks if such would be useful. 

Each SWBS block may contain estimates of weight and 
cost which have been made at its level of detail, and 
summaries of estimated or computed weight/ cost data 
from SWBS blocks below it. The lowest level SWBS 
blocks contain pointers to equipment blocks which fall 
into their respective accountability. These pointers indi
cate the equipment block highest on the Equipment 
Branch such that all equipment blocks under it belong to 
the same SWBS group; it is thus not necessary to have 
pointers to every component of a system which is entirely 
accounted for by one SWBS block. 

Other SWBS data elements include the longitudinal 
and vertical centers of gravity relative to ship coordinates, 
up-and-down pointers to form the hierarchy of the SWBS 
branch, and a pointer to a NOTES block containing rele
vant alphanumeric comments. 

Surfaces branch 

The various blocks of the Surfaces Branch contain the 
descriptions of the physical surfaces which bound and 
subdivide the ship-the hull envelope, the decks and plat
forms, the bulkheads and numerous small partitions 
which segment the ship into its many compartments. 

The ship hull, i.e., the bottom and sides of the external 
watertight skin, is a complex three-dimensional shape. It 
is defined by specifying the coordinates of points on the 
hull lying in regularly spaced transverse planes, or sta
tions. Arbitrary points on the hull may be obtained by 
double interpolation. 

Decks are surfaces which are horizontal or nearly hori
zontal. Decks are further classified as "levels" (decks in 
the superstructure), "platforms" (decks in the main hull 
which are not longitudinally continuous), and continuous 
decks (See Figure 5a). In general, decks have curvature in 
two directions. Sheer is the longitudinal curvature (Figure 
5a) and camber is the transverse curvature (Figure 5b). 

Sheer and camber are mutually independent and each is 
defined analytically; therefore, the deck surfaces are 
analytically defined. 

The bulkheads of a ship are analogous to a building's 
interior walls. N onstructural bulkheads may be termed 
partitions. ISDS requires bulkheads to be flat and verti
cal. Most bulkheads are oriented either longitudinally or 
transversely, but special definition also allows "general" 
bulkheads which are oblique to the centerline axis of the 
ship. 

Bulkheads are defined as finite planes; a key designates 
the bulkhead as longitudinal or transverse, a single 
dimension locates the plane, and four pointers indicate 
two decks and two bulkheads (or hull surfaces) which 
bound the plane (Figure 6). It is significant that the edges 
and corners of bulkheads are not directly specified but 
are defined indirectly through pointers to bounding sur
faces. This scheme greatly simplifies the updating of 
changes in bulkhead definition. 

Numerous data are associated with each bulkhead. In 
addition to the elements mentioned above, other data 
elements designate whether the bulkhead is watertight, 
oiltight or non-tight, structural or non-structural, and 
pointers are included to all compartments bounded by the 
bulkhead. Data to be added in the future could include 
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access openings, penetrations, structural details, and 
weight data. The bulkhead is thus an important physical 
entity, but to the problem of shipboard arrangements it is 
important primarily as a space-bounding surface. 

Arrangements branch 

The structure of the arrangements branch enables the 
designer to think of the ship as a deck-oriented tree struc
ture of spaces.4 One such tree structure is shown in Figure 
7. The first subdivision below "SHIP" always represents 
the platforms, levels or complete decks of the ship. Each 
deck, level, and platform is then further subdivided, as 
directed by the designer, into progressively smaller units. 
The smallest subdivision is the actual compartment on 
the ship. Each subdivision, large or small, is represented 
by an arrang-ement block and corresponds to -oB-€ node -of 
Figure 7. An arrangement may comprise a deck, a level, a 
platform, a superstructure house, a segment of a plat
form, a space, a group of spaces, or any contiguous 
designer-designated portion of one deck (or level or plat
form) of a ship. 

Data elements for each arrangement block include: 

• deck area, volume, and the name of the arrangement 

snIP 

Figure 7-Typical portion of arrangement branch 
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• pointers to bulkheads or hull surfaces forming the 
perimeter of the arrangement 

• pointers to the decks above and below 
• pointers to its component arrangement blocks and a 

backpointer to its parent arrangement 

The "undefined attribute" capability of CDMS3 pro
vides means for storing additional attributes for specific 
blocks as needed. Those low level arrangement blocks 
representing compartments on the ship could contain 
summaries of component weight and requirements for 
electrical power, ventilation, or cooling water. 

The reader will realize that there is a rigid logical inter
dependence between the subdividing surfaces and the 
subdivided spaces in a ship, building, or similar entity. 
The data structure chosen for the Ship Design File has 
been designed to minimize the chance of allowing contra
dictory surface/arrangement data to occur. 

Typical accesses of ship design file 

An attempt was made early in the development of 
ISDS to use COMRADE's inverted file capability to 
manage the physical ship data of the Ship Design File 
(SDF). The inverted file structure works well on the 
equipment catalog files, for which it was developed, but it 
was soon discovered that there is a basic difference 
between a typical query of a catalog file and the kind of 
accesses characteristic of the physical ship data. In a 
catalog query the user asks the program to identify com
ponents which possess certain prescribed attributes. For 
example, he may ask for the names and manufacturers of 
all pumps capable of a flow of 1500 gallons per minute. 
The query processor must locate unknown data blocks 
based upon known attributes. This requires that extensive 
cross-reference files be maintained on each attribute to be 
queried. 

The logic involved in a typical access to physical ship 
data is quite different from that of an inverted file query. 
In this case we start with a known block in the SDF and 
follow particular pointers to retrieve blocks akin to the 
known block by a relationship which is also known. Some 
examples of this type of query are: 

• What are the bounding bulkheads and components 
of a particular compartment? This question is 
common in graphics arrangement programming. 4

.
5 

e In which compartment is this component located? 
• In which compartments are components of this sys-

tem located? 
• What are the compartments on this deck? 
• What weight groups are represented by this system? 
• List the cost of components in all compartments on 

this deck. 

The reader will note that some of the above retrievals 
require the processor to follow several sets of relational 
pointers. The last example requires the following logic: 
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1. Start with the prescribed deck. Follow the CM 
pointer to the arrangement block for that deck. 

2. From arrangement block, follow CM pointers to next 
level arrangement blocks. Repeat down to bottom of 
Arrangement Branch; lowest blocks represent 
compartments. 

3. From compartment arrangement blocks, follow EQ 
pointers to all equipment blocks within each com
partment. 

4. From each equipment block, follow CL pointer to 
catalog block for that component. Retrieve cost of 
component and print with name of component. 

The COMRADE Data Management System3 has devel
oped a "pointer chasing" algorithm which processes this 
type of query. The user must specify the start block, the 
sequence of the pointers to be followed, and the data to be 
retrieved at the end of the search. 

The pointer-chasing retrieval routines can be called 
from Fortran programs as well as by a teletype user. It 
will be a straightforward step to build simple summary or 
computational algorithms around the pointer-chasing 
routines. Typical of this type of program will be one for 
performing a weight-moment summary for the whole 
SWBS Branch. 

CONCLUSION 

The development of the ISDS Ship Design File is princi
pally notable for the following points, most of which will 
apply to other integrated design systems: 

1. The basic problem in data structure for integrated 
design was defined as the requirement for multi
relational access of common data. 

2. A clear differentiation was made between equipment 
catalog data and ship dependent data. 

3. A plex data structure was designed in response to the 
above requirements, which is modelled for conve
nience as a cross-connected tree structure. It features 
small blocks of attribute data connected by many 
relational pointers. 

4. The data structure is a logical model of the physical 
ship, whose principal entities are surfaces, spaces 
bounded by those surfaces, and items of equipment 
in the spaces. This logical structure directly serves 
graphic arrangement routines, and preserves the 
arrangement data in digital form for use by number
crunching analysis programs. Most of this model is 
directly applicable to architectural design of build
ings, and part of it to the design of aircraft and other 
vehicles. 

5. A "pointer-chasing" query capability was developed 
to facilitate use of a data base dominated by inter
block relationships. 

REFERENCES 

1. Brainin, J., "Use of COMRADE in Engineering Design," presented 
at 1973 National Computer Conference, New York, June 1973, 
American Federation of Information Processing Societies. 

2. Tinker, R., Avrunin, L., "The COMRADE Executive System" 
presented at 1973 National Computer Conference, New York, June 
1973, American Federation of Information Processing Societies. 

3. Willner, S., Gorham, W., Wallace, M., Bandurski, A., "The 
COMRADE Data Management System," presented at 1973 
National Computer Conference, New York, June 1973. American 
Federation of Information Processing Societies. 

4. Chen, R., Skall, M., and Thomson, B., "Integrated Ship Design by 
Interactive Graphics (lSDIG)," Proceedings oi SHARE XXXVI. 
1971. 

5. Operators '/ [Tsers ' Manual for the Computer Oriented Graphics 
Arrangement Program (COGAP), prepared by Lockheed-Georgia 
Company for the ~aval Ship Engineering Center, Washington, 
D.C., 1972. 



COMRADE data management system storage and 
retrieval techniques 

by ANN ELLIS BANDURSKI and MICHAEL A. WALLACE * 
Naval Ship Research and Development Center 
Bethesda, Maryland 

INTRODUCTION 

The design of a data management software system 
involves the consolidation of a balanced set of individual 
techniques. Today's third generation computers provide 
the resources for the storage of large, complex sets of 
data, and for the rapid retrieval of that data. Random
access mass storage devices will store millions of bits of 
information, and central processors have instruction 
execution times on the scale of tenths of microseconds. 
But central memory space is limited and mass storage 
access time is not negligible. 

The COMRADE Data Management System was 
designed as a tool under the Computer-Aided Design 
Environment (COMRADE) software system l to manage 
the large quantities of data involved in the design of a 
complex system. The computer-aided design environment 
has characteristics which place demands upon a data 
management system and the ways in which it utilizes 
computer resources. 2 

The computer-aided design environment is character
ized, first, by an immense and volatile set of data: data 
brought into the design process, data sorted, calculated, 
and communicated during the design process, and data 
which constitute the end product of the design process. 
Another characteristic of the computer-aided design envi
ronment is the wide range of disciplines represented by 
the individuals who are involved in the design process and 
make use of the design data. 

In response to these characteristics, the COMRADE 
Data Management System (CDMS) focuses not only 
upon furnishing efficient means for the storage of large 
quantities of data, but also upon making facilities availa
ble through which data are readily accessible to the non
programming designer. Rather than present an extensive 
package which attempts to be everything to everyone, 
CDMS provides a three-part data management capabil
ity. The flexibility allowed by this approach permits the 
individual using the system to make his own trade-off 
decisions between ease of use and efficiency. 

* The views and conclusions contained in this document are those of the 
authors and should not be interpreted as necessarily representing the 
official policies, either expressed or implied, of the Department of the 
Navy. 
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The three parts of the CDMS package are built one 
upon the other. The lowest-level component deals with 
the interface between the data and the computer environ
ment. The package at this level provides a compact and 
extremely efficient capability for the dynamic storage 
and retrieval of variable-length data blocks. The subrou
tines in this portion of the package may be used directly 
by the programmer who seeks economy above all else, but 
they also constitute the foundation for the higher-level 
components. 

The package at the second level3 provides a mechanism 
whereby sets of data can be organized within storage 
blocks; block types can be defined and names can be 
given to data elements within the block types. This facil
ity allows "pointer" as well as attribute data to be defined 
so that data values within blocks may contribute a logical 
structure to the data base. A sub-routine library is pro
vided at this level through which these features are made 
available to the programmer. 

The third component of the system 3 is provided to 
make the system most usable to the designer who may not 
be a programmer. This level provides a set of interactive 
command procedures. Using the system at this level, the 
designer can sit at a remote terminal and interact with 
the data base directly as he develops a design. Also 
included at this level are programs to initiate as well as 
execute data management functions. 

Although a user may access the data base through any 
of these three levels, it is the low-level component which 
actually stores and retrieves data. This low-level compo
nent is known as the COMRADE Data Storage Facility 
(CDSF). The CDSF handles all of the underlying data 
base management functions, including file usage and 
inverted list processing as well as data block storage and 
retrieval. 

The CDSF consists of a set of FORTRAN -callable 
subroutines, most of which are written in FORTRAN. 
This component, as part of the COMRADE system, is 
operational on a CDC-6700 computer under the SCOPE 
3.3 Operating System. 

The configuration through which the CDSF utilizes 
computer resources ensures two things to the users of 
COMRADE data management at all levels. First, it 
ensures that there will be a minimum of restrictions on 
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the size and uses of a data base. It provides for the 
dynamic allocation of variable-length data blocks up to 
216 -1 words each, and will handle up to 516,000 data 
blocks in an unstructured format on each data base file. 

Secondly, it ensures the efficient operation of CDMS. It 
lays the foundation for the rapid response which is vital 
to the designer working at the teletype and accessing 
design data. It also minimizes both core and disk space 
requirements by strict management of these spaces. 

There are three basic elements of CDSF: 

• Data block handling routines furnish the operations 
necessary for the dynamic storage, retrieval, update 
and deletion of data blocks on disk files. These rou
tines maintain a two-level directory on each file 
whereby any data block may be accessed directly 
through its block name. To conserve disk space, a 
reallocation scheme is included; and a circular buffer 
is managed which will allow more than one data 
block to be in main memory at a time. The mecha
nisms involved in data block handling will be 
described in more detail shortly. 

• Inverted list processing routines maintain ordered 
lists of the values of certain data elements and the 
names of the data blocks in which those values occur. 
These lists allow data blocks to be referenced on the 
basis of data values they contain without requiring a 
linear search of all blocks on a file. The methods 
used for inverted list creation, update and retrieval 
are presented later. 

• File use routines allow multiple random-access disk 
files to be established for data base use under 
CDMS. With these routines the programmer may 
transfer between files within one program. They lay 
the foundation for processing the cross file data 
pointers which are defined and used through higher
level CDMS components. 

When a file is established as part of a CDMS data base, 
the file use routines issue a request to the operating sys
tem for a file on a permanent disk file device. Space is 
allocated on this file for CDSF file management tables 
which are maintained on the file throughout its existence. 
The file use routines open a file to be used and prepare its 
I/O interface with the operating system. They also 
rewrite updated file management tables onto a file when 
it is closed. 

Now, details of the techniques utilized in the handling 
of data blocks and the processing of inverted lists will be 
presented. 

DATA BLOCK HANDLING 

The storage and access of the multitude of data blocks 
which are needed in a design data base are managed by 
CD SF . When a data block is stored, it is given a block 
name. CDSF keeps a directory of all the names of data 
blocks on a file and the disk addresses where those blocks 

may be found on the file. This makes it possible for a 
symbolic name rather than a numerical index to be used 
to access a data block during its residence on the file. 

CD SF provides all of the basic data management func
tions to handle variable-length data blocks, while allowing 
them to be referenced by name. A data block may be 
stored on any file which has been established for data 
base use. All or portions of a data block's contents may be 
retrieved. Modification of the contents of a data block is 
permitted, including that which requires increasing or 
decreasing the size of a block. Finally, removal of a data 
block from a file may be accomplished. 

The access of data blocks by name is provided through 
a two-level directory which is maintained on each file. 
The first level or main directory is brought into main 
memory when a file is opened and remains there through
out the time the file is in use. The second level of this 
directory consists of fixed-length subdirectories which are 
created on the file as they are needed. Only one subdirec
tory is brought into core at a time to be used. The main 
directory contains the addresses of the subdirectories on 
that file. It is in the subdirectories that the disk addresses 
of all data blocks on the file are stored. Through the use 
of this expandable two-level directory, up to 516,000 data 
blocks can be stored on a file. Since the main directory is 
brought into main memory when the first data block on a 
file is accessed, all blocks which are subsequently refer
enced on that file require only two disk retrievals (one to 
get the subdirectory and one to get the data block). 

When access to a data block is requested, its block 
name (48 bits; 8 characters) and its version number (a 5-
bit number from 0 to 31) are specified. This block name/ 
version number pair is put through a scatter function 
which transforms such pairs into uniformly distributed 
values. Binary digits (bits) are extracted from the result
ant value to form a "key". This key is used as an index 
into- the main directory where the address of the appro
priate subdirectory is found. The key is then used to 
index the subdirectory to locate the address of the data 
block (see Figure 1). 

It is generally found that block names which are gener
ated by one person have a high degree of correlation. To 
scatter the indexes into the directory, a multiplicative 
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congruential transform was chosen to apply to the block 
name/version number pairs. 

The block name and version number are concatenated 
and the resultant 53-bit value is multiplied by a 53-bit 
transform. The result of the multiplication (modulo 253

) 

has bits extracted from it to produce the key into the 
main directory. 

When the first data blocks are stored on a file, one 
subdirectory contains the entries for all blocks. These 
entries are divided into two groups: each entry is placed 
in either the upper or the lower half of the subdirectory, 
according to the value of the first bit in its key. When 
there is only one subdirectory, there is only one address in 
the main directory and it is not necessary to use any bits 
from the index to find the address of the appropriate 
subdirectory . 

When one of the halves of the subdirectory becomes 
filled, a new subdirectory is created into which the entries 
from the filled half are moved. Each of these entries is 
placed in the new subdirectory's upper or lower half 
according to the value of the second bit in its key. Now 
two subdirectory addresses will appear in the main direc
tory. The first bit in a key must be used to determine 
which of these addresses refers to the appropriate sub
directory. 

The length of the main directory is always a power of 
two so that whenever it must expand to accommodate 
new subdirectory addresses, it simply doubles in size. 
When the directory doubles, the addresses already in the 
directory are spread throughout its new length by placing 
each address in two contiguous locations. The address of 
the new subdirectory then replaces half of one of these 
address pairs. 

Each time the directory doubles, an additional bit must 
be used from the key to find the appropriate subdirec
tory. Correspondingly, each time half of a subdirectory 
splits out to form a new subdirectory, the half where an 
entry is placed in the new subdirectory is determined by 
the bit in the key following the one used to determine 
entry locations in the previous subdirectory. Figure 2 
illustrates the process by which the directory expands. 

The entries are placed in the subdirectories sequen
tially from each end towards the middle. Additionally, 
the entries in each half of a subdirectory are chained 
together to form four lists. The two bits of the key follow
ing the bit which determines the half of the subdirectory 
are used to determine which of these four lists an entry is 
chained onto. 

In order to quickly locate a data block entry within a 
subdirectory, each subdirectory has a header which gives 
the address of the first entry on each of the four lists in 
each of its halves. This header also indicates which bit in 
a key should be used to determine the subdirectory half 
for a particular entry. It also points to the next empty 
location in the upper and lower halves of the subdirectory 
in which an entry may be placed. Figure 3 shows the 
arrangement of entries in a subdirectory and the contents 
of the header. 
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Figure 2-Directoryexpansion 

An entry in a subdirectory for a data block contains the 
transformed block name/version number, the disk 
address where the block is stored, the length of the data 
block and the amount of disk space in which the block is 
stored. 

Disk space reallocation 

When a data block is stored on a file, it is usually writ
ten directly at the end of information on the file using the 
least amount of disk space which will contain the block. 
When a data block is removed from a file, the allocated 
disk space in which it was stored may be used for another 
data block. A disk space reallocation table is maintained 
on each file to keep track of blocks of disk space which 
are available for reuse. This table consists of an index and 
up to 72 lists, each of which holds the addresses of up to 
503 reallocatable disk space blocks in a particular range. 
The index for the reallocation lists is brought into main 
memory when the file is opened. 

An entry is made in one of the reallocation lists each 
time a data block is removed from the file. The exact size 
of the reallocatable space is kept in the list along with its 
address. An entry is made in the index if the block to be 
reallocated is the first one in a particular size range and a 
new list is created for it. 
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The reallocation table is referenced each time a new 
block is to be stored on the file and each time a larger 
block of disk space is needed to store a data block whose 
size is being increased. The entry in the name-access 
subdirectory for each data block retains the exact size of 
the disk block in which the data is placed, so that no disk 
space is lost if the block is again reallocated. 

Circular buffer 

Although data blocks may be created that are up to 212 
-1 words in size, it is usually not desirable to use an 
enormous amount of main memory space to transmit a 
data block to the disk file. In order to be able to handle 
data blocks of almost any size, the CDSF uses a circular 
buffer for I I 0 whose size is defined by the programmer. 
When the retrieval of a large data block is requested, the 
circular buffer allows one portion of the block to be 
brought into main memory at a time. 

The circular buffer will also retain portions of data 
blocks or entire data blocks until the space which they 
occupy in the buffer is needed for other data. This multi
block capability operates on a first-in, first-out basis. 

Because of this feature, it may not be necessary to 
access a data block through the directory each time it is 
requested. The contents of the circular buffer are checked 
for the desired block. and if part of that block is in main 
memory (in the buffer), the need to read and search a 
subdirectory and possibly the need to read the data block 
is obviated. 

INVERTED LIST PROCESSING 

When a data base file is created under COMRADE, 
retrieval by block name is the most efficient type of 
retrieval because the file is set up with a block name 
directory. If the user wishes to retrieve information from 
the file on the basis of the values of data elements within 
data blocks, the file may be set up to include inverted 
lists to make this type of retrieval efficient also. 

An inverted list is a list of all of the values for one data 
element which occur in data blocks throughout the file, 
with information for each value indicating where in a 
data block it may be found. Such a list is ordered on the 
basis of the data values so that the entries for one value or 
a range of values may be quickly located. 

When the higher-level CDMS components are used to 
store and request data, the inverted lists will be automati
cally created and referenced as follows: When a data 
block is stored which contains a data value for an 
inverted element, the value is also placed in the inverted 
list for that element; when a query requests information 
on those data blocks in which particular values of 
inverted elements occur, the inverted lists are searched 
and the desired information retrieved. 

The CDSF is responsible for building and maintaining 
the inverted lists, and for searching them to retrieve infor
mation to satisfy query requests. 

Inverted list storage 

At the time a file is defined under CDMS, one of the 
tables for which disk space is allocated is an inverted 
element directory. This directory is brought into main 
memory each time the file is opened. Once values have 
been stored on the file for an inverted element, this direc
tory will contain the name of the element and the disk 
address of the first block of its inverted list. 

As an inverted list grows, it may require many disk 
storage blocks. Each of these blocks may contain up to 
340 value entries which are ordered within that block. 
The inverted list storage block for an element whose val
ues occur in only a few data blocks may be accessed 
directly from the inverted list index. When the first stor
age block for an element is filled, it becomes an index for 
up to 510 additional storage blocks. Each time another 
storage block becomes filled, the entries which it contains 
are divided equally between itself and a new block. A new 
entry is made in the index to reflect the existence of the 
new block and where it occurs in the set of ordered 
blocks. Even though there may be storage blocks for an 
element, only the directory and one storage block need be 
accessed to locate a particular value. Figure 4 shows the 
relationships of the different types of inverted list blocks. 
In Figure 5, the format for an inverted list index is shown, 
and in Figure 6, the inverted val ue storage block format is 
given. 

The addresses of inverted list storage blocks which have 
been emptied by the deletion of values are kept for reallo
cation within the inverted list index. 

Inverted list update procedure 

An entry must be placed in an inverted list so that its 
value falls between immediately greater and smaller 
values. Inverted list processing time may be minimized 
by a procedure for accumulating inverted list insertions 
and deletions and making many updates at one time. The 
entries are presented so that it is necessary to reference 
each inverted list block only once. The CDSF provides a 
two-part procedure for making bulk updates. 
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First, a sequential list of additions and deletions to be 
made to all inverted lists is kept in the order that the 
specifications are given. The entries in this list for each 
element are linked together in inverse order, from the last 
one entered to the first. As this list grows, portions of it 
may be placed on a special disk file created for this pur
pose. The list will continue to grow until one of two things 
takes place: until the end of the computer run during 
which it is built; or until a query is made which uses the 
inverted lists. 

Then, when one of these things occurs, the linked list of 
additions and deletions for one element is extracted from 
the total set of specifications. This list is sorted according 
to element value; then the value entries are integrated 
into the existing portions of the list. During this process it 
must be remembered that the sequence in which specifi
cations are given is significant. When the specifications 
for one list are sorted into order on the basis of value, the 
original order must be maintained'so that if one specifica
tion nullifies another, the correct result will remain. Fig
ure 7 shows the two parts of the inverted list update pro
cedure. 

Inverted list information retrieval 

An inverted list is consulted in order to locate within 
the data base the occurrence (or occurrences) of a partic-
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Figure 7 -Inverted list update procedure 

ular value or range of values for an inverted element. The 
information kept in the inverted list for each value 
includes not only the block name/version number of the 
data block in which a value occurs, but specifies where 
within the block the value is located. 

Since there may be many or few occurrences of the 
specified value(s) within an inverted list, a disk file is 
created to receive entries for up to 64,897 values. The 
names of the data blocks which contain these values may 
be picked up from this file. If further' information from 
the data blocks is required, the individual blocks may be 
accessed through the directory. 

CONCLUSION 

We have seen some of the storage and retrieval techniques 
which have been developed to handle large quantities of 
blocked data using direct retrieval and limited core stor
age. Capabilities for the access of data blocks by name, 
for inverted list processing, and for multi-file usage, pro
vide an efficient and flexible data management system. 
The higher level components of CDMS, together with this 
foundation, provide the user a variety of capabilities from 
which to manage his data efficiently and conveniently. 
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COMRADE design administration system 

by C. MICHAEL CHER~ICK* 

,.1\laual Ship Research and Development Center 
Bethesda, Maryland 

INTRODUCTION 

The Design Administration System of COMRADE! 
completes -the -se-t-of major functions requi-r-ecl for int-e
grated design system support. 2.3 The purpose of the 
Design Administration (DA) System of COMRADE is 

• To provide capabilities which allow the manager(s) 
of a large, computer-aided design effort to control 
and monitor design activity, and hence, to control 
and monitor use of their COMRADE subsystem. 

• To provide subsystem developers and users rapid on
line file access and file access control. 

To accomplish these objectives, the Design Administra
tion effort was divided into three interrelated areas of 
activity: 

(1) The COMRADE Permanent File Management 
System (CPFMS) 

(2) The COMRADE Logging and Reporting System, 
and 

(3) Support Functions for COMRADE Subsystems. 
While the three areas overlap, their basic functions differ. 
CPFMS is concerned with the management and security 
of files in the design environment. The Logging and 
Reporting System deals with the generation of reports for 
managers, for software system designers, and for applica
tions designers (the "users" of the system). Finally, a 
variety of support functions are provided to aid the sub
system designer. 

COMRADE PERMANENT FILE MANAGEMENT 
SYSTEM 

That part of the operating system concerned with the 
cataloging, retrieving, and decataloging of files (but not 
with the processing of files) is called the file management 
system. The file management system is a key element in 
any computer based system. especially in a multipurpose 
computer aided design system such as COMRADE, where 

" The views and conclusions contained in this document are those of the 
author and should not be interpreted as necessarily representing the 
official policies, either expressed or implied, of the Department of the 
Navy. 
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files must be quickly and easily accessed and securely 
maintained if the system is to be effective. 

The goals of the COMRADE Permanent File Manage
mentSys-tem (CPFMS} al'-e to pI"BVi-cl-e: 

• rapid on-line access to COMRADE files, 
• user-file access control, and 
• file-use profiles for effective file management. 

The SCOPE Version 3.3 operating system used on the 
Naval Ship Research and Development Center (NSRDC) 
CDC 6700 is a batch oriented operating system. This 
orientation is reflected in the SCOPE file management 
system which is not well suited for interactive design. 

Before explaining the COMRADE permanent file sys
tem, it is helpful to discuss file processing (i.e., reading 
and writing files, mass storage allocation, etc.) under 
SCOPE. File processing under SCOPE is dynamic in that 
files can be created merely by issuing a system write 
request to a file that does not yet exist (a useful feature 
for interactive processing). The system automatically 
assigns the file to disk and allocates an initial block of 
disk space. As writing continues, file space is dynamically 
allocated as needed. The block size written on the disk is 
fixed by the system at 64 words (640 characters), but 
FORTRAN provides automatic blocking so application 
programmers need not be overly concerned with blocking 
factors. Files created in this manner are called local files. 

For batch job processing, files created dynamically are 
ordinarily lost at the end of job. For time sharing users, 
files created at the terminal ordinarily remain available 
until logout from the system and then are lost. However, 
files may be cataloged such that they can be retrieved at 
a later time. A local file may be cataloged with a rela
tively simple control card. Once cataloged, a local file is 
then known as a permanent file. The CATALOG control 
card is used to specify a permanent file name (PFN). The 
PFN is used as unique identifier of this file in the system 
so that the file may be accessed later in another job by 
attaching it with an ATTACH control card specifying the 
file's PFN. The file may be decataloged or purged with a 
PURGE control card. 

This permanent file system works reasonably well for 
batch jobs. However, this scheme is not altogether satis
factory for time sharing jobs. For one thing, an engineer 
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concerned with design does not want to worry about 
submitting control cards specifying unique names to save 
his files for later processing. Another problem is the time 
involved in attaching files. To attach a file to a job (or 
time sharing terminal) the system must search the per
manent file directory. The directory entries are not 
hashed using the permanent file name so a search that 
may take 3 to 4 seconds must be made through the entire 
directory until the PFN is found. No computation may be 
done by the job doing the attaching during this search, 
and in fact the time sharing service to other users is often 
severely degraded. Thus it is essential for good service 
that the directory search take a minimum of time. Fortu
nately the directory may be divided into subdirectories 
and the permanent file system can be directed by a 
parameter on the ATTACH control card to search a spec
ified subdirectory first. On the NSRDC system, the direc
tory consists of 50 subdirectories and when the correct 
subdirectory is specified, the attach time is reduced such 
that the attach usually completes within a half second. 
This time saving is significant, but to take advantage of it 
the terminal user must somehow tell the permanent file 
system the correct subdirectory. Since a design process 
may require many permanent files (often created and 
purged within a few days) the terminal user cannot be 
expected to memorize subdirectory numbers. 

The COMRADE Permanent File Management System 
(CPFMS) relieves the terminal user from the burden of 
submitting control cards and memorizing subdirectories 
to access his files. The two primary components of the 
system are: (1) a catalog system that stores pertinent 
information (including subdirectory numbers) about 
CPFMS files; and (2) a set of CPFMS interface routines. 
See Figure 1. 

Additional routines used by CPFMS, and shown in 
Figure 1, are the permanent file utility routines which 
serve as a replacement for the SCOPE permanent file 
control cards. These routines were developed separately, 
and may be used independently of CPFMS or of COM
RADE for that matter. They have the ability to access 
permanent files with up to 40-character names (including 
imbedded blanks and dashes), not possible through con
trol cards. They give a calling program dynamic file 
management ability. 

The CPFMS Interface Routines (CIR) are used to 
manage CPFMS files. The CIR use information from two 
sources: (1) information about CPFMS files stored in the 
CPFMS catalog and (2) information about a COMRADE 
system user stored in subsystem common. 2 File accessibil
ity can then be controlled by the CIR based upon the 
information found in these two sources. 

For file integrity, the CPFMS catalog system and 
CPFMS files must be accessible only through the CIR 
and CPFMS maintenance routines. File integrity is based 
upon the standard SCOPE permanent file system pass
words, which may be assigned to permanent files as they 
are cataloged. The CPFMS security structure assumes 
that the basic SCOPE system is secure: to secure the 
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Figure I-COMRADE permanent file management system 

CPFMS system, then, we must secure the passwords 
used. 

The passwords are kept within the CPFMS catalog 
system shown in Figure 2. The files that comprise the 
CPFMS catalog system are themselves protected with 
passwords. As may be seen in Figure 2, the catalog system 
is organized as a tree structure. The tree structure was 
chosen for: (1) its natural similarity to subsystem and 
project partitions, and (2) its ability to lend itself to quick 
and easy retrieval. The CPFMS files are given four level 
names, the first three of which are the three levels of cata
log structure. 

For example, in Figure 2, a file cataloged under the 
Integrated Ship Design Subsystem (ISDS)* of COM
RADE might be named COMR-ISDS-SHIP10-HULL, 
where the first and second level names (L1 and L2) are 
COMR-subsystem name (i.e., ISDS in this example) by 
convention, the L3 name is a design project name 
(SHIP10), and the L4 name (HULL) is a particular data 
file associated with SHIP10. 
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Figure 2-Sample COMRADE file directory entries 

'" "The Integrated Ship Design System, Model i-System Development 
Plan," internal document of the Computation and Mathematics Depart
ment, i:'\SRDC, February 1971, 



As shown in Figure 2 the CPFMS catalog contains 
pointers from level to level. These pointers include next 
level names, passwords (to permit access to the next level) 
and subdirectory numbers (to speed access to the next 
level). In general, two types of information are kept in the 
catalog system: (1) security information needed to assure 
file integrity and to access the file; and (2) historical 
information about cataloged files that may be used to 
provide profiles on file usage. 

The present implementation of CPFMS provides two 
security schemes for accessing files. In the first scheme 
subsystem projects are conceptually subdivided into 
subprojects. A file can then be associated (when cata
loged) with a subproject or subprojects. CPFMS can 
prevent a subsystem user who has not been assigned 
responsibility for this subproject (or these subprojects) 
from accessing the file. This scheme involves maintaining 
a File Access Lock (FAL) for each CPFMS file in the cata
log. The bit structure of the FAL reflects the area(s) of 
responsibility with which the file is associated. Similarly 
each user has a File Access Key (FAK) associated with 
him (or her, for you feminists) that reflects his (or her) 
assigned area(s) of responsibility. The CPFMS routines 
verify that a user has been assigned the proper area(s) of 
responsibility before the file may be accessed. An exam
ple· of the utility of this concept is as follows. Within 
ISDS a certain file is associated with the hull design 
effort. (Hull design is an area of responsibility.) This file 
can be accessed only by users who have been assigned 
hull design responsibility. 

The second scheme for accessing files involves the use 
of "pseudo-passwords."* A pseudo-password of up to five 
characters may be assigned to a CPFMS file. The proc
essing of the file is then limited to those uSers and pro
grams which "know" the pseudo-passwords. The pseudo
password is also kept in the CPFMS catalog. 

In addition to file access control information about 
CPFMS files, the CPFMS catalog includes historical 
information about file usage. This includes the name of 
the file creator and file creation date, as well as the name 
of the last user to modify the file and the date of the last 
file modification. This and other information stored in the 
catalog will be useful in producing reports concerning file 
usage. * * It is envisioned that on-line ability to verify the 
last usage and modification of a file will prove inval uable 
in a large multi-user design system. (The file usage 
reports are considered to be an extension of the user-to
user communication process.) 

At present, the COMRADE Permanent File Manage
ment System meets the needs of the present community 
of COMRADE users. However, expected future growth of 
the COMRADE community dictates that new capabilities 
be added and present techniques be modified. With the 

* The term "pseudo-password" is used rather than password to distin
guish these passwords from the actual SCOPE passwords. 
** Commands and programs needed for the report generation are not yet 
implemented. 
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growth in the number of users the number of CPFMS 
files can be expected to grow correspondingly. As the 
number of files increases, tighter file controls will be 
called for, i.e., daily auditing of files may be necessary; a 
generalized file usage reporting system will be needed; 
and automatic file purging with an off-line hierarchical 
storage system may be needed. Each of these areas are to 
be addressed in the future. 

COMRADE LOGGING AND REPORTI~G SYSTEM 

Early in the planning of COMRADE it was deemed 
essential that a comprehensive system for recording and 
reporting subsystem activity be developed. Reports were 
to be generated for subsystem managers, for developers, 
and for users for the purposes of subsystem management, 
monitoring, and inter-user communication. The recording 
of subsystem activity was to be as transparent to the user 
as possible. The result of this planning is the implementa
tion of the COMRADE Logging and Reporting System 
(LRS). (See Figure 3). The system is designed to record 
and report activity within given subsystems rather than 
within COMRADE as a whole. Reports can be tailored to 
the needs of individual subsystems. LRS provides basic 
modules and techniques that make such reports possible. 

To illustrate the necessity of tailoring the reporting of 
subsystem activity to the needs of the subsystem consider 
the example of the ISDS subsystem. Since ISDS is a ship 
design subsystem, the LRS for ISDS is closely concerned 
with providing reports based upon activities pertinent to 
ship designs. Thus an ISDS design manager can easily 
generate a report that monitors the activity within a given 
ship design rather than all ISDS activity. On the other 
hand, within a subsystem such as PERSO~NEL, t 
reports are generated about the activity of the entire 
subsystem. In PERSONNEL, unlike ISDS, there is no 
natural boundary such as individual design projects to 
limit reports. 

t The PERSONNEL subsystem of COMRADE processes personnel data 
at ~SRDC. 



362 National Computer Conference, 1973 

In a subsystem that has implemented logging, basic 
questions that can be answered by the COMRADE LRS 
include: Who used the subsystem? When did they use the 
subsystem? What commands were used? Much of this 
information can be and is obtained from the COMRADE 
Executive2 which calls a design administration subrou
tine. The name of each command to be executed is placed 
into a file called the log. (A temporary log is created for 
each user at subsystem sign-on which is merged into the 
subsystem's permanent log when the user signs-off.) 

It is essential that entries placed in the log be uniquely 
identified for proper processing by the REPORT com
mand. For this reason each entry contains as its first 
word a header word. The header word includes the clock 
time that the entry was placed in the log, the number of 
words in the entry and two numbers that uniquely iden
tify this entry. These numbers are called primary type 
and secondary type. 

The secondary type is used strictlv to distinguish 
between entries of the same primary type. However, the 
primary type is used for an additional purpose called 
"selective logging and reporting." Some events can be 
considered more important than others. The more impor
tant an event, the lower the primary type assigned to it. 
Selective logging causes only events with a primary type 
lower or equal to a preselected primary type (called High 
Type to Log or HTL) to be logged. Requests to place 
entries into the log with primary types greater than HTL 
will be ignored. The HTL value may be set by a system 
manager by executing the proper command. 

The selective logging ability can be used to advantage 
for subsystem debugging. While a subsystem is being 
debugged many events can be logged. Then the subsystem 
implementors can use the resultant reports to closely 
monitor subsystem operations. Later the value of HTL 
can be lowered, eliminating excess logging. 

Selective reporting is similar to selective logging. It is 
controlled by a parameter (called maximum level to 
report or MLR) that may be specified in requesting 
reports. The report generator (a COMRADE command 
appropriately titled REPORT) will include in reports 
only those events whose primary types are equal to or 
lower than MLR. Thus, reports may comprehensively 
reflect system usage or may be limited to only those 
events considered most important. 

Other parameters that may be specified to the 
REPORT command include the site where the output is 
to be printed; a user name to which the report is limited; 
maximum number of lines to be printed; the first and last 
dates to be covered by the report; and in the case of sub
systems where design names are significant, the design 
name to which the report is limited. 

A sample report for the ISDS subsystem is shown in 
Figure 4. This report was generated on January 10, 1973. 
Parameters specified in generating this report include 
first and last dates of January 2, 1973 and January 10, 
1973 respectively; maximum level to report of 30; and 
maximum lines to be printed of 25. 

1 REPORT 1/10/73 - FOR PERIOD FROM 01/02/73 THRU 01/10/73 
2 MAXIMU~ LEVEL REPORTED = 30 
3 
4 1/ 2/73 CAJBBRAINI DDG3 
5 14:08 I SD S ENTERED 
6 14:33 FUEL - CP 1.03 PP 23.66 
7 15:07 LOGOUT - CP 6.78 PP 244.89 
8 ESTIMATED :::OST '" $ 29.50 
9 

10 1/ 3/73 CAGXDAVIS DDG3 
11 10:37 ISDS ENTERED 
12 10:43 FUEL - CP .94 PP 29.41 
13 11:14 LOGOUT - CP 6.24 PP 254.65 
14 ESTIMATED COST = $ 18.50 
15 
16 CAJBBRAINI DDG3 
17 13:02 ISDS ENTERED 
18 13:04 RETRIEVAL - CP .97 PP 25.22 
19 13:16 UPFUEL - CP 6.12 PP 82.05 
20 13:18 RETRIEVAL -CP 11.40 PP 155.19 
21 13:32 LOGOUT - CP 15.76 PP 214.22 
22 ESTIMATED COST = $ 15.00 
23 
24 1/ 4/73 CAWEWILLNE SYSSHIP 
25 
26 LINE COUNT EXCEEDED 

Figure 4-Sample report 

Three complete ISDS sessions are reflected in this 
sample. The second session beginning on line 10 will serve 
as an illustration. A user known to COMRADE as 
CAGXDAVIS entered the ISDS subsystem on January 3, 
1973 at 10:37 with a design project name of DDG3 (a ship 
design name). At 10:43 she executed the FUEL com
mand. (The running CPU and PPU (peripherial process
ing unit) times were .94 and 29.41 seconds respectively at 
the start of FUEL execution.) At 11:14 CAGXDAVIS 
logged out of COMRADE. The ISDS session was esti
mated to cost $18.50. 

SUPPORT FUNCTIONS FOR COMRADE 
SUBSYSTEMS 

The support functions for COMRADE subsystems 
consist of programs and modules needed for a broad class 
of COMRADE subsystems, both design and non-design 
systems. The components, while performing widely differ
ent tasks, may together be used to achieve workable 
subsystems. Presently the support functions include the 
following components: (1) a command procedure and 
program for maintaining a list (file) of valid subsystem 
users; (2) several programs for initializing subsystem 
operations (subsystem sign on); and (3) a program to 
terminate subsystem operations (subsystem sign off). 

The command MODUSERS allows the file of valid 
users for a subsystem to be displayed and modified at a 
terminal. The file contains the names, file access keys 
(FAK's) and command access keys (CAK's)2 of the sub
system users, each of which may be requested by termi
nal user's option. The use of MOD USERS is limited to 
those COMRADE users (usually project managers) who 
have the proper CAK. 

The file of valid users is processed by one of the subsys
tem sign on routines. This routine must verify that the 
user name is in the file of valid users. These keys are then 
available for processing by the Executive and by the 
CPFMS routines. 



Before an exit is made from a subsystem, the subsys
tem sign off routine must be executed. The purposes of 
this routine include: temporary log to permanent log copy 
necessary for logging and miscellaneous subsystem 
cleanup. 

The design support system is still under development. 
A significant project to develop a command procedure to 
initialize designs within design subsystems has recently 
been completed. However, a corresponding command 
procedure to remove designs has not yet been imple
mented. Future areas of research and further develop
ment include the area of file and command access con
ventions, explicit inter-user communications and active 
project monitoring and control. 
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A business data processing curriculum 
for community colleges 

by DONALD A. DAVIDSON 

LaGuardia Community College 
Long Island City, );ew York 

A business data processing curriculum must, of neces
sity, be both dynamic and flexible. We must constantly 
be seeking to fulfill the needs of industry in our environs. 

LaGuardia Community College is located in New York 
City, which is probably the largest marketplace for busi
ness applications programmers in the world. Because 
LaGuardia is situated in the center of commerce, it was 
decided, when setting up the college, to make cooperative 
education the key thrust of the institution. The Coopera
tive Education Plan offers the student the opportunity to 
combine classroom learning with practical work experi
ence. It is designed to help students determine and 
explore their own individual goals and, in general, to help 
them develop increased knowledge and skills in their 
major field of study, explore different career possibilities, 
and obtain experiences which will promote educational as 
well as personal growth. 

Built into the structure of the college, cooperative edu
cation helps keep the college in touch with developments 
outside of it. Identifying work internships and placing 
students on various jobs attunes the college to changing 
needs in terms of career opportunities and related cur
ricula. LaGuardia operates on a year-round quarter 
system. Full-time students spend their first two quar
ters studying on campus and then begin to alternate off
campus internship terms with on-campus study terms. 
In the course of the basic two-year program, a student 
will take five study quarters and three work internship 
quarters. 

The paid work internships in many ways are also aca
demic experiences because they allow the student to prac
tice in the "real world" what they have learned in the 
classroom. Since the students are alternating work with 
study, there is a constant feedback between the students 
out on the work internship and the instructors in the 
classroom. The feedback is largely in the area of modifi
cation of course content in the data processing area, so as 
to encompass all of the latest innovations in the industry. 
We find that the students are very perceptive and wish to 
share the knuwledge which they gain on the job with their 
fellow students and, of course, with their instructors. This 
knowledge is generally in the areas that are unique to the 
applications that they are working with. Some students 
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may be working in banking, some in insurance, some in 
retailing, and some in manufacturing, etc. 

These work-study jobs are developed by a dedicated 
cadre of cooperative education placement personnel in 
conjunction with the members of the data processing 
faculty, serving as technical liaison. Since we know the 
types of jobs that our students will undertake, both in 
their cooperative internships and also upon their gradua
tion, we are able to tailor our curriculum and course con
tent to the needs of the business data processing commu
nity. Because of the diversity of the marketplace, we feel 
that our curriculum will prepare our students to find jobs 
in the EDP field in all areas throughout the country. 

Our curriculum, as it now stands, begins with an "In
troduction to Data Processing" course taken during the 
student's first quarter in residence at the college. This 
course, which is business-oriented, includes such topics 
as: the history of EDP; a brief introduction to the 
punched-card and unit-record equipment; an introduc
tion to electronic computer theory and numbering sys
tems; analysis and flowcharting; and programming lan
guages. In order to "turn the students on" to computers, 
we utilize the interactive BASIC language. 

The hardware which we utilize in the introductory 
course is the Data General Nova 1200 with six (6) ASR33 
Teletype terminals. These six terminals support five sec
tions of about thirty students each, or roughly 150 stu
dents in our "Intro" course. 

The second course that we introduce the students to is 
called "Basic COBOL Programming." We chose COBOL 
because most studies in the past two years (including our 
own) had shown that this language is used by at least 60 
percent of the EDP installations in the greater metropoli
tan area of New York. We use behavioral objectives in 
teaching our EDP courses at LaGuardia. We set up goals 
for each student, so that they may ascertain their own 
mastery of the course. Students' grades are based on the 
number of programs that they complete. Evaluation of 
the levels of attainment aids both the faculty and the 
cooperative education coordinators in work internship 
placement. 

During the third study quarter, we offer a course in 
"Advanced COBOL Programming" which covers 
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advanced applications of COBOL, such as nested loops, 
multi -dimensional table handling, and processing of disk 
and tape files. We examine various types of file manage
ment techniques and the student analyzes, flowcharts, 
codes, debugs, and documents many interesting pro
grams. The advanced COBOL course is taken in conjunc
tion with a course in "Systems Design and Analysis" that 
further advances the student toward the goal of becom
ing a constructive and useful member of the data process
ing community. 

When the student returns for the fourth study quarter, 
he or she may take a course in "Operating Systems" and 
either "RPG Programming" or "Basic Assembler Lan
guage" (BAL). During the final study quarter, the stu-

dent may opt for either PL/1 or FORTRAN, depending 
on their prospective employer's recommendations. 

The sequence of courses during the last three quarters 
is generally influenced by the cooperative employer's 
needs. There is a constant series of contacts being made 
between students, instructors, and coop employers 
throughout the student's stay at LaGuardia. This team 
effort is the fulcrum around which everything revolves. 
We believe that the evolutionary business data processing 
curriculum at LaGuardia, which is constantly being re
evaluated by the very nature of the cooperative education 
program, could become a model for other community 
colleges throughout the nation. 



Computing at the junior/community college
Programs and problems 

by HAROLD JOSEPH HIGHLAND 

State University Agricultural and Technical College 
Farmingdale, New York 

INTRODUCTION 

This and the following papers contain different views of 
the same subject-"Computing Education at the Junior/ 
Community College." It is a topic that has been long 
neglected, swept under the rug so to speak, in computing 
circles. It is about time that this topic was fully aired and 
its vital importance recognized by all engaged in com
puter education, business, industry and government. 
There are probably more students and more teachers 
involved in computer education at the junior/community 
colleges than at any other level of education. 

Before proceeding, I should like to thank the partici
pants of this panel for their enthusiastic cooperation and 
valuable contribution. Although they represent different 
parts of the country and different programs, they are all 
involved with junior/community college computer educa
tion, 

• Dr. Alton Ashworth of Central Texas College 
(Killeen, Texas) has been in charge of developing a 
model program for the junior/community college 
under an Office of Education grant. 

• Mr. Robert G. Bise of Orange Coast College (Costa 
Mesa, California) developed the prime program in 
computing education at the junior/community col
lege-level, which has served as the prototype for such 
programs in California. 

• Professor Donald Davidson of LaGuardia Commu
nity College of the City University of New York 
(Long Island City, New York) has been instrumental 
in developing a work-study program for underprivi
leged students in a metropolis. 

• Dr. John Maniotes of the Calumet Campus of Pur
due University (Hammond, Indiana) has had exten
sive experience in developing and running an inte
grated two-year and four-year program in computing 
on his campus. 

• Professor Charles B. Thompson of New York State 
University Agricultural and Technical College at 
Farmingdale (Farmingdale, New York) has been 
very instrumental in the development of a dual pro
gram designed not only to meet the needs of career
oriented students but also one to serve students who 
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plan to continue their education in this field at a 
four-year college. 

Furthermore, I should like to define, or perhaps 
explain, the use of the term, "academic computing in the 
junior/community college." It was selected, not because 
we need to add to the myriad of terms we already have in 
computer education, but because there was no term broad 
enough to cover all aspects of computing education at this 
level of higher education. 

• In some institutions, the term, computer science, is 
used but many times the courses and the level at 
which they are taught bear no relationship to com
puter science taught at a four-year college, following 
the guidelines of Curriculum '68 which was devel
oped under Dr. William F. Atchison. 

• In other institutions, the term, data processing, is 
used; but here again there are extremely wide varia
tions. Not all such programs are solely and purely 
business-oriented. 

• The term, computer technology, is likewise encoun
tered at the junior/community college. Some of these 
programs are designed to educate electronic techni
cians; others involve the training of computer opera-

. tors. Still others more closely resemble computer 
science at the four-year college or data processing in 
a college of business administration. 

• Finally, we are beginning to encounter the term, 
information processing, since curriculum titles are 
being used at times to show that one is keeping up 
with the state of the art. Oftentimes, the courses and 
their content are far different from the program 
proposed by the ACM Curriculum Committee on 
Computer Education for Management (C3CM) for 
undergraduate education under the leadership of Dr. 
J. Daniel Couger. 

JUNIOR/COMMUNITY COLLEGE PROGRAMS 

Having served as a director of a graduate business 
school as well as a dean of instruction at a four-year lib
eral arts college, I was startled when I joined a two-year 
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college to develop a program in computing. The lack of 
uniformity in course selection, course sequence, propor
tion of theory and application taught, were immediately 
evident. Programs were being developed all over the 
country and often were designed to meet immediate near
term needs or merely to be "modern." Little or no con
cern was given to the impact of technology and the possi
bility of obsolescence of the graduates from these pro
grams. One of my associates engaged at the graduate level 
in computing assured me that diversity meant freedom. 
Yet, I see this diversity as chaos with too many charletons 
and humbugs performing rituals in hexidecimal in the 
classroom without concern for the quality of education or 
the future of their students, or sincere educators who 
cannot upgrade the quality of their educational programs 
because they cannot provide their administration with 
"authoritative, professional guidelines." Now, many 
years later, I find that some of the extremes have died 
but there is still a lack of cohesion in computing pro
grams at the junior/community college level. Let me 
just touch several of these areas. 

Department structure and affiliation 

Where is computing taught at the junior I community 
college level? In some schools there is a separate depart
ment of computer science, data processing, computer 
technology; a department which sets its own curriculum 
and guidelines. In other institutions, computing is part of 
the business department; it is one more 'major' in the 
class of marketing, accounting or management. Still at 
other colleges, computing is part of the mathematics 
department; here we most often find that curriculum 
which is closest to the four-year college in computer sci
ence. Yet, the emphasis is primarily a mathematical 
approach without concern for computing applications in 
other areas. 

Faculty education and experience 

Because of the rapid growth in the number of junior / 
community colleges over the past several years and the 
increased demand for computer faculty at four-year and 
graduate schools, the junior I community colleges have 
been low man on the totem pole. Except for a core of 
dedicated teachers, most of those with adequate educa
tion and experience have not, until recently, been at
tracted to the junior I community colleges. At a level 
where application is emphasized at the expense of 
theory, we find many teachers who have never had prac
tical experience in computing in industry, business 
and/ or government. Too many teach from the textbook 
or repeat what they have learned from their professors 
at four-year and graduate schools, and many of them as 
well have spent all their years in the ivory tower. 

Programs and options 

Depending upon the individual school, the student 
interested in computing may be forced into some narrow 
area, such as business data processing. Many of the jun
ior / community colleges are too small to offer a broad 
spectrum of computing courses. The areas in which they 
train students include: 

• keypunch operators 
• computer operators 
• computer programmers. 

In some schools, the computing programs are career
oriented, and except in few cases, these students find that 
their two years of education is discounted if they wish to 
continue their education at a four-year college. In other 
schools, computing is computer science oriented and the 
student wishing to work upon graduation does not possess 
the necessary skills to find and hold a job. 

The problem of training computer operators is a critical 
one at the junior/community college level. Too many of 
the schools have inadequate computing facilities to pro
vide a proper program in this area. Some have turned to 
simulators to do the job. Any of you who have had experi
ence with most of these simulators recognize their numer
ous shortcomings. (l should apologize to my colleagues in 
the simulation area for that comment since I am editor of 
the A eM SIGSIM Simuletter, but in this case, I feel that 
it is the truth.) Other schools have turned to work-study 
programs or cooperative training programs wherein the 
students study the theory of operations in school but 
obtain their experience at cooperating companies in 
industry and business. 

Computer courses and sequence 

In this stage of computing, can anyone imagine spend
mg time in a one-year course in "electric accounting 
machines?" Yet, there are a number of two-year schools, 
both public and private, that train their students in unit 
record equipment and spend considerable time in wiring. 
At the other end of the spectrum are the schools which 
require career-oriented students to take courses in logic 
circuits, Boolean algebra, and hardware specifications. In 
fact, until recently, there was one school which spent one 
half of a one semester course teaching keypunching to 
students who supposedly were being trained to become 
junior programmers. 

Where does a course in systems analysis fit into the 
curriculum? Is this one which is taught in the first semes
ter concurrent with an introduction to data processing, or 
is this the capstone in which students can utilize the 
information they learned in all their other courses? Simi
larly, should the students be required to take statistics 
with the mathematics department and do their work with 
pencil and paper or even a calculator, or should they use 



the computer and spend less time on the mechanics and 
more on the concepts? 

Credits in computing 

How many credits in a two-year program should be 
devoted to computing? Currently, there are schools that 
offer a data processing "major" with as little as 12 credits 
in computing (and six of these are in electric accounting 
machines) to schools which require almost 40 credits out 
of a total of 62 to 64. What is the minimum number of 
courses and/ or credits which should be taught? And 
which courses? 

Computing facilities 

Many of the junior/community colleges have some 
computing facilities available for student use. Yet there 
are some offering computing programs that do not have 
any computing facility available for student use. One 
cannot but question the value of such a program. 

Furthermore, what type of facilities are available for 
which programs? Do you need the same for computer sci
ence (in the four-year sense) as you do for a career-ori
ented program in the business area? 

It is possible to continue in examing other areas of 
diversity, but it should be apparent that there is a wide 
spectrum of programs under the heading of computing in 
the junior/ community college. 

SOME PROBLEMS TO BE ANSWERED 

The two-year college, no matter what it is called (junior 
or community or as has become fashionable to leave 
either term out), is a unique institution in education. In 
some cases its students vary little from those who enter a 
four-year institution, but in other cases, these two-year 
schools receive those students who cannot be admitted to 
the four-year colleges. 

Computing languages 

The number and intensity of languages studied varies 
greatly among the junior/community colleges. There is 
also great variation in which language is taught first and 
in what sequence are languages studied by the student. 
Among the languages offered by the two-year colleges are: 
BASIC, COBOL, FORTRAN, RPG, PL/I, APL, AL, 
JCL. At some schools students are required to take only 
one language during their entire two years, while in a few 
three and even four languages are taught to all students as 
part of the basic program. 

At this level of instruction, which is the simplest lan
guage to introduce to the students? Some look upon 
BASIC as being too much like FORTRAN and therefore 
too scientific, unsuitable to students going into the busi-
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ness field. Many schools start with FORTRAN, but in 
one, a year of COBOL is the prerequisite for the study of 
FORTRAN. A few, like my own college, start with PL/I. 

Since these schools are more often under local commu
nity control as compared with four-year colleges and 
universities, the programs should be designed to meet 
community needs. But a broader view is also necessary. It 
is about time that we recognized that the four-year col
leges in computing are almost monolithic in their pro
grams as compared with the two-year schools. The com
puting community has an obligation to see that some 
level of competency or adequacy is set for these institu
tions. I am not proposing a system of accreditation but 
the establishment of some guidelines, fundamental cur
riculums to meet several purposes. 

Attention should also be devoted to the high level of 
attrition in these programs. Is it really the student's fault 
that they have failed? Or is it the lack of a properly 
sequenced curriculum, adequate teaching aids, quality of 
the teachers, or what? 

Many teachers and administrators at the junior/ 
community college level require some professional 
ammunition in attempting to get college presidents, local 
appropriation committee, etc., to upgrade existing equip
ment and programs. It is here that ACM can playa 
strong role, but it must be done now. 

In addition, a greater exchange of information among 
the junior colleges is necessary. An exchange of curricu
lums, course outlines, booklists-an airing of problems: 
how much mathematics should a student be required to 
take, what techniques have been used to cut attrition, 
what arrangements have been made for transfer of stu
dents-is essential in this area. 

It appears apparent that in light of accelerated com
puter technology, the limited computing facilities at the 
junior / community college level and concomitant prob
lems that many of the two-year programs offer today 
will not be viable within the near future. Computing is 
already making inroads at the secondary school level. In 
some parts of the country, and this we have locally, there 
are special vocational educational centers for intensive 
training of high school students. If they develop adequate 
programs for training input clerks, control clerks and 
computer operators (and eventually they will), what will 
be taught at the two-year level? 

Finally, to do its job effectively, the junior/ community 
college must have better information about industry's and 
government's needs in the computing field. Today, the 
Bureau of Labor Statistics either lumps all those engaged 
in computing into a single category or at most separates 
programmers from the rest. What can be done to obtain 
greater insight into these needs so that more effective 
programs can be developed an"d taught at the junior / 
community college level? 

The problems are many and those who are truly inter
ested in doing are few. Those of us within ACM should 
seek some dynamic structure within which to operate; 
now is the time to start. 





The two year and four year computer technology 
programs at Purdue University 

by JOHN ~Y1ANIOTES 

Purdue University 
Hammond, Indiana 

I~TRODUCTION 

There are eight kinds of educational programs in the 
United States which presently supply industry with the 
majority of its computer-EDP oriented employees. For 
lack of better terminology, I would classify these pro
grams as follows: 

(1) The two year Data Processing (DP) programs* 
which are concentrated at vocational institutions, 
community colleges, junior colleges and at some 
senior colleges and universities. 

(2) The four year academic programs offered by many 
senior colleges and universities in the areas of 
Business Data Processing and Computer Science. 

(3) The graduate level programs in Information Sys
tems and Computer Science offered at some major 
colleges and universities. 

(4) The specialized programs offered by the various 
computer manufacturers' education centers. 

(5) The company in-house training programs. 
(6) The so-called private commercial schools, many of 

which have been established through franchising, 
and which usually offer training ranging from 3 to 
12 months. 

(7) The private home study schools. 
(8) The various high schools which offer vocational 

oriented training programs in EDP. 

Purdue University offers extensive instruction in the 
areas of computing and information processing ranging 
from the freshman level to the Ph.D. degree. Purdue 
University currently offers B.S., M.S., and Ph.D. degrees 
in Computer Science as well as A.A.S. and B.S. degrees in 
Computer Technology. The main difference between 
these two areas is that the Computer Technology program 
is practical and application-oriented, while the Computer 
Science program is theoretical and research-oriented. 

The -Computer Technology programs are offered at 
Purdue's three regional camouses at Hammond, Fort 
Wayne, and Westville and at indiana University's Indi-

* Sometimes these programs bear the name of Computer Programming 
Technology, or simply Computer Technology. 
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anapolis regional campus. Table I describes the regional 
campuses with respect to their location, distance f~o_~ t_~e 
Lafayette campus, enrollment, and principal computing 
equipment. The Computer Science programs are offered 
at Purdue's Lafayette Campus. 

THE TWO YEAR COMPUTER TECHNOLOGY 
PROGRAM 

Currently, the two year programs at the regional cam
puses are designed to produce graduates in the occupa
tional group that begins with the computer programmer 
in either the commercial or technical areas of program
ming. The regional campuses offer two options in their 
two year programs. These options are referred to as the 
Commercial option and the Technical option, respec
tively. However, even with the dual options the enroll
ment is overwhelmingly business-oriented. For this reason 
this section will reflect primarily with the business-ori
ented two year Computer Technology program. The cur
riculum for the two year program is divided into five 
areas: 

(1) Data processing and computer basics and equip-
ment 

(2) Assembler and compiler languages 
(3) Organization of business 
(4) Business applications 
(5) Supporting sciences and electives 

During the first year of the program as indicated in 
Appendix A, the students acquire an introdu~tion t? ~ata 
processing, programming, and computers. In addItIon, 
they study such academic courses as English compositi?n, 
speech fundamentals, basic and intermediate accountmg 
principles, and data processing mathematics. In the sec
ond year, the students concentrate heavily on computer 
programming, programming systems, operating systems, 
systems analysis, and systems applications. In addition, 
the students continue their related course study in areas 
such as technical report writing, economics, and statistics. 

An important point to keep in mind is that the two year 
program emphasizes the practical, rather than the theo-
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TABLE I -Some Statistics Regarding Purdue University and Its 
Regional Campuses 

Institution 

Purdue Uni
versity 

Purdue Re-
gional Cam-
puses 

Location 

Lafayette 

Calumet Hammond 
Fort Wayne Fort Wayne 
North Cen- Westville 
tral 

Indiana Univ. 
Regional 
Campus 

Indianapolis Indianapolis 

Distance 
(Miles) to Principal 
Lafayette Enrollment Computing 
Campus Fall 1972 Equipment 

100 
115 
80 

60 

26,204 CDC 6500 

4,880 
2,794 
1,354 

16,938 

IBM 360/22 
IBM 360/22 
IBM 360/22 

IBM 360/44* 

* The IBM 360/44 at Indianapolis is linked to a CDC 6600 at Indiana 
University, Bloomington, Indiana. The other three IBM 360/22's are 
linked to the CDC 6500 at Purdue University, Lafayette, Indiana. 

retical aspects of EDP. In addition, the program empha
sizes the solution of EDP problems using the "hands on" 
approach to operate computers and other peripheral 
devices and to debug their programs. 

Strong emphasis is placed on "real-life" laboratory 
exercises which are intended to reinforce the student's 
knowledge of data processing techniques by requiring the 
student to apply them in a broad spectrum of practical 
applications. In addition the "hands on" approach 
exposes students to a wider variety of applications and 
techniques than most programmers would receive in a 
year of on-the-job training since most of the latter train
ing tends to focus on one language and a relatively narrow 
range of applications. 

In the two year Computer Technology program, the 
curriculum is designed to prepare a person for the entry 
level position of a programmer and to perform the follow
ing functions: 

(1) Analyze problems initially presented by a systems 
analyst with respect to the type and extent of data 
to be processed, the method of processing to be 
employed, and the format and the extent of the 
final results. 

(2) Design detailed flowcharts, decision tables, and 
computer programs giving the computations 
involved and the sequences of computer and other 
machine operations necessary to edit and input the 
data, process it, and edit and output information. 

* The IBM 360/44 at Indianapolis is linked to a CDC 6600 at Indiana 
University, Bloomington, Indiana. The other three IBM 360/22's are 
linked to the CDC 6500 at Purdue University, Lafayette, Indiana. 

(3) Utilize the programming languages of COBOL, 
RPG, FORTRAN, as well as a machine and assem
bly language to construct the necessary program 
steps, correct program errors, and determine the 
cause of machine stoppage. 

(4) Verify the accuracy and completeness of computer 
programs by preparing sample data and testing it 
on the computer. 

(5) Evaluate and modify existing programs to take into 
account changed requirements. 

(6) Confer with technical personnel with respect to 
planning new or altered programs. 

(7) Prepare full documentation with respect to proce
dures on the computer and other machines and on 
the content of the computer programs and their full 
usage. 

(8) Devise more efficient methods for the solution of 
commercial or scientific problems. 

(9) Comprehend the major concepts, types of equip
ment, programming systems, and operating sys
tems related to EDP. 

After successfully completing the two year Computer 
Technology program, students are awarded an Associate 
Degree. A student graduating from the program not only 
has studied theories and principles but has had extensive 
practical experience in operating and applying data proc
essing techniques on modern computing equipment. This 
combination enables the graduate to step into an entry 
level programming job and become productive in a short 
period of time. 

The first Computer Technology program was initiated 
in 1963 at the Calumet and Indianapolis regional cam
puses, respectively. Course revisions and curricular 
changes have taken place during the past ten years in 
order to keep pace with the current state of the art. In 
addition, changes have been designed to "fine-tune" the 
two year programs while providing flexibility in individ
ual courses and regional variation to meet the special 
needs at each community where the curriculum is taught. 

Appendix A illustrates the two year program at the 
Purdue Calumet Campus that has undergone "fine-tun
ing" in order to deal with third generation computers. 
The curriculum in Appendix A is offered on a semester 
basis, and it can be used for illustrative purposes. (The 
sequence of courses in the two year program varies 
between regional campuses, and it is not the intent of this 
paper to debate the merits of different course sequences.) 

The curriculum in Appendix A reflects the following 
changes that have taken place during the past ten years: 

(1) Many of the original programming, business, and 
supporting courses in Appendix A have been 
assigned specific names so as to become readily 
identifiable and to reflect their status in the curric
ulum. 



(2) The one-time importance of unit record equipment 
(tab equipment) has diminished. It is no longer 
necessary for a viable third generation program to 
concentrate mainly on "board wiring" and punched 
card applications. Hence, the priority of unit record 
equipment has been considerably reduced (not 
eliminated) in the curriculum. 

(3) The importance of first and second generation 
computers has also diminished. Third generation 
computer hardware and software concepts are 
stressed by the curriculum in Appendix A. 

(4) File organization techniques and disk/tape pro
gramming concepts are emphasized together with 
input/ output control systems and the functions of 
an operating system. 

(5) Two semesters of assembly language together with 
the compiler languages of COBOL, RPG, and 
FORTRAN are also stressed since these are the 
common tools that the programmer utilizes on the 
job. 

THE FOUR YEAR COMPUTER TECHNOLOGY 
PROGRAM 

This baccalaureate program is a two year "add on" 
curriculum which is open to associate degree graduates of 
Computer Technology or the equivalent in data process
ing. The program builds on the students' knowledge of 
computer programming acquired in the first two years, 
and emphasizes the practical aspects of such areas as 
computer systems analysis and commercial systems 
design. The inclusion of many elective courses enables the 
students to pursue areas of special interest. Graduates 
from this third and fourth year of study are prepared to 
fill a variety of positions related to data processing, 
computer systems, systems analysis, systems program
ming, and computer programming. 

The objectives of an additional third and fourth year of 
study leading to a baccalaureate degree are summarized 
below: 

(1) With regard to the student, the objectives of the 
curriculum are: 

(a) General-To prepare a graduate who is: 
1. Proficient in computing, information process

ing, and data management techniques; 
2. Capable of developing computer programs in a 

wide variety of application areas and in a 
number of commonly used languages; 

3. Capable of productive effort for the employer 
shortly after graduation; 

4. Capable of remaining current with the chang
ing technolog-y. 

(b) Technical Competence-To prepare a person who 
is knowledgeable concerning: 
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1. Mathematical concepts relating to computer 
programming; 

2. Techniques used in the definition and solution 
of commercial systems problems; 

3. Computer and peripheral equipment opera
tions, computer operating systems, and data 
communications; 

4. Fundamentals in the subject matter areas most 
closely related to computer applications. 

(c) General Education-To broaden the individual 
through exposure to: 

1. Humanities and social sciences; 
2. Oral and written communications; 
3. Business, management, and supervisory con

cepts; 
4. Elective courses directed toward further indi

vidual development. 
(2) With regard to the program, the objectives are to 

provide a curriculum which is: 

(a) Viable and responsive to the changing technology; 
(b) Based on a two year modular structure that encom

passes both the commercial and technical options 
of an associate degree program in Computer Tech
nology. 

The format for identifying the requirements for the 
baccalaureate degree differs from that normally found in 
a standard college or university catalog. In addition to the 
usual semester-by-semester plan of study, the minimum 
requirements in the Computer Concentration Courses are 
specified as indicated in Appendix B. The baccalaureate 
program has been offered since 1968 at the Indianapolis 
regional campus and is scheduled to be officially offered 
at the Purdue Calument Campus during the 1973 Fall 
Semester. . 

The computer course requirements provide the stu
dents with a flexibility allowing for varied implementa
tions. Thus, as indicated in Appendix B, one student may 
take course sequences emphasizing Computer Systems 
Analysis while another emphasizes Systems Program
ming. This flexible structure also allows the curriculum to 
remain current in a rapidly changing industry without 
requiring constant revision. 

THE ROLES OF COMPUTER SCIENCE AND 
COMPUTER TECHNOLOGY* 

Computer Technology training currently is provided to 
students at three levels; all levels stress in-depth practical 
experience. The two year associate degree program devel
ops computer practitioners whose competency lies pri-

* The author wishes to thank the Computer Technology staff and the 
Computer Science staff at the Indianapolis regional campus for some of 
their ideas and thoughts as expressed in this section. 
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marily in programming and secondarily in systems. The 
learn-by-doing technique is heavily stressed. The bacca
laureate program is broader-based and affords the stu
dents an opportunity to have a business, scientific, and 
communications exposure. The primary goal is the devel
opment of computer professionals well versed in the cur
rent state of the art. The technologist is provided with the 
perspective to apply his tools through an integrated sys
tems approach to data processing problems. The third 
level concerns the direct charge of providing service 
courses. Certain offerings for the community at-large are 
non-credit, while credit courses are offered for other 
departments of the University to fill the need for com
puter-oriented electives in various curriculums. Each 
course is designed to meet the needs of the department in 
question. 

Computer Science as a discipline is also concerned with 
the integrated use of the computer as a component in the 
overall solution to problems. Students are trained in the 
formulation of computer-oriented solutions peculiar to 
design-oriented problems. These persons have a mathe
matical background suited to the needs of their discipline 
as a framework within which to arrive at a solution. A 
computer scientist functions in an environment analogous 
to that of the theoretical mathematician while the tech
nologist functions in an environment analogous to that of 
the applied mathematician. 

In cases where the problem is so new and/ or complex 
as to require new solution techniques or substantial modi
fications or new applications of existing techniques, a 
computer scientist acts in conjunction with the discipline
oriented professional and the computer technologist in 
developing the problem solution. The computer scientist 
has the depth of mathematical training and the breadth 
of theoretical knowledge to effectively contribute to the 
decision-making process and to the feasibility of develop
ing new techniques such as the development of new 
numerical methods, algorithms, optimization techniques, 
simulation models, new higher-level languages, operating 
systems, or management information systems. In carrying 
out the results of such planning, the creativity of the 
computer scientist is his contribution to the problem solu
tion; effective use of established methods is the contribu
tion of the computer technologist. 

In general, the computer scientist is a theorist with a 
broad interdisciplinary overview, while the computer 
technologist is a specialist in the techniques of analysis 
and implementation. The scientist is sought as one who 
can synthesize diverse information into an integrated so
lution approach, while the technologist is sought as a 
professional who can produce computer-solution results 
efficiently. 

Accordingly, Computer Science and Computer Tech
nology are each individually responsible for their respec
tive degree programs, their implementation and develop
ment, as well as those service courses which meet particu
lar needs. Therefore, even in those courses and offerings 
which appear similar in content, there is a difference in 

emphasis and orientation, reflecting the different roles of 
the two disciplines. The A.A.S. and B.S. programs in 
Computer Technology and the B.S., M.S. and Ph.D. pro
grams in Computer Science are part of a continuum 
called computing and information processing. 

PROBLEMS FACED BY THE COMPUTER 
TECHNOLOGY PROGRAMS 

Summarized below are some of the problems faced by 
the two year and four year Computer Technology pro
grams. Although some of these problems may be perti
nent to Purdue University, others are general enough to 
apply to other institutions which have similar academic 
programs. 

Staffing 

A problem that the Computer Technology staff faces is 
the constant updating required in their field as compared 
to their colleagues in such fields as liberal arts or the 
humanities. It has been said that the half-life of one's 
computer-EDP knowledge obsoletes each five years due 
to the many new developments that are occurring in the 
field. Recognizing this problem, the staff has been period
ically infused with new computer-oriented knowledge 
through attendance at summer institutes, computer 
manufacturers' education centers, technical meetings 
sponsored by professional organizations, and by various 
consulting assignments in industry. In addition, the 
campus library's selection of computer-oriented books 
and journals has been expanded so as to enable the staff 
to remain abreast with the latest developments in their 
field. 

Another problem that has been experienced over the 
years concerns the difficulty in hiring experienced 
instructors who possess up-to-date knowledge about 
computers and data processing applications. One of the 
problems contributing to this difficulty has been the low 
starting salaries and fringe benefits commonly found in 
the teaching professjon. 

University administrators must be constantly made 
aware that computer-oriented staff members have unique 
problems and additional resources must be made availa
ble to compensate for these deficiencies. The demand for 
competent computer-oriented instructors is high and the 
supply has a long way to catch up. 

Student transfer problems 

No serious problems have been experienced by the 
Purdue graduates of the two year programs who have 
transferred to the baccalaureate Computer Technology 
program at the Indianapolis regional campus. This is due 
to the fact that at all regional campuses the computer 
equipment is from the same manufacturer and the 
courses are structured essentially in the same manner. 

Some problems have been experienced whenever two 
year graduates from other schools which did not have 
similar computer equipment transferred into the bacca-



laureate program. The problems in these cases stemmed 
from the lack of familiarity of the operating system and 
the assembly language of the computer utilized in the 
baccalaureate program. 

Problems have also been experienced whenever stu
dents from private commercial schools have tried to 
transfer into the two year program. These types of stu
dents have been found to be weak in EDP fundamentals, 
flowcharting, programming logic, and documentation. In 
some instances these students have had to retake some of 
the basic computer-oriented courses before they were 
fully admitted to the two year program. 

Evaluation of students' computer programs 

Currently various methods exist to evaluate students on 
their computer-oriented courses using such m~alls as 
written and oral exams, quizzes, homework problems, 
and laboratory exercises. A problem faced by instruc
tors in such courses involves the evaluation or grading of 
students' computer programs especially those programs 
of some complexity. Questions most often asked in this 
area are: What do you grade on? What constitutes a 
good (or bad) program? What parameters do you con
sider important-execution time, amount of storage 
utilized, or the number of unsuccessful attempts tried 
before completion? These are areas which bear further 
study and thinking by instructors since programming 
is an art and not an exact science. 

Instructional materials 

More than 1,000 books from more than 120 publishers 
have been published for the computer-EDP field. Cur
rently good textbooks, student work manuals, and visual 
aids exist for introductory computer or data processing 
courses and for computer programming courses which 
appear in the freshman and sophomore level of the 
Computer Technology program. In fact one may state 
that there are too many books published for these courses 
at these levels. 

Good textbooks, student work manuals, and visual aids 
for the junior and senior levels of the Computer Technol
ogy program are practically non-existent. The courses 
which require good textbooks are: Management Informa
tion Systems, Operating Systems, Commercial Systems 
Applications, Computer Graphics, Hybrid Computing 
Systems, and Data Communications. The text material 
for these courses usually consists of reference manuals 
from computer manufacturers, notes from the instructor, 
or handbooks oriented for experienced professionals 
rather than for students. More effort needs to be exerted 
by textbook publishers in producing student oriented 
textbooks for these courses. 

Computer-oriented aptitude tests 

There is a need for the development of good aptitude 
tests to predict if an entering student will be successful in 
graduating from the Computer Technology programs or 
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whether a graduate from these programs will be success
ful in a programming or systems analysis job position. 
Our A.A.S. and B.S. Computer Technology graduates 
have reported that they face in many instances an apti
tude test when they apply for a programming or systems 
position. It seems that interviewers confronted with the 
problem of predicting job success among applicants for 
these positions have come to rely heavily on aptitude tests 
especially the IBM PAT. It is unfortunate that in many 
instances the IBM PAT score is the sole factor used to 
determine whether an applicant qualifies for further con
sideration. The IBM PAT scores are not an accurate 
predictor of job success. 

It is apparent that the computer-EDP field needs to 
give our psychological test developers additional qualities 
to base their tests on if they are to perform the task of 
predicting job success as many employers believe they 
now do. In addition, further work is necessary to develop 
"third generation aptitude tests" in order to be part of the 
computer hardware and software presently available. 
Hopefully some of these tests can also be utilized as 
entrance examinations for computer-oriented academic 
programs. 

Funds 

As far as funds are concerned, it seems there are two 
bottomless pits at academic institutions-libraries and 
computer centers. Adequate funds to purchase or lease 
modern computers and their peripheral equipment, espe
cially 110 terminals, is a problem faced by all academic 
institutions including Purdue University. Funds from 
the National Defense Education Act are scarce espe
cially for institutions such as Purdue University that 
once were funded from this Act in the early 60's. In ad
dition, computer manufacturers no longer offer large 
educational discounts for new computer equipment as 
they once did in the past. 

Currently, the emphasis at Purdue University is to 
share computer resources at all levels. At each regional 
campus a common third generation computer is shared 
for all academic, administrative, and research oriented 
tasks. In addition these computers are linked to a CDC 
6500 at the Lafayette campus thereby providing economi
cally and efficiently computing power and storage to 
many users at one time. Typical COBOL or FORTRAN 
type problems submitted by Computer Technology stu
dents are processed at a cost of 20¢ to 30¢ a program on 
the CDC 6500 with an "average" turn-around time of 
approximately 5 to 15 minutes during non-peak times. 

A question often asked is: "Where will additional funds 
come from?" I don't think there will be any significant 
outlays of funds from federal and state government 
sources. Nor will there be any sizeable student tuition 
increases. Rather I expect that academic institutions 
will have to increase the efficiency of their computer 
centers and start actively looking for ways of stretching 
their funds such as third party leasing. 
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APPENDIX A-CURRICULUM OUTLINE FOR THE 
TWO YEAR CO:MPUTER TECHNOLOGY PROGRAM 
AT PURDUE UNIVERSITY* 

First Semester 
Introduction to Data Processing 
English Composition I 
Introductory Accounting 
Algebra 
Elective 

Serond Semester 
Data Processing Math 
RPG Programming 
FORTRAN Programming 
Fundamentals of Speech Com-

munication 
Cost Accounting 

Third Semester 
Assembly Language Program-

ming I 
Statistical Methods 
Systems Analysis and Design 
COBOL Programming 
Technical Report Writing 

Fourth Semester 
Assembly Language Program

mingII 
Commercial Systems Applica-

tions 
Computer Operating Systems I 
Computer Seminar 
Principles of Economics 
Elective 

Hours per Week 

Class 

4 
3 
3 
3 
3 

16 

3 
2 
2 
3 

3 

13 

3 

3 
3 
2 
3 

14 

3 

2 

2 
2 
3 
3 

15 

Lab 

2 
o 
o 
o 
o 

2 

o 
2 
2 
o 

o 

4 

2 

o 
o 
2 
o 

4 

2 

2 

2 
o 
o 
o 

6 

Total Credits 

6 
3 
3 
3 
3 

18 

3 
4 
4 
3 

3 

17 

5 

3 
3 
4 
3 

18 

5 

4 

4 
2 
3 
3 

21 

5 
3 
3 
3 
3 

17 

3 
3 
3 
3 

3 

15 

4 

3 
3 
3 
3 

16 

4 

3 

3 
1 
3 
3 

17 

* For the description of the courses, consult the latest edition of the 
"School of Technology Bulletin", Purdue University, Lafayette, In
diana. 

APPENDIX B-CO~IPUTER TECHNOLOGY CURRIC
ULU:M OUTLINE FOR A THIRD AND FOURTH 
YEAR OF STUDY AT PURDUE UKIVERSITY* 

Fifth Semester 
Data Communications 
Computer Concentration 

Courses (2) 
Calculus I 
Communications Elective 
Elective 

Hours per Week 

Class 

2 
4 

3 
3 
2 

14 

Lab 

2 
4 

o 
o 
o 

6 

Total Credits 

4 3 
8 6 

3 3 
3 3 
2 2 

20 Ii 

APPENDIX B (Continued) 

Sixth Semester 
PL/I Programming 
Computer Concentration Course 
Calculus II 
Physical Science Elective 
Elective 

Seventh Semester 
Computer Concentration 

Courses (2) 
Physical Science Elective 
Social Science Elective 
Humanities Elective 

Eighth Semester 
Computer Concentration 

Courses (2) 
Social Science Elective 
Humanities Elective 
Electives 

2 
2 
3 
4 
3 

14 

4 

4 
3 
3 

14 

4 

3 
3 
4 

14 

2 
2 
o 
2 
o 

6 

4 

2 
o 
o 

6 

4 

o 
o 
o 

4 

4 
4 
3 
6 
3 

20 

8 

6 
3 
3 

20 

8 

3 
3 
4 

18 

3 
3 
3 
4 
3 

16 

6 

4 
3 
3 

16 

6 

3 
3 
4 

16 

* For the description of the courses, consult the latest edition of the 
"School of Technology Bulletin", Purdue University, Lafayette, In
diana. 

The Computer Concentration Courses are defined as follows: 
Any two of the following sequences plus one additional 
computer-oriented course. 

(1) Commercial Systems sequence 
(a) Management Information Systems I 
(b) :Management Information Systems II 
(c) Financial Accounting 

(2) Computer Systems Analysis sequence 
(a) Systems Analysis of Computer Applications 
(b) Computer System Planning 
(c) Design of Data Processing Systems 

(3) Systems Programming sequence 
(a) Introduction to Computer Systems 
(b) Computer Operating Systems II 
( c) Systems Programming 

(4) Technical Systems sequence 
(a) Numerical Methods 
(b) Topics in FORTRAN 
( c) Hybrid Computing Systems 

The General Requirements for the baccalaureate program 
are: 

(1) Completion of an Associate Degree in Applied Science, 
in Computer Technology or the equivalent. 

(2) Completion of the Core Requirements, plus additional 
courses as required to complete a minimum of 130 
semester credit hours which includes credits earned 
toward the Associate Degree. The additional courses 
are free electives, except that not more than 9 semester 
credit hours may hI' t~ken if' the Comput0r T0('h
nology Department. 



APPENDIX B (Continued) 

(3) A minimum of 40 semester credit hours must be 300 
or higher level courses. 

The Core Requirements for the baccalaureate program con
sist of 111 semester credit hours in the follO\ving areas: 

(1) General Education 

Semester 
Credit 
Hours 

(a) Communications (English, Speech, Report Writing) 12 
(b) Social Science (Economics, Political Science, Psy- 9 

chology Sociology) 

Computer Technology Programs at Purdue University 377 

(c) Humanities (Creative Arts, History, Literature, 
Philosophy) 

(d) Business (Industrial Management, Industrial Super
vision) 

(e) Mathematics (Including Calculus, Finite Mathe
matics and Statistics) 

(f) Physical Science (Biology, Chemistry, Physics) 

(2) Computing Principles 
(a) Data Processing Basics 
(b) Assembly Languages 
( c) Compiler Languages 
(d) Computer Systems 

(3) Computer Concentration Courses 

6 

9 

17 

8 

61 

6 
8 
9 
6 

29 
21 





Computing studies at Farmingdale 

by CHARLES B. THOMPSON 

State University, Agricultural and Technical College 
Farmingdale, New York 

Farmingdale Agricultural and Technical College is part 
of the State University System of New York. The College 
is one of three public two year colleg-es serving Nassau 
and Suffolk counties. The school is located 25 miles east 
of New York City on the boundary line dividing these tv/o 
counties. 

The computing program at the school is an academic 
program in data processing. The program was started in 
1967, under the direction of Dr. Harold J. Highland. The 
program has about 150 day and 300 evening students 
enrolled. Computing support for the program is an IBM 
360/30, DOS system. 

The objective of the program is to equip the student 
with the skills and knowledge to enter the data processing 
field as a junior programmer. A junior programmer is 
defined as one who has a strong command of one lan
guage, familiarity with two others, has extensive experi
ence programming structured problems, and has a gen
eral knowledge of computing and data processing sys
tems. 

The overall philosophy of instruction is application. 
Students are assigned programming problems as a pri
mary vehicle of learning. The "hands on approach" rap
idly develops command of programming and the confi
dence to program or solve problems. 

The day student has a choice of choosing the scientific 
or the commercial option of the program. The first year is 
a core year for a second year of concentrated study in 
scientific programming, FORTRA~, or commercial pro
gramming, COBOL. Upon completing the program, the 
student is awarded an AAS degree in data processing. 

The enrolling day student is generally a first generation 
college student. The academic background of the students 
vary widely, but can be grouped into those with three or 
more successful years of secondary mathematics, those 
without, and those with some knowledge of data process
ing. Students in all three groups have completed the pro
gram. They have entered the field as an operator or junior 
programmer or continued their studies in Computer Sci
ence, Programming and Systems; or Business. 

The evening students have diverse backgrounds, but 
almost all have some knowledge of computing, varying 
from operations to systems programming. These students 
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enter the program to advance their careers in the com
mercial aspects of data processing. 

By and large, the data processing program has been a 
success; those who have completed the program can and 
have succeeded. Trends are developing, however, which 
threaten the success of this or like programs. 

The era of "Send me a warm body, I'll train him" is 
over. The recession, closing off entry jobs and causing a 
surplus of available and experienced personnel, has 
brought on a problem of locating meaningful junior pro
grammer jobs for the graduates of the program. Although 
the predicted economic expansion will reduce this prob
lem, the recession has brought to light the lack of profes
sional recognition and unclear career patterns for the 
personnel in the information processing field. 

The present and future student is aware and skeptical 
of entering a program which may equip him for a non
existent job. The publicity and the increased attention to 
sociological/ health careers has caused a significant reduc
tion of potential students. 

The era produced a proliferation of two and four year 
programs in computing science, data processing, and 
programs with minors in these subjects. This levelled the 
enrollment at a lower figure than had been anticipated, 
endangering future programs. Educational institutions, 
more than ever, must offer a variety of modern programs, 
supported with up-to-date hardware systems and facuity, 
and change these programs to meet the future, a challenge 
which is very costly and risk prone. 

To meet this challenge, information is needed. Informa
tion which is authentic and available that can be used by 
students, educators, employees, and employers. Too 
many decisions are based on one's limited environment, 
not always objective or timely. A paradox, in that most 
computing programs are developing personnel who are to 
participate in supplying objective and timely information. 

Information which will be considered authentic must 
come from a national organization which has as its pur
pose developing information processing personnel. This 
organization would publish statistics, local and national, 
about personnel needs and qualifications in greater depth 
and degree than is presently distributed. A natural out
growth of such an organization's purpose would be to 
promote recognition of information processing personnel, 
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to conduct research in information processing instruc
tional systems, and to develop programs of studies. 

The statistics would be used by students and their 
counselors in deciding about their choice of careers. 
Educators would use the data in providing needed pro
grams. Employees woud be able to select and choose 
alternative educational programs for advancement. 
Employers would be able to provide professional develop
ment programs to meet their future needs. 

Other functions the organization could serve is the 
promotion of professional recognition, seeking scholastic 
aid, and distributing programs, formal, inhouse, or inten
sive, with recommended instructional systems which 
would provide effective and efficient education. 

This organization could also serve another needed 
educational and development function, regional training 
centers. These centers would equip personnel with locally 
needed qualifications. Personnel attending the centers 
would be recent graduates of college programs and in
service personnel temporarily relieved from their assign
ments. These centers would conduct intensive up to the 
minute training. 

Hundreds of thousands future positions which are fore
casted can only be filled by a national effort. If trends 
threatening this highly technical profession continue, the 
nation will face a shortage of qualified personnel and over 
supply of obsolete skilled personnel. Only a national 
organization can prevent another Apalachia. 



Computer education at Orange Coast College
Problems and programs in the fourth phase 

by ROBERT G. BISE 

Orange Coast College 
Costa Mesa, California 

The business and industrial growth that has been asso
ciated with Orange County (California) speaks for itself. 
New and relocafing firms representing the entire spec
trum of technologies are moving into the cities of Costa 
Mesa and Newport Beach daily. The Coast Community 
College District, and especially the staff of the Business 
Division of Orange Coast College have continually devel
oped educational programs to support this environment. 

In the past period of shifting technologies, we have been 
supported by stable patterns of human behavior. As we 
plan for the next shift, we no longer find these stable 
patterns of human behavior. Instead we find only revolv
ing fragmentations of the past and undefined forces that 
may be in the future. 

In 1973, we are undertaking the development of viable 
programs and curriculum in the areas of computing and 
management information systems. In this we will be con
tinually trying to integrate the experience and intuitive 
judgment that we have gained during a decade of total 
submersion in the changing forces of computer technol
ogy. We understand that the total environment in which 
we will make our attempt has the potential for treachery 
of the senses. 

Charles Poore of the New York Times has labeled these 
times the Karate Age where with one quick and deadly 
assault, a man, a university, a regime or a nation may be 
sent writhing in agony. 

A review of the technological changes that have taken 
place in computing quickly reveals that those who have 
been in the field of computing over the past decade had 
experienced "Future Shock" somewhat before Alvin Tof
fIer coined the phrase. A brief history of computing at 
Orange Coast College will serve as a vehicle for reviewing 
these changes in computer technology. At the same time 
we may review the continuous process of curriculum re
development and the demands that were made of the 
instructional staff at Orange Coast College. The history 
may be seen as comprising three distinct phases. 

PHASE I 

In 1958 Orange Coast Community College entered into 
its first phase of data processing. At that time our equip-
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ment consisted solely of leased Electro-Mechanical Tabu
lating Equipment. To this, we added computing power in 
the form of a General Precision LGP30 with 4K drum 
memory and paper tape/typewriter input-output devices 
in 1959. The curriculum was designed around the availa
ble hardware to include courses of instruction in Electro
Mechanical Wiring Principles, Basic Concepts of Data 
Processing, the Electro-Mechanical Application of sort
ing, collating, reproducing, interpreting, tabulating and 
calculating. It also included programming in machine 
language on the LGP30. In addition students were 
required to study the principles of accounting, cost 
accounting, and accounting systems. 

PHASE II 

Phase II was initiated through the acquisition in 1963 
of second-generation computing hardware systems in the 
form of IBM 1401 and 1620 computers with disk storage. 
The curriculum shifted to keep pace with the hardware. 
Although the principles of Electro-Mechanical Wiring 
and Tabulating equipment were retained, additional 
hands-on experiences were provided in machine language, 
SPS, and FORTRAN on both machines and COBOL and 
AUTOCODER on the 140l. 

The principles of Accounting, Cost Accounting and 
Accounting Systems continued to be a part of the pro
gram and a new emphasis was initiated in Management 
Information Systems. 

The objective of the two-year vocational program in 
data processing at this time was to develop qualified 
entrance-level tab operators and application program
mers through hands-on experience. 

The California Department of Vocational Education in 
conjunction with the Federal government provided assist
ance to the program in the form of grants for the develop
ment of curriculum and training of the instructional staff. 
With the rush by other institutions to provide programs in 
data processing and computer science, another dimension 
was added to the program in the summer of 1962. 

In conjunction with the State of California Department 
of Vocational Education, a summer institute program for 
the intensive training and retraining of instructors in data 
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processing was initiated. This program was to become an 
on-going part of the total program. 

With the active participation of the instructional staff 
in the training of others (and also of cross-training them
selves) a sense of mastery over conditions developed. The 
frantic rush to keep up with hardware and programming 
sophistication seemed likely to be a condition of the past. 

That sense of mastery was short-lived when in 1964 
IBM changed the game from checkers to chess with their 
announcement of the System 360. 

PHASE III 

In 1966-67 the State of California underwrote a pro
posal to defray the costs of training two OCC instructors 
in third -generation programming and concepts. In return 
for this training, the staff agreed to the development of a 
detailed report containing all of the necessary educational 
ingredients to make the transition from second to third
generation computing. 

This report was made available to all institutions. The 
curriculum by the fall of 1968 presented the concepts of 
360 programming through an understanding of the pro
gramming languages of RPG, FORTRAN, COBOL, PL/1 
and ALC. 

The concepts of operating systems, file design, file 
management, and job control were integrated into the 
programming classes. Cost Accounting became an elective 
in the program and a course in Management Information 
Systems Projects became a requirement for graduation. 
The latter class was designed to provide students with the 
background necessary to function in their fast-developing 
role as staff consultants to line management at all levels. 

Through the generous contribution by Hunts Foods of 
computing time on their 360, we were able to introduce a 
third-generation curriculum in the spring of 1967. 
Third-generation computing hardware was available at 
the college by November of 1968 (IBM System 360/40). 
In January of 1969 teleprocessing terminals were added 
using APL as the computer language. There was one fac
tor upon which we all agreed after the hectic year of 
1969: one was only kidding oneself if he found security 
in technological expertise. 

The concepts of the third generation increased the need 
for summer institute programs for the retraining of edu
cators in the field, and the college offered the first sum
mer institute in third generation programming in the 
summer of 1969. 

Quickly we became aware of the fact that where in 
Phase II we were involved in a simple vocational pro
gram, with the sophistications of third generation, higher 
aptitudes, wider perspective, and greater perseverance 
would be required of the student. We could no longer 
provide mere vocational education but had to be involved 
in providing some measure of professional education and 
training. The offers that our graduates were receiving 

from the labor market required them to possess a much 
keener insight into the realities of the business environ
ment and demanded a strong understanding of the 
organization and the part the computer played in the 
organization. 

In the summer of 1970 our new facility was completed 
which doubled our capacity. We now had a designated 
room for our IBM 029 keypunches and IBM 2741 telepro
cessing terminals. We attempted to maintain our philoso
phy of hands-on training through a student/ reader / 
printer and the addition to our curriculum of a hands-on 
course in computer operation. 

The program for the development of computer-assisted 
instruction initiated in 1969 necessitated the acquisition 
of an IBM 360/50 DOS System in the fall of 1970. The 
college having expanded to two colleges in 1965, changed 
the name of its district to the Coast Community College 
District in 1970. Through the foresight of the district 
administration, a policy of decentralizing computing 
power was implemented through the placement of the 
teleprocessing terminals throughout both campuses. This 
included the use of dial-up teleprocessing terminals. Both 
the added use of computing throughout both colleges and 
the additional administrative requirements to implement 
program budgeting systems allowed the Business Infor
mation Systems instructional program to receive the 
benefit of more sophisticated hardware systems. 

The IBM 360/50 DOS system could not meet the 
demands for the additional computing requirements, and 
a change was made from DOS to OS with one megabyte of 
low-speed core in 1971. Through the use of CRT termi
nals a student file inquiry system became operational in 
1972. This necessitated a further upgrading of the system 
to an IBM 370/155 OS MFT containing one megabyte of 
main memory. 

With the two year program arriving at a somewhat 
stable position, new emphasis was placed upon developing 
courses of instruction to service the other disciplines of 
the college and to integrate all disciplines with the sense 
of the rapidly increasing rate of technological change. The 
ability to adapt was emphasized. Two courses were 
designed to meet this objective. A course of instruction 
using the language of FORTRAN and APL was developed 
to integrate programming concepts and applications with 
the respective discipline of the prospective transfer stu
dent to the four year college. Another course was devel
oped using the interactive teleprocessing language of APL 
to provide instruction to all students of the campus. 

With the changing of emphasis in the computing field 
came requests from the computing community for addi
tional courses in Computer Operations, Data Communi
cations Systems, Management of the Computer Effort, 
Operating Systems, and most recently Advanced COBOL. 
In order to further meet the needs of the rapidly-growing 
business environment, two one-day seminars were held in 
the areas of Management and the Computer and Data 
Communications for Management. We also held a two
day seminar for a visiting Japanese top-management 



group. The title of this seminar was the use of computing 
by American managers. 

Since September of this year we have been involved in 
the evaluation of our total curriculum and have 
attempted to make our program more flexible to the three 
basic student groups that we serve. 

The first group is comprised of an increasing number of 
students who are transferring to four year colleges to 
complete their education. 

Most of these four year colleges do not have as wide an 
offering of courses, and those that are offered are at the 
upper division level. Consequently, students must use 
much of their course work in Business Information Sys
tems taken at our institution to fulfill elective lower-divi
sion courses. We have been able to obtain some relief 
from this problem through "one-to-one" articulation on 
an individual college basis, but this is a nagging problem 
causing a great deal of frustration to the student. 

The second group we serve is that of the two year ter
minal student. These students can be classified into two 
general categories: those with a good aptitude for pro
gramming and systems work and those that have average 
aptitude and strong desire. We feel that the higher apti
tude student would benefit by taking more advanced 
work in programming and systems. For the second group 
of students we see very fulfilling careers in the area of 
computer operations and possibly computer sales and 
allied fields. We encourage members of this group to take 
courses in computer operations and to broaden their 
general understanding of the field. 

The third group is comprised of practicing professionals 
in the computer field, and managers and staff people 
from various fields of business. For this group we have 
added courses in Data Communications Systems, Manag
ing the Computer Programming Effort, Advanced 
COBOL and Operating Systems. 

In our attempt to meet the needs of these three basic 
segments of our student population, we have devised what 
we feel to be the basic minimum core requirements for 
our students. 

The core requirements are intended to develop the 
technical base necessary to compete in the dynamic infor
mation and computer industry and in addition to provide 
each student with a macro view of the environment in 
which the function of computing is performed. We 
attempt to accomplish this through nineteen units of 
required courses consisting of Introduction to the Con
cepts of Information Systems, COBOL and PL/ 1, Assem
bly Language Coding, Management Information Systems 
and a Management Information Systems Projects class. 
Eight additional units are required in Accounting or in 
Calculus, and nine additional units are required from a 
group consisting of: Advanced COBOL, Computer Opera
tions, RPG, Data Communications Systems, Managing 
the Programming Effort, FORTRAN / APL, Computer 
Science, Operating Systems, APL, Cost Accounting and 
Managerial Mathematics. 
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FACTORS TO BE CONSIDERED IN THE 
IMPENDING PHASE IV 

The manufacturers promised that they would never do 
anything to us like they did with the complete change in 
architecture in 1964, but somebody forgot to get it in writ
ing from the usurpers of the industry, that forward and 
vital mini-computer industry. Will the Volkswagen of the 
computer industry, the mini, make the big one of the 
computing field alter its competitive path? We can only 
wait and see. One thing we are sure of is that the l'v1ini
Computer, Data Communications, Teleprocessing and 
Data-Based Management Systems are upon us. 

We are told that'the next major thrust of computing 
will be in manufacturing systems and the language of 
computing is going to be eventually reduced to the level of 
the user through the terminals and CRT. This is the pic
ture of the 70's and we are told by John Diebold that the 
80's will usher in the Cybernetic System in "intelligent 
machines," where Japan has every intention of dominat
ing the market. 

Before we attempt to define the problem of developing 
the curriculum for the last 1970's and 80's we might bene
fit by reviewing our societal framework over the past ten 
years or so. 

The social upheaval over these recent years has shaken 
our institution to the very mantle of our earth. 

The Civil Rights sit-ins in Greensboro, North Carolina, 
in 1960, were followed in 1963 by Martin Luther King's 
"I have a dream" speech to 200,000 civil rights demon
strators in Washington, D.C. 

Polarization of social and political values were there
after punctuated by an infamous series of assassinations 
and attempted assassinations. The Free Speech Move
ment at Berkeley in 1964 was followed by the Viet Nam 
protest from 1967 to the inauguration of the President on 
January 20th of this year. The energy of dissatisfaction 
and discontent has been registered through the vast 
disenchantment with our industrial military complex and 
the expenditure of great sums of money for space explora
tion. The result of all this has been that technology has 
been identified as one of the major sources of our society's 
problem. 

The War on Poverty Program in the early 60's and the 
concern for the environment and health of our citizens 
brought about a new sense of social consciousness non
existent in previous periods. 

The dethroning of college president after college presi
dent because of a total inability to grasp what was taking 
place and make the required changes drove the point 
even deeper. 

Suddenly in 1969 and 1970 a lionized profession 
(engineering) of the 1950's and 1960's suddenly found 
itself largely obsolete and unwanted. Thus a profession 
found itself in the same position that the blue collar 
worker had been faced with for decades. 

Students following the path of success established by 
our society, acquired the training and education suppos-
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edly designed to provide them with the "good life" of the 
future. The shock they received when they attempted to 
enter a labor market that could not utilize their skills, 
and an environment they did not understand destroyed 
much of their confidence in the ability of our economic 
system to meet the needs of the people. 

The computer industry leaped off of the solid economic 
base established in 1958, and with the other industries of 
our economy grew rapidly during the early and mid-six
ties. The constant pressure of supporting the war in Viet 
Nam and meeting the unprecedented demands at home 
finally forced our economy into a heated period of infla
tion and the eventual recession of 1969 and 1970. The 
fixed costs of computing were finally registered upon a 
management that had grown up in years of unparalleled 
growth. 

Hopefully the recent fight for survival experienced by 
management has provided the necessary insights into 
what courses of action management is to take if we are 
not to repeat the mistakes of the 1960's. Whether man
agement has been able to work through the archetypes of 
management past and sense the new needs of its employ
ees only time will tell. 

One thing seems certain, organizational needs are not 
yet synchronized with human needs and the pace of tech
nology will only widen the gap. It appears that manage
ment does not know how to reward its employees for 
productive efforts within the framework of the new social 
consciousness. 

To sense a real problem we have only to listen to per
sonnel executives on one side lamenting the fact they are 
unable to find employees who can fit quickly into the 
work organization and become productive. On the other 
side, these same personnel experts are admonishing edu
cators for developing people for a work environment that 
cannot adequately utilize their skills, thus bringing about 
employee dissatisfaction and turnover. There appears to 
be a mutual fuzziness both on the part of the executives 
defining the specifications of required skills for the near 
future and the part of the educator attempting to educate 
with such specifications in mind. 

The atrophy that sets in as a misplaced individual 
exists in a state of unrelieved boredom only furthers the 
loss of identity and therefore raises frustration to a dan
gerous level. An impersonalization of organization that 
grows through a management strategy of merger and 
acquisition frequently spawns a hostile enemy behind an 
employee's mask of acceptance. Management will be 
using the computer to ever-increasing degrees to eliminate 
specific human procedures. However, it seems probable 
that for every problem solved in this too-obvious manner, 

there may be created a dozen more, for the approach 
ignores the basic root structure of men's needs. 

All of the foregoing societal events that have transpired 
over the past decade have contributed two vital factors: 

(1) There is a definite sense of social consciousness and 
a definite desire for real freedom. The Civil Rights 
Movement and the course of events that followed 
released untold amounts of human energy that is 
far from being coordinated in tandem. 

(2) The power of our present and near future technol
ogy gives us unlimited capacity for the solution of 
high priority problems of our world. 

Alone this technical competence is useless unless inter
woven with the tapestry of human understanding. Such a 
process undertakes what Warren Bennis has referred to 
as the process of human revitalization. He identified the 
following four basic points in the process. 

(1) An ability to learn from experience and to codify, 
store and retrieve the resultant knowledge. 

(2) An ability to learn how to learn, the ability to 
develop one's own methods for improving the learn
ing process. 

(3) An ability to acquire and use feedback mechanisms 
on performance to become self-analytical. 

(4) An ability to direct one's own destiny. 

The program and curricula of the late 70's and 80's 
must especially develop the students' ability to learn how 
to learn and to direct their own destinies. It is difficult to 
perceive how such programs and curricula can be success
ful without the practice and consistent involvement of the 
business community, in both the developm~nt and imple
mentation. 

Sharp distinctions between campus and business are
nas are already dulling. Work experience programs, on
site educational programs, educational TV and pro
grammed instruction technology and concepts have made 
significant advances, and have an undeniable future. All 
we seem to need is the sense of urgency that will cause us 
to allocate resources toward the realistic assessment of 
the situation. Effective definition of objectives will i 

require mutual contributions of time and intellectual 
resources on the part of both business and educational 
leaders. 

Our problem today is one of breaking down our own 
archetypes and the archetypes of our institutions in order 
to develop those inner human qualities that men must 
integrate with future technologies. 
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Computing at Central Texas College 

by ALTON W. ASHWORTH, JR. 

Central Texas College 
Kileen, Texas 

ABSTRACT 

Central Texas College has developed a post secondary 
curriculum in data processing in conjunction with the 
United States Office of Education. The program has been 
developed around the career education guidelines estab
lished by the United States Office of Education. The fol
lowing list of program advantages will be discussed in 
some detail at the June meeting: 

1. A complete unit of learning has been provided for 
the student in his first year and in his second year. 
At the end of his first year he will have received 
useful skills that are saleable in the market place. 
During the first year he will have had a balance of 
data processing courses, mathematics, business 
practices and effective communications. These sub
jects, combined with the learning of a basic pro
gramming language and systems analysis, will qual
ify him for many of the collateral jobs that exist in a 
data processing environment. He will have learned 
some advanced programming languages. He will 
have had applications courses. He will have learned 
some of the internal workings of the computers and 
programming. He will have been exposed to data 
management systems and transmission techniques 
providing him with an insight into the future of data 

processing. He will have had an elective during his 
last semester that could be an industry co-op pro
gram. 

2. The curriculum is flexible enough so that the stu
dent will be able to change his educational objec
tives to a four year program without extensive loss of 
credit. 

3. Through the new organization of courses, certain 
social and business objectives have been met as well 
as those of data processing. At specific points during 
education, wen rounded educational objectives have 
been met. 

4. A balance of traditional courses and special com
puter oriented courses exist between his two years of 
education. He will receive five data processing 
courses his first year and five data processing 
courses his second year, plus his elective co-op pro
gram with industry. 

5. A balance of programming languages has been pro
vided the student for his first and second year edu
cation. He will learn two programming languages his 
first, BASIC AND COBOL, and two programming 
languages his second year, FORTRAN and ASSEM
BLY. 

6. The curriculum is designed to develop people to 
become working members of society. In addition to 
data processing capabilities, communications skills 
and social awareness development courses have been 
provided. 

7. Sufficient math has been provided in the curriculum 
to allow the student to advance his own studies of 
data processing after leaving school. 

8. Considerable applications experience has been 
gained in both the educational and working environ
ments. 





The design of IBM OS/VS2 release 2 

by A. L. SCHERR 

International Business Machines Corporation 
Poughkeepsie, New York 

INTRODUCTION 

The purpose of this paper is to give some insight into the 
design of IBM OS/VS2, rather than cover individual 
features of the release. Included are the overall objectives 
for the design, some of the system's key architectural 
features, and how these relate to the environments that 
the system is intended to be used in. The major objective 
is to show how the design of the system fits together and 
to provide an insight into the rationale of the design. 

OBJECTIVES 

Release 2 represents a major revision of OS to provide a 
new base for future application areas. The key thrust is to 
provide a new SCP base with increased orientation 
toward DB/DC applications and the additional require
ments placed on an operating system because of them. 
Another key goal of the system is to support multiple 
applications concurrently in a single complex. This com
plex may include multiple CPUs, loosely or tightly cou
pled. The system must dynamically adjust itself to the 
changing loads in the various environments that it sup
ports, as well as provide increased security and greater 
insulation from errors. 

Maintaining a high level of compatibility continues to 
be a major objective for VS2. Extending the system, 
adding function, and changing its internal structure, 
while at the same time considering compatibility, repre
sented a significant challenge to the designers of Release 
2. Over the last few years we have learned a lot about the 
needs of our users, and during this time, the state-of-the
art in software design has moved forward. The system has 
been reoriented to incorporate these things into the sys
tem. 

USE OF VIRTUAL STORAGE 

The incorporation of virtual storage into OS has 
allowed the system to support programs whose size is 
larger than available real main storage. There are opera
tional advantages; however, significant additional bene
fits can be realized. Using virtual storage to provide for 
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an extremely large address space, allows program struc
tures to be simpler, intermediate data files to be eliminat
ed, and teal main storage to be used to hold data that in 
the past was resident on a direct access device. This latter 
use can result in a significant performance advantage 
which will be discussed later. 

MULTIPLE ADDRESS SPACES 

Perhaps the most obvious new feature of Release 2 is 
the support of multiple address spaces. Each job step, 
TSO user, and operator STARTed program in the system 
has a private address space that is 16 million bytes, less 
the space taken by the operating system. Figure 1 is a 
comparison between Release 1 and Release 2 storage 
maps. Both maps extend from 0 to 16 million bytes. 
Release 1 and MVT actually look alike, with the only 
difference being that MVT's address space is limited to 
the size of real storage. 

The Release 1 map, shows two TSO regions with several 
users in each. Users A and B, for example, cannot be in 
execution at the same time because only one of these 
users can occupy the region at a time. The others are 
swapped out. The transition from Release 1 to Release 2 
can be understood very simply by considering the Release 
1 system with a single TSO region the size of the total 
available virtual storage. What has been done in Release 
2 is to remove the multiprogramming restriction between 
the users of the TSO region. On the other hand, Release 2 
does not allow two jobs to share the same address space. 
One of the first implications of this design is that it is no 
longer necessary for the operator to get storage maps 
printed at the console so that he can manage main stor
age. 

To show the effect of multiple address spaces on certain 
control program functions, TCAM will be used as an 
example. In Release 1, terminal input is read through a 
channel directly into the TCAM region. There it under
goes some processing and is then moved to the user's 
region or to the TSO control region. In Release 2, the 
input is read into a common system area buffer at the top 
of the map, and from there is transmitted under TCAM's 
control to the user. To programs that have done inter-
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region communication in previous systems, this new 
storage map represents a major difference. 

In Release 2 V = R jobs no longer affect the virtual 
address space of V = V jobs. Since each job is assigned a 
16 million byte address range, V = R jobs only affect the 
amount of real storage available. (See Figure 2). 

STORAGE MAP 

Figure 3 shows the storage map seen by a single job. 
This corresponds to an MVT or Release 1 region. At the 
top of the map in areas which are commonly addressable 
by all of the address spaces is the System Queue Area 
containing system control blocks, the pageable Link Pack 
Area, and the Common System Area for use in communi
cating between users. This area is used, for example, by 
TCAM and IMS for inter-region communication. At the 
bottom of the map is the Nucleus and that part of Link 
Pack Area which is to remain permanently in main stor
age. 

SYSTEM 

Figure 2-V=R, V=V 

The area in between is the private address space for 
each user. User requests for storage in all subpools are 
allocated from the bottom of this private address space. 
Requests for Local Supervisor Queue Area and the Sched
uler Work Area storage are satisfied from the top. 

COMPATIBILITY 

Compatibility is a major objective in Release 2. Object 
code and load modules from MVT and VS2 Release 1, not 
dependent on the internal structure of the system, will 
run with Release 2. JCL compatibility is maintained, and 
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Figure 3-Storage map 

the data sets and access methods of previous releases 
apply, as well as EXCP. SMF is compatible as well. 
However, it must be recognized that in moving from a 
non-virtual to a virtual environment, the usefulness of 
some of the measurements has changed; and in order to 
account completely for usage, it may be necessary to 
make some use of the new measurements that are pro
vided. 

Internal interfaces are the area of greatest concern 
because, in some cases, such interfaces have been exten
sively used. Generally, our approach has been to evaluate 
every change of this type to see what the effect is on the 
user community as well as our program products. Several 
proposed changes were not made because of their poten
tial impact; but, on the other hand, some change is 



required to make progress, and thus we have had to con
sider many difficult trade-offs. 

The major differences that affect compatibility include 
the system catalog, which is now a VSAM based data set 
and requires conversion from the catalogs of existing sys
tems. Forward and backward conversion utilities have 
been provided, as well as compatibility interfaces allow
ing the use of the original OS catalog macros. As men
tioned earlier, the new storage map, will impact programs 
that have done inter-region communications. Also, lOS 
appendages run enabled in Release 2 and must use a new 
synchronization mechanism. Therefore, there is likely to 
be impact to user-written lOS appendages. 

PARALLELISM 

One of our major design goals in the system was to 
provide for as much parallelism of operation as possible. 
The reduction of software bottlenecks that prevented effi
cient multiprogramming is the major technique that we 
used. Listed are five of the main areas that we worked in. 
Each of these areas will be discussed. 

• Job Queue 
• Allocation 
• Catalog 
• TSO Region 
• MP65 Disable Lock 

Experienced OS users will recognize these as areas with a 
high potential for improvement. 

JOB QUEUE 

We have eliminated the Job Queue data set that OS has 
used since its beginning. With HASP or ASP in an OS 
system, there were really two job queues-the one kept by 
the support system relating primarily to information 
required to schedule jobs and the printing of output, and 
the OS job queue which contains similar information as 
well as information pertaining only to a job in execution. 
One type of information is really for inter-region commu
nication between various parts of the scheduling functions 
of the system; the other, for intra-region communication 
between the scheduling components and data manage
ment in behalf of the executing job. 

The inter-region information has now been placed 
entirely in the job queue maintained by the job entry 
subsystem, either JES2 or JES3. The intra-region infor
mation has been segmented and placed into the individ
ual job's address space. In this way, the portions of the 
original OS job queue having the highest usage are now in 
each job's private address space. The less frequently used 
information relating to communication between various 
components of the scheduling function is now in the JES 
job queue. Thus, all of these elements of the job queue 
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can be accessed in parallel. The JES job queue is also 
used to journal information required to restart jobs dur
ing warmstart or from a checkpoint. (See Figure 4.) 

ALLOCATION 

The component of the system that does data set and 
device allocation has been completely redesigned. Both 
batch and dynamic allocation are now supported by the 
same code and provide essentially the same function. The 
design is oriented toward virtual storage-no overlays are 
used, and all work areas are in virtual storage. Allocation 
of data sets to storage or public volumes can be done 
completely in parallel, regardless of other allocation 
activity. 

This type of allocation represents probably the most 
cOlIHllGn -form in mo-st installatiGns, and, in g-ener-al-, the 
design of the new allocation provides shorter paths for 
these generally simpler cases. When it is necessary to 
allocate a device and perform volume mounting, these 
requests are serialized by device group. Therefore, a 
request for a disk need not be held up because another 
job is waiting for a card reader. Other improvements in 
this area include the ability to prevent a job from holding 
devices until its entire requirement can be met, and the 
ability to cancel a job-waiting for devices. 

CATALOG 

The catalog has been converted to an indexed VSAM 
data set, primarily to allow for faster access to a large 
catalog. The curves in Figure 5 give the general idea of 
how access time should relate to catalog size with this new 
structure. 

...-.~_,----, os JOB QUEUE 

I 
l 

VIRTUAL STORAGE 

Figure 4-Job queue 
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• INDEXED VSAM DATA SET 
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Figure 5-Catalog 

TSOREGION 

As previously stated, in MVT or Release 1, TSO users 
sharing the same region cannot be concurrently in execu
tion. This restriction is eliminated in Release 2. There
fore, the situation shifts from one where each region 
serves a given set of users, to one where the entire system 
serves all of the users. Thus, any potential imbalance 
between regions is eliminated. (See Figure 6.) 

Moreover, previous support placed a limit on the level 
of multiprogramming for TSO at the number of TSO 
regions. In Release 2, the level of multiprogramming can 
vary and is dependent upon the load placed on the sys
tem. 

LOCKS 

In a tightly-coupled multiprocessing system, it is highly 
desirable from a performance point of view to allow the 
control program to be executed simultaneously on both 
CPU's. However, some means is then required to syn
chronize or serialize the use of control information used 
by the control program. 

System code in MVT disabled for interrupts prior to 
the updating or use of this type of control information; 
and when the operation was completed, the system was 
enabled. The MVT technique used for Model 65 multi
processing was to use one lock which prevented both 
CPU's from being disabled at the same time. In environ-
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Figure 6-TSO region 

ments with heavy usage of control program services, this 
lock becomes a significant performance bottleneck. (See 
Figure 7.) 

In the Release 2 support of MP, we have used instead a 
number of specific locks, each relating to a particular 
function. Generally, the program obtains the appropriate 
lock relating to the data that it is going to update or use, 
performs the operation, and then frees the lock. Whether 
or not the system is disabled during this operation 
depends on whether or not interrupts can be handled. 

The locks that are used include one per address space, 
a dispatcher lock, multiple lOS locks, a lock for real stor
age management, locks for global supervisor services, and 
locks for virtual storage management. This means that, 
for example, a GETMAIN can be performed in a user's 

• MP 65 TECHNIQUE: ONE LOCK 

Figure 7-Locks 
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private address space at the same time that another 
GETMAIN is being done in another user's space, or an 
interrupt is handled by. lOS. The net result is that the 
system is enabled for interrupts more often and more 
elements of the control program can execute in parallel. 
The primary advantages here are to a tightly-coupled 
multiprocessing system, but some of these carry over into 
other environments. (See Figure 8.) 

MAIN STORAGE EXPLOITATION 

Because of recent changes in the relative costs of var
ious hardware components, the trade-off between main 
storage usage and other activity in the system has 
changed. In Release 2, our goal has been to exploit main 
storage by trading it for CPU and I I 0 activity wherever 
possible. 
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Figure 8-VS2/ReI2 uses multiple locks 

In MVT and VS2 Release 1, data sets are generally 
placed on a device and all access to this data must go to 
that device. Main storage content is limited to the images 
of programs. 

Certainly, in many environments there is data whose 
usage is high enough to warrant at least a part of it being 
resident on a higher speed device or perhaps in main 
storage. In fact, there are environments where some 
blocks of data receive higher usage than some of the pages 
of the program, and ideally should receive preference for 
main storage occupancy. In Release 2, we have attempted 
to move in the direction of allowing data to be placed in 
the storage hierarchy dynamically, according to its usage. 
Therefore, certain data can be resident in main storage or 
on a higher speed device if it has high enough frequency 
of usage. 

The whole idea is to allow more data, more informa
tion, to be resident in main storage. Thus, given a fixed 
amount of main storage, there is a better choice as to 
what to put there. More importantly, given more main 
storage, there is more useful information to put into it. 

In Release 2 there are three facilities for this type of 
exploitation of main storage: virtual I/O, Scheduler Work 
Areas, and the large address spaces. 

VIRTUAL I/O 

Virtual I/O provides for placing data sets in the paging 
hierarchy. The net result of this is that if a page of data is 
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resident in main storage, there is a reduction in I/O and 
CPU time. The CPU time is reduced because of the elim
ination of I/O interrupt handling, channel scheduling, 
and task switching. Because blocking is done automati
cally at 4K, greater efficiency may result. When I/O is 
done, it is performed by the paging mechanism, with 
generally more efficiency than with the conventional 
techniques. 

An additional advantage of virtual I/O is that no direct 
access device space management is required, and there
fore aliocation time is faster. Because space is aliocated in 
4K blocks as needed, space utilization is also more effi
cient. 

In Release 2, temporary data sets are supported for 
virtual I/O in a compatible way. No JCL or program 
changes are required for SAM, PAM, DAM, XDAP, and 
the equivalent operations in EXCP. Any program 
dependencies on direct access device characteristics are 
handled in a transparent way. 

SCHEDULER WORK AREA 

The Scheduler Work Area allows a job's job queue 
information to be contained in its own virtual storage. 
Thus access times are better for this information when it 
is required for allocation, termination, or OPEN / CLOSE
End of Volume processing. If usage is high enough, this 
information would be resident in main storage with the 
same advantages as with virtual 1/ O. 

LARGE ADDRESS SPACES 

The use of large address spaces to achieve greater per
formance has been described exhaustively in other places, 
however, several techniques which have been incorpo
rated into portions of the control program should be high
lighted. Overlay structures have been eliminated, and the 
use of the Overlay Supervisor, LINK, and XCTL services 
has been removed with a decrease in I/O activity as well 
as CPU time. Spill files have been eliminated; instead, 
large work areas in virtual storage have been used. The 
allocation redesign makes use of both of these 
techniques. 

RESOURCE MANAGEMENT 

In the resource management area, our goal has been to 
centralize all of the major resource control algorithms. 
The objective here is to achieve better coordination than 
is possible with decentralized algorithms. With a decen
tralized design, two uncoordinated algorithms can some
times work at cross purposes. By having a centralized set 
of algorithms, more opportunity exists for optimization. 

The system resource manager in Release 2 replaces the 
TSO driver, the I/O load balancing algorithm of Release 
1, and HASP's heuristic dispatching. Further, it provides 
a new algorithm to control paging and prevent thrashing 
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by dynamically adjusting the level of multiprogram
ming. The rate at which users get service is controlled by 
the Workload Manager in accordance with installation 
specified parameters. 

WORKLOAD MANAGEMENT 

Priorities for this Workload Manager are not absolute, 
but rather are expressed in terms of a rate of service for 
each job. This allows a departure from the usual situation 
where a lower priority job gets only what is left over after 
the higher priority jobs have received all of the service 
they can get. In Release 2, two jobs can proceed at a rela
tive rate of progress that can be set by the installation. 
These service rates are specified for different system 
loads so that the relative rate of service received by two 
jobs can change as the overall system load shifts. Finally, 
service rates can be specified for a given set of users or 
jobs, where a set can include as few as one user. 

Figure 9 shows a sample of how this is done. There are 
five sets of users, A through E; and service rates varying 
from 0 to 1,000 service units per second. Service is 
expressed in terms of a linear combination of CPU time, 
I/O services, and main storage use. The number 1 curve, 
which might be considered for a light load, shows the 
users in groups A and B receiving high service rates, users 
in groups C and D slightly less service, and E even less. 
User sets A and B might be two types of TSO users, C 
and D, high turnaround requirement batch jobs; and E 
the rest of the batch jobs. 

As the load gets heavier, the installation has specified 
that they would like more of the degradation to apply to 
the users in Sets D and E, and the least degradation to 
apply to sets A and B. Curve 4 represents the heaviest 
load where users in set A get significantly better service 
than anyone else, and users in sets C through E receive 
only what is left. The system attempts to operate on the 
lowest numbered curve; however, as the load gets heavier, 
it degrades the service seen by each of the sets of users 
proportionally to the way shown by the curves. That is, in 
going from curve 1 to curve 2, it reduces the service seen 
by users in category C more than for category A. 

A set of reports is produced which the installation can 
use to determine the response time or turnaround time 
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Figure 9-Workload management 
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and throughput that is being produced by the system for 
each user set. Should an adjustment be required, a higher 
rate of service specified for a set of users will yield better 
response time or turnaround time. Our objective here is to 
provide a relatively simple way to achieve discrimination 
between users and to provide the right level of service to 
each group of users. 

RECOVERY 

Recovery mechanisms in the system have also been 
overhauled in a major way. A significant amount of work 
has been done in this area. Our goal is to contain errors to 
the lowest possible level, and either to recover from an 
error so that the system can proceed as if the error never 
occurred, or at least to clean up so that the effect of the 
error is not felt outside of the function in which it 
occurred. In this area we have really recognized that it is 
not enough to have code with a minimum number of bugs, 
but rather to have a system that minimizes the effect of 
the failures that do occur. 

The same approach for minimizing software failures is 
used for hardware error recovery as well, especially in the 
multiprocessing environment. Generally, the method is to 
provide specialized recovery routines that operate as a 
part of the main line functions, and which receive control 
whenever an error is detected by the system. There are 
approximately 500 such recovery routines in Release 2. 

INTEGRITY 

In Release 2 we have closed all of the known integrity 
loopholes in VS2. This means that unauthorized access or 
use of system facilities and data or user data, is prevent
ed, both for accidental as well as intentional actions, and 
we will now accept APARs for integrity failures. Integrity 
is a prerequisite for adequate security, where security is 
defined as an authorization mechanism to distinguish 
between what various users can do. Moreover, integrity 
should also provide for an increased level of reliability. 

SERVICE MANAGER 

In Release 2, we have provided a new transaction-ori
ented dispatching mechanism which allows the efficient 
creation of new units of multiprogramming. Our goal here 
was to increase performance by trading off function. This 
new unit of multiprogramming differs from the OS task in 
that it is not a unit of resource ownership or recovery. The 
new facility, called the Service Manager, is used by the 
Release 2 supervisor, JES3, lOS, VTAM, and the version 
of IMS for use with VS2 Release 2. This mechanism can 
also be used by appropriately authorized user programs. 
For example, a VTAM application. 



RELEASE 2 PERFORMANCE 

Summarizing what has been done in Release 2 from a 
performance standpoint the following points are notewor
thy. Because of the reduction in serialization and the 
tradeoffs that can be made between I/O activity and 
main storage, the system can better utilize the CPU. 

Figure 10 shows conceptually the CPU and I/O overlap 
for an MVT job. The wait state time is comprised of I/O 
wait plus other waits caused by serialization on system 
resources. These wait times are reduced as a result of 
virtual I/O, scheduler work area, the new catalog, alloca
tion, etc. However, this wait time may be extended due to 
paging. This is typically rather small, especially in a large 
main storage environment. 

On the other hand, CPU time generally will be reduced 
as a result of virtual I/O activity since fewer interrupts 
are handled, etc. Other overhead is also reduced because 
the reduction in II 0 and wait time generally allows the 
CPU to be fully utilized at a lower level of multiprogram
ming. On the negative side is degradation due to extra 
instructions required in Release 2 because of enhanced 
recovery, integrity, and new function. The overall effect is 
that individual jobs tend to look more CPU bound. 

The general performance characteristics of Release 2 
are significantly different than previous OS systems. The 
system now is generally more responsive, in that there is 
better consistency, with fewer long responses caused by 
the processing requirements of other jobs and the opera
tor. Because fewer initiators can be used, and because of 
the reduction in bottlenecks, batch turnaround time can 
be improved. And, with the System Resource Manager, 
the installation has more control over the service seen by 
an individual user or job. 

VS2 RELEASE 2 ENVIRONMENTS 

The following summary shows how the features of VS2 
Release 2 apply to various environments, such as 
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Batch, 
Multiprocessing, and finally, 
Operations. 

MUL TIPLE APPLICATIONS 

One of our major goals is to allow multiple applications 
to operate effectively in a single system complex. This is 
theoretically highly desirable, but previous operating 
systems have had insufficient capabilities to shift 
resourCes dynamically from one application to another as 
the load changed. Perhaps even more important, failures 
in one application often brought down other applications, 
or even the entire system. There was also insufficient 
separation of applications from a security point of view. 
Release 2 provides both better isolation and integrity to 
address these problems. With virtual storage and other 
facilities in Release 2, more dynamic control and use of 
resources is also possible. 

TELEPROCESSING 

In the teleprocessing area, Release 2 is intended to be a 
base for high performance data basel data communica
tions applications. VSAM, VTAM, Service Manager, 
Virtual I/O, Large Address Spaces, and the new Alloca
tion all provide tools for such applications. 

TIME SHARING (TSO) 

For time sharing, a number of performance improve
ments have been made: SWA, the Catalog, etc. Compati
bility between TSO and other areas of the system is more 
complete, primarily because the rest of the system is now 
more like TSO. Dynamic device allocation with volume 
mounting represents a new facility for TSO users that are 
authorized by the installation. SYSOUT data can be 
routed through JES2 or JES3 to a remote high speed 
work station to provide bulk output for a TSO user. 
Finally, large address spaces have been classically consid
ered a time sharing function. 

BATCH PROGRAMS 

In the batch area there are a number of performance 
improvements as well. Dynamic data set and device allo
cation is provided for the first time for the batch pro
grams. Among other things, this allows the ability to start 
printing SYSOUT data sets dynamically prior to the end 
of the job. This can be done with a minimal change to the 
JCL and with no programming change. Remote job entry 
is provided through the JES2 and the JES3 packages. 

MUL TIPROCESSING 

Multiprocessing has traditionally placed a heavy 
emphasis both on reliability and availability as well as 
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performance. In the reliability area, a number of hard
ware improvements have been made. Certainly the 
increased integrity, both between the operating system 
and the user, as well as between the various parts of the 
control program, provides the potential for better reliabil
ity. Most important are the new recovery mechanisms in 
Release 2. 

In the performance area, the complexity of a multipro
gramming system is generally increased in the MP envi
ronment; however, the facilities for increased multipro
gramming efficiency in Release 2 go a long way toward 
achieving good performance on MP systems. The exploi
tation of main storage is also important, since most MP 
systems are configured with large amounts of main stor
age. The multiple locks of Release 2 are aimed directly at 
minimizing contention for control program usage of the 
CPU's in a tightly coupled multiprocessing system. 

OPERATIONAL CHARACTERISTICS 

On the operational side of the system, our goal has been 
to have less dependence on the operator for performance. 

Generally, the system is significantly less serialized on the 
operators and their activities. The system, we feel, is 
simpler to operate. Tuning should be significantly easier 
as well. There are fewer bottlenecks to balance, fewer 
parameters to specify, and the system is more self-tuning. 
Moreover, the system can allow for more control over its 
own operation with the new integrity facilities, the Sys
tem Resource Manager, and so on. 

CONCLUSION 

The purpose of this paper has been to provide some 
insight into how we arrived at the design of Release 2. Our 
objective was to provide some very significant increases in 
function and availability, with improved performance 
characteristics, and with a high degree of compatibility to 
previous OS systems. 

We think that the system has done a good job of meet
ing these often conflicting objectives. OS! VS2 Release 2 
represents a major step forward, but it is only a first step, 
since it provides the base on which we will build total 
support for advanced applications in the 1970's. 
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INTRODUCTION 

A brief -st-OOy-o-f-IDM- OS; VSl + Ope rating System/ Virtual 
Storage 1) will reveal a system providing many faceted 
growth capabilities at all levels of user-system interaction. 
Additional meaningful function is provided on a stabi
lized base to assure this growth capability. It can be fur
ther seen that installation growth is achieved through new 
application work and not by a continual rework of exist
ing programs. To assure the users ability to move to new 
work almost immediately, OS/VS1 is built on an IBM 
OS/MFT (Operating System/Multiprogramming with a 
Fixed Number of Tasks) base. Compatibility is defined to 
extend to most object programs, source programs, data 
and libraries from OS/MFT to OS/VS1, thus assuring a 
normal movement of existing programs to the virtual 
environment. Figure 1 graphically represents the areas of 
change between MFT and VS 1. 

In like manner, the transitional problem of education is 
greatly reduced for the programmer and operator alike. 
VS1 uses the MFT languages in all areas of programmer/ 
operator contact to the system, and from the system gen
eration procedure to the operator control language, VS1 
incorporates, improves and extends the existing MFT 
language to support the virtual function. 

As an OS compatible system VS1 becomes a vital part 
of the IBM family of new virtual systems which includes 
DOS/VS (Disk Operating System/Virtual Storage), OS/ 
VS1, OS/VS2 and VM/370 (Virtual Machine/370). Each 
is based upon its predecessor system but each expands 
the horizon of support with virtual memory. 

The virtual storage facility is the single most important 
new characteristic of VSl. It offers significantly longer 
address space for both application partitions and system 
functions by providing, with, adequate equipment, a 16 
million-byte addressing capability. 

To provide this enhanced capability, OS/VS1 requires 
a System/370 central processing unit with the dynamic 
address translation facility. VSl supports this facility on 
the System/370 Models 135, 145, 158, 168, and those 
155's and 165's which have the DAT facility field 
installed. In addition to the hardware facility, significant 
changes were made to control programs code which I shall 
discuss later in this paper. 
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Significant enhancement was made to the job schedul
ing algorithms. The single most important addition has 
been the incorporation of Job Entry Rubsystemand 
Remote Entry Services into the Release 2 scheduler. 
These functions provide efficient job entry from both 
local and remote users, providing a transparency of oper
ation that enhances remote capabilities. I will also inves
tigate these changes in detail at a later point in the paper. 

Finally, VS1 will contain a new data management func
tion-Virtual Storage Access Method (VSAM). This func
tion and its new data set organization has been added, as 
an ISAM (Index Sequential Access Method) replacement, 
to better support more sophisticated and online applica
tions. Significant improvements in the exploitation of 
relocate, data integrity and recovery, device independent 
addressing, and migration ability help to make VSAM an 
important base for data base development. Since VSAM 
is a topic in itself, it will not be discussed in this paper. 

RELOCATE 

General discussion 

Virtual storage separates address space and real storage 
and then expands the address space to make it larger 
than real storage. In VS1, address space can be up to 
16,777,216 bytes containing the control program, data, 
and normal application jobs within partitions. Virtual 
storage addresses are not related to real storage addresses, 
but both are broken into 2048-byte sections called in vir
tual storage, pages, and in real storage, page frames. A 
great deal of study went into determining the optimal 
page size for a VSl environment. Involved in this study 
was a determination of the effective CPU time for 
instructions and data within a page and the time taken to 
move the page to secondary storage from real storage. The 
page size of 2K balances these considerations for optimal 
performance. 

In like manner, the DASD (Direct Access Storage 
Device) mapping algorithm was considered critical in 
achieving both medium entry and performance in that 
entry level. The direct mapping of virtual to secondary 
space greatly simplifies the movement of data from real 
to secondary storage and reduces the logic size of the page 
input/ output routines. 
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Figure I-Areas of change between OSjMFT and OSjVSI 

Page management 

The key component in the management of virtual stor
age is page measurement. Page measurement is accessed 
directly by the System/370 hardware when a page excep
tion occurs. A page exception occurs when the address 
translation feature is unable to resolve a virtual address 
to a real storage location. At. the point of the exception, 
page management assumes responsibility for ensuring the 
addressability of the initial storage contents. 

OS/VS1 uses a number of pointer queues to manage its 
least recently used page replacement algorithm and regu
late the flow of pages to and from the external page stor
age. Some of these queues include: 

1. In-Use Queues-The addresses in these queues 
point to locations of currently active page frames. 
These frames contain the most recently executed 
code and the most recently used data and tables. 
The number of in-use queues is a variable depend
ent upon the number of active partitions and active 
tasks including system tasks. Figure 2 shows four 
such in-use queues. 

2. Available Page Queues-This queue contains the 
frames that are available for program servicing 
when a page fault occurs. At the initial program 
load, all RSPTE's (real storage page table entries) 
representing real storage blocks above the fixed 
nucleus appear on this queue. As execution occurs, 
this queue is maintained at a minimum threshold to 
minimize both lockout and thrashing possibilities. 

3. Page Input/Output Device Queues-These queues 
are addresses of frames that are being used for page 
I/O. The input queue represents the list of frame 
addresses that are currently being filled from exter
nal page storage (SYSl.PAGE). The output queue 
contains the addresses of the IE'ast referenced pages 

that are about to be stored on external page storage 
(SYSl.PAGE). 

4. Logical Fix Queue-This queue contains the 
addresses of both short-term fixed page frames and 
long-term page frames. 

Keys to page frame arrangement are the change and 
reference bits. Both bits are set by hardware and reset in 
the process of paging activity by the page management 
routines. The change bit indicates whether the contents of 
a given page frame have been modified since the page was 
brought into real storage. This bit is reset only when the 
page is moved to the external page file. The reference bit 
is turned on when reference is made to the contents of a 
page frame. 

At periodic intervals (between 3 and 9 task switches in 
Release 1), the status of the in-use queues page frames is 
adjusted. This process involves the migration of all un
referenced frames to the next lower queue and all refer
enced frames to the highest level queue. This migration 
enables the low reference level frames to move to the 
lowest level queue and eventually permit their replace
ment. 

As we have noted before, when a referenced page is not 
contained in real storage, the hardware facility turns 
control over to page management. Page management 
immediately looks to the available queue to satisfy the 
request. If an adequate number of frames is available, the 
request is immediately satisfied. If there is an inadequate 
number to satisfy the request, the page replacement rou
tine is entered. The page-frame release request formula is 
applied as follows: 

A + HTV - APC = Release Request Amount 
where: 
A = Page Allocation Request 
HTV = High Threshold on Available Page Queue 
APC = Available Page Frame Count 
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Figure 2-Four in-use queues 



This calculation will indicate how many additional 
page frames should be released to maintain the available 
queue at an acceptable level. The page replacement rou
tine will begin a scan of the low usage queues to deter
mine what frames may be freed. Page frames that have 
the reference bit turned off can be released to the availa
ble queue. If a change bit is turned on, the frame must 
first be moved to the output queue where it is placed on 
the external page storage. Frames that have not been 
changed are moved directly to the available queue. 

Let us again refer to Figure 2. An entry to the page 
measurement routine would move all frame addresses to 
the next lower level queue where N-3 is the lowest possi
ble level. In like manner, all frames that have been refer
enced are moved to reference level N in the queue struc
ture. (This includes frames 1, 14, 18, 21, 17, 32, 34, 2, 16, 
26.) The reference bits are reset on all frame indicators on 
the N -queue. The change bit is not modified at this time 
nor is the reference bit pattern on the logical fix queue. 

Similarly, the process of page release concentrates on 
the low activity queues moving in a right hand scan from 
the lowest to the highest queue. Once again referencing 
Figure 2, frames 30, 22, 11, 36, 5 are currently available 
on queue N-3 and are thus available for release if 
required. If we establish the low threshold as 3 and the 
high threshold at 6 for the available queue, any request 
for five or more pages would force the release routines to 
be entered. The frames on the output queue will be 
moved directly to the available queue when the interrupt 
is returned. 

The page release routines will scan only the low activity 
queues. If an inadequate number of frames can be 
obtained from the low level queues, then partition deacti
vation is entered. Deactivation will deactivate a partition 
at a time to make available their frames for additional 
page requests. Partitions are deactivated from low order 
of priority to high order of priority. 

Deactivation controls excessive paging rates known as 
thrashing. Thrashing, a classical problem in paging sys
tems, is caused by a hyper-contention for available real 
storage. Deactivation reduces the contention by reducing 
the number of active tasks. Consequently, the severe 
contention is eliminated and performance is maintained 
at an adequate level. 

The opposite performance problem is an insufficient 
number of active partitions. Reactivation must be entered 
in adequate time to permit a properly balanced range of 
CPU time. Periodic checks are made to determine the 
availability of resources for reactivation. Deactivated 
partitions are reactivated in order of highest priority 
when a task switch occurs. Release 2 of VS1 has 
expanded the facility for a user installation to monitor 
and control some of the deactivation parameters. 

Excluded from the deactivation category are: 

1. System functions that are necessary for continual 
execution. 
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2. Certain system tasks. 
3. Jobs that are executing in virtual = real mode. 
4. The last active user job. 

In summary, the page management routines play a 
vital role in maintaining system performance at an 
acceptable level. Key in the achievement of these goals is 
the allotment of an adequate level of resources to the 
paging routines. 

Input/output supervisor 

Channels on the System/370 do not perform address 
translation on channel control word addresses. Since 
these are virtual addresses, they must be converted to real 
addresses for proper program execution; the input/ output 
supervisor of VSl must do the additiml-al transl.ation. In 
addition, certain information must be fixed in real storage 
to avoid a page exception in the middle of an I/O opera
tion. 

In the normal execution of an I/O request, therefore, 
the I/O Supervisor must first fix the frames that contain 
tables, buffers, and work areas. Once this information is 
fixed in storage, the real addresses will be placed in the 
appropriate locations in the channel control word. The 
Start I/O is issued to a chain that contains real addresses, 
and is thus referred to as a real channel program. Upon 
the return of the I/O interrupt, the frames are freed and 
returned to the normal processing queue. Programs that 
~reate self-modifying channel control word chains cannot 
be handled by the normal I/O Supervisor routines and 
should be run in a virtual = real mode. 

OS / VS 1 provides a function known as virtual = real 
mode. The address space assigned to the job step is 
placed in a contiguous real location below the V = R line. 
The size of the V = R area is specifie~ on the REGION 
parameter and represents the actual size of the program 
to be executed. Since the V = R area must be contiguous, 
the job step execution must wait for a free contiguous 
space to be freed. In addition, the V = R job step is not 
deactivated during the entire job step execution. 

Although the DAT feature is in use during the execu
tion of the V = R job, no translation takes place. In like 
manner, software translation of the channel control word 
is avoided. 

The virtual = real address space permits the execution 
of highly time dependent or self-modifying programs. In 
addition, certain high I/O activity job steps may be run 
in V = R mode to avoid the CCW translation. It is appar
ent, however, that the additional overcommitment of real 
storage may adversely affect other areas of the system. 

Storage management 

The advent of relocate served to rnouuy the storage 
management algorithms of the operating system. Portions 
of the control program that were either optional or resi-
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dent in the nucleus could be repackaged into pageable 
system modules, thus reducing the contention on critical 
real storage. 

Similarly, the System Queue Space which became a 
critical resource in OS I MFT was broken into three posi
tions dependent upon the area of required information. 

1. The System Queue Area (SQA) was designated as a 
permanently fixed area in real storage that could be 
dynamically extended or contracted dependent upon 
its usage. The SQA is used for channel control word 
translation and for relevant system-oriented tables. 

2. The Fixed Portion Queue Area (FPQA) is a perma
nently fixed area used primarily for partition page 
tables. 

3. The Pageable Partition Queue Area (PPQA) is a 
protected portion of each partition that contains 
partition-relevant tables. 

The fixed nucleus in VS1 contains the normal control 
program functions and is permanently in real storage. 
Strict control should be exercised over the nucleus in 
small systems to provide an adequate amount of real 
storage for the paging process. 

User partitions must be defined in VS1 in 64K incre
ments of virtual storage. The user may define up to fif
teen user partitions and fifty-one system task partitions. 
Normally the supporting system modules such as data 
management would be located in the users partition. A 
user may define resident access methods in the pageable 
resident access method area for space and performance 
considerations. 

We have discussed the major areas of change made 
necessary by the relocate function. Dynamic dispatching 
affected a change in the dispatching techniques of the 
system in Release 2. Additional changes were made to 
portions of Data Management and the Scheduler to 
reflect the hardware and supervisor changes. The Sched
uler became the first user of relocate and, as such, re
packaged certain portions to reduce branches and move 
subroutines in line. We will next investigate the major 
areas of change in Job Scheduling. 

JOB SCHEDULING 

A number of fundamental design decisions changed 
much of the VS1 Scheduler. These decisions ranged from 
the simple packaging choice for modules to the complex 
inclusion of spooling algorithms within the scheduler 
framework. Many of the changes were intended to 
improve user accessibility to the system, while others 
removed potential bottlenecks to improve performance. 
Some, such as 110 Load Balancing, are intended to per
form total performance improvement as 110 utilization is 
spread intelligently across channels. The end result was a 
faster, cleaner component that provides a growth step to 
the seventies. 

Basically the support scope of the relocate function 
could have limited the scheduler changes to those control 
card modifications and some internal changes in the 
Program Status Word and Set System Mask areas. It was 
recognized, however, that additional benefit could be 
derived from tailoring the scheduler to make use of relo
cate. The original base scheduler in MFT used two basic 
options to schedule jobs. The first was intended for any 
program with a partition in excess of 44K bytes. The 
second option was intended for small partition scheduling 
executed in a linear fashion in the 2K transient area. 
Investigation demonstrated that a performance and 
maintainability gain would result by changing the Sched
uler to always execute in a 64K virtual partition. The 
need for a small partition scheduling algorithm is elimi
nated since the Scheduler can execute in a minimum 
number of real page frames. 

In like manner, portions of the Scheduler such as ter
mination routines were in part repackaged and in part 
recoded to better support relocate. This was done by 
moving high incident subroutines in line to avoid exces
sive paging activity. In addition, a regrouping of tables 
based upon reference rate and location of reference 
reduced the paging activity. 

These changes did not affect the basic execution order 
for the Scheduler; however, other enhancements modified 
the functional structure of the component while maintain
ing the outward interface. 

We will now look in detail at some of these major 
enhancements to the VSI 1 Scheduler. 

Central queue manager 

An early analysis of the Job Queue usage indicated a 
need for a redefinition of the contents and structure. The 
MFT Job Queue Data Set (SYS1.SYSJOBQE) contained 
various forms of job control information including the 
actual job queue. Access to this queue was spread through 
a number of in-line routines to the 176-byte chained 
records. VS1 has broken the job queue into a number of 
specialized data sets to reduce the bottlenecks of the old 
structure. These data sets include: 

1. Job Queue (SYS1.SYSJOBQE) retains the name of 
the MFT data set but it is only a fraction of the size. 
Relevant information to job queuing is stored on this 
data set. Disk entry records and accounting records 
are placed on the data set according to class and 
priority. When jobs terminate, an entry is made for 
SYSOUT information according to class. The job 
queue information is deleted following the process
ing of the last SYSOUT record. 

2. Scheduler Work Area Data Set (SWADS)-this data 
set is created when an Initiator is started on a parti
tion basis. A SWADS contains the Scheduler work 
tables that are created and maintained throughout 
the scheduling routines. 



3. Spool Data Set (SYSl.SYSPOOL)-this data set 
contains the Job Control Information, commands 
and input from the reader. On the output side, the 
data set contains output and messages related to 
each job execution. 

We will discuss in the following part of this paper the 
relevance of the spooling data set. It is apparent that the 
dichotomy of the queue information into a number of 
parts has reduced contention problems. 

Job entry subsystem (JES) 

One of the broadest functional changes to the VS1 
Scheduler was the incorporation of the Job Entry Subsys
tem. JES incorporates a high-speed spooling mechanism 
into a pageable centralized routine for Scheduler usage. 
JES is so structured that apart from a minimum resident 
response routine, it is pageable in all or in part depending 
upon the frequency of usage. 

The first external introduction to JES is through the 
input reader. The Job Entry Peripheral Services (reader 
and writer) handles all the system input (SYSIN) and 
output (SYSOUT). The JES reader is designed to read 
and immediately pass the input data to the Spool Man
ager. This changes the sequence of interpretation so that 
Job Control Language (JCL) interpreter now runs as a 
subroutine of the Initiator. This delayed interpretation 
can be prevented by entering a new parameter: TYPRUN 
= SCAN on the job card. In this case, a simple error scan 
is performed and the job is flushed through the reader. 
Once the errors are corrected, the job must be resubmit
ted. 

The input from the JES reader is submitted to the Job 
Entry Central Service routines. An internal job name has 
been assigned at this time which is a combination of the 
user job name plus a unique system number. The central 
service routines will separate the input from the J CL and 
write both to the SYSl.SYSPOOL data set. In like man
ner, in-line procedures and entries from the procedure 
library (SYSl.PROCLIB) are placed in a special proce
dure SPOOL area. The division into separate areas ena
bles the JES routines to minimize disk-access contention 
and thus improve performance. JES maintains an infor
mation directory to allow rapid retrieval from all areas of 
the spool file. 

The JES reader for card devices does not terminate at 
the end of file as in MFT. This facility has become known 
as a "hot" reader facility. Another advantage of the JES 
readers and writers is the single reentrant copy main
tained in the pageable system area assuring user access to 
all partitions. 

In order to provide greater flexibility of use, the JES 
parameters are stored in the parameter library 
(SYSl.PARMLIB) and may be modified during the Ini
tial Program Load (lPL) process. This facility is useful in 
modifying the number and size of the JES buffers and 
greatly reduces the need for a new system generation. 
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Remote entry services 

An important adjunct to the Job Entry environment is 
Remote Entry Services (RES). RES is a logical terminal 
extension of Job Entry using the Remote Terminal Access 
Method (RTAM) to drive the terminal devices. Just as 
JES is intended as an incorporation of HASP techniques 
into the center of the system, RES is based on HASP 
Remote Job Entry routines and in fact uses modified 
HASP work-station support. 

RES supports Point-to-Point (leased and dial-up) and 
the Two-Wire and Four-Wire Half Duplex lines. As with 
HASP, RES supports multi-leaving which is synchro
nized, two-directional transmission between two process
ing units. RES, like most of JES, uses relocate facilities 
and is therefore pageable. 

The RES design is totally integrated into the JES struc
ture so that RES is treated as a logical extension of the 
JES reader and writer and thus communicates to the 
system in the same manner. 

MIGRATION 

One of the first and fundamental questions that arises 
about the virtual systems is the ease, or lack of ease, of 
moving current programs to the new system. As I indi
cated in the introduction to the paper, many of the exist
ing capabilities of current Operating System programs 
were moved to the relocate counterpart totally or largely 
intact. We should look at some specific areas to get a 
better comprehension of the differences. 

The first introduction to a new operating system is the 
vast body of reference information intended to introduce 
the different competence levels to the software. In the 
case of VS1, this begins with the IBM System/370 Sys
tem Summary (GA22-7001) which is intended as a gen
eral introduction to the system providing an overview of 
new and expanded capabilities. In like manner, the OS; 
VS1 Planning and Use Guide (GC24-5090), A Guide to 
the IBM System/370 Model 145 (GC20-1734) and the 
OS;VS1 Features Supplement (GC20-1752) are intend
ed to introduce the reader to a more specialized and in
depth treatment of relevant system components. The 
general mode of the documentation has been very favor
ably received since it embodies a strong technical con
tent with an easy to use style. The documentation has 
been based on the existing operating system document a -
tion but style changes have had a favorable effect on the 
readers. 

The documentation is presented in specialized packages 
that attempt to match relevance of information with the 
specialized need to know. Thus an operator does not have 
to dig through as much generalized information to find 
the fundamentals of operation. 

The system generation process (SYSGEN) has been 
simplified by the reduction of options. As I indicated ear
lier, many of the former optional control program func-
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tions have been incorporated into the virtual control pro
gram portion of the pageable space and thus removed 
from the option process. In like manner, the use of 
JESPARM feature represents a considerable advantage 
when the specific JES parameters should be modified. 

The operator interface to the operating system is 
largely identical to MFT. Some additional work is done 
during the Master Scheduler Initialization routines caus
ing some additional messages and perhaps responses on 
the part of the operator. In like manner, dumps of virtual 
memory will initially cause the operator to speculate as to 
what is happening, but by and large the operators to the 
VS1 system have not found the system more difficult to 
operate or for that matter really any different from their 
current procedures. 

The migration of the programmers to virtual memory is 
largely straightforward. The programmers are faced with 

a removal of concern for memory management and over
lay in their application substructure. Once again the vir
tual dump is usually larger but comparable to a large 
degree to the MFT dumps. Initially, experience has 
shown that some time is spent in locating some of the 
familiar tables that have been separated in the protected 
sections of the system tables. But in the long run, the job 
seems simplified by the grouping of partition-relevant 
information in a single place-the partition. 

The adjustment to VSl has been very rapid. Many 
users have compared the ease of migration to VSl with 
the ease of moving to a new release of MFT. In like 
manner there has been genuine surprise at the increase in 
functional ability and the increased volume of job 
throughput. 
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INTRODUCTION 

The verification of a virtual storage architecture shares 
many commonalities with the verification of any com
puter architecture. This paper will therefore define an 
approach to architecture verification in terms which are 
independent of virtual storage. It will then discuss the 
application of this approach to a virtual storage architec
ture. The paper will conclude with a discussion of a 
method for determining the completeness of an architec
ture verification process on a microprogrammed com
puter. 

ARCHITECTURE 

The functional description of a computer as observed 
by an external user or programmer is usually contained in 
an architecture for that computer. It is the purpose of an 
architecture to provide a functional description based 
upon the requirements of the external user or program
mer, independent of any particular implementation. In 

. fact, an architecture may serve as the functional descrip
tion for several models of a computer family with each 
model implementing the same functions in different tech
nologies or media. The architecture is the base for deter
mining functional compatibility between models. 

The architecture will include a definition of the priori
ties for handling all simultaneously occurring functions. 
Where the architecture justifiably defines the priority to 
be "unpredictable," the exact priority definition is left to 
each implementation. 

An architecture defines two types of entities. The 
computer state entities define the state of the computer as 
it can be interrogated by the external user or program
mer. Some examples of computer state entities are: main 
storage contents, programmable register contents, com
parison and arithmetic computation result indicators, 
interrupt mask indicators, and supervisor or problem 
state indicators. 

The computer function entities define processes which, 
when performed, result in a change, or a significant lack 
of change, in the computer state entities. The most famil· 
iar computer function entities are the excution of rna-
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chine instructions. These instructions are usually 
grouped into one or more classifications bas~d upon the 
type of operands on which they operate. Some examples 
of these classifications are: storage instructions, register 
instructions, decimal arithmetic instructions, floating 
point arithmetic instructions, emulation instructions, 
and timing facility instructions. Often these classifica
tions are analogous to certain optional or standard com
puter features. 

Other examples of computer function entities are: 
interrupt processing, manual operations, and timing facil
ities. 

Architecture verification in the context of this paper is 
the process which verifies whether a particular computer 
implementation conforms to the functional definition in 
its architecture. In terms of the previously defined archi
tecture entities, this means: execute the computer func
tion entities and observe and verify the resulting change 
(or lack thereof) in the computei state entities. It is gen
erally expected that the architecture has already been 
verified as adequately meeting the external user's 
req uirements . 

TEST PHILOSOPHY 

To understand the principles discussed later in this 
paper it is necessary to be familiar with the circumstan
ces under which an architecture verification test is per
formed. Architecture verification is only one of the many 
tests performed during the course of designing a comput
er, building a prototype, and manufacturing a finished 
product. 

In addition, these tests, including the architecture veri
fication, may be performed repeatedly at different times 
within a development cycle. 

Architecture verification tests are usually conducted in 
two environments. In the first environment, each com
puter function entity is tested under static or quiescent 
conditions with no interaction from other function enti
ties. Ironically, testing in this environment has been the 
most difficult to control. 

Historically, it has been characterized as being greatly 
dependent on manual operations. Tests were entered into 
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the computer manually and the results recorded man
ually. The test was a slow and tedious process. Heavy 
reliance on human intervention created many exposures 
in the effectiveness of the test. Oversights and discrepan
cies in recording test results, misunderstandings in 
communicating exact manual procedures from one group 
to another, and oversights in performing required tests at 
all necessary stages of development are results of human 
error in performing the manual procedures. 

Improvements in the control of testing in the static 
environment will be evident in the discussion under 
TEST OBJECTIVES and TEST APPROACH. 

The second environment involves testing the computer 
function entities under dynamic conditions. Differing 
amounts of random interaction are introduced to verify 
that there are no problems when many function entities 
contend for CPU (central processing unit) resources. Test 
programs are written which strictly control and verify the 
execution of the various computer function entities. 

These test programs execute under a supervisor pro
gram which allows them freedom in controlling all com
puter state entities. The supervisor program controls the 
initiation and termination of execution of the test pro
grams. Interaction between the function entities tested by 
concurrently executing test programs occurs at random. 
The existence of the test and supervisor programs ensures 
the capability to repeat the test as needed and decreases 
the amount of manual procedures which must be commu
nicated between various groups performing the test. 

Deficiencies in the test result from the fact that it is 
still a manual procedure to verify the thoroughness of the 
test and the test programs usually employ only valid 
architecture entities. The latter deficiency results from 
the assumption that the computer correctly detects archi
tecture violations. Enhancements to testing in the 
dynamic environment will be discussed under VIRTUAL 
STORAGE. 

TEST OBJECTIVES 

Based upon the previous discussion, the following desir
able traits or objectives can be defined for a basic test 
approach to be used to verify an architecture in the static 
test environment . 

• Controlled Environment-The test must be per
formed on a static or quiescent computer with no 
interaction between functions. 

• Ease of Use-The test must be easy to perform 
(usually implying a minimum of manual interven
tion) and the results must be easy to interpret. It will 
be recalled that the test will be performed at differ
ent times in the development of a computer. As may 
be expected, there are differing users who will per
form the test and have differing information require
ments from the results of the test. 

In addition, the test will be performed on a variety of 
computers or models with different features 
installed. It must be easy to perform the test on each 
of these computers with little concern on the part of 
the user for the features installed. 

• Repeatable-Because of the number of times the test 
will be performed, it must be repeatable with the 
expectation that the results of the previous tests will 
be duplicated each time it is performed. 
Often a simulator is used in the early stages of com
puter development. It is advantageous to develop an 
architecture verification process which not only can 
verify the architectural implementation of the simu
lator but also can verify the architectural imple
mentation of the resulting computer. This will ensure 
that the computer accurately duplicates the design 
in the simulator. 

• Thorough-It is the intent of the test to verify 100 
percent of the architectural implementation. How
ever, in practice some compromise is usually made 
between the thoroughness of the test and the time 
and cost required to achieve 100 percent verification. 

• Transparent-The test must be performed in a way 
which does not alter the architectural implementa
tion being verified. 

• Fast-Due to the number of times the test is per
formed, it is desirable to perform the test as fast as 
possible. An increase in speed can be obtained by 
decreasing the amount of manual intervention 
required. 

• Model Independent-The test should be model inde
pendent to allow the same test to be used in verifying 
multiple implementations of the same architecture. 
This will also verify the compatibility between the 
computer models. 

• Extendable-While the test should be model inde
pendent, it should also be extendable to allow the 
testing of model dependent results (architecturally 
"unpredictable") when required. This capability will 
also allow extension of the test if additional architec
tural verification requirements are determined. 

• Portable-The test tool must be easily transportable 
from one computer or model to another, whether 
they are located at the same computer installation or 
at locations separated by large geographic distances. 

In addition to the above objectives, there is one addi
tional objective not directly related to the effectiveness or 
usability of the test vehicle itself . 

• Ease of Implementation-The test tool should be 
easy to implement, providing as much flexibility in 
the implementation process as possible. As indicated 
above, the test should be easily extendable to provide 
additional architectural verification as the require
ments are determined. 
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TEST APPROACH 

The test approach for verifying an architecture in the 
static test environment is divided into the following parts: 
control program, test cases, and support programs. 

Control programs 

The control program is a "stand-alone" software pro
gram implemented in the architecture to be tested. It 
controls the initialization of the computer state entities, 
the execution of the computer function entities, the inter
rogation and verification of the resultant computer state 
entities, and the indication, to the user, of the test results. 
It is not designed to explicitly verify any portion of the 
architecture implementation. 

The_numher oJ failures which may be experienced 
during execution of the control program is reduced by 
minimizing the number of different computer functions 
and computer state entities utilized in implementing the 
control program. 

Selection of the computer entities to be used is based on 
their simplicity. The simplest entities are usually those 
whose principles are common to the definition of most 
computer architectures and are usually included as 
standard features on the computer. Due to their simplic
ity and familiarity, these computer entities are less sus
ceptible to design errors and any failures which do occur 
are more easily defined. 

The control program systematically interrogates a 
computer state entity for each optional computer feature. 
The results of the interrogation indicate to the control 
program which optional computer features are installed. 
This information is used by the control program to deter
mine which tests may be meaningfully executed. The user 
is also provided the capability to manually select the tests 
to be executed, overriding the selection of tests made 
automatically by the control program. 

The control program indicates to the user the success or 
failure of the computer in conforming to its architecture. 
For most users it is sufficient to provide this indication in 
a brief message for each installed computer feature. The 
individuals responsible for defining and correcting a 
problem will have need to manually select the messages 
providing more details concerning the problem. 

The time for execution of the test is reduced by mini
mizing the amount of manual intervention required for 
normai execution and by employing efficient, straightfor
ward coding techniques in designing and implementing 
the control program. Equally important is the means by 
which the control program obtains the description of the 
test to be performed. The information required to 
describe the test is defined in the next section. The format 
in which this information is presented to the control pro
gram should be carefully selected to advantageously use 
the properties of the computer entities utilized by the 
control program in handling the information. 

Test cases 

A test case is a data record providing information to the 
control program completely defining a test to be executed 
by the control program. Each test verifies the action of 
one computer function entity upon a single combination 
of all the computer state entities. Consequently, many 
test cases are required to test the action of all computer 
function entities upon all combinations of all the com
puter state entities. 

Each test case contains the following information: 

1. Computer function entity 
2. Computer state entities 

a. initialization values 
b. resultant values 

3. Test case execution control information 

The computer function entity is usually represented by 
a single computer instruction with a prescribed beginning 
and termination. Computer function entities, which are 
not executions of computer instructions, are represented 
in the test case by a sequence of one or more computer 
instructions which initiates execution of the computer 
function entity. 

As indicated earlier, the computer state entities define 
a particular state of the computer, including contents of 
main storage and programmable registers. The test case 
defines the initialization values of the computer state 
entities for use by the control program in setting the 
computer to that particular state prior to execution of the 
computer function entity. The resultant values of the 
computer state entities are also defined in the test case for 
use by the control program in verifying that the execution 
of the computer function entity results in the expected 
changes in the computer state entities. 

The test case execution control information defined in 
the test case provides a communication link from the 
individual writing the test case to the control program. 
When determining which tests are to be executed, the 
control program must be able to determine if a test case is 
dependent upon the presence or absence of a particular 
computer feature. The control program must also be able 
to determine if a test case is dependent upon a particular 
computer state entity having a specific value. Changes in 
the architecture and detection of errors in the test cases 
sometimes result in changes to the test cases. 

The control program must have the capability to indi
cate, to the user, the change level of the test case being 
executed. In addition, the control program must have the 
capability of uniquely identifying each test case from all 
other test cases. All of the above situations require that 
specific information be communicated from the individ
ual writing the test case to the control program. 

Following are some principles \"llhich, if applied during 
the writing of test cases, tend to improve the overall effec
tiveness of the test: 
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• In general, each test case should be independent of 
the other test cases. This is achieved by initializing 
all pertinent computer state entities in each test case 
where they are used. An exception to this principle is 
the situation where several test cases require large 
amounts of main storage to be initialized to the same 
values and execution of the test cases is not expected 
to change the contents of this main storage. 

• The test of the architecture should be as complete as 
possible. One method of enhancing the completeness 
of the test is to subdivide the entire architecture into 
manageable pieces for the purpose of test case writ
ing. Usually the architecture can be satisfactorily 
subdivided for this purpose into the classifications 
discussed in the ·section entitled ARCHITECTURE. 

Once the architecture has been subdivided, the com
pleteness of the test can be further enhanced by systemat
ically writing test cases which terminate at each architec
turally defined termination point. Execution of these test 
cases will ensure that the computer correctly detects all 
architecture violations and all functional entity error 
conditions. 

• The termination of a test case should not depend on 
the occurrence of any external event. This depend
ence can be avoided by ensuring that no continuous, 
never-ending program loops result when using com
vater instructions to test the computer functional 
entities. 

• It is clear that no computer states which are archi
tecturally "unpredictable" should be included in the 
architecture verification test which is performed on 
all the computer models. However, it may be benefi
cial to test these model dependencies and other 
implementation peculiarities as an extension to the 
architecture verification test. 

• Usually the number of computer state entities makes 
it .prohibitive to attempt to verify the value of all 
computer state entities for all possible executions of 
all computer function entities. Clearly, all computer 
state entities which are architecturally defined to 
change or remain constant must be verified. In addi
tion' it may be equally important to verify that the 
values of certain other computer state entities remain 
unchanged. 

It is clear from the above discussion that the number of 
test cases included in the architecture verification test 
will be quite large. It follows that some procedures should 
be established to control test case development, mainte
nance, and distribution to the many users. 

• The independence of the test cases from each other 
and from the control program allow several individu
als to simultaneously develop the control program 
and test cases for individual classifications of com
puter function entities (once the test case format has 

been defined). Procedures must he established to 
ensure that test cases are implemented for all classi
fications of computer function entities. 

• Due to the large number of test cases, it is convenient 
to organize them into a library system. Procedures 
must be established for adding test cases, deleting 
test cases, and changing test cases already in the 
library. 

• Many times architecture implementation problems 
are detected by other programs or other tests. Proce
dures must be implemented which ensure that a test 
case is written to adequately test the problem. The 
test cases resulting from these procedures will 
improve the completeness of the architecture verifi
cation test. 

• Changes in the architecture and detection of errors in 
the test cases sometimes result in changes to the test 
cases. Procedures must be established which ensure 
that the library contains the latest level test cases for 
the latest level architecture. 

• It was indicated earlier that the architecture veri fica -
tion test is performed many times by many different 
users. Procedures should therefore be established for 
distributing the test to those individuals having a 
need for it. Magnetic tape and disk are usually satis
factory media for transporting and executing the 
programs. 

Support programs 

As previously indicated, the format of the test case, 
when presented to the control program, should be care
fully selected to allow simple and efficient use of it by the 
control program. This usually means that the test case 
format is closely associated with the architecture and the 
internal code of the computer. 

Most often this format is not the easiest and most effi
cient with which an individual can work. Usually a 
"higher level" format is defined for use by the individuals 
writing the test cases. A translator program is required to 
translate the test case definition from the "higher level" 
format to the format accepted by the control program. 

The remaining support programs are library mainte
nance programs These programs may take many forms in 
automating the library maintenance procedures discussed 
in the previous section. 

All of the above support programs are written to exe
cute on a computer whose architecture is not being tested. 
This procedure has the following advantages: 

• Test cases can be developed in parallel with the 
computer they are to test. 

• These programs can use existing computer facilities, 
such as interactive terminals and data management, 
to make the jobs of test case development and main
tenance simpler and more efficient. 
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TESTING VIRTUAL STORAGE 

Upon investigation of the facilities provided in a virtual 
storage environment, it would be apparent that most of 
them are implemented in software. Facilities such as 
paging, page fixing, resource allocation, and task selection 
are some examples. Since these functions are imple
mented in software, they will not be included in the archi
tecture definitions of computer function entities and 
computer state entities. Therefore, the verification of 
these facilities is not incl uded in the architecture verifica
tion process discussed by this paper. 

The virtual storage environment does, however, contain 
several architecturally defined computer function entities 
and computer state entities. Some examples of these 
computer entities are: address translation, page fault 
detection, associative arrays, page boundary crossings, 
page referenced indicators, page changed indicators, and 
computer instructions to control and interrogate the vir
tual storage environment. All of the architecturally 
defined computer entities must be tested by the architec
ture verification process. 

This testing is achieved by writing additional test cases 
for execution with the static environment approach dis
cussed in the section entitled TEST APPROACH. 

Test cases must be written to verify correct execution of 
the virtual storage computer function entities. The test 
cases previously generated for the basic architecture must 
be rewritten to include verification of the change in the 
virtual storage computer state entities and verification 
that the execution of the address translation entity is 
transparent in the execution of the basic computer func
tion entities. In addition, test cases must be written to test 
any "speciai case" computer function entities which 
execute differently in the virtual storage environment 
than they do in the non-virtual storage environment. The 
virtual storage environment may also give rise to some 
model dependencies, such as virtual equals real transla
tion, for which it is desirable to write additional test 
cases. 

The section entitled TEST PHILOSOPHY discussed 
testing in a dynamic environment utilizing many test 
programs executing under control of a supervisor pro
gram. The same section discussed some deficiencies in the 
thoroughness of the test conducted in the dynamic envi
ronment. Most of these deficiencies can be eliminated by 
writing an additional test program which executes under 
control of the same supervisor program and utiiizes the 
virtual storage computer entities. 

Figure 1 depicts the new, simulator-test program in the 
dynamic environment. It is referred to as a "simulator
test program" because it actually simulates the architec
turally defined computer entities associated with a super
visor or privileged mode of operation. Only those supervi
sor or priviieged mode entities used by the static environ
ment control program are simulated. In addition, this 
simulator-test program controls the virtual storage 
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Figure I-Dynamic test environment incorporating virtual storage 
capabilities 

address translation entity in such a way that the absolute 
addresses of the architecture verification test control 
program are interpreted as virtual addresses and are 
translated to real addresses in the main storage controlled 
by the dynamic test supervisor program. 

The combination of the two techniques allows the 
architecture verification test control program to execute 
in the dynamic environment controlled by the supervisor 
program as though it were the only program in the com
puter. The benefits of this arrangement are: 

• The completeness of the architecture verification test 
in the dynamic environment is enhanced by execu
tion of the basic test cases in this environment. 

• The need to rewrite the basic test cases for execution 
in the virtual storage environment has been elimi
nated by actually executing the basic test cases for 
execution in the virtual storage environment. 

• The concept of multiple virtual memories is verified 
by concurrent execution of multiple copies of the 
simulator-test program. 

The following limitations imposed. by the changes in the 
execution environment restrict which of the basic test 
cases can be correctly and meaningfully executed in the 
dynamic environment: 

• Test cases depending upon specific timing considera
tions cannot be executed in the dynamic environ
ment because of the interactions with the other test 
programs. 
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• Test cases requiring manual intervention may not be 
executable due to limitations in the manual opera
tion-simulator-test program interface. 

• It is not meaningful to execute test cases employing 
supervisor or privileged mode operations since these 
operations are simulated by the simulator-test pro
gram and do not result in an actual test of the archi
tecture implementation. 

TEST COMPLETENESS 

One of the test objectives identified in the section enti
tled TEST OBJECTIVES is thoroughness. Some proce
dures have been discussed which can help ensure a thor
ough test. This section discusses an approach for measur
ing the completeness of an architecture verification test as 
applied to a microprogrammed computer. 

In a microprogrammed computer, most of the external 
specifications of the architecture are implemented in 
microcode. As a result, some software debugging tech
niques can be employed. Specifically, a microcode trace 
could be obtained, using some hardware or software tool, 
and the results analyzed to determine which paths 
through the microcode have been exercised and which 
have not. However, the number of possible paths through 
the microcode and the number of test cases which would 
have to be individually traced make this approach pro
hibitive. 

An alternative is to record an indication of which 
microinstructions have been executed and which have 
not. Additionally, an indication of which microinstruction 
branches have been executed can be recorded. Since only 
the total number of microinstructions and branches exe
cuted is of importance (and not the order in which they 
were executed), a separate record is not required for each 
test case. Only a composite record reflecting the execution 
of the entire set of test cases is required. However, for 
informational purposes, separate records of the static and 
dynamic environments may be desirable. 

The completeness of the architecture verification test is 
then expressed as the percentage of the total number of 
microinstructions which were executed and the percent
age of the total number of microinstruction branches 
which were taken. In analyzing the results of complete
ness verification, two pitfalls should be avoided: 

• The total percentage coverage figures can over
shadow the fact that one or more computer function 
entities may not be tested at all. 

• An individual writing test case to test a specific 
computer function entity may desire to know what 
the completeness of his test case development activ
ity is at a given point in time. For the percentages of 
a partial completeness report to be meaningful, it 
should be ensured that they are based on the number 
of microinstructions and branches which the test 
cases are designed to test. 

With some knowledge of the implementation of the 
architecture and the information as to which microin
structions and branches have been covered, the individual 
writing test cases can determine which test cases are 
required to fill the holes in the test. Discretion should be 
used here, for the effort involved in generating test cases 
usually follows the law of diminishing returns. That is, it 
generally will take more effort per microinstruction to 
move from a 90 percent to a 95 percent coverage than it 
wi11 to move from a 50 percent to a 75 percent coverage. 

SUMMARY 

This paper has described in general terms the techniques 
for implementing a basic architecture verification process 
and applying that process to a virtual storage architec
ture. This will allow the reader to mold the techniques 
and apply them to a given, specific architecture. The 
exposures and principles indicated throughout the paper 
will aid the reader in implementing a thorough and effi
cient test. 
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On a mathematical model of magnetic bubble logic 
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INTRODUCTION 

In 1967, A. H. Bobeckl showed that, under suitable magnetic 
conditions, small discrete cylindrical magnetic domains can 
be stably supported in thin platelets of certain orthoferrite 
materials, and these domains can be moved within the ma
terial by the application of suitable external magnetic fields. 

These cylindrical magnetic domains, commonly referred 
to as bubbles, have an application in performing memory 
function, since the presence or absence of a bubble at a 
particular location can be treated as binary information. 
Furthermore, these bubbles can be utilized to perform logic 
functions, since they can be manipulated by the application 
of external magnetic fields as well as by the magnetostatic 
repulsion between adjacent bubbles. 

Some remarkable features of bubble devices are the realiza
tion of both memory and logic functions in the same platelet 
of bubble materials, the very low power dissipation, the high 
storage density and the low cost. For these reasons; bubbles 
have been investigated extensively in recent years. Especially, 
the design of a bubble computer4 is very interesting. 

This paper is concerned with a mathematical model of 
bubble logic. A simple model using only the bubble transfer 
operation was studied earlier by R. L. Graham,2 who showed 
that there exist combinational functions of 11 or more vari
ables that cannot be computed by his model. A. D. Fried
man and P. R. :\lenon3 extended Graham's model by intro
ducing different types of operation which enabled the com
putation of all combinational functions, and then discussed 
the problem of efficient computation from the view'})oints of 
time and space requirements and geometrical requirements 
imposed by the fact that. bubble interactions can occur only 
between physically adjacent locations. 

This paper first briefly reviews Graham's results. After 
that further properties of his model are investigated from 
the view'})oints of the realization of combinational functions 
and geometrical requirements mentioned above. K ext, 
Graham's model is extended by introducing a different type 
of bubble interaction, the magnetostatic repulsion between 
adjacent bubbles, which seems to be more practical. The com
putational capabilities are especially investigated in the 
present model. 

The features of the model are the use of only the two types 
of operation, i.e., bubble transfer and conditional bubble 
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transfer, and the restriction on space used for the computa
tion, \vhich meet both the engineering and economical re-
quirements. . 

DESCRIPTION OF THE ~\IODEL 

Operations on bubbles 

Let S be a finite set of n discrete locations at which bubbles 
may lie. Let X be any subset of S which is actually occupied 
by bubbles. It is assumed, without loss of generality, that all 
locations of S are adjacent to one another so that interaction 
between any pair of locations is possible. The following two 
types of operation are introduced on the set S. The first type 
of operation is the transfer denoted by the form e = (a, b), 
and the second one is the conditional transfer denoted by the 
form e= (ab, c). These operations are called commands. The 
command e = (a, b) or (ab, c) transforms the locations of the 
bubbies from X to Xe by the following definitions. 
transfer: 

I(X-{aDU{b} ifaEX,bEX, 
XCa,b) = 

X otherwise 

conditional transfer: 

I(X-{bDU{C} if a, bEX, cEX, 
XCab,c) = 

X otherwise 

A program P (of length k ~ 0) is defined to be a finite 
sequence P = el e2 ... ek of commands. The length of any pro
gram P is denoted by 19 (P). A program of length zero, 
called the empty program, is denoted by A. For any bubble 
location X and any program P = el e2 ... ek, XP is defined by 

XP= ( ... (Xe1)e2 .. . )ek. 

Therefore, in general, a program P maps the set of all 2n 

subsets of S into itself. 

T'!.DO dimens'ional bllbble logic 

Let us now consider the problem of computing the Boolean 
functions of m variables with appropriate programs. Follow
ing Graham,2 two locations, al and aI, are used to represent 
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x = 0 x = 1 

Figure i-Configurations which represent x = 0 and x = 1 

the value of a binary variable x, as ShO,,",ll in Figure 1. For m 
variables, a set of 2m locations is used which is imagined to 
be arranged in pairs, as illustrated in Figure 2. 

A restriction is imposed on the locations, \,.hich can be 
used for the computation of the Boolean functions of m 
variables, namely 8 = {aI, iiI, ... , am, iim I. 

Note that the space which can be used for the computation 
of the Boolean functions is not unbounded, but is defined by 
the input space. 

For in variables, Xl, X2, ... , Xm , let WI, TT'2, ... , HTzm be all 
2m inputs, and let Xl, X 2, ••• , X 2m be the corresponding 
bubble locations. Let f(Xl, X2, ... , Xm) be a Boolean function 
of m variables. A Boolean functionf(xl, X2, ••. , Xm) is said to 
be realized by a program P if the follO\ving condition is 
satisfied: 

There exist some location pE 8 and some program P such 
that for i = 1, 2, ... , 2m , 

pEXiP if f(W i ) = 1, 

P~XiP if f(W.,) =0. 

:K ote that ~._ ·Talue of a Boolean variable is represented by 
using two locations, but the value of a Boolean function is 
represented by the presence or absence of a bubble in a par
ticular location. 

Let fa (i) be the "lalue of the function which is represented 
in a location a, after application of the ith command ei of a 
program P = ele2 ... ei ... ek. If ei+l = (a, b), then 

fa(i+l) =fa(i) ·fb(i) 

fb(i+ 1) = fa(i) +fb(i) 

Where·, + are logical AND and logical OR, respectively. 
We usually write fa(i)fb(i) instead of fa(i) ·fb(i). If eHl= 
(ab, c), then 

fa(i+l) =fa(i) 

fb(i+ 1) = fb(i)fc (i) +fb(i)]a(i) 

fc(i+ 1) + = fa (i)fb(i) +fcCi) 

where ]a(i) is the complement of fa(i). 

Figure 2-Symbolic arrangement of locations for computing Boolean 
functions of ~\f \'nrinble~, 

In the present model of bubble logic, two types of com
mands can be used, i.e., transfer and conditional transfer, 
but in Graham's model, only transfer commands can be 
used. Thus, the present model is an extension of Graham's 
model. The main object of this paper is to examine the com-. 
putational capabilities of the proposed model. 

SO:;'\lE BASIC PROPERTIES OF GRAHA~l'S l\10DEL 

In this section, Graham's results are briefly reviewed in 
order to compare them with the present results. After that, 
further properties of his model will be investigated from the 
viewpoints of the realization of the Boolean functions and 
geometrical requirements imposed by the fact that bubble 
interactions can occur only between physically adjacent loca
tions. 

The following non-decreasing overlap (NDO) theorem ac
credited to W. Shockley plays a fundamental role in Gra
ham's model. 

Theorem 1 (NDO Theorem): Let Xl and X2 be tvw arbitrary 
initial sets of locations of bubbles and let P be any program 
using only bubble transfer commands. Then 

I X l
PnX2P I ~ I X1nx2 1, 

where i X I denotes the cardinality of set X. 
The first important consequence of the NDO theorem is 

the following result. 

Proposition 2: There is no replicating program p* using only 
the bubble transfer commands. 

A program P is said to be a replicating program if the fol
lowing conditions are satisfied: 

Let 81 and 8 2 be two fixed subsets of 8, such that 8 1n 8 2 =~, 
and let 8 be a one to one mapping from 8 2 onto 81• Then, for 
each X, such that! X 1~21 xn81 i, 

1. Xp n81=Xn8l 

and 

In other words, the replicating program P* creates a 
"copy" of xn 81, in 8 2 without disturbing xn 8 1• 

Another consequence of the NDO theorem is the following 
result. 

Proposition 3: There is no binary addition program P+ using 
only the bubble transfer commands. 

A binary addition program P+ performs binary addition in 
the following way. 

The definition of a binary addition program in Graham's 
paper2 is repeated here. 

Assume 81 denotes a set of m~ 1 pairs of locations of 8, 
82 denotes another set of m pairs of locations disjointed from 
8 1, and 8 3 denotes a set of m+ 1 pairs of locations, disjointed 
from 8 1 and 8 2 • These sets can be imagined as arranged as 
shov,n in Figure 3. 
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Figure 3-Symbolic arrangement of locations for binary addition 

An integer M, O~J[ ~2m, can be represented in the m pairs 
of 81 by letting the jth pair of 81 denote the jth binary digit 
in the binary expansion of 111. This can be done using the 
configurations shown in Figure 1. Thus, for m = 5, the con
figuration shmvn in Figure 4 would denote the integer 
10010(2) = 18. 

The binary addition program P+ would operate by starting 
with 83 in some fixed configuration and with arbitrary integers 
A and B loaded into 81 and 82, respectively, to form the ini
tial state X; after applying P+ to X we should get the sum 
A+B'in 83• 

The following theorem is the main result obtained by 
Graham, and indicates one of the limitations of his model for 
realizing Boolean functions. 

Theorem 4: There exists a Boolean functions of 11 variables 
which cannot be reaiized by a program of bubble transfer 
commands. 

At present, it is kno'wn that, for m= 1, 2, 3 and 4, all 
Boolean functions of m variables can be realized by his model, 
but it is not known whether all Boolean functions of 5 vari
ables can be realized. 

Some properties of programs using only transfer commands 
are now investigated. 

Let P (f) denote a program which realizes a Boolean func
tionj, and let pep,!) denote the location at which the value 
of j is represented by the presence or absence of a bubble, after 
applying a program P. Hereafter, the same character shall 
be used to represent both a variable (or its complement) and 
its corresponding input location, since these are not confused. 

For example, first consider a Boolean function j(x, y) de
fined by Table 1. Thus, in this case, lx, x, y, yl will be taken 
to be the set of 8 as shown in Figure 5. 

Figure 4-Configuration representing an integer 10010 2 = 18 
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Table 1. Truth table for f(x, y). 

I 

! t 
X I y f f (X ,y) -of7l' o 1 I 1 

a 

I 

, 
I 

0 

It is easy in this case to find an appropriate P(f). For ex
ample, we can take 

p(n = (y, x) (y, x) (x, x) 

p(P,j)=X 

For any Boolean function j(XI' X2, ... , Xm) of m variables, 
we define hi' j(Xi ,Xi), and J by 

J= 1-j(xt, X2, ... , Xm) 

Proposition 5: If a program P (n exists, then P (fxJ is ob
tained from P(f) by complementing xi, ar.J letting 

{Xi if p(P,j) =Xi 
pep, jXi) = {Xi if pep, j) = Xi 

lp(p,j) otherv;'ise 

Proposition 6: If a program P (f) exists, then P (f(Xi ,Xi» is ob
tained from p(n by permuting Xi and Xh and letting 

j
Xi if pCP, j) =Xj 

pep, j(Xi,Xj» = Xj if pep, j) =Xi 
P (P, j) other'wise 

These results follow directly from the definition of the pro
gram. 

Proposition 7: If P (f) = (aI, a2) (a3, a4) , , . (a2r-l, a2r) and 
pep, j) =a2r-1 or a2r, then 

P (J) = (a2, al) (a4' a3) , . , (a2r, a2r-l) 

_ ja2r_1 if pep, f) = a2r-1 
pep, f) = 

a2r if p(P,j) =a2r 

Figure 5-Symbolic arrangement of locations for computing Boolean 
functions of two variables 
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Proof: The proposition is proved by induction on r. 

By the application of the program p(n = (aI, a2) or P(J) = 
(a2, al), it follows thatfal(I)=ala2,faz=al+a2 or gaz(l) = 
a2al, gal (1) =a2+al respectively. By De-.:\10rgan's theorems, 
]al(l) =gal(l) and]az(l) =gaz(I). Thus, for r= 1, the propo
sition is true. 

Next, assume that the proposition is true for 1, 2, ... , r-l. 
By the application of the command (a2r-l, a2r) or (a2r, a2r-I) ' 
it follows that 

or 

faZr_1 (r) = fa2r-l (r-l)fazr(r-l), 

fazr(r) = fa2T-l (r-l) +fazr(r-l) 

ga2T(r) = gaZT(r-l)ga2T_l (r-l), 

gaZT_l (r) = gazrCr-l) +ga2T-l (r-l). 

By the induction hypothesis, 

Therefore, 

ga2T-l (r-l) = ]azT-l (r-l), 

gazT(r-l) = ]azr(r-l). 

gaZT(r) = ]azr(r-l)]aZT_l (r-l) = ]a2T(r), 

gaZT_l(r) =]azT(r-l) +]aZT_l(r-l) =]aZT_l(r). 

This completes the proof. 
Let f(Xl, X2, ... , Xm) be a Boolean function. Taking account 

of the operations . and +, we write 

f(XI, X2, ... , Xm; ., +) instead of f(XI, X2, ... , Xm). 

By the duality in the effect of a command, we easily ob
tain the following result. 

Proposition 8: If P(f(Xl' X2, ... , Xm; ., +)) = (aI, a2) ... 
(a2r-l, a2r) and P(P,j(Xl' X2, ... , Xm ; ., +») =a2r-l or a2r, then 
a program which realizes the Boolean function obtained from 
f (Xl, X2, . . . Xm ; ., +) by permuting . and +, is given as 
follows. . 

P(f(XI' X2, ... , Xm; +, .») = (a2, al) (a4' as) ... (a2r, a2r-l) 

(pP,f(XI, X2, ... , Xm ; +, .)) =p(P,f(XI, X2, ... , Xm ;·, +)) 

In the preceding section, it was assumed that interactions 
are possible between any pair of bubble locations. Since in
teractions can occur only between bubbles in physically ad
jacent locations, this implies that bubbles which are required 
to interact must be brought into adjacent locations without 
affecting the bubbles in other locations prior to the applica
tion of the command. Therefore, the time taken for comput
ing a function depends not only on the number of commands 
in the program but also on the layout of the bubble locations. 

There are severa] open problems associated with the design 
of efficient programs for computing Boolean functions in 
Graham's model. 
(1) For a given Boolean function f, find a simple algorithm 
for determining whether a program p(n exists. 
(2) If a program pcn exists, find an algorithm for construct
ing it effectively. 

(3) If a program p(n exists, find a program with the smallest 
length for computing f. 
(4) For a given program, find the assignment of locations so 
as to minimize the total number of locations required for its 
implementation. 

The programs realizing all Boolean functions of 3 variables 
and the corresponding input memory layouts with the mini
mum total locations are now presented. 

Note that by Propositions 5,6 and 7, it suffices to give the 
programs for one representative for each of 14 equivalence 
classes of functions of 3 variables under the operations of 
complementing and permuting the variables, and of comple
menting the functions. Table II consists of these representa
tives. Figure 6 shows the corresponding programs and the 
input memory layouts. Also note that, in each case, no loca
tions used only as transit points are required. 

For all Boolean functions of one variable and of 2 variables, 
we can easily obtain such programs and input memory lay
outs as shown above, but for 4 variables, it is not known 
whether such programs and input memory layouts exist. 

COMPUTATIONAL CAPABILITIES OF THE 
PROPOSED MODEL 

This section deals with some of the computational capabil
ities of the proposed model. First, it is shown that a binary 
addition program exists, while there is no binary addition 
program in Graham's model. Next, by an argument similar 
to that of Graham in deriving Theorem 4, it is shown that 
Boolean functions of 19 or more variables exist that cannot 
be realized by the proposed model. 
Proposition 9: A binary addition program P+ exists in the 
model. 

Proof: Used here is the symbolic arrangement of locations 
for binary addition, shown in Fig. 3. A program P i+ can be 
constructed which performs one-bit addition, as follows. 

P i+= (ai, bi) (biCi, ai) (aib i , CHI) (ai, bi) (Ci+ICi, ei) (cib i, CHI) 

• (aibi, ei) (bib i, Ci) (CH1b i , ei) (aib;, ei) (ei' Ci) (bic;, ei) 

Table II. The representatives for Boolean functions of 3 variables. 
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?(fl) = (xl' xl)' dp, f l ) = xl 

P(f2) = (xl' ;(2) (xl' x3), PIP, f 2) = xl 

P(:'3) = (xl' x2), pCP, f3) = xl 

P(f4) = (x2 , x3) (x2' x3) (x2 ' x2) (xl' 1(2), pCP, f
4

) = x
2 

P{fS) = (x2' x3) (x2 ' x3) (xl' x2) (xl' x2) (xl' xl)' pep, fS) = xl 

P(f5 ) = (x2 ' x3) ';x l , x3), p(p, f6) = xl 

P(f?) = (x3' x2) (xl' x3) (xl' x2) (Xl' xi)' p(p, f?) = xl 

P(fg) = (x3 ' x2) (x3 , x2) (x2 ' x2) (xl' X3) (xl' X2) (xl' xl)' pCP, fg) = xl 

P(fg) .' )., pCP, fg) = xl 

P(flO ) = (xl' }(2) (xl' x2) (xl' xl), pCP, flO) = xl 

P(fll ) = (x2 ' x3) (X2 , x3) (x2 ' x2) (x3 ' x3) (xl' x3) (Xl' x2) (xl' xl), 

p (p, f 11) = xl 

P(f12) = (X2 , x3) (xl' x2) (xl' x3) (xl' xl), pCP, f
l2

) = xl 

P(f13 ) = (xl' x3) (xl' X2) (x2 ' x3) (xl' x3) (Xl' xl)' pCP, f
13

) = xl 

P(f14 ) = (x3 , x2) (x2 ' x3) (Xl' x~) (xl' x2) (xl' xl)' p (p, f
l4

) = xl 
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Figure 6-Programs and input memory layouts for the representatives 
for Boolean functions of 3 variables 

Consequently, in general, a program P+(m) which performs 
m-bits addition, is given by 

P+(m) =Pl+P2+ ... Pm+(Cm+l, Cm+l) 

where (Cm+l, Cm+l) comes from the carry. 
The capability of Boolean function realization by the pro

posed model is now considered. Let f(Xl, X2, ... , Xm) and 
g (Xl, X2, ... , Xm) be two Boolean functions. If f(Xl, X2, ... , Xm) 
~g(Xl' X2, ... , Xm) for all 2m inputs, then it is said thatfim-
plies g, and "Titten as fc;;,g. 

Let faCt), fb(t) and feet) denote the Boolean functions 
realized at locations a, band c, respectively, after applying 
the t-th command et of program P. It is immediately apparent 
that, if faCt) c;;,fb(t), then the application of the command 
(a, b) as the (t+l)-th command of the program P changes 
nothing. Hence, it can be assumed that only the command 
(a, b) is used for which, at the time of their application, 
fa(t)~fb(t)~fa(t) (it is said that the pair (fa(t),fb(t)) is 
command-applicable). Similarly, if fa (t)fb(t) c;;,!e(t) , then the 
application of the command (ab, c) or ba, c) as the (t+l)-th 
command of program P changes nothing. Hence, it can also be 
assumed that only commands (ab, c) and (ba, c) are used for 
which, at the time of their application, fa(t)fb(t) Q;,fe(t) (It is 
said that the triplet (fa(t) , fb(t), fe(t)) is command-applic
able). Define D(t) = l!xi(t) 11~i~k}. It is assumed that ex
actly r of the (;) (k-2) triplets are not command-applicable, 

On a Mathematicai Modei of Magnetic Bubbie Logic 411 

and fXi (t)fx1 (t) c;;,fX2 (t), for some i, i ¢ 1, 2. Then, after the 
application of the command (XiXl, X2) as the (t+ 1) -th com
mand of the program P, we get 

fXi(t+l) =fx,(t) 

fX1 (t+l) =fX1 (t)fX2(t) +fX1 (t)Jxi(t) 

fX2(t+ 1) = fx.(t)fxl (t) +fX2(t) 

Therefore, 

Let 

D(t+ 1) = {Ixl (t)fX2(t) +fX1 (t)Jxi(t), fXi(t)fxl (t) + 

fX2(t),fxa(t), . .. ,jXk(t)}. 

Now, let us examine hmv rriany triplets of the functions of 
D (t+ 1) are command-applicable. 

Four cases arise: 

For any j¢l, 2, 

(1) fxJx,c;;,fx2,fxJX2c;;,fxl' 
Then, fXj(fXJX2+ fxJxJ c;;,fxJxl + fX2 

fXj(fxJx1 + fX2) c;;,fXJX2+ fXJXi 
(2) fXJXlc;;,fx2I fXJX2c;;,fxl' 

Then, a) if fXj=fxl =fx,= 1 andfx2=O, 
fXj(fXJX2+ fxJxj) c;;,fXJXi+ fX2 

b) otherwise, 
fXj (fxJXj+ fX2) c;;,fXJX2+ fXJXi' 

(3) fxJxlc;;,fx 2, fxJx/Jffxl' 
Then,fxj(fxJxz+ fXJXi) c;;,fXJXi+ fxz 

(4) fXl f X2 c;;,fxj' 
Then, (fXJX2+ fxJxJ (fXJXi+ fxz) c;;,!Xj' 

Consequently, at least r+ 1 triplets of the functions of 
D(t+l) are not command-applicable. It is known that, if 
exactly r of (~) pairs of the functions of D(t) are not com
mand-applicable, after the application of the command 
(a, b) as the (t+ 1)-th command of the program, at least r+ 1 
pairs of the functions of D(t+l) = {Ix1(t) ·fxz(t) , fxJt) + 
fxz(t), fX8(t) , ... ,fXk(t) } are not command-applicable, where 
it is assumed that the pair (fxl (t), !X2( (t)) is command
applicable.2 Therefore, ,'ve have the following result. 

Lemma 10: For any Boolean function f of m variables, it 
is possible to put 

Proof: In the initial state, the number of triplets which are 
command-applicable is [(~m) -mJ(2m-2) and that of the 
pairs is am). 

N ow we show the main fP,RUlt: 

Theorem 11: Boolean functions of 19 or more variables exist 
which cannot be realized by the model. 
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Proof: Let 

Consider any program P = ele2 •.. er. In choosing the i-th 
command ei of P, there are, at most, N -i+ 1 possibilities 
for ei, since, after ele2 ••. ei-l has been applied, at least i-I 
of the pairs and the triplets are not command-applicable. 
Therefore there are, at most, 

N 

II (N -i+l) =N! 
i=l 

choices for the sequence of ei, since t~N by Lemma 10. 
Furthermore, by the application of one command, at most 
two new Boolean functions are generated. Hence there are, 
at most, 

2N(N!)+2m 

Boolean functions which can be generated. On the other 
hand, the total number of Boolean functions of m variables 
is 22m. These expressions are listed for m= 18 and m= 19 in 
Table 3. Hence the theorem follows. 

Table III. Bounds on the number of Boolean functions which can be 
generated. 

m 

18 

19 

i 2N (N!)+ 2m l 
I > 10 83,520 I 

<10100,5361 

< 1 0 78 ,91 1+ 

SUMl\1ARY 

Some properties of a simple bubble model propose~ .by 
Graham have been investigated and the programs realIzmg 
all Boolean functions of 3 variables and the corresponding in
put memory layouts with the minimum total locations have 
been presented. This paper has extended G~aham's mod~l 
bv introducing a different type of command, I.e., the condI
tional bubble transfer. It has been shown that, in the pro
posed model, a binary addition program ~xists,. and also 
Boolean functions of 19 or more variables eXIst whICh cannot 
be realized. 
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The realization of symmetric switching functions using 
magnetic bubble technology 

by H. CHANG,* T. C. CHEN and C. TUNG 

IB}!;! Research Laboratory 
San Jose, California 

I~TRODUCTIO~ 

Since its debut in the late sixties, magnetic bubble technology 
has quickly evolved to become a promising alternative to 
semiconductor technology for computer construction.1- 7 

"While emphasis has been placed upon the application of 
bubble technology to storage, its application to logic has 
thus far been largely limited to the implementation of simple 
basic operators, such as A~D, OR, etc.5 •7 An exception is the 
excellent work recently reported in References 12 and 13. 
This limitation to simple basic operators, however, is not in 
keeping with the high density and low connectivity require
ments of LSI (Large-Scale Integration), and it has become 
increasingly important to find powerful multi-input switching 
functions. The symmetric function is a natural candidate. 
The realization of symmetric functions using magnetic bub
ble technology has been found to be very simple. 

The second part of this paper provides some basic informa
tion for a qualitative understanding of the bubble technology. 
Part three briefly revie"ws symmetric functions and also in
troduces residue threshold functions. Part four describes the 
mechanism for realizing symmetric functions, and part five 
presents an implementation. Some concluding remarks are 
made in part six. 

:.vIAGKETIC BUBBLES 

Fundamentals 

Basic to magnetic bubble devices is the existence of mag
netic domains in uniaxial magnetic materials over a range of 
bias field. The magnetic domain is a cylindrical region in a 
garnet film or an orthoferrite platelet-hence the name 
bubble-with magnetization perpendicular to the plane of 
film or platelet and opposite to that in the surrounding re
gion. This configuration, Figure 1, is achieved when the film 
or the platelet has uniaxial magnetic anisotropy to orient the 
magnetization perpendicular to the plane, has sufficiently 
low magnetization to prevent the demagnetizing field to 
force the magnetization into the plane, and has a bias field 
opposite to the bubble magnetization direction to prevent the 
bubble from expanding into serpentine domains-the natural 
demagnetized state. 

* With T. J. Watson Research Center, Yorktown Heights, New York. 
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Several features are note\,"orthy for device applications: 

(i) Stable bubbles exist over a range of bias field 
strengths, thus exhibiting storage cap-ability. 

(ii) A bubble can be deformed by lowering the bias field 
for further manipulation, e.g., bubble generation, 
replication, etc. 

(iii) A bubble can be annihilated by raising the bias field. 
(iv) Bubbles interact with one another like magnets 

when they get closer than about three diameters. 
These interactions limit storage density, but are 
necessary for logic circuits implementation. 

In the past, more attention has been given to the applica
tion of bubble technology to data storage than to data proc
essing. The most popular configuration of bubble storage, by 
far, is the shift register with bubbles (representing OXE's) 
and voids (representing ZERO's) propagating along fixed 
tracks. 

Propagation 

The transmission and manipulation of information rely, 
directly or indirectly, on the propagation of bubbles. 

There are two basic methods of producing movement of 
bubbles in the plane. The first method employs the current 
in a conductor loop to produce a field for attracting an adja
cent bubble. A sequence of bubble positions may be propa
gated by exciting a series of conductor loops wired to carry 
current pulses. This is referred to as "conductor propa
gation." 

The second method, "field access propagation," depends on 
the alternating magnetic poles in a patterned permalloy 
overlay; the poles arc induced by a rotating field in the plane. 
A permalloy bar is easily magnetized by this field along its 
long direction. When suitable permalloy patterns are sub
jected to this rotating field, the induced magnetism in the 
form of a moving train of poles pulls the attracted bubbles 
along. Since field access propagation is more suitable for the 
implementation discussed in this paper, it will be examined 
in more detaiL 

The integers 1, 2, 3 and 4 v.ill be used to denote the four 
phases of the rotating field, counterclockwise starting from 
the first quadrant, as shown in Figure 2. 
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1 
Easy axis 
of uniaxial 
anisotrophy 

Figure I-A bubble is a cylindrical magnetic domain with 
magnetization opposite to that of its surrounding. It exists in a thin film 

of uniaxial anisotropy, under proper bias field 

The permalloy pattern shown in Figure 3 ",ill guide the 
bubble propagation from left to right. As the field rotates 
from 1 to 2, for instance, the upper end of the vertical I -bar 
to the right of the current bubble position will be magnetized 
positively and thus be able to attract the negative end of the 
bubble toward the right. The entire bubble moves as a result. 

Information is carried by a stream of bubbles and voids 
(vacancies), conventionally designated to represent 1 and 0, 
respectively. As each bubble in the stream moves by a unit 

2 

4 

(a) Rotating Field 

(b) Corresponding Positions of Induced 
Positive Magnetic Poles 

Figure 2-Labelling convention for the four phases of a rotating field 
and their corresponding positions of induced positive magnetic poles 

3 ,. 

L 

.1 

Rotating 
field 

A bubble 

DOOO 

t 
Permalloy 
pattern 

Figure 3-Bubble propagation-A T-J bar permalloy pattern propagates 
bubbles by moving magnetic poles induced in a rotating field 

distance, the voids in between, if any, ",ill have an apparent 
movement also by a unit distance. Thus the entire stream 
flows at a regular rate in response to the periodic magnetiza
tion of the regular TI permalloy pattern. When the permal
loy pattern like the one shown in Figure 3 is arranged in a 
loop, a shift register memory results. 

An idler is a cross-like permalloy pattern as shown in 
Figure 4. In the absence of extraneous influence, the bubble 
in an idler will circulate indefinitely; it is movable by, for 
example, a suitably positioned repelling bubble or magnetism 
induced by a wire loop nearby. Thus, without the external 
influence of magnetic force other than the rotating field, a 
vacant idler position serves as a bubble trap! and a filled 

4 

2 

Figure 4-An idler circulates a bubble within a permalloy cross 



idler position appears like a "short-circuit" insofar as bubble 
propagation is concerned; a stream of bubbles and voids in 
a tandem of idlers may thus be able to remain stationary in 
the presence of the rotating field. 

Other forms of permalloy patterns can be used, notably 
Y-patterns and "angelfish." 8 

Interact-ion 

The magnetostatic interaction between bubbles is essential 
to the generation of logic functions. Bubble domain media 
such as orthoferrite platelets and garnet films have very low 
wall motion threshold. Hence the flux lines emanated from 
a bubble are adequate to move an adjacent bubble as far as 
two or three bubble diameters away. 

Figure 5 shows how bubbles can interact with each other 
to generate two logic functions.s The device shown in Figure 
4 has two streams of input variables, namely A and B. The 
presence or absence of a bubble (also respectively called 
bubble and void) represents the true or false value of a 
variable. The lower bubble, representing A, will propagate 
toward the output terminal labelled A VB, independent of 
bubble B. If bubble B is currently at the position shown, 
then one quarter cycle later it may take one of the two pos
sible paths, depending on the presence of bubble A. With 
bubble A being where it is as shown, the interaction of these 
two bubbles will force bubble B to propagate to 4' rather than 
to 4, one quarter cycle later. The information that both A 
and B bubbles are present is conveyed by the propagation of 
bubble B toward the output terminal labelled A AB. With 
the absence of bubble A, bubble B will propagate downward 
to the output terminal labelled A V B. In addition to the in
teraction of bubbles, one can clearly see that the precise 
timing of bubble propagation is crucial to the proper genera
tion of logic functions. 

AVB 
Figure 5-Bubble logic-A permalloy pattern brings bubbles together to 

interact magnetostatically and thereby generates logic functions 
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~~ C>D8 D 
j2 ~8~ 

U u 

3 1 0 ... 

/ D341 0··· 3.5 

L OD& 
Figure 6-Bubble generation-A permalloy pattern generates new 

bubbles by stretching and then severing a mother bubble into halves 

The realization of other logic elements such as binary fuIi 
adder has been demonstrated to be feasible.8 

Generation and annihilation 

A permanent bubble associated with the generator disk, 
shown in Figure 6, is forced to stretch ·when one end becomes 
trapped during phase 2 of the planar rotating field. As the 
planar field keeps rotating, the bubble is further stretched. 
Between phases 3 and 4 its thinly stretched position ",·ill 
sever into two, leaving a newly formed bubble to the right of 
the generator disk. 

The annihilation of a bubble can be achieved by arranging 
the permalloy pattern as shown in Figure 7. During phases 
3 and 4, the bubble remains essentially in the same position. 
During phase 1, the bubble is severely weakened because the 
attracting pole of the permalloy pattern is remote; yet the 
repelling one is near and strong, thus annihilating the bubble. 

SY~rYIETRIC SWITCHIKG FUXCTIOXS 

Symmetiic switching functions 

The function 

S(A I X) =S(al, a2, . .. , am I Xl, X2, . •. , Xn) 
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db ~'-----------1 
(a) ~ 

db~-----------. 
~ (b) 

J1~-----------. 
~ (c) 

db 8-------:-"111 

~ (d) 

Figure 7-Bubble annihilation-A permalloy pattern propagates a 
bubble to a trapping pO!'ition where the bubble is collapsed upon field 

reversal 

with 
Qi: an integer and O::::;ai::::;n 

Xj: 0 or 1 (switching variable) 

is said to be a symmetric switching function when and only 
when the sum over X equals one of the values in A, i.e., 

SeA 1 X) = 1 if L Xi=one of the values in A 

= 0 otherwise. 

The values in A are commonly called a-numbers. It is clear 
that a permutation of the vector X does not change the 
value in S, hence the term "symmetric." 9-10 

Symmetric switching functions can be used to synthesize 
other logical functions with a proper selection of a-numbers. 
In fact, the symmetric function is a universal logical connec
tive since the commonly used universal set of logical connec
tives, AXD, OR, and XOT can be synthesized trivially: 

Xd\X2=S(21 Xl, X2) 

Xl V X 2= S(I, 21 Xl, X2) 

Xl =S(O'XI). 

As further examples, the popular NAND and NOR functions, 
each of which is a universal logical connective in its own 
right, can be synthesized by symmetric functions, at no in
crease in complexity, as follo\vs: 

Xd\X2= S(O, 1 1 Xl, X2) 

Xl V X 2= S(O 1 Xl, X2). 

As examples of synthesizing practical circuits, the binary 
adder with X, y, z as its input operands and input carry can 
have its outputs, carry and sum, defined by: 

carry=S(2, 31 X, y, z) 

sum= S(l, 31 X, y, z). 

Residue threshold functions 

A subset of symmetric functions, called residue threshold 
functions, has been recently studied.ll Given n switching 
variables Xl, X2, ••. ,Xn , m a positive integer, and t a non
negative integer, the residue threshold function is defined as 

R(t, m 1 Xl, ... ,xn ) =.R(t, miX) =.t::::; (L Xi) :\Iod m 

that is, 

R(t, miX) = 1 if and only if (L Xi) :\Iod m~t. 
i 

Here, (L Xi) ::\Iod m is defined to be the least positive re
mainder of (L Xi) 1m, which is a number between 0 and 
m-1 inclusively. 

The relationship between the symmetric switching function 
and the residue threshold function is very simple. 

R(t, miX) 
is equivalent to 

SeA 1 X), 

\vith A containing all positive intf'gf'rs, a;'s (a;::::;n) such that 

t::::;a; :\Iod m. 

As noted before, the symmetric function derives its power
ful capability of synthesizing any other logical function from 
the "personalization" of its a-numbers. In practice, the a
numbers are usually much more structured than a mere 
enumeration would indicate, and a common structure is the 
cyclicity. An example here may help clarify this point. To 
find the parity of a sequence of bits, one needs only to know 
whether the number of ONE's in the sequence is even or odd. 
The exact number of ONE's is immaterial. Thus, instead of 
specifying 

S(l, 3, 5, 7, ... 1 X), 

one needs only to specify 

R(l, 21 X). 

The underlying structure permits a significantly simplified 
implementation as will be seen in a later section of this paper. 

STEPS TO\VARD REALIZING SY:\DIETRIC 
SWITCHING FUXCTIOXS 

Based on economical considerations, the progress of LSI 
of solid state devices is measured in terms of the ever in-



creasing device density and chip area, hence the number of 
devices per chip. One should note that as the area for devices 
is increased by a factor of m2, the periphery for interconnec
tions is increased only by a factor of m. Thus the merit of 
LSI can best be improved by increasing the versatility of de
vices to permit self-sufficiency within the chip and to reduce 
the number of external interconnections required for input/ 
output, control and power. Bubble domain devices with 
shift-register type of memory capability and symmetric 
switching function type of logic capability appear to be an 
attractive candidate for LSI. 

Here we consider the mechanisms required for the realiza
tion of symmetric switching functions using magnetic bubble 
technology. Implementation based on these observations 
will be discussed in the next section. 

Given a sequence of bubbles and voids, X, consider: 

(i) Bubble sifting: since the symmetric function is in
variant to permutation, one can sift the bubbles in X 
to result in a new sequence Y in which bubbles gravi
tate to one end (say, left end) of Y. For instance, if 
X is 0 1 0 1 then Y ,,,"ould be 1 1 0 o. 

(ii) Leading bubble detection: there exists a simple rela
tionship between the position of the leading bubble 
(rightmost bubble) in Y and the number of bubbles 
in either X or Y. This relationship is 

m=n+1-p, or p=n-m+1, 

where m is the number of bubbles, n the length of 
X or Y, and p the position of the leading bubble 
(I-origin, left indexed) in Y. For the case m= 0, p 
will be considered n+ I as the above formula dictates. 
In practice, one can augment Y into Z by appending 
a I to the left of Y, in order to accommodate the 
m = 0 case. At the end of this leading bubble detection 
stage, one obtains a bubble stream W in which there 
is one and only one bubble. 

(iii) Interaction \vith the control bubble stream: a control 
stream of bubbles and voids can be constructed with 
the positions of bubbles representing the a-numbers. 
That is, A = aI, ... , am is represented by 

such that 

= 0 otherwise. 

By proper timing, the information coming out of the stage of 
leading bubble detection (with bubble/void representing 
that the leading bubble has/has not been detected) is re
quired to AXD with the components of B. At any time dur
ing AXDing a 1 output indicates that the number of OXE's 
in X agrees with one of the a-numbers_ Therefore, S (A ! X) = 

1 if and only if AKDing of the control stream and the output 
from the leading bubble detection stage yields a true output. 

The mechanism described above is summarized in a block 
diagram shown in Figure 8. 
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SIAiXi 

A-nt...mbers 

Figure 8-A block diagram showing required bubble mechanisms to 
realize symmetric switching functions 

Example 1: 

Example 2: 

X= 0101 
y= 1100 
Z=11100 
W=00100 

A=O, 2, 3 
B=10110 

ANDing between Wand B 
W=OO~OO 
B=10~10 

T hence S (A I X) = 1 

X= 0000 
Y= 0000 
Z=10000 
W=10000 

A=3 
B=00010 

ANDing between Wand B 
W=~OOOO 
B=~O 010 

F hence SeA I X) =0 

IMPLEMEXTATION 

Figure 9 shows the detailed permalloy pattern implement
ing the scheme depicted in Figure 8. It consists of four re-

I.\PUT 
(both data & flusher! 

Figure 9-A permalloy pattern to implement the block diagram in 
Figure 8 
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gions, with region I being the sifter, region II the leading 
bubble detector, region III the control bubble stream, and 
region IV the AND gate. 

The bubble sifter (region I) contains n idlers in tandem, 
with the leftmost one connected to the vertical input chan
nel. The idlers within the sifter are slightly offset in such a 
way that it favors bubble movement toward the right. A bub
ble in the idler tandem, however, will not move to the right 
unless all the idler positions to its left are filled with bubbles, 
and there is a bubble entering at the input channel trying to 
push all the bubbles in the sifter. The net effect is that voids 
will skip all preceding bubbles. The input stream X as defined 
before will, after n cycles, become the n-bit stream Y residing 
in the sifter with, say, m bubbles juxtaposed 'with (n-m) 
voids to their right. 

'Without further external influence, the Y stream will stay 
in the sifter indefinitely. The entering of an (n+1)-bubble 
flushing stream at the input channel at this time will drive 
the Y stream to the right for leading bubble detection. The 
first bubble in the flushing stream and the Y stream form the 
augmented stream designated as Z in the previous section. 

Initially, the leading bubble detector (region II) contains 
a resident bubble in its right idler. As the very first bubble 
from the sifter arrives at the center idler, the resident bubble 
will be repelled to the right into the AND gate (region IV), 
conveying the information that the leading bubble of the Z 
stream has arrived. The bubble in the center idler is trapped 
there and, through its magnetostatic force, will divert all the 
following bubbles from the sifter upward to an annihilator. 

A bubble generator (not shown in Figure 9) will issue bub
bles, according to the a-numbers of the given symmetric 
function, into region III which is a closed loop shift register. 
This circulating bubble stream is the personalized control 
bubble stream B discussed previously. 

The deRcription of detailed operations in terms of bubble 
interactions with the permalloy pattern is now in order. The 
sequence of events together with the time intervals is shown 
in Figure 10. For illustration, we assume that the input is 
o 1 0 1 \\ith the rightmost position being the leading posi
tion, followed by a sequence of five flushing bubbles. The 
bubbles in the input stream (X or Y), called data bubbles, 

I'\IPUT 
(both data & flushed V Annihilation 

............................. t .................... . 

: ~J _I I_I i-tL'I-loJ L i~OUT,", 
: .... :J~·~·L:J~·~r±· ± .. ±: I: \:;"~~:::" 
riC 1II I I I JH-
j ----------- T T T ~ ~ 
:··········································:t·····: 

Annihilation 

Figure 10-Sequence of key events in the symmetric-function bubble 
device: (a)-t""O. The device is cleared. A resident bubble is loaded into 

the first bubble detector. The first data bit (a O~E, i.e., a bubble) of 
the input bubble stream (0101) is ready to enter the sifter. 

INPUT 
(both data & flusher) V Annihilation 

. ................................... t ....................... .. 
: '( I L"i II : IV : 

~ -.J _1_11 ~ _I 1 ) 1 L j~OUTPUT : L IL1:± ± ±~ ~ '-7"(symmetnc ( .. ~~ .. ~~~~·~·L~·~·r: ............. ":": I ~ function) 

HC III I I I J~ : ------------T T T . r-
: ............................................. ;{,' ..... : 

Annihilation 

Figure 10( b )-t= 2. The first data bit is trapped at the first position 
(leftmost idler) while the second data bit (a void) has skipped by. This 

demonstrates the sifting function. 

are represented by solid dots, the flushing bubbles by circles 
and the resident bubble by a circle with a cross in it. ' 

The initial (t=O) status is shown in Figure 10-a, the cor
responding field phase is 3 (see Figure 2). At t = 1, the first 
data bubble has advanced to the leftmost idler, and at the 
input channel is the void. One cycle later, t = 2, the first data 
bubble still remains at the same position; thus it can be said 
that the void has skipped the bubble preceding it and now 
resides at the second idler from the left. At the same time, 
there comes the second data bubble at the input channel. At 
t = 27.4, the second data bubble moves downward and repels 
the first data bubble toward the right, causing it temporarily 
out of synchronization. At t = 2%, the first data bubble is 
attracted to position 1 of the second idler from the left thus 
re-synchronized with the rotating field. The above sf'q~ence 
of operations in the last three field phases of a cycle is shown 
in Figure lO-c. 

Figure lO-d shows the status at t=4; the two data bubbles 
are residing at the two idlers at the left and the two voids 
can be thought to have skipped the bubbles and advanced to 
the two idlers at the right. The first flushing bubble is now 
at the input channel. For this example, it takes two more 
cycles to fill up the sifter and the input channel, and two 
additional cycles for the leading data bubble to be flushed 
out of the sifter and propagated to the center idler of the 

INPUT 
(both data & flusher) 

Annihilation V : .... ;;; ................... , . .1 ........... , .......... : 
~4 _ I I I I ~I II j IV i 

: -42~4 - - -+ ~ UJ L ~ ?.:'~:,:;;" 
~·······f-··J-·-J··J±··±·±:··:I '" "''''" , 
~-fc-- -~I -- I I I JH-
~ ----------- T T T ~ ~ 
: ....................................... :} ...... : 

An~i"ilation 

Figure 10(c) . ·t=2,2 1'4, 2 2 i 4, The thiro rtata bit (a hubble) pushes 
the first data bit (a bubble) to the second position 



detector. The interactions at t=8 and t=8~ are shown in 
Figure lO-e. As time advances from t=8 to t=8~, the pres
ence of the first data bubble in the detector causes the resi
dent bubble to move to position 4' in region IV, and the 
bubble following it to move upward to position 4' in region 
II which leads to an annihilator. As the leading data bubble 
is trapped in the center idler, all following bubbles will be 
diverted upward to the annihilator. Consequently, during the 
whole operation one and only one bubble will leave region 
II and enter region IV. 

Half a cycle later, t = 8%" the resident bubble is at position 
2 in region IV, shown in Figure lO-f. If, at this instant, there 
is a bubble in region III at the position indicated by a small 
square, the resident bubble will be forced to move to position 
3' in region IV at t = 9, giving an indication that the sym
metric function is true. Otherwise, the resident bubble 'will 
movedow:nward.in region IV and he annihilated eventually. 
It is clear now that the upper portion of region IV behaves as 
an AND gate. 

INPUT 
(both data & flusherl 

.... V ................... ~n~~r.ti.O~ ••••••••••••••••• 
: -{ J.J _I :~[[I_I d L l=>oUTeUT 
i .. ~-1.J.::J.~.J±.±.±.:I· \:'"':,7,~," 
~C 1II I I IJ~ 
~ ---------- T T T ~r 
. . . ............................. ............ ~ ...... . 

Annihilation 

Figure 1O(d)-t=4. The flusher bubbles are ready to enter the sifter 

In general, with an n-bit (bubble/void) input having m 
bubbles, the critical AKDing time, ta, (ta = 8%, in the case 
discussed above) between the resident bubble and the con
trol bubble stream is 

ta=n+ (n-m) +2+%, = (2n-m) +2%" 

of which n cycles are required to load and sift the data bubbles 
and voids in the sifter (region I), n-m cycles required to 
fill the sifter, 2 more cycles required to propagate the right
most bubble in the sifter to the center idler of region II, and 
finally %' cycle required to move the resident bubble to posi
tion 2 of region IV. 

It can be easily deduced from the above formula that if the 
resident bubble cannot be found at position 3' in region IV 
before or at 

then the symmetric function is false. In other words, the 
operation time, excluding initialization, of this device is 
2n+3 cycles. 

We have shown a bit-serial implementation. If each idler 
in the sifter is directly connected with an input channel, the 
parallel input operation can be performed to gain speed. This 
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INPUT 
(both data & flusher! U Annihilation 

............................. t .................. . 

! ... ~~dtr1+fi~ :~\;~7;~i' 
~C III I I I)h 
~ ----------- T T T ~ r 
: ................................. J .... : 

Annihilation 

Figure 10(e)-t=8, 8-1/4. The leading data bubble has entered the 
center idler of the leading bubble detector, pushing the resident bubble 

into the AKD-gate. The leading data bubble is trapped in the center 
idler, diverting the following bu6bles to an annihilator 

is because the sifting can be performed during flushing time; 
no data bubble can leave the sifter until all idlers in it have 
been filled. Assuming that the flushing bubbles are allowed 
to enter at the leftmost input channel, we find 

ta= 1+ (n-m) +2+%, = (n-m) +3%,. 

and the operation time for this parallel input is thus n+4. 
In many applications, the a-numbers are well structured 

and thus help simplify the control bubble stream signifi
cantly. As we discussed earlier, the parity check of a sequence 
of bits, X, can be expressed as 

R(1, 21 X). 

To realize this, the control bubble stream needs only to con
sist of one bubble and one void in a tight loop, saving much 
space. 

COXCLUSIO~ 

'Ve have shown how to realize symmetric switching with 
magnetic bubble devices. The implementation is simple, yet 

INPUT 
(both data & flusherl U Annihilatio.1 

........................... t .................... . 
11 I I .. ·i I III I :.~ I 3L

rv 

. 
..l... .~OUTPUT 

: - Ii)- 1&:- <;>- <;>-:. .-'-:-f-- .--;:>"""(symmetric 

~ ....... I .... l .. j .... i:± .. ±.± .. :31 . functionl 

HC--- ~r -- 1 I I J2:~ 
j ----------- T T T ~r 
. . ........................................ J, ..... . 

Annihilation 

Figure lO(f)-t =8-3/ 4. The resident bubble is at a position to interact 
with the control bubble streams. The presence of a control bubble at the 
square will force the resident bubble to move to 3' leading to the output, 
indicating that the symmetric function is true. The absence of a control 

bubble will permit the resident bubble to move to 3 and then the 
annihilator, indicating that the symmetric function is false 
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with the easily achievable personalization of the control bub
ble stream it produces a versatile and powerful logic device. 
Our a-numbers stream is a simple example of the personaliza
tion through a circulating shift register memory. The per
sonalization persists as long as the vertical bias magnetic 
field is present. 

Both bubble memory and bubble logic devices are imple
mented with very similar permalloy patterns, hence it is pos
sible to have a mixture of memory and logic at a very local 
scale. Such a mixture is particularly attractive because of its 
low cost and low power dissipation. Note that traditionally 
memory and logic are in separate units. For example, the 
ferrite core memory and semiconductor central processing 
unit are separate, because of different technologies. In semi
conductors memory and logic are separate, partly because 
of the density contrast of repetitive cells in memory versus 
a great variety of cells in logic; and more importantly be
cause read-write memory is volatile, and logic must use a 
more nondestructive implementation. Thus cireuit logic re
sembles read-only memory, and tends to be different from 
read-write memory in construction. The magnetic disks, 
drums, and tapes simply do not have any resident logic capa
bility, and must rely on external logic circuits (control unit, 
channels, etc.) for data routing and data management. With 
the capability c:f an intimate mix of memory and logic, much 
of the previous demarcation lines can be removed. The design 
optimization should be greatly facilitated. In fact, the hard
ware capability may induce revolutionary changes in com
puter organization and architecture. 

REFERENCES 

1. Bobeck, A. H., Fischer, R. F., Perneski, A. J., Remeika, J. P., Van 
Uitert, L. G., "Application of Orthoferrites to Domain Wall 
Devices," IEEE Trans. Magnetics 5, 3, September 1969, pp. 544-
553. 

2. Perneski, A. J., "Propagation of Cylindrical Magnetic Domains in 
Orthoferrites," IEEE Trans. Magnetics 5, 3, September 1969, pp. 
554-557. 

3. Thiele, A. A., "Theory of Static Stability of Cylindrical Domains in 
Uniaxial Platelets," J. Appl. Phys. 41, 3, March 1970, pp. 1139-
1145. 

4. Bonyhard, P. I., Danylchuk, I., Kish, D. E., Smith, J. L., "Applica
tion of Bubble Devices," IEEE Trans. Magnetics 6, 3, September 
1970, pp. 447-451. 

5. Sandfort, R. M., Burke, E. R., "Logic Functions for Magnetic 
Bubble Devices," IEEE Trans. Magnetics 7, September 1971, pp. 
358-360. 

6. Ahamed, S. V., "The Design and Embodiment of Magnetic 
Domain Encoders and Single-Error Correcting Decoders for Cyclic 
Block Codes," B.S. T.J. 51,2, February 1972, pp. 461-485. 

7. Garey, M. R., "Resident-Bubble Cellular Logic Using Magnetic 
Domains," IEEE Trans. Computers C-21, 4, April 1972, pp. 392-
396. 

8. Bobeck, A. H., Scovil, H. E. D., "Magnetic Bubbles," Scientific 
American 224, 6, June 1971, pp. 78-91. 

9. Harrison, M. A., Introduction to Switching and Automata Theory, 
McGraw-Hill, New York, 1965. 

10. Kohavi, Z., Switching and Finite Automata Theory, McGraw-Hill, 
New York, 1970. 

11. Ho, I. T., Chen, T. C., "Multiple Addition by Residue Threshold 
Functions," IEEE CompCon Proceedings, September 1972. 

12. Minnick, R. C., Bailey, P. T., Sanfort, R. M., Semon, W. L., "Mag
netic Bubble Computer Systems," AFIPS Proceedings, Vol. 41, 
December 1972, pp. 1279-1298. 

13. Minnick, R. C., Bailey, P. T., Sanfort, R. M., Semon, W. L., "Mag
netic Bubble Logic," WESCON Proceedings, 1972. 



The Control Data ST AR-l 00 paging station 

by W. C. HOHN and P. D. JONES 

Control Data Corporation 
St. Paul, Minnesota 

I:\fTRODUCTION 

The Control Data STAR-IOO is a large capacity, high 
speed, virtualm:emoryt.2 computer system whose input/ 
output for storage and access is managed by "Stations"3 
separate from the main computer. This modularizes the 
total computing function into independent, asynchronous 
tasks which operate in parallel with the central processor. 
The approach also simplifies the central processor design 
and provides for fan out to a large number of storage 
devices and terminals. A station consists of an SCU 
(station control unit) and an SBU (station buffer unit). 
An SCU is a mini-computer with small drum and display 
console existing with power supplies and cooling in its 
own cabinet. An SBU consists of 64K (K = 1024) bytes of 
high bandwidth core memory. 

A STAR-IOO system is shown in Figure 1 with the per
formance goals noted on each storage station. The M/P 
station manages maintenance and performance analysis 
of the STAR-IOO mainframe. The media, working and 
paging stations consist of tapes and disk packs, large disk 
and drums respectively. Figure 2 shows the layout of a 
user's virtual storage which covers all the program's 
active files whenever they are stored. Each user has four 
keys, which reside in the program's control package and 
provide four levels of access protection in virtual memory. 

In STAR-IOO there is one global page table for all users 
with one entry for each core page. There are two page 
sizes, normal (4096 bytes) and large (128 times normal). 
The page table has 16 associative registers at the top and 
the rest of the table is in core memory (1008 entries in the 
case of the typical four million byte memory). The trans
late time in the 16 associative registers is one minor cycle 
(40 nanoseconds) and the search time is approximately 50 
entires per microsecond. When a hit is made that entry 
jumps to the top of the table, thus most frequently refer
enced blocks have entries near the top of the table and 
conversely, the best candidates for removal from memory 
are at the bottom of the table. This paging mechanism 
was basically chosen to give the machine a virtual mem
ory capability without degrading performance (100 mil
lion results per second). The memory access mechanism 
is illustrated in Figure 3. 

When the virtual address is not found in the page table 
an access interrupt occurs and control is switched to the 
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monitor. What happens then is flow diagrammed in Fig
ure 4. The paging station contains the overflow pages 
from main memory and as such is critical in the overall 
performance of the system. 

HARDWARE CONFIGURATION 

The STAR-IOO paging station, as illustrated in Figure 
5, presently consists of two Control Data 865 drums and a 
page table search mechanism, called a comparator, con
nected to an SBU; the whole is controlled by an SCU. 
One half of the 16 page SBU contains the virtual page 
table and the other half (minus some drum control space) 
is used as buffer space for the drum/ central page trans
fers. In order to ease the SBU memory conflict situation 
the SBU memory is hardwired such that it operates as 
two independent phased (4 bank) memories each with a 
bandwidth of four 16 bit words every 1.1 microsecond. By 
this means the comparator has sole access to its memory 
half and the drums and channels compete in their half, 
with the drum being top priority. 

Figure 6 depicts the functional aspects of the station. 
The block labelled CONTROL represents the minicom
puter within the SCU. All hardware interfaces-drums, 
comparator, channels-are controlled by routines residing 
in the SCU. The SBU provides a data freeway for page 
flow from the drum to central memory. Having the SBU 
between central memory and the drum reduces channel 
design complexity in central by not having to interface to 
critical, real time, rotating devices. 

DRUM QUEUE AND DRIVER 

Requests for drum transfers are not made to the driver 
directly but instead to the queue program. This program 
translates the drum block address (from the comparator 
search) into a head and sector address. If the resulting 
sector position is free in the associative queue the request 
is placed in the queue, otherwise it is placed in retry 
mode when it is offered to the queue program periodically 
until accepted. As the number of requests increase, the 
probability of filling more associative queue slots 
increases (assuming random drum block addresses) thus 
raising drum throughput. 
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Figure l-STAR-lOO system 

Control of the drum is illustrated in Figure 7. The 
driver program scans the drum angular position and its 
associated queue slot and if a request exists for that angu
lar position the necessary control information is sent to 
the drum hardware. The drum control hardware has the 
ability to stack functions thus making it possible to 
"stream" contiguous sectors from the drum. 

32 TRILLION 
BYTES 

SYSTEM TASKS 
PRIVATE SHARING 
PUBLIC SHARING 

I I KEY I 
\Access Protection 

I I KEY I 
LIBRARY '-Access protection 

I I KEY I 
\Access Protection 

USER 

I I KEY I 
cAccess protection 

256 REGISTERS 

Figure 2-STAR-IOO virtual memory 
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33 BITS 
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,\OUND 
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INTERRUPT 
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PAGE ADDR BIT ADDR 
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Figure 3-Memory access mechanism 

CREATE/KILL 

ACCESS 

INTERRUPT 

Figure 4-Access interrupt control 
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STATION 
CONTROL 
UNIT {SCU} 

CENTRAL 

Figure 5-Paging station hardware configuration 

COMPARATOR 

The virtual page table maps the drum(s) one entry per 
drum block. Each 64 bit entry contains a unique drum 
block address and is flagged as either free or attached to a 
virtual address. The entry format is 

I I KEY VIRTUAL BLOCK DRUM BLOCK I 
1 2 12 33 16 bits , . ~ 

Free/ActIve '\. 
Usage Bits 

The comparator is a hardware unit which compares 
selected virtual addresses against the page table entries. 
The hardware "ripples" the table as it searches for a 
compare. That is, all entries move down as the search 
passes by them unless a match is found. The entry which 
matches is placed in the now vacant slot at the top of the 
list, thereby generating in time a list topped by the most 
active entry and arranged thereafter in order of descend
ing activity. 

C 
E 
N 
T 
R 
A 
L 

OMMUNICATION 
CONTROL l---------~ 

COMPARATOR 

AGE TABLE 

Figure 6-Paging station functional configuration 
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QUEUE 

§f18 
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21 

Figure 7-Drum queue and driver 

This form of page table maximizes performance 
because the table is both compressed (all active entries at 
the top) and ordered by activity, two characteristics 
which minimize search time. 

The table scan rate is one entry every 1.1 microsecond 
or 910,000 entries per second. Two compares are simulta
neously made against a table entry (if .only one virtual 
address request is active the second search is for a null). 

The average search time, if both virtual addresses exist 
in the table, is two thirds of the table length times mem
ory speed. 

8=2/3L ·M 

If either request is absent from the table then the aver
age search time becomes table length times memory 
speed. 

8=L·M 

In both cases table length, L, is the dynamic length of 
active table entries, (the table entries attached to a vir
tual address). If the ripple search were replaced by a 
straight linear search, the search time would be the 
reserved table length times memory speed. Table I lists 
some search rates reflecting the dynamic table length 
characteristic of the rippled page table. 

MESSAGES 

The paging station is driven by messages from the cen
tral processor. The paging messages are listed in Figure 8. 
A brief discussion on the message switch mechanism is 
contained in the next section on performance. Essentially _ 

Table I-Comparator Search Time 

Active Table Search Search 
Length Time Rate {2/S} 

{Entrys} {Millisecond} {Per Second} 

1D00 1.1 1820 

2000 2·2 910 

3000 3.3 bOb 

4000 4.4 455 

Page Table Memory Speed - 1·1 Micro-second 
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PAG ING MESS AGES 

Function 
~ Function NaMe PliiJrS![!!et~rs For[!!liiJt 

200 Read page B, K, .!d., P 

201 

202 

Wri te page 

Re I· ri te page 

B, 

B, 

K, U, P 

K, U, P 

203 Delete N pages !i ' K, P 

204 

205 

206 

207 

208 

Delete key {N = number of pages 
deleted} 

Read most active block .·i th 
given key, then delete. {Page 
name and usage bits returned} 

Read least-active block .·i th 
given key, then delete. {Page 
name and usage bits returned} 

Read and delete page 

Read drum page table 

!:!, 

B, 

B, 

B, 

B, 

K 

K, !!, £. 

K, !!, £. 

K, .!d., P 

N, ~, I 

209 S I.ap page B, K 

n:" 
.!d.r, Pr ' 

K"" p., 

Parameters underlined are returned .'ith the response 

FORMAT 2" 

BIN 

U {bit 1} 

K 

FORMAT 2B 

BIN II ul 
16 bits 1 2 12 33 bits 

Block address or number of pages 

usage bits: These are stored in the drum page 
table on .'ri te and rewrite and returned in this 
posi tion on read. 

011, unmodi fied/modi fied since initial access. 

Key 

Virtual page address 

16 Bits 16 16 

starting block for drum page table 

number of blocks to be read 

16 

2A 

2A 

2A 

2A 

2A 

2A 

21. 

2A 

2B 

2C 

"'Ord index {64 bit word} to first active entry 

index {64 bit word} to last +1 active entry 

FORMAT 2C 

II ~:I Pr 

16 Bits 1 2 12 33 

B, U, K and P are the same as in Format 2A. The 
subscripts Rand W denote the pages to be read and 
..... i tten respectively. 

MESS AGE HEADER 

Response Length & Used By 
Code Priority 

Sender To Zipcode From I Function 
Z ipcode Code 

16 Bits 16 16 16 

Figure 8-Paging messages and formats 

the paging station polls central memory for messages, on 
finding a group of active messages they are read to the 
SCU where they are processed. The meaning of the mes
sages is self-evident and the following sample message is 
typical: 

0000 0001 xxx x xxxx} 
0200 

--Header 
xxxx 1300 0100 

0060 0040 000 48001--Message Parameters 
(Hexadecimal numbers) 

The header tells us the message parameter length is one 
64 bit word, the message is being sent from station #0100 
(central) to station #1300 (paging). The message is to read 
(function code 200) virtual block #4800, key #80 (#40 
shifted one place left) to central memory block #60. The 
usage bits of this page, that is whether it has been modi
fied or not by the central processor, will be returned with 
the response. 

MESSAGE PROCESSING 

The steps involved in processing a typical paging mes
sage are shown in Figure 9. All code is reentrant and 
many messages can be processed simultaneously. The 
work space for each message is contained in its control 
package. The number of messages which can be processed 
simultaneously is a station parameter and is set to ensure 
a deadlock situation cannot arise, that is, where no mes
sage can proceed because of a lack of resources. The 
comparator search, drum transfer and channel transfer 
are asynchronous operations which operate in parallel 
with the SCU processor. For each function code there is 
one unique message process routine which makes heavy 
use of subroutines to fulfill its role. The message routines 
are not permanently resident in core memory but float in 
and out as required from the mini-drum. 

PERFORMANCE PARAMETERS 

There are a number of parameters which have a first 
order effect on station performance and these are now 
discussed. 

SEND 
RESPONSE) 

END "_ 
SEQUENCE 

i\ 
I \ 
I ! 
, I 

~! 
\~~/! 

Figure 9-Read page flow diagram 



Storage device performance 

Large capacity, fast drums (or fixed head disks) are 
normally used at present for the paging devices. The goal 
in the STAR system is for a paging device with 109 bit 
capacity, 40 megabit transfer rate and a capability of 
delivering 1000 random page transfers per second. The 
initial paging station has twin Control Data 865 drums 
each with 1408 pages (1 page = 4096 bytes), made up of 
64 head groups of 22 pages per 34 millisecond revolution 
time. The maximum transfer rate is approximately two 
times 660 pages per second. 

Processor speed 

The average number of memory cycles to process a 
message such as read page is 3000. Table 2 lists the 

Messages per 
Second 
700 Paging Station 

Mix: 50% Reads 

25% Re..,rites 

25% Not found ~TFM 

/~"" 
//' 

600 0 = one drum 

T = two drums 

S = slow memory {1.1 us} 

f = fast memory {. 2 us} 

M = modified software 

500 

400 /; 
300 

:::f7 

~I\OF 

_---c,0SM 
_---C,TSM 

r 
oL-------------~1~0-ST-A-TI-ON-Q-U-EU-E-L-EN-GT-H~20~------------~30 

EXPERIMENTAL RES ULTS 

Figure lO-Experimental results 

maximum throughput one can expect with varying 
memory speeds. Figures 10 and 11 show performance 
curves for two memory speeds, 1.1 and 0.2 microseconds. 
Experiments were conducted to obtain essentially a curve 
of station performance versus processor speed; the maxi
mum throughput in Table II was not obtained since when 
the processor time required to drive a block from drum to 
central memory became larger than the drum page trans
fer time (about 1.5 milliseconds) it was not possible to 
stream pages from the drum. Drum revol utions were lost 
and there was a sudden drop in performance. 

Data buffer size 

With the present SBU's there arei blocks available to 
be rented as buffer space for drum transfers. Initially 
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Mes~ages per 
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Paging St ~tion 

Mix: 50% Reads 

.1:;0% Rewrites 

bOO 0 = one drum 

SOD 

400 

300 

200 

100 

T = two drums 

S = slow memory {1· 1 us} 

f = fast memory {. 2 us} 

M = modi fied software 

STATION QUEUE LENGTH 

EXPERIMENTAL RESULT 

Figure ll-Experimental results 

30 

these were rented at the beginning of a message and 
released at the end (Figure 9). This resulted in a falling 
off in performance as the queue length became large. The 
software was modified to enable the drum driver to rent 
SBU space only for the drum and channel transfer time 
thus making better use of this resource. The difference in 
performance is shown in Figures 10 and 11. 

SBU bandwidth 

As mentioned earlier the paging station SBU operates 
as two independent phased memories with approximately 
58 megabits of bandwidth in each half. Table III illus
trates the channel bandwidth available when zero, one 
and two drums are active. Clearly, just as continuity of 
flow applies in aero- and hydro-dynamics it also applies 

Table II-Message Throughput Versus Cycle Time 

Memory 
Cycle Time 

0·1 Micro-seconds 

0·2 

0.5 

1.0 

Maximum 
Throughput 

3333 Messages/Second 

1667 

666 

333 I 
1.1 300 j 

~ __ ~2_.0~ ________________ L-~1~6~7 ________________ __ 

Average number cycles per transaction 3000 
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Table III -Channel Transfer Times 

DRUMS ACTIVE CHANNEL 
TRANSFER RATE 

0 40 Mega-bit 

1 24 

2 10 

Maximum Bandwidth = 58 Mega-bit 

in data-dynamics. If channel transfers cannot keep up 
with drum transfers then drum revolutions are lost and 
performance curves flatten off. 

Message switch 

The message handling mechanism between central 
memory and the SCU vitally affects station performance 
and already has undergone three distinct developments. 
Initially, there was a circular queue with pointers to the 
various messages. This scheme involved too many chan
nel transfers, 3+N in fact (read the queue pointers, read 
the message pointers, read N messages, reset the queue 
pointers), and was discarded. Apart from the channel 
transfer time itself there is considerable processor over
head in driving a channel. In the second scheme messages 
were collected in channel "boats" (Figure 12) and one 
transfer brought over N messages. The drawback with 
this scheme was that only one "boat" was brought over at 
a time, and it was returned only when all messages were 
complete. This resulted in poor performance and very 
poor response times. The third scheme was, in effect, a 
sophisticated boat scheme. Boats could be processed 

HEADER 

MESSAGE 1 

MESSAGE 2 

MESSAGE N 

CONTROL 

Check: Sum 
Zipcode 

Next incoming boat address 
Message Count, Full Flag, 
Chgd:::sum 

Figure 12-Message boat 

before they were full, multiple boats were handled and 
responses were sent back in the first available boat. Fig
ures 10 and 11 show performance curves obtained using 
this last scheme with a constant queue of messages main
tained in the station. In this case the response time is 
given by queue length divided by the number of messages 
serviced per second. 

Other factors 

SCU memory size for message and control package 
buffers is another performance limiting parameter, but 
16K (K = 1024) bytes appears adequate for the present. 
The comparator search takes less time than drum latency 
and is not a limiting factor. Channel bandwidth to central 
is 40 megabits and is not as much a limit as the SBU 
bandwidth. The total input/ output bandwidth in STAR 
memory is 3,200 megabit and a 400 megabit data path is 
available in the future for any new high speed paging 
device~. 

CONCLUSION 

As with other STAR stations3 it is believed a successful 
attempt has been made to identify part of the general 
purpose computing function, in this case the paging func
tion, and separate it from the central processor to operate 
as an independent, asynchronous, self-optimizing unit. 
Indications are that heavily timeshared, large capacity, 
high speed virtual memory computers will require paging 
rates of the order of 1000 pages per second and it appears 
an upgrade of the paging station with faster drums and 
twin SBU's will meet this goal. 
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The linguistic string parser* 

by R. GRISHMAN, N. SAGER, C. RAZE, and B. BOOKCHIN 

J.A.lew York UniveiSity 
New York, New York 

The linguistic string parser is a system for the syntactic 
analysis of English scientific text. This system, now in its 
third version, has been developed over the past 8 years by 
the Linguistic String Project of New York University. 
The structure of the system can be traced to an algorithm 
for natural language parsing described in 1960. 1 This 
algorithm was designed to overcome certain limitations of 
the first parsing program for English, which ran on the 
UNIVAC 1 at the University of Pennsylvania in 1959.2 

The UNIVAC program obtained one "preferred" gram
matical reading for each sentence; the parsing program 
and the grammar were not separate components in the 
overall system. The 1960 algorithm obtained all valid 
parses of a sentence; it was syntax-driven by a grammar 
consisting of elementary linguistic strings and restrictions 
on the strings (described below). Successive implementa
tions were made in 1965,3 in 1967,4 and in 1971.5 The 
system contains the largest-coverage grammar of English 
among implemented natural language p.lrsers. 

Implementation of a large grammar by several people 
over a period of years raises the same problems of com
plexity and scale which affect large programming proj
ects. The main thrust in the development of the current 
version of the parser has been to use modern program
ming techniques, ranging from higher-level languages and 
subroutine structures to syntax -directed translation and 
non-deterministic programming, in order to structure and 
simplify the task of the grammar writer. In this paper we 
shall briefly review the linguistic basis of the parser and 
describe the principal features of the current implemen
tation. We shall then consider one particularly thorny 
problem of computational linguistics, that of conjunc
tions, and indicate how various features of the parser 
have simplified our approach to the problem. Readers are 
referred to an earlier report6 for descriptions of unusual 
aspects of the parser incorporated into earlier versions of 
the system. 

Our approach to the recognition of the structure of 
natural language sentences is based on linguistic string 
theory. This theory sets forth, in terms of particular syn-

* The work reported here was supported in part by research grants from 
the National Science Foundation: GN559 and GN659 in the Office of 
Science Information Services, and GS2462 and GS27925 in the Division 
of Social Sciences. 
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tactic categories (noun, tensed verb, etc.) a set of elemen
tary strings and rules for combining the elementary 
strings to form sentence strings. 

The simplest sentences consist of just one elementary 
string, called a center string. Examples of center strings 
are noun tensed-verb, such as "Tapes stretch." and noun 
tensed-verb noun, such as "Users cause problems." Any 
sentence string may be made into a more complicated 
sentence string by inserting an adjunct string to the left or 
right of an element of some elementary string of the sen
tence. For example, "Programmers at our installation 
write useless code." is built up by adjoining "at our 
installation" to the right of "programmers" and "useless" 
to the left of "code" in the center string "programmers 
write code." Sentences may also be augmented by the 
insertion of a conjunct string, such as "and debug" in 
"Programmers at our installation write and debug useless 
code." Finally, string theory allows an element of a string 
to be replaced by a replacement string. One example of 
this is the replacement of noun by what noun tensed-verb 
to form the sentence "What linguists do is baffling." 

The status of string analysis in linguistic theory, its 
empirical basis and its relation to constituent analysis on 
the one hand and transformational analysis on the other, 
have been discussed by Harris.7 More recently, Joshi and 
his coworkers have developed a formal system of gram
mars, called string adjunct grammars, which show for
mally the relation between the linguistic string structure 
and the transformational structure of sentences.s The 
string parser adds to linguistic string theory a computa
tional form for the basic relations of string grammar. In 
terms of these relations the arguments of grammatical 
constraints (i.e., mutually constrained sentence words) 
can always be identified in the sentence regardless of the 
distance or the complexity of the relation which the words 
have to each other in that sentence.9 

Each word of the language is assigned one or more word 
categories on the basis of its grammatical properties. For 
example, "stretches" would be classed as a tensed verb 
and a noun, while "tape" would be assigned the three 
categories tensed verb, untensed verb, and noun. Every 
sequence of words is thereby associated with one OJ more 
sequences of word categories. Linguistic string theory 
claims that each sentence of the language has at least one 
sequence of word categories which is a sentence string, 
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i.e., which can be built up from a center string by adjunc
tion, conjunction, and replacement. 

However, not every combination of words drawn from 
the appropriate categories and inserted into a sentence 
string forms a valid sentence. Sometimes only words with 
related grammatical properties are acceptable in the 
same string, or in adjoined strings. For example, one of 
the sequences of word categories associated with "Tape 
stretch." is noun tensed-verb, which is a sentence string; 
this sentence is ungrammatical, however, because a singu
lar noun has been combined with a plural tensed-verb. To 
record these properties, we add the subcategory (or attrib
ute) singular to the category noun in the definition of 
"tape" and the subcategory plural to the category tensed
verb in the definition of "stretch." We then incorporate 
into the grammar a restriction on the center string noun 
tensed-verb, to check for number agreement between 
noun and verb. 

The number of such restrictions required for a gram
mar of English is quite large. (The current grammar has 
about 250 restrictions.) However, the structural relation
ship between the elements being compared by a restric
tion is almost always one of a few standard types. Either 
the restriction operates between two elements of an ele
mentary string, or between an element of an elementary 
string and an element of an adjunct string adjoining the 
first string or a replacement string inserted into the first 
string, or (less often) between elements of two adjunct 
strings adjoined to the same elementary string. This 
property is an important benefit of the use of linguistic 
string analysis; it simplifies the design of the restrictions 
and plays an important role in the organization of the 
grammar, as will be described later. 

IMPLEMENTATION 

As the preceding discussion indicates, the string gram
mar has three components: (1) a set of elementary strings 
together with rules for combining them to form sentence 
strings, (2) a set of restrictions on those strings, and (3) a 
word dictionary, listing the categories and subcategories 
of each word. Component 1. defines a context-free lan
guage and, for purposes of parsing, we have chosen to 
rewrite it as a BNF grammar. 

The approximately 200 BNF definitions in our gram
mar can be divided into three groups. About 100 of these 
are single-option string definitions; each of these corre
sponds to one (or occasionally several) strings. For exam
ple, 
ASSERTION:: = <SA> <SUBJECT> <SA> <VERB> 

<SA> <OBJECT><RV><SA> 
contains the required elements SUBJECT, VERB, and 
OBJECT (corresponding to the three elements in such 
center strings as noun tensed-verb noun and noun tensed
verb adjective) and the optional elements SA, indicating 
where an adjunct of the entire sentence may occur, and 
RV, for right adjuncts of the verb appearing after the 
object. SA and RV are two of the approximately 20 

adjunct set definitions: these definitions group sets of 
strings which may adjoin particular elements. The 
remaining definitions, including those for SUBJECT, 
VERB, and OBJECT, are collections of positional var
iants; these define the possible values of the elements of 
string definitions. 

Once component 1. has been rewritten in this way, it is 
possible to use any context-free parser as the core of the 
analysis algorithm. We have employed a top-down serial 
parser with automatic backup which builds a parse tree 
of a sentence being analyzed and, if the sentence is 
ambiguous, generates the different parse trees sequen
tially. 

The parse tree for a very simple sentence is shown in 
Figure 1. A few things are worth noting about this parse 
tree. Most striking is the unusual appearance of the parse 
tree, as if it had grown up under a steady west wind. We 
have adopted the convention of connecting the first 
daughter node to its parent by a vertical line, and con
necting the other daughter nodes to the first by a horizon
tal line. This is really the natural convention for a string 
grammar, since it emphasizes the connection between the 
elements of a string definition. More interesting is the 
regular appearance of "LXR" definitions: a <LNR> 
below the subject, a < L TVR > below the verb, and a 
<LAR> below the object. Each LXR has three elements: 
one for left adjuncts, one for right adjuncts, and one in 
the middle for the core word. The core of an element of a 
definition is the word category corresponding to this 
element in the associated elementary string in the sen
tence; e.g. the core of SUBJECT (and of LXR) in Figure 
1 is the noun "trees"; it is the one terminal node below 
the element in question which is not an adjunct. In some 
cases the core of an element is itself a string. LXR defini
tions and linguistic string definitions play a distinguished 
role in conjoining, as will be described later. 

Each restriction in the grammar is translated into a 
sequence of operations to move about the parse tree and 
test various properties, including the subcategories of 
words attached to the parse tree. When a portion of the 
parse tree containing some restrictions has been complet
ed, the parser invokes a "restriction interpreter" to exe
cute those restrictions. If the restriction interpreter 
returns a success signal, the parser proceeds as if nothing 
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Figure 1-Parse tree for "Parse trees are fascinating" 



had happened; if it returns a failure signal, the parser 
backs up and tries to find some alternate analysis. 

The first version of the system was written in the list
processing language IPL-V for the IBM 7094. Because 
IPL-V was an interpretive system rather than a compiler, 
this implementation proved to be too slow for parsing a 
large corpus of sentences, and it was replaced by a system 
written in assembly language for the IBM 7094 (FAP). 
The speed of these systems was considerably enhanced by 
a mechanism which saved the subtrees below certain 
specified nodes the first time they were constructed, so 
that they would not have to be repeatedly built up. If 
restrictions on the saved subtrees had accessed nodes 
outside the subtree, these restrictions were re-executed 
when the subtree was re-used. With this saving mecha
nism the second version of the parser was able to obtain a 
fir~t pars~ in a few seconds and all parses in under a 
minute for most sentences. 

In both systems, the entire grammar (context-free 
component, restrictions, and word dictionary) was 
encoded in a uniform list-structure format. This format 
was easy to convert to internal list structure, but, particu
larly for encoding the restrictions, it left something to be 
desired with regard to perspicuity and brevity of expres
sion. As the grammar was gradually refined and expand
ed, and especially when the restrictions were modified to 
handle conjunctions, these deficiencies increasingly bur
dened the grammar writer. 

Therefore, when work was begun on a new version for 
the CDC 6600 in 1969 we set as our goal, in addition to 
the creation of a relatively machine-independent FOR
TRAN implementation, the development of a higher-level 
language suitable for writing restrictions. Because we 
realized that the language specifications would evolve 
gradually as new features were added to the system, we 
decided to use a syntax-directed compiler in translating 
the language into the internal list structure required by 
the program. This decision actually simplified the design 
of the overall system, since several modules, including the 
basic parser, could be used in both the compiler and the 
analyzer of English. 

The restriction language we have developed looks like a 
subset of English but has a fairly simple syntax. The 
basic statement form is subject-predicate, for example 

THE OBJECT IS NOT EMPTY. 

This hypothetical restriction might be "housed" in 
ASSERTION (whose definition is given above); that is, it 
would be executed when the parse tree below ASSER
TION was completed, and it would begin its travels 
through the parse tree at the node ASSERTION. The 
restriction looks for an element of ASSERTION named 
OBJECT (that is, it searches the level in the tree below 
ASSERTION for the node OBJECT). When it finds it, it 
verifies that the node is not empty, i.e., subsumes at least 
one word of the sentence. 

Nodes which are not elements of the current string (the 
string in which the restriction is housed) can be refer-
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enced by using one or more of a set of "tree-climbing" 
routines. These routines correspond to the basic relations 
of the string grammar, such as CORE, LEFT ADJUNCT, 
RIGHT ADJUNCT, HOST (which goes from an adjunct 
to the element it adjoins), and COELEMENT (which 
goes from one element of a string definition to another). 
For example, a restriction sentence starting at ASSER
TION, 

THE CORE OF THE SUBJECT IS NHUMAN. 

would begin by looking for the element SUBJECT. It 
would then invoke the routine CORE to descend to the 
core of the SUBJECT and test whether the sentence word 
corresponding to that node has the attribute NHUMAN. * 

Because all grammatical restrictions test elements 
bearing one of only a few structural relationships to the 
current string (as described above), it is possible to-for
mulate all the restrictions in terms of a small set of about 
25 such "locating routines." The routines are coded in 
terms of the basic tree operations, such as going up, down, 
left, and right in the parse tree, and other operations, 
such as testing the name of the node. The basic tree oper
ations are not used directly by the restrictions. The rou
tines correspond roughly to the low-level assembly lan
guage routines in a large programming system. The rou
tines not only simplify the task of writing the restrictions, 
but also permit fundamental modifications to be made to 
the grammar by changing the routines rather than having 
to individually change each of the restrictions. One exam
ple of this, the modification for conjunctions, will be 
described later. 

The restriction language contains the full range of logi
cal connections required for combining basic subject
predicate sentences into larger restrictions: BOTH __ 
AND_, EITHER_OR_, NOT_, IF_ 
THEN __ , etc. For example, a very simple restriction 
for subject-verb agreement in number is 

IF THE CORE OF THE VERB IS SINGULAR 
THEN THE CORE OF THE SUBJECT IS NOT 
PLURAL. 

Registers (i.e., variables) of the form Xn, n an integer, 
may be used to temporarily save points in the tree. For 
example, in 

BOTH THE CORE Xl OF LNR IS NAME OR NSYM
BOL 
AND IN THE LEFT-ADJUNCT OF Xl, NPOS IS NOT 
EMPTY. 

Xl is used to save the point in the tree corresponding to 
"CORE OF LNR" so that it need not be recomputed for 
the second half of the restriction. 

* Informally speaking, the noun subclass NHUMAN refers to human 
nouns. Grammatically it is any word which can be adjoined by a rela
tive clause beginning with "who." 
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The syntax-directed compiler has the job of translating 
the restriction language statements into lists composed of 
the basic operations recognized by the restriction inter
preter. For instance, the restriction sentence given above, 
"THE CORE OF THE SUBJECT IS NHUMAN." 
would be compiled into* 

(EXECUTE [(STARTAT [(SUBJECT)])], 
EXECUTE [(CORE)], 
ATTRB [(NHUMAN)]) 

The EXECUTE operator is used to invoke routines. The 
first operation, a call on the routine STARTAT with 
argument SUBJECT, searches the level below ASSER
TION for the node SUBJECT. This is followed by a call 
on the routine CORE and then by the operation ATTRB, 
which checks if the word associated with the node 
reached has the attribute NHUMAN. 

The restriction language syntax (RLS) which guides the 
compilation process is a set of BNF productions into 
which have been incorporated directives for generating 
the list structures. Each directive is a list of code (list 
structure) generators which are to be executed when the 
production is used in the analysis of the restriction lan
guage statement. 

Our first version of the RLS followed a format 
described by Cocke and Schwartz. 1o The generators to be 
invoked were simply listed between the elements of the 
BNF definitions; the parser called on these generators 
during the parsing of the statement. This arrangement is 
described in detail in Reference 5. It is quite efficient but 
has several drawbacks. First, the parser cannot back up 
(since it cannot undo the action of a generator) so the 
RLS must be written to allow analysis in a single left-to
right pass. Second, if the list structure to be generated is 
at all complicated, the task of creating the generator 
sequences is error-prone and the resulting BNF produc
tions do not clearly indicate what code will be generated. 

We have circumvented the first problem by first pars
ing the statement and then scanning the parse tree and 
executing the generators. We have attacked the second 
problem by allowing the user to write a list structure 
expression as part of each production and having the 
system compile this to the appropriate sequence of gener
ator calls. In our new version of the compiler, after the 
restriction statement is parsed its parse tree is scanned 
from the bottom up. At each node, the sequence of gener
ators in the corresponding production of the compiled 
RLS is executed. These generators should re-create the 
list structure which the user wrote as part of the (source) 
RLS production. This list structure is then assigned as 
the "value" of that node; generators on the node one level 
up may use this value in building a larger list structure. 
In this way, the small list structures at the bottom of the 
tree are gradually combined into larger structures. The 
structure assigned to the root node of the tree is the gener-

* In our list notation, square brackets enclose arguments of operators 
and routines. 

ated code for the statement; this code is written out as 
part of the compiled grammar of English. This procedure 
is similar to the compiler described by Ingermann 11 and 
the formalism of Lewis and Stearns. 12 

A simple example of an RLS statement is 

<REGST>:: = <*REG> 
---(STORE[ <REG> ])1 <*NULL>. 

This says that the symbol REGST may be either a token 
of lexical type REG (a register, Xn) or the null string. If 
REGST matches a register, the code which will be gener
ated and assigned to REGST is the operation STORE 
with an argument equal to the name of the register 
matched. If the null option is used in the parse tree, no 
code is generated. 

As a more complicated example we consider two 
options of NSUBJ, the subject of a restriction statement: 

<NSUBJ>:: = <*NODE> 
--+(EXECUTE[(STARTAT[( <NODE> )])] 1 

CORE<REGST>OF<NSUBJ> 
--+<NSUBJ> : (EXECUTE[(CORE)]): <REGST> 1 •..• 

The first type of subject is simply the name of a node of 
the tree; the generated code is a call on the routine 
STARTAT with that node as argument. The second type 
is CORE OF followed by some other valid subject, with a 
register name following the word CORE if the position of 
the core is to be saved. The generated code here is the con
catenation of three list structures (":" indicates conca
tenation). The first of these is the code generated to lo
cate the NSUBJ following CORE OF; the second is a call 
on the routine CORE; the third is the code generated to 
save the present position in a register (this last structure 
will be empty if no register is present). 

To illustrate the combined effect of these RLS state
ments, we present, in somewhat simplified form, the 
parse tree for our restriction sentence, "THE CORE OF 
THE SUBJECT IS NHUMAN." in Figure 2. To the left 
of each node appears its name; to the right, the list struc
ture assigned to that node by the generating process. 

To compile the RLS into lists of syntactic categories 
and generator calls in the proper internal format, we 
require one further application of the syntax-directed 
compiler. This makes for a total of three uses of the par
ser, two as a compiler and one as an analyzer of English. 
The entire process which results finally in parses of Eng-
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Figure 3-The three uses of the parser 

lish sentences is diagrammed in Figure 3. To avoid an 
infinite regression, the first grammar, the compiled syn
tax of BNF and list expressions, must be produced by 
hand; fortunately, it is quite short. 

CONJUNCTIONS 

The problem in computing conjunctions is threefold. 
(1) To provide for the richness of conjunctional construc
tions in full-bodied English texts. This is best handled by 
locally conjoining the syntactic categories as they appear 
in the sentence (noun and noun, tensed-verb and tensed
verb, etc.) (2) To recover hidden or "zeroed" material 
from the sentence so that semantic and selectional con
straints can be applied to all relevant parts of the sen
tence. This implies an expansion of the sentence. For 
example, the sentence 

(a) They program and debug systems 
has the expansion 

(a /) They program (systems) and (they) debug sys
tems. 

(3) To meet our first two objectives without greatly com
plicating and enlarging the grammar. This necessitated 
an addition to the parser and modifications to the restric
tion language routines. 

According to linguistic string theory an element or 
sequence of elements of a string may be conjoined in the 
following manner: If the successive syntactic elements of 
the string are E 1E 2 • •• E i • •• En then conjunction may 
occur after E i , and the conjoined sequence consists of a 
conjunction followed by Ei or Ej-1Ei or' .. or E iE 2 • •• E j. 
In sentence (a). above, the syntactic categories are pro
noun tensed-verb conjunction tensed-verb noun. In the 
sentence 

(b) They program and we debug systems. 
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the elements are pronoun tensed-verb conjunction pro
noun tensed-verb noun. In addition, if Ei is a positional 
variant (such as OBJECT) representing a set of alterna
tive values for a particular position in the string, one 
value of E j may be conjoined to another. In the sentence 

(c) I don't like him and what he stands for. 

two different values of object are conjoined, namely pro
noun and the N-replacement string what ASSERTION. * 

To include the conjunctional definitions explicitly in 
the BNF grammar would cause the grammar to increase 
enormously. Instead conjunctional strings are inserted 
dynamically by a special process mechanism when a 
conjunction is encountered in parsing the sentence. This 
is equivalent in effect to having all possible conjunctional 
definitiensm the grammarbef-o-re parsing b-egins. 

The special process mechanism interrupts the parser 
~hen an element of a definition has been completely sat
Isfied and the current sentence word to be analyzed is a 
conjunction. An interrupt results in the insertion in the 
tree of a special process node. For each special word there 
is a corresponding definition in the grammar. This defini
tion consists of the conjunctional word and a string which 
defines the general feature of the type of special process 
to be computed (conjunctional, comparative). For exam
ple, <SP-AND> =AND<Q-CONJ>. The general con
junctional string Q-CONJ contains a restriction which 
generates a definition for Q-CONJ depending on where 
the interrupt takes place. If it occurs after E; the follow
ing definition will be generated for Q-CONJ: <Ej>I<Ej_1> 
<Ei>I' .... 'I<E1> <E2> .... <Ej>. Consider the 
sentence 

(d) He and she like computers. 

A tree of the analysis of the sentence is shown in Figure 4. 
After he has been matched as a pronoun an interrupt 
occurs and SP-AND is inserted after NVAR in LNR. 
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Figure 4-Parse tree for "He and she like computers;' 

* The ASSERTION string after words like "what," "who," etc., is 
expected to occur with one noun position empty, here the object of 
"stands for." 
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Figure 5-Parse tree for "They debug and we program systems." 

Local conJommg (i.e. conjoining within a single string
element position such as SUBJECT) will fail however for 

(e) They debug and we program systems. 

The tree for this sentence is shown in Figure 5. Here, the 
conjunctional string covers two string-element positions 
(SUBJECT, VERB) and must be conjoined at a higher 
level in the analysis tree. 

When local conjoining fails, the special process node is 
detached and normal parsing continues. But an interrupt 
will occur again if the conjunctional word has not alterna
tively been analyzed as a non-special word (such as "but" 
in "I will be but a minute."). A second interrupt occur~ 
when the next element satisfied is NULL or the parse 
moves to a higher level of the analysis. For example, in 
sentence (e), "and" is still current when the VERB posi
tion of ASSERTION is completed. Therefore an interrupt 
will occur again at this higher level and the proper con
junctional string will be inserted. After the special process 
node is completed normal parsing resumes. 

If the sentence contains a special process scope marker 
such as both as part of a both . .. and sequence an addi
tional check is made in the restriction that defines Q
CONJ. It removes any option that contains an element 
whose corresponding element in the pre-conjunctional 
string precedes the scope marker. Thus we accept "He 
both debugs and programs systems," but not "He both 
debugs and we program systems." 

Although the special process mechanism can interrupt 
the parser at many different points in the analysis tree, 
the regularity of conjunctional strings with respect to the 
rest of the string grammar enables us to confine the con
junctional interrupt process to just two types of defini
tions: to host-adjunct sequences (i.e., after each element 
of LXR type definitions) and to linguistic strings (i.e., 
after each required element in definitions of the type 
"linguistic string"). In this way numerous redundancies 
caused by conjoining at intermediate nodes are elimi
nated. In addition, confining the conjoining to these two 
types of definitions simplifies the modification to the 
restriction language routines which is needed for conjunc
tions. 

Since restrictions are the key to obtaining correct pars
es, it is essential that they operate on conjunctional 
strings as well as on the ordinary strings of the grammar. 
However, conjunctional strings very often contain only a 
portion of the sequence to which a restriction applies, 
necessitating corrections to each restriction of the gram
mar to take account of conjunctional strings, or else a 
general solution to the problem of truncated conjunc
tional strings. The general solution employed by the cur
rent string parser is to modify, not each restriction, but 
the small number of basic routines used by all restric
tions. * 

Our solution is based on the following: If a restriction 
requires a special condition for element E j of a string S or 
of a host-adjunct sequence, then that condition should 
also be true for E j in the segment conjoined to S. Similar
ly, if a restriction requires a wellformedness condition 
between two elements E j and E j of S (or between host and 
adjunct), then the same condition should be true for E, 
and Ej in the conjoined segment. If one of the elements Ei 
is not present in the conjoined segment, the restriction 
applies between E j in the conjoined segment and E j in S. 

Certain of the basic restriction routines were modified 
in accord with the above, by introducing a "stack" opera
tion. If in the execution of a restriction a routine is called 
to locate an element and this element has conjoined ele
ments then the stack operation is executed for each of the 
conjoined elements. If the restriction is successful, it is 
resumed at the point in the restriction immediately fol
lowing the routine which executed the stack operation. 
But when the restriction is resumed, it is looking not at 
the original element located by the routine but rather at 
its conjoined element. The restriction is successful only if 
it succeeds for all the conjoined elements. 

Consider the operation of the selectional restriction 
WSEL2. This restriction states: If the core of the subject 
is a noun or pronoun and if the core C of the coelement 
verb (of the subject) has a subclassification NOTNSUBJ 
which consists of a list of forbidden noun or pronoun 
subclasses for the given verb, then the sentence word 
corresponding to C should not have any of those subclas
sifications. The verb occurs forbids as its subject a noun 
having a human subclassification. Thus the sequence 
programmers occur is not well formed whereas problems 
occur is. For WSEL2 to test the core of the subject posi
tion the routine CORE is called. In the sentence Problems 
and difficulties occurred later the CORE routine will 
stack difficulties so that the wellformedness of both prob
lems occurred and difficulties occurred will be tested. 
WSEL2 will therefore fail for the sequence Problems and 
programmers occurred later. In the sentence Difficulties 
and problems occurred but later disappeared WSEL2 will 
be executed four times (the core value of the verb position 
is conjoined also) testing the wellformedness of the 
sequences difficulties occurred, problems occurred, diffi-

* In the previous implementations the restrictions were individually 
modified so as tn operate cnrrectlv under conjunctions. This demanding
task was carried out by Morris Salkoff. 



culties disappeared, problems disappeared. In this way 
stacking has the same effect as expanding the sentence. 
There are some restrictions, however, such as the ones 
testing number agreement, which cannot use stacking 
and which must be changed to test specifically for con
joining. Therefore each routine that stacks has a non
stacking counterpart which these restrictions use. 

Stacking is sufficient for the bulk of conjunctional 
occurrences, those whose form is described above. How
ever, there are other types. In 

(f) He debugged the parser and she the grammar. 

there is zeroing in the middle position (i.e., in the verb 
position between the subject and object positions) of the 
assertion beginning with "she." In 

(g) He heard of and liked the new system. 

the noun element following of in the prepositional string 
has been zeroed. It is possible and highly desirable for the 
zeroed element to be filled in during the analysis. The 
program has a mechanism for these cases which is acti
vated by a restriction routine. It temporarily delays the 
execution of all those restrictions that may refer to the 
zeroed element. Further on in the analysis the zeroed slot 
is filled in by linking it to the subtree corresponding to 
another part of the sentence. For example in sentence (g), 
above, the zeroed slot for the noun-sequence after the 
preposition "of' will be linked to the subtree correspond
ing to the new system so that in effect the zeroed informa
tion has been restored. The sentence thus becomes 

(g') He heard of (the new system) and he liked the new 
system. 

After linking occurs, the delayed restrictions are exe
cuted. From that point on any restriction that refers to 
the zeroed element will automatically be switched to its 
linked subtree. While backing up, a restriction may 
obtain an alternative link to another subtree. In this way 
all analyses via different subtree links are arrived at. In 
"We chose and started to implement another algorithm," 
one analysis is "We chose (another algorithm) and started 
to implement another algorithm." Another analysis is 
"We chose (to implement another algorithm) and started 
to implement another algorithm." 

THE USE OF THE STRING PARSER 

A practical goal for the parser is to aid in the processing 
of scientific information. It is conceivable, for example, 
that answers to highly specific informational queries 
could be extracted from large stores of scientific literature 
with the aid of natural language processing techniques. 
Such an application requires that there be a close correla
tion between the computer outputs for a text and the 
information carried by the text. 
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An examination of the string output parses for texts in 
various fields of science 13 shows that the decomposition of 
a sentence into its component elementary strings consti
tutes a first breakdown of the sentence into its elementary 
informational components. The correlation would be 
much improved if we could (1) reduce the redundancy of 
grammatical forms (redundant from the point of view of 
the information carried by the sentence), i.e., arrive at a 
single grammatical form for sentences or sentence parts 
carrying the same information; (2) reduce ambiguity, i.e., 
arrive at the author's intended reading from among the 
syntactically valid analyses produced by the parser. 

Fortunately, methods are available for attacking both 
problems. Transformational refinement of the grammar 
leads precisely to determining a single underlying sen
tence in semantically related forms, such as the active 
and passi¥e, and numerous nQminalization str-ings, e.g. 
"We should reduce ambiguity," "ambiguity should be 
reduced," "the reducing of ambigu.ity," "the reduction of 
ambiguity," etc. 

With regard to syntactic ambiguity, the largest number 
of cases have their source in different possible groupings 
of the same string components of the sentence, the deci
sive criterion being which of the resulting word-associa
tions is the correct one for the given area of discourse. For 
example, in "changes in cells produced by digitalis," only 
one of the possible groupings (that in which digitalis 
produces changes, not cells) is correct within a pharma
cology text dealing with cellular effects of digitalis. 
Recently it has been shown that it is possible to incorpo
rate into the grammar which is used to analyze texts in a 
given science subfield additional grammatical constraints 
governing the wellformedness of certain word combina
tions when they are used within that subfield. 14 These 
constraints have the force of grammatical rules for dis
course within the subfield (not for English as a whole), 
and have a very strong semantic effect in further infor
mationally structuring the language material in the sub
field, and in pointing to the correct word associations in 
syntactically ambiguous sentences. 
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INTRODUCTION 

Natural languages such as English are exceedingly com
pli-c-at-e-d- media fur the cGmm-UIlic-atiBD o-firH(}rmat-w-B-, 
attitudes, beliefs, and feelings. Computer systems that 
attempt to process natural languages in more than the 
most trivial ways are correspondingly complex. Not only 
must they be capable of dealing with elaborate descrip
tions of how the language is put together (in the form of 
large dictionaries, grammars, sets of inference strategies, 
etc.), but they must also be able to coordinate the activi
ties and interactions of the many different components 
that use these descriptions. For example, speech under
standing systems of the sort that are currently being 
developed under ARPA sponsorship must have proce
dures for the reception of speech input, phonological 
segmentation and word recognition, dictionary consulta
tion, and morphological, syntactic, semantic, and prag
matic analyses. The problems of coordination and control 
are reduced only slightly in less ambitious projects such 
as question answering, automatic programming, content 
analysis, and information retrieval. Of course, large-scale 
software systems in other domains might rival natural 
language programs in terms of the number and complex
ity of individual components. The central theme of the 
present paper, however, is that natural language control 
problems have a fundamentally different character from 
those of most other systems and require a somewhat 
unusual solution: the many natural language procedures 
should be conceptualized and implemented as a collection 
of asynchronous communicating parallel processes. 

A common technique for organizing a large system is to 
arrange the flow of control in a hierarchy that follows the 
intuitive "outside-in" flow of data. In language processing, 
this design calis for a seriai invocation of procedures, 
with the input routines succeeded by segmentation, word 
recognition, morphological analysis, and dictionary look
up. The output of these procedures would be passed to the 
syntactic analyzer (parser), which would build syntactic 
structures and send them on to the semantic and infer
ence-making routines. The difficulty with this straight
forward arrangement is that each procedure in the 
chain must operate in a locally uncertain environment. 
For example, there might not be enough information in 
the incoming signal to determine precisely what the string 
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of words is (is it 'nitrite' or 'night rate'?), or dictionary 
consultation might produce several senses for a single, 
clearly identified word ('saw' as a noun, a form of the verb 
'saw'; {}-f a fMm·B-f the v-er-b-'see'}. Lat-er 6ft, the synt-aet-ie 
analyzer might discover several parses, or the semantic 
procedures might find multiple interpretations. Each 
level of analysis might be prepared to handle many inde
pendent possibilities, some of which are passed from 
earlier modules, and some of which it generates and 
passes on. Except for certain unusually well-behaved in
puts, this linear control strategy will lead to exponential 
increases in the amount of computation, and the system 
will be hopelessly swamped in the combinatorics. 

Any realistic system must have ways of selectively 
ignoring certain implicit possibilities, thereby reducing 
the effective size of the computation space. After all, most 
sentences spoken in everyday conversation are not ambig
uous, given their total linguistic and pragmatic context. 
This means that if we search the computation space to 
exhaustion, we will find that most of the possibilities for 
most of the inputs lead to dead-ends, and there is only 
one globally consistent interpretation. The problem is to 
minimize the number of dead-ends encountered in arriv
ing at this interpretation and to stop computing as soon 
as it is achieved. Thus if the segmentation and word 
recognition routines first come up with the 'nitrate' pos
sibility, we want to feed this immediately to the syntactic 
and semantic routines. If a meaningful interpretation 
results, the extra work necessary to discover the 'night 
rate' sequence can be avoided, as can the additional 
effort that all "later" modules would have to devote to it. 
But if 'nitrate' is incompatible with the surrounding con
text, the segmentation routines must be able to resume 
where they left off and produce 'night rate'. In general, 
the various modules must be capable of communicating 
results and intermingling their operations in a "heter
archical"4 fashion according to some heuristic strategies. 

The simple hierarchical model must be abandoned, 
but this does not mean that module interactions can be 
completely unconstrained. We distinguish between intrin
sic and extrinsic constraints on the order of computation. 
It is logicaliy impossible for an operation that applies to a 
datum to be executed before that datum has come into 
existence. For example, the syntactic analysis of a section 
of the input cannot begin until at least some of the possi-
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ble words in that section have been identified and at least 
some of their syntactic properties have been retrieved 
from the dictionary. This is an instance of an intrinsic 
ordering restriction. On the other hand, it is not logically 
necessary for the entire set of word or dictionary possibili
ties to be explicitly available prior to any syntactic opera
tions, although "outside-in" systems impose this kind of 
extrinsic ordering constraint. Other control regimes might 
enforce different extrinsic constraints: left-to-right 
models, for example, require that syntactic processing be 
completed early in the input before segmentation is even 
attempted in later sections. Clearly, a model that imposes 
no extrinsic constraints and ensures that all intrinsic 
constraints are satisfied will provide the maximum degree 
of freedom and safety for the exercise of heuristic control 
strategies, and consequently, should result in the most 
efficient and effective natural language processors. 

The multi-processing control model described below 
constitutes a framework in which these ideal conditions 
can be met. It has evolved from earlier work on a "Gene
ral Syntactic Processor" (GSP), which has been discussed 
in some detail in another paper (Kaplan, in press2

). The 
essential concepts of GSP, insofar as they are relevant to 
multi-processing, are presented in the following section. A 
later section describes the advantages of using asynchron
ous processes within the syntactic component of a natural 
language system. 

AN OVERVIEW OF GSP 

GSP is a relatively simple and compact syntactic proc
essor that can emulate the operation of several other 
powerful algorithms, including Woods' augmented transi
tion network (ATN) parser,5 Kay's "powerful parser,"2,3 
and transformational generators. l This is possible be
cause GSP incorporates in a general way some of the basic 
facilities that the other algorithms have in common. 
Most important for the present discussion, it gives ex
plicit recognition to the fact that syntactic strategies are 
inherently non-deterministic, consisting of many alterna
tives that must be computed independently. Within this 
non-deterministic organization, GSP grammars are repre
sented as arbitrary procedures as Winograd5 has re
cently advocated. GSP also provides a small set of primi
tive operations that can be invoked by grammatical 
procedures and which seem sufficient for most ordinary 
syntactic strategies. 

There are two distinct sources of ambiguity in syntactic 
processing: grammatical alternatives and structural alter
natives. Grammatical alternatives occur because natural 
language sentences and phrases can be realized in many 
different ways. For example, sentences in English can be 
either transitive ('Mother cooked the roast.') or intransi
tive ('Mother cooked.'), while noun phrases might or 
might not begin with determiners ('the men' versus 'men'). 
A grammar must somehow describe the myriad patterns 
that the language allows, and one of the most elegant 
ways to express such possibilities is in the form of a 

(suitably augmented) finite-state transition network. (See 
Woods6 for a fuller discussion of these issues). Thus GSP 
grammars are transition networks consisting of sets of 
states connected by labeled directed arcs. Paths through 
the grammar following arcs from state to state denote the 
sequences of formatives that may occur in valid phrases, 
while multiple arcs emanating from a single state indicate 
grammatical alternatives that correspond to non-deter
ministic choices. In actual practice, a GSP grammar is a 
collection of such networks, each one characterizing some 
type of syntactic constituent (e.g., sentence, noun phrase, 
verb phrase, prepositional phrase). These sub-grammars 
are tantamount to the multiple levels of an ATN gram
mar or the collection of rules interpreted by the Kay 
parser. 

GSP also gives a formal account of the second source of 
ambiguity, structural alternatives. As noted above, the 
input to a syntactic analyzer might contain multiple pos
sibilities, because of uncertainties at the input and dic
tionary look-up stages (the nitrate/night-rate example). 
Other alternatives not foreshadowed in the input might 
arise from the operation of various parts of the grammar. 
For example, the noun phrase sub-grammar must indi
cate that the string following 'saw' in sentence (la) can be 
parsed as a noun phrase in at least three ways, corre
sponding to the interpretations (1 b-d): 

(1) (a) I saw the man in the park with the telescope. 
(b) The man had the telescope. 
(c) The park had the telescope. 
(d) I used the telescope to see the man. 

The three noun phrase possibilities must be processed by 
the· sentence level network to produce, in the absence of 
semantic constraints, two distinct parses for the entire 
sentence, thus signifying that it is globally ambiguous. 
The point is that a syntactic processor must be capable of 
handling structural alternatives in its input and interme
diate results, as well as producing them as output. 

This being the case, GSP provides a single data organi
zation to represent constituents at all stages of processing. 
This data structure, called a chart, is also a transition 
network with states and arcs (which are called vertexes 
and edges to avoid confusion with the grammar networks). 
Edges correspond to words and constituents, while ver
texes correspond to junctures between constituents. A 
sequence of edges through the chart therefore represents a 
single interpretation of the input, and structural alterna
tives are specified by multiple edges leaving a vertex, as 
portrayed in (2): 

o 
night / \ rate 

0,---",,0 
nitrate 

In this simple figure, the arrows indicate the temporal 
order of constituents, with an edge pointing to the set of 



its possible successors. In fact, a temporal successor is 
just one of many properties that an edge can have. As a 
bare minimum, an edge that corresponds to a parent node 
in a linguistic tree must have a pointer to its daughter 
vertex, and Kaplan2 (in press) has described the chart as a 
compact representation for a "family of strings of trees." 
An edge may have a variety of other syntactic and seman
tic properties, and the chart is in fact a very general, very 
complicated kind of syntactic graph. 

The basic function of GSP is to apply a grammar net
work to a chart. Starting at some state and SOHle vertex, 
GSP compares every arc with every edge. Unlike the arcs 
of an ordinary finite-state grammar, the labels on GSP 
arcs are interpreted as sequences of operations to be per
formed. Some of these operations are predicates which 
determine the admissibility of a transition by examining 
not only properties of the current edge but also any infor
maiioriihat mig lit have been saved away in named "reg
isters" by previous transitions along this path. If a transi
tion is permitted, other operations on the arc will be 
executed. These operations can build structures, add 
them to registers for use on later transitions, or insert 
them into the chart as structural alternatives at some 
vertex. Finally, the operations can cause GSP's attention 
to shift (non-deterministically) to a new state and a new 
vertex, usually one of the successors of the current edge, 
where the edge-arc comparison procedure is repeated. 
Notice that the programs on the arcs give each GSP sub
grammar the power of a Turing machine, since registers 
can store an arbitrary amount of information which can 
be used to affect transitions on later arcs. 

This brief discussion should convey a general feeling for 
how GSP is organized and what it does. In terms of multi
processing, the most important points to remember are 
the following: syntactic processing is conceptualized as 
the interplay between two transition networks, a grammar 
and a chart. The grammar is stable and is interpreted as 
a collection of active procedures that operate on the chart. 
On the other hand, the chart is both dynamic and pas
sive: it is constantly being augmented with new edges and 
vertexes as the grammar recognizes new structural possi
bilities, but it does not usually call for the execution of 
any actions. 

MULTI-PROCESSING IN SYNTAX 

Both the augmented transition network and Kay par
sers guarantee that the intrinsic restrictions on the order 
of computation will be met, but they also impose certain 
extrinsic constraints. The popularity of these algorithms 
is due in part to the fact that their extrinsic constraints 
have the desirable effect of cutting down on the size of the 
computation space, but this is not always done in the 
most advantageous way. Certain benefits achieved by the 
ATN par~er, which i~ e~sentially a top-down algorithm, 
are lost by the bottom-up Kay procedure, and vice versa. 
In this section we briefly outline these parsing strategies 
and point out some of their weaknesses and disadvan-
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tages. We then introduce the basic elements of the paral
lel processing model and show how this control regime 
can eliminate extrinsic constraints in syntax and lead to a 
mixture of bottom-up and top-down benefits. 

The A TN parser begins processing at the highest syn
tactic level (the start of the sentence sub-grammar) and 
at the earliest part of the input, it being assumed that the 
beginning of the input corresponds to the left boundary of 
a well-formed sentence. Control passes from left to right 
through the grammar and input until an arc is reached 
that calls upon some other sub-grammar to compute a 
lower-level constituent (e.g. a noun phrase). At this point, 
the status of computation in the sentence network is 
stored away on a stack, computation is suspended, and 
control passes to the beginning of the lower network. If a 
noun phrase is identifiable at that position in the input, it 
is constructed and returned to the suspended sentence 
level, wnich resumes its left to right scan. Notice thaiilie 
lower level computations are initiated only when their 
results will fit into some globally consistent pattern, so 
that much unnecessary computation can be avoided. For 
example, in the sentence 'The man left' this strategy will 
never look for a noun phrase beginning at 'left', since the 
sentence level has no need for it. Furthermore, the ATN 
parser can easily stop when the first complete sentence is 
found; if it is semantically interpretable, the additional 
effort to discover other parses can be eliminated. 

Unfortunately, this ::.trategy is unrealistic in several 
respects. Very few of tne utterances in ordinary conversa
tion are complete, ,,:tll-formed sentences in which the left 
boundary is clearly discernible. Instead, conversation 
consists of a sequence of fragments and partial constitu
ents which cannot be handled in a top-down way, even 
though they are perfectly understandable to human 
observers. A noun phrase response to a direct question 
should be recognized as a noun phrase even though it is 
not embedded in a sentential context. This is a case in 
which the extrinsic constraints have mistakenly ruled out 
some meaningful structural alternatives. 

A second shortcoming of the top down strategy is that 
in its most naive form, it can lead to the repetition of 
certain computations. Consider the garden path sentence 
(3): 

(3) The cherry blossoms in the orchard are beautiful. 

If the parser first assumes that 'blossoms' is the main 
verb, it win expect the sentence to end after 'orchard' and 
be quite surprised to find the trailing verb phrase. To 
obtain the correct analysis, it must back up and change 
its hypothesis about the syntactic category of 'blossoms,' 
and then rescan the rest of the string. Unless special care 
is taken, the computation in which 'in the orchard' was 
recognized as a prepositional phrase will be re-executed. 
The top-down extrinsic constraints are not sufficient to 
forestall this useless effort. To avoid this, the previous 
structure must be retained and made available to subse
quent analysis paths. 
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The chart provides a convenient repository for such 
well-formed substrings (WFSS): we can simply associate 
an extra vertex with the 'in' edge to record the preposi
tional phrases that have been identified at that position. 
Then the grammar operations must be modified so that 
they consult the chart to see if such a vertex exists before 
invoking the prepositional phrase sub-grammar again. 
Notice the control problems that arise with this solution: 
in general there may be several ways of realizing a partic
ular phrase at a particular edge (e.g., 'old men and 
women' might or might not mean that the women are old). 
If all the possibilities are computed and inserted at the 
WFSS vertex together, then some of the work necessary to 
do this might turn out to be superfluous when we stop 
after finding the first parse. However, if the alternative 
phrases are constructed and inserted one at a time, there 
is the risk of backing up, rescanning, and encountering a 
WFSS vertex that is only partially complete. Thus there 
appears to be a trade-off between searching for the first 
parse and utilizing the simple WFSS mechanism to full 
advantage. 

A top-down strategy builds a constituent only on 
demand, when it is needed to fulfill a higher-level phrase. 
The bottom-up Kay algorithm builds all types of phrases 
wherever they can be recognized in the chart, independ
ent of any larger context. This is done in such a way that 
when needed by a higher-level computation, a phrase will 
have already been entered in the chart if it can be recog
nized at all. The chart becomes a collection of WFSS 
tables, one for each identified constituent at each edge, 
and all sub-grammars operate as though they were 
rescanning previously analyzed sections of the chart. In 
terms of the description above, the main function of the 
Kay parser's extrinsic ordering constraints is to preclude 
encounters with incomplete WFSS vertexes. The essential 
restriction is that examination of a vertex must be post
poned until every vertex to its right has been exhaustively 
processed by every sub-grammar. In effect, an external 
controller must simulate a garden-path back up, invoking 
the sub-grammar at each step (see Kaplan2 (in press) for 
a discussion of one way in which this constraint may be 
implemented) . 

The Kay algorithm overcomes some of the difficulties 
of the A TN parser. The total reliance on the well-formed 
substring machinery ensures that no computation will 
ever be repeated, so that analyses of sentences that 
require back up should be more efficient. In addition; the 
Kay strategy has no trouble identifying the fragments 
prevalent in natural discourse. These advantages are 
purchased at some cost, however. The Kay parser can 
handle fragments because it compulsively searches for 
every type of constituent in every position, but this can 
involve a considerable amount of wasted effort when the 
input is in fact well-formed. Furthermore, although it is 
possible to stop after the first parse has been discovered, 
this does not really help to reduce the amount of compu
tation as it does for the A TN. The first parse will not 
emerge until the back up has reached the beginning of the 

chart, at which point the processing of the entire compu
tation space is virtually complete. Thus the Kay algo
rithm is even less amenable to heuristic guidance than 
the top-down A TN parser. 

For both syntactic algorithms, the extrinsic constraints 
are enforced to govern the circulation of information 
between the different sub-grammar networks, to make 
sure that the results of one computation are available 
when needed by another. The simple top-down approach 
is to invoke a sub-grammar each time its results are 
needed by another; the bottom-up approach computes 
results before they are needed and saves them in the 
chart, where they can be accessed on demand. Of course, 
the order in which alternatives are considered within a 
single sub-grammar can freely vary without serious global 
consequences, and this is one area where heuristic strate
gies can be very helpful. If processing will stop after the 
first parse, heuristics can direct the parser to find the 
most likely analysis with the minimum computation, and 
the effort to obtain a meaningful interpretation can be 
drastically reduced. 

What happens if heuristics are used to change the inter
actions between the independent sub-grammars? In many 
cases the violation of an extrinsic constraint will have no 
deleterious effects (which is why it is extrinsic). Often, 
significant reductions in the amount of computation can 
be achieved. However, if the violation causes premature 
scanning of an incomplete vertex, some meaningful analy
ses may never be discovered. The multi-processing frame
work to which we now tum provides a general solution to 
the incomplete vertex problem, thereby eliminating the 
necessity for extrinsic ordering constraints. 

Basically, we conceive of the various sub-networks of a 
GSP grammar as a collection of asynchronous processes. 
They operate on overlapping chart sections and use the 
chart to communicate with one another. For example, a 
noun phrase process can produce a structure and place it 
in the chart so that it will be found by any process that 
can make use of it (such as those corresponding to the 
prepositional phrase or sentence sub-grammars). Syntac
tic processes can cause other processes to be initiated, but 
once created they are, in principle, independent entities 
and can exert no direct control over each other's activi
ties. Coordination between processes is entirely intrin
sic, determined solely by their internal schedules of in
formation production and consumption. 

When a process is created at an edge in the chart, a 
vertex is established to serve as a communication port 
between the process and the global environment. Each 
edge has a process table in which the port and type (e.g., 
noun phrase) of the new process are recorded. A process is 
created only when some other entity wants to examine the 
information it produces. Since identical information will 
come through the ports of two processes of the same type 
at the same edge, an edge can only have one process of a 
given type. When a new consumer of information appears 
and tries to start a process, the edge's table is consulted to 
see if an appropriate process already exists. If so, the 



previously established port is made available to the new 
consumer. In general, a process has no knowledge of how 
many or which entities are using the information it sends 
to its port, and a consumer has no idea of when or why 
the producer was created. 

A process scans the chart, and whenever it recognizes 
and constructs a constituent, it sends it to its port. There 
the constituent gets incorporated as a new edge, and a 
port is thus a dynamic vertex. It has no edges when it is 
first established, but edges can appear at any time, as its 
process sends them back. If no constituents can be found, 
then its process will eventually exhaust itself without 
returning any results, and the port's edgeset will always 
be empty. This indicates to all consumers that the proc
ess' type of constituent does not exist at this position in 
the chart. 

N-otice that as l-ong as a process is aetive, its port is 
essentially an incomplete vertex as described above. The 
intrinsic coordination of processes is accomplished in the 
following way: besides containing the results of its proc
ess, a port must indicate whether or not its process has 
terminated. When a port is created, it is given the initial 
marking "active," which persists until its process sends a 
termination signal. This must be the process' last action 
before it goes into dormancy. 

When the process becomes inactive, any consumer 
coming along may scan the edges at the port as if it were 
an ordinary vertex. However, if the process is active, the 
consumer must take special precautions: if no edges have 
yet appeared at the port, the consumer must wait at the 
port, either temporarily suspending all computation or 
else shifting attention for the moment to some other anal
ysis path. If some edges have already been returned, they 
may be scanned in the normal way, after which the con
sumer must again go into a wait state. A port may not be 
entirely abandoned until its process has become inactive. 
With these facilities for guaranteeing that intrinsic con
straints are maintained, any heuristic strategies that seem 
promising can be used to guide the course of syntactic 
analysis. No matter what happens, implicit possibilities 
will never be lost. 

To get a feeling for how the performance of the syntac
tic component can benefit from these facilities, consider 
how the ATN and Kay strategies could be implemented. 
The top-down approach still starts with a single sentence 
process at the beginning of the chart, but it no longer has 
to suspend itself when lower-level constituents are 
needed. To obtain a noun phrase, it spawns an asyn
chronous noun phrase process and then focuses on the 
structures being returned at the new port. Noun phrases 
will appear one by one, and each one can be examined as 
it arrives. If one of them looks particularly promising, the 
sentence process can continue scanning past it to see if it 
will fit into a valid parse. Up to this point, the only differ
ence between this arrangement and the implementation 
described earlier is that the lower process can be executed 
in parallel (given an appropriately constructed computer). 
However, if there is a garden path and the sentence level 
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must back up, rescan earlier context, and move forward 
again to look for a noun phrase in the same position, the 
port automatically behaves as a WFSS vertex. Further
more, the intrinsic waiting constraints will keep track of 
all possibilities, even if the vertex is still incomplete when 
it is re-entered. Thus, without adding any new heuristics, 
the multi-processing framework allows all repetitive 
computations to be safely avoided within a basically top
down strategy. 

This procedure still would not be able to handle frag
ments, since only the sentence process is initially acti
vated. We still need a bottom-up approach to deal with 
ordinary discourse. For the Kay algorithm, the external 
controller will start up every type of process at every 
edge. If all processes compute to exhaustion, the effect 
will be the same as the previous Kay implementations. 
&t suppos-e w-e introduce the simple heuristic that a 
process' allocation of real computing resources diminishes 
in proportion to the number of edges it has produced. If a 
noun phrase is found at a given position, resources will be 
shifted away from that process for awhile. Therefore, 
instead of focusing completely on one end of the chart 
and slowly backing up, computation will be more or less 
evenly distributed throughout the sentence. This makes it 
very likely that the first parse will be found relatively 
early in the analysis. If it is interpretable, the remainder 
of the computation space can be ignored, and we will have 
gained a top-down advantage in our bottom-up approach. 
However, if no complete parse is found, the bottom-up 
capability of recognizing fragments and partial constitu
ents will be realized. 

CONCLUSION 

The multi-processing framework allows us to combine the 
advantages of the top-down and bottom-up approaches in 
a straightforward way. Even without intelligent heuris
tics, we have achieved a much improved syntactic analyz
er, and as we learn more about how to make successful 
syntactic guesses, its efficiency and effectiveness should 
increase even more. This is also a convenient framework 
in which to test the heuristics that we might devise, and 
should be of great use in future investigations. 

We are also currently investigating the ways in which 
this framework can be extended to other components of a 
natural language system. It appears that alternatives in 
the segmentation, word recognition, and dictionary look
up modules can all be efficiently represented in the chart, 
and that these modules can themselves be conceived of 
as collections of asynchronous processes. As in the syntac
tic component, these processes will sequence themselves 
automatically, according to their intrinsic constraints. In 
fact, it should be possible to turn all modules loose on the 
same chart at the same time, apply any kind of heuris
tics, without danger of forgetting alternatives. This would 
mean that natural language processors could be con
structed with almost all extrinsic ordering constraints 
removed. We are currently investigating this possibility, 
as well as the possibility of treating a semantic network 
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like a chart and rules of inference as independent proc
esses. We will report on these investigations in the near 
future. 
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IXTRODUCTION 

The advent of computer networks such as the ARPA net 
(see e.g., Ornstein et a1. 3) has significantly increased the 
opportunity for access by a single researcher to a variety of 
different computer facilities and data bases, thus raising 
expectations of a day when it will be a common occurrence 
rather than an exception that a scientist \yill casually under
take to use a computer facility located 3000 miles away and 
whose languages, formats, and conventions are unknown to 
him. In this foreseeable future, learning and remembering the 
number of different languages and conventions that such a 
scientist would have to know will require significant effort
much greater than that now required to learn the conventions 
of his local computing center (where other users and knowl
edgeable assistance is readily available). The Lunar Sciences 
Natural Language Information System (which \',-e will 
hereafter refer to as LuKAR) is a research prototype of a 
system to deal with this and other man-machine communica
tion problems by adapting the machine to the conventions of 
ordinary natural English rather than requiring the man to 
adapt to the machine. 

English as a query language 

There are two important reasons why one might want to 
use English as a mode of communication between a man and 
a machine. First, the man already knows his natural language 
and if he is to use a particular computer system or data base 
only occasionally or as a minor part of his work, then he 
may not have the time or inclination to learn and remember 
a formal machine language. Second, the human thinks in his 
native language, and if the mode of communication involves 
the free and immediate communication of ideas to the 
machine which the user is conceiving in the course of the 
interaction, then the additional effort required for him to 
translate his ideas into another language more suitable to the 
machine may slow down or otherwise interfere with the 
interaction. English is therefore an attractive medium because 
the human can express his ideas in the form in which they 
occur to him. 

441 

State of the art 

Although the state of the art in "understanding" natural 
language by machine is still very limited, significant advances 
in this area have been made in recent years. Since Simmons' 
first survey of question answering systems,4 our understand
ing of the mysterious "semantic interpretation" component 
has been made more clear by work such as 'V oods/·8 and the 
techniques for mechanically parsing natural language sen
tences have been advanced by the advent of transition net
work grammars and their parsing algorithms.9 •1O •1l Recently, 
Terry Winograd's blocks world system6 has demonstrated 
the potential of some of these techniques-especially those 
of procedural semantics. The field is now at the point where 
prototype applications to real problems can make significant 
contributions to our understanding of the problems of natural 
language communication with machines. It must be realized, 
that such applications are still essentially research vehicles, 
since the problems of mechanical understanding of natural 
language remain far from solution. However, by using real 
problems, rather than imaginary toy problems, as the vehicles 
for such research, one cannot only focus the effort on prob
lems in need of solution, but may also reap the additional 
benefit of producing a system which will perform a task 
which someone really wants done. 

Natural language understanding 

I want to distinguish here between the objectives of this 
research, which I will call "natural language understanding" 
research, and the development of so called "English-like" 
languages and querying systems. There have been a number 
of computer question answering systems developed for 
special applications or for general purpose data management 
tasks which use English words and English syntactic con
structions and call their languages "English-like." By this 
they mean that, although the statements in the language 
may look more or less like ordinary English sentences~ the 
language makes no attempt to encompass the totality of 
English constructions that a user might ,Yant to use. Also, 
the interpretations of those sentences by the machine may 
differ from those which a user would assume without in-
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struction. Essentially, the designer of such a system is trying 
to go as far as he can toward English \vith some set of tech
niques \\"hich is either easily implementable or computa
tionally efficient, and when he encounters an English 
phenomenon which does not fit conveniently within those 
techniques or which is troublesome, he legislates it out of his 
language or provides for some restricted or modified form of 
the original phenomenon. In the kind of research I am 
describing, one seeks techniques for handling these 
phenomena. 

The design of a natural English understanding system as a 
product is one that is slightly beyond the current state of the 
art and requires considerable linguistic research and further 
development of computational techniques before it will 
become a possibility. The construction of research prototypes 
such as LUNAR as testbeds and foci for the necessary 
research is an essential prerequisite for the eventual develop
ment of such products. As spinoffs from this research \ve will 
achieve better and better "English-like" systems as we go 
along. 

Habitability 

Most English-like systems, although they use English 
words and English syntactic constructions, have a syntax as 
limited and as formal as FORTRAN and require comparable 
amounts of effort to learn, remember, and use. This is not to 
say that these languages merely permit one to stick English 
words into some fixed English formats (although systems of 
that sort have also gone by the name of "English-like")-the 
language may contain a fairly complex grammar and a 
parsing algorithm for analyzing sentences with it. However, 
the "English-like" grammar is at best a restriction of what a 
full English grammar would be and at worst may bear little 
resemblance to ordinary English. The ease or comfort with 
which a user can learn, remember and obey the conventions 
of such a language has been considered by William W att5 

and given the name "habitability." A habitable system is one 
in \ .. "hich the user will not be constantly overgeneralizing the 
capabilities of the system and venturing beyond its con
ventions, nor will he painfully adhere to a miniscule subset of 
the capabilities for fear of misinterpretation. It is very 
difficult to evaluate the habitability of a natural language or 
English-like question answering system without actual 
hands-on experience, and reported data on the subject (with 
the exception of the extremely inadequate statistics which 
will be reported here for LUNAR) is essentially non-existent. 
However, it has been my opinion of every English-like 
system which I have encountered that its habitability is very 
low, and although its techniques represent a significant 
advance in the state of the art, I am far from satisfied with 
the habitability of LUNAR. 

THE LUNAR SYSTKH 

LU~AR was originally developed with support from the 
NASA :\Ianned Spacecraft Center as a research prototype 
for a system to enable a lunar geologist to conveniently 
access, compare, and evaluate the chemical analysis data on 
lunar rock and soil composition that was accumulating as a 
result of the Apollo moon missions. The objective of the 

research was to develop a natural language understanding 
facility sufficiently natural and complete that the task of 
selecting the wording for a complex request would require 
negligible effort for the geologist user. 

The LUNAR system processes English requests in three 
successive phases: 

(i) syntactic analysis using heuristic (including semantic) 
information to select the most "likely" parsings, 

(ii) semantic interpretation to produce a formal repre
sentation of the "meaning" of the query to the 
system, 

(iii) execution of this formal expression in the retrieval 
component to produce the answer to the request. 

The language processor in LUNAR makes use of a general 
parsing algorithm for transition network grammars and a 
general rule-driven semantic interpretation procedure which 
were developed at Harvard University and at BBN over a 
period of years and which have been reported on in the 
literature.7- 11 In addition, LUNAR contains a grammar for 
a large subset of English, a set of semantic interpretation 
rules for interpreting requests for chemical analyses, ratios, 
etc., and a dictionary of approximately 3500 words, plus 
functions for setting up and interrogating a data base, com
puting averages and ratios, etc. The LUNAR system is 
described in detail in a technical report.12 

All of the components of the system are implemented in 
BBN-LISP on the PDB-lO computer at BBN in Cambridge, 
:\1ass., running under the TENEX time sharing system with 
hardware paging and a virtual core memory for each user of 
up to 256K. The system is operational in two 256K tasks 
(called "forks")-one containing the parser, interpreter, 
grammar and dictionary, and the other containing the data 
base and retrieval functions. Although there is considerable 
overhead in running time for programs written in LISP and 
executed in a paged environment, the flexibility of this 
system has been a critical factor in the development of the 
present level of capability. 

The data base 

LUNAR contains two data base files provided by NASA 
MSC. One is a 13,000 entry table of chemical, isotope, and 
age analyses of the Apollo 11 samples extracted from the 
reports of the First Annual Lunar Science Conference, and 
the second is a keyphrase index to those reports. In this 
paper we will consider only the first. This table contains 
entries specifying the concentration of some constituent in 
some phase of some sample, together with a reference to the 
article in which the measurement was reported. (There are 
generally several entries for each combination of sample, 
phase, and constituent-measured by different investigators.) 

The formal query language 

The data base of the LUXAR system is accessed by means 
of a formal query language into which the input English 
requests are translated by the language processing com
ponent. The query language is essentially a generalization of 
the predicate calculus which could either be manipulated as 
a symbolic expression by a formal theorem prover to derive 



intensional inferences or be executed directly on the data 
base to derive extensional inferences. Only the latter, exten
sional inference facility, is used in LU~AR. 

The query language contains three kinds of constructions: 
designators, which name objects or classes of objects in the 
data base (including functionally determined objects), 
propositions, which are formed from predicates with designa
tors for arguments, and commands, which take arguments 
and initiate actions. For example, SlD046 is a designator for 
a particular sample, OLIV is a designator for a certain 
mineral (Olivine), and (CONTAIN 810046 OLIV) is a 
proposition formed by substituting designators as arguments 
to the predicate CONTAI~. TEST is a command for testing 
the truth value of a proposition. Thus, (TEST (CONTAIN 
SlD046 OLIV» ",i.ll ans\ver yes or no depending on whether 
sample SlD046 contains Olivine. Similarly, PRINTOUT is a 
command which prints out a representation for a designator 
given as its argument. 

The maj or pO\ver and usefulness of the query language 
comes from the use of a quantifier function FOR and special 
enumeration functions for classes of data base objects to 
carry out extensional quantification on the data base. The 
format for a quantified expression is: 

(FOR QUANT X / CLASS: PX ; QX) 

\vhere QUANT is a type of quantifier (EACH, EVERY, 
SOME, THE, numerical quantifiers, comparative quanti
fiers, etc.), X is a variable of quantification, CLASS deter
mines the class of objects over which quantification is to 
range, PX specifies a restriction on the range, and QX is the 
proposition or command being quantified. (Both PX and 
QX may themselves be quantified expressions.) 

The specification of the CLASS over which quantification 
is to range is performed in the system by special enumeration 
functions which (in addition to whatever other parameters 
they might have) take a running index argument which is 
used as a restart pointer to keep track of the state of the 
enumeration. Whenever FOR calls an enumeration function 
for a member of the class, it gives it a restart pointer (initially 
NIL), and each time the enumeration function returns a 
value, it also returns a new restart pointer to be used to get 
the next member. 

The use of enumeration functions for quantification frees 
the FOR function from explicit dependence on the structure 
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of the data base-the values returned by the enumeration 
function may be searched for in tables, computed dynami
cally, or merely successively accessed from a precomputed 
list. A general purpose enumeration function SEQ can be 
used to enumerate any precomputed list. For example: 

(FOR EVERY Xl / (SEQ TYPECS) : T ; 
(PRINTOUT Xl» 

is an expression which will printout the sample numbers for 
all of the samples which are type C rocks (i.e. breccias). 

The principal enumeration function for the chemical 
analysis data base is the function DATALINE which takes 
arguments designating a data file, a sample, a phase name, 
and a constituent. DATALINE enumerates the lines of the 
data file which deal with the indicated sample/phase/con
stituent triple. Other complex enumeration functions are 
NU::\1BER and A VERAGE which take an argument format 
simiiar to the FOR function and perform counting and 
averaging functions. 

CAPABILITIES OF THE CURRENT SYSTK\l 

The current LUNAR prototype permits a scientist to 
easily compare the measurements of different researchers, 
compare the concentrations of elements or isotopes in 
different types of samples or in different phases of a sample, 
compute averages over various classes of samples, compute 
ratios of two constituents of a sample, etc. -all in straight
forward natural English. The system removes from the user 
the burden of learning the detailed formats and codes of the 
data base tables, or learning a special programming language. 
For example, the system knows the various ways that a user 
may refer to a particular class of samples, it knows whether a 
given element is stored in the data base in terms of its 
elemental concentration or the concentration of its oxide, it 
knows what abbreviations of mineral names have been used 
in the tables, etc., and it converts the user's request into the 
appropriate form to agree with the data base tables. Thus, the 
system has made significant strides toward the goal of 
habitability. The following examples will illustrate some of 
the kinds of operations LUNAR performs. 

The most typical example of a request which a geologist 
might make to the LUNAR system is illustrated by the 
protocol: 

38**(WHAT IS THE AVERAGE COKCENTRATIOK OF ALU::\UNU::\l IN HIGH ALKALI ROCKS) 
*** 
PARSING 
1331 CONSES 
4.987 SECONDS 
INTERPRETING 
2427 CONSES 
11.025 SECONDS 
IXTERPRETATIO;\lS: 
(FOR THE X13/ (SEQL (AVERAGE X14/ (SS-eXIOX X15/ (SEQ TYPEAS) : T ; (DATALIKE CWHQFILE X15) 
X15 (KPR* X16 / (QUOTE OVERALL» (XPR* X17 / (QUOTE AL203»» : T» : T ; (PRIXTOUT X13» 

BBN LISP-lD 03-09-72 ... 
EXECUTING 
(8.134996 . PCT) 
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(Here, the system has typed the two asterisks, the user typed 
the question, beginning and ending with parenthes('-s, and the 
system typed the rest. The comments 1331 CONSES and 
4.987 SECONDS give a record of the memory resources and 
the time used during the parsing phase. A similar record is 
generated for the interpretation phase: The expression 
following the comment INTERPRETATIONS: is the formal 
retrieval program which is executed in the data base to 
produce the answer). This request illustrates a number of 
features of the system: 

*** 

1. The user types the question exactly as he would say it 
in English (terminal punctuation is optional and was 
omitted in the example). 

37**(GIVE l\1E ALL ANALYOES OF 810046) 
*** 
PARSING 
1456 CONSES 
9.445 SECONDS 
INTERPRETING 
2112 CONSES 
8.502 SECONDS 
INTERPRETATIONS: 

2. The system has translated the phrase "high alkali 
rocks" into the internal table form TYPEAS. 

3. The system has filled in an assumed OVERALL phase 
for the concentration since the request does not 
mention any specific phase of the sample in which the 
concentration is to be measured. 

4. The system is capable of computing answers from the 
data base as well as simply retrieving them (the aver
age was not stored information). 

Perhaps the simplest operation which the system will 
perform for the user is to collect and list selected portions 
(not necessarily contiguous) of the data base. For example, 
for a request "Give me all analyses of SI0046," the system 
protocol would be: 

(DO (FOR EVERY X9/ (SSUNION X12 / (SEQ MAJORELTS) : T ; (DATALINE (WHQFILE (NPR* X19 / (QUOTE 
SI(046))) (NPR* X10 / (QUOTE SIOO46)) (NPR* XlI / (QUOTE OVERALL)) XI2)) : T ; (PRINTOUT X9))) 

BBN LISP-1O 03-09-72 ... 
EXECUTING 

I HAVE 15 HITS 
DO YOU WANT TO SEE THEM? YES 
3956 S1oo46 OVERALL 
3967 
3968 
3865 
3900 
3901 
3928 
3929 
3927 
3875 
3917 
3918 
3919 
3933 
3934 

This example illustrates some additional features of the 
system. Again, since no phase was mentioned, the system 
assumed the OVERALL phase (i.e. the rock as a whole). If 
the user had wanted to see all the phases, he could have said 
explicitly "for all phases." Similarly, since no specific ele
ments or isotopes were mentioned, the system assumed a 
standard list of major elements was intended (Our geologist 
informant assures us that this is what a geologist would 
mean by such a question). Again, if the user really wanted to 
see all chemical element analyses, he could say so explicitly. 

S102 44.06752 PCT D70-235 
T102 8.3405 

6.50559 D70-254 
AL203 11.7149 D70-235 
FEO 16.9818 

15.438 D70-254 
MNO .20659 D70-235 

.22725 D70-254 
MGO 9.11845 D70-235 
CAO 13.71216 
K20 .20478 

.19515 D70-242 

.14455 D70-254 
XA20 .4718 D70-235 

.50146 D70-254 

The comment I HAVE 15 HITS DO YOU WANT TO SEE 
THEM? illustrates another feature of the system. If the 
result of a request is more than 5 "hits" (effectively 5 lines of 
output), the system types this comment and gives the user 
the option of listing them offline. 

In addition to averaging and listing, the system can also 
compute ratios, count, and interpret some anaphoric refer
ences and comparatives as indicated in the following 
examples: 



31 **(HOW ;\tIANY BRECCIAS CONTAIN OLIVIKE) 
*** 
PARSING 
815 CONSES 
4.633 SECONDS 
INTERPRETING 
1514 CONSES 
7.29 SECONDS 
INTERPRETATIOXS: 
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(FOR THE X12 / (SEQL (NU~'\'IBER X12 / (SEQ TYPECS) : (CONTAIN X12 (NPR* X14 / (QUOTE OLIV)) (QUOTE 
NIL) ) ) : T ; (PRINOUT X12) ) 

BBN LISP-lO 03-09-72 ... 
EXECUTING 
(5) 

*** 
32**(WHAT ARE THEY) 
*** 
PARSING 
487 CONSES 
2.755 SECONDS 
INTERPRETING 
1158 CONSES 
4.053 SECONDS 
IXTERPRETATIONS: 
(FOR EVERY X12/ (SEQ TYPECS) : (CO~TAIN X12 (NPR* X14/ (QUOTE OLIV)) (QUOTE NIL)) ; (PRINTOUT 
XI2)) 

BBN LISP-lO 03-09-72 ... 
EXECUTING 
SlO019 
S10059 
S1oo65 
S10067 
S10073 

*** 
34**(DO ANY SAMPLES HAVE GREATER THAN 13 PERCENT ALU:.vnNUM) 
*** 
PARSING 
981 CONSES 
4.614 SECONDS 
INTERPRETING 
902 CONSES 
3.566 SECONDS 
INTERPRETATIONS: 
(TEST (FOR SO:YIE X16 / (SEQ SA~IPLES) : T ; (COXTAI~' X16 (~PR* X17 / (QUOTE AL203)) (GREATERTHAX 
13 POT»)) 

BBN LISP-lO 03-09-72 
EXECUTING 
YES. 
T 
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*** 
35**(LIST K! RB RATIOS FOR BRECCIAS) 

*** 
PARSING 
662 CONSES 
3.366 SECONDS 
INTERPRETING 
1642 CONSES 
6.537 SECONDS 
INTERPRETATIONS: 
(DO (FOR GEN X9 / (SSUNION XlO! (SEQ TYPECS) : T; (RATIO (QUOTE K02) (QUOTE RB) XlO (NPR* XU! 
(QUOTE OVERALL»» : T ; (PRINTOUT X9») 

BBN LISP-lO 03-09-72 
EXECUTING 
I HAVE 17 HITS 
DO YOU WANT TO SEE THEM? YES 
(472.2222 SlO018 D70-205) 
(473.5884 810018 D70-242) 
(518.2477 SI0019 D70-218) 
(345.4411 SI0019 D70-256) 
(463.3003 Sl0021 D70-242) 
(568.8333 S30046 D70-235) 
(462.4408 Sl0046 D70-242) 
(408-2933 Sl0048 D70-220) 
(566.1499 SI0056 D70-235) 
(480.1913 SI0059 D70-253) 
(481.85 S10060 D70-235) 
(457.9177 SI0060 D70-242) 
(487.5714 SI0060 D70-248) 
(489.1304 S10061 D70-205) 
(458-9973 Sl0065 D70-236) 
(473.1551 S10065 D70-258) 
(500.173 S10073 D70-215) 

The system also understands restrictive relative clauses and certain adjective modifiers (some of which cause restrictions on 
the range of quantification of the noun phrase and some of which change the interpretation of the noun they modify). Some other 
modifiers (such as "lunar" modifying "samples") are known to be redundant and are deliberately ignored. The following example 
contains all three: 

46**(LIST :\10DAL PLAG ANALYSES FOR LUNAR SAMPLES THAT CONTAIN OLIV) 
*** 
PARSING 
1099 CONSES 
4.346 SECONDS 
INTERPRETING 
2774 CONSES 
12.33 SECONDS 
INTERPRETATIONS: 
(DO (FOR GEN X20/ (SSUNION Xl / (SEQ SA~IPLES) : (CONTAIN Xl (NPR* X3/ (QUOTE OLIV» (QUOTE 
NIL» ; (DATALINE (WHQFILE Xl) Xl OVERALL (NPR* X4/ (QUOTE PLAG»» :T; (PRINTOUT X20») 

BBN LISP-lO 03-09-72 
EXECUTING 
I HAVE 13 HITS 
DO YOU WANT TO SEE THE~I? YES 
1679 S10020 OVERALL PLAG 30.7 *** D70-159 0 
1680 21.4 D70-173 31 
1681 28.5 40 



1682 24.6 
2141 S10022 15.6 
3109 S10044 33.1 
3110 34.1 
4440 Sloo47 37.8 
5796 S10058 37.1 
8582 Sloo72 20.4 
8583 18.5 
9311 Sloo84 22.0 
9312 15.0 

The structure of the formal query language for accessing 
the data base and the techniques for semantic interpretation 
enable the user to make very explicit requests "ith a ",ide 
range of diversity within a natural framework. As a natural 
conseqll~I!Qe_QL th_~ __ ~rraI!g~~ent, it is pos~ible for the user 
to combine the basic predicates and functions of the retrieval 
component in ways that were not specifically anticipated, to 
ask questions about the system itself. For example, one can 
make requests such as "List the phases.", "What are the 
major elements?", "How many minerals are there?", etc. 
Although these questions are not likely to be sufficiently 
useful to merit special effort to handle them, they fall out of 
the mechanism for semantic interpretation in a natural way 
"ith no additional effort. If the system knows how to 
enumerate the possible phases for one purpose, it can do so 
for other purposes as well. Furthermore, anything that the 
system can enumerate, it can count. Thus, the fragmentation 
of the retrieval operations into basic units of quantifications, 
predicates, and functions provides a very flexible and power
ful facility for expressing requests. 

EVALUATION 

As I said in my introduction, the construction and evalua
tion of research prototypes such as L UN AR is an essential 
prerequisite to the development of natural English under
standing systems. It is natural at this point to ask, "How 
close to that goal are we?" "How natural is the communica
tion with LUNAR?" In this section, we ",ill consider some 
of the data both statistical and anecdotal which we have 
available. It is admittedly grossly inadequate to the task but 
may help to give some impression of what can be achieved 
with the techniques used in LUNAR and also some of the 
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D70-305 0 
D70-179 
D70-154 41 

42 
D70-159 0 
D70-155 
D70-173 
D70-179 
D70-186 
D70-304 

problems that still remain ,-dth this and other natural 
language understanding systems. 

Demonstration of the prototype 

At the _ Second Annual Lunar Science Confer-en-c-e,-ln 
Houston, Texas, January 11-13, 1971, a version of LU)JAR 
system was run as a demonstration t\vice a day for three 
days. During this time the lunar geologists attending the 
conference ""vere invited to ask questions of the system. 
Approximately 110 requests were processed, many of which 
were questions whose answers would contribute to the ""vork 
of the requestor and not merely "toy" questions to see what 
the system ,vould do. These requests were limited to questions 
which in fact dealt with the data base of the system (many 
people asked their questions before they could be told what 
the data base contained) and were restricted to not contain 
comparatives (which we did not handle at the time). The 
requests were freely expressed, however, without any prior 
instructions as to phrasing and ""vere typed into the system 
exactly as they were asked. 

Of 111 requests entered into the system during the three 
days, 10 percent of them failed to perform satisfactorily 
because of parsing or semantic interpretation problems. 
Another 12 percent failed due to trivial clerical errors such as 
dictionary coding errors which were easily corrected during or 
immediately after the demonstration. The remaining 78 
percent of the requests were handled to our complete satis
faction, and with the correction of trivial errors, 90 percent 
of the questions expressed fell within the range of English 
understood by the system. This performance indicates that 
our grammar and semantic interpretation rules, which ,vere 
based on the information of a single geologist informant, did 
indeed capture the essential details of the way that geologists 
would refer to the objects and concepts contained in our data 
base. Examples of the requests which were processed are: 

(GIVE:ME THE AVERAGE SM ANALYSIS OF TYPE A ROCKS) 
(WHAT IS THE AVERAGE MODAL CONCENTRATION OF ILMENITE IN TYPE A ROCKS?) 
(GIVE :ME EU DETERl\tIINATIONS IN SAMPLES WHICH CONTAIN ILM) 
(GIVE ME ALL K / RB RATIOS FOR BRECCIAS). 
(WHAT BE ANALYSES ARE THERE?) 
(GIVE ME OXYGEN ANALYSES IN Sloo84) 
(WHAT SAMPLES CONTAIN CHRO~nTE?) 
(WHAT SAMPLES CONTAIN P205?) 
(GIVE ME THE MODAL ANALYSES OF P205 IN THOSE SAl\1PLES) 
(GIVE :\1E THE l\fODAL ANALYSES OF THOSE SA~fPLES FOR ALL PHASES) 
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(DOES S10046 CONTAIN SPINEL?) 
(WHAT PHASES DOES Sl0046 HAVE?) 
(WHAT IS THE AVERAGE CONCENTRATION OF IRO~ IN IL:\'IENITE) 
(GIVE ME REFERENCES ON SECTOR ZONING) 
(GIVE ME REFERENCES ON ABYSSAL BASALTS) 
(GIVE ME ALL IRON / MAGNESIUM RATIOS IN BRECCIAS) 
(GIVE ME ALL SC46 ANALYSES) 
(WHAT SOILS CONTAIN OLIV) 
(GIVE ME ALL OLIV ANALYSES OF S1(085) 
(WHAT ARE ALL TUNGSTEN ANALYSES?) 
(GIVE ME IRON ANALYSES FOR PLAGIOCLASE IN S10022) 
(GIVE ME ALL ZIRCONIUl\I CONCENTRATIONS IX ILM:ENITES) 

A necdotal data 

The above statistics have to be evaluated ,yith several 
grains of salt. However, they do give so~e impression of the 
habitability of the system to lunar geologists for which it was 
tailored. The results must be balanced by the experience of 
non-geologists who have tried to use the system. In one 
anecdotal example, which is perhaps typical of the failures of 
LUNAR and other attempted natural language under
standing systems, the first question asked of the system by a 
graduate student in psychology (given only the instructions 
"ask it a question about the moon rocks") was "What is the 
average "weight of all your samples?" This sentence failed 
even to parse due to the fact that the grammar of the system 
did not know that some determiners in English (such as 
"all") can be used as a "predeterminer" in addition to another 
determiner in the same noun phrase. Both "What is the 
average weight of all samples?" and "What is the average 
weight of your samples?" would have parsed. Assuming that 
the request had parsed (the grammar has now been expanded 
to the point where it would), the system would still not have 
understood it for several reasons. First, the system contains 
no semantic rules for interpreting ownership or possession 
(no one had ever attributed ownership of the samples to the 
system before). Secondly, LUNAR's data base does not 
contain information about the weights of samples and 
consequently there are no semantic rules for interpreting 
"weight of." This same student had to ask 5 successive 
questions before he found one that the system could under
stand and answer. This of course is not surprising for ques
tions that are not even constrained to be about the contents 
of the data base. On another occasion, a class of graduate 
students in information retrieval given an appropriate intro
duction spent an hour and a half asking it questions and 
found only two that it failed to handle correctly. 

The difference in performance for geologist users and non
geologists is not just that the geologists use technical jargon 
with which the layman is not familiar, but also their famili
arity with the material leads to certain habits in language 
which do not cover the full spectrum of possible English 
constructions. Thus, in tailoring a system to the geologist, we 
have concentrated our effort (although not to the exclusion 
of all else) on those linguistic phenomena and problems 
which the geologists actually use. The non-geologist strays 
outside of this habitable region more easily than the geologist 

and this is the source of most of the problems in the above 
example. 

There are other limitations of the system-even for a 
geologist user-which do not show up in the statistics of the 
demonstration. For example, although the parsing system 
contains experimental versions of some of the most sophis~ 
ticated conjunction handling of any mechanical grammar to 
datell the handling of conjunctions in the system is still far 
from adequate. Although none of the questions during the 
demonstration involved complicated conjunction construc
tions, it is also true that no single person asked more than a 
few questions during the conference. I am confident that if a 
geologist really sat down to use the system to do some re
search he would very quickly find himself wanting to say 
things which are beyond the ability of the current system. 

Linquistic fluency and completeness 

There are two scales which can be used to measure the 
performance of a system such as LUNAR. 'Ve can call them 
completeness and fluency. A system is complete if there is a 
way to express any request which it is logically possible to 
answer from the data base. The scale of fluency measures the 
degree to which virtually any ,vay of expressing a given 
request is acceptable. The two scales of completeness and 
fluency are independent in that it is possible to have a fluent 
system which will accept virtually any variations on the 
requests which it accepts, but which is nevertheless incom
plete. Like"wise, a system may be logically complete but very 
restricted in its syntax. A natural language system which is 
incomplete cannot answer certain questions, while a system 
that is not fluent is difficult to use. 

Fluency of LUNAR 

The LUNAR prototype is quite fluent in a few specific 
constructions. It will recognize a large number of variations 
on the request "give me all analyses of constituent x in 
phase y of sample z." It knows many variations of "give me" 
and many different variations on "analysis." However, there 
are other requests which (due to limitations in the current 
grammar) must be stated in a specific way in order for the 
grammar to parse them and there are others which are only 
understood by the semantic interpreter when they are stated 
in certain ways. 



In the area of syntax, the LUXAR system is very com
petent. ::\Iost questions that fail to be understood have 
nevertheless parsed correctly, and questions having nothing 
at all to do with lunar geology parse equally well. The grammar 
knmys about such things as embedded complement construc
tions, tense and modality, and other linguistic phenomena 
that probably do not occur in the lunar geology application. 

~fost of the limitations of fluency in the current system 
are due to the fact that the necessary semantic interpretation 
rules have not been put into the system. Continued develop
ment of the grammar and semantic rules ,yould result in 
continued improvements in fluency, and there is no visible 
ceiling other than an economic one to the. fluency which can 
be achieved. The follov,ing list of sentences gives a repre
sentative sample of the kinds of questions which the system 
can understand and the degree of variability permitted. 

1. (List samples with Silicon) 
(Give me all lunar samples with ':\lagnetite) 
(In 'which samples has Apatite been identified) 
(How many samples contain Titanium) 
(,Which rocks contain Chromite and Ulvospinel) 
(Which rocks do not contain Chromite and ulvospinel) 

2. nVhat analyses of Olivine are there) 
(Analyses of Strontium in Plagioclase) 
(What are the Plag analyses for breccias) 
(Rare earth analyses for SlO005) 
(I need all chemical analyses of lunar soil) 
('Vhat is the composition of Ilmenite in rock 10017) 
(List the analyses of Aluminum in vugs) 
(Kickel content of opaques) 

3. ('Vhich samples are breccias) 
(What are the igneous rocks) 
(,What types of sample are there) 
('\Vhat is the number of phases in each sample) 

4. (Give me the K / Rb ratios for all lunar samples) 
(What is the specific activity of A126 in soil) 
(Give me all references on fayalitic Olivine) 
(Which rock is the oldest) 
(Which is the oldest rock) 

5. ('\Vhat is the average analysis of Ir in rock S10055) 
(What is the average age of the basalts) 
(What is the average Potassium / Rubidium ratio in 

basalts) 
(In which breccias is the average concentration of 

Titanium greater than 6 percent) 
(What is the average concentration of Tin in breccias) 
(VVhat is the average concentration of Tin in each 

breccia) 
(,What is the mean analysis of Iridium in type B rocks) 
(I want the average composition for glasses in dust) 

6. (~/Iodal Plag analyses for 810058) 
(:'.lodal Olivine analyses) 
(Give me the modal Olivine analyses for S10022) 
(Give me all modal analyses of Plag in lunar fines) 
(List the modes for all low Rb rocks) 

7. (Which samples have greater than 20 percent modal 
Plagioclase) 
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(Which samples are more than 20 percent Plag) 
(How many rocks have greater than 50 ppm Nickel) 
(Which samples contain more than 15 ppm Barium 

in Plag) 
(How much Titanium does S10017 contain) 
(How much Nickel is in rock 10046) 
(How old is S10047) 

Completeness of LUNAR 

The criteria for logical completeness is a level of achieve
ment that is not generally met by current data management 
systems ,,,"ith artificial request languages, much less by a 
system that recognizes natural language. The formal query 
language used for the retrieval component of LUNAR fares 
better than most data management systems in this respect 
smeeit is fundamentaHy·an extension of the predicate 
calculus, but there are still some extensions which the lan
guage requires in order to fully achieve logical completeness. 

}'1ore stringent than the incompleteness of the formal 
request language, there are limitations in the completeness of 
the subset of English handled by the system. This arises 
largely from the difficulties of parsing conjunction construc
tions, but there are also problems such as the ambiguity of 
the scopes of quantifiers. With some further work on con
junctions, the subset of English currently handled by the 
grammar should become a very convenient language to use. 
However, semantic interpretation techniques for this subset 
are far from complete and much further work is needed here. 

CONCL'CSION 

What we have accomplished 

The current L UK AR prototype represents a significant 
step in the direction of the goals of natural language under
standing. Within the range of its data base, the system per
mits a scientist to ask questions and request computations in 
his own natural English in much the same form as they arise 
to him (or at least in much the same form that he would use 
to communicate them to another person). This is borne out 
by the performance of the system during the demonstration 
at the Second Lunar Science Conference. The system an
swered most of the questions dealing with its data base which 
were asked by the investigators during the demonstration. 
The effort required to cast the request into a form suitable 
for execution in the data base is assumed by the English 
processor, which translates the requests into compact "dis
posable" programs which are then executed in the data base. 
The English processor therefore functions as an automatic 
programmer which will convert the user's request into a 
tailor-made program for computing the answer. The English 
processor knows the ways in which geologists habitually 
refer to the elements, minerals, and measurements contained 
in its data base; it knows the specific details of the data base 
table layouts; and it knows the correspondence between the 
two. Thus, for example, the user need not know that the 
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mineral Olivine is abbreviated OLIV in the data base, that 
the concentrations of Titanium are recorded in terms of the 
percentage of Ti02, that the class of rocks referred to 
variously as "type A," "high alkali," or "fine grained crys
talline" are encoded as "TYPEAS" in the data base. These 
facts are "knm"'1l" by the natural English processor, and the 
user's request is automatically translated from the form in 
which he may ask it into the proper form for the data base. 

Where we stand 

Although our current system does indeed exhibit many of 
the qualities that we have outlined as our goals, we are still 
far from achieving the goal as stated. The knowledge that the 
current system contains about the use of English and the 
corresponding meanings of words and phrases concerns those 
English constructions which pertain to the system's data 
base of chemical analysis data, which has a very limited and 
simple structure. Indeed this data base was chosen as an 
initial data base because its structure was simple and straight
forward. In order to incorporate additional data bases into 
the system, it will be necessary to provide the system with 
information about the ways that the users will refer to those 
data bases in English, the vocabulary they will use, the ways 
they will use that vocabulary, and the "meanings" of the 
words and constructions in terms of the data base tables. For 
some tables (those whose structure is as simple and direct 
as the chemical analysis table), this process may be a direct 
extension of the current facility and may require only the 
addition of new semantic rules for interpreting the new words 
and constructions. For other applications, however, this will 
require much greater sophistication in both the linguistic 
processing and the underlying semantic representations and 
inference mechanisms. One type of data which will require 
considerable advancement is the representation and use of 
data which describes surface and structural features of the 
samples. This data does not fit conveniently into a table or a 

paradigm, and the techniques for storing it, indexing it, and 
providing access to it for retrieval and inference remain to be 
developed. Indeed, it is in the handling of non-tabular 
information of this sort that natural language querying may 
lold its greatest promise, but such potential is as yet un
developed. 
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Experiments in sophisticated content 
analysis 

by GARY R. MARTIN 

University of California 
Los Angeles, California 

ABSTRACT 

In recent years, natural language data processing 
research and development has turned away from its ear
lier goals of fully-automatic high-quality translation, and 
similarly unmanageable tasks, toward the construction of 
computational tools for a variety of more practical appli
cations. At the Center for Computer-Based Behavioral 
St~di~~ at UCLA, such tools are being used In the analy
sis of message sets originating in experimental gaming 
situations, studies of social interaction, group simulations, 
as well as for the analysis of outside documents of inter
est. 

A central tool in these studies is the so-called Stanford 
Inquirer, a more sophisticated version of the earlier 
General Inquirer. The use of the Stanford Inquirer has 
heretofore involved considerable costs in time and money 
for the manual pre-coding of the object texts-an essen
tial step in the identification of the "themes" of interest 
in the text. Besides being expensive, this manual text 
encoding has been subject to inter-code inconsistency and 
bias. Through automated interactive theme encoding, the 
Center is working to overcome these obstacles to effective, 
large-scale text analysis. In addition, these text processing 
tools are being shaped for other applications, such as 
automated document classification and routing. 

Two approaches are called sequential coding and the 
other based on the Woods-Kaplan transition network 
analyzer will be discussed. 
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~Iodelling English conversations 

by R. F. SIMMONS 

University of Texas 
Austin, Texas 

ABSTRACT 

A notable if limited degree of success has been obtained 
in natural language question answering systems as seen in 
such examples as Woods' Lunar Data Base Model and 
Winograd's natural language controlled hand. Most of the 
conversational capabilities of these systems take the form 
of answering questions or accepting data. Colby'S recent 
simula_tio!l of a paranoid persona,lity off~rs a, freerJorm of 
conversation although the model's understanding of Eng
lish is very limited. Computer based teaching systems 
often include a tree of conversational responses to student 
questions and answers but these are highly specific to 
exactly predictable contexts. 

Our current research is concerned with modelling gen
eral conversations in English. The models may be text
based, based on a structured model of information, or a 
combination of these. A basic babbler accepts an input 
statement in restricted English, analyzes it to find match
ing text or data in its model, and responds with something 
relevant to the input. The babbler adds information to its 
model when input sentences are given it. The question of 
what is relevant as a response is the interesting line of the 
research. The babbler is given purposes-such as to pres
ent some given set of information. It is given some capa
bility to model the speaker, to remember what has been 
said, and an ability to evaluate connotative aspects of the 
meanings of words. These features allow it to select a 
conversational response as a function of its purposes, its 
model of the speaker, and the denotative and connota
tive meanings of the input sentence. The main emphasis 
of the research is to discover how to present lesson ma
terial in a computer controlled conversational system. 



452 National Computer Conference, 1973 

The efficiency of algorithms and 
machines-A survey of the 
complexity theoretic approach 

by JOHN E. SAVAGE 

Brown University 
Providence, Rhode Island 

ABSTRACT 

The credibility of computer science as a science 
depends to a large extent on the complexity theoretic 
results which are now emerging. In this survey the effi
ciency of algorithms and machines for finite tasks, i.e., 
tasks representable by functions with finite domain and 
range, will be examined. 

The complexity of functions can be measured in several 
ways. Two useful measures to be discussed in this survey 
are the shortest length program for a function on a uni
versal Turing machine and the smallest number of logical 
operations to compute a function. 

Two storage-time tradeoff inequalities for the computa
tion of functions on random-access general purpose 
computers will be stated. These imply that efficient use of 
these machines is possible only for algorithms using small 
storage and large time or the reverse. Intermediate 
amounts of storage and time generally imply inefficient 
operation. 

Hypergeometric group testing 
algorithms 

by F. K. HWANG and S. LIN 

Bell Telephone Laboratories, Incorporated 
Murray Hill, New Jersey 

ABSTRACT 

Given a finite population P consisting of g good and d 
defective objects, the problems of hypergeometric group 
testing (HGT) is concerned with the identification of the 
d defectives by means of the following test procedure. 
Any subset XCP can be tested with two possible results: 
(1) either all elements of X are good, or (2) at least one 
element of X is defective. In the latter case, we have no 
knowledge as to which ones or how many are defective. In 
recent years, various algorithms have been proposed to 
solve this problem with the aim of minimizing the maxi
mum number of tests required. However, no optimal 
algorithm is known at present for general g and d> l. 

We define an algorithm s to solve the HGT problem to 
be an i-set algorithm if throughout the entire process of 
implementing s, we only need to partition the still unclas
sified elements of P into at most i sets (Pi. ... ' PI) where 
objects in each Pi need not be differentiated from one 
another. Restricting s to be an i-set algorithm limits the 
range of useful tests we can make as the amount of infor
mation we can keep after each successive tests depends 
on t. We show that all previously known HGT algorithms 
are either 1 or 2-set algorithms. By increasing l, we are 
able to construct some new classes of HGT algorithms 
which are more efficient than all previously known algo
rithms. Finally, we are able to construct optimal HGT 
algorithms for l:S3. 



The rIle transmission problem 

by PETER WEINER 

Yale University 
New Haven, Connecticut 

ABSTRACT 

The file transmission problem is to determine the best 
way to send a file A (assumed to be a linear string over a 
finite alphabet) from one computer to another via a trans
mission line, assuming that the receiving computer has 
access to another file B called the base file. In addition to 
sending the characters of A directly, we allow the trans
mission of a copy command which directs the receiving 
computer to append a specified, but variable length, 
substring of characters taken from the base file to the end 
of the file under construction. The cost of transmission is 
taken as the sum of the number of characters directly 
sent and K times the number of copy commands. An 
optimal derivation of A is a minimum-cost sequence of 
characters and copy commands which allow the receiving 
computer to construct the file A. We present an algorithm 
for obtaining an optimal derivation. This algorithm is 
itself optimal in that both its run time and storage 
requirements are linear functions of the lengths of A and 
B. 

Min-max relations and combinatorial 
algorithms 

by W. PULLEYBLANK 

University of Waterloo 
and 
I.B.M. Canada Ltd. 
Waterloo, Ontario, Canada 

ABSTRACT 

Min-max relations are an important tool in the devel
opment of combinatorial algorithms, for they provide a 
means of determining when an optimal solution has been 
obtained and a means of demonstrating the optimality of 
the solution. Many combinatorial problems can be 
expressed as integer programming problems. When a set 
of linear inequalities sufficient to define the convex hull 
of the feasible solutions is known, linear programming 
duality immediately yields a min-max theorem. 

We discuss these ideas with respect to the weighted 
matching problem and describe several min-max theo
rems which can be obtained in this fashion. 

Discrete Algorithms-Applications and Measurement 453 

Analysis of sorting algorithms 

by C. L. LIU 

University of Illinois 
Urbana, Illinois 

ABSTRACT 

By analyzing an algorithm, we mean to study the per
formance of an algorithm including the assertion of its 
correctness and a determination of the cost of its exe
cution. Although a given algorithm is often analyzed in a 
particular way that is most suitable for such an algo
rithm, we are more interested in general procedures and 
techniques that can be used to study the performance of 
classes of algorithms. To be able to talk about general 
analysis techniques will not only add to our under
standing of the behavior of a class of algorithms but will 
also, in many cases, lead to useful synthesis procedures. 
A good example illustrating these points is the various 
techniques that can be used to analyze a class of sorting 
algorithms which can be modelled as networks made up 
of comparator modules. In this paper, we discuss several 
approaches to such an analysis problem. Moreover, 
synthesis procedures suggested by these analysis tech
niques will also be presented. 

In search of the fastest algorithm 

by IAN MUNRO 

University of Waterloo 
Waterloo, Ontario, Canada 

ABSTRACT 

Problems from many disciplines are frequently 
reduced to graph theoretic questions. This leaves the 
challenge of finding a solution to the graph problem as 
efficiently (cheaply) as possible. We will discuss tech
niques by which some of these questions may be 
answered in what is more or less a single scan of the 
input. Our attention then turns to problems that seem a 
little harder; that is, to problems for which there are trivi
ally algorithms taking time polynomial in the amount of 
input, but no known algorithms which take time linear in 
the amount of data. This class includes, among many 
other problems, maximum matching in bipartite graphs 
and digraph transitive closure. We will discuss surpris
ingly fast algorithms for certain of these problems and 
lament our inability either to do better or to prove we 
cannot do better. 





Introduction to the theory of medical consulting and 
diagnosis* 

by ED\VARD A. PATRICK,** LEON Y. L. SEEN and FRANK P. STEL!'.1ACK 

Purdue University and Regenstrief Institute for Health Care 
Lafayette, Indiana 

IKTRODUCTIQN 

Medical consulting and diagnosis is not just a matter of 
storage and retrieval of information or of computing the a 
posteriori probability of disease. A physician must interact 
with numerous components of the health care team such as 
a nurse who may communicate his orders for tests or drugs, 
the physician consultant who advises him, and a textbook or 
literature which provides him with information about 
diseases. The creation of a physician through the medical 
school process causes the build-up of thought processes in the 
physician orientated both to consulting and decision making. 
This thought process is not an accidental one but it is dictated 
by the interrelationship of the components of the health care 
team. It is during the building of this thought process, in 
medical school, that computer assistance to medical consulting 
and diagnosis has a good chance of becoming part of the 
physician's "bag of tricks". In addition, computer assistance 
in medic3J consulting and diagnosis can be an aid to education 
during medical school. 

For the past three years "\ve have been working to develop 
a theory of medical consulting and diagnosis by using: the 
tools of pattern recognition and computers; the experience of 
actually going to medical school, and the requirements of 
physicians in practice. On one hand there is the challenge to 
develop a system with good performance "\vhich will be used 
by new physicians and physicians already in practice; while 
on the other hand there is the challenge to anticipate a new 
health care delivery system more efficient than the present 
one. The theory introduced in this paper is basic to both of 
these approaches. 

The theory requires that we define classes, measurements, 
and features of a system. Then provision is made for snbsystems 
of the system where a subset of classes and a subset of measure
ments or features are defined for each subsystem. The number 
of classes (diseases) and measurements (signs, symptoms, and 
lab tests) is very large in medicine; the use of subsystems helps 
to resolve that problem. Subsystems can be defined as organ 
systems such as renal, cardiovascular, and respiratory, or as 
disease classifications such as bacterial, viral, myocardial, 

* This work supported by the National Science Foundation, Grant GJ-
1099 and the Regenstrief Institute for Health Care. 
** Also at School of Medicine, Indiana University. 

455 

endocardial, etc. The distinction bet\veen a feature and 
measurement will become clearer later in the paper, but 
essentially a feature is a function of measurements. 

The measurement vector is denoted x= [Xl, X2, ••• xd and 
the classes Wl,W!/, ••• , w"dor the medical system.! There exists 
a class conditional probability density p(x I Wi), for each class 
(disease), i= 1, 2, ... , M which generally is unknown. 

A measurement or feature is significant for a class Wi if and 
only if the a posteriori probability of class Wi is affected by the 
value of that measurement or feature. This is very important 
because although the number of measurements L is very 
large (thousands), the number of significant measurements or 
features for a particular class is relatively small. This leads to 
the definition of a class-measurement relationship for each 
class defined by items: 

(1) a list of significant measurements (li of them) for the 
class Wi. 

(2) possible values of these measurements for class Wi. 

(3) any information about p(x I Wi). 

If a class-measurement relationship is stored, then by 
addressing that class all items ((1), (2), and (3» can be 
retrieved. By addressing a measurement, the class having 
that measurement as a significant measurement can be 
retrieved (this is an association operation); should more than 
one class have that measurement as a significant measure
ment, then all such classes are retrieved. 

Retrieval of a list of significant measurements for a specified 
class or all classes having a specified significant measurement 
or set of significant measurements is very basic to the 
consulting part of our theory. This has application for 
providing advice to physicians about drug interactions, 
diseases to consider in the differential diagnosis, measurements 
to take next, abnormal measurement values for a particular class, 
and information about p(x I w) for class w. 

Theoretically, given the differential diagnosis (all diseases 
under consideration), all necessary significant measurement 
values, and the p(x I w) for those diseases, then a minimum 
probability of error decision can be made. The physician 
usually makes decisions, however, ·without p(x I w) for the 
diseases in his differential diagnosis. For this reason p(x I w) 
is not currently known for most diseases although there is 
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much a priori knowledge available. The physician makes a 
decision using rules or criteria which approximate the 
minimum probability of error method. Sometimes the 
physician uses a decision boundary in the measurement space 
for separating one disease from others. This brings up the fact 
that it may be necessary to store criteria or rules or decision 
boundaries for a particular disease in differential diagnosis if 
the system is to interact with today's physicians-at least 
until they get used to working with p(x ! w). 

The a pn:ori class probabilities Pi = P (W i), i = 1, 2, ... , AI 
must also be stored and associated with the respective classes. 
Provision must be made for dimensionality reduction or 
feature extraction by defining a feature as a function of certain 
measurements. Also provision must be made for allowing 
features themselves to be classes or classes themselves to be 
features. 

Past research in applying theory to consulting and decision 
making has not considered the total problem. A review of the 
literature will show that the following kinds of difficulties are 
present in the approaches taken: 

(a) The measurements Xl, X2, ... XL are considered to be 
statistically independent features when in fact they 
are measurements which are statistically dependent. 

L 

The often made assumption that P(X!Wi) = IT P(Xi!Wi) 
i=1 

is not correct. 
(b) There are failures to recognize insignificant features 

for a particular class. 
(c) Lack of ability to proceed when some of the significant 

measurements for a class are not available. 
(d) Lack of ability for interaction and the recognition of 

the importance of the consulting function. 
(e) Lack of ability to introduce a priori knowledge about 

correlation among measurements or features. 
In many ways the consulting part of the system is like 

making available a computer stored textbook of medicine. An 
advantage of the consulting part of the system over a 
conventional textbook of medicine is that, because of the 
class-feature relationship format, association can be made 
quickly which are not convenient when using a conventional 
textbook. Also, the class-feature relationship format provides 
for an organized collection of training samples so that class 
conditional probability densities p(x ! Wi) can be computed. 

The class-feature relationship format is basic to minimum 
probability of error (special case of minimum risk) decision 
making. A user of the system may choose to make the 
decision, utilizing interactively the computer's computation 
of the a posteriori class probabilities for the classes in the 
differential diagnosis. 

CO:.\IPLEX FEATURES AND FEATURE 
EXTRACTIO~ 

Features or complex features 

In the preceding section a measurement vector 
x= [Xl, X2, ... XL] was defined and a feature was said to be a 

function of measurements. 1\ ow a feature vector y = [Yl, Y2, 
... yl] is defined; let 

where 

Yi is the jth feature (or complex feature), 
fi is the functional relationship, 

(2.1) 

Xi=[Xl i , X2 i , ... , Xlii] is the vector of measurements (or 
features) used to form Yh and piis a user supplied vector 
of parameters. 

Sometimes Eq. 2.1 will be applied to a set of measurements xi 
to form a feature Yh for different values of j. Then the 
resulting features Yi are operated on a second time by a 
function with form (2.1) to form a new set of features which 
we call complex features. Thus measurements Xl, X2, •.. , XL 

are the first attributes taken but they are not the properties 
which characterize a disease or differentiate diseases. 

The choice of Yi. xi, i.i' and pi depend heavily upon the 
nature of the problem to be solved. Depending upon what is 
useful, Yi and Xk i may be binary, multiply quantized discrete, 
or continuous variables. The function fi may be linear or 
non-linear as required. Deterministic examples of fl are: 

fl = 1/3(Xl1 + X21 + Xa1
) , 

11 = Xl i + In (X2i) + exp (Xa i ) , and 

1
1 if (Xll>PllnX21<P21) UXa1 =Pal 

11= 
o otherwise 

A feature It can be an estimated probability such as 

(2.2a) 

(2.2b) 

(2.2c) 

(2.2d) 

where prob is an estimate obtained using training samples. 
It is clear .that the y/s formed in the above manner may be 

further combined to obtain a complex feature Y 1+1 illustrated 
in Figure 1. 

Figure I-Obtaining features from measurements and a complex feature 
from features 



Example of a complex feature 

The complex feature Y 1+1 may be the binary variable, 
"does the patient have a paracardial friction rub'?" Binary 
features Yl, Y2, ... , Y I may be "are causes of a paracardial 
friction rub present?" or "are effects of a paracardial friction 
rub present?" For example, the feature Yl may be the binary 
feature "is systemic infection present?" ,vhich is determined 
by measurements XII = sedimentation rate, X2 1 = tempera
ture, Xa1 = headache, X41 = ASO titer, etc. 

If a researcher tried to apply Bayes theorem directly to the 
measurements Xl, X2, ••. XL assuming that they are statisti
cally independent (as some researchers have), he would be 
making a grave error. Considerable a priori medical knowledge 
goes into obtaining the complex feature Y 1+1 from the 
measurements. In a differential diagnosis which includes 
rheumatic fever, for example, the physician wants to know 
if the complex feature Y 1+1 = paracardial friction rub is 
present. Several measurements including chest sounds are 
taken, but the physician is interested in the complex feature 
Yl+l. 

Have you ever heard the argument that a physician uses 
intuition and he can't even explain how he makes a diagnosis? 
One explanation of this is that he is conscious of complex 
features like the above paracardial friction rub and he doesn't 
care to recall the training which showed him how to obtain 
the features. 

The conclusion is that attention should be given to 
obtaining p(y ! Wi) using training samples after the a priori 
medical knmvledge is used to form a vector of complex 
features y from the measurements, rather than trying to 
obtain p(x I w;) using training samples. 

R features vs. 1 feature with R values 

A problem in feature definition for medical diagnosis 
related to the procedures in previous vectors is illustrated as 
follows: suppose we are interested in the differential diagnosis 
of thyroid disease and tentatively list as binary measurements, 

Xl = "is the patient's skin dry?" 

X2 = "is the patient's skin wet?" 

Should a single feature Yl be formed ,vith three values, normal 
skin, dry skin, and wet skin? 

Theoretically if the class conditional densities of x are 
known (with x including Xl and X2) optimum performance can 
be achieved. A problem arises, however, when there is a 
relatively sman sampie size to estimate the class conditional 
densities. 

To formalize the problem, let there be R binary measure
ments Xl, X2, ••• , XR which are mutually exclusive. Define a 
feature Yl as 

YI=j if xj=1 and Xk=O for k~j (2.3) 

We conclude without further proof that it, is desirable for the 
purpose of density estimation to combine R binary measure
ments into a single R valued feature if the measurements are 
mutually exclusive and can be ordered. 
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• Class-Feature 
Relationships 

• Differential 
Diagnosis 

DIAGNOSIS 

Class, Classes 
Feature, Features (or measure~ents) 

Physician or 
Decision Rule 

Figure 2-Simplified model of consulting and diagnosis 

When is a feature a class? 

Is hypertension a feature or a class (disease)? It can be 
both, depending on the problem. First note that Yl = "hyper
tension?' is a feature determined by measurements 
xl=weight, X2=age, Xa=systolic blood pressure, x4=diastolic 
blood pressure, and X5 = "supine or standing?" The feature 
Yl = "hypertension?" may be part of the class-feature 
relationship of classes (diseases) such as WI = adrenal cortical 
overactivity, W2 = adrenal medullary overactivity, Wa = preg
nancy, W4 = coarctation of the aorta, or W5 = renal causes. On 
the other hand hypertension may itself be a class. 

If hypertension is to be a class then one must be able to 
bring it into the differential diagnosis. According to current 
medical practice, the differential diagnosis including hyper
tension may be simple with only two classes: hypertension 
present, hypertension not present. A more complex differ
ential diagnosis may include classes corresponding to degrees 
of hypertension. TheSe degrees of hypertension can be defined 
using a complex function such as (2.1). 

COXSULTING AND DIAGNOSIS 

Introduction 

In subsequent subsections consulting and diagnosis will be 
defined. For now, consider the model shown in Figure 2, 
where a physician or decision rule is aware of a class or classes 
in the differential diagnosis, or is aware of an abnormal 
feature or features. These classes or features are given to th(' 
eonsulting mode which, through associations, provides the 
physician or decision rule with thf' class-feature relationships 
for the classes, other classes in a differential diagnosis, and 
a priori class probabilities. 

This model closely approximates the process used by a 
physician because' we believe that this is the best way to gf't 
him to use the resulting system. \Ve do not mean best for 
political or emotional reasons, but best because he is an 
essentia,l ~aptain of health CH,re delivery and is more likely to 
use a system which he understands. This does not imply that 
a better system could not be devised if he were willing to be 
educated differently. The constraints giving birth to the 
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:"catu!"es !'"nn(.f0S Fea::"J.:re::: r~r.ges Features r2.!:.ycs 

[ j [ i 

Y3 [ 1 [ 1 

Y4 [ 1 

Y5 [ 1 

Y6 [ 1 

Y7 [ 1 

Ys [ 1 Ys [ 1 

Yg [ 1 

YIO [ 1 YIO [1 

Yll [1 

Figure 3(a)-Class-feature relationship structure for a three class 
example 

system are integral in having a health care captain and 
physician-patient interaction. 

There are several approaches which have been taken to 
computer assisted diagnosis. One approach, or part of an 
approach, is Bayes theorem stated as 

( . I) p(y I i)P i 
P ~ Y = 

p(y) 
(3.1) 

This reflects two things a physician does. One, he increases 
the a posteriori probability of disease if p( y I i) is significant 
or for large Pi. Second, and very important, is information 
about p(y I i) through consulting usually is in the form* of 
p (Yt I i), P (Y2 I i), ... p (y I I i). It is for these two reasons that 
Bayes theorem is so integral and so important to diagnosis. 
Usually, the physician does not calculate p(i I y); rather he 
takes the results p(y I i) from the respective features and, 
using a logical decision tree, ranks the respective a posteriori 
probabilities for the classes in his differential diagnosis. 

Bayes theorem requires p(y I i), the construction of which 
is fundamental to Bayes framework. Construction of p(y I i) 
has been attempted using various models l such as a multi
nomial model, a Gaussian model, and distribution free 
models. Although theoretically one of the main objectives in 
Bayes framework is the insertion of a priori knowledge into 
p(y I i), and this is optimal, implementation has not been 
achieved to date. 2 A suboptimum solution is the previously 
described approach used by the physician. The physician's 
approach being suboptimal mathematically, is less complex 
and this may be why he can implement it. 

Physician's approach 

Here, the physician's approach to diagnosis will be 
described as closely as possible with mathematics. First, a 
physician after examining a patient. goes into the consulting 
phase retrieving classes to be part of the differential diagnosis. 

" Theoretically he should have the joint class conditional density p(y i). 

Associated with each class are features* for that class as 
shown in Figure 3a, for a three class example. The features 
and their ranges for a class are part of the class-feature 
relationship for that class. Listing a feature for a class means 
that it is a significant jeaturei if a feature is not listed for a 
class, then it can have any value insofar as that class is 
concerned. 

Ideally, the class-feature relationship for class i is the class 
conditional probability distribution p(y I i), which is a 
multivariate distribution. The physician, of course, does not 
have the ability to know p(y I i) in general; he approximates 
it. 

One way he approximates p(y I i) is to seek P(YI I i), 
P(Y2 I i), ... , for the respective features while in the consulting 
mode. For example, if class i is acute rheumatic fever, he 
recalls that if Yj=ASO titer, then p(yj is elevated I acute 
rheumatic fever) = a. In Figure 3b, the approximated class 
conditional probability densities (assuming independent 
features) are shown for the three class example. 

If a physician does not remember information in Figure 3b, 
he obtains it through discussion with other physicians or 
from medical literature by going to the consulting mode. 
Already he obtained the names of the three classes by going 
to the consulting mode. 

With knowledge of the information in Figure 3a and 
Figure 3b, the physician has a differential diagnosis, but 
he may not have all the features required for this differen
tial diagnosis (there remain lab tests to be ordered). By 
examining information in Figure 3a and 3b he selects ad
ditional features to be extracted (usually from tests). To 
do this he does not utilize "optimal theory" from sequential 
feature selection. Rather, he selects any feature y which 
has a p(yii) significantly different from that for other classes. 

Unfortunately when going to the diagnosis mode, the 
physician does not have the information in Figure 3b. This 

CLASS 1 CLASS 2 CLASS 3 

features features features 

Yl p(y1i 1 ) Yl p(y1 i 3) 

Y2 Y2 p{y 2 i 2) 

Y3 Y3 p(y3 i2) Y3 p(y3 i3) 

Y4 p(y4 il) 

Y5 

Y7 p(y7 i2 ) 

Ys YS p(YS i 2 ) 

Y9 

Yll P (Yn ! 2) 

Figure 3(b)-Approximate class-conditional probability densitires as 
part of class-feature relationships 

* We will assume that features have been formed and will not refer to 
measurements. 



is because until an organized approach to patient data col
lection is instituted, the class conditional probability densi
ties will not be available. What the physician could do at 
this point is to compute (assuming Y1, Y2, ... , YL statistically 
independent) 

11 

II p(Ys!i) 
s=1 

p(i!y)=---- (3.2) 
3 11 

L: II p(Ys!i) 
i=1 s=1 

for each class i, using the patient's feature vector y. Xote 
that only three features are significant for class 1. There
fore, the following simplified computation of p(l i y) can be 
made: 

P{Ylj-l-) p(Y4j1) p(yrot1) 
p(l! y) p (y 1!1)p(y 4!1) p (YlO!l) + p (y 1!2) P (y 4!2) p (y 1012) 

+p(YlI3)p(Y4!3)p(YlO!3) (3.3) 

The physician only approximates eq. (3.3) using logical 
rules such as counting the number of "positive features" 
(signs, symptoms, and lab tests) for each class. An example 
of a logical rule is Eq. (2.1) or more specifically Eq. (2.2d). 
For example, in place of computing (3.3), the physician 
computes a complex feature as in (2.2d) and this complex 
feature indicates the probability the class concerned is 
active. 

The use of a complex feature like (2.2d) may be superior to 
(3.2) or (3.3) because it includes correlation information 
among the features. Theoretically p(ily) should be calculated 
according to (3.1) rather than (3.2); but use of a complex 
feature may be a better approximation to (3.1) than eq. 
(3.2). 

X ow then, if this system of consultation plus diagnosis 
is implemented, "\-vould a physician use it? He "\-vould use the 
consulting part if he is practicing in a medical center be
cause there he sees the serious diseases. The problem with 
using the diagnosis part is that we may have failed to in
clude all the features in the class-feature relationships. For 
example, ASO titer is a feature used to indicate an acute 
strep infection, important to the diagnosis of acute rheumatic 
fever. One measurement of ASO may be insufficient; rather 
the feature should indicate if ASO is high and increasing 
and how high. It is for this reason, failure to incorporate 
features, that a physician will not use the system. There
fore, feature definition may be a more serious problem than 
is the problem of how to use more and more powerful tech
niques to obtain p(yli) as a multivariate class conditional 
probability density. 

EXA::\IPLE-Rheumatic Fever Diagnosis 

I n·iroduction 

In this section we use the problem of diagnosing rheumatic 
fever to illustrate many of the properties shown in the 
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previous sections. \Ve will reformulate the way physicians 
usually diagnose rheumatic fever utilizing these properties. 

Rheumatic fever is a serious disease with peak onset in 
early childhood which can be difficult to diagnose. An im
portant approach to diagnosis of rheumatic fever utilizes 
the "Jones criteria."3 First we will show the measurements 
and features involved in the Jones criteria. 

Features and measurements for rheumatic fever 

The J ones criteria has "major", "minor", and "sup
porting evidence" for rheumatic fever. According to the 
previous sections, the majors are features and the minors 
and supporting evidence are measurements. First we list the 
evidence as in the Jones criteria as measurements, keeping 
in mind that some of these measurements are features: 

ilf ajor Evidence (features) 
Y1 Carditis 
Y2 Polyarthritis 
Y3 Chorea 
Y4 Erythema marginatum 
Y5 Subcutaneous nodules 

Minor Evidence (measurements) 
Xl Fever 
X2 Arthralgia 
X3 Previous rheumatic fever or rheumatic heart disease 
X4 Increased erythrocyte sedimentation rate or C-reactive 

protein 
Leukocytosis 

Xs Prolonged P-R interval 
X6 Recent scarlet fever 
X7 Throat culture positive group A streptococci 
Xg i ASO titer 

Supporting Evidence (measurements) 
X9 History recent sore throat 
Xl) Family history rheumatic fever 
Xu Abdominal pain 
XI2 Epistaxis 
X13 Tachycardia 
X14 Rheumatic pneumonia 
XIS Pallor and anemia 
X16 Precordial pain 
Xl7 Weight loss 
XI8 :\1alaise 

The Jones criteria is that rheumatic fever has significant 
a posteriori probability if there are two majors or one major 
and hvo minors, "\-vhile supporting evidence increases the 
probability. Thus, the Jones criteria is in fact just a complex 
feature like (2.1), or more specifically (2.2d). 

·When considering rheumatic fever, the differential diag
nosis includes the following classes: myocarditis (toxic, 
viral, parasitic and fungal), rheumatic carditis, endocrine 
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disorders, blood diseases (anemias), heart tumor, acute en
docarditis, and subacute bacterial endocarditis. 

Basically, it appears that only the majors, Yl, ... ,ya, are 
features and the other evidence constitute measurements 
used to determine features. Examples of the measurements 
used to determine the features are as follows: 

Yl Carditis=f(xl, Xa, X4, xs) 
Y2 Polyarthritis=f(x2, Xla, Xla, X16) 

We would add one additional major, evidence of a recent 
strep infection, denoted Ys, and there are many measure
ments associated with this feature: 

Y 6 Evidence recent strep infection = f (X4, X6, X7, Xs, X9). 
Other measurements serve to affect the a priori probability 
of rheumatic fever as follows: 

Increase a priori probability of rheumatic fever = f (xa, XlO) 

Summary 

In summary, using a priori medical knowledge to reduce 
dimensionality results in the following features: 

Y 1 = Carditis 
Y2 = Polyarthritis 
Ya=Chorea 
y 4 = Erythema marginatum 
Y6 = Subcutaneous nodules 
y 6 = Evidence of recent strep infection 

Furthermore, the a priori probability of rheumatic fever 
is increased by f(xa, XlO). 

We thus have reduced dimensionality from 23 measure
ments or features to 6 features and have introduced the a 
priori class probability as a function of measurements. 
Dimensionality reduction has been achieved by recognizing 
that features are functions of measurements. The quality 
of this dimensionality reduction needs to be investigated 
both experimentally and theoretically. 

Decision making 

C t · f ('1) b ('1) p(yli)Pi . ( ) ompu atlOn 0 p IIY Y ply =--- reqUIres p Y 
p(Y) 

which is not available unless p(yli) is available for all diseases 
M 

i in the differential diagnosis, because p(y) = 2: p(yli)Pi 
"i=l 

where l\1 is the number of diseases. The Jones criteria avoids 
this problem because rather than calculating p(i!y), it 
establishes a decision boundary such that on one side are all 
samples of rheumatic fever. 

Remaining work 

The next step is to form the joint probability distribution 
of y = [Y1. ~y?, Y1. Yl, Y5, y~] ll~ing trflining ~8mplps for rh0u-

matic fever and training samples for other diseases in the 
differential diagnosis. A study of overlap in these two dis
tributions is important, as are the estimated distributions 
p(yli) for rheumatic fever. 

CONSULTINC-8TORAGE, ASSOCIATION AND 
RETRIEVAL 

The consulting mode is concerned with providing infor
mation upon request. Information to be retrieved is as 
follows: 

(1) Features of a class (signs, symptoms, lab tests) 
(2) Classes for which a feature is significant 
(3) Treatments for a class 
(4) Differential diagnosis given a class 
(5) Differential diagnosis given a set of features 
(6) A priori class probabilities Pi 
(7) Class-conditional probability densities 

In a previous section the class-feature relationship involved 
the class, the features of the class «(1) above), and the class
conditional probability density «7) above). Two ways to 
store and retrieve the above information are the hierarchical 
approach4,5 and the networking approach.6,7,s. The net
working approach appears to offer the advantage of economi
cal storage, easier retrieval and is a more general structure. 

For the purpose of updating, the concept of the class
feature relationship must be preserved. The networking 
approach will preserve these relationships while making 
available associative retrieval as illustrated in Figure 4. In 
this illustration 

rheumatic fever~ASO titer 

means the feature ASO titer is associated with the class 
rheumatic fever, while 

ASO titer~rheumatic fever 

----l 
-; ~j CLASS I 

I 
i 

I 

~ 
I 

Heart II' I 
~-~~_~_~ ____ ~ __ ~~~ ~i_F_ai_lu_~_e~r---



means that the feature ASO titer IS associated "\vith the 
class rheumatic fever. 

CONCLUSION 

The approach presented has emphasized the need to in
corporate a priori knowledge into the decision process. Some 
ways of doing this are the use of class significant complex 
features; the use of density estimation techniques which 
utilize "people samples" in the measurement space, feature 
space, and the relationship space; and the introduction of 
the consulting mode. 
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Pattern recognition with interactive computing for a 
half dozen clinical applications of health care delivery 

by ROBERT S. LEDLEY 

National Biomedical Research Foundation 
Georgetown University Medical Center 
Washington, D. C. 

THE NBR CLINICAL-IMAGE 
-- PATTERN-REGOGKITION LABORATORY 

The clinical applications to be described make use of the 
NBR clinical-image pattern-recognition laboratory, which 
consists of (see Figure 1) 

(1) FIDAC (Film Input to Digital Automatic Computer), 
a high-resolution, high-speed, on-line flying-spot 
scanner; 

(2) MACDAC (1fAn ::VIachine Communication with 
Digital Automatic Computer), one of the first in
expensive interactive display instruments based on the 
storage-tube principle; 

(3) the VIDIAC (Vidicon Input to Automatic Com
puter), a unique vidicon scanning instrument that 
utilizes a modern image-converter tube for enabling 
inputting video data into the comput.er; 

(4) SPIDAC (SPecimen Input to Digital Automatic 
Computer), an automatic microscope with instan
taneous automatic focusing, and with a computer-con
trolled x-v stage that can scan a 1 cm X 1 cm area in 
2.5p. steps in about five minutes; and 

(5) DRIDAC (DRum Input to Digital Automatic Com
puter), a drum scanner that utilizes t,vo read heads 
simultaneously to cut the scan time in half. 

Accessory instrumentation includes 

(6) the silicon-video memory (that utilizes the image-con
verter tube) and 

(7) the computer-interface control unit. 

All of these instruments are controlled by the Foundation's 
IBl\f 360/44 computer, in a unique, integrated, pattern
recognition hardware system with capabilities, to our 
knowledge, duplicated nowhere else. 

Intimately associated with this hardware capability is an 
extensive software capability. This software capability in
cludes the following systems: 

(1) FIDACSYS (The FIDAC System), which inputs the 
images into the computer from the scanning devices, 
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and accomplishes overall pieture manipulation and 
enhancement; 

(2) SYKT AXSYS (SYNTAX System), which is a pat
tern-recognition language that uses an approach based 
on our original research on picture grammars; 

(3) BUGSYS, which is a picture-processing and measur
ing language originated by us that utilizes conceptual 
pointers for picture analysis and manipulation; 

(4) :\fACDACSYS (The :;.\fACDAC System), which im
plements the interactive capabilities of the 1fACDAC 
unit, including computer-interrupt features for accept
ing information from and displaying pictorial and 
alphanumeric information on the :\fACDAC unit; 

(5) SPIDACSYS (The SPIDAC System), which auto
matically directs the motion of the SPIDAC micro
scope stage, detects good chromosome spreads or 
other features on the glass microscope slide, records 
the location of such features (to the nearest 1.25p.), and 
directs the vidicon scan into the computer; 

(6) DOCSYS (Display Of Chromosome Statistics), which 
is a programming system that enables on-line com
puter-console interaction with the disk memories of the 
computer for the statistical evaluation and display of 
large masses of data in a file; and 

(7) REMOTE, a programming system that enables a 
remote user to be serviced by the computer, especially 
for the investigation of large files stored on the 
computer's disk systems. 

The application of these hardware and software capabilities 
to interactive computing for health-care delivery falls into 
four main categories. First, there are aids to the interpretation 
of very important noninvasive diagnostic techniques, such as 
thermography and echocardiography; second there is the 
analysis of medical time-motion studies of body systems used 
in diagnosis, such as cineangiographs and fluorescence 
retinographs; third there is the evaluation of images formed 
by the differential radiation absorption or distribution 
properties of body structures, such as in the evaluation of 
roentgenographs or scintillation scans; and finally there is the 
investigation of images formed by the optical microscope, 
such as occur in the clinical bacteriology or hematology 
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Figure I-The National Biomedical Research Foundation Clinical
Image Pattern-Recognition Laboratory. a. The instrumentation layout. 

b. Block diagram of instrumentation organization 

laboratories. In this paper we shall consider six such applica
tions, namely in the fields of thermography, echocardiogra
phy, cineangiography, fluorescence ret.inal cinematography, 
radiology of diffuse lung lesions, and the analysis of optical 
images of bacteria. 

THER::.vIOGRAPHY 

Thermography is the thermal mapping of areas of the 
human body. Infrared sensing devices perceive and collect the 
skin's emitted energy, relate it to a reference black body, and 
transform it into an electrical signal. The sensitive detectors 
used in this \vork are an outgrowth of military reconnaissance 
systems. \Vhen these systems were declassified in 1956, they 
opened a new medical diagnostic field. 

The first medical application of thermography was to 
diseases of the breast. l Following this, a number of investiga
tors began to explore the diagnostic possibilities of infrared 
sensing devices. The early work of W ood2 correlated thermo
graphic findings with disease of the carotid complex. The 
ensuing years have seen a number of reports on the applica
tion of thermography to the fields of cerebrovascular disease, 3 

oncology,4 orthopedics,6 obstetrics,6 the diagnosis and man
agement of the burn patient,7 and cardiovascular disease,8 to 
name but a few. 

Figure 2 shows a normal and an abnormal thermograph. In 
the abnormal thermograph, the forehead, which is supplied 
by a branch of the internal carotid artery, is "cool" while the 
cheek, supplied by the external carotid, is "hot," owing to 
some blockage of the internal carotid thereby indicating the 
predisposition of the patient to a possible stroke. In Figure 3 
we show the result of scanning the thermographs and having 
the computer make a contour plot of the grey levels. The 
computer is programmed to determine the average tempera
ture at various locations of the face, thereby quantitating the 
difference in heat distribution. Quantitative comparisons can 
be made on thermo graphs from the same patient at different 
times to detect progress in the disease state. Such quantitation 
should assist in making more accurate correlations between 
the thermograph's appearance and the disease state of the 
patient. Since the infrared detector itself puts out electronic 
signals, eventually it should be possible to perform the 
computer analysis directly from these signals and not from 
a picture. However, this can only be accomplished after 
specific results and experience have been obtained in the 
computer analysis of the pictures. 

The first step in our automated analysis is to calibrate the 
thermograph. In Figure 4, on the left, are imaged grey-Ieyel 
squares that are obtained from a standard temperature box, 
each square being fixed at a particular known temperature. 
The FIDAC scans each of these squares and relates the 
corresponding grey-level yalue with the proper temperature. 
Figure 4 is a black-and-white representation of the contours 
formed by every other grey level. 

Figure 2-Illustration of a normal (left) and abnormal (right) 
thermograph 



For the application of thermography to detecting diseases 
of the carotid complex, we must compare the average 
temperature of a region of the forehead 'ivith that of a region 
of the cheek. In order to locate these areas, we identify on the 
thermograph three points, namely points on the right and 
left temple and a point on the bottom of the chin. Small 
pieces of aluminum foil are pasted on these points on the 
patient, so that they can be seen in the thermograph. Using 
the MACDAC interactive-graphics console, the computer 
operator points to these standard locations on the display of 
the thermograph. The computer then automatically generates 
a "standard face" through these points. The standard face is 
a dra'iving of correct anatomical proportions that has pre
viously been placed into the computer's memory. For a 
particular individual, it is automatically adjusted so that it 
will match with the three fiducial points; a projective 
geometric transformation is made to adjust the standard face 
to that of the particular patient (see Figure 5). 
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Figure 3-Contour plots of the normal and abnormal thermograms of 
field 2 as produced by the computer 

The computer now selects the proper area of the thermo
graph for analysis, as shown in Figure ,). The following areas 
are selected: right forehead, left forehead, total forehead, 
right cheek, left cheek, lips, and the chin, making seven areas 
in all. For each of these areas the average temperature is 
determined. The analysis consists in examining the ratios of 
the average temperatures of different areas. For one particular 
normal patient, the results are shown in Figure 5. If the ratio 
of the average absolute temperatures of area 1 to area 4 or 
area 2 to area .5 is less than .98 j then the patient is considered 
to be abnormal. 

Another important application of thermography is to the 
detection of breast cancer. A thermogram with some of the 
calibration squares is shown in Figure 6a. Figure 6b illustrates 
the standard picture of the breast when the fiducial points are 
taken as the sternoclavicular notch and the nipples. Figure 6c 
shows the average temperatures for four quadrants of each 
breast and the total average temperature of each breast. 
Temperature asymmetries and other such features are cor
related with the early detection of breast cancer. 
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Figure 4-Illustration of a thermogram with calibration squares on the 
left 

ECHOCARDIOGRAPHY 

mtrasound provides a noninvasive method of recording 
movement of such intra cardiac structures as the mitral valve, 
left ventricular endocardium and epicardium, left and right 
ventricular septum, and left atrium.9 Improved methods for 

Figure 5-a. Standard drawing of face showing the three fiducial points. 
b. Computer analysis of thermogram showing the final results 
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Figure 6-a. Computer display of thermogram of the breast. b. Standard 
drawing showing fiducial points. c. Results of computing average 

temperatures for each of the four quadrants of each breast 

recognition of these structures and more precise calculation of 
the amplitude and rate of their movements offer a potentially 
important means for diagnosing heart disease as well as for 
monitoring ventricular function, particularly changes in 
function induced by drugs, physiological maneuvers, or 
unstable disease. In the discussion given below, applicat.ion to 

mitral-valve reflections is first described. Clinical applications 
of ultrasound to the mitral valve have shown that distinct 
relationships exist between the ultrasoundcardiograph (echo
cardiograph) and the pathology of the mitral valve. Our 
long-term goal is to design special-purpose circuitry that can 
analyze the echo cardiograph on-line, since the original signal 
is in electronic, not pictorial, form. When this is accomplished, 
the echo cardiogram can be used to assist in monitoring the 
patient in intensive care units. 

In making an ultrasoundcardiograph of the mitral valve, 
an ultrasound transmitter, which transmits one microsecond 
bursts of a 2.25 MHz tone 1,000 times per second, is directed 
at the anterior leaf of the mitral valve through the third or 
fourth interspace. lO This beam of sound penetrates the body, 
and a portion of this beam is reflected whenever it crosses an 
interface between different structures or tissues. These 
reflections are gathered and shown on the face of an oscillo
scope. Successive bursts of sound are recorded on the 
oscilloscope, resulting in a graph of mitral valve motion, with 
time as the vertical axis and distance from the ultrasound 
transmitter as the horizontal axis. (This type of display is 
often referred to as the "B mode.") For manual analysis, 
photographs are taken of the oscilloscope face, and the data is 
then obtained from these pictures (see Figure 7a). 

The resulting echocardiograph contains the mitral-valve 
curve which traces the movement of the anterior leaf of the 
mitral valve. The distinctive curve of a normal heart contrasts 
sharply with the tracing of a heart with mitral stenosis. 

Standard labels are used to designate different portions of 
the curve. Point A represents the open position of the mitral 
valve due to atrial contraction. Point B occurs during the 
rapid closure of the valve to its closed position, at point C. 
The interval from point C to point D represents the closed 
portion of t.he cycle. At point D a rapid opening of the valve 
o.ccurs, leading to the position of maximum aperture, at point 
E, during early diastole. Point F represents the final closure 
of the mitral valve before atrial contraction and point A. 

Clinical studies have been able to correlate specific 
characteristics of the mitral-valve curve with malfunctions of 
the mitral valve. The most significant of these are as follows: 

(1) The slope of the mitral-valve curve between points E 
and F is related to the total area of the mitral valve 
(or the mitral orifice). This slope has also been 
correlated with mitral regurgitation. 

(2) The total amplitude of the mitral-valve curve (i.e. the 
distance between points C and E) is related to the 
degree of calcification and rigidity of the anterior leaf 
of the mitral valve. 

(3) The slope of the curve between points D and E is 
related to the degree of calcification. 

(4) The area of the mitral valve was also related to the 
elapsed time between points D and E. 

These studies also suggest that a statistical diagnosis can 
be made on the basis of the above-mentioned data. 

Several problems arise, however, in obtaining this data. 
The primary problem in ultrasoundcardiography is that it is 
often diffi.cult to obtain a clear echocardiograph, OIying to 
such factors as obesity, severe emphysema, previous surgery, 



and cardiac displacement. In addition, the mitral-valve curve 
can often be obscured or confused with echoes from other 
structures which appear on the echocardiograph. A "dropout" 
phenomenon, in which the mitral-valve leaf drops temporarily 
outside the ultrasound beam and thus off of the echocardio
graph, is also common. Finally, once an acceptable echo-

ECH~CRROI~GRRM, MITRRL VRLVE 

Figure 7-a. Original echocardiograph for displaying mitral valve 
motion. b. Binary computer printout showing a partially cleaned results. 

c. Final results of computer analysis 
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cardiograph is obtained, the making of hand measurements 
from the rough echo cardiograph introduces further error into 
any statistical diagnosis. 

The use of a digital computer for the analysis of the 
echo cardiograph eliminates, or at least minimizes, many of 
these potential problems. Before the computer can proceed 
with the analysis of the echocardiograph, now in the form of a 
photograph, it must be digitized and fed into the computer's 
memory by the FIDAC. Since the picture is basically black 
and white, it can be read-in in binary. 

The first step of the computer analysis is to clear the 
echo cardiograph of all excess "noise" caused by reflections 
from objects other than the mitral valve, leaving only the 
mitral-valve curve. This is the most difficult part of the 
program, for the computer is unable to "view" the entire 
picture and isolate the mitral-valve curve, but must instead 
rely on mathematical features of the curve that set it apart 
from the noise on tne ecliocardiogr-a-ph-(seeFigure-7b). 

The program proceeds first to establish more continuity on 
the often discontinuous curve. To accomplish this, it "looks" 
at groups of nine spots in a 3 X 3 array. If anyone of the nine 
spots indicates a reflection, the group is assigned the value of 
a reflection. What this accomplishes is a shrinking of the 
echocardiograph from a picture with 664 X 446 spots to one 
with 222 X 149 spots, at the same time smoothing the curve 
and eliminating discontinuities. 

The program then proceeds to go through each horizontal 
line of the echocardiograph (in the "distance" direction), 
counting the length (in number of spots) of each reflection 
segment. If the length of a segment is greater than a certain 
input parameter, the segment is discarded. This mathemati
cally contrived step also has clinical validity, for the thickness 
of the anterior leaf of the mitral valve, represented by the 
thickness of the mitral-valve curve, is small compared to the 
thickness of the thorax wall, which is found on the echo
cardiograph as noise. 

If the length of the segment is less than the designated 
parameter, the computer finds the midpoint of the segment 
and discards all the other points of that segment. This step 
succeeds in clearing most of the noise from the echocardio
graph and results in a curve with a thickness of only one spot. 

One additional step is required, however, before the 
computer can completely isolate the mitral-valve curve. In 
this final step, the computer counts the length of each 
remaining segment in the time (vertical) direction. This 
segment need not be completely continuous, the computer 
program accounting for a certain amount of discontinuity. 
The computer discards all curves shorter than a second input 
parameter and keeps only the longest segments, for the 
mitral-valve curve (while possibly discontinuous) will stretch 
the length of the echocardiograph. This final step completely 
isolates the mitral-valve curve and makes possible a statistical 
analysis of the echocardiograph. Figure 7c shows a computer 
plot of these results. 

The analysis of the echocardiograph is based on the six 
lettered points described above. While the location of these 
points is often easily determined by eye, the computer must 
once more rely on mathematical techniques. Since there are 
often several cycles of valve motion on each slide, the 
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computer starts by finding the period of the curve. This it 
does iteratively by assuming a series of periods for the curve, 
averaging the points of the curve for each period, and taking 
the sum of the squares of the deviations of the points from the 
average curve for each period. The least sum-of-squares 
deviation gives the best period for the curve. The computer 
then averages the several cycles of the curve and obtains the 
graph of an average curve of valve motion. 

The six points are then relatively easy to find (see Figure 
7c). Point E is defined as the absolute maximum of the 
averaged curve. Point C is defined as its absolute minimum. 
Point A is defined as the point of greatest deviation from a 
straight line drawn between points E and C. Point F is defined 
as the lowest minimum between points E and A, closest to E. 
Point D is defined as the point on the curve of greatest 
deviation from a straight line drawn between points C and E. 
And finally, point B is defined as the point between points A 
and C at which the curve has the greatest slope. (The slope is 
found using the numerical derivative of a sixth-degree 
polynomial approximation designated by seven points on the 
curve.) 

Once these six points have been located, it is a simple 
matter to make the measurements described above. In 
addition, other measurements can be made, such as the area 
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Figure 8-a. Original echocardiograph for anterior-posterior dimension 
of left ventricle. b. Computer printout of motion of anterior-posterior 

walls of left field after cleaning. c. Smoothed curve of anterior-posterior 
wall movement and curve of the difference 

under the curve and the standard deviation of the curve, data 
very difficult to obtain by hand. 

Another important parameter that can be obtained from 
an echo cardiograph is the anterior-posterior dimension of the 
left ventricle. Figure 8a shows the echocardiograph made for 
determining this dimension with the movement of the 
anterior and posterior walls of the left ventricle seen in the 
upper and lower waves. A computerized cleaning process 
identifies these waves, as shovm in 8b. A fourier analysis is 
made of each wave and a "smoothed" final wave is con
structed using the first four coefficients, thereby leaving out 
higher frequencies which contain noise. The difference 
between the curves indicates the anterior-posterior dimension 
as a function of time (see Figure 8c). 



CIKEANGIOGRkV[S 

Inc~easin~ use is being made of angiocardiographic 
techruques m the evaluation of myocardial function in man. 
Although biplane serialographic studies have been success
fully employed for the measurement of ventricular end
diastolic and end-systolic volumes, the analysis of four or six 
films exposed per second makes it difficult to derive much 
information concerning the rate of change of ventricular and 
atrial volumes. The work of Dodge et al. ll and of Bunnell and 
associates12 makes it clear that chamber volumes can also be 
determined with accuracy by a single-plane method. Such 
approaches would make it feasible to analyze cineangiograms 
exposed at 60 frames/sec., and in this manner sufficient data 
would be available to determine the velocity and acceleration 
of atri~l and ventricular filling and emptying, data which are 
essen~IaI for the calc~la~i?Il of ventricular compliance and the 
velOCIty of myocardial-fiber shortening: Determination ot 
these variables 'would ultimately make it feasible to charac
terize myocardial function in patients with various forms of 
v~lvular heart disease and myocardial failure, and to deter
mme the effects of various interventions, such as cardioactive 
drugs, muscular exercise, etc., on myocardial dynamics. 

The time required for the analyses, measurements, and 
computations of cineangiograms exposed at 60 frames/second 
would be staggering, unless such determinations are auto
mated. The densitometric scanner-computer system outlined 
below facilitates such analyses and allmvs almost instan
taneous calculation of atrial and ventricular volumes and 
rates of change of volumes, and when combined ,vith the 
appropriate simultaneous measurements of intraventricular 
press~re a~d r~te of change of intraventricular pressure, 
permIts ~stlI~atI?n of ventricular compliance, the velocity of 
myocardIal eJectlOn, the velocity of myocardial-fiber shorten-
ing, and the velocity of contractile-element shortening. A 

Three steps are involved, namely recording the cineangio
grams, transferring the pictures into the memory of the 
computer, and analyzing the pictures on the computer. If the 
medical instrumentation used allmvs an image of the pressure 
curve to be superimposed on each cine angiogram picture the 
~agnitude and variation of the pressure occurring durin~ the 
~Ime of e~posure of the frame is obtained. Alternatively, this 
mformatIOn could be obtained from simultaneous magnetic
tape recording. The cine radiographs are taken at the rate of 
60 frames per second. The result produces the projected area 
of the left ventricle on the film. It has been shown that such 
one-plane cineangiograms are sufficient to calculate the 
volume of the chamber,13.14 The volume is given by 

V D I
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I~ order. to proceed with the automatic computer analysis 
of cmeangIOgrams, each frame of the movie film must be 
suc.ce~sively rec~rded in the memory of the digital computer. 
ThIS IS accomplIshed by the FIDAC,15 which digitizes each 
frame of the film within 0.3 sec. Figure 9 illustrates a 
cineangiogram sequence of film frames. 
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Figure 9-Segment of cineangiogram film strip 

A roll of film is processed as follows: It is placed in the 
film-transport unit of the FIDAC instrument, and, after 
setting the "frame count" to 1, the computer signals the 
FIDAC to scan the frame, and within 0.3 sec the picture is in 
the computer's memory. Kext a spectrum for the picture is 
computed, from which it can be determined ,vhether or not 
the picture is· bl-ank~that is-, either allhlac.k .or all \vhite 
(or at least 98% black or white). If the picture is blank, the 
program signals FIDAC to move to the next frame. In this 
,vay blank frames, usually leader frames, can be skipped 
automatically. 

T\vo main "objects" are to be processed in each frame, the 
projected ventricular area and the instantaneous-pressure 
curve, if available. A scan is first made to locate the ven
tricular area on the frame. Various aspects of this area are 
recognized and processed by the FIDACSYS part of the 
programming system. Another internally programmed scan 
is made to locate the pressure curve. This pressure curve can 
then be processed by the BUGSYS part of the programming 
system. 

One of the most difficult aspects of the automatic analysis 
of the cineangiogram has been the problem of identifying the 
contour or "boundary" of the radio-opaque area as seen in 
the film. A number of techniques have been proposed, but 
these all require extensive computation time. 16 

The computer analysis technique which we employ is 
illustrated in Figure lOa. The length of the heart as seen in the 
cineangiogram does not vary appreciably and runs from the 
upper left to the lower right of each frame. However, as the 
heart beats, the width as measured from the upper right to 
the lower left of the frame ,yill vary. If we make a grey-level 
contour plot along such a diagonal, we can easily see the 
region in which the boundary of the heart should be selected. 
The grey-level profile has two troughs and a central plateau. 
For the location of the boundary we select that grey level that 
is 20% of the distance from the corresponding trough to the 
plateau, as illustrated. The distance between these points 
along the diagonal gives us the minor axes (the major axes 
being fixed). The volume can then be computed by the 
formula. For illustrative purposes, we draw a "standard" 
heart cineangiogram shape using the projective transforma
tions mentioned above, based on the four points illustrated in 
Figure lOb. In Figure lOc we have superimposed such 
drawings of four different frames (although they overlap 
quite a bit). 

Alternative methods of computing the volume are based on 
the utilization of the area of the projection rather than just 
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Figure lO-a. Method of analysis. b. Results from the analysis of one 
frame. c. Superimposition of the results ofthe analysis from several 

frames 

the two diameters. The area can be determined either by the 
transformed standard contour as drawn through the four 
points; or else the boundaries of a cine angiogram can be 
determined completely by taking many diagonals parallel to 
the single diagonal mentioned above. The grey-level profile 
along each of the parallel diagonals will have the same general 
appearance as that shown in Figure lOa, and for each such, 
diagonal the boundary points can be determined. In this way 
an even more accurate estimate of the cineangiogram 
projection of the heart can be made. 

RETINAL-FLUORESCENCE CINEMATOGRAPHY 

Retinal-fluorescence cinematography can produce thou
sands of frames of film for quantitative analysis (see Figure 
11). The technique can contribute greatly to the understand
ing of normal blood flow in the eye and can be used to 
diagnose ongoing and imminent disease statesP-20 However, 
the manual work required for the film analysis is excessively 
great and hence limits the application of this important 
method. With the use of automatic picture pattern recogni
tion, a computer can be programmed to extract quantitative 
information from such movie films rapidly and to correlate 
the results with the disease process. In our discussion, we 
shall first describe the equipment used, which takes pictures 
of the retina at the rate of 20 frames per second; next we 
shall relate the results to eye disease; and finally we shall 
discuss briefly the computer pattern-recognition approach. 

Our method utilizes a Zeiss fundus camera (modified by 
Dyonics, Inc.) with a 35-mm Arriflex cinecamera and a 
constantly cooled special strobe tube. Is A fully automatic twin 
injector (Dyonics model 2020) greatly facilitat(>s and 
standardizes the injection of 5 ml of 10 percent fluorescein 
through a butterfly needle. Under a pressure of 50 p.s.i. the 
dye is injected within 0.5 seconds, immediately followed by a 
15-50 ml normal saline flush. Synchronously with the injec
tion, an electronic timer is activated. Mter three to five 
seconds of preset delay, camera and synchronized strobe 
start automatically, currently with 19-20 frames per second. 
A running stop-watch is filmed before or after the procedure 
to double-check the time factor. Each run lasts for 20 
seconds. All these events are set off by one foot switch. 

Normal flow patterns and velocities in the retinal vascular 
system in different age groups are presently being studied in 
Georgetown University's Ophthamology Laboratory.21 On 
the basis of such normal ranges, it will be possible not only to 

Figure ll-Segments of film strip of retinal fluorescence 
cinematography 



discover and objectively document flow alterations in condi
tions such as thromboses and pre-thromboses, dyspro
teinemias and paraproteinemias, diabetes, and anemias, but 
also to check directly on the efficacy or failure of treatments 
by anticoagulation, plasmapheresis, etc. 

It can be safely said that fundus-fluorescence cineangiog
raphy offers three major advantages: first, better chrono
logical detail than rapid-sequence still photography; second, 
objective and quantitative analysis of flow differences in 
individual vessels in health and disease; third, its inherent 
educational value. The method has already taught us to 
abandon the term and concept of a singular "retinalcircula
tion time." Similarly, the concept of the already almost 
traditional five "filling phases" as applied to the entire retina 
,vill probably also soon have to become more restricted, 
revised, and qualified. 

For autom~c pattern recognition of the film, the FIDAC 
scans successive film frames at the rate of 0.3 sec. per frame. 
The computer analysis consists in locating the fluorescence 
vessels, measuring the extent of flow of the fluorescein, 
measuring the diameters of the vessels, and so forth. This is 
accomplished on successive frames of the films, and velocities 
and accelerations of the parameters are calculated. The 
interactive-graphics unit is utilized to indicate the location of 
those points at ,,,hich the diameter of a retinal vessel is to be 
measured. This interaction need only be done on the first 
frame of a film sequence. The computer ",ill remember from 
frame to frame the location of these points and will make any 
small adjustments that may be required due to minute 
movements of the patient. The computer is programmed to 
measure the diameter of a vessel in a direction perpendicular 
to its length. In Figure 12a we show one frame in which eight 
different locations have been measured. In Figure 12b we 
shmv only the eight different points, for clarity, since they are 
somewhat obliterated by the retinal vessel image in 
Figure 12a. We also make a plot of the diameter of each point 
as a function of the time (or frame number). Figure 12c shows 
points at which three measurements were made, and Figure 
12d shows the plots of the measurements made and these 
three plots on successive frames. 
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Figure 12-a. Illustration of the complete analysis of the diameters of 
eight points on the retinal vessels. b. Illustration showing only the points 

selected where the retinal image has been superimposed so as not to 
interfere with the point locations. c. Computer analysis of three points. 
d. Plot of diameter results from the three points from several frames 

CHEST X RAYS 

Chest X rays can be used to aid in the diagnosis of pneu
moconioses, tumors, pneumonias, and occurrences of pleural 
fluid. Previous work of others has included the evaluation 
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Figure 13-Illustrations of the 25 parameter curves for each of two X rays taken on patients with different stages of pneumonoconiosis. 
The array curves correspond to the posterior anterior matrices respectively. 
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Figure 13-Continued 
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Figure l3-Continued 

from chest X-rays of cardiomegalies and specific heart
chamber enlargements.22- 24 Here our goal is to classify a 
chest X-ray film automatically according to the UICC/ 
Cincinnati standard films. This is a set of X-rays shmving 
specific examples as "standards" for the classification of the 
severity of pneumoconiosis, or "black lung" disease, con
tracted by coal miners. Our approach to the automation 
conceptually follows that taken by the radiologist in his 
evaluation of chest films. Thus we recognize the various 
anatomic features, regions, and parts of the lung and rib cage 
(and heart), and then characterize the type and extent of 
"opacities" in each of the regions of importance by means of 
a texture analysis. The characterization of the anatomic 
features is accomplished by interactive aids in which the 
apices of the lungs are pointed out to the computer and 
standard lung feature curves are drawn projectively through 
the points, as in other applications described above. For the 
texture analysis, the method is first to develop 2.5 texture
parameter functions for each of the standard X-ray plates. 
Then, for a particular patient, the 2.5 parameter functions are 
compared \vith those of the standards, and the diagnosis 
corresponds to that standard which most closely matches the 
25-parameter vector-function of the patient. 

The 25 parameter functions of two X-rays of different 
severities of pneumoconiosis are shown in Figure 13. 

The texture parameters are developed as follows. 25 We 
attempt to characterize a function g(:c, y) by means of 
attributes that can be derived from the grey-level partition 
of g(x, y), i.e. 

g(:c, y) = {g(:c, y, 1), g(x, y, 2), .... g(J-, y, n) I 
when' g(:c, y, i) is thp function g(I, y) df'fined only for those 
points (I, y) for which g(I, y) = 'i. Each such partition can be 
characterized bv its arpa, boundary Ipngth, "width," and 
"proportion." Thf' area is simply the number of spots (I, y) 
for which g(I, y) = i. The boundary is the length of the 
contour lines sf'parating g(J', y, i) from g(J', y, i-I) and 
g(:c, y, i + 1). The "width" is defined as the area divided by 

the boundary length. This is analogous to the width of an 
annular ring between two circles of radius rl and r2, for then 

7r(r22-r12) 

7r(r2 + rl) 
area of annular ring 

7r X boundary length 

Finally the "proportion" is defined as the width divided by 
one half the boundary length. 

Thus for each grey-level value, each of the four attributes 
can be computed, producing a "spectrum" for each attribute. 
That is, the attribute value will be a function of the grey-level, 
e.g., 

Ai=Ai[g(X, y, i)], i= 1, 2, .... , n 

for n grey-levels. However, what is really desired is a set of 
parameters that describe the behavior of the attributes as 
functions of the grey levels; i.e., we wish to characterize A i as 
Ai=A(i). For this we simply choose the first, second, and 
third moments (i.e. the mf'an, variance, and skewness, 
respectively). Summarizing, for each of the four attributes, 
spectra are generated; and for each spectra, three moments 
are computed, making 4 X 3 = 12 parameters. 

However, for texture analysis the important thing is the 
variation of the parameters when computed for a sequence of 
"smoothing pictures" O;(x) for neighborhoods i of increasing 
sizes. Here 

where X= (x, y) and ni is the set of points in the neighborhood 
of size i around J', and a; is the number of points of n j. Thus 
for each smoothing picture we obtain the 12 parametf'rs; or in 
other words, the 12 parameters are actually functions of the 
smoothing cycle. Hence we have an array of parameter 
functions: 

P ll (S) P12 (S) P1a(s) 

P 21 (S) P22 (s) P 2a(s) 
Pij(s) = 

P a1(s) P a2(s) Paa(S) 

P 41 (S) P 42(S) P 4a(S) 

where i indexes the attributes (i.e., area, boundary length, 
width, and proportion), j indexes the mom('nts of the 
spectrum (i.('., mean, variance, and skewness), and s repre
sents the smoothing cycle (i.e., neighborhood size). 

Often it is also important to work with the so-called 
difference picture, namely 

dB (x, y) = g(x, y) -OBeX, y) 

We can once again compute an array of paramrter functions 
based on the difference pictures. For each smoothing cycle s, 
we have a difference picture and hence the 12 parameters. 
Thus we can form an array of parameter functions: 



Du(s) 

Dij(s) = 

D33(s) 

where, as above, i indexes the attributes, j indexes the 
moments of the spectrum, s represents the smoothing cycle 
on which the difference picture is based. 

Finally, we come to the parameter that is the count per 
unit area of the number of local maxima. This is accomplished 
in an efficient and convenient, although approximate, manner 
by utilizing the difference picture. The mean grey level is 
used as a grey-level "cutoff" and the number of "objects" in 
the picture above this cutoff level are counted. This is done 
for e::1"Ch of t1le difference pictures,resu1ting in a parameter 
function C (s) . 

Summarizing, twenty-five parameter functions are used to 
characterize the texture of a picture, twelve associated with 
the original picture and its smoothing cycles, twelve associ
ated with the difference pictures, and one additional param
eter function associated ,vith the number of local maxima on 
the smoothing pictures. These, then, are the texture param
eters used to characterize an X ray and compare it ,vith the 
analogous parameters of the standards. 

BACTERIOLOGY SLIDE SCA~~I~G 

Automation of clinical microscopy is eminently suited to 
the applications of pattern recognition. At the present time, 
clinical microbiologists spend considerable tim'" at the micro
scope scanning slides in order to determine Gram reaction, 
size, shape, and general morphology of bacteria isolated from 
clinical specimens. An area of application for the automatic 
microscope is precisely this onerous task of routine micro
scopy. A variety of tissues and specimens (urine, sputum, 
etc.) can be screened quickly and accurately for the presence 
of bacteria. Several stains are routinely used, for example, the 
Gram stain, the acid-fast stain, and the simple stain (methyl
ene blue), as well as others. The appropriate parameters can 
be established and the computer programmed to interpret 
observations from the microscope. The general techniques of 
staining etc. are rather concisely presented in the ill anual of 
J! ethods in Clinical !ll icrobiology published by the American 
Society for ::\!icrobiology (for example, see page .58). If one 
were able to provide a reasonably priced automatic scanning 
system using a modification of the routine light microscope, 
then considerable savings in hospital bactf>riology-Iaboratory 
costs as well as an improved accuracy of diagnosis can be 
achieved. 

Automation in the bacteriology laboratory has hf>rf>tofore 
been mainly applied to bacterial-culture analysis, such as the 
automated reader for large assay plates, automatic growth 
record('r for microbial cultures, automatic plate streaker, 
etc. 26- 28 Such apparatus examines or handles the bacteria on 
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(a) 

i.p 

~ 

Figure 14-a. E. Coli analyzed by the computer. b. Computer alignment 
ofthe E. Coli bacteria. c. Table of values computed for each of the 

oacterla 

a macroscopic level, in terms of colonies or turbidity meas
ures. Little if any automation has been approached at a 
microscopic scale. However, even the initial procedure in the 
manual identification of bacteria is the examination of the 
Gram-stained bacteria at a microscopic level, for whether an 
organism is a Gram-positive or Gram-negative coccus or rod 
nO\v determines the methods used for its cultivation and 
identification on the macroscopic level. 

At present, microscopic examination of the bacteria is 
made at only two points in the clinical bacteriological 
examination. The first is on fresh fluid or tissues from the 
patient, which are examined microscopically using wet 
mounts with phase contrast or vital stains or using dried 
smears with the Ziehl-Xeelsen stain as 'well as the Gram stain. 
A microscopic examination can be again made from the 
bacterial cultures on the streaked and incubated plates. These 
examinations are usually only cursory in nature, however, 
because of the tedium and difficulties involved in counting or 
measuring the bacteria. That is, the information obtained 
from the microscopic examination of bacteria in routine 
clinical examination is limited at present not so much by the 
information available in the microscopic field as by the 
inability of manual methods to conveniently and effectively 
extract from the microscopic field all the information that 
exists there. Thus the full potential of the microscopic 
examination of bacteria has not been reached. 

The automation of the microscopic examination by the 
SPIDAC automatic microscope holds promise not only of 
eliminating the tedium of present methods but also of opening 
the way for the development of entirely new techniques in 
clinical bacteriology based on such direct microscopic exami
nation. For instance, very sparce populations of bacteria can 
be found by means of the relentlessly systematic complete 
scanning of a slide that is accomplished by automatic means. 
The more precise automatic measurf>ment of morphological 
charactf>ristics can increasp thf> specificity with which the 
bactpria can be recognizpd at an initial microscopic examina
tion. Utilizing the SPIDAC, it now becomes feasible to 
develop new reactions or stains that can aid in differentiating 
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between different types of bacteria on a microscopic, indi
vidual-organism level. 

The advantages of such developments are great. First, the 
time required to identify bacteria is substantially reduced in 
most cases. This time reduction occurs because of the 
increased information obtainable from the examination of the 
initial specimen, and because only very tiny colonies are 
necessary for examination of bacteria after streaking. Second, 
automatic microscopic analysis reduces the space require
ments for large incubators and the number of personnel 
needed for handling and manipulating the many bacterio
logical plates. Finally, such direct automatic analysis can 
enable the development of the most accurate methods for 
determining the antibiotic sensitivity of bacteria. 

Figure 14a shows E. coli bacteria scattered in a field, where 
the ends of each bacteria have been determined and each has 
been given a number corresponding to the order in which they 
were recognized by the computer. In Figure 14b these bacteria 
have been aligned above their corresponding accession num
ber; in Figure 14c a table of total length and total area for 
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lJBJEcr NO '10UNDARY AREA "AJOR AXIS "IINOR AXIS RATIO INDEX 
1 20.'5 2'5.0 9.000 5.000 0.556 0.06 
2 28.5 67.0 10.440 A.4R5 0.A13 O.OA 
3 10.8 7.0 5.000 1.414 0.283 0.06 
4 56.3199.0 20.616 13.416 0.651 0.06 
'5 36.1 100.0 13.000 9.220 0.709 0.08 
6 53~5 192.0 fll.6fl2 13.0-'~ 0.69R 0~07 
8 10.2 7.0 4.472 2.000 0.447 0.07 
9 6.8 6.0 3.000 

10 31.6 7A.0 11.045 
11 H.O 85.0 11.045 
12 35.0 98.0 12.369 
13 45.0 15!f.0-- 1"5.0mf--
II, 44.6 140.0 15.000 
15 35.6 101.0 11~705 
16 34.1 92.0 11.402 
17 35.0 101.0 11.402 
18 30.1 74.0 10.440 
19- 34~1 ~--;o- -lr~T!ro----

20 43.2 143.0 14.~66 
21 37.e 117.0 12.369 
ZZ 33.6 94.0 11.402 
23 11.1 12.0 4.123 
24 34.1 97.0 12.369 
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Figure 15-a. Photomicrograph of a field of candida albicans. b . 
Organisms as determined by the computer. c. Table of values computed 

for each object in the field 

each of the bacteria is given. In Figure 15a we show some 
Candida albicans, a gram positive yeast organism. Figure 15b 
shows the organisms as determined by the computer, and 
Figure 15c gives the area, the length of the major axes, the 
length of the minor axes, the ratio of the minor to major axes, 
and the value of an index which is the area divided by the 
square of the contour length. From such data, average values 
for individual organisms can be determined, even though some 
of the boundaries encompass more than one touching or 
adjacent organism . 
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Interactive pattern recognition-A designer's tool 

by EDWARD J. SIMMONS, JR. 

Rome Air Development Center 
Griffiss AFB, New York 

INTRODUCTION 

The marriage of interactive processing techniques with 
the technology of pattern recognition is particularly sig
nificant to the designers of equipment requiring the 
automatic recognition of objects or events. This new tool 
allows the system designers to develop better recognition 
logic more quickly than in the past. But, perhaps most 
importantly, they can develop this logic themselves, so all 
design alternative and resulting systems effects can be 
analyzed in detail. 

This paper will show how easy it is to use an interactive 
pattern recognition system to solve a variety of problems. 
It is hoped that other similar systems will be developed 
and used to improve the quality of human life. 

INTERACTIVE PATTERN RECOGNITION 

The Air Force's Rome Air Development Center has 
produced a unique tool for solving automatic recognition 
problems, called the On-Line Pattern Analysis and Rec
ognition System (OLPARS). This interactive pattern 
recognition tool has been used quite successfully by sys
tem design engineers and research workers, who are 
familiar with pattern recognition concepts, but who would 
hardly qualify as pattern recognition "experts." 

Before discussing these applications a few words on the 
organization of the OLPARS is in order. The system con
sists of a computer with a graphics console. The console 
has function keys, a keyboard, a lightpen, and a cursor 
controlling track ball. There are four main analysis 
modules forming the OLPARS: data structure analysis, 
measurement evaluation, data transformations, and rec
ognition logic design. In discussing the various applica
tions, the purpose of each of these modules will be 
explained. Each module contains several algorithms 
which may be called as needed to aid in the analysis and 
logic development. Underlying these modules is the 
OLP ARS executive which provides the data filing system, 
passes the proper information to each called algorithm, 
and formats various graphics data displays to the user. 
Extensive details of the OLP ARS organization may be 
found in References 1 and 2. 
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Table I contains a listing of the applications on which 
the OLP ARS has been used along with the principal 
investigator. Not~ the wide variety of users, ra_Ilgipg (rom 
Dr. Sammon, a noted authority in pattern recognition, to 
Mr. Dragg, an engineer having no formal training in pat
tern recognition. 

One of the early applications of the OLP ARS was in the 
traditional pattern recognition problem of spoken word 
recognition, in this case confined to the ten digits zero 
through nine. Each of seven speakers spoke the digit five 
times, producing 35 samples for each digit. These samples 
were digitized and 24 features, based on zero crossing 
information, were extracted. 

Dr. Foley3 has developed an engineering rule of thumb 
regarding the minimum sample size of the design set. 
This rule states that if the ratio of the number of samples 
per class to the number of features is less than three, then 
the performance of the recognition logic is unreliable, i.e., 
results on the independent test set will be quite different 
then the design set results. Clearly this rule is violated for 
the speech data, so it would be foolish to attempt to 
design recognition logic. However, it is reasonable to per
form the first step in a pattern recognition problem, 
namely, data structure analysis. 

There are two reasons to perform data structure analy
sis. The first is to search for separable clusters or modes. 
If these are found then the data must be partitioned into 
subclasses so that each subclass has only one mode. Fig
ure 1, Multi-Mode Class, demonstrates this point. Sup
pose the nearest mean vector logic is to be used. The 
mean vectors of class A and Class B fall almost on top of 
each other. If class A is broken into subclasses then the 
mean vectors of each of three clusters will separate quite 
nicely. The second reason for structure analysis is to 
detect any "wild shots," caused by an error in the data 
collection, which would produce inaccurate recognition 
logic. 

Performing structure analysis on the speech data ena
bled the user to make an interesting discovery about his 
data collection. Figure 2, Spoken Sixes, shows the spoken 
sixes as plotted on a plane defined by the two covariance 
eigenvectors whose eigenvalues are largest. This plane, 
then, is the plane in our 24 dimensional hyperspace which 
contains the maximum variance in our data. ~ote that 
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TABLE l-OLPARS Applications 

APPLICATION 

1. Spoken Digit Recognition 

2. Ground Sensors 

3. Earth Resources 

4. Shock Trauma Diagnosis 

5. Genetic Disorder 
Recognition 

6. Aerospace Object Shape 
Identification 

7. Radar Emitter 
Identification 

8. Handprinted Characters 

9. Map Features 

10. Photo-Interpretation 

11. Helicopter Mission 
Profiles 

12. Photometric Analysis 
Techniques 

PRINCIPAL INVESTIGATOR 

Mr. Chapin 
RADC In-House 
Mr. Proctor 
RADC In-House 
Mr. Dragg 
NASA 
Manned Spacecraft Center 
Dr. Sacco 
Army-Edgewood Arsenal 
Dr. Stowens 
Utica State Hospital 
Mr. Proctor 
RADC In-House 
Mr. Webb 
RADC In-House 
Mr. Elefante 
RADC In-House 
Dr. Sammon 
Pattern Analysis and 
Recognition Corporation 
(RADC Contract) 
Capt. Fick 
RADC In-House 
Dr. Sacco 
Army-Edgewood Arsenal 
Mr. Merritt 
Army-Edgewood Arsenal 
Mr. Roberts/RADC In-House 
& Lt. Harkleroad/ AF Space 
& Missile Systems Organiza
tion 

there are two clusters. A similar result also occurs for 
sevens, while each of the remaining classes have only one 
cluster, as expected. Being on-line with the computer 
made understanding this phenomenon very simple, the 
operator simply outputs to the line printer the vector 
indices of each point in each cluster. This simplifies 
going back to the original waveform data producing that 
vector to learn the cause. In this case, it was that the "s" 
sound is of such low energy content that the device which 
initialized the feature extractor was not triggered by the 
"s" for some speakers. When this threshold was readjust-

A A A A 

A A A 

A A A 

Figure l-Multi-mude claiSi; 

ed, the sixes and sevens became the expected single clus
ter classes. Thus, performing the pattern recognition 
function interactively enabled the quick identification 
and correction of data collection errors before much time 
was wasted. 

Another interesting application of OLPARS is passive 
identification of ground vehicles using unattended sen
sors. Here we are dealing with secondary phenomena, 
which is somewhat unusual in pattern recognition. 
Printed characters were designed to convey information, 
so is spoken language. These then are primary phenom
ena which must be recognized. However, the purpose of a 
truck is not to make noise or thump the ground, but 
rather these outputs are incidental. Thus, identifying 
light and heavy trucks, tracked vehicles, men walking, 
and aircraft is no easy matter. Add root noise caused by 
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swaying trees, stray animals, weather factors (wind, rain, 
thunder, etc.) and the possibility of two or more targets 
occurring together, and the problem becomes extremely 
complex. 

Current solutions are based on the single class aspect. 
In this problem, 48 features were extracted from each 
target sample, which consists of five seconds of seismic 
signature data. They include total energy in each five 
hertz bin of the FFT (Fast Fourier Transform) of the 
signal, spacing between the harmonics, ratio of maximum 
deviation to average deviation, and number of frequencies 
for which the energy exceeds 25, 50, and 75 percent of the 
maximum energy value. However, these sensors are to be 
air dropped, impact implanted, and never recovered. This 
puts severe limitations upon the target classifier complex
ity that can be afforded, 25 features appearing to be an 
upper bound. 



This data was presented to the OLP ARS and a success
ful solution was found in about one month of analysis. 
First the measurement evaluation module was used to 
determine the discriminating power of each of the 48 
features. This is done using one of two algorithms, proba
bility of confusion or discriminant measure, which ana
lyzes each feature independently. The former essentially 
measures the overlap of the class conditional probabilities 
while the latter measures the significance of a feature in 
discriminating between classes on a pairwise basis. The 
OLP ARS operator can then get a ranking of each meas
urement, based on either algorithm, over all classes, for a 
specified class versus all other classes, or for a specified 
pair of classes. In this manner the operator can decide on 
the best five, ten, fifteen, twenty, etc. features, light gun 
those features he wishes to use and use the data transfor
mations module of the OLP ARS to transform his data 
into two data sets, the original and a new set consisting 
only of those features selected. In the sensor case, the 
operator constructed new sets made up of 12, 16, 19, 22, 
33, and 44 features. This allowed the design of several 
target identifiers so that the trade-off between complexity 
and classification error could be ascertained. 

The second step was to use the structure analysis 
module to analyze the data. Since no "wild shots" were 
found and the data did have just one mode per class, the 
operator quickly passed to the recognition logic design 
module. The algorithm chosen here was Fisher's Linear 
Discriminant, which works by discriminating between 
pairs of classes. A direction is found in the hyperspace 

TABLE II -Confusion Matrices for Fisher Thresholds 

UNADJUSTED 
H A T M C 

H 121 7 1 2 1 
A 1 166 3 1 0 
T 4 2 131 0 2 
M 4 1 0 127 1 
C 3 0 0 6 131 

TOTAL SAMPLES 133 176 135 136 135 

a. 
ADJUSTED 

H A T M C 

H 120 3 2 1 
A 2 170 4 1 0 
T 4 2 130 0 2 
M 4 1 0 129 1 
C 3 0 0 4 131 

TOTAL SAMPLES 133 176 135 136 135 

b. 

LEGE~D: H-Helicopter 
A-APe 
T-Heavy Truck 
M-Human 
C-C 131 
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defined by the features which best satisfy the mutual 
criteria of maximizing the between class scatter while 
minimizing the within class scatter. The distance between 
the two classes is then bisected and this value taken as 
the threshold. An unknown vector is projected onto this 
direction and called class 1 if its value is less than the 
threshold and class 2 if greater. This is done for all pairs 
of classes and that class getting the most votes is the class 
to which the unknown vector is assigned. If there is no 
space between the classes, i.e. they overlap, the threshold 
is the value bisecting the space between the maximum 
value of the density functions of each class when plotted 
on the Fisher direction. 

In the sensor problem, as in most real world prob
lems, the classes overlap so that perfect discrimination is 
impossible. Table IIa shows the confusion matrix which 
results from applying the Fisher technique to the 16 fea
ture sensor data. This resUlted in 39 identificatIon errors 
for 715 targets, or a correct identification rate of 94.5 
percent. However, OLPARS allows the operator to go one 
step further in refining his logic. He may look at the data 
projected on each of the Fisher directions and adjust the 
thresholds to better fit the shape of the density functions. 
When this was done, the resultant confusion matrix is 
shown in Table IIb, note there now are only 34 errors or a 
95.2 percent correct identification rate. Since each class 
has 130 or more samples, Dr. Foley's rule of thumb is 
satisfied. In fact, an independent test set of 605 targets 
confirmed these results. This 16 feature design was cho
sen because it represents the best compromise between 
complexity and correct target recognition rate. This 
design is now undergoing testing under field conditions. 
Thus, the interactive pattern recognition tool-OLPARS
-made solving this highly complex problem a task one 
man could perform in a month. 

NASA's Earth Observations Program provided another 
opportunity for OLPARS to show its usefulness. This 
data set consisted of the digital output from a 12 channel 
multi-spectral scanner that had been flown over the 
Tippecanoe River Valley of Indiana during various parts 
of the growing season. The purpose was to automatically 
detect what type of field was being overflown (oats, rye, 
clover, wheat, corn, soybeans, or alfalfa). NASA person
nel were trained in operating the OLP ARS and designed 
recognition logic, which had a correct recognition rate of 
98.4 percent in one work week. 

During the data structure analysis work something very 
interesting occurred in this data, the eigenvector projec
tion of the data associated with the two largest eigenval
ues gave the barest suggestion that the oats class might be 
bimodal. Since the user was on-line with the computer, he 
merely asked for the data projected against the eigenvec
tors associated with the second and third largest eigenval
ues. This produced Figure 3, Oats Projection, where the 
two modes are easily seen. Thus, in less than five minutes 
the user went from hunch to verification. Try that on any 
batch system! 

The Army's shock trauma work represents a considera
bly different use of OLPARS. The system was not asked 
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to design logic to discriminate between people who would 
recover from the trauma, but rather to find the optimum 
plane in the data space so that the movement of the 
patient in that plane, as physiological parameters change 
during the course of treatment, would indicate the effec
tiveness of the treatment and assist the doctors in deter
mining what therapy to apply or if the patient has passed 
the point of recovery. The data was provided to the Army 
by the University of Maryland Center for the Study of 
Trauma and consisted of 12 measurements: systolic blood 
pressure, diatolic blood pressure, hemoglobin, hematocrit, 
serum fibrinogen, serum sodium, serum potassium, serum 
chloride, serum osmalality, blood urea nitrogen, glucose, 
and serum creatine. This data was taken at the beginning 
of therapy and at the end for 70 patients who lived and 70 
patients who died. 

The OLPARS data structure analysis module contains 
several algorithms in addition to the eigenvectors dis-
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cussed previously. Among them are Non-Linear Mapping 
(NLM), which fits the n-dimensional data onto a plane so 
that the error in the inter-point distances is minimized, 
and Discriminant Plane Mapping, which maps two opera
tor selected classes onto a plane defined by the Fisher 
direction (the same as in Fisher's Linear Discriminant 
algorithm for classification) and the best orthogonal 
direction which satisfies the same criteria. All three of 
these techniques were used in this application; however, 
NLM did not provide a plane that was useful. 

The data was divided into four classes: final measure
ments on surviving patients (Class A), final measure
ments on dying patients (Class B), initial measurements 
on surviving patients (Class L), and initial measurements 
on dying patients (Class D). The measurement evaluation 
module was used to select the best six measurements and 
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Figure 5-Discriminant plane 

the resulting discriminant plane for classes A and B is 
shown in Figure 5, Discriminant Plane. While some over
lap of the classes does occur, there is very definitely some 
lethal combinations of the measurements and some indi
cating survival. Figure 4, Eigenvector Plane, shows the 
eigenvector projection of all the data. Clearly the center 
of the plane is a region of good prognosis and the left 
region an area of poor prognosis. Further work is still 
being conducted on this application . 

The last application to be discussed is that of genetic 
disorder recognition. Dr. Stowens4 believes that since they 
are laid down in the womb, they never change except by 
mutilation, and are unique to each individual, that 
prints contain a map of the genetic code of the individual. 
Therefore, certain patterns in these prints should indicate 
genetic related disorders. To data, OLP ARS has been 



used in two aspects of this work, recognition of parents 
with high probability of bearing children afflicted with 
Down's syndrome and recognition of adult women with 
tendencies toward schizophrenia. 

The features used in these studies consisted of 23 
measurements made on each hand. The loops, whorls, 
and arches of each finger, the four main lines of each 
palm, the palmer creases, the four inter-digital area pat
terns, the axial triradii, and the hypothenar pattern were 
the areas of interest. 

In the schizophrenia study data was collected from 82 
white women who, in the opinion of all staff members of 
the Utica, N.Y., State Hospital, met all diagnostic criteria 
for this disease. A control population comprised of 295 
white women who appeared well and from whom no his
tory of familial or genetic diseases could be elicited was 
used for comp_arison. This data was analyz_ed using the 
discriminant plane technique discussed earlier. The 
resulting plane is shown in Figure 6, Schizophrenics vs. 
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Normals. If the Fisher Linear Discriminant drawn in this 
figure is used, 245 of the 295 control samples lie to the 
right of this discriminant and 59 of the 82 schizophrenic 
samples lie to the left. Due to the promise of this tech
nique further data is now being collected. 

CONCLUSION 

Five of the twelve applications of the OLPARS have been 
discussed with the intention of showing how a system 
designer or a research worker can use interactive pattern 
recognition systems as tools to solve automatic target 
identification problems and as statistical analysis pack
ages. The OLP ARS is a versatile tool limited only by the 
imagination of the user and availability of data. It is 
hoped that more tDols of this nature will be built and used 
to make human life a bit easier. 
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Auto scan-Techinque for scanning masses of data to 
determine potential areas for detailed analysis 

by DAVID L. SHIPMAN and CLARENCE R. FULMER 

National Aeronautics and Space Administration 
Huntsville, Alabama 

INTRODUCTION 

Th-e Skylab Program is -exp€-et-ed w pwvide advanced 
technology to assist in the development of large, perm a -
nent space stations. Skylab consists of four modules; the 
Orbital Workshop (OWS) which provides crew quarters 
and commodities, the Airlock Module (AM) which pro
vides power distribution, atmospheric conditioning and 
services for Extra Vehicular Activity (EVA), the Multiple 
Docking Adapter (MDA) which provides for Command 
and Service Module (CSM) docking, and the Apollo Tele
scope Mount (ATM) which is essentially a manned solar 
observatory. Skylab will carryon board a number of 
experiments in scientific, technological, engineering, and 
medical areas including those in the A TM. The A TM is 
also an experiment. Several types of data will be gathered 
from the experiments including film, samples, observa
tions, as well as transducer and thermocouple measure
ments. There will also be data from Skylab subsystems 
measurements since several subsystems have never been 
flown. The total number of measurements from the 
experiments and the Skylab subsystems will exceed two 
thousand measurements, a large number of which will be 
operating for twenty-four hours per day over the entire 
mission of eight months. 

One million pages of computer printout for each 
twenty-four hour period may well be required to present 
all the data gathered from the measurements. The analy
sis of this volume of data either requires an excessively 
large number of engineers for the allotted twenty-four 
hour period or the development of some method for 
automatically selecting only those data which require 
some indepth analysis. The AUTO SCAN program is a 
computer program which searches ali incoming data for 
data points which exceed some predetermined limit. The 
data points which are outside the limits are sent to the 
system analysts for detailed analysis. The system analyst 
is then relieved of the requirement to review all data and 
can concentrate on analyzing the exceptional cases. This 
corresponds to the management by exception principle. 

DATA TRANSMISSION 

The data from the Skylab measurements will be trans
mitted to the ground receiver station via telemetry at 
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predetermined intervals. The receiving ground station 
will remove all redundant data points using a zero order 
algorit-hm ac-c-&ffiin-g t-{) apredet-ermined··priMity se-Reme 
and will transmit the resulting compressed data stream to 
the using NASA Center via data lines where it will be 
stored on magnetic tapes. The using NASA Center will 
then remove overlapping ground station coverage, chron
ologically order the data, and insert data from onboard 
recorders into the data stream where there are gaps in 
ground station coverage: the final data stream will then 
be put into a specific format called All Digital Data Tape 
or ADDT. One ADDT will be made for the AM telemetry 
system and one for the ATM telemetry system. These 
ADDT will become the primary input variable for the 
A UTO SCAN program. 

PROGRAM CONSTRAINTS 

Several major constraints and/ or groundrules were 
baselined for the AUTO SCAN program as the first step 
in the development process. These constraints were: 

1. The program must accept the ADDT and execute as 
the ADDT becomes available. 

2. The program must be written in FORTRAN IV for 
use on the UNIVAC 1108 EXEC VIn computer 
using a maximum of 65K word core storage. Other 
languages are permissible only when it can be 
demonstrated that, for certain segments, another 
language is more desirable. 

3. The program must be modular, such that modules 
can be removed or inserted without affecting the 
operational capability of the program. 

4. The program is intended for use on the Skylab 
Workshop TM data to identify anomalous data and 
should not be designed to perform analysis or evalu
ation. 

5. The program must be able to identify out of limit 
data and confirm the occurrence of specific events. 

6. The computer run time must not exceed two hours 
for each set of data transmission which will occur 
about every six hours. 
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PROGRAM REQUIREMENTS 

The next step in the development of AUTO SCAN was 
the establishment of the requirements for the program. 
The engineers responsible for each of the systems and 
subsystems as well as the experiments were expected to 
be the potential users of the AUTO SCAN program. 
Requirements submitted by these users were synthesized 
to identify the following types of information needed for 
the program development. 

1. The measurement title and description and the 
associated processing priority required. 

2. Related measurements that may be correlated with 
the desired measurement should be out of tolerance 
condition develop. 

3. Measurement characteristics such as discretej event, 
steady state or other (i.e., slopes, cyclic, consuma
bles, etc.). 

4. The time span over which an AUTO SCAN run is 
desired. 

5. Special calculations that may be required before an 
AUTO SCAN run can be made. 

6. The nominal value and the upper and lower test 
limit for each measurement. Changes in either of the 
limits that can be predetermined should be speci
fied. 

In reviewing user requirements, it was noted that many 
measurements were requested by several different users 
whose purpose for the measurement were completely dif
ferent. As a result, the requests for measurement were 
completely different. As a result, the requests for meas
urement scans was significantly higher than the requests 
for measurements (on the order of about 1.5). This addi
tional scanning capability compounds the core storage 
and computer run time problems. Accordingly, consider
able coordination with the users was required to fit the 
requirements within the current AUTO SCAN program 
constraints. Ideally, the AUTO SCAN program's physical 
development should have begun only after virtually all 
the requirements had been generated or at least until 
after a wide range of requirements had been received. 
Both Skylab development problems and manpower limi
tations precluded this ideal approach. An iterative 
approach was thus adopted whereby the overall planning 
was made for all anticipated requirements, but program
ming was done only on parts of a minimum capability 
program and as these parts were developed, additional 
capability was added. 

PHYSICAL DESCRIPTION OF THE SYSTEM 

A pictorial view of the AUTO SCAN program is pre
sented in Figure 1. After several iterations, a baseline 
AUTO SCAN program was developed. This baseline 
prngrf:lm actually consists of four large subprograms. 

Figure I-Description of the physical system 

1. Input Processor-The input for this subprogram is 
either cards or magnetic tapes reflecting the various 
requirements which are received. This subprogram 
arranges the requirements by system and provides 
the necessary scan instructions to the other subpro
grams. 

2. ATM A UTO SCAN-This subprogram scans the 
ATM ADDT using instructions from the Input 
Processor and creates magnetic tapes containing the 
out-of-limit violations, the keying required to obtain 
plots or tabulations from another program during 
the out-of-limit interval and the data which may be 
required for some statistical calculations. Storage 
was allocated for 2047 scans of the ATM ADDT. 

3. AM AUTO SCAN-This subprogram is essentially 
the same as the A TM AUTO SCAN except that the 
operations are performed on the AM ADDT. 

4. Output Processor-This subprogram operates on the 
data generated in the two scan subprograms to pres
end usable hardcopy output or printout. 

The input to and output from the subprograms of the 
baseline AUTO SCAN program are shown in Figure 2. 
Some of the terms or acronyms used in this figure are 
defined in the Appendix. 

Flow through these subprograms is expected to be as 
follows. The path is first through the solid lines and then 
through the dashed lines. 

ATM AlITO SCAN 

AM AUTO SCAN 

A generalized flow diagram of this baseline program is 
shown in Figure 3. This baseline program, with required 
storage for the telemetered measurements, uses about 
50K word core storage for the UNIVAC 1108 computer. A 
number of Special Computation Modules are being devel
oped and will be added to the baseline program as core 
storage and run ti:'I1f..' permits. The baseline APTO SCAN 
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Figure 2-Baseline auto scan program 

program is essentially input/outp'ut bound, i.e., the clock 
time is much larger than the CPU time. The Special 
Computation Modules will utilize the multiprogramming 
capability of the UNIVAC 11 08 resulting in co-processing 

READ CASE INPUT DATA INCLUDIHG CHANGE TO PROGRAMMED DATA. 

READ MASTER SET OF IHITIAL VALUES FROM ADDT AND SHIFT 
INTO WOR KING LOCATIONS. 

SET UP DATA FOR SCANNIHG. WHEN THE NEW VALUE OF A 
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FOR USE BY THE APPROPRIATE SCAN SUBROUTINE. 

----, 

SWITCH TO ALTERNATE 
ADDT UNIT AND ASK 
FOR NEXT ADDT ON THE 
COMPLETED UNIT 

CALL REPORT SUBROUTINE TO SORT AND OUTPUT BEHAVIOR 
HISTORY CHRONOLOGICALLY BY SYSTEMI'SUBSYSTEM. 

Figure 3 -Generalized flow diagram 
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of the Special Computation Modules and the base line 
AUTO SCAN program, thus providing for more efficient 
utilization of CPU time. In addition, use will be made of 
mass storage devices to reduce requirement for computer 
core storage. 

PROGRAM OUTPUT 

There will be two basic outputs from the AUTO SCAN 
program; discrete events and out-of-limits intervals 
(flags). All the hard-copy output of the program will be in 
the form of tabulations. The information provided on 
each discrete event occurrence is as follows: 

Measurement Number 
Measurement Title 
Time -of Detection 
True or False Indication 

The information provided on each out-of-limits interval is 
as follows: 

Measurement Number 
Measurement Title 
Time of Detection-This is different from the start of 

the out-of-limit interval in that a persistency factor 
is applied to minimize the effect of noise. 

Time of Interval Start-When measurement initially 
goes out-of-limits. 

Time of Interval Stop-When measurement returns 
within limits. 

Upper Test Limit 
Lower Test Limit 
N umber of Data Points Outside the Limits 
The Maximum Excursion from the Limits 
The Average Value While Outside the Limits 

A sample output of the AUTO SCAN program for dis
crete is shown in Figure 4 and for flags is shown in Figure 
5. On this particular test run, there were more than three 
times as many discretes detected as flags raised. The data 
used for the test run was a magnetic tape generated dur
ing the quality assurance checkout tests for the ATM 
only. Even with this enormous reduction in volume of 
data (approximately 103

) to be analyzed, additional effort 
is required to further reduce the volume of data to man
ageable proportions. 

ADDITIONAL DEVELOPMENT NEEDS 

Research in two areas could lead to additional reduc
tion in volume of data to be analyzed: (1) Assessment of 
filtering feasibility and streamlining the AUTO SCAN 
modules and (2) development of onboard data redun
dancy removal and scanning. This second item merits 
some additional discussion. . 

Only meaningful data should be transmitted from the 
spacecraft to the ground station to reduce the load on 
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Figure 4-Discretes 
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both these systems and amount of data that would have 
to be processed by a ground based program such as 
AUTO SCAN. One way to accomplish this is by the use of 
algorithms. These algorithms should be developed for on
board data redundancy removal and should automati
cally scan the spacecraft system parameters as a mini
mum prior to transmission to the ground site. Criteria for 
removal and scanning algorithms are: 

1. Redundancy removal techniques should have the 
capability of eliminating both totally redundant and 
near redundant data from the data stream. 

2. Practical pattern recognition schemes should pro
vide for the storage and transmission of the basic 
data characteristics rather than the total data 
stream. 

3. Automatic scanning techniques should be capable of 
detecting data that falls outside a prespecified corri
dor and transmitting only this data. 

:ri~~ i~L~ ::!i...T AUTOMATIC SCAN 31 AUG 72 PAGE 

ENVIRONMENTAL CONTROL SYSTEM 
THERMAL CONTROL SVSTEM 

T_OF START LTV 

i 
I MAX 

D£TECTION STOP UTV AVG 

ACQUlIITION Of ilGNAL 

TE ... IIIW OUTlET Of HEATER '1:13:40 ... 27." 
1t.:2'I:SI 122 26.7 

CD2f3.703 TEMP, EXT SURfACE OF RAO PAN NO. 9 9;13:41 -55.8 30.0 
9:2'1:51 10.2 25.7 

C0292-7OJ TEMP, EXT SURFACE OF RAD PAN NO. J ':13:41 ..... 30.' 
9:29:58 10.2 25.' 

C02B9-704 lEW, MIfII OUTLET OF ........ PACKAGE '1:13:41 9.S 29.0 
9:29:51 '2.2 22.' 

DOOD3-704 PRESS, OIFF MIW ACROSS CAN P.l.NELS 1:13:40 3.S .... 
9:29:58 s.' 56.0 

C0291·703 TEMP, EXT SURfACE OF RAO PAN NO.2 9:13:40 .... 0 31.0 
9:21:51 10.1 26.3 

C0287.71)4 TEMP, Dlf, MIW IN/OUT CAN PAN, MOA 9:13:41 .0 ... 
9:29:58 1.. ., 

C029$.704 TEMP, EXT SURFACE OF HEATER 1:13:4' '.S v.o 
9:29:58 12.3 25.2 

00007-704 PRESS, DIFF MIW ACROSS HEATEFl 1:13:41 .0 ·.0 
9:29:158 2.0 ·.0 

CD2(I8.703 TEMP, DIF, MIW IN/OUT CAN PAN, SUN 9:13:57 0 .. 
9-13:59 , .. .. 

C0290-703 TEMP, EXT SURFACE OF RAO PAN NO.1 9:13:41 -55.' .... 
9:29:58 10.2 8l.9 

LOS& OF SIGNAL 
I 

Figure 5-Flags 

These particular algorithms would apply basically to 
the onboard computer and obviously if implemented 
would perhaps impact both its design and capacity. 

CONCLUSION 

The ATM Baseline AUTO SCAN program has been 
developed and has received considerable testing during 
the August-January 1973 time period. Several Special 
Computation Modules are currently being developed and 
will be added to this baseline program to provide full 
capability for this Skylab module. Both the ATM AUTO 
SCAN and the AM AUTO SCAN subprograms have been 
completed, including the necessary checkout. The two 
subprograms have been used during Skylab ground 
checkouts and will be updated based on the results of its 
operation during these tests. 

The final test of the AUTO SCAN program will occur 
during the mission. The program will be refined during 
the mission as experience is gained and will become a 
primary system analysis tool for future missions. The 
developers of the system are enthusiastic about the capa
bility of AUTO SCAN and are already considering its use 
to handle the masses of data created in civil sectors as in 
the medical and environmental fields. 

APPENDIX 

Requests-Requirements submitted by the potential 
users of the AUTO SCAN program which are punched 
onto cards and subsequently onto magnetic tapes. 

Calibration Data-Measurement calibration tape 
which is also transmitted via data lines from other Cen
ters and used to convert data to engineering units. 

Compact Tape-Magnetic tape consisting of the re
quirements and specific instructions to be used in sub
sequent subprograms. 

ADDT-All Digital Data Tape-Telemetered meas
urements reformatted, chronologically ordered with 
redundant ground station coverage removed and on
board tape recorder data inserted where data gaps occur. 

Special ADDT -ADDT created by another major pro
gram which can be directly input to the AUTO SCAN 
program without the necessity of using an ADDT read 
routine which saves core storage and computer time. 

Behavior History Tape-Magnetic tape containing the 
information relative to the time interval when the meas
urement exceeded the out-of-limit tolerances. 

BHT Keying-Output which indicates to subsequent 
programs that either correlated or other measurement 
data either in tabulation or plots are required during the 
out-of-limit intervals provided on the BHT. 

Statistical Data Tape-A magnetic tape that will con
tain data required in the event that some statistical cal
culations are needed. 
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INTRODUCTION 

The SPIDAC system is an automatic optical-microscope 
scanner for on-line input of pictorial data from a glass 
slide directly into the core memory of a digital computer. 
In this paper we describe both hardware and software 
systems and give a specific application. The major hard
ware subsystems include the optical microscope with 
highspeed automatic stage movers and an instantaneous 
continuous automatic-focusing scheme, high-resolution 
video reading circuitry, a video memory, and interfacing 
circuitry. The software system includes programs to 
automatically move the microscope stage with an accu
racy of 1.25J.l to any point on the slide, to scan and digi
tize pictorial data, to examine the scanned image for 
areas of interest, and then to determine if the pictorial 
data is amenable to analysis by the digital computer. 
After the slide is placed on the microscope stage, the sys
tem is fully automatic, ending when the entire slide area 
has been completely examined. 

The system can operate in two modes. In the first, the 
entire slide is scanned and the coordinates of areas of 
interest are determined, to be used for later detailed 
examination of the slide. In the second mode, as the areas 
of interest are determined, they are automatically cen
tered in the optical system and immediately analyzed. 

In this paper, we present a detailed discussion of the 
use of the SPIDAC for automatic chromosome analysis. 
We also describe the utilization of our developed interac
tive graphic system (MACDAC) in the same application. 

Background 

Since the discovery of the compound microscope by 
Anton van Leeuwenhoek in the 17th century, scientists 
have been thinking about techniques for obtaining quan
titative data from the optical images present in the micro
scope. Early attempts to elicit and analyze this quantita
tive data were abandoned, however, because of the vast 
amount of time and human effort required to produce 
statistically meaningful data. 
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With the advent of the automatic digital computer and 
concurrent developments in electronic and electro-optical 
devices, new interest was generated in the development of 
photometric instruments which could aid in obtaining 
and analyzing this pictorial data. One of the first such 
attempts was by Ledley and his group whose FIDAC* 
instrument (Film Input to Digital Automatic Com
puterp·2 was designed to automatically analyze photo
micrographs of biomedical interests. 

Photometric instruments which have been developed 
for direct attachment to the microscope can be broadly 
categorized into three classes: (1) flying-spot scanners, (2) 
mechanical scanners, and (3) television-like scanners. 

Basically, the flying-spot microscope scanner consists 
of a conventional optical microscope in which a cathode 
ray tube (CRT) is used as the light source. Examination 
of a field is accomplished by the CRT scanning spot, 
which enters the microscope and, by means of an objec
tive lens, is focused onto the glass slide. The light is 
modulated by the specimen, and the modulated light 
signal is focused onto a photomultiplier tube (PMT). At 
any moment of time, the analogue signal output of the 
PMT represents the optical density of a particular point 
on the slide and can be converted to digital form for stor
age, say, on magnetic tape for later analysis by a digital 
computer. Movement to the next field is accomplished by 
digital stepping motors that are attached to the micro
scope state. 

One of the first such instruments was developed by 
Professor J. Z. Young and his colleagues at University 
College, London, in the early 1950's. The instrument was 
used to count red blood cells and nerve cells. A similar 
instrument of this type, called CYDAC (CYtophotometric 
DAta Conversion), was built by Airborne Instruments 
Laboratory for preliminary screening of cytological 
smears.3 A more advanced version of this unit was used 
by Mendelsohn and his group in the Department of Radi-
010gy of the University of Pennsylvania for research on 
leukocyte and chromosome classification. 4 The CYDAC, 

* Trademark Reg. U.S. Pat. Off. 
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however, did not include automatic slide-movement and 
focusing provisions. 

The mechanical types of scanners can be subdivided 
into three classes: (i) light chopper, (ii) mirror galvanom
eter, and (iii) moving stage. In the light-chopper system, a 
constant uniform source of light illuminates an area in 
the object plane. A mask, which determines the type of 
scanning pattern, is placed in the image plane, and 
immediately behind the mask is a photodetector. A scan
ner of this type, using a Kohler lighting system to ill umi
nate an area on a glass slide in the object plane, was 
described by Sawyer and Bostrom.5 A microscope objec
tive formed a 60X image in the image plane, at which was 
placed a Nipkow disk rotating at 1800 RPM and contain
ing 48 scanning holes (equivalent to 2 microns on the 
object plane). Light transmitted by these holes was 
focused onto a photomultiplier tube. Two sets of scanning 
holes were provided on the disk, a spiral pattern being 
used to generate a raster to examine an entire field and 
circular pattern being used to generate a line scan. In the 
later case, the mechanical stage was moved in the perpen
dicular direction to produce the effect of a raster genera
tion. 

The mirror-galvanometer scanning microscope consists 
essentially of an optical microscope in which two mirrors 
are placed perpendicular to each other. Light leaving the 
objective lens passes through a length-correction lens and 
falls onto the pair of mirrors. The mirrors are mounted on 
delicate galvanometers which can be deflected independ
ently of each other. The image formed by the lenses is 
reflected by the mirrors and can be moved electrically by 
varying the currents through the galvanometers. A small 
aperture is placed at the image plane, and behind the 
aperture is a photomultiplier tube. Thus the deflecting 
mirrors cause the image to move past the fixed aperture 
in the image plane and create the effect of a raster scan. 
A system of this type is being used by Dr. Lewis Lipkin of 
NIH as a tool for biological and medical research, and 
also to evaluate optical, electronic, and computer system 
requirements for the solution of specific problems.6 

The essential element of the moving-stage scanner is a 
standard microscope to which a mechanized microscope 
stage, a photometer head, and a detection assembly have 
been added. Scanning of a field of interest is accom
plished by moving the microscope stage by two stepping 
motors, one each for the x and y directions. In general, 
three scanning patterns may be selected: (1) single scan 
lines across any x axis of the object field; (2) a "comb" 
scan, in which a succession of parallel scan lines of a 
preselected spacing dissect the sample field, the sampling 
circuits being inactive during horizontal flyback and 
movement in the y direction; and (3) a "meander" scan, 
in which the sampling circuits are active during the back 
and forth scanning in the x direction and are mute when 
advancing in the y direction. The photometer head has an 
optical system for the remagnification of the microscope 
image. Measuring apertures are placed in the plane of the 
remagnified image; the light which passes through the 
measuring apertures impinges upon the photocathode of a 

photomultiplier tube, which is housed in the detector 
assembly. A unit of this type was incorporated in the 
TICAS7 (Taxonomic Intra-Cellular Analytic System) 
instrument, which has been used by Wied and his asso
ciates of the University of Chicago. A similar unit of this 
type is commercially available from Zeiss. 

The principle of the television-like scanner is simple. A 
TV camera scans the microscope image, and its output 
signal is fed to a closed -circuit television monitor and a 
video-detector unit. Recently several commercial units of 
this type have become available from various manufac
turers (Leitz, Metals Research Instrument Corporation, 
Zeiss, etc.). These include stepping motors for automati
cally moving the microscope stage in the x and y direc
tions and small general- or special-purpose digital com
puters for making simple on-line calculations. 

The SPIDAC system which we will describe in this 
paper is a television-like scanner used under the control 
of a digital computer. However, it incorporates certain 
novel features which will be described below. 

General description of the SPIDAe system 

The SPIDAC system is used in two successive modes. 
In the first, or search mode, the objects of interest are 
detected under a low-power objective lens, and their cen
ters are located. In the second, or analysis mode, a high
power objective lens is used and the microscope stage is 
automatically moved to center these detected objects in 
the field for detailed analysis. The complete operational 
procedure is as follows: The technician puts a slide on the 
stage, selects the origin position (usually left upper corner 
of the cover slip), and turns to the low-power objective 
lens. He presses the "start" button, and the digital com
puter automatically directs the SPIDAC to move the 
stage past field after field and strip after strip continu
ously until all strips, each with a fixed number of fields, 
have been searched. As the microscope slide is being 
searched, the software program finds "covers," from 
which the centers of objects of interest are automatically 
located in each field; the coordinates of the object centers 
are saved for the analysis mode. The software also 
includes an optional visual display, which shows all the 
covers of the objects of interest for each field on a TV 
screen and on an associated interactive-graphics device, 
the MACDAC. Mode 1 terminates when all strips have 
been searched. 

Mode 2 starts with the technician switching the objec
tive lens from low power to high power* and pushing the 
start button for the analysis mode. The computer then 
directs the microscope stage to move successively to the 
centers of the objects of interest found in Phase 1. The 
magnified image of each such successively located object 
is displayed on the TV screen. The technician judges 
whether the field is good or bad; if bad, it is rejected and 
the next field is located; if good, the analysis button is 

~ This step will be automated in the future. 
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pushed which initiates a high-resolution scan and the 
detailed analysis of the field. When this is finished, the 
next object field is automatically located, and so on, until 
all the objects of interest have been processed. The soft
ware program then moves the microscope stage back to its 
original position and terminates the operation. 

HARDWARE DESCRIPTION OF THE SPIDAC 

The hardware of the SPIDAC system consists of three 
major component subsystems: First there are the essen
tially mechanical components, i.e. the light microscope 
with a motorized stage and an automatic focusing system, 
including the associated electronic controls. (We some
times refer to this section as the "SPIDAC instrument.") 
The- secBH-d siibsystem-,called t-he VIDIAC, handles the 
video images of the microscope fields; it consists of a vidi
con camera for scanning the microscope image and con
verting it into an electronic signal, a TV screen to display 
the image, and a variable-speed electronic image-storage 
device, with the associated sweep generators and control 
circuits. And finally there is the MACDAC interactive
graphics unit, which converts the video signal to a digital 
signal, or series of numbers, at a speed slow enough to be 
accepted by the computer, and transmits this digital sig
nal to the computer's core memory; displays the digitized 
pictures from the VIDIAC, or computer-generated pic
tures, or the location (and path, if desired) of an operator
controlled cursor on a storage cathode ray tube; and 
transmits to the computer the location coordinates of this 
cursor, together with code numbers that tell the computer 
program what use is to be made of these coordinates, at 
times specified by either the operator or the computer 
itself. This last feature allows the operator to edit a pic
ture stored in the computer's memory to correct for faults 
and artifacts on the microscope slide. 

Light microscope with motorized stage and automatic
focusing system 

Figure l-SPIDAC hardware system 

The SPIDAC system (see Figure 1) uses a modified 
Leitz optical microscope whose stage and slide holder 
have been replaced with a motorized stage and a specially 
designed slide holder suitable for automatic focusing. The 
SPIDAC normally uses a 22X oil-immersion objective in 
the search mode and a 100X oil-immersion objective in 
the analysis mode, both lenses manufactured by Leitz; 
spacer rings are used to make the two objectives parfocal. 
The lighting system allows the use of either an incandes
cent lamp or a xenon-arc lamp, the latter being used 
almost exclusively in the SPIDAe system. When a 
change is made from one objective to the other, the com
bination of neutral density filters in front of the arc lamp 
is also changed so that the level of light intensity remains 
unchanged. The microscope, together with the motorized 
stage assembly, is mounted on a heavy aluminum plate, 
and the entire assembly rests on vibration isolators. 

A high-precision Aerotech x-y stage is used i~ the 
SPIDAC because of its accuracy and repeatability, and 
t~o S~gma stepping motors drive it in the x and the y 
dIrectIOns. Each motor step moves the stage 2.54 microns 
(0.0001") with an accuracy and repeatability to within + 
1.27 microns. The stage can move in either direction at a 
directions. Each motor step moves the stage 2.54 microns 
(0.0001 ") with an accuracy and repeatability to within 
± 1.27 microns. The stage can move in either direction at 
a maximum speed of 650 steps, or 0.165 cm., per second, 
Th~ specimen slide is held in a specially designed holder, 
whIch makes it possible to move the slide with negligible 
transmission of vibrations when the motors are stepping. 
The SPIDAC atuomatic focusing system is mounted on 
the same block that is moved to effect coarse and fine 
focusing operations, so that it is very easy to focus a slide 
initially. The focus thereafter is maintained dynamically 
and with an accuracy adequate for all magnification 
including 100X objective. ' 

VIDIAC system 

The complete SPIDAC system is diagrammed in Fig
ure 2. The vidicon camera scans the microscope field and 
displays its image on the monitor (a grey-level display) at 
a normal TV rate. The operator may assume manual 
control of the system by pressing a button on the manual 
control box; he can then position the slide by observing 
the monitor. He can also adjust the vidicon beam current 
and target voltage using the monitor display. In this 
model of the SPIDAe, the vidicon runs only at a TV rate, 
so that a silicon video memory (SVM) is needed as an 
intermediate stage between the vidicon and the computer. 
Therefore, as part of the set-up procedure, the operator 
writes one frame of the video picture onto the silicon 
video memory (in 1/30 of a second) and views the SVM 
output on the TV screen, adjusting the modulation and 
bias into the SVM tube to their optimum levels- These 
levels will remain correct throughout the slide searching 
and analysis. 

The operator may now turn control over to the comput
er, which proceeds with the search for objects of interest. 
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Figure 2-Block diagram ofSPIDAC 

The instrument momentarily displays each field on the 
TV screen as it is automatically moved into view by the 
computer. The stage is moved a field at a time, under 
computer control. Four computer commands accomplish 
this: (1) move x forward, (2) move x backward, (3) move 
y forward, and (4) move y backward. When each new 
field is in position, the SVM sweep is switched to the fast 
mode (1/30 sec. per frame), the SVM is erased, and the 
video picture is written onto the target of the SVM. Then 
the sweep is set to the slower, MACDAC speed and the 
picture is read from the SVM target into the computer's 
core memory. 

The vidicon camera is a high-resolution Telemation 
television camera, whose sweep circuits are synchronized 
with the fast-sweep generator of the SVM system. The 
SVM tube is similar to a vidicon tube, except that the 
"target" of the SVM is made of a small (approximately 1 
inch) disk covered with minute, discrete areas of silicon, 
which act as tiny capacitors to store an electrostatic rep
resentation of the video picture. After an image has been 
stored on the target of the SVM at one speed, it may be 
read or converted to a video signal, at the same or any 
other speed. Thus it may be read at high speed (TV rate) 
and displayed on the monitor or scanned at the slower 
MACDAC rate for input into the core memory. A great 
deal of switching is necessary to operate the SVM in each 
of its three modes, Write, Read, and Erase. The computer 
is able to initiate the three modes of the SVM so that all 
operations of the SPIDAC occur automatically. 

MA CDA C interactive device 

The interactive device used in the SPIDAC system is 
called the MACDAC (MAn Communication and Display 

for an Automatic Computer, see Figure 3).8,9 It serves two 
functions for the SPIDAC system: (1) displaying a field 
during the search mode, and (2) editing classical chromo
some karyotyping during the analysis mode. The 
MACDAC system allows a rapid man-machine inter
action in the automatic analysis of chromosomes. It 
enables a human operator to edit the pictures before 
they are put into the computer and provides a conve
nient display as the analysis progresses. From the con
trol panel, individual spots on the (nominal) 700X500 
spot picture can be addressed by moving a "joystick" 
lever. The position of the lever coincides with a cursor, or 
visible spot, which can be seen, along with the picture, on 
a Tektronix/611 storage oscilloscope. If desired, the oper
ator can store the path of the cursor on the scope face. 

When the operator pushes a button, the picture being 
scanned by SPIDAC is stored on the storage-scope CRT. 
The operator can then move the cursor to an object in the 
stored image which he recognizes as, say, a piece of "dirt" 
in the picture. He selects the proper switch for a 4-bit 
code for an unwanted particle and pushes the "READ 
SPOT" button. The MACDAC logic interrupts the com
puter, from its work of analyzing the previous picture, to 
read in a 24-bit word which contains (a) four bits of nota
tional information, e.g. "dirt," (b) 10 bits for the x coordi
nate of the spot, and (c) 10 bits for the y coordinate. This 
editing information is used as an aid to analyzing the 
picture in the VIDIAC, which will be the next picture 
read into the computer. The operator continues to point 
to various trouble spots and sends the coordinates and the 
proper codes to the computer. After each spot is read into 
the computer, the- operator may make (store) a mark on 
that spot for his own reference. When the operator has 
finished sending the editing data, he pushes the END 
button, which turns control of the storage scope over to 
the computer. Under computer control, the MACDAC 
has the capability of lighting any designated spot on the 
storage scope, so that the computer can also display the 
results of the analysis on the MACDAC storage scope. 

The MACDAC system contains a number of other 
features, such as a bias control to center any portion of 

FigllTf' ::\-MACDAC display RCrf'f'n ami control panE'l 
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the picture on the CRT and a "zoom" control to expand 
the selected portion. These features enhance the presenta
tion on the CRT area, which is 8"X6 1/2". 

Initialization 
Number of fields in a strip 
Number of strips in a slide 

" Ca 11 CYCWRT 
.. to search a field from 

r--~_ s 1 i de and store 
infonnation in CPU 

Determine all coverings 
for this field from 

COVERING Program 

" 
Write coverings 

on MACOAC 

" Call LOCATC (Xl, IOU) to 
find chromosome spreads 

from these coverings for 
this field. Also locate 

the centers of these 
spreads. 

" Write result on MACOAC 
Save coordinates of centers 

no ~ 
~--~~ EXIT " yes 

More- fi e 1 ds·/ 

Figure 4-Fiow chart of search mode 

ENTRY 

,r 
Call START to move 
microscope stage to 

its original position 

" Call RTPCOV to obtain 
centers of spreads which 

have been saved and 
convert unit and 
coordinate system 

" Call MOVE to move 
microscope stage so 

that each chromosome 
spread is centered 
for analysis until 
all spreads have 

been analyzed 

" 
Call START to move 

microscope stage back 
to its original position 

Figure 5-Flow chart of analysis mode 

SOFT,\rARE DESCRIPTION 

The software package was originally designed for locat
ing metaphase cells on a glass slide and for karyotyping 
chromosomes. lo This goal has been accomplished, and 
routine runs are being made. The system can also be used 
for automated cytology, automated bacteriological 
microscopy, and so forth. Figures 4 and 5 show the flow 
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charts of the software system. In the search mode, the 
total scan area (TSA) i.e. the portion of a slide which can 
be traversed by the hardware is scanned in strips 310jL 
wide, each strip being composed of fields 310jL by 250jL. 
The origin is the left "upper" corner of the TSA; the posi
tive x -axis is taken as the line starting from the origin and 
extending longitudinally (toward the right) along the 
upper edge of the TSA; the positive y-axis is taken as the 
line starting from the origin moving laterally (downward) 
along the left edge of the TSA. 

After a field is scanned in the search mode, a command 
is sent by the program through the computer-interface 
channel to the stepping motors to move the stage a certain 
number of steps in the x or y direction, so that either the 
next consecutive field or the first field of the next strip 
can be centered under the objective lens, depending upon 
the location of the last field. The program has an option 
in controlling the total movement of the stage in either 
direction. To scan and digitize the picture, the program 
sends a "READ" command to the video hardware. The 
hardware then begins transmitting digitized grey-level 
values to the computer, 24 bits at a time. Each line of 
picture information constitutes a discrete "record" of 
data, so that the program can control the placement in 
memory of each line individually. In this manner, the 
complete picture, as stored in the memory, consists of a 
nominal 500 lines of 700 spots each. Alternatively, a part 
of the picture can be read-in in greater detail and placed 
on a disk of the computer. 

Depending on the nature of the applications, methods 
for locating objects of interest are different. The SPIDAC 
system has been designed in such a way that this part of 
the system is an independent component; i.e., different 
programs for different applications may be inserted prior 
to the execution time. The method for locating metaphase 
cells will be described in detail below. 

After objects of interest have been located in a field, the 
coordinates of the centers of these objects are recorded. 
The next field is then scanned and more objects of inter
est are located, this procedure continuing until the total 
scan area has been searched. The stage then moves back 
to the origin. When everything is ready, the operator initi
ates the analysis phase and the computer moves to the 
centers of the objects of interest located earlier for 
detailed analysis. During this cycle of operation, proper 
focus is automatically maintained by the hardware. As 
each object of interest is centered under the microscope 
and displayed on the VIDIAC's TV screen, the operator 
decides if it is suitable for analysis. If it is, the analysis 
mode of the software package is initiated and the proper 
analysis will be performed on the object automatically. 

APPLICATION TO CHROMOSOME ANALYSIS 

As an example let us consider in detail the method of 
locating the metaphase cells. In a binary digitized field, 
we define a possible chromosome spread or an object 

consisting of at least n adjacent units (but no more than 
2m + 2 - n units) separated from other groups of units by 
at least n zeros on either side. The parameters nand m 
are chosen as those most typical of the width of a chromo
some and the spacing between chromosomes in a meta
phase spread; they depend on the magnification of the 
image and the detail with which it is read in by the 
SPIDAC. A covering is, by definition, a horizontal string 
of at least p such objects, where the distance between two 
neighboring objects must be less than q points (p and q 
again being parameters typical of a metaphase spread as 
read in). The starting coordinate of a covering is the left
hand coordinate of its leftmost object and the ending 
coordinate of this covering is the right-hand coordinate of 
its rightmost object. The difference between these two 
coordinates must be greater than some typical r but less 
than some typical s. A spread then becomes a collection 
of at least two vertically proximate coverings. Its size 
must lie within a square of certain dimensions, which are 
determined by the magnification used. The center of the 
spread is determined as the arithmetic means of the 
maximum coordinates of all the coverings. 

To reduce processing time, the program for finding 
metaphase spreads uses a scanned field containing only 
every ith* line of the complete field. For each line, the 
program looks for objects which are candidates for meta
phase spreads and tries to join them into coverings. This 
procedure continues until all the possible coverings are 
found and recorded for each entire field. The chromo
some spreads are then formed from these coverings. Thus 
the program for locating metaphase cells in each field is 
separated into two parts; cover detection and chromo
some-spread detection. 

As soon as the total scan area has been searched for 
possible chromosome spreads, the program requests 
permission from the operator to turn control over to the 
analysis mode. The analysis-mode programs actually 
serve as a driver for our already existing chromosome
analysis programs. 11, 12 As such, their main purpose is to 
move the microscope stage to the locations where suitable 
chromosome spreads have been found by the search-mode 
programs. Once the microscope stage has been moved, 
they turn control over to these detailed-analysis pro
grams, which analyze the chromosome spread and return 
control to the analysis-mode programs when they are fin
ished. The analysis-mode programs move the microscope 
stage and the complete procedure repeats itself to the end 
of the list of spreads. 

Figure 6 shows some metaphase cells detected by the 
method. Figure 6a shows two metaphase cells; Figure 6b 
shows the corresponding coverings and spreads for each 
cell. Figure 6c shows an enlargement of a different field, 
and Figure 6d shows the covers found by the program. 

* This parameter is a property of the hardware and can be selected 
beforehard. 
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Classical karyotyping 

The use of the MACDAC interactive device essentially 
corrects all errors in the chromosome analysis which are 
due to artifacts and faulty preparation and enables 
emendations to be made in the final analysis, not only in 
classification but in measurement. 

Six editing codes are now used: (1) separate; (2) con
nect; (3) erase; (4) partially fence, from end fence posts to 
border; (5) completely fence, connecting the last fence 
post to the first; and (6) slice, separating two touching 
chromosomes. The fence routine joins the "fence-post" 
coordinates, which are read in from the MACDAC, with a 
line of spots of special value 1. Then the fenced area is 
specially bounded using special values 2 and 3, so that 
when the internal programmed search is carried out, it 
will he_di&abJ~d in the feIl~ed region, The erase routine 
bounds the object surrounding the point read in with 2s 
and 3s, thereby disabling the search routine for that 
object. The separating routine requires the coordinates of 
two points to be input, and changes the picture points to 0 
along a straight line joining these given points. The con
necting routine also joins two coordinates, but with points 
of unit value. The slice is a separating routine which 
analyzes the area around a single input point at which 
two chromosomes touch and separates them along a 
"best" line by changing the appropriate spots to O. 

After the picture in the memory has thus been com
pletely edited, the individual chromosomes are located by 
the internally programmed search, their centro meres are 
located, and their dimensions are measured. The com
puter-analysis programs then perform a karyotyping of 
the spread, using the arm-length, arm-length-ratio, area, 
and area-ratio measurements as the criteria for classify-

(el (d) 

Figure 6-(a) Two cells in metaphase; (b) corresponding covers 
and spreads; (c) another metaphase spread at greater enlargement; 

(d) covers found by the program for this cell 

Figure 7-MACDAC display of human chromosome karyotype 

ing the chromosomes into each of ten human chromosome 
groups. These ten include the seven major types, A, B, C 
+X, D, E, F, and G+ Y, and also distinguish AI, A2, A3, 
and E16. When the analysis if completed, the data on 
chromosome arm length, area, perimeter, and position 
in the cell are saved for statistical analysis and abnor
mality considerations. A typical karyotype, as displayed 
on the MACDAC, is shown in Figure 7. 

Banding analysis 

The primary purpose of the banding-analysis approach 
to karyotyping is to refine the already successful classical 
result and to further classify the chromosomes into their 
exact homologues through detailed analysis of their band
ing patterns. Briefly, banding pertains to the differential 
staining of chromosomes such that different regions along 
the length of each chromosome take on differing amounts 
of stain, according to their differing chemical subcompo
sitions. This results in a light-dark pattern which is char
acteristic of each of the 24 types of human chromosomes 
and enables positive identification of each type, rather 
than just classification into ten groups. 12 

Previous to the classical analysis described above, using 
a I6-grey-level picture, the program computes the average 
grey levels along lines perpendicular to a parabola fitted 
to the long axis of each chromosome. The profiles so con
structed are then stored and the classical karyotyping is 
performed, using only chromosome dimensions. The pro
files within each of the seven main groups are then com
pared with stored profiles previously found to be typical 
of the 24 types, using chromosomes identified by an 
expert cytologist; the present chromosomes are then rear
ranged within groups as necessary according to the exact 
individual types. The rearrangement and comparison 
procedure stated so easily in the last sentence is of course 
a major problem requiring a great deal of analysis, 
although a large measure of success has been met already 
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using both Fourier-coefficient maximum-likihood meth
ods and ad hoc descriptions of the grey-level profile 
curves. 

CONCLUSION 

An automatic optical-microscope scanner has been 
described for on-line input of pictorial data from a glass 
microscope slide directly into the core memory of a digital 
computer. An application of the system to chromosome 
analysis was also given. At the present time, with the 
SPIDAC system, we can automatically search to locate 
all chromosome spreads on a glass slide, and scan to 
completely analyze the chromosomes of suitable spreads, 
including some interactive editing of the picture. 
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A method for the easy storage of discriminant 
polynomials 

by RANAN B. BANERJI 

Case Western Reserve University 
Cleveland, Ohio 

I~TRODUCTIO~ 

One oLthepurposes of. feature extraction is to save_ on the 
memory required to store the descriptions of the patterns 
learned. It is, however, the opinion of this author that a far 
more important function of feature extraction is to attach 
statistical significance to the patterns learned l and to change 
the measured variables for future experiments in the same 
pattern recognition environment. 

The present paper provides a method for fulfilling the 
above first or "simplification" aspect of feature extraction. 
Unfortunately, the nature of the method is such that very 
little light seems to be cast on the latter "significance" aspect 
of feature extraction. 

Since the method involved deals heavily on the theory of 
finite fields, an area of mathematics not of wide usage in 
pattern recognition, we shall include in the next section a 
short tutorial on the subject together ",ith an explanation of 
the method. The third section will discuss some of the algo
rithms involved and give an estimate on the memory saving 
and the computational work involved. 

FIELDS 

A field is a set of elements on which addition, subtraction 
and multiplication can be carried out and division by any 
non-zero element is possible. Fractions and real numbers are 
examples of fields. Positive integers are not fields since 4 can
not be subtracted from 2. Positive and negative integers do 
not form fields either since 3 cannot be divided by 2. 

Fractions and reals are infinite in number. On the other 
hand, a good example of a finite field is the set of integers 
{O, 1, 2, ... (p-l)} (where p is some prime number) in 
which all addition and multiplication is carried out "mod p." 
That is, the sums and products, if they exceed (p-l), are 
divided by p and the remainder taken as the result. As an 
example, the field of integers mod 3 have the following "addi
tion" and "multiplication" tables 

+10 1 2 

~ 
'i I 'i ; ~ 
2 120 1 

. 10 1 2 

000 0 
101 2 
202 1 

497 

Finite fields having q elements exist only if q is prime or is 
an integral power pn of some prime integer p. These latter 
fields, however, do not have the "modulo q" structure that 
the prime fieids have-. Fo~ fnstance, diviSIon by 2is-i~possibie-
modulo 8-no integer less than 8, multiplied by 2, yields 3, 
for instance, sho",ing that ~2 is undefined modulo 8. The 
construction of the addition and multiplication tables of such 
"prime-pmver" fields need some detailed explanation, which 
we proceed to give below. The methods are intimately tied to 
polynomials, the major topic of this paper. 

Given any field F, one can form polynomials in a "variable" 
x with coefficients from F. Polynomials are added and sub
tracted "componentwise" as usual. That is, the sum of 

aO+alx+a2x2 ... anXn7
• 

and 

IS 

Note that both an and bn need not be non-zero-we have 
made the "degrees" equal only for convenience. The next 
thing to be noted is that for our present purposes, a poly
nomial can be merely considered as n-tuples of field elements, 
the x being a mere "placeholder." However, the polynomial 
format for exhibiting the n-tuples takes great mnemonic sig
nificance ,,,hen one defines multiplication of polynomials by 
saying that the product of the two polynomials above is 

aobo+ (a1bo+aob1)x+ (~bO+albl+aob2)x2+ ... anbnx2n 

yielding a 2n-tuple. 
Polynomials do not form fields: although addition and 

subtraction is possible, division cannot always be performed: 
2+x, for instance, cannot be divided by 3+x. However, 
just as finite fields can be produced by performing all opera
tions modulo a prime, polynomial fields can also be formed 
by performing addition and (especially) multiplication 
module a prime or irreducible polynomial, i.e., one which can
not be factored into polynomials with coefficients from the 
same field. 

In the field modulo 3, for instance we find that 

(x+l) (x+l) =x2+2x+l 

(x+l) (x+2) =x2+2 

(x+2) (x+2) =x2+x+l 
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and these are the only polynomials which can be factored 
into other polynomials (we are neglecting the cases where the 
coefficients of the highest power of x are not 1, since one can 
clearly "divide these out," i.e., 2x+1 is the same as 2(x+2)). 
Hence, x2+x+2 (or more conveniently written x2-2x-1 for 
future purposes; note that since 1+2=0, 2= -1) is an irre
ducible polynomial. We give below some examples of opera
tions on polynomials mode X2 = 2x+ 1. These operations will 
be restricted to polynomials whose degree is less than 2 and 
whose coefficients, clearly, come from the field of integers 
mod 3. As can be seen, there are nine (32) such polynomials, 
all the way from O=O+Ox to 2+2x. (l+x) (2+x) =2+X2 
which, on division by x2 - 2x -1 yields 2 + 1 + 2x = 2x. 

The major fact which we shall use for our purposes here is 
that in any finite field all the non-zero elements can be ob
tained by raising some element of the field to successively 
higher powers. For instance, the polynomial 2+2x, raised to 
successive powers, yields all the 32 elements of the field mod 
x2-2x-1 and 3. To illustrate, 

(2+2x)2=4+2x+x2= 1+2x+ (1+2x) 
=2+x 

(2+2x)3= (2+x) (2+2x) = 1+2x2 
=1+2(1+2x) =x 

and similarly 

mod x2-2x-1, 3 

mod x2-2x-1, 3 

(2+2x)4=x(2+2x) =2x+2(1+2x) =2 mod x2-2x-1, 3 
(2+2x)5 =l+x 

(2+2x)6 
(2+2x)7 
(2+2x)8 

mod x2-2x-1, 3 
=1+2x 
=2x 
=1 

Two things are to be noted about this table which shows 
the eight polynomials as powers of x. The first is that the 
elements 1 and 2 behave just like they did in the field mod 3, 
i.e., 

2X2 
= (2+2x)4(2+2x)4 
= (2+2x)8 
=1 

These form a sub field-and they occur in the right places 
(2= (2+2x)4) to make this possible. This is true in any field 
having qn elements, as we shall illustrate further as we go on. 

The second important thing to be noted is that the poly
nomial2+2x actually does "satisfy" the equation x2-2x-1, 
i.e., if its value is "plugged in" for x in the above polynomial, 
the result is 

(2 + 2x) 2 - 2 (2 + 2x) -1 = 2 + 2x+ (2 + 2x) + 2 = O! 

As a matter of fact, x also satisfies x2-2x-1 as can be 
seen from the above table; also the elements of the field can 
be obtained by successive powers of x itself since X= (2+2x)3; 
x2= (2+2x)6=1+2x, x3= (2+2x)9=2+2x and so on. 

Not all irreducible polynomials have the property that the 
successive po·wers of any of its solutions generate all the non
zero elements of a field. The polynomial X2+ 1 is irreducible 
in the field mod 3 and yet the only two elements which sat-

isfy it are 2 and 1 whose successive powers merely generate a 
subfield. 

N ow if we can find an irreducible polynomial of degree n 
in a field of q elements, such that its solution generates all 
the qn polynomials of degree less than n by its successive 
powers (such an element is called a primitive element), then 
we can express any polynomial by an integer-its "loga
rithm" with respect to the primitive element (which can 
safely be taken to be x). In the above field 2+2x could be 
represented by 3 and its value as a polynomial could be ob
tained by dividing x3 by X2 - 2x -1 yielding, as expected, 
2 + 2x as a remainder 

2x2-4x-2 

2x+2 

(x+2 

The memory saved by using this technique will be dis
cussed in the next section. 

Our "trick" for storage of a large number of polynomials 
involves the discovery of an irreducible polynomial and an 
element of the field mod this polynomial which is primitive, 
i.e., whose successive powers generate all the polynomials in 
the field. For instance, in the field of polynomials ",ith coeffi
cients in the mod 3 field, taken modulo X2+ 1, we see that 
x+1 is primitive, since (x+1)2=x2+2x+ 1 = 2x; so (x+1)2-
2(x+1)-1=2x-2-1=0, i.e., that x+1 "satisfies" X2+ 
2x+1, and therefore behaves just like 2+2x in the field of 
polynomials mod x2 - 2x -1. 

Once such a primitive element Cl is found, any polynomial 
can be represented by its "logarithm" "ith respect to Cl. In 
the field mod x2+1, for instance, 2x+2= (X+1)5 as can be 
seen by carrying out the follo\\ing calculation 

(x+1)2=2x 
:. (x+1)4= (2X)2=X2= -1=2 
:. (x+1)5=2(x+1) =2x+2 

It will be noted how the fourth power of the primitive ele
ment is again 2, just as in the case modulo x2-2x-1. 

In the next section we shall discuss an algorithm for find
ing irreducible polynomials and discuss possible ways of 
finding primitive elements of polynomial fields and the manip
ulations needed for converting an integer to its "exponential." 
In the process we shall be exemplifying a process of construct
ing fields of polynomials in more than one variable. 

COMPUTATIONAL METHODS 

Knuth and Alanen4 have given a method for finding irre
ducible polynomials with coefficients in a prime field such 
that its solution is primitive in the polynomial field. The 
method generalizes to prime-power fields also. Basically it is 
a search method-but there are two restrictions which re
duce the search somewhat. 
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The first restriction states that the constant term in any 
polynomial of this nature must be either a primitive element 
of the coefficient field (if the degree is even) or the negative 
of one (if the degree is odd). After a polynomial of this 
nature is chosen, one can raise the variable to successive 
po·wers modulo the polynomial (qn-l) /q-l times (notice 
that (32-1/(3-1) =4 and xi=2 mod x2-2x-l). If the 
last operation yields a primitive element of the coefficient 
field, then the structure of the polynomial field is known. 

This latter test is somewhat laborious; however, the test 
can be shortened somewhat if the polynomial is tested for ir
reducibility first. In this case, one can try any polynomial 
(including the variable) for being primitive by raising it to 
successive powers to the largest divisor of (qn -1) / (q -1) . 
It may be possible, given any prime polynomial u(x), to 
calculate directly a primitive polynomial in the field modulo 
u: but this author is not aware of any such method. 

Testing a polynomial for irreducibility in a finite field can 
be carried out by using a modification of the Berlekamp2 

method suggested by Knuth.5 The method is described by 
him for a prime field, but can be applied to prime power 
fields also. We discuss this in what follows, using the nine
element polynomial field of the previous section as the co
efficient field. Since the elements of this field are polynomials 
in x, the results of this section will illustrate the use of the 
method to polynomials in more than one variable. 

Since there are 8 linear polynomials of the form y+a(x) 
when a(x) is some element of the field of 9 elements, they 
are (8X4)/2= 16 factorable quadratic polynomials whose 
constant terms are primitive elements of the coefficient field 
(only a, a3, a5 and a7 are primitive). There are a total of 
9 X 4 = 36 quadratics with coefficient for y2 and a primitive 
constance term. Hence, the probability that a quadratic 
"\vith a primitive constant chosen at random will be factorable 
is 1%2 ~~. Hence the chances are less than 3 percent that 
an irreducible polynomial will not be found in 5 trials. Also, 
since 80 (92-1) is divisible by 2, 4, 5, 8, 10, 16, 20 and 40, 
72 of the two-variable polynomials in the resulting field ,vill 
be primitive-so the chance of one chosen at random being 
primitive is large indeed. Once a primitive element can be 
found, one can find another polynomial 'v-hich it satisfies by 
testing its successive powers for linear independence (the way 
we found x2- 2x-l for x+ 1 in Section 2 in the field modulo 
x+ 1) , and this new equation (which, according to the theory 
of fields is bound to be irreducible) will have y itself as a 
primitive element. 

Let us now describe the test for irreducibility for a poly
nomial u (y). \Ve shall assume for simplicity that u (y) , if it is 
factorable at all, has no repeated factors. This can be tested 
quite easily by seeing if u(y) and (du)/(dy) have any com
mon factor by taking their greatest common divisor by the 
usual method. If this g.c.d. is not 1, then it has repeated 
factors and hence is not irreducible. If it does have a g.c.d. of 
1, we use the follo\ving factorization technique. 

Take the polynomials J;(y) =yi_ y modulo u(x) for i= 1, 
2, '" [n/2] where [n/2] is the largest integer less than 
[n/2]' u (y) is irreducible if the g.c.d. of Ii (y) and u (y) is 1 
for every i, 

It is not as hard as it seems to calculate the polynomials 
Ii(Y) as the large values of qi might indicate. We can see 
this as follows. Suppose there was a matrix 

Q = qOOqOI ... qO,n-1 

qn-I,O .. , qn-l,n-l 

mod u(y) 

Then if there is a polynomial 

w(y) =aO+alY+ ... an-IYn-1 

Then w(y) q can be readily seen to be 

since all the product terms in the expansion are multiples of 
q and q=O mod q and u(y). Also, since each a is a power 
at of some primitive element aq = (a q ) t= 1 so that 

replacing x qi by 
n-l 
L qijX i 

i=O 

it can be seen that w(y) q can be obtained by multiplying the 
transpose of vector (an-I, an-2 ... aI, ao) by Q. 

Calculating the matrix Q is not such a difficult thing either. 

If u(y) =UO+UlY+ ... un_Iyn-l+yn and w(y) is a poly

nomial of degree less than n 

then the result of multiplying w(y) by y and dividing by 
u(y) leaves a remainder 

-UOWn-l+ (WO-UIWn-I)Y+ ... (Wn_2-Un_lWn_l)yn-l 

which can be obtained by multiplying the transpose of the 
vector (Wn-l, ... WI, WO) by the matrix 

-un-II 0 O ... 0 
-Un-2 0 1 O ... 0 

T= 
-Ul 0 0 O. , ,1 
-Uo 0 0 O .. ,0 

Hence, to find the successive polynomials x q, x2q we merely 
take the transpose vectors (0, 0, ... , 1) and multiply suc
cessively by T. Raising T to the qth power is accomplished 
most readily by expanding q in binary. If q=9, then P= P. 
T and T8= T4T4 when T4= T2T2 so that a total of 4 multi
plications suffice. 

Let us now exemplify the method by testing y2_y_X= 
u(y) for irreducibility. vVe are taking x to be the primitive 
element of the field of the polynomials of degree less than 2 
and coefficients from the field mod 3. Its addition and multi-
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plication table can be gleaned from the previous section. We 
first notice that the derivative of u(y) to be 2y-l (this de
rivative also must be taken mod the field of 9 elements 
also-in this case it makes no difference). 2y-l and y2_ 
y-x have no common factor as can be seen by the following 
g.c.d. calculation in the field of 9 polynomials 

2y+2 

2y-l )y2_ y - x 
y2-2y 

y-x 
y-2 

2-x 

xy 

2-x ) 2y-l 
2y 

-1 

Notice that 2-x=2+2x=x3 and 2=x4 in the 9-element field 
so that (2-x) ·x=2. 

We now set up the matrix 

1 1 
T= 

x 0 
and raise it to the power 9 

l+x 1 x7 1 
T2= -

X X X x 

x6+x rx2 

T4= 

X6+X2 x31 

x6+x5 x5+x2 
_1x4x7 

T8= 

X6+X3 x5+1 -11 x2 

and finally 
x4+1 x· 0 x4 

T9= 

l+x3 1 x5 1 

Thus the successive rows of the matrix Q are obtained by 
multiplying the transpose of (0, 1) giving the matrix, written 
left to right instead of bottom to top. This yields 

o 1 
Q= 

1 x4 

y9 therefore is y+x4 mod y2_y_X. 
The g.c.d. of y+2 and y2_y-x is 1, hence y2_y-x is 

irreducible. 
To test whether y is a primitive element of the field modulo 

y2_y-x we note that (92-1)/(9-1)=10, if the first five 
powers of yare not primitive polynomials in x (in the field 
mod x2-2x-l) then y is primitive. 

The successive pO"wers of y can be found by multiplying 
the transpose of (0, 1) by the matrix 

as before,3 yielding the five polynomials 

y, x+y, (l+y)y+x, (1+2x)y+l, (2+2x)y+ (2+2x) 

so that y is indeed primitive. Also, y5= (2+2x)y+ (2+2x) = 
x3Y+X3 and so yIo=x6y2+x6+2x6y=x6(y+x) +x6+x2y= 
x7x6+ (x2+x6)y=x5+ (1+2x+2+x) =x5, a primitive ele
ment of the coefficient field. 

What would be the logarithm of y+x+2=y+x6? Since 
X+y=y2 we can write 

y+X6=X5(X+Y) + (1-x5)y=x5y2+ x7y =y(x7+x5y) 
=y(x6(x+y) + (X5 _X6)y) =y2(X7+X6y) = y2(X6 (X+Y)) 
=y4x6• 

N ow since x5 = yIO, then x6 = (x5) 6 since x30 = x8 .3+6 = 13 .x6• 

Hence, x6=y60 and therefore y+X+2=y64 and the integer 64 
is stored to represent the polynomial. 

At retrieval time we recall that y64=y60.y4 and y60=X6. y4 
can be obtained by the matrix multiplication to yield x2y+ 1 
as above (or by straight division of y4) so that y64 is found to 
be equivalent to x6(x2y+l) =y+x6 =y+x+2. It ought to be 
borne in mind, of course, that these operations all have to be 
recursive, 'with one level of recursion for each variable 
involved. 

The above calculations give the reader some idea of the 
amount of calculation involved. The initial discovery of the 
irreducible polynomials and the primitive elements is a 
"once-for-all calculation" and hence not of great importance. 
However, the work consists of setting up the matrix T and 
then the n successive multiplications of vectors to obtain the 
Q matrix. Getting Tq only takes at most 2 10~(n+1) multi
plications. The test of the primitiveness of the variable need 
not be done by successive (qn-l) / (q-l) multiplications
only the factors of this number are important. Thus in our 
example we needed only calculate yT5 for our test. The "ex
ponentiation" method is equally efficient. However, at pres
ent we have no good estimate of the effort involved in the 
finding of the "logarithm." It must be recalled that after the 
discriminant polynomials are learned, these are "once-for
all" operations also. 

The memory saving, however, is considerable. Suppose we 
want to store N polynomials in V variables and the highest 
degree to which any variable is involved is n. Let p be the 
smallest prime larger than all coefficients, considered inte
gral. Then to apply our method we need V irreducible poly
nomials, each of degree n, needing the storage of n V coeffi
cients (recall that any polynomial which is used as a coeffi
cient can be stored as its logarithm and hence its own 
coefficients need not be stored). We might perhaps need the 
storage of some of the (qn -1) / (q -1) powers of some of the 
primitive elements as elements of the coefficient fields-but 
these can also be sorted as the integer "logarithms." Thus a 
maximum of (n+ 1) V + N integers need be stored. This is 
much less than N· (n+ 1) v coefficients to be stored initially. 
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A non-associative arithmetic for shapes of channel 
networks* 

by MICHAEL F. DACEY 

Northwestern University 
Evanston, Illinois 

INTRODUCTION 

The purpose of this paper is to describe a method for analysis 
of one type of pictorial information that is abstracted from 
maps. The picture is a line diagram or graph that, in the 
language of graph theory, is a planted plane tree in which 
each vertex has a valency 1 or 3. In hydrology and geo
morphology this type of graph is interpreted as a channel 
network that encompasses the topological properties of the 
network of rivers and streams comprising a drainage system. 
A recent survey paper by Dacey2 identifies a large number of 
properties of channel networks. Considering that many of 
these properties are clearly displayed by sketches of channel 
networks, the mathematical derivations seem unnecessarily 
complicated. This disparity in level of difficulty may reflect 
that the pictorial representation of a graph has a structure 
that is more amenable to analysis than does the conven
tionallinguistic (Le., mathematical) representation. 

This paper describes a formal model that is seemingly 
more adaptable to the analysis of properties of channel net
works and similar graphs than is the combinatorial mathe
matics that is conventionally used. This model is an "arith
metic of shapes" that incorporates a relatively simple 
notation to express many of the attributes of graphs. It is an 
arithmetic in that the rules for operations on shapes and 
combinations of shapes are in many ways similar to the rules 
of Etherington's3 formulation of non-associative arithmetics. 
The relation between non-associative arithmetics and chan
nel networks was evidently first noted by Smart.7 

A formal statement of the arithmetic for the shapes of 
channel networks is provided in this paper. While space 
limitations preclude demonstration of the utility of this 
arithmetic model, it evidently yields ali basic properties of 
channel networks. Though this model is formulated in terms 
of channel networks, the same type of graph also serv~s as 
the representation of the partition of a class by bifurcations 
and, accordingly, has many interpretations other than as 
channel networks. One application, illustrated by Cavalli
Sforza and Edwards,! is for reconstruction of the evolutionary 
tree leading t.o the genetic characteristics of an observed 
population. 

* The support of the National Science Foundation, Grant GS-2967, is 
gratefully acknowledged. 
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The first part of this paper delimits the domain of the 
arithmetic model by . id~J1tifying the basic concepts and 
structure of channel networks. Then models that encompass 
this structure are displayed. 

CHANNEL NETWORKS 

The current study of channel networks largely derives 
from Shreve's5.6 formulation of topologically random channel 
networks. A basic concept is that of topologically distinguish
able channel networks. The following structure for analysis 
of properties of topologically random channel networks is 
adapted from Dacey.2 The concepts, terminology and results 
of graph theory are largely used, though some of the ter
minology is modified to reflect the specialized terms commonly 
used in the study of channel networks. In the terminology of 
graph theory a channel network is a special type of graph 
consisting of a collection of edges and vertices that form a 
planted plane tree in which each vertex has valency 1 or 3. 
This graph is formulated in this study as a collection of links 
and no~es. The length and shape of links is not taken into 
account. 

Definition 1. The two nodes of each link are distinguished 
as up-node and down-node. Afork is formed by the coincidence 
of nodes of three distinct links-the down-node of two dis
tinct links and the up-node of a third link-and these three 
nodes are called members of a fork. The two links whose 
down-nodes are members of a fork are called the branches of 
a fork and these branches are oriented with respect to the 
third link and are distinguished as the left-branch and the 
right-branch of the fork. A nodal point is an isolated node that 
does not coincide \vith any other node. An up-node (dO\vn
node) that is a nodal point is called a source (outlet). An ex
terior link is a link whose up-node is a source, and a terminal 
(or outlet) link is a link whose down-node is an outlet. A path 
is a sequence of one or more links in which no link appears 
more than once. 

Definition 2. A channel network of magnitude n ~ 1 is a col
lection >.,. of links; along with the resulting forks and nodal 
points, that have the following properties. 

(a) Each node of every link in An is a source, an outlet or 
a member of one fork. 
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Interpretat ion 

n = 1 n = 2 n = 3 

Y V Y 
Y y2 y3 

0 
y3 

1 

n = 4 

-y-
y2y2 

~ ~ ~ r 
y~o y~l y~o Y~l 

n ~ 5 

-y-y 
y.y2y2 y2y2.y 

Notation 

X 
X2 

XX2 
X2X 

X·XX2 

XX2 ·X 
X'X2X 
X2X·X 

XX2·X2 

X2X·X2 
X·XX2 
X2 ·X2X 

X:X'XX2 

X'XX2 :X 
X:XX2·X 
X:X'X2X 
XX2·X:X 
X·X2X:X 
X:X2X'X 
X2X'X:X 

Figure I-Each row, except the top row, illustrates the topologically 
distinct channel networks of magnitude n that belong to an ambilateral 
class. Within each class the top-to-bottom list of notation corresponds to 

the left-to-right display of diagrams 

(b) There are exactly n links in An that have an up-node 
that is a source and exactly one link in An that has a 
down-node that is an outlet. 

(c) There is exactly one path between every pair of nodes 
of links in An. 

Figure 1 illustrates channel networks of magnitudes 1 
through 5. 

Definition 3. Two channel networks of magnitude n are 
called isomorphic if there is a one-to-one mapping of the 
nodes of one onto those of the other which preverved ad
jacency. Two channel networks of magnitude n are called 
map-isomorphic if there is an isomorphism which preserves 
the terminal link and the cyclic order of links at correspond
ing nodes. Two channel networks are called topologically dis
tinguishable if they are of different magnitudes or if they are 
of the same magnitude and are not map-isomorphic. Two 
channel networks are called ambilaterally distinct if they are 
of different magnitudes or if they are of the same magnitude 
and are not isomorphic. 

Definition 4. Channel networks of magnitude n that are 
topologically distinguishable but not ambilaterally distinct 
are said to belong to the same ambilateral class of magnitude 
n. 

The term "ambilateral" was suggested by R. L. Shreve 
and first used in the context of channel networks by Smart.7 

Figure 1 illustrates the ambilateral classes formed by all 
distinguishable channel networks of magnitude 1 through 5. 
Two fundamental properties of channel networks are the 
number of topologically distinguishable channel networks of 
magnitude n and the number of ambilateral classes needed to 
account for these channel networks. A basic tool for the study 
of these properties is identified by 

Definition 5. Let An and Am' denote channel networks of 
magnitudes nand m. The channel networks An and Am' and 
a new link 1 are said to form a (terminal) splice when a fork 
is formed by the up-node of 1 and the outlets of An and Am' 
such that this fork is the only point common to An and Am'. 
This splice is denoted by L (An, Am') when An is the right
branch of this fork. 

Figure 2 illustrates this operation. 
Property 1. The L (An, A' n-m) is a channel network of mag
nitude n. 
Property 2. Each channel network An, n> 1, is formed by 
exactly one splice. 

PRELIMIN ARIES 

The arithmetic for shapes is defined in terms of rules for 
combining shapes. One possible interpretation of this arith
metic is for shapes that are channel networks and for a rule 
of combination that is the splice formed by pairs of channel 
networks. Although some of the elements of this arithmetic 
are illustrated by this interpretation, it is convenient to use 
a more general formulation. The notation for this formulation 
has been developed by Etherington.3 

Upper case letters A, B, C, ... plus X are used to denote 
specific shapes. A rule for combining pairs of shapes is also 
specified and the combinations of shapes A and B is a shape 
and is denoted by the product notation AB. The shape AB 
may be combined with a shape C, the same or different from 
A and B, in two ways that are denoted by C(AB) and 
(AB)C. Depending upon the shapes and rule of combination 
C (AB) and (AB) C may be the same or different shapes. Any 
number of shapes may be combined in this pairwise fashion. 
To avoid the cumbersome use of multiple brackets, frequent 
use is made of a notation in which groups of dots separate 
the factors and fewness of dots establishes the precedence in 
combining shapes. Thus A:·BC:CD2·CE=A{ (BC) [(CD2) 
(CE)]}, where D2=DD. 

The following terminology reflects this notation. 

A' 
4 

Figure 2-ExallllJle lIf LIle 6jJlice fUfllJeu by i.. allli II" 
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Definition 1. The rule for combining shapes is called multi
plication and the shape AB is called the product of A and B. 
If A is the product of B, C, ... , then B, C, ... , are called 
factors of A. A shape defined by factors that are absorbed one 
at a time is called a primary shape. 

An example of a primary shape is A :BC· D:· E. 
The notation simplifies for a system of shapes that are ob

tained as products of a unique shape. Let X denote this 
unique shape. The shape XX = X2 is evidently also unique. 
However, for n~3, there are alternative ways of expressing 
the product of n X's. The five possible products of 4 X's are 
XX·X:X, X·XX:X, X:XX·X, X:X·XX and X·X:X·X. 
The first four of these products are primitive shapes. If 
the product rule is specified as commutative, the expressions 
for primitive shapes are indistinguishable, but they are 
distinguishable when the product rule is specified as non
commutatiye. It is _this distinction that suggests the termi
nology of commutative shapes and non-commutative shapes. 

A basic distinction between commutative and non-com
mutative shapes is that the 2n- 2, n~2, ways of absorbing n 
factors one at a time are not distinguishable for commutative 
shapes and are distinguishable for non-commutative shapes. 
One consequence is that only one primary shape is the 
product of n factors of commutative shapes and it is repre
sented by Xn. In contrast, a more elaborate notation is re
quired to represent the 2n- 2 primary shapes that are the 
product of n factors of non-commutative shapes. 

The simpler notation used for commutative shapes is illus
trated by the following examples. Two primitive shapes are 
represented by Xm and Xn. Additional shapes are represented 
as products, powers and iterated powers of these hro shapes 
so that XmXn, (Xm)n and (Xm)n)n are also shapes. The fol
lowing operations are used to express these latter shapes as 
an index of X. The product of two powers of the same shape 
is indicated as a sum in the index of the shape, the power of 
a power is indicated as a product in the index of the shape, 
and an iterated power is indicated as a power in the index. 
For example, where X is the shape, 

X2X3 = X2+3 
(X2)3=X2.3 

«X2)2)2) =X23 

(X2) 3+2 = X2(3+2) 

X3X2=X3+2 
(X3)2=X3.2 
(X3)3=X32 

(X3+2) 2 = X(3+2)2 

This superscript notation is cumbrous and frequent use is 
made of the convention that Xa is represented by simply a. By 
this convention, the expression a+b = c is in the arithmetic 
of indices and is equivalent to XaXb= XaH= Xc. Similarly, 
ab = c is equivalent to Xab = Xc. In the arithmetic of indices 
the letters a, b, c, ... may be positive integers or sums, 
products and powers of positive integers, but the letters m 
and n are always positive integers. 

The essential features of this notation are reflected in 
Definition 2. Let Al and A2 be any two shapes al and a2 

that are formed by factors of X. Then al +a2 is the shape of 
the product AIA2, and ala2 is the shape of the product formed 
by substituting Al for each of the factors of A 2• 

This notation is adapted to the structure of channel net
works by the following interpretations. The basic shape X is 
a link along with its up-node and down-node. The shape a is 

y y 
I 

a b a + b ab 

Figure 3-Example of the channel networks a+b and ab that are 
obtained as products of the channel networks a and b 

a channel network. The shape a+b is a channel network and 
the rule of combination is the splice of the channel networks 
a and b. The shape ab is a channel nehvork and the rule of 
combination is that each exterior link of b is replaced by a. 
Figure 3 illustrates these operations, while Figure 1 illustrates 
the representation of channel net,,-orks as factors of X. 

ARITHMETIC OF COMMUTATIVE SHAPES 

The system C of commutative shapes is defined by the fol
lowing six rules. 

C 1 (Existence Rule). The shape X = Xl is in C. 
C2 (Closure Rule). If Xa and Xb are shapes that are in C 

then XaH and Xab are shapes in C. 

The follmving three rules pertain to shapes that are in C 
and are expressed in the arithmetic of indices. In this arith
metic, a stands for Xa. 

C3 (Associative Rule). (a+b)+c~a+(b+c) provided 
that a~c, and ab·c=a·bc. 

C4 (Commutative Rule). a+b=b+a, and ab~ba pro
vided that a~ 1 and b~ 1. For b = 1, a·1 = l·a= 1. 

C5 (Distributive Rule). a(b+c) =ab+ac, and (b+c)a~ 
ba+ca provided that a~ 1. 

C6 (Formation Rule). If Xn is in C, then for n~2, the 
shape Xn=XXn-l. 

Property 1. For each positive integer n, Xn is in C and is 
a primitive shape. 

Definition 1. Two shapes Xa and Xb in C are said to be 
isomorphic if, and only if, a = b. Two shapes that are not 
isomorphic are called ambilaterally distinct shapes. 

Property 2. The shape Xn is isomorphic ,vith any shape that 
is a primitive shape formed by n factors of X. 

Property 3. If a, b, c and d are shapes in C such that a = c 
and b=d, then a+b, b+a, c+d and d+c are all equal and, 
hence, are isomorphic. 

Property 4. If c is a shape in C, then c= 1 or there exist in 
C chapes a and b such that c = a+b. 

Definition 2. Let 0 (a) be the value in ordinary arithmetic 
of the index a of the shape Xa, and o(a) is called the degree 
of the shape Xa. 

By Definition 1.4, the collection of all shapes of degree n 
that are mutually isomorphic is called an ambilateral class 
(of degree n). 

Definition 3. Let Q(n) be the minimum number of ambi
lateral classes necessary to contain all shapes in C that have 
degree n. 
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Property 5. For each of the degrees 1, 2 and 3 there is a 
single ambilateral class and, hence, a single ambilaterally 
distinct shape. The two ambilaterally distinct shapes of de
gree 4 are isomorphic with 4 or 2·2. 

The proof of this property is displayed in order to illus
trate the verification of statements about shapes in the 
arithmetic of indices. The statement is obvious for degree 1 
and also for degree 2 since the only factoring of 2 is as 1 + 1. 
The four cases of degree 3 to consider are (1+1)+1, 1+ 
(1+1),2+1 and 1+2. By Property 2, the first two shapes 
are isomorphic with 3, while C6 implies (1+1)+1=2+1 
and 1+ (1+1) = 1+2. To obtain the two distinct shapes of 
degree 4, first observe that 

4=1+3 
=3+1 
= (1+2)+1= (2+1)+1 

4= (1+2)+1 
= 1+(2+1) 
=1+(1+2). 

[C6] 
[C4J 
[C6 and C4J 
[C6J 
[C3J 
[C4J 

Alternatively, Property 2 establishes that the last four shapes 
are isomorphic with 4. Also, it establishes that any shape that 
is the sum of four l's taken one at a time is isomorphic with 
4. Next consider 

2+2= (1+1) +2 
~1+(1+2) 

=1+3 
=4. 

[2= 1+1J 
[C3J 
[C6J 
[C6] 

Hence, 4 and 2 + 2 are distinct shapes. The only remaining 
indices of degree 4 are 4·1 = 1· 4 = 4 and 2·2, but 

2·2=2(1+1) 
=2+2. 

[C6] 
[C5J 

Accordingly, every shape of degree 4 is isomorphic with 
either 4 or 2·2=2+2. 

To continue to enumerate in the preceding fashion shapes 
of degree 5 and higher is laborious. A more efficient enumera
tion makes use of an ordering principle suggested by Harding.4 

Definition 4. The collection Ln contains Q(n) shapes of 
degree n, and 

n=1 

The i-th shape of the Q(n) shapes of degree n in Ln is de
noted by Di, 1 <i:::';Q(n). If rh, Sk and Di correspond to the 
shapes a, band c and if c=a+b, then an alternative notation 
for this shape is Di=rh+sk. The shape 11 is in L. The shape 
rh+sk is in L if, and only if, 

rh and Sk are both in L and either r < s 
or r=s and h:::';k. 

Property 6. If Di is a shape in C and n> 1, then there exist 
in L shapes rh and Sk such that n;=rh+sk and either r<s 
or r=s and h:::';k. 

Ordering Rule. Suppose Di and Dj are shapes in L such 
that 

Di=rh+Sk, 
nj=tp+u q, 

(r+s=n, r:::';s, rh and Sk are in L), 
(t+u=n, t:::';u, t p and U q are in L)' 

If ni and nj are ambilaterally distinct shapes, then i <j so 
that the shape ni precedes nj if, and only if, 

r:::.;t and either r<t, 
or r= t and k<q, 
or r=t, k=q and h<p. 

If ni and nj are isomorphic, then i=j. 
Definition 5. For n> 1, the shape ni, 1 :::';i:::';Q(n) , is a shape 

in Ln that satisfies the preceding ordering rule with respect 
to all pairs of shapes in Ln. 

Property 7. The ordering principle of Definition 5 unam
biguously orders the Q (n) ambilateral classes of degree n. 

Since there is only one shape of degrees 1, 2 and 3, put 
11 = 1, 21 = 2 and 31 = 3. This ordering of classes of degree 5 
and less is as follows. 

Q(I) = 1. 
Q(2) = 1. 
Q(3) = 1. 
Q(4) =2. 

Q(5) =3. 

1=11. 
2 = 21 = 11 + 11. 
3=11+21=1+2. 
41 = 11+31 = 1+ (1+2), 
42 = 21 +21 = 2+2. 
51 = 11+41 = 1+ (1+ (1+2», 
52= 11+42= 1+ (2+2), 
53 =21+31 =2+ (1+2). 

This structure may be used to verify the following basic, 
though well-known, result. 

Theorem 1. Q(l) =Q(2) = 1 and for n~2, 

n-l 

Q(2n-l) = L Q(i)Q(2n-1-i) 
;=1 

and 
n-l 

Q(2n) = L Q(i)Q(2n-i) +~Q(n) [Q(n) +1]. 
i=1 

A simple, non-recursive expression for Q (n) is not known, 
but the values form the sequence 1, 1, 1, 2, 3, 6, 11, 23, 46, 
98, .... 

With the value of Q (n) established, an algorithm given by 
Harding4 may be used to identify the composition of ni, for 
specified values of nand i, without enumerating all shapes 
that precede ni in L. 

Definition 6. Put qn(O) =0 and 

j 

qn (j) = L Q(i)Q(n-i), l:::';j:::';n-1. 
i=1 

Theorem 2. Suppose ni, rh and Sk are shapes in L such 
that ni=rh+sk, where r<s or r=s and h:::';k. Then the values 
n, r, s, hand k satisfy 

{

qn (n-s-l) + (k-1)r+h, 

i= qn(n-s-l)+Y2k(k+1)+h, 

r~s, 

r=s, 
(*) 

where l:::';h:::';Q(r) , l~ksQ(s) and r<s or r=s and hSk. 
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To solve this equation, first find the maximum value of 
n-s-l=r-l that is compatible with (*). Using this value, 
then find the maximum value of k that is compatible with 
(*). Finally, using these two values, find the value of h so 
that (*) is satisfied. In identifying all of these values, the 
constraints on r, s, hand k are obeyed. 

This completes the display of the notation and ordering of 
shapes for the arithmetic model for the ambilateral classes of 
channel networks. The classes of topologically distinguishable 
shapes are of greater interest to the study of channel net
works and an arithmetic model for the non-commutative 
shapes is displayed next. 

ARITHMETIC OF KOK-CO::\fMUTATIVE SHAPES 

The notation suggested by;E~herington3 and u~ed to formu
late the system C of commutative shapes is inadequate to 
express the system A of non-commutative shapes. One limita
tion is that the primary shape formed by n factors of the 
basic shape is unique for commutative shapes but for non
commutative shapes has 2n- 2, n~2, possible interpretations. 
Accordingly, 2n- 2 different symbols are required to represent 
the primary non-commutative shapes that correspond to Xn 
in C. To distinguish these shapes a new notation is devised. 
Comparison of the systems C and A is facilitated by using 
Y to represent the basic shape for the system A. 

The following notation takes into account the 2n - 2 primi
tive shapes formed by n factors of Y. Sequences of O's and 
l's are used to differentiate the primitive shapes. There are 
2n different sequences formed by nO's and l's. Let in, l~i~ 
2n- 2, stand for one of the sequences formed by (n-2) O's and 
l's. If in and im' are identical sequences of O's and l's, so that 
n=m, this is denoted by in = in' and otherwise in~im'. The 
symbols inO "and inl stand for the sequences of n-l O's and 
l's for which the first n-2 entries are identical to those of 
in and the (n-1)-th entry is, respectively, 0 and 1. 

The primitive shapes formed by n factors of Yare repre
sented by {Yinn:l~i~2n-2}. This notation does not make 
explicit the particular sequence of (n-2) O's and l's that is 
represented by an in, but this information is not needed. The 
shape represented by a known sequence of O's and l's is, 
however, determined by the notation. The shapes Y and 
y2= Y i22 are unique, while for n~3 the Yinn are defined re
cursively by 

(Y n_ YY' n-l i _in_lO - _ 'In_l 

LY in_lln = Yin_ln-lY. 
(t) 

This procedure uniquely determines the shape associated 
with a particular sequence of O's and l's. For example, the 
four possible interpretations of Y i,4 are Y 00\ YOl\ Y 104, Y ll\ 

but these correspond, respectively, to Y: y. YY, y. YY: Y, 
Y:YY·Y, YY·Y:Y. 

Figure 1 illustrates this notation. 
The system A of non-commutative shapes is defined by the 

follo\\ing six rules. 

Al (Existence Rule). The shape Y = yt is in A. 

A2 (Closure Rule). If ya and yb are shapes that are in A 
then ya+b and yab are shapes in A. 

The next three rules pertain to indices of Y. 

A3 (Associative Rule). (a+b) +c~a+ (b+c) provided 
that a~c, and ab·c=a·bc. 

A4 (Commutative Rule). a+b~b+a, and ab~ba pro
vided that a~1 and b~1. For b= 1, a·l = l·a=a. 

A5 (Distributive Rule). a(b+c) =ab+ac, and (b+c)a~ 
ba+ca provided that a~ 1. 

These five rules are the same as the rules CI-C5 of the 
system C with the exception of the commutative rule for 
addition in the arithmetic of indices. Further, the following 
formation rule differs from C6 in order to account for the 
2n- 2 expressions required for primitive shapes. 

Clearly, the shapes Yand y2= YY~re in A. 

Definition 1. Put Y io2= y2 and each in, l~i~2n-2, repre
sents a different sequence of n-2 O's and l's. 

A6 (Formation Rule). For n~3, if {Yinn:l~i~2n-2} are 
shapes in A, then these shapes are defined by (t) for each i, 
1 <i<2n- 3• 

Pr~perty 1. For each integer n~3 and l~i~2n-2, Yinn is a 
shape inA. 

Definition 2. Two shapes ya and yb in A are called map
isomCffphic, which is written as ya,,-, Yb, if, and only if, a = b. 
Shapes that are not map-isomorphic are called topologically 
distinguishable . 

Property 2. Two shapes Yinn and Y im m are topologically 
distinguishable if n~m or if n=m and in~jn. 

Property 3. Suppose Al and A2 are shapes in A such that 
A3 is a factor of Al but no product expression for A2 includes 
A3 as a factor. Then Al and A2 are topologically dis
tinguishable. 

Property 4. If A is a shape in A, then there exists an ex
ponent a such that A"-' ya. In particular, for any shape Yinn 
in A there exists an a such that Yinn,,-,Ya. 

Definition 3. Let A be a shape in A for which A"-' ya. The 
X-transform of A is Xa and is denoted by X(A). The arith
metic for the indices of an X-transform obeys the rules C3, 
C4 and C5 of the system C. 

Property 5. If A is a shape in A and X is a shape in C, 
then X(A) is a shape in C. 

Definition 4. Suppose ya and yb are shapes in A such that 
X(ya) =Xa and X(yb) =XfJ. If, by the rules of the system 
C a = {3 then ya and yb are said to belong to the same ambi-, , . 
lateral class. Alternatively, if 0l~{3, ya and yb belong to dlf-
ferent ambilateral classes and are called ambilaterally 
distinct. 

?\" otice that two shapes may be classified as "topologically 
distinguishable" or as "ambilaterally distinct." 

As in the previous section, a shape ya in A is frequently 
denoted by a. 

ProDertv 6. If al and a2 are shapes in A that are ambi
lateraily distinct, then al and a2 are topologically dis
tinguishable. 

Conversely, shapes that are topologically distinguishable 
mayor may not be amiblaterally distinct. 
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Definition 5. Let o(a) be the value in ordinary arithmetic 
of the index a of the shape ya and 0 (a) is called the degree 
of ya. 

Property 7. If a and b are shapes in A and o(a) ~o(b), 
then a and bare ambilaterally distinct. 

Property 8. If a is a shape in A and a = b1 +Cl = b2+C2, then 
b1 =b2 and Cl=C2. 

Theorem 1. Let Q (n) denote the minimum number of 
ambilateral classes required to contain all shapes in A that 
have degree n. Then Q(n) satisfies Theorem 3.1. 

The remainder of this paper simply displays, without com
ment, the procedure for ordering shapes. 

Definition 6. All shapes in A that are mutually map-iso
morphic are said to belong to the same topological class. Let 
N (n) denote the minimum number of topological classes re
quired to contain all shapes in A of degree n. 

Definition 7. The collection r n contains N (n) shapes of 
degree n, and 

r= U I'". 
n=1 

The i-th shape of the N (n) shapes of degree n in r n is de
noted by Di, 1~i~N(n). If rh, Sk and Di correspond to the 
shapes a, band C and if c=a+b, then an alternative notation 
for this shape is Di=rh+sk. Further, the shape 11 is in A and 
the shape rh+sk is in I' if, and only if, rh and Sk are both in r. 

Ordering Rule. Suppose Di and Dj are shapes in r such that 

Di=rh+Sk, 

Dj=tp+Uq, 

(r+s = n, rh and Sk are in r), 
(t+u= n, tp and U q are in 1'). 

If Dj and Dj are topologically distinguishable, theni <j so 
that Dj prf'Cedes Dj if, and only if, one of the following condi
tions is satisfied. 

r~s, t>u; 
r=s, t=u, r<t; 
r=s, t=u, r=t, h<p; 
r=s, t=u, r=t, h=p, k<q; 
r<s, t<u, s<u; 
r<s, t<u, s=u, r<t; 
r<s, t<u, S=U, r=t, h<p; 
r<s, t<u, S=U, r=t, h=p, k<q. 

Further, if r> sand t> u, then uq+tp precedes Sk+rh if, and 
only if, lli precedes Dj. If lli and llj are map-isomorphic, 
then i=j. 

Theorem 2. N(n) = (2n-2)!/ (n-1) In!. 
Definition 8. Put Pn(O) =0 and 

j 

Pn(j) = L N(i)N(n-i), 1~j~n-1. 
;=1 

Theorem 3. Suppose lli, rh and Sk are shapes in r such 
that Di=rh+sk. Then n, r, s, hand k satisfy the following 
conditions. If n is odd and i~Pn01n-Y2) or n is even and 
i ~Pn (Y2n) , then 

{

pn (n-s-1) + (k-1)r+h, 

'[ = pn (n-s+ 1) +Y2k(k+ 1) +h, 

r~s, 

r=s, 

where 1~h~N(r), 1~k~N(s) and r~s. When i exceeds 
the upper bound, lli is related to a shape llj for which j does 
not exceed the upper bound and, hence, Dj is determined by 
( t). If n is odd and i> pn (Y2n - Y2), then Sk + r h = D j and j = 

2pn(Y2n-Y2) -i+1. If n is even and i>Pn(Y2n), then 
Sk+rh=Dj and j=2pn(Y2n) -N(n)2-i+1. 

The equation (t) is solved by the same iterative procedure 
recommended for (*) of Theorem 3.2. 
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The description of scenes over time and space* 

by LEONARD UHR 

University of Wisconsin 
Madison, Wisconsin 

I~TRODUCTION 

:\trost pattern recognition research has been concerned with 
the assignment of a single name to an Input field. But rarely 
do we find single, isolated objects in the real world. 

Describing scenes of several objects that interact over 
time and space 

Rather, we need programs that describe scenes of several 
interacting objects, and further describe each object, com
menting upon parts, qualities, and other details of interest. 

Just as they are not unitary things isolated in space, real
,,,orld objects are not isolated, as in a photo, in a static mo
ment of time. But virtually no research has been done on the 
recognition of objects that come, go, move, and change over 
time. 

Once we introduce time we raise a number of interesting 
issues: What kind of short-term perceptual memory is 
needed? How does the system handle, and coordinate, time 
for perception, and for response (in our case, for describing)? 
HO\v can the system use information gathered so far during 
perceptual interaction with its environment in order to help 
it glance about and attend to objects as they come into view 
at future times? 

These are extremely complex and subtle, and interesting, 
questions. This paper is a first attempt to tackle them. 

The use of bare-bones EASEy programs to make things clear 

Actual computer programs are presented, described, and 
discussed, in order to make completely clear exactly what is 
happening, and to allow us to examine a variety of variations. 
These programs are kept to their bare bones, and coded in a 
relatively simple English-like variant of SXOBOL called 
EASEy (an Encoder for Algorithmic Syntactic English 
that's Easey). Programs and variants are numbered so that 

* This research has been partially supported by grants from the 
National Institute of Mental Health (MH-12266), the National Science 
Foundation (GJ-36312), NASA (NGR-50-002-160) and the University 
of Wisconsin Graduate School. 
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they can be compared one with another, and the Appendix 
and the EASEy primer35 should be helpful ,vhen details of 
the code are not apparent. 

These programs are designed to aerhOnstrate-a variety of 
possible mechanisms, to be compared and contrasted one 
with another. They depend upon the particular set of char
acterizers given them (by their programmers, or by learning 
routines). V{ e have not been able to examine within the brief 
confines of this paper the kind of behavior they will exhibit, 
and the variety of sensed scenes they will handle, given a 
sufficiently large and appropriate set. 

HISTORY 

Relatively little research has been done on general systems 
that describe the various objects in a scene, along with their 
structure of parts, qualities, defects, or other characteristics. 
On the contrary, almost all pattern recognition research has 
concentrated on the assigning of a single name to an input. 
-When scenes are examined, they tend to be treated in an ad 
hoc way, using routines designed to find special features of 
interest. 

Systems for recognition of continuous handwriting 
and speech 

Some research has been done on recognizing handwriting, 
where several letters continue into one another, to form words 
and lines.4,8 ,24 ,41 And some attempts have been made in speech 
recognition to describe the spoken utterance in terms of their 
basic components.7 ,27 But virtually all of this work first de
composes the scene, whether or letters or sounds, into indi
vidual units, thus reducing the problem to standard single
name pattern recognition, and then assigns a single name, 
using standard techniques. 

Systems that build internal descriptions to name 

Some programs that name develop a rich internal descrip
tion of the pattern in order to achieve the name. The best 
examples of such an approach are probably the "syntactic" 
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recognizers9.10.18.23.25.26.3l,S7 since they build up structures of 
larger and larger wholes from meaningful parts. But in fact 
almost any naming program that applies a set of character
izers to an input pattern can be thought of as building up an 
internal description, of those characterizers that succeed, and 
where, and those that fail. This information might be out
put, as a description; it would be useful and meaningful to 
the extent that the characterizers were ones that made sense 
to the human receiver. And any recognizer could "describe" 
by outputting some of the alternate implied names that it 
might have chosen, but didn't. 

Systems that examine continuous fields of objects 

A variety of important problem areas confront us with 
scenes of objects. These include many biological preparations, 
e.g., blood cells, nerve tissue, chromosomes; X-rays, e.g., of 
heart, lungs, or bones; and aerial photos of cities, country 
side, or cloud cover. Up to now such work has concentrated 
on extracting particular features of interest, e.g., an enlarge
ment or other anomaly of an organ; an aberrant blood cell; 
a texture of a certain sort; a break in a bone; an edge of a 
cloud; a boundary between two fields of different crops. 
Rarely is a complete description asked for or given; rather, a 
special-purpose program is coded to analyze and search for 
particular signs of interest.2.7.12.13.17.20.21.29.33 

Kirsch,15 Londe and Simmons,22 Fischler,6 Firschein and 
Fischler,s Sauvain and Uhr,ao and Uhr36 .39 •40 are examples of 
research that attempts to develop more complete descrip
tions, though usually under the assumption that only one, or 
at most two, simple, standard, noise-free objects are present 
in the scene. 

Systems for the description of three-dimensional objects 

A good deal of interest has arisen in recent years in the 
problem of recognizing objects that overlap, often in three 
dimensions, in the fields of computer graphicsll •28 and ro
bots.3 But most of this work very carefully attempts to find 
the edges that are predicted to be present for one of the small 
number of alternate possible objects. 

Recognition over time 

Virtually no research has been done with objects that 
move or otherwise change over time, except for special
purpose systems, such as those that track clouds.19 .32 Nor is 
the author aware of any systems that build up a short-term 
perceptual memory in order to handle such continually 
changing inputs. 

Glancing about, and conversation 

Relatively little research has been done on pattern recog
nition systems that decide where to look next. as a function of 

what information they have gathered so far. Most "concept 
formation" systems have a very simple and rigid structure of 
this sort.14·16.34 Uhr38 .40 has examined more flexible systems of 
this sort. 

A PROGRAM FOR TWO-DIMENSIONAL 
RECOGNITION AND DESCRIPTION 

We will now examine two programs that explore the prob
lems of describing objects that change over time. The first, 
DESCRIBE-i, makes minimal changes to a relatively typical 
configurational pattern recognizer40 to allow it to describe. 

DESCRIBE-i handles recognition in two dimensions, 
using configurational characterizers that are sensitive to in
teractions among their parts. It insists that each part be 
exactly positioned to match; but characterizers are threshold 
elements, so that they can succeed when any sufficiently 
highly weighted subset of their parts succeeds. It gives a first 
approximation to a description, since it outputs all names 
that have been sufficiently implied to exceed a CHOOSE* 
level. 

(OVERVIEW DESCRIBE-i. Uses weighted, positioned 
configurations in 2 dimensions. 
(Outputs all N A~1Es* implied above 

CHOOSE level. 
INITialize the CHOOSE level and the 

configuration CHARacterizers. 
UPDATE Erase the old PRESENT and 

the ROW Present 
IN input the new PRESENT, ROW by 

ROW: put the CHARacterizers on 
LOOKFOR 

PERCEIVE Get each CHARacterizer, its 
THRESHold, DESCRiption, and 
B1PLIEDS 

Get each PART, its ROWand 
COLumn location, and WeighT, from 
the DESCRiption, and look for it, 
positioned, in the PRESENT; and 
add the WeighT to TOTAL if the 
part is found 

TEST This CHARacterizer succeeds if 
TOTAL is above THRESHold. 

LVIPLY Get each NAME and its WeighT 
from the E\IPLIEDS, and add this 
WeighT into the TOTAL for this 
NAME on ~1AYBE 

DECIDE Get each NAME and its 
TOTAL from MAYBE, and, if TOTAL 
is higher than the CHOOSE level, 
output it. 

DESCRIBE-i 

~l1-MN 

1 

2-5 

6-8 
9-10 

11 

12 
13 

14-16 
17 

18-19 

* Capitalized strings in the text and the OVERVIEWs refer to program
mer-npfinpd <:tring n3mp~ in thp nrot'r;:lm<: 
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(DESCRIBE-1. (Handles 2-dimensional patterns. CHARacterizers are WeighTed, (positioned configurations DESCRIBE-1 
that succeed if match above THREshold. Applies (CHARacterizers till a KAME's TOTAL implied weight 
exceeds CHOOSE level 

Set CHOOSE = 30 l::\1n 
(Characterizers should go here. 
UPDATE2 erase PRESENT, ROWP 31 
(input the PRESENT pattern ROW by ROW) 
IN input TYPE, Row till J [+ to $TYPE -to ENDJ2 2 
S ROWP=ROWP+l 3 

On PRESENT setJ ROWPJ ROW J [to INJ 44 
R Set LOOKFOR = 'CHARI CHAR2 ... CHAR~' 5 
PERCEIVE from LOOKFOR get CHAR = [ -DECIDEJ 6 
(Look for each OBJect in the DESCRiption at ROWand COLumn specified) 

from $CHAR get THRESH 'D =' DESCR 'JI =' IMPLIEDS J [ - PERCEIVEJ 57 
erase TOTAL 8 

PI from DESCR get PART WT ROW COL = [ - TESTJ 69 
from PRESENT get J that ROW J call COL symbols LEFT, get that PART [ -PIJ 310 

TOTAL=TOTAL+WT [PiJ 11 
TEST is THRESH lessthan TOTAL? [-PERCEIVEJ 12 
(If total WeighT of OBJects got exceeds THRESHold, merge I~1PLIEDS NAMEs onto MAYBE 
IMPLY from IMPLIEDS get NAME WT= [-PERCEIVEJ 13 

from MAYBE get # that NAME # TOTAL = [-IIJ 414 
WT=TOTAL+WT 15 

11 on MAYBE list NAlVIE WT [IMPLYJ 16 
(output description with all NAMEs implied above CHOOSE level. 
DECIDE from MAYBE get KAME TOTAL = [ -UPDATEJ 17 

is TOTAL lessthan CHOOSE? [+DECIDEJ 18 
OUT output 'THERE IS' NAME [DECIDEJ 19 
end2 
S ool11110J 
S oo1100ooJ 
S oolOooooJ 
S 00011110J 
S 00011111J 
S oo11ooooJ 
S oo11ooooJ 
S 00100000J 
RJ 

(example data cards for an 'F' in an 8 by 8 matrix) 

1 NOTE. See the Appendix for a brief description of EASEy programs. 
(Examples of the major program constructs discussed in the Appendix 
are superscripted 1 through 6 in this program.) Caps are used in the text 
to refer to program constructs. 

11 
12 
13 
14 
I5 
16 
17 
18 
19 

If given good characterizers for the letters, DESCRIBE-1 will output the name F and, probably, a few other names like C, I, 
and, possibly, E and T. For good performance, the program would need several hundred characterizers, of the following sort: 

DESCRiption IMPLIEDS 

A A 
I " I \ 

CHARi ='5D=0111 3 1 2 010 2 4 3 1111 6 5 4 JI=F 9 E 6 C 1 J' --i i i i i i i 
~ E-; E-; ~ .....:I ~ E-; 
00 ~ ...::: 0 0 ~ ...::: 
~ ~ .!:F 

~ U ~ .~ 
~ H Cll 

~ ~ ~ Z 
E-; 
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And it would also need more code to allow these character
izers to succeed within some region38 ,4Q rather than in an exact 
position (alternately, it could be given a separate charac
terizer for every position; but this would clog memory ,vith 
far too many characterizers, and slow down processing time) . 
But this kind of program, with an adequate set of charac
terizers, performs we1l1,41 possibly as well as any approach 
(see Zobrist42 for comparisons). 

Other possibilities! or descript'ive in! ormation 

DESCRIBE-l output as its description all the NA':\IEs 
L\IPLIED above the CHOOSE level. DESCRIBE-2 and its 
extensions will explore a variety of richer descriptive in
formation, including the objects' parts, structure, salience, 
qualities, and location. 

DESCRIBE-l has a bit more descriptive information that 
it could make available fairly easily. The NAME's TOTAL 
weight could be output, to indicate its salience, and;' or the 
program's certainty. The names of the CHARacterizers, the 
PARTs of their DESCRiptions that succeeded, and their 
locations could be stored with the names, and output as 
qualifying information (this will be done in DESCRIBE-2). 

We1'ghts and thresholds 

DESCRIBE-l TOTALs the weight of each PART of a 
DESCRiption (statement 11). The CHARacterizer suc
ceeds if TOTAL exceeds the THRESHold (12). This allows 
the programmer to design characterizers that hav£' any de
sired amount of looseness, in the sense of a threshold decision 
element that succeeds when any of a large number of com
binations of subsets of its input PARTs succeed. If the 
threshold is lower than the weight of any of the PARTs, such 
a characterizer is equivalent to an "OR" operator; if the 
threshold equals the sum of all the weights of all the PARTs, 
it is equivalent to an "A~D" operators. 

The programs in this paper add weights together, since 
this is the simplest thing to do. But it is easy to have the 
program multiply weights, or compute whatever other com
bining function is deemed appropriate. 

Note how similar are the THRESHold for deciding 
whether a CHARacterizer has succeeded and the CHOOSE 
level for deciding that a NAME has been sufficiently highly 

implied (by one or more characterizers) to be output as part 
of the program's description of the input PRESENT. 

Describing vs. (merely) naming 

The typical pattern recognition program simply chooses 
and outputs a single name that it assigns to the input. 

This is usually done by having the program choose from 
MAYBE the single most highly implied N A~1:E, rather than 
all the XA:vIEs implied above a CHOOSE level. 

Sometimes the program will merely choose and output the 
first name whose TOTAL implied 'v eight exceeds some mini
mum level for choosing. This would simplify DESCRIBE-I, 
which could now put the test that compares TOTAL weight 
with CHOOSE (statement 18) right after statement 15, and 
eliminate the DECIDE loop through ':\IA YBE (statement 
17)-with suitable changes in gotos. 

DESCRIBING SCENES OF OBJECTS, AND 
THEIR PARTS OVER SPACE AND TI':\IE 

DESCRIBE-2 begins to handle descriptions over time, and 
descriptions that talk about the parts and the subparts of 
which the recognized wholes are composed. 

To keep it short, it has been over-simplified, so that it 
handles only I-dimensional string inputs (e.g., English sen
tences), and uses characterizers that do not handle position 
or interactions among parts (except to the extent that parts 
are f'xplicitly put together, as though into a rigid template, 
and all possible combinations of this sort are added to its 
memory, as separate characterizers-a theoretically possible 
but practically unfC'usible procedure) . 

In addition to describing the scene using all names implied 
above a CHOOSE level, it further describes each name by 
outputting all its parts (each with its column location) and 
all of each part's parts, until it hits the 10\\'e8t level. It further 
does this from the point of view of each name-that is, it 
says in effect, "If this name is present, then these parts are 
present." 

Time is handled by merging each PRESENT moment into 
a SEEN list, where OBJects are made salient (by high 
weights) when they first appear, and to the extent that they 
move, but then gradually FADE away when they are no 
longer present. 

(OVERVIEW DESCRIBE-2. Builds short-term memory over TIME and space. DESCRIBE-2 

INITialize memory; UPDATE TIME, input PRESENT 
SENSE Merge each OBJect in PRESENT into what has recently been SEEN, its WeighT a function 

FADE 
PERCEIVE 
IMPLY 
EVAL 
DESCRIBE 

of newness and movement. 
Down-weight, and erase, OBJects no longer in PRESENT. 
Get the IMPLIEDS names for each OBJect still in SEEN, 
Put them on LOOKFOR and merge onto ~IAYBE, building a list of PARTS. 
output each N A:\IE on :\IA YBE whose TOTAL weight exceeds its THRESHold. 
output all PARTS of the NA:\;lEd object, and PARTS2 of each, that have public 

TRAXSforms (giving their COLumn locations). 

:\11-3 

4-8 
9-11 

12-14 
15-19 
20-23 

24-28 
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(DESCRIBE-2. (:Merges short-term SENSory memory over time and space. 
(OBjects are salient when NEW or move; FADE out when no longer PRESENT 
(Advance TL\lE, INPUT the new PRESENT) 

(characterizers should go here) 
uPDATE erase COLP 

set TLME = TLUE + 1 
IX input PRESEXT till ] [ - EXD] 
(}Ierge each OBJ in PRESENT with those already SEEN) 
SE1~"sE from PRESENT get OBJ = [ - FADE] 

NEW 
FADE 

COLP=COLP+l 
from SEE~~ get # that OBJ # \VT COL= [-KE\V] 
on LOOKFOR list OBJ WT+ABS(COLP-COL) COLP [SEXSE] 
on LOOKFOR list OBJ 9 COL [SENSE] 
from SEE~ get OBJ WT COL=[ -PERCEIVE] 
is WT lessthan I? [+FADE] 

on LOOKFOR list OBJ WT-l COL [FADE] 
PERCEIVE SEEX = LOOKFOR 
(Get KA~fEs implied by each OBject on LOOKFOR) 
PI from LOOKFOR get OBJ vVT COL=[ -ITERATE] 

from $OBJ get '1=' I:.vIPLIEDS] [-PI] 
(Put TOTAL of WeighTs for each L\IPLIEDS XA}IE on ::.YlAYBE) 
IMPLY from LvIPLIEDS get NAYlE WT= [-PI] 

on LOOKFOR list KAylE WT COL 
from MAYBE get # that ~A:.vIE # TOTAL PARTS] = [-II] 

WTL = TOTAL+ WTL 
II on :\IAYBE list KA:\IE \VT+WTL PARTS OBJ COL] [I:\IPLY] 
( EVALuate total WeighT against NAME's THRESHold, and output if greater) 
EVAL from :\;lAYBE get NA:\lE TOTAL PARTs] = [ -UPDATE] 

from $N A:\IE get 'T =' THRESH 
is TOTAL lessthan THRESH? [+EVAL] 

(Describes giving overlapping object NAMEs and overlapping parts and parts (of parts) 
output 'AT TI:YIE='TL\IE' IT MIGHT BE='KA11E DESCRIBED' 

(outputs all the public PARTS, down to the lowest level) 
DESCRIBE from PARTs get OBJ COL = [ - EV AL] 

from MAYBE get # that OBJ # TOTAL PARTS2] [-DEI] 
on PARTS set PARTS2 

(If OBject has an external TRANSform, OUTPUTs it) 
DEI from $OBJ get 'T=' TRANS] [-DESCRIBE] 

output TRANS 'AT' COL [DESCRIBE] 
END 
LEFT-ARM TRUNK LEGS RIGHT-AR11 EYE XOSE EYE CHIX] 
DOG-EAR S~OUT LEG LEG] 
TRUNK] 
LEG LEG TAIL] 

1 

LV 
.1 

2.V 

.1 

.2 

.3 
5.V 

.1 

.2 

.3 

.4 

.5 

6.V 
7.V 

13.V 
.1 

14.V 

16.V 

17.V 
.1 

18.V 

19.V 

HEAD 

+ 
= 'I = PERSOX 5]P = EYE 5 EAR 3' 

'XOSE 7 CHIX 4 :\10UTH 6]' 

2 

1 
2 
3 

4 
5 
6 
7 
8 
9 

10 
11 
12 

13 
14 

15 
16 
17 
18 
19 

20 
21 
22 

23 

24 
25 
26 

27 
28 

II 
12 
14 
14 

NOTE that size ABS( ... ) is a function that computes the 
ABSolute value of the expression within parentheses; it is 
defined and written by the programmer (though I don't 
bother to show the needed code) . 

DESCRIBE-2 needs a set of characterizers (put before 
statement 1) of the following simple sort, where each thing 
points up to the things implied: 

LEFT-AR:\I = 'I = PERSON 3]' 
TRUCK = 'I = PERSOX .) DOG 3J' 

'I = HEAD 3]' 

:\11 
112 
:\13 
:\14 

These (plus additional characterizers for LETS, CHIX, 
DOG-EAR, SXOUT, LEG) 'would allow it to notice PER
SON and DOG. Since EYE, NOSE, etc. point to HEAD, 
and HEAD points to PERSOX, it is also capable of describ
ing a PERSON as having a HEAD, which has an EYE, 
NOSE, etc. (But II ,,,ould not be described as containing 
an EAR.) 

EYE 
XOSE = 'I = HEAD 3]' 

X ote how characterizer :\15 shows links from HEAD back 
to its parts (EYE, EAR, etc.)-links that are not actually 
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used. With additional code, DESCRIBE-2 could add these 
to LOOKFOR, and use them to describe what is missing 
from a particular object. 

To handle an interesting variety of inputs, we would need 
to give DESCRIBE-2 a much larger set of characterizers. 
DESCRIBE-l is actually the much more powerful pattern 
recognizer since it handles configurations of interacting parts 
and does not rely upon a space (which is reasonable for sen
tences, and in fact typically used by parsing programs) to 
delimit objects. 

Notice how a pattern can be recognized over time, even 
though at no single moment are all of its parts present, be
cause characterizers look at the SEEN list, which only grad
ually fades away. Thus e.g., a suitable characterizer would 
output DOG in response to Inputs 12-14. The description of 
the DOG (and of the PERSON Input in 11) would depend 
upon the particular parts present. 

STILL FURTHER POSSIBILITIES 
FOR DESCRIPTIONS 

Weare now in a position to make a number of simple 
variations, as described below. 

Describing one vs. several objects 

DESCRIBE-2 describes rather exhaustively. For each 
NAME whose TOTAL weight exceeds THRESHold, and 
therefore is output, it also outputs all PARTS (that have 
public TRANSforms), and PARTS2 of parts, down to the 
lowest level. Thus the description can contain much overlap, 
of names and of parts. This can be varied in a number of 
ways. 

A. The simplest would have the program output only one 
NAME of an object and its PARTS description: 

(DESCRIBE-2-A. outputs only one object's NAME and 
description of PARTS. 2-A 

DESCRIBE from PARTS get 
OBJ COL=[ -UPDATE] 24.V* 

B. A slight change: 

(DESCRIBE-2-B. Gives non-overlapping descriptions 
from MAYBE get # that OBJ # TOTAL PARTS2] 
= [-DEI] 25.V 

would give non-overlapping descriptions of non-overlapping 
things, starting with whatever OBJect happened to come 
first on the ::VIAYBE list. This would make more sense if the 
NA~1E with the :\IAXimum TOTAL weight were got from 
~IA YBE in statement 20 (this entails a simple loop through 
the NAMEs on MAYBE, to get the one with the highest 
associated weight) . 

C. Still another variant would give overlapping descrip
tions of non-overlapping XA~IEd objects: 

.. Numbers like 24. V indicate VariatioIl~ lu the curre:,;putHlillg :;Latement~ 

in DESCRIBE-2. 

(DESCRIBE-2-C. Describes several non-overlapping ob-
jects 2-C 

set COPYM = MAYBE 20.1 
from COPYM get # that OBJ # TOTAL PARTS2] 

= [-TO DEI] 25.V 

Details vs. wholes 

D. All of these go from top down, from wholes to details. 
The following simple variant would dip down to details, and 
then go up: 

(DESCRIBE-2-D. Dips down to give details first. 2-D 
at start of PARTS set PARTS2 26.V 

This gives a funny kind of order, wandering from top to 
bottom, and then back up. 

E. A slightly more complex program would spt all the 
PARTS2 at the start of an ALLPARTS list, and only then 
start developing the description, from ALLP ARTS. 

Keeping descriptions short 

These all give descriptions that are far too long, since they 
contain all details. What is really needed is a system that 
chooses to output only the pertinent details-but this is an 
extremely complex matter, as ",ill be discussed below, since 
it depends upon a deep semantic understanding of the ob
jects in the scene, their import, and their import to the hearer 
of the description. So for now we can only examine the sim
plest of methods for keeping descriptions from growing un
reasonably long. 

F. First, we might have the program put only highly 
weighted OBJects onto the PARTS list (by checking the 
weight at statement 18) 

G. Second, only parts of a specified QUALity might be 
output: 

(DESCRIBE-2-G. outputs OBJect only if it is of 
the QUALity specified. 2-G 

QUAL = 'SHAPE' M1.1 
from $OBJ get that QUAL[ -to DESCRIBE] 27.1 

H. Third, the program might output only up to a fixed 
number of object parts: 

(DESCRIBE-2-H. outputs only a specified 
Number of PARTS. 

ENOUGHP=12 
UPDATE erase COLP, NPARTS 

is NPARTS lessthan ENOUGHP? 
[-to UPDATE] 

NPARTS = NPARTS+ 1 

2-H 
:\11.1 
LV 

24.1 
24.2 

I. Similarly, fixed numbers of objects, and/or of charac
tf'rizf'r~ to hI" ]ookpo for, ('()llld hr srt (thir..; is bf'st done along; 
with a function that gets the ::\IAXimum implied). 



GLANCI~G AROUND AND ACTING 
OVER TIME 

Glancing, noiicing, and focusing attention 

DESCRIBE-2 "glances around," looking for higher-level 
wholes as a function of things already implied, because state
ment 16 puts an implied XA11E onto LOOKFOR, so that 
the program ·williater look for any names that it implies, and 
so on up the hierarchy. (Kote that this feature can easily be 
added to DESCRIBE-1.) 

J. As a variant, we might use: 

(DESCRIBE-2-J. Tends to LOOK FOR NA::.vIEs at 
higher levels. 

on LOOKFOR list NAME "\VT+ WTL COL 
2-J 
16.l.V 

(or some other function of the weights of both the NAME 
and the OBJect that implied it), so that a name at a higher 
level has a higher weight, reflecting the weights of all its 
lower levels. 

K. Alternately, we might add the statement: 

(DESCRIBE-2-K. Looks only with KAMEs chosen 
to output. 

on LOOKFOR list NAME TOTAL 
2-K 
22.1 

so that only at the end, if it has been chosen for output be
cause its TOTAL implied weight has exceeded its THRESH
old, is the l\A~lE put onto LOOKFOR. This ·will put many 
fewer NAMEs on LOOKFOR, since it requires a more 
stringent procedure for evaluating the importance of each. 

Glancing over time 

It also has the interesting characteristic that it adds a 
N A1-1E to LOOKFOR to be processed at the next moment 
of TLVIE (since it loops back to UPDATE in statement 20), 
whereas the addition after statement 16 will affect processing 
immediately, on the PRESENT moment. 

Weare thus beginning to introduce a second source of 
short-term-memory that gives continuity over time-not 
only in the SEEN list, that only gradually fades away, but 
also in the LOOKFOR list. 

L. Still other variants would have the program a) add 
implied names to a NEXTLOOK list at 16.1, and only at 
UPDATE time set LOOKFOR=NEXTLOOK, so that the 
casually got names would not be processed until the next 
time: b) loop back from EVALuation to PERCEIVE some 
more if new KA11Es have been put onto LOOKFOR (22.1), 
so that they are processed immediately, at this time. 

DISCUSSION 

The short-term perceptual memory 

:\Ierging of OBJects from the recent past into the SEEN 
list, where their salience is a function of their newness and 
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motion, and they fade away only slowly after having disap
peared from the environment, appears to be simple, elegant, 
and sufficient to allow systems to handle environments that 
continue and change over time. But it may also be useful to 
introduce further inertia over time by using a separate list of 
CHARacterizers to LOOKFOR, where LOOKFOR also con
tinues over time. There are many interesting alternative pos
sibilities here, only a few of which have been touched upon 
in this paper. 

Focusing attention and noticing 

As soon as we let a program add characterizers to its 
LOOKFOR list we introduce a whole range of possibilities 
for focusing attention and concentrating on certain things, 
and type of things. In DESCRIBE-2 what has already been 
noticed implIes new characterizers, and new objects, which 
can themselves imply their parts, and characterizers that 
would imply them. 

'tVe can, if we wish, initialize our programs to contain one 
or more names of objects to LOOKFOR. This will focus at
tention on these objects, and on the characterizers that imply 
them, and their subparts. The strength of this focusing will 
be a function of their weights. Depending upon details of 
thresholds and choose levels, the system will now find more 
of the things it has been set to look for, with less certainty 
thus leading to false positives, and it will tend not to notice 
other things-all rather reminiscent of human beings. 

The influence of internal needs and external suggestions 

These systems are now in a position to have their processes 
influenced from a variety of sources. Commands and con
versational suggestions from the external world can suggest 
what to look for, and what kinds of descriptions to output. 
Internal needs and goals can also play a role. In all cases, 
the various sources of set are merged into the LOOKFOR 
list, which controls processing. 

Changing points of view 

People "d.ll tend to describe scenes as though they are fields 
of physical objects, with only one object at one place at one 
time. We ,vill point to and describe a number of faces, but 
without adding; "oh there's still another face that's mad8 of 
the left ear of face 3 and the right chin of face 7"; nor will 
we go on to describe the details of faces, saying "there's a 
leaf; there are two fish." 

But we can very easily shift to different attitudes. For 
example, if we're shown a drawing and told it contains 82 
hidden faces and 212 leaves, we will almost immediately see 
overlaps. 

The germ of this ability appears to lie in the different 
variant attitudes for outputting overlapping, or non-over
lapping, descriptions in DESCRIBE-2-A through 2-E. What 
still needs doing is to give the program control over which of 
these attitudes it will take, and let it decide as a function of a 
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variety of pieces of information that it has gathered during 
its conversational interaction with its environment, including 
the hearers of its descriptions. 

Recognizing and acting over time 

It is unrealistic to have a system apply no matter how 
many characterizers, and output no matter how complex a 
description, in a single moment of time. Time is needed to 
recognize, describe, notice, and act. DESCRIBE-2-K and 
2-L begin to take this into account, but once again there is a 
large variety of other possibilities. Ideally, we should con
sider what is the common real time in which the environ
ment, the program's perceptual processes, and its motor ac
tions must all take place, and we should assign appropriate 
real times to each separate process. This makes apparent the 
issues of parallel vs. serial vs. parallel-serial processes, and 
time needed for feedback loops that monitor action. 

What is a description? 

The concept of a "description" is hazy, and not pasily de
fined. Most people will look at a scene and say something 
like, "There's a man walking a dog through the woods." A 
fastidious few will say instead, "There's a man with fingers 
circling around the loop of a leash, whose other end appears 
to be attached to a dog via a collar; there are also 5 trees in 
the picture." A detective might say, "There's a tall man in 
a coonskin cap with a black handle-bar mustache and a 
smudge on his left cheek," while a dog-nut might say, 
"There's a Siberian husky with eyes that are too slanted," 
and a nature lover, "there's a mixture of honeysuckle, maple 
and pine, and it looks like Spring, but I don's see any birds." 

I t is hard to conceive of a description in which the de
scriber does not (1) make major judgments as to what is 
important and, further, (2) superimpose his own "under
standing" of the objects in the SCf'nf', and their interrelation
ships and their import. 

Sometimes the scene will be impoverished to the point 
where things seem relatively simple, at least on the surface. 
Thus almost everybody will look at a sheet of paper on which 
letters have been written and say, "There's an 'E'" or 
"There's the word 'THE' ". If we press further most people 
will say, "The 'E' has a vertical bar with short horizontal 
bars extending to the right from top, middle and bottom"-if 
it is a standard, well-drawn 'E'-and they will think us a bit 
crazy for asking (why?-I think because such a description 
feels like a tautology, possibly because it is a constructive 
definition of an 'E', one that we have pretty generally agreed 
to use). 

If the E is sloppy, and/or we press the describer to say 
more, we will begin to get statements like, "The top bar 
wavers and has breaks," "It's long and skinny." A more 
compulsive person might say, "The top bar angles dovm 20° 
for 74 inch, then curves up for Y2 inch, until it is 74 inch 
above its start, then goes straight for Y2 inch." 

This description probably sounds contrived to most read
ers. But that leads into a third important characteristic of 
df'srriptlon:". Onef' "\\'0 flfC pmhcd h0 yond th" ordln~ry lev"l. 

of description v.e must grope for terms and framework. In 
general, the describer (3) says what he infers his hearer will 
consider pertinent. Thus the diagnostician will tell the neu
rologist, "the wavering strokes have the quality of palsy 
rather than brain damage", but he will tell the accountant, 
"the smudges come because the pencil lead is too soft." 

Description is now squarely in the middle of conversa
tional interaction-just where I think it should be, but this 
raises even more complex and subtle problems. Now we must 
worry not only about (1) the actual objects in the scene, and 
their parts and relations, and (2) the describer's understand
ing of the objects in the scene, but also (3) the hearer's under
standing of these objects, (4) the describer's understanding 
of the hearer's understanding, and even (5) the hearer's un
derstanding of the describer's understanding of the hearer's 
understanding. For example, the dog-nut might assume that 
the hearer is a secret dog-nut, or at least realizes that many 
people are dog-nuts and probably also the describer. And the 
hearf'r might infer that thf' df'scribf'r knows hI" thf' hf'srer 
likes dogs, and wants to suck him into an interest in the fine 
points. 

In addition to arguing for the complexity and subtlety of 
a description, this is to argue that it is intimately related to 
a rich semantic understanding that describer and hearer have 
in common-at least to some extent, along with an under
standing by each of the situation of communication, in which 
one tries to impart suitable information to the other. 

We cannot expect pertinent, sensitive descriptions until 
we have programs that have the necessarily rich semantic 
understanding of the world whose scenes are being described, 
and of what this world means to their hearers. But we can 
still extend pattern recognition programs that merely name 
to the point where they also describe, albeit either in ex
haustive detail or in overly-rigid conventional ways. And we 
can begin to tailor their descriptions to their hearers, as a 
result of simple conversational interactions. 

APPEKDIX-A KOTE OK PROGRA:\IS35 

1. Numbering at the right identifies statements, and al
lows for comparisons between programs. 1\1 indicates 
initializing Memory statements: I indicates cards 
that are Input by the program .. V indicates a Variant, 
.1 an additional statement. 

2. A program consists of a sequence of statements, and 
END card, and any data cards for input. (Statements 
that start with a parenthesis are comments, and are 
ignored.) Statement labels start at the left; gotos are 
at the right, within brackets (+ means branch on 
success;-on failure; otherwise it is an unconditional 
branch) . 

3. Strings in capitals are programmer-defined. Strings in 
underlined lower-case are system commands that must 
be present (they would be keypunched in caps to run 
the program). These include £nput, output, erase, set, 
list, get, start, call, that, and the inequalities. Other 
lower-case strings merely serve to help make the pro
grum ullder~ttlndablc; tlll'~ could lJ(~ dimiuHtc·d. 



4. EASEy automatically treats a space follo"",ing a string 
as though it \vere a delimiter; it thus automatically 
extracts a sequence of strings and treats them as names. 
The end-bracket] acts similarly as a delimiter, but 
the programmer must specify it. The symbol # is used 
to stand for any delimiter (a space, ] or #) . 

5. The symbol $stringI is used to indicate "get the con
tents of string I, and treat it as a name and get its 
contents" (as in SKOBOL). 

6. Pattern-matching statements work just like S~OBOL 
statements: there are a) a name, b) a sequence of ob
jects to be found in the named string in the order 
specified, c) the equal sign (meaning replace), and d) 
a replacement sequence of objects (b, c, and/or d can 
be absent). that string I means "get that particular 
object"-otherwise a new string is defined as the con
tentsofstringI, which is taken to be a variable name. 
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Tuning the hardware via a high level 
language (ALGOL) 

by RONALD BRODY 

Burroughs Corporation 
Paoli, Pennsylvania 

ABSTRACT 

This paper will discuss how the computer may be tai
lored to the problem it is solving while still programming 
the problem in a higher level language. The vehicle to 
illustrate the technique is the "Stack machine," which is 
a virtual machine implemented in firmware on a Bur
roughs microprocessor. The "Stack machine" was 
designed to compile and execute programs written in 
Algol. Since, the microprogram memory of the micropro
cessor is read/write, the stack machine can be extended 
by special purpose firmware operators designed for a 
particular application program. This system permits jobs 
to be programmed and debugged in Algol, and then fine 
tuned to run at a much greater speed. 

This paper describes the stack machine, the methods 
used to fine tune a program, and some sample results of 
fine tuning. 

Computer on a chip and a network of 
chips 

by GARY HUCKELL 

Naval Electronics Laboratory Center 
San Diego, California 

ABSTRACT 

The paper will first discuss the vSlrious approaches to a 
computer on a chip as advanced by the various semicon
ductor vendors and in the various R&D programs spon
sored by the government. This discussion will include a 
description of the work being performed for the Navy who 
are developing the technology for a 5000-10,000 gate chip. 
Among the questions to be discussed are: given the fact 
that 10,000 gates can be packaged, what function should 
it contain? Should it be independent and programmable 
or should it be a part of a system? 

Following the chip discussion the subject of the ways 
and the whys of interconnecting these chips will be dis
cussed. 

10-5-10-7 cent/bit storage media, 
what does it mean? 

by JOHN C. DAVIS 

Department of Defense 
Ft. George Meade, Maryland 

ABSTRACT 

This paper will discuss the various advanced mass 
memory techniques and will attempt to put them in 
perspective as to the reasons why the approaches are 
being pursued. The techniques to be covered will include 
systems based on tape, the various laser activated sys
tems, and the holographic memory approaches. At least 
one of these approaches is directed at a homogeneous 
replacement for the entire memory hierarchy of the pres
ent day system. Other random access memories can 
reduce the need for conventional main frame memory if 
the system programmer properly writes his operating 
system. The low cost (10- 6 cents/bit) memories will 
permit the economic storage of large data bases for a 
variety of users and will force the system architect to 
solve the large storage management problem for the mini 
computer user. 



Computer architecture and instruction set design* 

by P. C. ANAGNOSTOPOULOS, M. J. MICHEL, G. H. SOCKUT, G. M. STABLER, and A. van DAM 

Brown University 
Providence, Rhode Island 

INTRODUCTION 

A group of computer scientists and mathematicians at 
Brown University has been engaged in the study of 
computer graphics for the past eight years. During the 
course of these studies a variety of topics has been inves
tigated, in particular, during the last few years, the use of 
microprogramming for implementing graphics sys
tems. 20.21. In early 1971, Professor Andries van Dam and 
his associates submitted a threefold research proposal to 
the National Science Foundation. The problems to be 
investigated were: 

(1). Inter-Connected Processing OCP-ing) between a 
central computer and an associated satellite proces
sor, with the goal of a dynamically alterable solu
tion to the "di~ision of labor" problem; program 
modules would be dynamically linked in either 
machine as a function of availability and cost of 
resources and response time; 

(2) Programming aids at the source language level for 
the automatic generation of data structure manipu
lation subroutines and symbolic debugging of data 
structure oriented applications programs; 

(3) The development and use of the Language for Sys
tems Development (LSD),z2 a high-level systems 
programming language, for generating the applica
tions and systems software for both the central 
computer and the satellite in such systems: 

An interactive graphics system is an excellent paradigm 
for such investigations since graphics applications. 

(1) are typically very large in terms of memory space 
required; 

(2) maintain large data bases, many with intricate 
(list-processing oriented) data structures; 

(3) have processing requirements that change dynami
cally, varying from very heavy (e.g., structural 
analyses of a bridge) to very light (e.g., inputting a 
command); and 

(4) require real-time response. 

* This work is sponsored in part by the National Science Foundation, 
grant GJ-28401X, the Office of Naval Research, contract NOOO-14-67-A-
0191-0023, and the Brown University Division of Applied Mathematics. 
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The Brown University Graphics System (BUGS)l~ was 
designed as the vehicle for performing this research. Prin
cipally, the configuration consists of an IBM S /360-67 
running the CP -67 / CMS time-sharing system,10 used by 
the entire Brown University community, and a satellite 
display station, as illustrated in Figure 1. This reasonably 
powerful satellite configuration provides such facilities as 
program editing and compilation, debugging tools, and 
most importantly, application processing power and data 
storage. However, because of the two rather distinct 
demands placed upon the local processor, that of display 
generation and general computing, and because these two 
capabilities could run in parallel, it was further deter
mined that the inclusion of two separate processors in the 
graphics station would be in order. In particular, the first 
of these processors would be of a general-purpose nature, 
while the second would be designed specifically for main
tenance and regeneration of the display. Figure 2 illus
trates the division of these processing capabilities. U nfor
tunately, the configuration shown in Figure 2 was far 
removed in scope from any commercially available equip
ment, and the purchasing of a general-purpose computer 
from one manufacturer, a graphics processor from anoth
er, and perhaps even a display from a third would prove 
not only unworkable in terms of compatability, interfac
ing, and programming, but also unadaptable to the imple
mentation desired. It became apparent that it would be 
necessary to design the satellite system from the ground 
up. This could be accomplished by building the hardware 
at Brown; however, the lack of engineering manpower 
ruled out this possibility. The one other method that 
could be employed would be to purchase a pair of user
microprogrammable host computers; a few such comput
ers were available at the time. Microprogrammable 
computers provide the system designer with the hardware 
upon which he can base a novel system, presenting him 
with the opportunity, but also the problem, of writing 
software from the ground up, and with actually designing 
and implementing his own target architecture and 
instruction set. 

The problem of computing system architecture has 
been of major importance since the dawn of computers in 
the late 1940;s. The computer user, however, has had iit
tIe or nothing to do with this problem; scientists and 
engineers at the manufacturing companies (or universi
ties) have done all the design in seclusion. Once designed, 
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it was then up to salesmen to sell the machine to the 
unsuspecting public, which accepted it on faith or out of 
necessity. 

Over the last ten years things have begun to change. 
People have realized that their applications, be they 
business data processing, process control, or bio-medical 
research, are distinct and have peculiar computational 
requirements. The advent of the reasonably cheap mini
computer has allowed users to program their own monitor 
systems and software packages, oriented toward their 
specific needs. Regardless, the target architecture of these 
machines was still fixed and unchangeable, and could not 
be tailored to a user's specific needs in order to increase 
effectiveness. However, this latter problem is now being 
allevia.:ed by the introduction of user-microprogram
mabIe host computers. The purpose of such computers is 
to allow the user himself to design an appropriate target 
architecture and instruction set for this particular appli
cation, implement this architecture, and perhaps change 
it after he has learned more about what he needs. A good 
overview of microprogramming in general is found in 
Reference 16. Microprogramming trade-offs for user 
applications are discussed in Reference 5. 

It is at this point that a clear distinction between a 
target architecture and a target instruction set must be 
made. The architecture defines the basic relationships 
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between the various components of the machine, e.g., 
storage, registers, control, arithmetic units, etc. On the 
other hand, the instruction set is simply the array of dis
crete operations which may be utilized by the program
mer. A specific example is the comparison of the Bur
roughs family of stack machines3 and the IBM S/360 
family. 9 The target architectures are entirely different, 
whereas the instruction sets are similar. 

The purpose of this paper is to discuss the problems of 
machine architecture and instruction set design in gen
eral, while referring to the specific BUGS implementation. 
Based on this discussion, a set of ideas and suggestions is 
presented to form an initial guide for future implementers 
of microprogrammed machine architectures. 

CHOOSING A MICROPROGRAMMABLE HOST 
COMPUTER 

As stated in the Introduction, much of the rigidity of 
conventional computers can be overcome if the user is 
willing to microprogram his own target architecture and 
instruction set. Although it has been said too many times 
already, it remains necessary to point out that the aura of 
complexity surrounding microprogramming is purely a 
product of scientific mysticism. Microprogramming is not 
much more than fairly conventional programming at a 
different level, perhaps requiring greater attention to effi
ciency;12 anyone who has coded a simulator or inter
preter has already programmed at that level. Micropro
gramming therefore, being programming at a lower 
level, transforms the problem of rigidity of the target 
level architecture into the lower-level problem of host 
architecture rigidity. After all, how can one design a 
24-bit target architecture if he knows it will be imple
mented on a 16-bit host? And one might as well give up 
if a decimal machine is desired without decimal hard
ware in the host. Such conflicting features are not 
impossible to implement, but they will be extremely 
inefficiept ann difficult to microprogram. 

At the time the microprogrammable hosts for BUGS I 
were chosen, there were none available that were suffi
ciently adaptable to allow a wide choice of target archi
tectures. In other words, the rigidity of the host architec
ture limited the range of target architectures almost 
entirely to the standard Von Neumann variety. Most 
users would not consider this limitation a hindrance; they 
are used to standard architectures and would be at a loss 
to design an alternate one. However, it is becoming more 
and more apparent that the barriers to increasing compu
tational effectiveness today are a factor not so much of 
the crudity of the instruction set as of the unyielding 
nature of unadaptable hardware. Even the simplest 
instruction set can simulate a Turing machine and hence 
compute any function, but the ease with which these 
functions can be performed depends on the overall blend 
of machine facilities. Burroughs has begun an attempt at 
solving the rigidity problem with the introduction of the 



B1700 variable-micrologic processor,23 which takes a first 
step toward eliminating certain inherently structured 
components. However, the B1700 cannot as yet be consid
ered an inexpensive user-microprogrammable computer. 

All in all, there were four hosts from which to choose, 
including the Interdata Model 411 Microdata 80013 Digital 
Scientific META 4,6 and the Nanodata QM_1.15 It is 
immediately apparent that the machines vary widely in 
architecture. Our consideration was narrowed down very 
quickly by the fact that the Interdata and Microdata 
machines have two major deficiencies. The first is the 8-
bit microregisters, which would prove horribly inefficient 
for implementing the 16- or 32-bit arithmetic required for 
even basic numerical computing. Two or four registers 
would be required per operand, and multiple-precision 
arithmetic would have to be performed. The second defi
ci~~~y is the unavailability of on-site user microprogram
ming (let alone writeable control storage), making experi
mentation and redesign virtually impossible. For these 
two reasons the choice was narrowed down to the META 
4 and the QM-l. 

The QM-1 had two major features in its favor. The first 
was the abundance of micro registers and large amount of 
storage, while the second is that of writeable control stor
age. However, it appeared that the machine would not be 
available for many months, whereas the META 4 was 
immediately deliverable. Furthermore, the impressive 
control cycle speed of the META 4 was enticing. On these 
grounds it was decided to purchase two META 4's, the 
first of which would be the general-purpose processor 
called the "META 4A"2 and the second the graphics 
processor called the "META 4B." 19 

DESIGNI1\G A TARGET ARCHITECTURE 

Designing a target architecture should not have to be a 
major research effort. Unfortunately, however, there is a 
plethora of considerations which will greatly affect the 
ultimate usefulness of any design, and yet there are no 
available guidelines to help cope with them. If these con
siderations are not dealt with and ultimately synthesized 
in a reasonable manner, the architecture may fail to be of 
any use whatsoever. 

At first glance, the most important consideration may 
appear to be the application for which the architecture is 
intended. Although every application requires certain 
basic computational capabilities, the strength of a specific 
architecture lies in its ability to simplify the problems at 
hand. For example, process control requires a fast and 
flexible interrupt handling mechanism, whereas informa
tion retrieval necessitates powerful data structure manip
ulation operations. So it might well be concluded that an 
optimal architecture contains basic arithmetic, logical, 
and decision-making tools plus facilities oriented toward 
the ultimate application(s). 

The above assumption should be examined at a lower 
level. Suppose there is a machine with an instruction (call 
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it SEARCH) which scans a linked list for an entry with a 
specific key. Such an instruction is immensely useful for 
operating systems with queue-searching requirements, for 
information retrieval, or for computer graphics. Consider 
now the level of programming available for the machine. 
If programmers are coding in assembly language, the 
instruction can probably be utilized; the determination of 
when it can be used is up to the programmer. However, if 
a higher-level language is available, it may be impossible 
for even a very sophisticated compiler to determine when 
such an instruction can be generated without an explicit 
SEARCH primitive, because the fact that the program
mer is performing a queue search is hidden in a four or 
five statement loop. A vast amount of research concerning 
the relationship between compilers and instruction sets 
has yet to be conducted. 

The SEARCH difficulty is only indicative of a basic 
contradictory aim in the current design of computers. In 
most cases, the designers are thinking in terms of assem
bly language programming, and hence produce an 
instruction set with an abundance of special-purpose 
operations that can be used only by a resourceful assem
bly language programmer. As soon as the compiler 
designer begins considering the type of code his compiler 
is to generate, however, these instructions prove useless 
and perhaps cumbersome. 

So where does that leave us? It is at this point that the 
user must decide how much expertise he has available, 
how much time he is willing to devote, and how much 
money he has to spend. If he decides to bend over back
wards, then he can purchase something like a B1700, 
spend time experimenting with the architecture design, 
and probably produce a fine target machine. Indeed, such 
a processor is a particularly convenient vehicie for tack
ling the hardware-firmware-software problem,14 i.e., the 
problem of how to distribute the processing function 
between hardware, microprogram, and software for opti
mal performance. Many users might complain that they 
have not the money nor desire to spend excessive time in 
the design of a system. In this case a somewhat narrower 
approach to a conventional architecture is in order, with 
perhaps only a few basic improvements. If the user 
chooses to go the B1700 route, then the conflict between 
assembly and high-level languages can be eliminated by 
maintaining multiple emulators, one for each language. 
However, most users will probably choose the more con
ventional direction, in which case the problem still 
remains, and has a few solutions. If only assembly lan
guage will be used, then there is no reason not to incl ude 
SEARCH. The trend today, though, is toward higher-level 
languages, particularly with programmers becoming more 
enlightened to the successes of the structured program
ming approach.3.7 The compiler designer can simply 
ignore the SEARCH instruction, or he can add a 
SEARCH statement to the ianguage. If he chooses to 
ignore it, then its inclusion in the instruction set is ques
tionable and must be reconsidered. In this manner, each 
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special-purpose feature of an architecture must be evalu
ated separately to determine its ultimate usefulness. 

Another major consideration is that of the ultimate 
speed of the target machine. Most users might immedi
ately say that "the faster it goes, the better I like it." 
Many applications indeed require such speed, particu
larly real-time systems. Unfortunately, because of the 
aforementioned rigidity of host processors, it is impos
sible for a user to reduce emulation time by putting 
often-used functions into the hardware. In the work at 
Brown it has been found that, because of this fact, the 
speed of the individual functions in a target machine 
varies directly with their complexity. A good example is 
that of memory addressing schemes. Simple absolute 
addressing is extremely fast, while base register-dis
placement addressing is much slower. Add on an index 
register and an indirect flag and memory referencing 
will slow to the speed of cold molasses. The question 
that must be asked about each of these functions is: 
How much speed am I willing to trade off for useful com
plexity? You may come to the conclusion that speed is 
all important. Then again, programming and compila
tion ease may be the biggest factor, in which case a more 
powerful instruction set is desired. It must be kept in 
mind that the execution speed of a simple, fast archi
tecture and a complex slower one may be equalized by 
the fact that the slowness of the latter is made up for by 
its more powerful instructions, i.e., the faster machine 
requires more instructions to perform the same function. 
This implies an advantage to choosing the latter archi
tecture, since programs coded on it should be generally 
smaller than those coded on the other architecture (see 
the IBM 1130/META 4A benchmark in a later section 
for a specific example). 

One of the most probable misconceptions in evaluating 
speed requirements is that of determining how much 
computing per unit time is actually going to be done. If 
the application is input/output bound, or if it processes 
human requests, a somewhat slow CPU may go com
pletely unnoticed. Another possibility is that of a multi
processing system-upon consideration it may be deter
mined that one processor can be slow and more complex 
even if the other needs to be fast. 

An unfortunate problem with most microprogrammable 
processors today is the very limited amount of control 
storage which can be included (one to four thousand 
words in most cases). Once a basic target instruction set is 
microprogrammed, there may be little space left for 
application-oriented or experimental facilities. As in all 
programming, the space/time tradeoff is thus present, 
requiring the speed and space considerations to be evalu
ated in parallel. 

The above considerations lead directly to a related 
consideration, that of tuning the target architecture to fit 
the host computer. For reasons of speeding up the target 
machine and simplifying the microprogramming task, 
certain functions that the host machine does poorly 
should be avoided. One example is a host computer with-

out bit testing facilities; this suggests that a TEST BIT 
target instruction would be unwieldy. Another example is 
that of the word size of the target machine-it should 
optimally be the same as the host machine word size, and 
at worst a multiple thereof. The speed consideration is by 
far the most frustrating of all. It may require leaving out 
many features of the target machine that would otherwise 
be desirable, simply because they are uselessly slow or 
impossible to implement. It has also been shown that 
many functions may run almost as fast in the software as 
in the firmware, 5 in which case, for the purpose of saving 
control storage or for making the function more easily 
changeable, they should not be microprogrammed. 

A final consideration is that of the human program
ming factor. There may well arise a situation in whicl;1 
there are a handful of expert programmers trained on a 
specific machine, but it is decided for one reason or 
another to replace the machine with a microprogram
mabIe processor. Certainly, if this new processor were to 
support a target architecture similar or identical to the 
original machine, the programmers would be doing useful 
work much sooner than if they had to be retrained. 
Furthermore, any existing software packages could be 
converted in much less time, a factor that may well prove 
to be the saving or the death of the conversion. Perhaps 
the new processor is to run as a satellite to a bigger com
puter. In this case, programmers may be writing assem
bly language code for both machines. If they had identi
cal instruction sets, then these programmers' sanity could 
be preserved, whereas if they were somewhat different the 
programmers may not be able to switch machines with 
much alacrity. Furthermore, similarity between the two 
machines would allow compilers to be written which 
could produce optimized code for both machines using 
identical algorithms. 

The evaluation of all these interrelated considerations 
can add up to a staggeringly complex problem. Indeed, 
many decisions cannot be finalized until after the system 
is implemented and used for a while. If the host computer 
is equipped with writeable control storage, post-imple
mentation decisions are no problem. However, most hosts 
available today do not have such control storage, so that 
the design must be fairly well finalized before it is imple
mented. The best tool in this case is a good microcode 
simulator for the host, equipped with timing and debug
ging features. 24 Using the simulator, small applications 
programs and system software can be written in the target 
instruction set and tested. This simulation should turn up 
not only design and microprogramming errors, but also 
help determine the usefulness of experimental features 
and perhaps point out missing features. Uncountable 
hours of headaches can be saved in this way. 

The first design of the BUGS general-purpose processor 
(META 4A) began with what were thought to be fairly 
concrete decisions concerning the considerations dis
cussed above: 
Application facilities. The intent of the META 4A design 

was to produce a general-purpose processor which could 



support a variety of applications, the most important of 
which was graphics (keeping in mind that actual dis
play regeneration was to be done with the META 4B). 
Therefore, complete data structure searching and 
manipulation operators, plus operators for manipulat
ing arbitrary length character strings were included. In 
addition, requirements for communication with the 
IBM S/360-67 necessitated the inclusion of a micropro
grammed interface between the META 4A and the 
IBM multiplexor channel, plus target instructions to 
control this communication. 

Programming languages. This area was of definite con
cern in choosing the target instruction set. The ultimate 
goal was to use the LSD language for all programming, 
but, it would not be available for at least a year. Hence, 
for the interim, a powerful assembly language was 
needed, but it was necessary to think ahead and include 
facilities useful to a compiler. Unfortunately, the 
knowledge of just what these facilities should be was 
inadequate due to the fact that the compiler was only 
partially designed and partially implemented at the 
time. A limited set of instructions for procedure entry 
and exit were included, plus the idea of automatic stor
age was formalized and included in the firmware. Fur
thermore, it was decided to go ahead and include what
ever instructions would be useful for assembly language 
programmers, and simply let the designers of LSD 
ignore them if they were of no use. 

Speed. Because the actual graphics display regeneration 
was to be done in the META 4B, it was felt that the 
speed of the MET A 4A was not as crucial as its power 
and flexibility. The overall philosophy was to derive as 
much speed as possible without deterring from produc
ing a powerful and easy-to-use instruction set. 

Emulator size. The size of the emulator was limited to 
1500 microinstructions due to available funds. For this 
reason there was not much choice but to code so as to 
save control storage space at the expense of speed. 

Host considerations. The META 4 host seemed general 
enough so that any feature could be implemented; as it 
turned out, this was definitely not the case. Examples 
of the inadequacies that were discovered are discussed 
in the following section. 

Human factors. This, too, was a distinct problem. Pro
grammers would be working on three· separate proces
sors (S/360-67, META 4A, and META 4B) in parallel, 
and therefore the idea that the local processors should 
look iike Sj 360's was a strong one. On the other hand, 
these programmers were also experienced on other 
processors and felt that working in two different envi
ronments simultaneously would not be entirely out of 
the question. It was decided that architectural similar
ity was of only secondary importance. 

A FIRST ATTEMPT 

The first design of the META 4A was begun by consid
ering the great variety of computers already on the mar-
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ket and classifying them into categories. The evaluation 
of these computers would allow a choice of a base archi
tecture, which could then be improved and customized in 
light of the considerations outlined previously. The fol
lowing basic architectures were considered: 

IBM 1130-like. This category is considered to be com
posed of computers with relatively simple architectures 
that would be easy to implement and run efficiently on 
the META 4. Such things as simple addressing 
schemes, short instruction formats, and a small number 
of instructions would contribute toward this ease and 
efficiency. On the other hand, programming on such a 
machine would be slow and tedious, and there were no 
high-level facilities for use by the compiler designer. 
Furthermore, the integration of data structure and 
character manipulation features would be difficult, due 
to the lack of a sufficient variation of instruction for
mats and too few operation codes. Experience with 
IBM 1130's, and the fact that the ~1ETA 4 host was 
reasonably powerful, indicated that this was not the 
way to go. 

IBM S/360-like. In this category were computers with 
more complex architectures, offering the programmer 
more instructions and more power. Such an architec
ture may include multiple target registers, general 
addressing schemes, and a wider range of application 
facilities, such as character manipulation, that make 
the programming problem simpler and smaller. How
ever, with this power came complex instructions that 
require more time to emulate and more control storage 
to contain the emulator. One advantage to be gained by 
emulating an instruction set like that of the S/360 was 
the pre-existence of useful software such as assemblers 
and linkage editors. In a previous microprogramming 
project[V2], an S/360-like instruction set had been 
microprogrammed on an Interdata Model 3 with rea
sonable success. 

DEC PDP-ll-like. This category basically included only 
the PDP-ll family[D3]. It was considered separate and 
distinct simply because the PDP-ll contained a blend 
of features not found on other machines, such as stack 
operations and a highly flexible addressing mechanism. 
Instructions were generally variable in length, so that 
only necessary fields need be included-this was felt to 
be an advantage since the BUGS configuration had 
only 32K bytes of storage. Some considered the variable 
formats to be unnecessarily complex and confusing; one 
prospective user went so far as to state that he would 
refuse to code for the system if such an architecture 
were adopted. 

Stack machine. The final category was that of a stack 
architecture. Although such an architecture was ideal 
for high-level languages, it was difficult to program in 
assembly language. More importantly, such an archi
tecture requires special hardware to make up for hav
ing the stack in core (e.g., the A and B registers on the 
Burroughs machines,3 and without this hardware on the 
host, execution could be intolerably slow. 
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After evaluating the above architectures, the 1130-like 
architecture and the stack machine were ruled out for the 
reasons mentioned. At this point the decision became dif
ficult, but the PDP-ll-like architecture seemed to have a 
better blend of instruction power and size than the S /360-
like architecture. The fact that it was perhaps overly 
complex seemed somewhat irrelevant since those people 
who were to do the initial assembly language program
ming were extremely experienced. For these reasons it 
was decided to go with the PDP-ll-like architecture. The 
implementation of the PDP-II architecture proceeded 
smoothly during the summer of 1971, until finally, when 
the bulk of the microprogramming was complete, timing 
measurements were made on the resulting emulator. It 
was discovered that a register/storage ADD instruction, 
requiring only three storage cycles (approximately three 
microseconds), took a total of 10 microseconds to execute. 
This time was considered to be completely inadequate. 

In retrospect, the bottleneck became glaringly appar
ent. The instruction formats that had been adopted for 
this architecture consisted of many small fields (two or 
three bits) of information specifying such things as regis
ter numbers, addressing modes, and operation codes. 
These fields had to be isolated into various microregisters 
in order to fetch the target registers, branch on the opera
tion codes, and to perform other necessary functions. Not 
enough attention had been paid to the MET A 4 host to 
realize that such isolation would require many control 
cycles since the only shifting that could be perfarmed was 
right and left shifts of one or eight bits. If a 3-bit field 
must be isolated from bits 8 - 10 of a 16-bit word, for 
example, five shifts of "right one" must be performed, 
requiring about half a microsecond on the META 4. Per
forming such shifting many times in the course of a target 
instruction decreased the efficiency of the emulator dras
tically. 

From the failure of this first design attempt came the 
knowledge that tailoring the target architecture to the 
host machine is of great importance and cannot be under
estimated. As stated, the speed of the META 4A was not 
the most important factor, thus the slowness could per
haps be justified by arguing that programs would be sig
nificantly smaller with the PDP-ll-like format than with 
the other architectures considered. To ascertain the valid
ity of the justification, a set of benchmark programs was 
written using the PDP-ll-like instruction set and a 
slightly modified S /360 set. Such programs as storage 
allocation routines, matrix inversion algorithms, and text 
processing functions indicated that not only did the S /360 
instruction set outperform the PDP-ll by a speed factor 
of two to one, but that the PDP-ll programs were never 
more than 10 percent smaller than the others. 

A SECOND ATTEMPT 

Once the PDP-ll-like architecture was abandoned, the 
only remaining possibility indicated by the investigations 
outlined above was an S/360-like architecture. The pre
vious microprogramming of an S! ~hO emulator h~Hl hppn 

done in order to investigate the properties of the META 4 
host, and this microprogramming indicated that S /360 
instruction formats would be relatively free of complex 
shifting operation and hence faster to decode as compared 
to the PDP-ll formats. Indeed, when the second micro
programming task was finished, it was found that an 
equivalent ADD instruction took only 4.5 microseconds, 
as compared to the 10 for the PDP-ll-like set; this was 
considered a satisfactory improvement, particularly in 
light of the small difference in program size. 

The final implementation of the META 4A general
purpose processor, although S/360-like in nature, has 
many major departures from the actual S;360. In terms 
of architecture it is almost identical, except for the fact 
that the major numeric data type is the 16-bit (halfword) 
integer rather than the 32-bit (full word) integer, due to 
the fact that the META 4 host has 16-bit registers. The 
two features omitted were the decimal data type, as this 
was considered unnecessary, and the floating-point data 
type. Floating-point is not included for two reasons. The 
first is that it is extremely difficult to implement in 
microcode without any hardware assistance; the resulting 
instructions would be extremely slow and consume a 
tremendous amount of precious control storage. The 
second reason is that any large amount of floating-point 
processing could be performed in the S/360-67 and the 
results transferred across the multiplexor channel to the 
META 4A. The META 4A has 16 target registers, imple
mented using 16 of the META 4 host's 32 registers, and 
instruction formats identical to those of the S;360. In 
terms of instruction set, however, it has many improve
ments over a S/360. 

(1) The instruction address register, or Program 
Counter (PC) as it is called on the META 4A, is 
actually target register 1. This feature allows more 
complex branching techniques, such as can be 
obtained by performing an addition into the PC, or 
by loading an address from storage into the PC. 
Although this is a powerful facility, it does add to 
the inscrutability of the user's program logic. More 
importantly, as long as all local data is placed 
beyond any instructions which refer to it. the PC 
can be used as the program base register, thus 
freeing another precious general-purpose target 
register from this function. 

(2). If the Pc is used as the program base register, it is 
impossible for an instruction to perform a back
wards reference. This is no problem for data refer
ences, but branch instructions must be capable of 
diverting control to a previous instruction. For this 
reason, the format of the branching instructions 
has been changed from including a base-displace
ment address to including simply a signed displace
ment considered relative to the PC. Not only does 
this alleviate the backward branch problem, but it 
makes the decoding of branch instructions much 
faster, since a base-displacement address, requiring 
a register numher isoll'ltion, fetch. ami I'lrlrlition. 



does not have to be performed. Branch instructions 
on the META 4A execute faster than those on an 
S/360-50! 

(3) A new instruction format, called Register-Immedi
ate (RI) format, has been added to the instruction 
repertoire. This format allows the programmer to 
perform the most common arithmetic and logical 
instructions using a register and an immediate 
halfword as the operands, thus saving both a base
displacement calculation and the halfword of stor
age that would be required for the remote constant. 
This proves to be a major factor in making most 
META 4A programs smaller than the equivalent 
S /360 programs. Additionally, the RI format 
instructions execute anywhere from one to two 
microseconds faster than the equivalent register / 
storage instructions. 

(4) Instructions are provided which operate upon arbi
trary length character strings. With these instruc
tions the programmer can assign, compare, scan, 
translate, and initialize character string up-to 64K 
bytes in length. 

(5) SEARCH, ENQ, and DEQ instructions are pro
vided for manipulating linked lists and tables. The 
SEARCH instruction can scan a table or a linked 
list for an arbitrary length key anywhere in its 
members which is a logical function of an argument 
key. If an entry satisfying the function is found, a 
register is set to point to it. Once a SEARCH is 
performed on a linked list with DEQ, the satisfying 
entry can be deleted from the list, or a new entry 
can be added following it with ENQ. These instruc
tions have proven invaluable time and space savers 
for implementing queue searches in the BUGS 
operating system. 17 Such queues as the free stor
age queue, dispatch queue, and the interrupt exit 
queue, are searched and maintained by these three 
instructions. Unfortunately, they will not be gener
ated by the LSD compiler, except perhaps via an 
explicit primitive. 

(6) One interesting architectural experiment which was 
performed was to include a set of crude stack 
manipulation instructions, allowing the program
mer to set up an arbitrary size stack and then push 
and pop information into and from it. The point of 
such an experiment was to learn whether or not 
programmers who were not experienced with a 
stack machine could learn to make use of such 
facilities, e.g., for expression evaluation. To date, 
no BUGS software has utilized the stack instruc
tions. 

(7) Two instructions, ENTER and RETURN, exist in 
order to simplify, and particularly to speed up, the 
subprocedure entry and exit protocol. Each proce
dure has associated with it a Stack Frame area, 
which contains a register save area and an arbi
trary amount of automatic storage. These Stack 
Frame areas are maintained by the META 4A 
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operating system. Experimentation with the format 
and content of these areas is continuing today. Ii 

(8) Special facilities were included in the firmware to 
support the addition of Extended instructions. An 
Extended instruction is an instruction which has an 
operation code not recognized by the firmware, but 
which has special meaning to the operating system. 
When such an instruction is executed, the firmware 
stores the parsed instruction into a special area in 
storage, and causes a target-level interrupt. At this 
point the operating system can simulate any func
tion desired and then return control to the pro
gram. Such a facility has proven invaluable for 
testing a new instruction before it is placed in the 
firmware, and for use as a communication method 
between user programs and the operating system 
software. 

In addition to the major points listed above, a great 
number of miscellaneous instructions have been added to 
the standard S /360 repertoire in 0 rder to fill out what 
were considered "gaps" in the instruction set. This 
included such things as storage to storage arithmetic, 
more address manipulation features, and indirect 
addressing on certain instructions. Although these 
instructions are sometimes used and can help decrease 
the size of a program, they also tend to add to the diffi
culty of learning and digesting the instruction set. In par
ticular, they increase the number of ways in which a 
problem can be coded and make it extremely difficult to 
select the most optimal algorithms. The question which 
remains, and which is currently being investigated, is just 
how much it is worth adding facilities which, although 
they may cut the size of a program by 5 percent, ci utter 
up the instruction set and use up control storage. In addi
tion' although these instructions were added to fill gaps in 
the S/360 repertoire, they have introduced their own 
gaps. An example is the addition of address manipulation 
instructions. Such an addition suggests that perhaps the 
address should be recognized as a valid data type, just as 
an integer is, and a full address manipulation instruction 
subset should be added. The META 4A does not have 
such a full subset, so that a new gap is introduced. Simi
larly, many a META 4A programmer has been heard to 
mutter such things as "if I can add two halfwords in stor
age, why can't I OR two halfwords?" 

Another problem with the addition of "random" 
instructions is exemplified in an instruction by instruc
tion analysis of the code to be generated by the LSD 
compiler. A full third of the META 4A instruction set is 
never utilized by the compiler; once the programming 
load is shifted over to LSD, these instructions will become 
virtually useless. The control storage taken up by them 
could probably be put to a much better use. 

The BUGS system has been in standalone production 
use since August 1972, primarily for research into N
dimensional mathematics. The performance of the 
META 4A has proven to be rather impressive. Based on 
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the applications programs written so far, a typical META 
4A program is between 3/4 and 2/3 the size of the equiva
lent 8/360 program. Furthermore, the speed of execution 
of these programs (using halfword operands) lies some
where in between the speed of an 8/360-40 and an 8/360-
50, which is extremely pleasing considering the cost ra
tio between the META 4 host (about $30,000) and an 
8/360. 

One interesting benchmark was a comparison of the 
IBM 1130 emulator supplied with the META 4 host 
(which is twice as fast as an actual 2.2 microsecond IBM 
1130) and the META 4A emulator. A version of the 
META 4 simulator used for debugging microprograms! 
was written for both of these target machines and com
pared. The comparisons showed that the simulation speed 
of these two programs were indistinguishable. However, 
the META 4A version is 1/3 the size of the 1130 version, 
due primarily to the lack of character manipulation on 
the 1130. 

In light of the above benchmarks and hand simulations 
of test algorithms written for the Data General NOVA 
and DEC PDP-11 series, it appears that arbitrary algo
rithms typically do not run appreciably slower and do use 
less storage on the META 4A, while algorithms that take 
advantage of the special purpose instruction on the 
META 4A both run considerably faster and use consider
ably less storage. 

CONCLU8ION-A RATIONAL APPROACH VIA 
FORMALIZATION 

Although an initial framework around which a user can 
design and implement his own target machine has been 
built, there is nothing to prevent this design from being ad 
hoc. Indeed, in light of the many considerations which 
must be synthesized, an ad hoc design is inevitable. It has 
been shown that an architecture can be both an improve
ment over previous architectures and reasonably efficient 
while still being disorganized and incomplete. 8uch defi
ciencies cause the assembly language programmer many 
headaches in terms of choosing algorithms, optimizing 
code, and generally writing programs. Furthermore, if the 
choice of target instructions is disorganized, many 
instructions will be included which are minimally useful 
to the assembly language programmer and useless to the 
compiler designer, simply because a far-fetched use of the 
instruction was envisioned by one of the members of the 
design team. An interesting example of this is the LXB 
instruction on the META 4A, which reads a 16-bit half
word from storage and loads it into a register after 
exchanging the two bytes. This instruction was included 
for no other reason than the META 4 host machine had a 
byte swapping facility. It should be obvious that LXB has 
rarely if ever been used. All in all, the ad hoc architecture 
is due to a random combination of features useful to the 
application, features easily adaptable to the host, and 
features useful to the programmer. 

How can such architectures be eliminated? A look at 
many of the high-level languages in use today, particu-

larly PL/I, will reveal a general philosophy that deals 
with the problem. In PL/I, there is a well-defined set of 
data types and a well-defined set of operators, and any 
combination of these data types and operators is defined, 
except where meaningless. If such a formalization is 
adopted, it becomes easier to choose the statements neces
sary for each individual step of a program, and reduces 
the obscurity which results when "unnatural" statements 
are required. Furthermore, it reduces the tendency 
toward operators and data types which are added for 
special cases and hence do not fit into the overall lan
guage scheme. There is no reason why this same formali
zation cannot be applied at the lower level of target ma
chine instruction sets. 8ince the average program is con
cerned chiefly with data manipulation, as opposed to I/O 
or interrupt handling, a formalization of the data manip
ulation facilities of the machine would have major 
impact. 

The most apparent programming benefit of such for
malization would be to the compiler designer. In order for 
him to allow the aforementioned generality to a program
ming language on most current machines, he must gener
ate unnatural code which performs the operations indi
cated by the programmer. This code could be eliminated 
if the operations were made natural by allowing them to 
be performed directly by single instructions. The Bur
roughs family of stack machines has adopted just such a 
philosophy and the results are well known: ALGOL 
compilers which can generate efficient code at an incredi
bly high rate. In addition, the assembly language pro
grammer gets an equivalent benefit in that he can code 
the individual steps of an algorithm in a more straightfor
ward manner, without regard to such irrelevant consider
ations as whether an operand is in storage or in a register 
or whether a character string is longer than 256 charac
ters. Programs coded in' such an environment should be 
shorter, more free of errors, and easier to modify in the 
future. 

The programming benefit gained from formalizing a 
proposed architecture is not the most important one, 
however. The purpose of this paper has been to outline a 
set of considerations which the target computer designer 
must keep in mind when creating a new machine. If the 
design is approached in a haphazard fashion, the designer 
will have perhaps 100 or 150 assorted features and 
instructions about which he must ask such questions as 
"are they useful to the application?", "how useable will 
they be by assembly and high-level language 
programmers?", and "will the host machine support them 
efficiently?" 8uch an overwhelming number of questions 
may be impossible to answer, particularly when the inter
relationships between the operations is unclear. By for
malizing this machine, the synthesis of these considera
tions can be made simpler and more productive. The 
designer need only answer these questions about perhaps 
twenty operations and five data types, a much smaller 
task. If these features are proven to be useful and effi
cient' then the designer can feel assured that the final 



implementations of the instruction to perform the opera
tions will be useful and efficient. 

Current research at Brown is attempting to deal with 
the formalization question. An analysis of the use of the 
current META 4A instruction set is being performed via 
modifications to the firmware with the hope of deter
mining instruction and instruction sequence character
istics and applying these characteristics to a determina
tion of an optimal instruction set. A formalized archi
tecture will then be designed, experimentally imple
mented, and an evaluation made of the improvement in 
program coding ease, speed, size, etc. Once this is done, 
a more detailed guide to computer design and imple
mentation can be written. 
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I~TRODUCTION 

Since the early years of the digital computer era, there 
has been a continuing attempt to gain processing power 
by organizing hardware processors so as to achieve some 
form of parallel operation.1.2 One important thread has 
been the use of an array of processors to allow a single 
control stream to operate simultaneously on a multiplic
ity of data streams; the most ambitious effort in this 
direction has been the ILLIAC IV project. 3

.
4 Another 

important thread has been the partitioning of problems so 
that several control streams can operate in parallel. Often 
functions have been unloaded from a central processor 
onto various specialized processors; examples include 
data channels, display processors, front-end communica
tion processors, on-line data preprocessors-in fact, I/O 
processors of all sorts. Similarly, dual processor systems 
have been used to provide load sharing and increased 
reliability. Still another thread has been the construction 
of pipeline systems in which sub-pieces of a single 
(generally large) processor work in parallel on successive 
phases of a problem. 5 In some of these pipeline 
approaches the parallelism is "hidden" and the user con
siders only a single control stream. 

In recent years, as minicomputers have proliferated, 
groups of identical small machines have been connected 
together and jobs partitioned quite grossly among them. 
Most recently, our group and several others have been 
investigating this avenue further, attempting to reduce 
the specialization of the processors in order to employ 
independent processors with independent control streams 
in a cooperative and "equal" fashion. 6

.
7

•8 

This paper describes a new minicomputer / multipro
cessor architecture for which a fourteen-processor proto
type is now (February 1973) being constructed. The 
hardware design and the software organization incl ude 
many novel features, and the system may offer significant 
advantages in modularity and cost/performance. The 

* This work was sponsored by the Advanced Research Projects Agency 
under Contracts DAHC15-69-C-0179 and F08606-73-6-0027. 
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system contains an expandable number of identical proc
essors, each with some "private" memory; an expandable 
amount of "shared" memory to which all processors have 
equal access; and an expandable amount of I/O interface 
equipment, controllable by any processor. The system 
achieves unusual modularity and reliability by making 
all processors equivalent, so that any processor may per
form any system task; thus systems can be easily config
ured to meet the throughput requirements of a particular 
job. The scheme for interconnecting processors, memo
ries, and I/O is also modular, permitting interconnection 
cost to vary smoothly with system size. There is no "exec
utive" and each processor determines its own task alloca
tion. 

A key issue throughout most of the attempts at parallel 
organization has been the difficulty of partitioning prob
lems in such a way that the resulting computer pro
gram(s) can really take advantage of the parallel organi
zation. This issue is raised in its most serious form when 
the parallel machine is expected to work well on a great 
diversity of problems as, for example, in a time-sharing 
system. Our machine design has been developed under 
the highly favorable circumstances that (1) the initial 
application, and a prior software implementation in a 
standard machine, was well understood; (2) the initial 
application lent itself to fragmentation into parallel struc
tures; and (3) the design would be deemed successful if it 
handled only that one application in a meritorious fash
ion. However, we now believe that the design is advanta
geous for many other important applications as well and 
that it may herald a broadly useful new way to achieve 
increased performance and reliability. 

The machine has been designed to serve initially as a 
modular switching node for the ARPA Network9 and, in 
the following section, we briefly describe the ARPA 
Network application and the requirements that the net
work imposed upon the machine design. In subsequent 
sections we discuss our choice of minicomputer, describe 
our system design in some detail, discuss certain of the 
more interesting characteristics of multiprocessor behav
ior, and summarize our present status and plans for the 
near future. 
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ARPA NETWORK REQUIREMENTS 

The ARPA Network, a nationwide interconnection of 
computers and high bandwidth (50 Kb) communication 
circuits, has grown during the past four years to include 
over 35 sites, with more than one computer at many sites. 
The computers at each site, called Hosts, obtain access to 
the net via a small communications processor known as 
an Interface Message Processor or IMP. 10 In order to 
permit groups without their own computer facility to 
access this powerful set of computer resources, a version 
of the IMP called a Terminal IMP allows, in addition, 
attachment of up to 63 local or remote terminals of a wide 
range of types. 11 

As a considerable simplification, the job to be handled 
by an IMP is that of a communications processor. Arriv
ing messages must pass through an error control algo
rithm, be inspected to some degree (e.g., for destination), 
and generally be directed out onto some other line. Some 
incoming messages (e.g., routing control messages) must 
be constructed or digested directly by the IMP. The IMP 
must also concern itself with flow control, message assem
bly and sequencing, performance and flow monitoring, 
Host status, line and interface testing, and many other 
housekeeping functions. To perform these functions an 
IMP requires memory both for program and for message 
buffers, processing power for executing the program, and 
I/O units of various sorts for connecting to a variety of 
lines and devices. The original IMP, built around a 
Honeywell 516 processor with a 1 ILS cycle time, could 
handle approximately three-quarters of a megabit per 
second of full duplex communications traffic. A later, 
smaller and cheaper (Honeywell 316) version handles 
about two-thirds as much traffic. 

As the network has grown and as usage has increased, a 
number of demands for improvement have led to the need 
for a new "line" of IMP machines. Our intent is to pro
vide a modular arrangement of flexible hardware from 
which it will be possible to construct both smaller and less 
expensive IMPs as well as far more powerful IMPs. An 
important specific objective is to obtain an IMP whose 
communications bandwidth could be at least an order of 
magnitude greater than the 516 IMP; such a high speed 
IMP would permit the direct connection of satellite cir
cuits or land T -carrier circuits operating at approxi
mately 1.3 megabits / second. 

It is also desirable to improve the present IMP design 
in a number of other areas, as follows. 

• Expandability of I/O: The present IMPs permit 
connection to a total of only seven high-speed circuits 
and/or Host computers. We would like to permit a 
much greater fanout so that an IMP might be con
nected to as many as 20 or more Host computers or 
to hundreds of terminals. This means that the num
ber of interface units should be expandable over a 
wide range. 

• Modularity: A number of groups have wished to 
make a network connection from a single Host at a 

considerable distance (miles) from the nearest IMP. 
We feel that such Hosts should be locally connected 
to a very small IMP in order to preserve consistency 
and standardization throughout the network. There
fore, a goal of this new hardware effort is the provi
sion of a small and inexpensive but compatible IMP 
which could serve to connect a single, distant spur 
Host. 

• Expandability of Memory: The new line of equip
ment is required for use in connection with satellite 
links (or longer faster links in general) and must 
therefore be able to expand its memory easily to 
provide the much greater buffer storage require
ments of such links. 

• Reliability: The new line of processors should be 
more reliable than the existing IMPs and ought to 
permit better self-diagnosis and simple isolation and 
replacement of failing units. 

Of the requirements posed by the ARPA Network 
application, the most central was to obtain an order-of
magnitude traffic bandwidth improvement. We first con
sidered meeting this requirement with highly specialized 
hardware, but the need to allow evolution of the commu
nications algorithms, as well as the "bookkeeping" nature 
of much of the IMP task, militate against hardwired 
approaches and require the flexibility of a stored program 
computer. Thus we need a machine with an effective 
cycle time of 100 nanoseconds, a factor of ten faster than 
the present 1 ILS IMP. Realizing that a single very fast 
and powerful machine would be difficult to build and 
would not give us compatible machines with a wide spec
trum of performance, we began to consider the possibility 
of a minicomputer/multiprocessor in order to achieve the 
flexibility, reliability, and effective bandwidth required. 

With the idea of a multiprocessor in mind we consid
ered the IMP algorithm to determine which parts were 
inherently serial in nature and which could proceed in 
parallel. It seemed difficult to process a single message in 
a parallel fashion: the job was already relatively short 
and intimately coupled to I/O interfaces. However, there 
was much less serial coupling between the processing of 
separate messages from the same phone line and no cou
pling at all between messages from different phone lines. 
We thus envisage many processors, each at work on a 
separate message, with the number of processors carefully 
matched to the number of messages we expect to encoun
ter in the time it takes one processor to deal with one 
message. With this simple image there seems to be no 
inherent limit to the parallelism we can achieve-the 
ultimate limit would be set by the size of the multiproces
sor we can build. 

CHOICE OF THE PROCESSOR 

In designing a multiprocessor for the IMP application, 
we found ourselves iteratively exploring two related but 
distinct issues. First, assuming that the problem of inter
connection could be solved, what minicomputer would be 
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a sensible choice from the price/performance and physi
cal points of view? Second, and much harder: for any 
specific machine, how did the CPU talk to memory, how 
would multiple CPUs, memories, and I/O be intercon
nected to form a system, and how would the program be 
organized? 

Since the program for the existing IMPs was well 
understood, it was possible to identify key sections of that 
program which consumed the majority of the processing 
bandwidth. Then, for each sensible minicomputer choice, 
we could ask how many CPU s of this type would be 
needed to provide an effective 100 nanosecond cycle time; 
and given a price list, physical data, and a modest 
amount of design effort, we could define the physical 
structure and the price of the resulting multiprocessor. 
With this general approach, we examined the internal 
_~o£abollt a dozen macbjnes,--.and...ac~_wro:tej;he. 
key code in many cases. Using the fastest available mini
computers it was possible to arrive at configurations with 
only three or four processors; using the slowest choices, 
systems with 20 CPU s or more were required. 

If we defer the interconnection and contention prob
lems for a moment, it is interesting to note that "slow and 
cheap" may win over "fast and expensive" in this kind of 
multiprocessor competition to achieve a stated processing 
bandwidth. This is an especially happy situation if, as in 
our case, a spectrum of configurations is needed, includ
ing a very tiny cheap version. 

In considering which minicomputer might be most eas
ily adaptable to a multiprocessor structure, the internal 
communication between the processor and its memory 
was of primary concern. Several years ago machines were 
introduced which combined memory and I/O busses into 
a singie bus. As part of this step, registers within the 
devices (pointers, status and control registers, and the 
like) were made to look like memory cells so that they 
and the memory could be referenced in a homogeneous 
manner. This structure forms a very clean and attractive 
architecture in which any unit can bid to become master 
of the bus in order to communicate with any other desired 
unit. One of the important features of this structure is 
that it made memory accessing "public"; the interface to 
the memory had to become asynchronous, cleanly isolable 
electrically and mechanically, and well documented and 
stable. A characteristic of this architecture is that all ref
erences between units are time multiplexed onto a single 
bus. Conflicts for bus usage therefore establish an ulti
mate upper bound on overall performance, and attempts 
to speed up the bus eventually run into serious problems 
in arbitration. 12 

In 1972 a new processor-the Lockheed SUE13-was 
introduced which follows the single bus philosophy but 
carries it an important step further by removing the bus 
arbitration logic to a module separate from the processor. 
This step permits one to consider configurations embody
ing multiple processors and multiple memories as well as 
I/O on a single bus. The SUE CPU is a compact, rela
tively inexpensive (approximately $600 in quantity), 
quite slow processor with a microcoded inner structure. 

This slowness can be compensated for by simply doubling 
or trebling the number of processors on the bus; perform
ance is limited largely by the speed of the bus. With this 
bus architecture it becomes attractive to visualize multi
bus systems with a "bus coupling" mechanism to allow 
devices on one bus to access devices on other busses. 

Similar approaches can be implemented with varying 
degrees of difficulty in systems with other bus structures, 
and we examined several approaches in some detail for 
those processors whose cost/performance was attractive. 
Rather fortuitously, the minicomputer which exhibited 
the most attractive bus architecture also was extremely 
attractive in terms of cost/performance and physical 
characteristics. This machine, the Lockheed SUE, would 
require fourteen processors to achieve the effective 100 
nanosecond cycle time, and we embarked on the detailed 
de.sjgn---.OLQ_ur_ multiprocessnr...on..that.hasis. 

SYSTEM DESIGN 

Although our design permits systems of widely varying 
size and performance, in the interest of clarity we will 
describe that design in terms of the particular prototype 
now under construction. Our overall design is represented 
in Figure 1. We require fourteen SUE processors to obtain 
the necessary processing bandwidth, and we estimate that 
32K words of memory will be required for a complete 
copy of the operational program and the necessary 
communication buffer storage. The I/O arrangements 
must allow easy connection of all the communications 
interfaces, appropriate to the IMP job (modem inter
faces, Host interfaces, terminal interfaces) as well as 
standard peripherals and any special devices appropri
ate to the multiprocessor nature of the system. 

Some of the basic SUE characteristics are listed in 
Table 1. From a physical point of view, the SUE chassis 
represents the basic construction unit; it incorporates a 
printed circuit back plane which forms the bus into which 
24 cards may be plugged. From a logical point of view this 
bus simply provides a common connection between all 

Figure I-System structure 
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TABLE I -SUE Characteristics 

16-bit word 
8 General Registers 
,63.7 ¢3 add or load time 
Microcoded 
Two words/instruction typical 
8-Y2"X19"X18" chassis 
64K bytes addressable by a single instruction 
",$3K for: 1 CPU +4K Memory+Power, Rack, etc. 
200 ns minimum bus cycle time 
850 ns memory cycle time 
425 ns memory access time 

units plugged into the chassis. We are using these chassis 
for the entire system: processor, memory, and I/O. All 
specially designed cards as well as all Lockheed-provided 
modules plug into these bus chassis. With this hardware, 
the terms "bus" and "chassis" are used somewhat inter
changeably, but we will commonly call this standard 
building unit a "bus." Each bus requires one card which 
performs arbitration. A bus can be logically extended (via 
a bus extender unit) to a second bus if additional card 
space is required; in such a case, a single bus arbiter 
controls access to the entire extended bus. 

We can build a small multiprocessor just by plugging 
several processors and memories (and I/O) into a single 
bus. For larger systems we quickly exceed the bandwidth 
capability of a single bus and we are forced to multi-bus 
architecture. Then, from a construction viewpoint, our 
multiprocessor design involves assigning processors, 
memories and I/O units to busses in a sensible manner 
and designing a switching arrangement to permit inter
connection of all the busses. Of course, the superficial 
simplicity of this construction viewpoint completely hides 
the many difficult problems of multiprocessor system 
design; we will try to deal with some of those issues in the 
following sections. 

Resources 

A central notion in a parallel system is the idea of a 
"resource," which we define to mean a part of the system 
needed by more than one of the parallel users and there
fore a possible source of contention. The three basic 
hardware resources are the memories, the I/O, and the 
processors. It is useful to consider the memories, further
more, as a collection of resources of quite different char
acter: a program, queues and variables of a global nature, 
local variables, and large areas of buffer storage. 

The basic idea of a multiprocessor is to provide multi
ple copies of the vital resources in the hope that the algo
rithm can run faster by using them in parallel. The 
number of copies of the resource which are required to 
allow concurrent operation is determined by the speed of 
the resource and the frequency with which it is used. An 
additional advantage of multiple copies is reliability: if a 
system contains a few spare copies of all resources, it can 
continue to operate when one copy hre~ks. 

It may seem peculiar to think of a processor as a 
resource, but in fact in our system the parallel parts of 
the algorithm compete with each other for a processor on 
which to run. We take the view that all processors shall be 
identical and equal, and we go to some trouble to insure 
that this is in fact so. As a consequence no single proces
sor is of vital importance, and we can change the number 
of processors at will. A later section will describe how the 
processors coordinate to get the job done without a master 
of some sort. 

Processor busses 

A SUE bus can physically and logically support up to 
four processors. As more processors are added to a bus, 
the contention for the bus increases, and the performance 
increment per processor drops; but the effective cost per 
processor also drops, since the cost for the chassis, power 
supply, bus arbitration, etc., is amortized over the num
ber of processors. 

Roughly speaking, using two processors per bus loses 
almost nothing in processor performance, using three 
processors per bus loses significant efficiency, and adding 
a fourth processor gains less than half an "effective proc
essor." After careful examination of the logical, economic 
and physical aspects of this choice, we decided to use two 
processors per processor bus, and we thus require seven 
processor busses in our initial multiprocessor system. 

The next question was how the processors should access 
the program. In our application, some parts of the pro
gram are run very frequently and other parts are run far 
less frequently. This fact allows a significant advantage to 
be gained by the use of private memory. When a proces
sor makes access to shared memory via the switching 
arrangement, that access will incur delays due to conten
tion and delays introduced by the intervening switch. We 
therefore decided to use a 4K local memory with each 
processor on its bus to allow faster local access to the 
frequently run code; these local memories all typically 
contain the same code. With this configuration and in our 
application, the ratio of accesses to local versus shared 
memory is better than three to one. This not only reduces 
contention delays for access to the shared memory but 
also cuts the number of accesses which suffer the delays. 

The final configuration of a processor bus is shown in 
Figure 2(a). The units marked "Bus Coupler" have to do 
with our multiprocessor switching arrangement, which 
will be discussed below. 

Shared memory busses* 

The shared memory of our multiprocessor is intended 
to contain a copy of the program as well as considerable 
storage space for message buffering, global variables, etc. 
Application-dependent considerations led us to select a 

* The terms "/iO bus" and "memory bus" as used here and henceforth 
are not thc sar.;e as conL'cntiona! I:O and memory b[lssc~. 
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Figure 2-Bus structures 

32K memory, but it is possible to configure this memory 
on a single bus or to divide the memory onto several bus
ses. We first concluded that four logical memory units 
would be appropriate in order to reduce processor conten
tion to an acceptable level. Then, since the bus is consid
erably faster than the memories, it is feasible to place two 
logical memory elements on a single bus with almost no 
interference. Thus, we are planning two memory busses 
in the initial multiprocessor; the configuration of a 
common memory bus is shown in Figure 2(b). 

lIO bu..'ises 

The I/O system of the multiprocessor employs stand
ard SUE busses with standard bus arbitration units on 
those busses. Into the bus will be plugged cards for each 
of the various types of I/O interfaces that are required, 
including interfaces for modems, terminals, Host comput
ers, etc., as well as interfaces for standard peripherals. 
Our initial system has a single I/O bus and Figure 2 (c) 
shows its configuration; the specialized units shown (a 
"Clock" and "Pseudo Interrupt Device") are system-wide 
resources that are used to control the operation of the 
multiprocessor. The I/O bus will also be the access route 
for the multiprocessor console; we plan to use a standard 
alphanumeric display terminal which can be driven by 
code in any processor, and no conventional consoles will 
be used. 

Interconnection system 

Our prototype multiprocessor is now seen to contain 
seven processor busses, two shared memory busses and an 
I/O bus. To adhere to our requirement that all processors 
must be equal and able to perform any system task, these 
busses must be connected so that all processors can access 
all shared memory, so that I/O can be fed to and from 
shared memory, and so that any of the processors may 
control the operation and sense the status of any I/O unit. 

A distributed inter-communication scheme was chosen 
in the interest of expandability, reliability, and design 
simpiicity. The atom of this scheme is called a Bus Cou
pler, and consists of two cards and an interconnecting 
cable. In making connections between processors and 
shared memory, one card plugs into a shared memory 
bus, where it will request cycles of the memory; the other 
carapIugs-irito-ajirocessoi'-s -lius, whe-reit lOOKS -Tlke
memory. When the processor requests a cycle within the 
address range which the Bus Coupler recognizes, a 
request is sent down the cable to the memory end, which 
then starts contending for the shared memory bus. When 
selected, it requests the desired cycle of the shared 
memory. The memory returns the desired information to 
the Bus Coupler, which then provides it to the requesting 
processor, which, except for an additional delay, does not 
know that the memory was not on its own bus. ~ote that 
the memory access arbitration inherent in any memory 
switching arrangement is handled by the SUE Bus Arbi
ter controlling the shared memory bus, while the Bus 
Coupler itself is conceptually straightforward. 

One additional feature of the Bus Coupler is that it 
does address mapping. Since a processor can address only 
64K bytes (16 bit address), and since we wished to permit 
multiprocessor configurations with up to 1024K bytes (20 
bit address) of shared memory, a mechanism for address 
expansion is required. The Bus Coupler provides four 
independent 8K byte windows into shared memory. The 
processor can load registers in the Bus Coupler which 
provide the high-order bits of the shared memory address 
for each of the four windows. 

Given a Bus Coupler connecting each processor bus to 
each shared-memory bus, all processors can access all 
shared memory. I/O devices which do direct memory 
transfers must also access these shared memories. These 
I I 0 devices are plugged into as many I 10 busses as are 
required to handle the bandwidth involved, and bus cou
plers then connect each I/O bus to each memory bus. 
Similarly, 110 devices also need to respond to processor 
requests for action or information; in this regard, the I/O 
devices act like memories and Bus Couplers are again 
used to connect each processor bus to each I/O bus. The 
path between processor busses and I I 0 busses is also 
used in a more sophisticated fashion to allow processors 
to examine and control other processors; this subject is 
described in a later section. 

The resulting system is shown in Figure 3. One is struck 
by the number of bus couplers: P*I + I*M + P*M bus 
couplers are required for a system with P processor bus-
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Figure 3-Prototype system 

ses, I I I 0 busses, and M memory busses. In the case of 
our initial multiprocessor, 23 are needed. 

This modular interconnection approach clearly permits 
great flexibility in the number and configuration of bus
ses, and allows interconnection cost to vary smoothly with 
system size. We believe that this modular interconnection 
scheme also permits a complex hierarchical arrangement 
of busses. Actually the system exhibits a pronounced 
hierarchical structure already. A processor accesses the 
local memory when it needs instructions or local varia
bles. Two such processor-memory combinations form a 

dual processor, which can be regarded as a unit and 
which needs access to shared resources, such as global 
variables, free buffers, and I/O interfaces. When one 
copy of a resource can only support a limited number of 
users, it seems sensible to provide only the corresponding 
limited number of connections. If a multiprocessor of this 
type were to grow larger, the physical number of bus 
couplers as well as increasing contention problems might 
not permit the connection of each processor to all of 
common memory, but might instead require a multi-level 
structure where groups of processors were connected to an 
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intermediate level bus which was in turn connected to a 
centralized common memory. We have not explored this 
domain but feel it is an interesting area for future work. 

MULTIPROCESSOR BEHAVIOR 

Until the processors interact, a multiprocessor is a 
number of independent single processor systems: it is the 
interaction which poses the conceptual as well as the 
practical problems. If the various processors spend their 
time waiting for each other, the system degrades to a sin
gle processor equivalent; if they can usefully run concur
rently, the processing power is multiplied by the number 
of processors. If the failure of a single processor takes the 
system down, the system reliability is only the probability 
of all processors being up; if working processors can diag
nose and heal or amputate faulty processors and proceed 
Witllthe Job, the system rehabIhty appr6aC1ie~n;nepfOba
bility of any processor being up. We now consider how to 
keep processors running concurrently, and then how to 
keep the system running in the case of module failure. 

The first problem in making the machines run inde
pendently is the allocation of runnable tasks to proces
sors, so that the full requisite power can be quickly 
brought to bear on high priority tasks. Our scheme for 
doing this rests on four key ideas: (1) We break the job up 
into a set of tiny tasks. (2) Our processors are all identi
cal, asynchronous, and capable of doing any task. (3) We 
keep a queue of pending tasks, ordered by priority, from 
which each processor at its convenience gets its next task. 
(4) For speed and efficiency, we use a hardware device to 
help manage the queue. 

By breaking the job up into smaller and smaller tasks 
until each one runs in under 300 J.LS, we effectively deter
mine the responsiveness of our system. Once started, a 
task must run to completion, but there will be a reconsi
deration of priorities at the beginning of each new task. 
We have chosen 300 microseconds as the maximum task 
execution time because this compromise between effi
ciency and responsiveness is well matched to the execu
tion time of key IMP functions. 

By making the processors identical, we can use the 
same program in systems of widely varying size and 
throughput capability. Any processor can be added to or 
removed from a running system with only a slight change 
in throughput. The power of all processors quickly shifts 
to that part of the algorithm where it is most needed. 

By queuing pending tasks, we keep track of what must 
be done while focusing on the most important tasks. By 
using a passive queue in which the processors check for a 
new task when they are ready, we avoid some nasty tim
ing problems. Tasks may be entered into the queue at any 
time, either by a processor or by the hardware I/O 
devices. This approach is an extremely important depar
ture which avoids the use of conventional interrupts and 
the associated costs of saving and restoring machine state. 
Further, this approach neatly sidesteps the problem of 
routing interrupts to the proper processor. 

We could not afford a software queue both because it 
was slow to use and because processors would have been 
waiting for each other to get access to the queue. Instead 
we use a special hardware device called a Pseudo Inter
rupt Device (PID), which keeps in hardware a list of 
what to do next. A number can be written to the PID at 
any time and and it will be remembered. When read, the 
PID returns (and deletes) the highest number it has 
stored. By coding the numbers to represent tasks, and 
keeping the parameters of the tasks in memory, a proces
sor can access the PID at the end of each task and deter
mine very rapidly what it should do next. 

Contention 

Clearly, the PID must give any task to exactly one 
proc-essor:Tlilsis guaranteed-because tnePIDTs on anUs- --
that can be accessed by only one processor at a time and 
because the PID completes each transaction in a single 
access. This is an example of the more general problem 
that whenever two users want access to a single resource 
there must be an interlock to let them take turns. This is 
true at many levels, from contention for a bus to proces-
sor contention for shared software resources such as a free 
list. When all the appropriate interlocks have been pro
vided, the performance of the multiprocessor will depend 
rather critically on the time wasted waiting at these inter
locks for a resource to become free. As discussed above, 
whenever conflicts become a serious problem one pro
vides another copy of the resource. We studied our system 
behavior carefully, noting areas of conflict, in order to 
know how many additional copies of heavily accessed 
resources to provide. Table II provides examples of 
delays due to various conflicts. Practically speaking, the 
curve of delay vs. number of resources has a rather sharp 
knee, so that it is meaningful to make such statements as 
"a memory bus supports eight processors" or "a free list 
supports eight processors." Of course, these statements 
are application related and depend on the frequency and 
duration of accesses required. 

With interlocks, deadlocks become possible (in both 
hardware and software). For example, a deadlock occurs 

TABLE II-Expected System Slowdown Due to Contention Delays 

Slowdown 

5.5% 
3% 
5% 

10% 

1.7% 

0.15% 

Cause 

Contention for a Processor Bus. 
Contention for the Shared Memory Busses. 
Contention for the Shared Memories. 
Contention for a single system-wide software resource, as

suming each processor wants the resource for 6 instruc
tions out of every 120 instructions executed. 

Contention for one of two copies of a system-wide software 
resource, as above. 

Contention for the parameters of a single 1.3 megabit 
phone line, assuming the parameters will be used for 160 
microseconds every 800 microseconds. 
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when each of two processors has claimed one of two 
resources needed by both. Each waits indefinitely for 
the other's resource to become available. 14 Unless there 
is a careful systematic approach to interlocks, deadlocks 
interlock, and require that a processor never compete for 
a resource when it already owns a higher numbered 
resource. It is not always practical or possible to do this, 
although we expect to be able to do so with the IMP algo
rithms. 

An interesting example of a deadlock occurs in our bus 
coupling. To permit processors to access one another, for 
mutual turn on, turn off, testing, etc., the path connecting 
each processor bus with the I/O bus is made bi-direc
tional. Thus processors access one another via the I/O 
bus. In a bi-directional coupler, a deadlock arises when 
units obtain control of their busses at each end and then 
request access via the coupler to the bus on the other end. 
Because the backward path is infrequently used, we 
simply detect such deadlocks, abort the backward request 
and try again. 

Reliability 

We have taken a rather ambitious stand on reliability. 
We plan to detect a failing module automatically, ampu
tate it, and keep the system running without human 
intervention if at all possible. Critical to our approach is 
the fact that there are several processors each with pri
vate memory and thus each able to retreat to local opera
tion in the face of system problems. To reduce our vulner
ability further, power and cooling are provided on a 
modular basis so that loss of a single unit does not jeop
ardize system operation. We are only mildly concerned 
with the damage done at the time of a failure, because the 
IMP system includes many checks and recovery proce
dures throughout the network. 

The first sign of a failure may be a single bit wrong 
somewhere in shared memory, with all units apparently 
functioning properly. Alternatively, the failure may strike 
catastrophically, with shared memory in shambles and 
the processors running protectively in their local memo
ries. Against this spectrum we cannot hope for a system
atic defense; instead we have chosen a few defensive 
strategies. 

So long as a module is failing, recovery is meaningless. 
We must run diagnostics to identify the bad module, or 
see if cutting a module out at random helps things. We 
feel that identifying such a solid failure will be relatively 
easy. Since a processor without couplers is completely 
harmless, once we identify a malfunctioning processor, we 
amputate it by turning off its bus couplers. We consid
ered the possibility of a runaway processor turning good 
processors off. This is unlikely to begin with but we 
decided to make it even less likely by requiring a particu
lar 16-bit password to be used in turning off a coupler. A 
runaway processor storing throughout shared memory 
would need this password in its accumulator to acciden-

tally amputate. Similarly we require a password for one 
processor to get at another's local memory. 

Against intermittents we use a strategy of dynamic 
reinitialization. Every data structure is periodically 
checked; every waiting state is timed out; the code is 
periodically checksummed; memory transfers are hard
ware parity checked; memory is periodically tested; proc
essors are periodically given standard tests. Whenever 
anything is found wrong, the offending structure is initial
ized, Using this scheme we may not know what caused a 
failure, but its effects will not persist. In the most 
extreme cases we will need to reload all the program in 
main memory. Fortunately we have a communications 
network handy to load from. This technique of reloading 
has worked remarkably well in the current ARPA Net
work. Each processor has a copy of the reload program in 
its local memory, thus making loss of reload capability 
unlikely. 

We might seem to be vulnerable to memory or I/O fail
ures, particularly those involving the PID and the clock. 
If these modules fail it does indeed hurt us more, but only 
because we have fewer modules of these types in our sys
tem. If we provide redundant modules, the system can 
reconfigure itself to substitute a spare module for a failed 
one. Our design allows multiple I/O busses with multiple 
PIDs and clocks, and we could even have separate 
backup interfaces to vital communication lines on sepa
rate busses. 

To summarize, the mainstay of our reliability scheme is 
a system continually aware of the state of things and 
quickly responding to unpleasant changes. The second 
line of defense consists of drastic actions like amputation 
and reloading. Assuming we can make all this work, we 
will have quite a reliable system, perhaps even one in 
which maintenance consists of periodic replacement of 
those parts which the system itself has rejected. 

STATUS AND NEAR FUTURE 

In February 1973, as this paper is submitted, we are 
very much in the middle of our multiprocessor develop
ment. Much progress has been made and we are increas
ingly confident of the design, but much work remains to 
be done. 

The broad design is complete; all Lockheed-provided 
units (CPUs, memories, busses, etc.) have been delivered; 
prototype wire-wrapped versions of the crucial special 
modules have been completed, including the Bus Cou
plers, Pseudo Interrupt Device, clock, and modem inter
faces; and a multi-bus, multi-processor-per-bus assembly 
has been successfully tried with a test program. A sub
stantial program design effort has been in progress and 
coding of the first operational program has been started. 
We are still doing detailed design of some hardware, and 
we are still learning about detailed organizational issues 
as the software effort proceeds. An example of such an 
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area is: exactly how is it best for processors to watch each 
other for signs of failure? 

We currently anticipate the parts cost of the prototype 
fourteen-processor system, without communication inter
faces, to be under $100K. 

Hopefully, by the time this paper is presented in June 
1973, we will be able to report an operational prototype 
multiprocessor system. Beyond that, our schedule calls 
for the installation of a machine in the ARPA Network by 
about the end of 1973. We also plan to construct many 
variant systems out of this kit of building blocks, and to 
experiment with systems of varying sizes. As part of this 
work, we plan to concentrate on the very smallest version 
that may be sensible, in order to provide a minimum cost 
IMP for spur applications in the ARPA Network. 

As the design has proceeded, our attraction to the gen
era1 ~QA~h h~s incr~(l_sed, (p~rhaps ~_~()mmo!! !Jla1_aq.y), 
and we now believe that the approach is applicable to 
many other classes of problems. We expect to explore 
such other applications as time permits, with initial 
attention to two areas: (1) certain specialized multi-user 
systems, and (2) high bandwidth signal processing. 

With our presently planned building blocks, although 
we do not yet know what will limit system size, we do not 
now see any intrinsic problem in constructing systems 
with fifty or a hundred processors. As improvements in 
integrated circuit technology occur, and processors and 
memories become smaller and cheaper, organization and 
connection become the paramount questions in multipro
cessor design. We expect to see many attempts at multi
processors, and are hopeful that the ideas embodied in 
this design will help to steer that technology. Perhaps 
minicomputer / multiprocessors will soon represent real 
competition for the various brontosaurus machines that 
now abound. 
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INTRODUCTION 

R-eIlabIllty-liasoeen ~iToiig~stanmng-concerIftolne-user-of 
small real-time computer systems. Traditionally, reliabil
ity has been measured by parameters such as mean-time
between-failure (MTBF) and is usually associated with 
the failure of a hardware component in the system. But 
there are many other causes of errors in a computer sys
tem: a minute particle of dirt may become momentarily 
lodged on a magnetic recording media, a transient pulse 
may be induced in a logic circuit by a line transient or a 
lightning strike, or an algorithm for a calculation may 
result in an invalid address. The errors caused by these 
phenomena can be just as serious, and can have similarly 
grave consequences, as those caused by actual component 
failure. 

The thesis of this paper is that the user of small com
puters must be concerned with a concept much broader 
than that of simple reliability. This concept is called sys
tem integrity. It encompasses all aspects of preventing 
errors, detecting them if they occur, reporting them to the 
processor, the operating system, and the user, and 
recovering from them in an acceptable manner. 

In contrast to reliability, which is largely a matter of 
component failure rates, contributions to system integrity 
involve many diverse factors. These include such things 
as the functions available on the console which can affect 
servicing and debug time, the characteristics of the power 
supply which can determine whether a power dip will 
cause the system to go down, the extent and quality of the 
documentation which can affect service time, the degree 
and thoroughness of the testing during the system devel
opment, and the error detection features incorporated 
into the hardware and software. 

In this paper, the focus is on two aspects of system 
integrity. The first is the detection and reporting of errors 
to the operating system by the hardware and their subse
quent handling by the software. The second is the fea
tures provided by the software alone which contribute to 
system integrity. Frequently, tradeoffs must be made 
when deciding whether a particular integrity feature 
should be provided by the hardware, the software, or a 
combination of hardware and software. 
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INTEGRITY CONSIDERATIONS IN SMALL 
SYSTEMS 

Considerations of system integrity in small real-time 
systems differ in some respects from those in larger gen
eral-purpose computers. In large systems, for example, 
features such as automatic retry of I/O devices and the 
use of error correcting codes are often implemented in 
hardware. In the small machine, however, the cost of 
additional integrity hardware represents a greater frac
tion of the total system cost than is the case in larger 
machines. Due to the highly competitive nature of most 
small computer purchase decisions, these added costs 
must be carefully evaluated by the designer in terms of 
the improved performance that they provide. Unfortu
nately, there is no single simple parameter by which sys
tem integrity can be judged so this evaluation is very dif
ficult. Add to this the fact that many buyers of small 
computers place significant emphasis on price alone, 
without realizing the importance and value of system 
integrity features, and the designer is faced with a diffi
cult decision. 

Real-time computers are often concerned with speed 
and time responsiveness to a much greater degree than is 
the case with larger, general-purpose machines. It is often 
more important in the small machine to detect, report 
and recover from errors quickly and accurately because 
of the role of the real-time computer in the particular 
application. The system integrity features of both the 
hardware and the software must be carefully designed not 
only to provide this response but to do so without signifi
cantly degrading the response of the system under error
free conditions. For example, requiring that an additional 
1/0 instruction be executed (to read a status word which 
indicates if an I/O device responded without error) after 
each command essentially doubles the effective I/O 
instruction time. On the other hand, hardware which 
automatically provides status information in the proces
sor which is accessible to the program without execution 
of a lengthy I/O instruction greatly improves the time 
response to error conditions without excessively penaliz
ing normal operation. 

Another important consideration is the maximum 64 K 
word addressing space of the typical I6-bit small com-
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puter. The system software must be written to leave the 
largest possible storage for user-written application pro
grams. This consideration, which says that more system 
integrity should be built into the system hardware, must 
be weighed against the cost of both storage, I/O devices, 
and hardware integrity features in the highly competitive 
small computer marketplace. A further consideration is 
the uniqueness of almost every real-time application 
which means that the system software must be tailorable 
to each installation, allowing the customer to take special 
action and to eliminate as much unused code as possible. 

A consideration that may be easily overlooked by sys
tem designers is that most users want the system to 
resolve or bypass as many errors as possible and to notify 
them only when the system cannot do so. Also, many 
customers are controlling critical processes and require 
that the system go down only for the most serious prob
lems. 

During the development of a small computer system, 
the above considerations must be combined with others to 
define a total approach to system integrity. The impor
tant point is that the system emerging from the design 
must provide a consistent approach to the detection, 
reporting, and recovery of all errors. System integrity 
cannot be sacrificed because many small real-time sys
tem applications are dependent on full and fast error 
handling. . 

HARDWARE/ SOFTWARE INTERACTION 

Illustrations of how considerations of integrity are 
reflected in the interaction of hardware and software are 
numerous. Take, for example, the occurrence of a power 
failure on a Systemj7. The approach taken accounts for 
the fact that many real-time processes cannot be 
restarted at the point where they were when the power 
failed. In many applications, the prime consideration is to 
know that a power failure is about to take place so that 
special action can be taken before the power failure 
occurs. 

As the power dips to 85 percent of nominal value in a 
Systemj7, an interrupt is generated at the highest priority 
level. The DC energy storage designed into the power 
supply allows for a minimum of eight milliseconds of 
operation from the time the interrupt occurs until the 
system shuts down at the 60 percent level. The actual 
operating time available depends on the power supply 
loading and the nature of the power dip. Thus, the hard
ware detects and reports the power failure condition to 
the system software via the interrupt mechanism. The 
system software is designed to provide maximum flexibil
ity in this situation because of the uniqueness of different 
applications. It will first queue a message containing the 
Instruction Address Register (IAR) contents and the 
Processor Status Word (PSW) for printing on the error 
logging device and will then queue a user-specified rou
tine. Obviously, the message will not be printed if the 
system actually shuts down after eight milliseconds but, 

because of the hardware priority structure, the user can 
program his system so that the power failure routine 
receives control as soon as it is queued. Thus, if neces
sary, the user can shut his process down, initiate a 
backup system, or perform some other action tailored to 
his application. When power is restored and again reaches 
85 percent of nominal value, an automatic Initial Pro
gram Load (IPL) sequence is initiated by the hardware. 
This results in an IPL program being loaded from an IPL 
device (e.g., a disk) which, in turn, loads and executes a 
specified user program. This provides a way for an unat
tended system to be reinitialized after a power failure. 
This illustrates the philosophy of automatically resolving 
error conditions whenever possible. 

Another case in which system integrity is threatened is 
if the temperature of the system increases to the point 
where the operation of the semiconductor circuits 
becomes erratic or actual damage occurs. For this reason, 
System/7 provides automatic over-temperature indica
tion to the processor and operating system. Temperature 
detectors are located at strategic locations throughout the 
machine to indicate when a high temperature condition 
exists. When activated, an interrupt is generated on the 
highest priority level to notify the programming system 
which can then queue the appropriate user-specified 
program. After a minimum delay of one second, auto
matic circuits power down the system before erratic 
behavior or damage can result. By providing an early 
warning of a temperature problem, the operating system 
and the user programs can take the appropriate action of 
notifying the operator or providing for an orderly shut
down of the system. 

I/O error processing is perhaps the most important 
area of system integrity. An examination of Ii 0 error 
processing in a Systemj7 again shows how full integrity 
can be provided by designing the hardware and software 
to work together to address the particular characteristics 
of a small real-time system. 

First of all, I/O errors are categorized as those occur
ring when the I/O instruction is executed and those 
occurring during the I/O operation (data transfer). The 
former are called immediate errors and, after detecting 
the error, the hardware sets both a summary status indi
cator and a 16-bit status word. The system software can 
check the summary status indicator without having to 
execute the I/O instruction to read the status word. The 
system software need read the status word only when an 
error has occurred. Furthermore, the system knows 
immediately that an error occurred and does not have to 
wait and service an I/O interrupt. The advantage of this 
approach is that reading the summary status indicator 
takes less than one-fifth the time of reading the status 
word. The impact on processing speed and time respon
siveness is thereby minimized. 

If the summary status indicator shows that an error has 
occurred, the system software reads the status word 
which, in all cases, resets the device. (Incidently, this 
"read with reset" operation is very useful in troubleshoot
ing.) The status word further define~ the eXRct ~Ol]r('e of 



error. The system software logs the error for later analysis 
by servicing personnel and then attempts to recover by 
retrying the operation, re-preparing the device, or some 
other procedure. Only when these attempts fail is the user 
notified that an error has occurred. Notification consists 
of a printed message containing the contents of the regis
ters and the status word and an error code being returned 
to the user program. Once the user program receives con
trol and checks the error code, many actions can be 
taken; the one chosen is user defined based on his appli
cation requirements. For example, if the operation was 
not important, the user can continue. On the other hand, 
if the failing I/O was critical, the user program could 
request an entire system reload. 

The second type of I/O error is indicated at the time of 
the I/O interrupt by the interrupt status word (ISW). If 
any of the possible 32 bits is on in the ISW, a summary 
status mdlcator--tsset-nm-s-; ttre-system-softwa:r1n::il"B"Cxs-
for a valid operation by merely checking the summary 
status rather than executing the much longer I/O instruc
tion to read the ISW. This again is a time-saving feature 
allowing faster processing of I/O interrupts. Only when 
an error occurs (summary status bit set) does the software 
read the ISW words. The error is logged and retries are 
performed. If the error persists (a hard error), the system 
software notifies the user. A message is printed indicating 
the device address and the ISW words. Each bit in the 
ISW refers to a particular error so this message accu
rately describes the location and condition of the error. 
While costs can be reduced by associating more than one 
error with a particular bit, the ambiguity resulting from a 
printout of the status word significantly hinders trouble
shooting. As with the I/O command errors described 
above, the user program is notified of the error by setting 
the Error Status Word (ESW) in the I/O request. User 
action again has the same flexibility as that described 
above for I/O command errors. 

Storage parity is a common and well-known hardware 
feature that contributes to system integrity. When availa
ble in a minicomputer, it is generally interconnected with 
the interrupt structure so that an interrupt is generated 
when incorrect parity is detected. The parity bit(s) is 
normally generated whenever a word is read into storage 
and is checked whenever a word is read from storage. 
Parity may be provided on a word basis with one parity 
bit for the typical 16-bit word or it may be provided with 
a parity bit for each 8-bit byte. 

The concept of parity checking is applicable, however, 
to more than the storage unit in the computer. It can be 
utilized on all major data paths in the processor and 
channel to verify the accurate transmission of data and 
addresses. Figure 1 illustrates how this is implemented in 
the IBM System/7. A major portion of the data flow is 
represented by the storage, the local store which provides 
the index register stack, the channel, and the attached 
devices. Parity generators and checkers are provided for 
each of the major portions of the system. The failure to 
observe proper parity generates an interrupt which is 
serviced by the system software. As an aid to further 
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MAIN STORAGE 

LOCAL STORE 
'---+--i (INDEX 

REGISTERS) 

PG = PARITY GENERATOR 

PC = PARITY CHECKER 

Figure I-Parity generation and checking 

defining the cause of the error, each parity checker gener
ates a unique bit in a status word which is available to the 
software. 

The presence of a unique identifier in the status word 
for the various sources of parity error is an important 
demonstration of the philosophy that system integrity 
features should provide as complete data as possible 
concerning the source of error. This is important since it 
affects the manner in which recovery can be effected. For 
example, a hard storage parity error might result in data 
and programs being relocated to avoid certain storage 
locations. A consistent storage parity error which is inde
pendent of storage address, however, might indicate a 
failing driver circuit and it would be necessary to shut 
down the system for repair. Similarly, a parity check in 
an I/O device may be relatively minor since the system 
software may be able to logically reconfigure the system, 
thereby avoiding the necessity of taking the system off
line. As a secondary effect relating to availability, provid
ing maximum information as to the source of error assists 
the serviceman in locating the problem. This minimizes 
the repair time and, therefore, increases the availability 
of the system to the application. 

When and where to generate and check parity is a 
design tradeoff which is based on the probability of error 
and cost. This, in turn, is a function of the logical and 
physical complexity of the data path. For example, in 
Figure 1, parity generation and checking is not provided 
between the channel and the local store since this is a 
logically simple data path which involves only one cable 
and two connectors in System/ 7. Thus, the probability of 
error is much less than in the case of the transfer between 



542 National Computer Conference, 1973 

the channel and a device, a quite complicated logical 
operation involving many cables and connectors. 

The interface between the channel and the I/O devices 
in the System/7 demonstrates another type of hardware 
checking that can be incorporated in a small computer. 
The channel is asynchronous with a demand-response or 
"handshaking" discipline employed on all data transfers. 
In addition to the parity checking of data and addresses, 
this type of interface provides the possibility of timing 
checks and sequence checks. As an illustration, Figure 2 
shows a portion of the timing sequence for the execution 
of the I/O instruction (PIO) in the System/7. At the initi
ation of the PIO instruction involving the outputting of 
data (e.g., a write operation), the Address Out (AO) tag 
line is raised to signal all I/O devices that a device 
address has been placed on Data Bus Out (DBO). The 
addressed device raises its Service In (SVC IN) line to 
indicate to the channel that it has recognized its address 
and is ready to receive data. The channel then places the 
necessary data on DBO and raises a Service Out (SVC 
OUT) tag line to signal the I/O device that the data is 
available on the DBO. In essence, this sequence is a two
way conversation between the channel and the I/O device 
in which each acknowledges the action of the other before 
proceeding with a subsequent action. 

Since the signal propagation time through the channel 
and the device delays are known, it is possible to place 
bounds on the response time for each of the exchanges of 
information in the sequence. For example, based on worst 
case conditions, it is known in System/7 that the device 
should respond with SVC IN within 2 microseconds after 
AO is active. Timers have been provided in the channel to 
check this time. If the SVC IN response has not been 
received within 2 microseconds, a channel timing error is 
signaled to the processor and made available to the pro
gramming system. Similarly, the interval between SVC 
OUT becoming active and the response of SVC IN 
becoming inactive is timed and an error indicated if this 
time exceeds 2 microseconds. In addition to timing the 
individual sequences of signals during the execution of 
the PIO instruction, an overall timer is provided which 
signals an error if the execution time for the entire opera
tion exceeds 10 microseconds. As in the case of parity, 
indication is provided for each of these timing errors, 
thereby making available the maximum amount of infor
mation to the programming system to be used in error 
recovery. 

AO 1\ 
svc _IN ______ ~~I --~--~I ____ _ 

SVC O_U_T ______ (--Ir-I ---L--__ 

Figure 2-Channel I/O signal sequence 

In addition to timing checks, sequence checks can be 
implemented to test for improper sequences of signals. 
For example, if SVC IN is active at the time AO becomes 
active, an error is signaled. Similarly, an error is recog
nized if SVC IN becomes inactive before SVC OUT is 
raised. This type of checking is indicative of the logical 
checks which can be applied to many other parts of the 
system. For example, in a system such as System/7 which 
provides multiple priority interrupt levels, a test can be 
provided to insure that two levels are not active simulta
neously. The processor operation also can be checked to 
indicate if it is executing processor cycles when it should 
be in a dormant wait state. 

The above discussion illustrates some of the checks that 
can be provided through hardware in the small computer. 
This philosophy can be extended throughout the proces
sor, channel, and I/O devices. Other specific error indica
tions that are provided in the System/7 hardware 
include: 

1. A storage address has been requested which exceeds 
the amount of installed storage. (Generates inter
rupt.) 

2. An invalid device address has been requested on the 
channel. 

3. A device which is not installed has been addressed. 
4. An invalid operation code has been detected. 

(Generates interrupt.) 
5. The analog-to-digital converter is inoperable. 
6. Multiple (or no) relays in the analog input multi

plexer have been selected. 
7. The fuse in the digital input circuit is open. 
8. The communication attachment has an overrun 

condition. 
9. The selected I/O device cannot execute the 

requested command. 
10. The communication modem has detected an error 

condition. 

These are but a few examples of how the hardware and 
system software must be designed together to furnish the 
system integrity required for real-time processes. 

SYSTEM SOFTWARE CONSIDERATIONS 

In small real-time computers, it is important that the 
system software be extended beyond just the handling of 
errors detected by the hardware. It too should detect 
errors before they can cause hardware and system failure. 
There are two major reasons for this. First, by detecting 
errors early, time is saved which could be beneficial to the 
user's process. Secondly, the system software must pro
tect data (especially data stored on disk) which could 
possibly be destroyed without causing a hardware error. 
As with hardware/software interaction, it is necessary to 
design the support for minimum storage and to cause 
minimum delay in processing valid operations. 



Early detection of user programming errors begins with 
a good level of diagnostics in the language processors 
(assemblers, compilers, etc.) used to prepare those pro
grams. These diagnostics should not only detect, but 
should accurately describe, all syntactical errors. If a 
macro assembler is provided, it should thoroughly check 
the validity of all parameters and the relationships 
between macros. A good set of program preparation diag
nostics greatly aids debugging and speeds installation. 
Since time is much more critical during program execu
tion than during program preparation, as many program
ming errors as possible should be detected during prepa
ration. Host preparation (that is, using a large general 
purpose computer to prepare programs for the small real
time computer) is often an advantage here. The signifi
cantly greater resources available with the large machine 
~D~r~'~_~xt~~~~y~_QiagnosJ!_c;~.~!_!~~ut unrealisti<::~l!y 
increasing program preparation time. 

During program execution, more time can be saved 
with the proper software integrity design by detecting 
errors early. For example, most systems that support 
multiple requests to serial I/O devices queue the request 
(either first-in/first-out or by priority) until the device is 
available. When the request list reaches the top of the 
device queue, the proper I/O commands are executed. 
I/O request lists are frequently constructed during pro
gram execution which means they cannot be validated 
during program preparation. As a result, all validation 
in these systems must take place at execution time. 
Time can be saved by validating the request before 
placing it on the queue. 

Consider, for example, the case of a program that 
makes an invalid I/O request to the System/7 software. 
Before the request is queued, the error is detected and the 
user notified immediately. If no validation was done, the 
request would remain queued until it reached the top of 
the queue and, perhaps, an I/O command had been exe
cuted. The error would be detected only when the I/O 
interrupt was received. Not only would the user not be 
immediately notified, but time would have been wasted. 

Since most small computer applications are unique, the 
system software frequently returns to the user program 
after processing an error. Thus, the user must be provided 
with a broad range of recovery facilities. When an error is 
reported back to a user program, system software facili
ties should be available to that user program to recover 
from that error. For example, on an I/O error, the user 
program may want to retry the operation on an alternate 
device, interactively communicate with the console opera
tor or, in the case of a serious error, sound an alarm or 
reload main storage from disk. Or, in the case when a 
programming error is detected, the user may want to load 
a new copy or version of all or part of his program from 
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disk. The system software should be designed to provide 
these functions easily. 

Many small computer applications rely on a high speed 
secondary storage device such as a disk or drum for pro
grams which are loaded into main storage when required. 
Data stored on disk must also be protected. For example, 
if data collected and stored on a disk during an experi
ment is later destroyed because of some error, the experi
ment may have to be run again. This protection of pro
grams and data stored on disk must be provided by the 
system software. 

One method of protecting programs is by the software 
providing a "read only" data set facility. Programs are 
stored in such data sets and the system software prevents 
user programs from doing disk write operations to such 
data sets. Of course, the system disk utility that initially 
l?~_<l~_!he progr~m to ~isk is_2_~~rni!!~C:! to C!O the ~_~it~ 
operation. 

A frequently used method of providing disk data pro
tection is an OPEN function. Data sets are named on disk 
and all accesses to the data set are made using the data 
set name. Programs must first OPEN the data set and 
this operation provides the system software with the disk 
address boundaries of the data set. Subsequent accesses 
to the data set are checked by the system software to ver
ify that the access remains within the data set bounda
ries. 

Additional protection can be provided by the system 
software by checking a volume label on each disk pack. 
Thus, if the wrong disk pack (or the right disk pack at the 
wrong time) is loaded, good data will not be destroyed. 

The features just mentioned are all part of the data 
management portion of the system software. In designing 
data management systems, careful consideration must be 
given to the protection required on the one hand and the 
overhead in storage sizes on the other. 

SUMMARY AND CONCLUSIONS 

This paper has described the general concepts of system 
integrity and has given some particular examples of how 
it can be provided in a small real-time computer. It is 
important to realize that total integrity is necessary-any 
lapses in the support reduces the integrity provided by 
the entire system. 

Many factors must be considered before purchasing a 
small computer. Some of the factors are unique to small 
computer applications and may not be considered, for 
example, when purchasing a larger data processing sys
tem. This paper has attempted to focus in on one of these 
to emphasize the requirement for good system integrity 
and to indicate how it might be furnished by both the 
hardware and the system software. 
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INTRODUCTION 

A st~i-ki~g--ph~n~~~non in the current state of the art in 
computer technology is the rapidly growing power of 
mini-computers. One reason for this power is the ability 
of small computer systems to adapt to specific uses, 
making them an attractive and economical alternative to 
large- or medium-scale general purpose systems for many 
applications. The provision of micro-programming on 
many of these systems has much to do with this adapta
bility, since it permits the efficient design and implemen
tation of a virtual machine suited to the needs of the par
ticular application or intended use of the system. In this 
way the bare hardware can be molded to support the 
necessary (and often sophisticated) data and control 
structures desired. 

In this paper one such application is presented-the 
implementation of a machine designed to support block
structured languages effectively in its "hardware". The 
resulting architecture is quite complex, and would most 
probably not be economical for such a small scale system 
(approximately 8K words of memory) were it to be built 
directly in hardware. Microprogramming made the 
implementation practical, however, and it is presented in 
this paper to provide an example of the potential which 
mini-computers possess in the current era of computer 
design. 

The remainder of this paper is divided into 4 major 
sections. The following section gives the rationale for 
designing a machine around block-structured languages, 
and those data and control constructs which. are consid
ered important enough to be explicitly included in the 
design. It is followed by a section on the way these 
abstract constructs are actually supported in the architec
ture, as well as some examples of how this leads to con
ceptually clean implementations of various features in the 
system. A quick presentation of the micro-machine and 
the emulator which creates the virtual machine on top of 
it is then presented, with some emphasis on the resource 
mapping used and the microcoding techniques employed. 

* This work was done as part of Project Mu in the Department of 
Computer Science and is supported in part by NSF Grant GJ -993. 
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Finally, a brief discussion of the advantages of micropro
gramming. is given, bot? X!()_IE~~~ e~_()?_omic standp?i_I1:t 
and in--reIatlon-to--tec-hnical benefits. 

DESIGN CRITERIA AND CONCEPTS 

The design of this processor was motivated by the 
desire to create a computer whose organization was 
explicitly language-oriented in nature. To us, (and to 
others, see References 6, 7 and 11) the convolutions com
pilers must go through to produce decent object code for 
the majority of computers indicate a great disparity 
between the desires of the users of a language and what is 
provided for in the machine. The added overhead of run
time software to create the illusion of the required envi
ronment further attests to the fact that computers in 
general do not behave as we would like them to. Thus we 
desired a processor whose operation included features 
normally supported by these run-time routines, and 
whose organization was tailored to the compilation of effi
cient object code in a straightforward manner. 

A critical parameter in the design was the class of lan
guages around which to model our machine. It is not at all 
obvious that anyone architecture could be found to pro
vide effective support for every higher level language, 
since there are a multitude of different and conflicting 
conventions in use. For example, the definition of access
ing environment in ALGOL-60 and APLj 360 are quite 
different, and it may well be that any construct general 
enough to support both definitions may not enhance the 
implementation of either. The class settled upon was the 
block-structured languages, especially those semantically 
close to ALGOL-60. 

This choice was not made capriciously; rather it was 
based on observations about the current state of program
ming practice. One strong motivation for the choice is that 
there is quite a bit of experience in the design of compil
ers for such languages, and the data structures most 
convenient for their support have become fairly well 
known. Also, many algorithms have been coded in these 
languages, giving us two additional benefits: (1) insight 
into the most used features of such languages and (2) a 
large base of programs with which to compare our design 
with other systems. 
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These features, attractive as they might be, are insuffi
cient to justify the choice. More convincing are arguments 
which arise based on the desire to implement an entire 
system with a multitude of tasks, some of which are co
operating and others of which are independent. It was a 
major design goal to create a machine which was "com
plete" in the sense that there were few (if any) operations 
which necessitated an escape from the architectural 
framework. In short, a design was desired which allowed 
the operating system and all of its related tasks to be 
coded in a higher-level language of the type the computer 
was designed to support. 

In this light, block-structured languages appear to be 
by far the most attractive alternative. The multi-tasking 
features necessary in any reasonable contemporary oper
ating system can be incorporated quite elegantly when 
one considers nested tasks to be generalizations of nested 
procedures; we shall see that user jobs can all be consid
ered sub-tasks of the operating system in this fashion. 
The fact that languages modelled on ALGOL-60 [NAU63] 
permit recursion provides impetus for an object code 
structure which operates in a re-entrant fashion, and the 
well-defined boundaries of procedures and blocks provide 
a natural division of a program into self-contained logical 
units. This in turn provides the opportunity for one copy 
of a procedure to be shared by many different tasks, 
decreasing the average amount of memory required by 
each. Finally, we will see that the rules of scope in block
structured languages provide a consistent and well 
defined manner in which to share code and data among 
several processes. Thus, in the context of an entire sys
tem, the choice of block-structured languages appears to 
be more than justified. 

Having decided to design a computer targeted for this 
class of languages, what should be provided in "hard
ware" (quoted, since it is irrelevant at this point whether 
it is hardwired or microcoded) in the way of support? 
What internal data structures, and what instruction set is 
best suited to the needs of these languages? And given 
that the ultimate aim is an entire, cohesive system, can 
these be generalized or extended to provide such desira
ble features as protection and relocatability of code and 
data? The rest of this section is devoted to the answers 
chosen to these questions, with particular emphasis on the 
addressing scheme employed, the inclusion of explicit 
stack structures and the effects this has, the usefulness of 
information tagging in the design, and the provision of 
semaphore constructs for task co-ordination and access 
control in a fashion consistent with the rest of the archi
tecture. 

One common feature of block-structured languages is 
the static definition of directly accessible variables and 
procedures. The items which can be directly referenced at 
a given point within a procedure or block can be recur
sively defined as: (1) those variables, parameters and 
procedures declared local to the code body in question 
and (2) the variables, parameters and procedures accessi
ble to the statically enclosing code body (i.e., the sur
rounding block or proC'edure in a listing), except those 

possessing names (identifiers) which are the same as some 
local item. This is combined with a definition of dynamic 
environment at any point in the execution of the program: 
since recursion results in many different allocations of 
variables, it is the most recent occurrence of the identifier 
which applies at any time during execution. 

Based on the above observations, we note that any item 
which is accessible at a given point in a program can be 
identified by a pair of integers called an address couple. 
The first component is the static nesting depth of the 
variable or procedure declaration, the second is its ordi
nal in the declarations for the particular code body in 
which it occurs; for instance, the first declaration in the 
outermost block would be designated by the couple (0,1). 
While it is not true that a unique address couple is 
assigned to each identifier occurring in a program, it is 
true that at any point in the listing of a program, the 
scope definitions above insure that an address couple 
identifies a unique item. 

Assuming the environment is set correctly, so that the 
first component of the couple can be used to locate the 
base of the procedure data area active at the indicated 
static level, this provides a convenient way of locating 
items in the machine. Since the object code is not directly 
concerned with setting the environment, this method 
automatically provides re-entrant code. These observa
tions led us to adopt this as the normal addressing mode 
in our design. 

As mentioned above critical to the success of the 
addressing scheme is the proper setting of the environ
ment, and this motivates the introduction of the mecha
nism which is the central unifying concept of the design
the "hardware" recognition, maintenance, and use of 
stacks (or LIFO lists). In our opinion, though a stack
oriented system is not the most general support for the 
information structures that arise in the execution of 
block-structured language programs,S it is the best trade
off between generality and practicality, especially for the 
majority of applications. 

The reason the stack is so useful relates to the method 
in which procedure calls and returns are defined in block
structured languages. A dynamic sequence of called pro
cedures are exited in the reverse order of the invocations, 
which is modelled exactly by the operation of a stack. 
Also, the facts that local variables need not be allocated 
until the procedure is called, and that they become inac
cessible upon procedure exit means that the stack can be 
used to provide storage for the variables at each proce
dure invocation. Finally, if the machine provides a 
method of establishing the base of a procedure's data in 
the stack at each call, then the stack also provides sup
port for the addressing scheme we desire. 

The uses of the stack are extended to include the 
manipulation of data. For example, this provides the base 
for efficient evaluation of expressions in Polish postfix 
form; not only is this a convenient type of code for compil
ers to generate, but considerable code compaction can be 
accomplished by the elimination of explicitly addressed 
oppr::lncis for such operatlons as ADD--- they are implic-



itly located by the current top of the stack. Thus the 
stack serves as the center of the entire execution of a 
program. In the section on the actual implementation of 
these concepts in the architecture, it will be shown how 
stacks can be used to generalize the concept of procedure 
call to interrupt processing and multi-tasking. 

Since the "hardware" of the machine is charged with 
much of the responsibility for maintaining the stack and 
insuring the proper environment during execution, and 
since the integrity of the system depends heavily on this, 
it is crucial that mechanisms be supplied to make this 
relatively easy to accomplish. For this reason, tagging of 
information in the machine was instituted. Tagging 
means that the homogeneous memory common to most 
computers is replaced by a memory whose items have 
distinct "hardware" semantics associated with them, 
based on the tag they possess. 

A-more compfete -aescriptionof tfie--uses-lagging-Iias TIi 
the design will be given in the following section, but as an 
indication of the value of this construct, we note that 
besides "normal" data items, unique tags are used to 
specify: (1) words that mark the beginning of the access
ing environment for each procedure activation in the 
stack, (2) indirect references to other in-stack items for 
passing parameters by name, (3) descriptors for code and 
data residing in memory separate from the stack, with 
automatic bounds checking and (4) link words to aid the 
operating system in memory allocation. 

Any design which claims to support an entire system 
must provide some means for co-ordination among the 
tasks active in the system. In particular, there must be 
some mechanism for controlling access to critical portions 
of code and data. We have already mentioned that con
structs exist to describe code and data outside the stack, 
and these were extended to provide "semaphore" con
structs, based on the P and V operations of Dijkstra.4 In 
essence, the first task referencing the descriptor gains 
exclusive access to the resource described; an interrupt is 
generated when other tasks attempt to claim it, allowing 
the operating system to queue further requests for the 
resource. When the controlling task releases the resource, 
another interrupt is generated, informing the system that 
one of suspended tasks can be re-activated. In this way, 
primitive task co-ordination constructs are introduced in 
a consistent manner with the rest of the architecture. 

We note in passing that many of the constructs and 
concepts we have employed parallel the features found in 
the Burroughs B6700/7700 Information Processing Sys
tems. 1.2.5, 14 Though the choice of the stack model for 
block-structured processes was chosen with explicit 
knowledge that this was also the mode of operation of 
these systems, most other similarities were discovered by 
us only after inclusion in our design. For this reason, we 
feel that these constructs are a function of the general 
architectural framework employed. We believe our design 
is unique in many respects, however, not the least of 
which is the one most important to this paper: that to our 
knowledge this is the first time such a complex design has 
been provided on a small scale system. 
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REALIZATION OF THE CONCEPTS IN THE 
ARCHITECTURE 

We now turn to the subject of how these constructs that 
were considered desirable are physically realized in the 
"hardware" of the machine, which we call the Buffalo 
Stack Machine, or BSM. First we give a more detailed 
description of the tag bit concept and how it is used. We 
then turn to a brief description of how the stack for a 
process is maintained in memory and the manner in 
which the address couples are translated to absolute 
addresses. Next it is demonstrated how this concept is 
extended to link the code associated with the program 
and the operating system into the active stack. Finally, 
we briefly discuss the generalization to multi-tasking 
which is possible, and the manner in which interrupts are 
fielded. 
---Tne-- BSM-memory--ls- com-posedof-36=mrwo-ras;-]low~-

ever, only the low order 32 bits can be considered data in 
the traditional connotation of that term. The upper 4 bits 
serve to place the word into one of 16 "hardware" recog
nizable classes, which is the tagging described previously. 
Tag type 0, for example, is used for "normal" data words 
and is the type most frequently manipulated by user 
processes. 

Other tag types are reserved for the code and data 
descriptors used to point to areas (segments) apart from 
the memory for the stack, but containing task related 
information (data or code). For example, the address 
couple of an array variable would locate a data descriptor 
for a separate segment allocated to the array. This is triv
ially extended to multi-dimensional arrays by allowing 
the segment itself to contain descriptors. This memory 
allocation scheme has two major benefits: (1) the average 
amount of contiguous area assigned to a segment (the 
stack itself is just a special segment) is lowered and (2) 
the arrays and code segments not currently being refer
enced can be removed from main memory, which aids the 
implementation of virtual memory. This second feature is 
made possible by a presence bit in each descriptor, so 
that attempts to access a segment through a descriptor 
whose presence bit is off causes an interrupt indicating 
which segment must be made present in memory. This 
shields the task from the fact that not all of its code and 
data is immediately accessible, and permits it to run in 
an effective memory larger than that physically available. 

How the stack concept is implemented and the manner 
in which address translation is performed are intercon
nected to such a degree that it is easiest to describe both 
together. The following explanation uses the small pro
gram in Figure 1 and the corresponding stack structure at 
a particular point in its execution in Figure 2 as an exam
pIe. The language used is PL-BSM, the implementation 
language used on BSM to write supervisor routines, 
including the entire operating system. Its syntax and 
semantics are very similar to XPL,12 and the functioning 
of the short program, whose main feature is a procedure 
to recursively compute the factorial of an integer, should 
be self-explanatory. 
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1. 
2. 

begin 

3. FACT: 
4. 
5. 
6. 
7. 
8. 
9. 

10. 
11. end 

declare A fixed, B fixed; 
procedure ( N ) : fixed; 

declare N fixed; 
if N = 1 then return 1; 
return N * FACT (N -1); 

end /* FACT */; 
A = 5; 
B = FACT(A); 
PRINT(A,B); 

Figure I-Example program in PL-BSM 

First, we note in Figure 2 the set of registers collectively 
called the Display, which are used to implement the 
address couple translation. Each task in the system is 
identified with a stack segment, and when the stack is 
assigned to a processor, each Display register is set to the 
base of the data area in the stack for the procedure acti
vation whose environment is accessible at the correspond
ing level. The location addressed by the couple (i,O), for 
any level i, contains an Environment Control Word 
(ECW), which is a distinct tag type used to insure that 
the proper accessing environment is set. An ECW has 
links in it to both its dynamic (calling) and static ances
tors' ECWs, so that when a procedure is exited, the ECW 
for the caller can be found using the dynamic link, and 
the Display can be reset from the static link chain begin
ning there. 

It should be quite obvious now how the address couple 
scheme is implemented. The first component indexes into 
the Display and reads the address in the proper register; 
the ordinal is then added to this to get the address of the 
desired quantity, or of a descriptor or pointer to it. The 
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Figure 2-Stack configuration at line 6 in program 

CLEVEL register is used to hold the static nesting depth 
of the currently executing code, and determines the high
est numbered Display register which contains a valid 
address; in this way, address couples can be checked for 
errors before any damage is done. 

While we are discussing the addressing, the extension of 
the address couple method to locate code as well as data 
will be presented. At present, the first two Display levels 
are used to access the descriptors for the code segments. 
DR[O] points to an ECW in the "system stack", and 
address couples of the form (O,i) locate descriptors for 
system procedures. In a completely analogous manner, 
DR[l] is used to access the code descriptors for the par
ticular user program being executed, which also reside in 
a separate segment. Technically, both of the segments are 
stacks, though they represent permanently suspended 
tasks and are never activated. The reason they occupy 
separate segments is to allow the sharing of the system 
stack by all tasks in the system, and in the same fashion, 
to allow several tasks executing the same program (e.g., a 
compiler) to share the same code stack. In this way the 
number of copies of procedures is kept down, with a con
sequent rise in memory utilization. 

This also serves to introduce the fact that the concep
tual stack for a task may include portions of other physi
cal stacks. In this case, the other stacks are for tasks that 
are never active on a processor. It should be obvious that 
this need not be the only way to interlink stacks, and 
indeed, it is not. A procedure in PL-BSM may be called, 
in which case further processing by the calling routine 
halts until it is returned to, or it may be started as a sepa
rate task, in which case it is assigned a distinct stack, and 
both the created and invoking tasks can proceed in paral
lel. For either method of invoking the procedure's code, 
the accessing environment must be identical for consis
tency, and this may well mean that the Display settings 
for the new task refer to the creating task's stack, allow
ing the two to share information. 

At this time we turn to a discussion of the constructs 
used to check the validity of code addresses generated. As 
shown in Figure 2, the code segment for the procedure 
currently being executed has associated with it 3 proces
sor registers which keep track of the location of the next 
instruction (byte) (LOCCTR), and check to make sure 
the code addresses are in bounds (CPBASE, CPMAX). 
CPBASE is also useful on branch instructions, which are 
always relative to the start of the segment. Finally, we 
discuss the registers used to maintain and manipulate the 
stack structure. The BOS and EOS registers are used to 
check for stack underflow and overflow respectively; 
however, EOS, as can be seen in Figure 2, contains an 
address which leaves some space at the end of the stack 
when overflow is detected. This is used to provide room 
for handling the resulting interrupt; the method of inter
rupt processing in general will be explained later, at 
which time the necessity for this extra space should 
become evident. The MKSR register points to the start of 
the currently active environment and is used in setting 
the dy namic and static links at procedure call or ret urn. 



TOS contains the address of the next available word in 
the stack, and is used to locate the implicit operands for 
the arithmetic and logical operators, as noted previously. 
The TOS register also gets incremented and decremented 
by the code for procedure call and return, and insures the 
stack space being used by each active procedure is pre
served. 

We conclude this section with two miscellaneous 
remarks, the first in respect to the way stacks (and thus 
tasks) are identified, and the second on how a consistent 
and rather elegant implementation of interrupt processing 
is possible with this design. In this system, each stack 
segment has an associated descriptor pointing to it, and 
all of these are collected into one segment, known as the 
stack vector. This segment in turn has a descriptor point
ing to it at a predefined location (address couple (0,2)). 
Thus a stack (and its associated taskLc~Q.he ___ ide...njified 
by the index of its descriptor in the stack vector. Looking 
at Figure 2 once again, note that a portion of the user 
stack below the first ECW is marked "system space"; it is 
here that task-related control information, such as prior
ity, is kept. The stack vector concept allows the system to 
access these items via a doubly subscripted reference to 
the stack vector descriptor. 

The fact that the "hardware" has knowledge about the 
'way stacks are used in procedure calls allows a very con
sistent implementation of the interrupt code. The pri
mary interrupt procedure has its descriptor at the prede
fined address couple (0,1); when an interrupt is to be 
signalled to BSM, the stack of the current task is used by 
the "hardware" to force a procedure entry identical to a 
software call. In this way, the interrupt procedure is 
coded exactly as any other procedure, and uses the same 
exit mechanisms to return control to the interrupted 
process. This is all made possible by the fact that the 
"hardware" is knowledgeable of stack structures in 
memory, and that there is a well-defined sequence of 
operations to invoke any procedure. It should now be 
apparent why EOS is set to cause overflow while there is 
still some stack space remaining; it gives the interrupt 
procedure space to work in. Further stack overflow inter
rupts will not be generated after the original one, since 
this exception is detected only in the user mode, and 
invoking the interrupt procedure automatically sets the 
processor in system mode. 

FIRMWARE IMPLEMENTATION OF THE BSM 

The quoting of the term "hardware" in the previous 
section when referring to some feature of BSM was done 
intentionally; since the design of a conceptual machine 
was being explained, it did not matter whether or not its 
features were actually hardwired or not. Of course, in our 
implementation the structures outlined above are realized 
by a microprogram which forms an emulator for BSM. In 
this section we turn to the design of this emulator, which 
we call Kielbasa II, a name which derives from a variety 
of Polish sausage and is thus a reminder of the Polish 

Small Scale Stack Processor System 549 

instruction set on BSM. It is the direct descendent of the 
original Kielbasa emulator (described in Reference 9), 
and though the two emulators were designed for two quite 
different micro-computers, many of the techniques used 
in the original have carried over to the current version. 
Thus we feel a discussion of the emulator is in order to 
present our observations. 

In order to understand the design decisions made in the 
emulator, a short presentation of the facilities available in 
the Burroughs B1700,3 which is the computer used by 
Project Mu, will be given. Though most of the features to 
be described are present in all models, the particular 
model described here is the B1726. 

Though the internal data paths in the machine are 
generally 24 bits wide, the memory of the machine is bit 
addressable, and can be read and written in units of 1-24 
!>it~ __ ~t_~_.tjme in_~ither _directiQ!Lf!Qmj;h~~9-dress speci~ 
fied. The combinatorial section to do the arithmetic and 
logical functions can also be scaled to work on operands 
from 1-24 bits in length, and includes residual control to 
allow for multiple length operations. Also provided is the 
capability to shift both single and double length quanti
ties, and the ability to extract an arbitrary field of contig
uous bits from one of the 24 bit registers. 

Hardware condition bits of the B1700 are held in a set 
of 4-bit registers (external interrupt pending, clock inter
val, arithmetic conditions, etc.), and certain 24-bit regis
ters are re-mapped into 4-bit registers for added flexibil
ity. Various micro operations can test and manipulate the 
bits in these registers, and the non -dedicated ones are 
especially useful for recording status of the machine being 
emulated. Finally, there is a scratchpad of registers for 
general purpose use; these can be thought of as either 32 
24-bit registers or 16 double length registers, and are most 
useful for holding the contents of virtual machine regis
ters. 

In addition to this, the B1726 has a separate control 
memory for fast execution of microinstructions, though 
execution can also proceed from main memory at a 
reduced rate. The control memory can be overlayed from 
main memory, but its operation is effectively read-only 
(there are no operations for reading the contents of con
trol store words). This added memory permits the emula
tor to run without conflicting with main memory opera
tions, and micro-instruction execution can overlap reads 
and writes to main memory. 

We now turn to the manner in which Kielbasa II uses 
these physicai constructs to emuiate the reatures or the 
BSM. First we describe the mapping of the resources in 
BSM onto those of the B1700, including resources used by 
the emulator which are hidden from the explicit view of 
the conceptual BSM. Then we turn to some examples 
from the emulator of its operation and the microcoding 
techniques employed. In this way we hope to demonstrate 
the viability of the USe of microcode to implement com
plex constructs and systems. 

Most of the registers used in BSM are kept in the 
scratchpad, where we use it as 32 24-bit quantities. Six
teen of the registers are used as the Display, the other 
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half being used to implement the remaining processor 
registers of the BSM. All of the stack and code page con
trol registers are kept here, as well as some registers to 
hold state information about BSM used only by the 
emulator. For example, one register (NEXTINSTR) is 
used to hold the address of the instruction following the 
one currently being executed, which is addressed by 
LOCCTR. It is necessitated by the complexity of location 
counter updating, as will be shown later on in this section. 
Another pair of registers is used to hold internal interrupt 
parameters when such a condition is detected. The design 
of the system insures that only one internal interrupt can 
be set in the interval between successive checks in the 
emulator for interrupts to be generated to BSM, and since 
these conditions cannot be masked out, there is no dan
ger in "losing" an interrupt by this method. 

Unfortunately, the same is not true for external inter
rupts. Several such interrupts may be pending at anyone 
time, and in addition, the BSM operating system can 
disable them. A small portion of main memory is set 
aside to queue these interrupts, and when the external 
interrupt pending flag is set and the interrupts are ena
bled, the first entry in the queue is "passed up" as an 
interrupt to the BSM processor. The external interrupt 
pending flag is reset if and only if the queue is emptied. 

Another portion of main memory is reserved to hold the 
routines for Kielbasa II which will not fit in control store. 
This is all that will be said on this subject at this point, 
but we will see later that a major decision in the emulator 
is what to keep in mainstore, and how to execute it. 

Two of the non-dedicated 4-bit registers are used to 
hold processor status across all operations in the system. 
One is used as the CLEVEL register; the ability to incre
ment and decrement these registers and test for overflow 
and underflow is quite helpful in detecting display over
flow and underflow. The other 4-bit register is composed 
of 4 separate emulator state bits: internal interrupt pend
ing, external interrupt pending, external interrupts ena
bled and a bit to decide whether or not LOCCTR is to be 
updated to the value in NEXTINSTR. 

We now turn to a discussion of the structure of the 
emulator which manipulates these resources. First, two 
techniques that have been used extensively (and quite 
successfully) in the design of Kielbasa are discussed: the 
structuring of all the code for BSM operations into sub
routines and the decision to overlay certain routines from 
the main memory into control store; both of these tech
niques were used in the earlier version of Kielbasa and 
found to be quite advantageous. The fact that the B1726 
provides hardware support for both of these techniques 
(an address stack for subroutines and an OVERLAY 
microinstruction) has made their use even more attrac
tive. 

Subroutining allows the use of code from several parts 
of the emulator, with many of the same benefits which 
accrue from this practice in programs for any machine. 
For example, the operations which compare the 2 top-of
stack items for various relations use the SUBtract rou
tine, which is also a separate uperation in the machine. 

This method of organization is extremely valuable in the 
emulator, since many of the complex operations are 
implementable as calls on more primitive ones. The inter
rupt procedure, as has been noted, can have a call forced 
by the emulator; this is accomplished very easily in Kiel
basa by having the routine which generates interrupts call 
the various opcode routines for procedure entry in the 
same sequence as a software invocation. This insures the 
criterion is met that a hardware or software call on a 
procedure be indistinguishable in its effects on the stack. 

The provision of control store on the B1726 leads to 
consideration of the best allocation of routines to this fast 
memory. The indications are that the entire emulator 
will not fit into the control store, and thus some func
tions must be kept in main store. The questions that arise 
in this case are what routines should reside in control 
store, and of those consigned to main store, which (if any) 
should be overlaid into control memory when needed. At 
present, the routines for opcodes which are legal only in 
the system mode of BSM are kept in main memory, and 
they are overlaid only when the operation they perform 
involves considerable looping, it being felt that the over
head in overlaying other routines is greater than the loss 
in speed inherent in executing from main store. These are 
preliminary (and rather intuitive) decisions, and we are 
waiting until the system is in use to evaluate this alloca
tion more thoroughly. 

At this point, examples of the way in which the emula
tor operates are in order; it is hoped that providing these 
will give insight into convenient ways of structuring 
emulators, and also demonstrate the way in which com
plex virtual machines features can be effectively realized 
through microprogramming. The examples that have 
been chosen are instruction counter maintenance, address 
resolution, and the microprogrammed "intelligent" I/O 
channels. 

Unlike conventional machine designs in which the loca
tion counter is advanced after each instruction, the opera
tion of BSM causes the location counter maintenance to 
be more complex. For example, the location counter 
should not be advanced if a code or data segment is not 
present; after the segment is brought into memory, the 
operation must be re-started. On the other hand, detect
ing an interrupt for arithmetic overflow should cause the 
location counter to be advanced before the interrupt 
procedure is called, since if the system decides to resume 
the task in spite of overflow, it should continue with the 
next instruction. There are many other instances of this 
dilemma in the machine, and thus a mechanism was 
needed to update the location counter correctly. A bit in 
the emulator status register indicates whether or not the 
location counter should be advanced; it is set just prior to 
each instruction fetch for BSM, and if the routines detect 
conditions which imply the location counter should not 
advance, they reset the bit. At the end of the instruction 
cycle, this bit is tested to determine whether or not 
LOCCTR is to be set to NEXTINSTR. 

With a variety of constructs in the machine to cause 
indirection, (stack relative pointers, indexed descriptors, 



etc.) the problem of address resolution becomes quite 
complex. In order to insure consistent interpretation of 
indirect chains, the addressing logic of the BSM is 
embodied in one subroutine, GEA (for Get Effective 
Address). The purpose of this routine is to follow the 
chains of pointers and descriptors (doing indexing as 
necessary) until the desired item is found. Since the 
requirements of various calling routines are quite differ
ent (the store operator expects to find a data item 
address; the enter procedure operator expects a code 
descriptor), GEA is passed a set of parameters telling 
which types of items are expected. On return to the caller, 
the address of the last item in the chain is given, as well 
as an indication of any exceptional conditions which 
caused the exit. The calling routine may resolve any con
flicts or cause an interrupt to be set for the BSM operat
ing system to handle. In this manner, the complex 
-address resolution is handled in a straightforward ana 
consistent fashion. 

The I/O channels BSM communicates with serve to in
terface the physical I/O of the B1700 with the logical I/O 
incorporated in BSM. For one thing, this permits the I/O 
channels to be "intelligent" in the sense that they obey 
the same tag-implied semantics as the BSM processor 
itself. An attempt to overwrite a memory link word, for 
instance, will cause an I/O error termination and inter
rupt the processor. This gives us an example where micro
programming not only extended the power of the ma
chine, but allowed this complexity to carryover into its 
communication with the external world. 

This concludes the section on the emulator which sup
ports the BSM architecture on top of the B1700 hardware 
host. It is hoped that this presentation increases the 
understanding of the power given to systems through a 
microprogrammable processor. In addition, it should 
provide some insight into the techniques of micropro
gramming found useful in creating an integrated, consist
ent emulator for the desired virtual machine. 

ADVANTAGES OF A MICROPROGRAMMED 
IMPLEMENTATION 

This section is intended to detail some of the advan
tages microprogramming provides. Though the examples 
are drawn from the BSM implementation on the B1700, 
we believe these advantages apply in most cases where 
this technique is used to realize complex or special pur
pose designs. 

All of these features can apply to any computer 
endowed with microprogramming capabilities, but they 
are especially important in small scale system and mini
computers, since they are a source of great power and 
adaptability. The two broad areas to be touched upon are 
those of the economics of these small systems, and the 
technical benefits. 

A concise statement of the economic situation is that 
without a microprogrammable computer, BSM would be 
nothing more than a paper machine. Though it is econom
ical to incorporate such complex constructs in the hard-
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ware of a system the size of the Burroughs B6700, it 
would not be competitive in the small machine market. 
However, as demonstrated in this paper, an efficient real
ization can be microcoded on relatively inexpensively, 
and sophisticated constructs become cost effective on 
small machines when they are microprogrammed. 

Another indication of the economic attractiveness of 
such a system, especially one equipped with writable 
control memory, is its adaptability, which has been 
alluded to above. The same machine which has been so 
effectively in the support of BS:M is also being used to 
emulate such diverse designs as an APL machine, a string 
processing machine (for SNOBOL4), as well as a wide 
variety of conventional designs, and there appears to be 
no reason why it could not also be tailored for such spe
cial purpose uses as a text editing machine or a data base 
management machine. We emphasize that this is not a 

-Teature -of tne-partIcular macfime-used:-lJufto-agreater ~--
lesser degree a characteristic of the entire genre of micro
programmable minis. This adaptability via microcode is 
one of the main reasons for the growing power of small 
systems. 

There are also technical benefits which accrue to the 
use of microcode in systems implementation. One of the 
most striking benefits which was discovered during the 
design of BSM is the ability for primitives to migrate 
from one level of implementation to another. This means 
that a construct which is frequently used at the virtual 
machine level can be directly implemented in microcode, 
making it truly primitive to the emulated machine; con
versely, a little-used feature in the virtual machine, or 
one whose complexity in microcode outweighs the advan
tages of its inclusion, can be broken up into less compli
cated operations, placing the burden of implementation 
on virtual machine software. Examples of both directions 
of migration will be given next to demonstrate the value 
of this feature inherent in the use of microcode. 

I t was mentioned in the section on the constructs 
included in the design of BSM that semaphore constructs 
were added to aid in task co-ordination and access con
trol. In the original design of BSM there were no such 
constructs at all. Since the design was of a single proces
sor system, it was felt that such controls could be imple
mented by explicitly called gate-keeper procedures (in 
BSM code) which would perform the same services as 
semaphores. 

When the writing of the operating system was begun, it 
became evident that this mode of operation was unsatis
factory. The amount of code necessary in the procedures 
would cause high system overhead, but even worse, any 
coding flaws which allowed some task to ignore the con
ventions could have disastrous consequences for the en
tire system's integrity. 

Thus, the decision was made to provide more immedi
ate support in microcode, and it was discovered that the 
semaphore operations could be easily added in a consist
ent manner, as described previously. In this the first 
implementation of the BSM, these provide a sufficient 
means of control; we are awaiting the results of the analy-
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sis of the system's performance (described later in this 
section) to see if the choice was optimal as well. 

An example of reverse migration is demonstrated by 
the memory management operations. In the original 
Kielbasa, memory management was incorporated into 3 
system opcodes-GETSEG, RETSEG, and COMPACT. 
Using the first two, the operating system for BSM allo
cated and deallocated segments in memory, and the third 
was used for garbage collection in case no contiguous 
space was large enough for a segment which was to be 
brought into memory. However, the code for these three 
operations was considerably more complex than that for 
any of the other operations in BSM, and in addition, the 
BSM operating system did not have as much control over 
the allocation of memory resources as it did over the other 
resources of the system. These two observations together 
convinced us that memory management was not balanced 
with respect to the rest of the system. 

To alleviate this situation, the current design has added 
more but less complicated operations. A better balance 
seems to have been struck by this approach; the coding in 
the emulator is proportionately less complicated, and 
supports memory management by the operating system 
without forcing any particular discipline on it (apart from 
that already dictated by the variable size segment organi
zation implied by the architecture). This, then, is a case 
where an operation was considered to be unbalanced to 
the side of the emulator, and was broken up into simpler, 
lower-level primitives. 

Another benefit in the use of microcode is the ability to 
design both the machine and the software that will run on 
it in parallel, allowing close co-operation. Instead of the 
usual process whereby the software has to be designed 
around an existing machine, the considerations of both 
software and the "hardware" can interact to produce a 
(hopefully) better design. Both the inclusion of sema
phores in BSM and the dissolution of the original memory 
management opcodes described above were a direct result 
of this process. 

Another eKample of the value of this co-operation arose 
when in the design of the compiler for PL-BSM it became 
apparent that there was a grave flaw in the environment 
setting mechanisms as originally defined. Since the cor
rect environment for each call is essential to the proper 
operation of the entire BSM system, had the error been 
frozen in hardware, it would have been an embarrassing 
(and expensive) mistake. However, the changes that were 
necessary in the emulator were easily made with little 
cost. 

These three examples, plus many other minor changes 
to improve the operation, were possible only because the 
BSM was being emulated. We believe this is one of the 
greatest benefits of microprogramming, and can be of 
even greater importance when trying to optimize a ma
chine for a specialized set of tasks. 

The final comment we have to make on the advantages 
offered by microprogrammed implementation of systems 
is in relation to the evaluation of the result and modifica
tions based on thi~. Once a basic design uutline has been 

chosen, the particular operations to include still remain to 
be specified. All too often the decisions are based upon 
limited previous experience and intuition as to what is 
appropriate, and little evaluation is done later of the 
result. Of course, if the machine is frozen in hardware, the 
evaluation would probably be of little use except as a 
guide for future designs. 

When emulation is the implementation technique used, 
however, the evaluation can be very useful. Recent exper
iments have shown the power of microprogrammed meas
urement techniques l5 and how these can indicate charac
teristics of a machine's operations which are not intui
tively obvious. Thus, Kielbasa will have microcode 
embedded in it to gather statistics on the frequency of use 
of operations, length of indirect address chains and other 
relevant measures of BSM's performance. 

Based on this, we plan to re-evaluate the decisions 
made in this, the first iteration of the design. It could well 
be that more constructs will be directly implemented in 
microcode, or that little used facilities will be even further 
subdivided. In the two instances cited above, where oper
ations were changed in their level of realization, it is not 
inconceivable that they might be changed back to their 
former implementations. We are waiting for experience 
with the system to either confirm our original decisions or 
indicate alternate strategies. 

CONCLUSIONS 

Those of us in Project Mu who have participated in the 
BSM design and implementation have become increas
ingly impressed with the power small systems equipped 
with microprogramming capabilities possess. As technol
ogy continues to lower the cost of these systems we feel 
they will become even more attractive due to the sophisti
cation they are capable of supporting and the ability to 
adapt to the needs of an application. It is these features of 
today's mini-computers which make them very attractive 
and contribute heavily to their growing power and poten
tial. 
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INTRODUCTION 

The operating system described in this paper was devel
oped as part of research sponsored by The National Sci
ence Foundation and the Office of Naval Research on 
satellite processing and symbolic debugging of data struc
tures. This system runs on a small (32K bytes), dual 
processor, microprogrammable computer equipped with a 
high-speed graphic display unit and attached in satellite 
mode to the multiplexor channel of an IBM System/360-

-67. 
In addition to providing the support for these major 

research projects, the system is intended for use by a 
variety of applications, both stand-alone and satellite. To 
support these varied uses an operating system has been 
designed which attempts to tailor many features intro
duced in other, usually larger, systems to the particular 
needs of these applications, and at the same time intro
duce new features that better meet the research require
ments. 

The system, which has been in use since August 1972, 
is implemented in "levels of abstraction" as defined by 
Dijkstra.5 Firmware has been included to support the 
implementation of these levels and to provide automatic 
storage allocation and status-saving upon program entry. 
The lowest level of the operating system creates an 
extended machine which provides an environment that 
supports multiprogramming. This environment is similar 
in concept to that described by Hansen.6 Communication 
between the levels of the system is provided by the intro
duction of a data structure called the event table. 

CONFIGURATION 

The Brown University Graphics System (BUGS)IO 
configuration consists of dual microprogrammable Digital 
Scientific Corporation MET A 4 processors, sharing 32K 
bytes of memory. The 'A' processor, which has been 
microprogrammed as a general purpose computer,2 is 

* This work is sponsored in part by The National Science Foundation, 
Grant GJ-28401X, The Office of Naval Research, Contract NOOO-14-67-
A-0191-0023, and the Brown University Division of Applied Mathemat
ics. 
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attached to the multiplexor channel of an S/360-67 and 
h-as--attaehed·te-·it-a-e-ar-d--readel'-; -a--k-eybe-am-fe-e-nsele,and-· 
a megabyte removable cartridge disk. The 'B' processor is 
being microprogrammed with a subset of the general 
purpose instructions of the 'A' processor and a set of high 
level graphic display instructions. II The 'B' has attached 
to it a high-speed, high-resolution Vector General CRT. 
The Vector General is equipped with a joystick, lightpen, 
function keys, control dials, and a keyboard. A small, 
very fast (less than 30 nanosecond instruction time) spe
cial purpose microprogrammable processor will also be 
attached to the 'B'. This processor, which uses a writeable 
control store, can be dynamically set up to perform a 
variety of matrix and vector calculations including rota
tion, translation, perspective, windowing, scaling and 
clipping. The operating system being described runs 
primarily on the 'A' processor. 

SPECIFIC GOALS 

A simple general purpose operating system for use with 
predominately graphical applications 

BUGS is intended to be a small general-purpose com
puting system to be used predominately by graphics 
applications. In general, graphics applications do not 
make any unusual demands on the system under which 
they are running. Graphics applications probably do 
more data structure manipulation and accessing, as well 
as more character manipulation, than a "typical" non
graphics application. However, in this respect they are 
not very different from a compiler. Since graphics appli
cations tend to be interrupt-driven, they will run better 
and be easier to develop if the system has an efficient and 
easily interfaced interrupt mechanism. In this respect 
they are similar to heavily I/O-oriented applications. So 
while it is true that graphics applications are not really 
unusual, they do have a combination of characteristics 
that influenced the design of BUGS. 

Investigation of the advantages offered by 
microprogramming 

A major goal of this project is to investigate what 
advantages the flexibility of microprogramming offers to 
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both system and application programmers. The effects 
being examined concern program speed and size as well 
as certain harder to evaluate aspects such as program
ming and debugging ease. To facilitate experimentation in 
this area the operating system has been designed to allow 
operating system functions or parts of these functions to 
be moved from the software to the firmware with a mini
mum of change to the operating system and with no 
impact on user programs. 

HARDWARE (FIRMWARE) CONSIDERATIONS 

S / 360-Like instruction set 

The lowest level of BUGS is that presented by the 
firmware. A detailed description of the firmware imple
mentation can be found in the META 4A Principles of 
Operation. 1 Basically, the firmware-defined architecture 
is similar to that of the IBM System/360. Information is 
stored in main memory in individually-addressable eight
bit units called "bytes". Bytes may be accessed sepa
rately or grouped together. The most common grouping 
consists of two bytes and is called a "halfword". The six
teen registers and the fixed-point numbers operated upon 
by arithmetic instructions are halfwords. 

Of the sixteen registers, three are special purpose, the 
rest general purpose. Register 0, called the Machine Sta
tus Register (MSR), contains information required for 
proper program control and execution. Register 1 is the 
Program Counter (PC). Register 15 is the Stack Frame 
Pointer (SFP). Its use is described in a later section. The 
system has no floating-point or decimal support. 

Improvements over 360 instruction set 

The system has S / 360-like storage-to-storage instruc
tions for handling variable length character strings. In 
addition to the standard S/360 version in which the string 
length is included explicitly in the instruction, each stor
age-to-storage instruction has a form in which the length 
is placed in a register and the register is specified in the 
instruction. This allows the handling of character strings 
up to 32K bytes in length. 

To provide enhanced data structure and character
string manipulation facilities several instructions have 
been added to the standard S 1360 set. These include a 
Search instruction for processing linked lists or tables for 
a key which holds some relation to a search argument. 
Enqueue and Dequeue instructions for manipulating the 
elements of linked lists are included for use in conjunc
tion with the Search instruction. 

The standard S 1360 Translate and Translate-and -Test 
instructions are provided, as well as a Translate-and-Test 
which scans from right to left. Several additional scan 
instructions are included for scanning left or right for 
equality or inequality with a specified character. For 
manipulating pushdown stacks, Push and Pop instruc
tions are provided which can be used for stacking regis
ters or storage. 

The machine includes other significant non-S/360 fea
tures. A group of instructions has been added which 
includes 16 bits of immediate data. Since this is the size 
of the registers and the fixed-point data items, these 
instructions are very useful and allow a four-byte instruc
tion to perform the same function that would take six or 
eight bytes on an S/360. 

360-Like PSW swap interrupts 

The BUGS system has an S/360-like interrupt mecha
nism with the equivalent PSW swaps. There are four 
types of interrupts on the 'A' processor: SuperVisor Call 
(SVC), Program, Local 1/0 (which includes the 'B' proc
essor), and those generated by the S/360. 

Stack frames 

Probably the most significant departure from standard 
S/360 architecture in BUGS is the use of stacks for sub
routine calls. These stacks are similar in function to the 
Multics stack segment. 4 Programs which require the sav
ing of registers and optional dynamic work storage can 
have this service performed by executing an ENT 
(ENTer routine) as the first instruction. Upon execution 
of this ENT instruction the stack is updated in the follow
ing manner: 
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The first figure shows only the caller's stack frame. The 
second shows both the caller's and subroutine's stack 
frames. During the execution of his program, the user 
must not modify the SFP. The amount of dynamic stor
age needed by the routine is specified as an immediate 
field in the ENT instruction. To return to the calling rou-



tine, a program issues a RET (RETurn from routine) 
instruction. This instruction restores the stack to its pre
vious state and returns control to the calling program with 
all registers restored. The firmware controls only the allo
cation of storage within the stack. If, during the execution 
of the ENT instruction, the firmware determines that 
insufficient space remains in the stack to perform the 
required allocation, a program interrupt is generated and 
the operating system allocates a stack extension and 
completes the ENT processing. 

I/O COMMANDS 

Firmware support for the local I/O devices and the S/ 
360 is very low level. A single command can be sent to a 
specified device by use of the Start I/O (SIO) instruction. 

-Ty-PlcaI--C-oinmands-alTowlorfne-wntiiig-ora-slngre-cli~ir
acter to the console, moving the disk arm a specified dis
tance and direction, or the reading of a sector of informa
tion from the disk. The execution of most commands is 
performed asynchronously by the specified device. The 
completion of these commands causes an I/O interrupt. 

BASIC CONCEPTS 

Multi-level operating system 

The specific goals outlined in the third section of this 
paper have led to a number of basic design conceptions. 
The first concept is motivated by a desire to produce a 
system in which the interfaces between the various parts 
of the operating system and between the user and the 
operating system are as precise and v/ell-defined as possi
ble. The need for such well-defined interfaces arises from 
the fact that the operating system is basically a research 
tool and will be continually changing. The system has 
been designed and implemented as a hierarchy of levels 
to minimize the effects of these anticipated changes. 

The immediate effect of this design is to blur the 
boundary between firmware and software. The program 
on LEVELl "sees" only hardware below, with the charac
teristics of that hardware being simulated by LEVELO 
and the actual firmware. It is therefore possible to test 
the usefulness of a function by implementing it in 
LEVELO, and later moving it into the firmware if that is 
found appropriate. The LEVELl program will not notice 
the change except in terms of the speed of the function. 
Thus the "extended machine" concept and micropro
gramming together provide an ideal environment for 
research into exactly what a "useful" machine for satel
lite graphics (or many other things) should look like. This 
is a significantly different approach from that taken in 
the Venus Operating System,8 in which the initial (non
modifiable) firmware machine included approximately 
the same level of support that the BUGS operating sys
tem has incorporated initially in LEVELO. Rather than 
viewing the development of the firmware defined archi
tecture as a step that must completely precede the devel-
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opment of an operating system, the BUGS project is 
attempting to overlap these two steps as much as possible. 

The operating system consists of three levels. Lower 
levels are completely independent of the data structures 
and facilities of higher levels. Higher levels access the 
data structures of lower levels only through the use of the 
lower level routines. 

To facilitate the implementation of the lowest level 
(LEVELO) of the operating system, the firmware does 
instruction parse and effective address computation prior 
to recognition of an illegal op-code. For illegai instruc
tions, the firmware dumps the parsed fields and effective 
addresses into core, and initiates a program check inter
rupt. To utilize this feature, each of the functions of 
LEVELO is assigned an invalid instruction of the proper 
format. This instruction is coded and executed by higher 
levels of the system as if it were a valid machine instruc-
tIon.- The progra-m dieckhillldler, part ()fLEVEL6~-~ecoi~-- -
nizes these instructions and invokes the proper LEVELO 
routine. Because the operands have already been com
'puted (an activity that could take as long as the rest of 
the requested LEVELO function) these functions execute 
very efficiently. In addition, these functions can be 
placed in the firmware in the future with no effect on 
higher levels of the system. These LEVELO functions are 
called extended instructions. 

In addition to making it easier to introduce changes 
into the system, it was expected that a multi-level system 
would be easier to implement and debug since the com
plexity of each separate level of the complete system is 
kept reasonably low. For the same reason it is easier to 
document the internals of such a system. 

Event table 

To meet the goal of providing good interrupt handling 
for graphics applications and also to provide a consistent 
interface between the various components of the system, 
a second concept, that of a special data structure called 
the event table, has been introduced. This structure is not 
really a table but rather sixteen separate unidirectional 
linked lists, many of which will be empty. The heads of 
these lists reside in fixed low-core locations. A typical 
element in the list will have the following format: 

1<----2---->1<----2---->1<-1-->1<-1-->1<----2---->1<----2---->1 

where 

link field will point to the next element in the list 
event name specifies an event or class of events 
flags specifies the mode of execution of the event rou-

tine 
prty specifies the priority of the event routine 
entry point specifies the address of the event routine 
stack size specifies the size of the initial stack for this 

event routine. 
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LEVELO uses the event table to provide a logical exten
sion of the firmware interrupt mechanism to higher levels 
of the system. A more detailed description of this process 
is included in the next section of this paper. 

All firmware interrupts cause LEVELO to gain control. 
Some interrupts, such as those caused by extended 
instructions, are handled completely by LEVELO. Most 
interrupts, however, are reflected to higher level routines. 
This reflecting is done through the event table. In addi
tion, the completion of asynchronous LEVELO functions 
is reflected through the event table. In this manner events 
represent interrupts from the extended machine 
(LEVELO plus firmware) to higher levels of the operating 
system. The event name can identify a specific "extended 
interrupt" or a class of extended interrupts. 

Using facilities provided by LEVELO, higher levels of 
the operating system and user programs build the event 
table. The parameter passing conventions and the envi
ronment created are identical for all events, creating one 
consistent interface between the system and the user. To 
aid in program checkout LEVELO can be made to invoke 
a specified event using parameters passed to it. This 
allows the creation of the exact environment that would 
exist if the actual extended interrupt had occurred. Since 
the actual scheduling of events occurs at only one point in 
LEVELO the tracing of system and user activity can be 
efficiently and easily accomplished. 

Multiprogramming 

The final basic design concept was that LEVELO 
should provide a flexible form of multiprogramming 
which would be fully utilized by higher levels. Because 
the system is designed for use by a single user or at most 
a few users, only very basic task coordination and com
munication facilities are provided by LEVELO. Applica
tions which require more sophisticated facilities can add 
this support to higher levels of the operating system, 
building on the functions of LEVELO. 

LEVELO 

LEVELO consists of an interrupt handler, a priority 
dispatcher, a group of extended instruction routines 
which provide storage management, a Wait/Post mecha
nism and a simplified I/O facility. 

Storage management 

Extended instructions are provided to obtain and 
release specified amounts of storage. In addition, an 
extended instruction is provided to obtain the largest 
block of free storage. Besides this explicit storage manage
ment, LEVELO allocates stacks whenever certain types of 
events are initiated and allocates a stack extension when
ever ENT determines that there is insufficient space in 
the current stack. When RET determines that an entire 

stack extension is now free, LEVELO is notified and this 
storage is freed. 

Extended I/O 

In terms of the amount of storage occupied by code, the 
largest function in LEVELO is the extended I/O support 
for the S/360 and the local devices: disk, keyboard/type
writer, card reader, the programmer's panel, and the 
META 4B. This is due mainly to the very low level of the 
I/O commands accepted by the firmware. 

The LEVELO extended I/O support simulates an intel
ligent channel. With this support higher levels of the sys
tem can accomplish a logical unit of I/O work with a sin
gle request to LEVELO. A LEVELO I/O request is initi
ated by use of an EXecute Channel Program (EXCP) 
extended instruction. The operands of the EXCP instruc
tion are the device number and the address of the start of 
a channel program. The channel program consists of one 
or more Channel Program Commands (CPC). CPC's have 
the following format: 

cOll1'l1and flags data area data length 
code 

1<--1-->1<--1-->1<----2---->1<----2---->/ 
CPC's are logically equivalent to S/360 CCW's. The 

allowable command codes and their meanings vary from 
device to device. Upon completion of all processing 
required for a particular channel program, an extended 
interrupt is generated. The particular device and whether 
or not an error has occurred is reflected in the event 
name. Event naming conventions are described in a fol
lowing section. 

Priority dispatcher 

The priority dispatcher allows for the execution of an 
essentially unlimited number of parallel tasks with priori
ties specified by the higher levels of the system. The only 
data structure that the dispatcher accesses is the stack. 
Each task in the system has its own stack. When the 
stack is created a header is attached with the following 
format: 

stack link 

I pr I or I ty 

remaining length 

current SFP 

1<-------2-------->1 



This stack is then linked into the stack queue according 
to its priority. The head of this queue is at a fixed low
core location. The priority dispatcher searches this queue 
for the first stack that is not in wait state (e.g., one which 
contains an MSR without the wait bit set). The user's 
registers, MSR and PC, are loaded from this stack start
ing or restarting execution of the task associated with the 
selected stack. If all users are in wait state, the dispatcher 
loads the MSR, PC and registers from the last stack on 
the queue, placing the machine in wait state. 

Extended interrupt generation/task creation 

When LEVELO determines that an event has occurred 
which it does not handle internally, such as an SVC inter-

-- ~-ien-ef-an--l-I--O-req-Y-est---,----Gl"---an-intw+Upt--from 
the graphics processor, it uses information about the 
event to generate an event name. The event name consists 
of four hex digits. The first digit generally describes the 
type of event, e.g., 0 for a timer interrupt, 2 for a local 
I/O device completion, 'C' for an SVC interrupt. This 
digit also defines which of the sixteen lists is searched. 
The meaning of the three remaining digits varies de
pending on the first digit. For a local I/O completion the 
second digit is the device number, a third digit of 1 in
dicates successful completion, a 2 indicates an error, 
and for an error the last digit describes the type of error. 
For an SVC interrupt, the second digit is always zero; 
the third and fourth digits are the SVC number. After 
LEVELO has determined the proper event name, an ex
tended interrupt is generated. This is done by searching 
the appropriate list in the event table for an entry with 
the specified event name. If an event entry is found for 
the specified name, the flag field in the event table 
element is checked. If this flag indicates that the event 
is to be processed in parallel with the other tasks running 
in the system, a stack is allocated for the new task. The 
size of this stack and its priority are obtained from the 
event table element. The stack is linked into the stack 
queue and initialized so that when it is dispatched, the 
PC will point at the entry point for the routine to handle 
the event as specified in the event list element. 

Certain high priority LEVELl event routines do not 
wait for completion of Ii O. (System performance would 
be degraded by allocating these routines their own stack 
since nothing is gained by executing them as parallel 
tasks.) Instead, they are allowed to execute immediateiy. 
They run using the stack of the routine that was executing 
when the event or interrupt occurred. These routines are 
run disabled and are allowed to use only a restricted set 
of system facilities. 

A range of event names is reserved for applications 
programs. These programs are allowed to link in event list 
elements describing events that they wish to handle. 
These can be events that the system normally supports, 
such as the interrupt button on the panel; or they can be 
new events such as user SVC's. Also, by adding an event 
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table element with a user-specified name (with the entry 
point specifying the proper routine and with the event 
flag set to indicate parallel execution) an application 
program can initiate the routine as a parallel task by 
executing a 'signal event' extended instruction. 

The event names are defined, and the event table 
searched, in a manner that allows a single event table 
entry to specify a class of events to be handled. If 
LEVELO fails to find an entry in the event table for a 
particular event that has occurred, the rightmost hex digit 
of the event name is zeroed temporarily, and the event 
table is searched again. This process is repeated up to 
four times, or until a match is found. It is because of this 
search technique that the event names are defined in the 
previously described fashion. In addition, no event names 
are defined with 'trailing' zeroes. The fourth search of the 
event table, if necessary, is always performed with an 
e-ventnanie otX'OOOO'~LEVELlp-rovidesan event table --
entry for this event name. The entry point specifies the 
LEVELl supplied DEBUG package. 

The result of all this is that the user can have both 
specific and general interrupt handlers, such as specific 
routines for function keys 5, 9, and 12 (entries X'nnn5', 
X'nnn9', and X'nnnC' in the event table) and a general 
routine for all other function keys (X'nnnO'). 

In discussing the creation of parallel tasks, the use of 
the term sub-tasks was specifically avoided. In this sys
tem all tasks are independent and equal. ~o information 
is retained concerning which tasks initiated which other 
tasks. In this way, a task's life is not bound by that of its 
initiator, nor is its allowable priority range affected by 
that of its initiator. This does allow for more flexibility, 
but also requires that the programmer who utilizes multi
tasking provide his own means of removing unwanted 
tasks should the need arise. 

Wait/Post 

In order to coordinate the execution of tasks within this 
system, Wait and Post task synchronization primitives 
have been included in LEVELO as extended instructions. 
Both Wait and Post refer to aWait Control Halfword 
(WCH). When a Wait is issued, LEVELO inspects the 
specified WCH; if the Post bit (the high order bit) is a '1', 
control is returned to the user and execution continues. If 
the Post bit is '0', then LEVELO stores the address of the 
stack header of the user in the WCH and turns on the 
Wait bit in the MSR in his stack frame. The dispatcher is 
given control to find another task to execute. When a Post 
is issued, LEVELO examines the addressed WCH to see if 
it contains a pointer to a stack header. If it does, 
LEVELO finds the MSR in the current stack frame and 
turns off the \Vait bit. LEVELO then turns on the Post bit 
in the WCH and gives the dispatcher control. If LEVELO 
does not find a stack header address in the WCH, it just 
turns on the Post bit and returns. 
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LEVELl 

Introduction 
The LEVELl routines, in combination with LEVELO 

and through the use of LEVELO, are intended to provide 
an environment for execution of application programs. 
Most of the application programmers also use the Cam
bridge Monitor System (CMSF which runs on Brown's 
IBM System/ 360-67. These users are therefore accus
tomed to the facilities offered by CMS. Because of this, 
LEVELl provides 'CMS-like' support for the local II 0 
devices. LEVELl performs file management and space 
management for the local disk. LEVELl provides a link
ing loader and a command processing routine to initiate 
the execution of user programs and LEVEL2 utility rou
tines. An automatically invoked debugging routine is also 
provided. 

The LEVELl routines are invoked by issuing an SVC. 
All of these routines are passed a parameter list in which 
the first halfword is a WCH. The WCH is posted by the 
invoked routine when it completes the requested func
tion. This Posting is necessary since these LEVELl rou
tines run as parallel tasks after being invoked. This par
allel execution allows the maximum overlap between the 
LEVELl routines, which normally perform I/O, and the 
user program. If the user wants to suspend execution 
until the LEVELl request is complete he must issue a 
WAIT on the specified WCH. 

The LEVELl being described represents the standard 
or full LEVELL At IPL-time the user can specify that an 
alternate LEVELl should be loaded. This LEVELl may 
consist of a subset of the standard LEVELl or a com
pletely different, user written, program. 

"CAfS-Like" I/O support 

For the card reader the RDCARD routine provides the 
user with up to 80 characters from the next card in the 
card reader. For the keyboard/ console, the user can read 
a line (TYPEIN), type out a line (TYPEOUT), or type a 
line and read a reply (TYPEOUT, with reply option spec
ified). Optional editing facilities are available. 

RDBUF provides the user with a logical record from a 
specified file. Deblocking is provided automatically. The 
user specifies the logical record number so RDBUF can 
be used to read sequentially or randomly. WRBUF allows 
the user to write a logical record to an existing or new file. 
Again, blocking is performed automatically and the 
records can be written sequentially or randomly. A new 
file is allocated automatically when WRBUF is issued for 
a file whose file name is not found in the file directory. A 
file is extended automatically when a WRBUF specifies a 
record number beyond the current end of a file. 

Disk management 

LEVELl provides space management on the local disk 
through the use of an allocation map and a file directory. 

The allocation map contains a bit for each sector. This bit 
is on if the sector is allocated or defective. The file direc
tory contains the file name and type and the starting 
sector number of each file on the disk. Additional infor
mation, including the logical record length and file length, 
is contained in the file header which occupies the first 
logical record of each file. LEVELl uses these data struc
tures to allocate, delete, and extend files. The STATE 
routine can be used to obtain information from the file 
directory for a specified file. 

Linking loader 

The largest part of LEVELl is a linking loader. The 
input to the loader, called a module, is in the form of text 
decks stored on disk. These text decks are a compacted 
version of the standard OS/360 text deck. A text deck 
may represent the output of one or more compilations. 
The loader relocates the module into any available free 
storage. Cross-references between the CSECT's within a 
module are resolved. 

Debugs 

DEBUGS is invoked automatically when an event 
occurs for which there is no entry in the event table. The 
most common instance of this is a program check in the 
user program. When such an event occurs, DEBUGS 
informs the user of this fact through the keyboard/ con
sole. DEBUGS then provides the user with facilities to 
display and modify storage and registers, to set a break
point and/ or origin, and to restart execution at an arbi
trary point. 

Command processing/parsing 

The final function provided by LEVELl is command 
processing. User programs and LEVEL2 utility programs 
are stored on the disk in the module form. After the sys
tem has been IPL'ed and initialization is complete, the 
LEVELl command processing routine accepts a line from 
the console. The first field in the line typed-in specifies 
the file name of the user program or LEVEL2 program. 
This program is loaded and executed. The rest of the line 
is parsed and passed to this routine as parameters. When 
this program finishes, it returns to the command proces
sor, which reads another line from the console and exe
cutes the next command. 

LEVEL2 COMMANDS 

The portion of BUGS that exists on LEVEL2 consists 
of a group of utility commands for file and directory 
manipulation and inspection. These commands are simi
lar to a subset of the eMS command language. The 



STATISTICS and LISTF commands can be used to 
inspect the allocation map, file directory, and file head
ers. The PRINTF and PRINTFX commands can be used 
to display files. The MODMAP command displays the 
addresses of CSECT beginnings and entry points in 
modules on the disk. ALTER and DELETE can be used 
for file directory management. MODZAP can be used to 
patch a module. LOADMOD can be used to load a mod
ule into storage without executing it. OFFLINE is used to 
read a file from the card reader and store it on the disk. 
PACK is used to reclaim non-contiguous free space on the 
disk. 

EXTENSIONS 

Tlie-ITrial section ofl1its paper deals wIth too major 
extensions to the operating system currently being 
designed and implemented. These extensions are designed 
to provide storage management facilities for programs 
which require more core storage than is actually available 
and to reduce the amount of storage permanently 
required by the operating system. The approach being 
taken is similar to that taken in the SYSEX9 system. 

Two types of storage are supported by these extensions. 
"Permanent" storage will be provided as it is currently 
done by LEVELO. "Permanent" does not mean that the 
storage is not allocated and freed dynamically, but rather 
that, once allocated, the storage remains in a fixed loca
tion until freed by the user. The second type of storage is 
termed "dynamically relocatable". Such storage is allo
cated and managed by LEVELO when a higher-level rou
tine reouests the use of a record from a file or temporary 
work s~ace which meets the conventions established for 
this type of storage. The file record may be a program or 
a data item. The program or data that occupies this stor
age may not contain any absolute pointers to itself or 
other dynamic storage. Also, these programs will not be 
allowed to modify themselves. At the time the higher level 
or user requests this storage, a base register is specified. 
LEVELO initializes the register for the user and records 
the assignment in its internal tables. Only limited modi
fications may be made to these registers. 

With the user following these conventions it is possi
ble for LEVELO to dynamically relocate programs and 
data either to reclaim fragmented free space or when 
bumped items are reloaded. This capability, which was 
pointed out in the early sixties by Corbato[Cl], allows 
LEVELO to provide a form of virtual memory to higher 
levels. 

Additional LEVELO facilities will be available to allow 
the user to provide additional information that LEVELO 
can use to determine what data items can be bumped 
when the need arises. 

LEVELl disk support will be modified to use the new 
LEVELO support where applicable. This approach allows 
the programs that meet these conventions to be loaded 
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with a simple disk read. The current LEVELl routines, 
including the loader, meet these requirements and can 
now be dynamically relocated, reducing the fixed storage 
requirements of the operating system. 

CONCLUSIONS 

The operating system has been in use by applications 
programmers since August 1972. Production usage was 
preceded by a 12 man/month design phase and an 18 
man/ month implementation phase. The implementation 
proceeded so smoothly that the operating system was 
useable a month ahead of schedule. It is felt that this is 
directly attributable to two basic design concepts, the 
more important being the division of the operating system 
into a hierarchyoflevels and, to a less~!~~!_~_!l!,!~e_use ~K 
the-E-~eiit- Tableas--ii--c;nonical means of passing control 
between certain levels of the system. 

Specifically, the division of the system into levels 
allowed each of these levels to be developed and debugged 
prior to its use by higher levels. This greatly reduced the 
overall debugging task. The Event Table, which was 
expected to ease the users programming effort, was felt to 
have provided much the same benefit to the systems 
programmers. In addition, it provided a convenient 
means of allowing access to debugging routines during the 
actual development of LEVELl and LEVEL2. 

Much experimentation with the system is currently 
under way. This includes some of the projected experi
mentation in firmware implementation of operating sys
tem functions. So far, the work in this area has been lim
ited to the addition or modification of instructions to 
improve certain common coding sequences. 

The resident portion of the system, when a full 
LEVELl is included, occupies 8K bytes. Although, this is 
considered acceptable, a desire to reduce this figure is 
part of the motivation for the extensions outlined earlier. 

The Event Table has proven very successful as a means 
of allowing the user to interface with the operating sys
tem. The extended interrupt mechanism using the Event 
Table meets the requirement of efficient interrupt han
dling. Less than .25 msec is required to process an inter
rupt and initiate the execution of the routine specified in 
the Event Table as a parallel task. 
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Another attempt to define computer 
science 

by MICHEL A. MELKANOFF 
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University of California 

Los Angeles, California 

ABSTRACT 

There are equally important scientific and engineering 
aspects to computer science; they may be described as 
follows: 

SCIENTIFIC ASPECTS OF COMPUTER SCIENCE 

The unique aim of the inductive sciences is to p~edict 
the ·future.-·Thls·li-as been accomphsfled·TIi -the physIcal 
sciences by means of mathematico-symbolic models; the 
method has been much less successful in the behavioral 
and life sciences due to the difficulties of constructing 
soluble models which are valid over a sufficiently large 
domain. The advent of the computer has made it possible 
to construct and resolve models sufficiently complex to be 
interesting although their domain of validity is still lim
ited: The program is here the model. To a large extent, 
the utility of the mathematical models (or theories) devel
oped in the physical sciences is predicated on the possibil
ity of developing mathematically generalized analytic 
solutions which permit predictions of very general types 
of events. This becomes proportionally more difficult as 
the model becomes more complicated. Thus even though 
the computer permits resolution of individual cases which 
otherwise would not be practically feasible, it cannot 
provide the power of an analytic solution. Thus the scien
tific aspects of computer science are similar to those of 
mathematics: they deal with all facets of the construction 
and especially the resolution of models embodied in this 
case by programs. The most fundamental problem is still 
to obtain (if at all possible) general analytic solutions to 
classes of algorithmic interactions described by programs 
and this may be considered as one of the most important 
long-range goals of computer science. In view of the 
enormous difficulties expected of such an endeavor, sec
ondary goals must also be pursued; these include theoreti
cal studies of program's schema, development and formal 
analysis of programming languages, development of more 
powerful computer systems, etc. 

ENGINEERING ASPECTS OF COMPUTER 
SCIENCE 

The engineering aspects of computer science are 
directly related to system design. Defining recursively a 
system as a collection of interacting objects or systems, 
we are particularly concerned with systems whose compo
nents interact through procedures embodied in computer 
programs. The aim of engineering is to design a system in 
such a fashion as to optimize a given criterion function 
subject to certain given constraints. Thus the design of 
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complex systems where the computer plays a major part 
requires both extensive knowledge of computer science 
and of the discipline where the system is utilized. Since a 
computer system is itself a system of hardware and/ or 
software, computer science design is doubly related to 
computer science: as the discipline wherein the system is 
utilized and as the discipline necessary to carry out the 
design. 

The masters d.egree program in 
computer SCIence 

by M. A. MELKANOFF 

University of California 
Los Angeles, California 

and 

B. H. BARNES and G. L. ENGEL 

Pennsylvania State University 
University Park, Pennsylvania 

ABSTRACT 

The Curriculum Committee on Computer Science 
(cas) of the Association for Computing Machinery 
(ACM) is involved in a study of the masters degree cur
riculum. As visualized by the working group, such pro
grams have two basic objectives: 

(a) Providing the student with training in Computer 
Science preparing him for major positions in the 
industry. 

(b) Testing and preparing the student for more 
advanced work leading to a doctorate. 

Though it is not the intention of the Committee to pro
vide a guide to the formation of a graduate program in 
Computer Science, it is recognized that many new pro
grams are being developed, and thus it is hoped that the 
final guidelines will serve as a standard on which the 
various programs can be measured. To this time efforts 
have been concentrated on programs directed to the 
above objectives. It should be recognized that the ques
tion of special masters programs such as those for teach
ers, are not now under consideration. 

The structure of the proposed program will be present
ed, as well as the underlying philosophy of the program. 
The proposal has been reviewed in several meetings of 
cas, and by several departments now offering masters 
degrees in Computer Science. 

The comments and suggestions of the various Commit
tee members and interested professionals will be summa
rized, and the program will be compared with existing 
masters degree programs. 

This presentation will be of a working document. One 
of the motivations for presentation of the proposal is to 
elicit further comments and suggestions from those 
attending the National Computer Conference. 





A homophonic cipher for computational cryptography* 

by FRED A. STAHL 

University of Illinois at Urbana-Champaign 
U rhana, IHinois 

INTRODUCTION 

Computational cryptography deals with the storage and 
processing of sensitive information in computer systems 
by en-cipfiering. Sensitive information is information that 
for one reason or another must be protected from being 
disclosed to individuals without proper authorization. The 
need for systems to be secure from unauthorized access to 
sensitive information has been well documented. 1

-
7 Cyrp

tographic techniques appear to be one of the most simple 
and secure methods of providing this much needed pro
tection. 

In the next section the requirements for computational 
cryptography will be discussed, especially with regard to 
the differences from communication cryptography; sec
ond, a short review of the cryptographic techniques that 
have been suggested for computational cryptography; 
third, a review of some standard cryptanalysis tech
niques; fourth, a homophonic cipher will be described; 
and finally, some additional problems associated with 
computational cryptography will be discussed. 

REQUIRElVIENTS FOR COMPUTATIONAL 
CRYPTOGRAPHY 

Cryptography has been used for ages as a technique for 
concealing the informational contents of messages. The 
use of cryptanalytic techniques combined with the availa
bility of high speed electronic equipment have made both 
encipherment and cryptanalysis very sophisticated 
endeavors indeed. For this reason, simple ciphers can no 
longer be used to provide a great deal of security. This 
carries over to computational cryptography also. More
over, there are a number of desirable features that any 
ciphers to be used in computer systems shouid have. 
These incl ude: 

1. Encipherment and decipherment should be simple. 
That is, the computational complexity of encipher
ing and deciphering information should be minimal. 

" The work presented here was performed at the Coordinated Science 
Laboratory of the University of Illinois at Urbana-Champaign. It was 
supported in part by the Joint Services Electronics Program (U.S. 
Army, U.S. ~avy, U.S. Air Force) under Contract No. DAAB-07-72-C-
0259. 
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2. The effective ability to not be broken should be high. 
As the sensitivity of the information increases a 
cipher that is more difficult to break should be 
available for use. 

3. The cipher should be independent of mess-age tength. 
Messages can be even one character in length. 

4. Small errors should not cause large losses of infor
mation. If a small amount is ciphered incorrectly it 
should not make a large block of information unde
cipherable. 

5. Information should remain integral through editing 
of the ciphered text. The cipher should be such that 
the normal editing functions of deleting, inserting 
and moving strings of information (such as would 
occur in a dynamic data-base) can be performed 
without destroying the information contained in the 
ciphered text. 

6. The cipher should not increase the length of the 
message excessively. 

7. The cipher should be of such a nature that security 
can be maintained even though the cryptanalyst 
knows the ciphering system but not the key. 

There are in addition to these desirable features a num
ber of problems peculiar to computational cryptography. 
These will be discussed in the last section. 

CRYPTOGRAPHIC TECHNIQUES THAT HAVE 
BEEN SUGGESTED FOR COMPUTATIONAL 
CRYPTOGRAPHY 

The major thrust, so far, in computational cryptogra
phy has been to provide a cipher key to the computer and 
let it encipher information that enters the system, and 
also decipher and reencipher information as it is proc
essed by the machine. The ciphers suggested include: 
simple substitution schemes, arithmetic schemes (i.e., 
adding or multiplying by a constant, or base conversion), 
logical schemes (e.g., exclusive-or), and transposition 
schemes. These have been described quite thoroughly by 
Krishnamurthy,8 and Van Tassel.9

_
1o 

Some of these ciphers are too easily broken by the most 
elementary cryptanalytic techniques and others are too 
computationally complex to be implemented for use in 
computers. All fail to have some of the desirable features 
listed above. 
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STANDARD CRYPTANALYTIC TECHNIQUES 

It is not the purpose here to describe in great detail the 
cryptanalytic techniques that can be used to break a 
cipher. The reader interested in this topic is referred to 
Gaines. 11 It is only intended to suggest what types of 
information remain visible after the original text has been 
enciphered. 

For the most part cryptanalytic clues are gained from 
the information inherent in the structure of the language 
such as frequency information which is extremely hard to 
remove. Simple substitution, for example, leaves for easy 
analysis all single letter, and multiple letter frequencies, 
doublet and reversal frequencies, as well as contact vari
ety information. Figure 1 is representative of this infor
mation for a standard text. 
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• '"'" ~"" ''''''''''"I 

~ 

bl Digram Frequency 

T IERAHAETTAOHOI ESONHEVCDRRL 
HNRENERNI ETNAUTSTRT I AEOEAOI ... 
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~ 
gl Lef' Contact Variety 

I~ 
~AED!T9JlSKF"GMLCQRY::I-lVNXZ 

f) Total Cor:tac~ Variety 
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OEPlAS8GLTYCFJuKMNRWDXHVOZ 

hi R;gh' Contact Variety 

~ I 

I 

~I 
EYG~ OFC'JSA9FLLJXDRT';K~WHVZQ 

Figure I-Various frequency distributions for English 

HOMOPHONIC CIPHERS 

A homophonic cipher is a substitution cipher in which a 
given character may have any of a number of different 
representations. Figure 2 gives one such cipher and a 
sample message using it. Note that the cipher-text for E, 
for instance, varies from substitution to substitution. 
Kahn 12 notes that the first known Western instance oc
curs in a cipher that the Duchy of Mantua prepared in 
1401 for correspondence with one Simone de Crema. 
Each of the plaintext vowels has several possible 
equivalents. . .. "That the homophones were applied to 
vowels, and not just indiscriminately, indicates a knowl
edge of at least the outlines of frequency analysis." 

Obviously, the more ciphertext symbols relative to 
plaintext symbols the easier it is to disguise the structural 
properties of the plaintext through enciphering. Each 
plaintext symbol could have many ciphertext encipher
ings. In order to illustrate this consider a plaintext alpha
bet of 26 symbols and a ciphertext alphabet of 1024 
symbols (10 bits); Initially each plaintext symbol would 
have as many ciphers directly proportional to its fre
quency in the language (see Figure 3). Notice that the 
single letter frequency of the ciphertext is nearly constant 
(compare Figure 4 to Figure 1a) relative to its frequency 
in the plaintext thereby not providing any single letter 
frequency information for the cryptanalyst. 

However, as noted above, the cryptanalyst uses other 
techniques for breaking codes. The cryptanalyst looks for 
the most deviant structural features first. Consider, for 
example, the abnormal reversal frequency of ER in Fig
ure Ie. If this reversal can be located in the ciphertext the 
cryptanalyst is much closer to breaking the code. In con
trast, he would not look for the reversal OF since there 
are many other reversals with nearly the same frequency 
occurrence. The crucial point to remember is that it is 
only the abnormal or deviant frequencies that can be 
used for clues. Clearly, if all measurements of the cipher
text yielded nearly flat distributions as in Figure 4 there 
would be no information gained from those measure
ments. 

Key_ 

Plaintext: ABCDE FGH I J KLMNOPQRSTUVWX Y Z 
Ciphertext: CRYPTOGRAM56789BDEFHI J KLNQ 

123 4 S 
U V W X 

Z 

Messag~ 

Plaintext: THIS IS A SECRET MESSAGE 
Ciphertext: HRAF AF C FTYE2H 7VFFIGZ 

Figure 2-A simple homophonic substitution cipher 
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Plaintext Symbol: ABC 0 E F G H I J K L M 
Number of Cipher Symbols: 81 13 31 4313329 14 61 71 2 5 38 27 

N 0 P Q R STU V W X Y Z 
15 85 22 2 70 65 93 28 10 15 3 15 1 

Figure 3-A homophonic substitution cipher generated in direct 
proportion to frequency in plaintext 

Now let us generalize the homophonic technique to flat
ten the other curves illustrated in Figure 1. This is easier 
said than accomplished, since adjusting one curve to be 
flatter will generally result in making another one mo!e curVed.------------------- --------------- - --------------- --- ---

Let us return to the earlier generalized homophonic 
enciphering hypothesis and modify it somewhat to allow 
for more flexibility. Before we wanted the curve resulting 
from single letter enciphering to be nearly flat. If we 
lessen this restriction somewhat and allow for some distri
bution but not nearly as much we can avoid the abnormal 
or deviant frequencies that are normally used for clues on 
all the measurements found in Figure 1. Figure 5 gives 
one such homophonic cipher. 

The technique used to generate this code is fairly sim
ple. The frequencies are adjusted as for the code in Figure 
3, and the corresponding frequency charts can be gener
ated for the other measurement of the ciphertext. Next, 
the most deviant frequency in any measurement is exam
ined. If, for example, it is a reversal frequency the corre
sponding number of cipher symbols used for each of the 
constituent symbols is raised .accordingly. The process is 
repeated until the frequency curves are satisfactory. If 
there is no convergence the process can be started over 
again taking care to choose different measurements first. 
If after a number of attempts are made appropriate 
curves cannot be gotten, it might be necessary to increase 
the number of ciphertext symbols by increasing the 
number of bits used to represent each symbol. 
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Figure 4-Single cipher frequency for homophonic cipher 
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Plaintext Symbol ABC 0 E F G H I J K L M 
Number of Cipher Symbols: 73 10 243412923 105277 2 4 4322 

N 0 P Q R STU V W X Y Z 
27 89 19 12 80 72 87 45 8 13 2 13 2 

Figure 5-A generalized homophonic cipher 

A cipher successfully generated in the manner 
described has all the desirable features for computational 
cryptography set forth above. An extremely simple enci
phering and deciphering scheme can be used since this is 
a substitution type cipher. A sample scheme will be given. 
With_regarcLto_ truL.ahilit¥ _ to.adjust the-Ciph~----w---meet -
security needs only increase the number of bits used to 
represent each ciphertext symbol {effectively, increasing 
the ciphertext alphabet}. Since there is one ciphertext 
symbol for each plaintext symbol the messages can be of 
arbitrary length. An error in one symbol does not extend 
errors even to adjacent symbols of the message; thereby 
keeping losses of information to a minimum. Note in par
ticular that since it is a substitution cipher the 'integrity 
through editing' condition is met. That is, strings 
(including individual characters) of enciphered message 
may be moved with respect to each other without going 
through a deciphering and reenciphering process. This 
property makes it invaluable for large dynamic data
bases. 

The length of the message only increases with the secu
rity needed. For a typical low security cipher 8-bits 
should be sufficient for a 64 symbol plaintext alphabet. A 
homophonic cipher can effectively destroy all standard 
language frequency information as shown in Figure 1. In 
addition, information in ciphered form may be received 
by the computer from a terminal and be edited without it 
ever being deciphered at the central facility. As men
tioned earlier the device to encipher the plaintext message 
need not be very complex. Consider a key of 256 charac
ters; each of the 64 characters appears in the key the 
number of times desired for the particular application 
(see Figure 6). The key is loaded into a 256 word memory. 
Deciphering consists of returning the contents of the 
address specified by the 8-bit cipher. Enciphering 
invol ves generating an address randomly and then search
ing sequentially until a matching character is found and 
then transmitting its address (see Figure 7). 

The amount of secrecy needed can be controlled by the 
number of bits. So, for instance with 9 bits there would be 
418 remaining bit patterns; with 10 bits it would be 984, 
etc. Each additional bit increases the security. 

ADDITIONAL PROBLEMS ASSOCIATED WITH 
COMPUTATIONAL CRYPTOGRAPHY 

There are a number of additional problems associated 
with keeping sensitive information secure in computer 
systems. These include the following: 
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Address Memory 

00000000 ~ 
Ciphertext 10101110 Plaintext 
Character 10101111 Character 

10110011 10110000 P 

~lOllOOOl ~ 10110010 
10110011 

11111111 W 
FP-3446 

Figure 6-Deciphering the homophonic cipher 

1. The decoded message problem. This comes about 
when a block of decoded or unenciphered message is 
known by the analyst. With this type of information 
available very few cipher systems are safe. 

2. The limited syntax problem. When dealing with 
limited languages such as programming languages 
the analyst can break the cipher by knowing the 
restrictive properties of the language involved. 

3. The arithmetic problem. If the ciphered text is not 
to be decoded inside the computer arithmetic opera
tions cannot be performed. 

4. The overlapping access problem. When different 
individuals have access to the same ciphered data 
and yet do not want common access to other enci
phered data. 

It is hoped that this paper will influence in some way the 
designers of future computer systems by showing that 
simple techniques can be used for effectively limiting 
the access of information to only those who should have 
access to it. A justification of the effectiveness of this 
homophonic cipher system on a mathematical basis using 
techniques developed by Shannon13 will be described in 
a subsequent paper. 

ACKNOWLEDGMENTS 

The author wishes to thank Chung Laung Liu and James 
Studier for their suggestions and criticisms of the manu
script during its preparation and Greg Michael for his 

Address Memory 

00000000 ~ I} Generate Random 
Address: 

10101111~10101110 E 3} Ciphertext is 
10101111 A the address 

10110000 E ~ 
of match 

2} Search sequentially 10110001 10110001 

forPlaln~ 
P 

Character 1011001 0 M 

P 10110011 P 

11111111 [TI 

Figure 7-Enciphering the homophonic cipher 

program to compute the various frequencies for the fig
ures that appear. 
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Cryptology, computers, and common sense 

by G. E. MELLE~ 

Sperry Univac 
St. Paul, Minnesota 

I~TRODUCTION 

Wrth_that-as. .ti:tle,. the writer ought .give at once the -mean
ing of the final term. Here, "common sense" is used with 
double intent. 

First, it is a caveat to the reader that a discourse on 
computers and cryptology in the open literature is like a 
"layman's guide to worldwide espionage." It simply 
cannot be done. Too much is unknown. Too much 
(because cryptographic matters are exempt from auto
matic declassification) will never be known. 

To the extent, then, that the author of such a paper 
requires a degree of chutzpah to attempt it, to the same 
extent he may ask of his readers an apprehension of the 
difficulties involved, and the forebearance not to make 
harsh judgment of sometimes unavoidable shortcomings. 

The second meaning in which "common sense" is used 
alludes to the opinion that cryptography, as it pertains to 
the needs of many commercial users, is perhaps becoming 
"oversold," resulting occasionally in needless expense, 
operational difficulties, and a false sense of security. The 
defense of this thesis is deferred to later parts of the 
paper. 

SOME DEFINITIONS 

Data security is that technology, the objective of which 
is to prevent the interception of data, whether by wire
tapping, masquerading, trap-doors, or any of the many 
clandestine tools of the "enemy" (see below). Data secu
rity is a technology in itself, and is not dealt with in this 
paper. 

Cryptology and cryptography are near-synonyms, the 
former being somewhat wider in scope. Cryptography 
pertains to the means used by the originator of data to 
prevent the message, once intercepted, from being under
stood by an enemy. This is the process of encryption or 
encryptment, its cryptographic complement, decryption 
or decryptment, being the process used by the intended 
addressee to decipher and read the message. 

The over-all algorithm for encryption and decryption is 
the cryptosystem, while the key refers to those unique 
parameters employed in a specific application of the algo
rithm. 
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The enemy is any person or organization who takes 
positive action to intercept and decrypt data to which he 
is not legitimately -entitle(L'-'Enemy"thus--haS-a--di£f-e-r--ent- -
meaning here than in a military context, the connotation 
of violence being absent. 

Having intercepted encrypted data, the enemy's princi
pal tool is cryptanalysis. "Enemy," "cryptanalyst," or 
simply "analyst" are used synonymously throughout the 
paper. 

A code is distinguished from a cipher in that the former 
employs a compact group of five letters (a "pentagram"
a legacy of the Morse telegraph era) to represent a mes
sage of any desired length. For example, ALOHA might 
mean "Shipment will be made Wednesday night." In a 
cipher, each element of the original message (plaintext; 
pt) has a counterpart in the encrypted version 
(ciphertext; ct). CPPLLFFQFS might represent 
boo k k e e per. Computer-oriented readers may appre
ciate the analogy that a code is to a cipher what a FOR
TRAN statement is to the corresponding function in 
assembly language. The discussion in this paper is limited 
to ciphers. 

The paper uses the following conventions: Plaintext is 
represented by let t e r spa c i n g. Ciphertext appears in 
CAPITALS. The key, if litteral and not numerical, is in 
italics (underscored in figures). The conventions are use
ful when p I a i n t ext is added to p I a i n t ext to pro
duce key. 

Another convention is the use of the English alphabet 
in the examples. The reader will understand that the 
underlying principles apply, mutatis mutandis, to any 
alphabet whatsoever, from the 12-letter Hawaiian alpha
bet, to the 256-character ASCII set, to the n-Ietter alpha
bet of the reader's own invention. 

TRADITIONAL CRYPTOGRAPHY 

Selected bibliography 

For security reasons the bibliography of cryptography 
is predictably meager. There is only one comprehensive 
tutorial work in English for the pre-computer period, 
Gaines' Elementary Cryptanalysis 1 Occasional tutorial 
articles appear in The Cryptogram,2 the periodical of the 
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American Cryptogram Association. Specialized technical 
discussions of cryptographic methods are contained in 
The Broken SeaP and in The Shakespearean Ciphers 
Examined. 4 

For the post-computer age, an outstanding tutorial 
work has been published by Sinkov,5 a master of the 
craft. In 1967, a remarkable book, Kahn's The Code
breakers,6 appeared. It is difficult to imagine a work on a 
subject as esoteric as cryptology being definitive, but 
within the confines of security, Kahn has succeeded. In 
addition to extensive historical coverage, he describes in 
sometimes surprising detail both past and current tech
niques of cryptography. Of special interest are the sec
tions devoted to the cryptographic agencies and practices 
of the major powers, incl uding the United States. 

Basic techniques and some functional observations 

The introduction of computers into cryptotechnology 
has affected the practice but not the underlying principles 
of the craft. It ,appears useful, therefore, to review certain 
of these principles in order later to show how they have 
evolved into the age of automation, and how, to an extent, 
they have carried some of their weaknesses with them. 

In kernel, there are just two ways of converting plain
text to cipher-text, by substitution and by transposition. 
Regardless of its complexity, any cryptosystem can be 
shown to be either an elaboration of one of these methods 
or a combination of both. 

Substitution types 

Of the substitution types, the special-case Julius Caesar 
is the most familiar.* Here, each letter is replaced by the 
letter j places further along in the normal alphabet, where 
j is a constant. The substitution is performed modulo n, n 
being the number of letters in the alphabet. In the general 
case of simple substitution, any letter may replace any 
other letter, the substitution being invariant and usually 
with no letter representing itself. 

Simple substitution is trivial. On occasion, though, even 
the trivial can breed insight. Under the rules of simple 
substitution, there are 25! possible "keys," or roughly 1.5 
X 1()25 possibilities. The magnitude of this number can be 
illustrated by a computer programmed to try one key 
each microsecond. At that rate the machine would take 
1.7 X 1014 years to run through the list. Even the number 
needs explication. It is some 50,000 times longer than the 
estimated age of the Earth. 

Yet most people can solve this sort of newspaper puzzle 
in a few minutes. Some can "sight-read" them, much as 
an accomplished pianist plays a piece of unfamiliar 
music. 

* An interesting but unobtainable measure of the familiarity of the 
Caesar cipher would be the percentage of viewers who appreciated why, 
in Arthur C. Clarke's script for the motion picture, "2001: A Space 
Od:vsse~'." the computer was named HAL. 

The moral to be gained here is that one ought not be 
awed solely by large numbers. When a data-encryption 
device is promoted as having 10XX different keys, the cau
tious system designer will repress the proclivity to regard 
this huge number as an unchallengeable figure of merit. 
It is not. 

Simple substitution can demonstrate still another 
aspect of language. Consider the cipher word ABCDE. 
This word may be resolved into good English in more 
than 6000 ways (e. g., b I a c k, g h 0 s t, etc.). The cipher 
word AABCA, however, may be resolved into English in 
one and only one way. There now arises an interesting 
question: What is the longest simple-substitution cipher 
which can be constructed, which can be resolved into 
English in one and only one way? The answer applies, in 
modified form, to the security of many kinds of ciphers. 

Another form of pencil-and-paper substitution cipher is 
shown in Figure 1. Figure I-A is an abbreviated version of 
the classic Vigenere tableau. Figure I-B is the partial 
tableau whiCh would be used for encrypting a 
message using the key rogue (resulting in a period of 
5, since the same cipher alphabet comes back into play 
at every fifth pt letter). Figure l-C shows the encryption, 
using rogue of the (specially chosen) plaintext; 

pt: abc d e g h j kim n 0 p q r stu v w x y z 

pt: 

pt: 

key: 

ct: 

pt: 

key: 

ct: 

ABC D E F G J K L M N 0 P Q R STU V W X y Z 
BCD E G H I K L M N 0 P Q R STU V W X Y Z A 
C D E F G H I K L M N 0 P Q R STU V W X Y Z A B 

Y Z ABC D E F G H I J K L M N 0 P Q R STU V W X 
Z ABC D E F G H I J K L M N 0 P Q R STU V W X Y 

A. The Vignere Tableau. The "keT letter" is the 
cipher letter under the plaintext a. 

abcdefgh i j kl mnopqrstuvwxyz 

R STU V W X Y Z ABC D E F G H I J K L M N 0 P Q 
o P Q R STU V W X Y Z ABC D E F G H I J K L M N 
G H I J K L M N 0 P Q R STU V W X Y Z ABC D E F 
U V W X Y Z ABC D E F G H I J K L M N 0 P Q R S T 
E F G H I J K L M N 0 P Q R STU V W X Y Z ABC D 

B. The partial tableau for the keT rogue. 

peter piper picked a peck of 

!:~9.~~ ~~9.~~ '!:'~9.~~!: ~ Q~~'!:' ~~ 

G S Z Y V G W V Y V G W I E IUD V Y G BeL 

pic k led pep per s 

.!!~IP.2.~~ r.~~~~r.£. 

J M T Y R Y H G S V J I I G 
C. Encr;yption usinr the keT rope. 

G S Z y V 
G W V y V 
G W I E I 
U 0 V Y G 
BeL J M 
T Y R Y H 
G S V J I 
I r, 

D. Ciphertext set up b,.. period fer cr;yptanalysis. 

Figure I-Facets of Vigen ere cryptography 



peter piper picked a peck of pickled peppers. 
Figure 1-D indicates how the cryptanalyst, by determin
ing the period (and also having sufficient ciphertext-a 
matter to be discussed later), can arrange the ciphertext 
so as to permit the recovery of the plaintext. * 

The Vigenere and its many variants (of which there are 
24, some having names such as the Beaufort and St. Cyr) 
are susceptible to analysis both by this method, which 
relies on frequency counts of individual letters, bigrams, 
etc., and by differential methods particularly well suited 
for computer implementation.? 
. Another kind of polyalphabetic substitution is shown in 
Figure 2. In place of the predictable alphabets of the 
Vigenere kind, the cipher alphabets are randomly gener
ated and unrelated to one another. A total of 26!, or about 
4X1026

, alphabets are available,** of which just ten are 
used here. 
'-TnsteaaoT e-ricipli-eririg fIie-plalntexCbymeans'or' a 

periodic key, a nonrepetitive key (in this example, pi) is 
used. The resulting ciphertext is secure until a persistent 
analyst distributes the cipher letters into ten groups, 
using the digits of pi as a guide. If there is sufficient 
ciphertext, each of the ten groups will exhibit the fre
quency distribution of normal English, except the set will 
have undergone a simple-substitution transform. All IS 

lost. 
pt: a c d e f m n 0 p q r stu v w x y z 

o K Y H F G Z D R N 0 P J A E L C Q M V W B X T U S 
I T L K A D Q F H N J X E ICY M G U Z V W S R 0 F B 
2 L EMF R N C Y D U H J P W X Z Q B V A K T S G 0 I 
3 JED Q B COl G N H Y Z SAM U V R F X W T K P L 
4 J W K B H E C L Y N D F V M U R P 0 G X Z I QAT S 
5 Q LNG X A F R M H U D V P K B E J S T I Z COW Y 
6 G Z M AFT K Q V L Y B N S C J E P HOW X D I R U 
7 T V N Z U B X SMA Y D J W R L I H E F C K G P Q 0 
8 H D K 0 U P V F G R T C I E Q J L Y S X M A B N Z W 
9 P W R H C JON Z M K I A B F U S X E T G Q V L D Y 

A. Tableau of random alphabets. 

pt: pet e r pip e r pic ked ape c k 0 f 

key: 3 I 4 I 5 9 2 6 5 3 5 8 9 7 9 3 2 3, 8 4 6 2 6 
ct: M D X D J U D J X V B G R Y C Q L M U K Y X T 

pt: 
key: 

pickled 
4338327 

pep per s 

950 288 4 
ct: R G D T Y R Z U X L Z U Y G 

B. Encryption ueilli the key- pi. 

MDXDJ UDJXV BGRYC QLMUK YXTRG DTYRZ UXLZU YGXXX 

C. Ciphertext in 5-1etter groups for transmission. 

Figl.lre 2-Substitution using random alphabets 

* For reasons of space, this simple example must suffice to support the 
following premises: (1) Given sufficient ciphertext, if there is a small 
enough period (say 100 or less for pencil-and-paper work and several 
decimal orders of magnitude greater for computer analysis), the period 
can be recovered. (2) Even if the period is not constant, but varies by 
some definite rule, it can be recovered. Details may be found in refer
ences in the selected hihliography. 

** More than enough to encipher everything written since the invention 
of writing (2 X 1015 letters is a conservative estimate of the upper bound) 
without repeating a single alphabet. Recalling the similar staggering 
statistics for simple substitution, the reader is not impressed. 
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Key: :.!lQ5l.~ Key: ~!t.D...Q.~~ 

~ 5 6 4 2 I 3 

PET E R Fi rst transpos i t i on T PCP F L Second transpos i-
P I P E R and in termed i ate P R R E C I t i on a~d f i na I 
P I C K E ciphertext: D E P P P D cipher tex t: 
D A P E C 

TPCPF LPRRE CIDEP K C P R E E 
K 0 F P I KEPEPE FCPEP KPEPR EOLID 
C K LED PPDKC PREEK EPEPE I I A 0 K E EEECR PPPAT PDKKI 
PEP P E 

IIAOK ES S 
R S SPREC EIXXX 

- A - B -

Figure 3-Double columnar transposition 

Anticipating this contingency, the astute encryptor will 
not use 3.1415 ... as the invariable starting point of his 
key, but will begin each message at a different place in 
the pi sequence. If the analyst remains convinced that pi 
is the key, he must undertake the laborious task of check
ing each digit in the sequence as the potential starting 
point for each message. 
... This--effortTs both ·time-~c-onsum-ing-and co~tiY. Both--
factors work to the advantage of the encryptor. The "time 
factor" operates to keep the message secure long enough 
so that it may be out-of-date and useless when the enemy 
finally reads it. The "cost factor" operates such that the 
enemy may pay a higher price for the information than it 
is worth to him. Time and cost factors remain important 
when the scene shifts to the computer environment. 

The random-alphabet example raises an engrossing 
question: How much text is required in a cipher of this 
nature so that only one meaningful interpretation is 
possible? The answer is a function of (1) the amount 
required for the simple-substitution case, and (2) the 
number of alphabets used in the cipher. In general, the 
product of these two numbers is near the minimum 
amount of ciphertext necessary for cryptanalysis from an 
information-theoretic viewpoint.t From the viewpoint of 
the pencil-and-paper analyst, this amount is too low by a 
factor of about five, depending on the nature of the plain
text. 

Transposition types 

Traditional forms of the second major encryption algo
rithm, transposition, are illustrated in Figures 3 and 4. In 
Figure 3-A, the plaintext has been written out under a 
keyword. A transposed version is then obtained by taking 
the letters out by column, the order of the columns being 
determined by the numerical sequence of the key letters 
in the normal alphabet. 

The ciphertext at this stage is a "simple columnar 
transposition," which presents little difficulty to the 
analyst, even though the columns are of two different 
lengths. In geometrical terms, simple columnar transposi
tion is a 1-dimensional operation since the plaintext is 
converted in effect into a series of disjointed line seg
ments. 

t Readers familiar with Shannon's work will recognize the "unicity dis
tance," which is treated later. 



572 National Computer Conference, 1973 

P 0 K C E P A Ciphertext: 
E F R E P P D 
T P S X X E E POKCE PAEFR EPPDT 
E I X X X P K PSXXE EEIXX XPKRC 
R C K LED C KLEDC PIPER PIXXX 
P I P E R P I 

Figure 4-Typical route transposition 

In Figure 3-B, the ciphertext of 3-A is subjected to 
further transposition, using the identical algorithm but a 
different keyword.t The final cipher has a surprisingly 
high resistance to analysis. Double columnar transposi
tion is 2-dimensional in that each letter may be equated 
with a particular cell in an X-Y matrix. 

Figure 4 illustrates another form of 2-dimensional 
transposition known as a "route" cipher. Here, the plain
text has been written into a 7 X 6 matrix in a counter
clockwise spiral. The ciphertext is then taken out by rows. 
Other routes are also possible, but the example suffices to 
show the principle. 

A cryptanalytic technique called "multiple anagram
ming" applies to transposition ciphers when one has two 
or more messages of the same length (or suspected block 
length). By manipulating the ciphertext of one message to 
produce plaintext, and carrying out the identical opera
tions on the other message(s), if plaintext results in the 
other message(s) as well, the decryptment is achieved. 

To close the discussion of transposition types for the 
present, Figure 5 shows a "3-dimensional" technique not 
described in any of the known literature. The example is 
trivial but allows elucidation of principles which relate to 
programming techniques of value when the general case is 
described for computer application. 

100 101 

-A- -8- -C-

-0- -E- -F-

F i ra! C i Dhectex t: PEETR PPIEE CPIRO KAEKO CPPFI CEPEK LDPER xsxXP 

Figure 5-A 3-dimensional route transposition 

t If the keyword for the second transposition is the same as the one used 
for the fi~t, the cryptosystem is known as the "U.S. Army Transposi
tion Cipher," of World War I vintage. 

Figure 5-A will be seen to be the topographical equiva
lent of a unit cube with X-Y-Z origin at 0,0,0; with the 
vertex of the major diagonal at 1,1,1, and with intermedi
ate vertices suitably labelled (commas have been omitted 
in the diagram). The reader is invited to view Figure 5-A 
as the "shadow" of a 3-dimensional object cast on the 2-
dimensional paper; the concept will be serviceable later. 

Viewed as a graph in matrix terminology, there are 
many routes through the structure. Two kinds of route 
are of special interest, the ~'Hamiltonian path" and the 
"Hamiltonian circuit."* A Hamiltonian path is one which 
passes through every vertex in the graph once and only 
once. The Hamiltonian circuit is a special case of the path 
wherein the last element in the path is so located that the 
first element is adjacent, allowing the path to be repeated. 

In Figure 5, five unit cubes have been used to transpose 
the plaintext. For clarity, the plaintext has been written 
into each cube from left to right and from top to bottom. * * 
The ciphertext is then read out of the cubes via a differ-

TABLE I-Hamiltonian Paths of Figure 5 

5-B 5-C 5-D 5-E 5-F 

100 100 100 100 100 
101 110 000 101 000 
001 010 010 111 001 
000 000 011 110 011 
010 001 001 010 010 
011 101 101 000 110 
111 111 111 001 111 
110 011 110 011 101 

ent Hamiltonian path for each cube. Figures 5-B, 5-D, 
and 5-F are circuits as well as paths. 

Using dimensional notation, the paths of Figures 5-B 
through 5-F are shown in Table 1. The path sequences, it 
will be noted, form Gray codes. Because of the Gray-code 
property, all may be generated by a relatively simple 
software routine. Although the example here is for three 
dimensions, the simplicity holds for the general case of n
dimensions. 

CRYPTOGRAPHY IN TRANSITION 

The Vernam era 

For the computer-oriented, the locus classicus of mod
ern cryptotechnology is a paper written 47 years ago by 
Gilbert Vernam of the Bell Telephone Laboratories.8 The 
paper describes (what today would be called) a binary 
cryptosystem suitable for use with the 5-level Baudot 
Teletype code, a code which still may be found in wide 

* Named after Sir William Rowan Hamilton, who first described them 
in the mid-19th century. 
** In practice, the plaintext would be entered using one path and the 
ciphertext read out using another. The legitimate receiver, knowing the 
two paths, need merely reverse the process to decrypt the message. 



use today. * The two possible truth tables of the crypto
system are shown in Figure 6, together with samples of 
the two possible encryptments and decryptments. The 
system is identical to that used in many of today's com
puter encryption devices, although the character length of 
the latter has been increased in most cases to accommo
date standard data-processing character sets. 

The security of the Vemam system results from the use 
of an apparently random key of great length. The impor
tant word here is "random." Contrast a random nonre
peating key with the predictabie, "semi-random," key of 
Figure 2, viz., pi. If the key were truly random, and if it 
were used only once, the enemy analyst would be impo
tent, professionally at least. * * What constitutes true ran
domness is a matter best left to mathematicians. 

Vernam obtained his lengthy key by using two 
pt1P:~_he~~p~per tape loops of character length i and k, 
where j and k are mutually p~i-~e. The -e~cipher~e~t 
equation is thus: ct i=pti8;Jj/J:)k i • For each cycle of the j 
tape, the k tape advances one character, yielding a total 
key length of jxk. Typical values for j and k during the 
'20s were 775 and 776, for an over-all key length of 
601,400 characters. In a similar but computer-based sys
tem today, using magnetic tape for key storage, j = (5 X 
lOS) and k=[(5XI06 )+1] are attainable values, for a 
total key of the order 2.5 X 1013

• 

N umbers of this magnitude appear irresistible to adver
tising managers for computer cryptosystems. The reader, 
however, may now be more suspicious than stunned, pos
sibly as the result of previous examples. His suspicion is 
not unfounded. 

An example may serve to demonstrate one of the char
acteristics of this kind of cipher. The example is artificial 
only in the sense that it compresses into a brief interval 
data which normally could be acquired only after the 
interception of considerable ciphertext. The phenomenon 
itself, owing to the nature of language, is certain to occur. 

In Figures 7 -A, 7 -B, and 7 -C, the same plaintext, 
bar g e, has coincided with the same ji key, 1 blpt, but 
with three different k i keys, c, m, and y. Three dif-

pt 
o , 

o raT 
key ,I, 0 Encrypt: 

pt: "0 0 ° = a 
(!) key: '0" 0 = f 

ct: 0IiI0 = C 
Decrypt: 

ct: O! ! ! ° = C 
(!) Key: _'_0_' _'_0 = i 

pt: , , 0 0 ° = a 

- A -

pt 
o , 

, OITO 
Key ,10 , Er.crypt: 

pt: , , 0 ° 0 = a 
Ell ~ey: _, _0_'_'_0 = i 

Cl: , ° ° 0 , = Z 

Decrypt: 

ct:!COO!=z 
(D Key: _, _0_'_' _0 = i 

pt: , , ° 0 0 = a 

- B -

Figure 6-Basics of Baudot cryptography 

* In 1925, the then-Captain William F. Friedman invented a bit-trans
position device (the equivalent of a plugboard) to increase the security 
of the system. The transposition was invariant until manually changed. 

** The enemy, however, wins a point in that the truly random key must 
somehow be transmitted to the legitimate receiver (who cannot generate 
it himself, obviously, it being a one-of-a-kind sort of thing. This trans
mission gives rise to opportunities for interception, theft, and bribery. 
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A: 

j i ~ey: 

k i key: 

c t i : 
B: 

pt2: 
j i key: 

ki+x key: 

ct2: 

c: 
pt3: 

j i key: 
Ki+y key: 

ct3: 
D: 

c t I : 

Eli ct2: 
key a : 

E: 
ct I : 

Eli ct3: 
keYb: 

o 1001 I a 11000 r 01010 9 0101 I e 10000 

1 a I 00 I 12. 100 I I 1. a 100 I E a I 101 t 0000 I 

~ QlJlQ. ..£ QlJlQ ~ Q!JJQ ..£. Q..!JJ.Q c a I I I a 
S 10 I 00 H OO! a I P a I I a I =. a I 000 l' -I I-I-I-r 

b 100 I I a I 1000 r a 10 109 a 10 I I 

1. a I 00 I 12. I CO I I 1 a I 00 I 2. a I I a I 
m 00 I I I :1 00 I I I '1l 00 I I I m 00 I I r 
Q I I 101 I a I 100 # 00 100 T 0000 I 

e 10000 

.!. 00001 
:rl 00 III ---
F 10 II a 

b 1001 I a 11000 r 01010 9 0101 I e 10000 

1. a I 00 I 12. 100 I I 1. a 100 I £. a I 101 i 0000 I 
y i a i a i y I a I a I L.!.QJ.Ql ..J....!.Q.!Q.L 1..lQlQ..L 
V 0iITI K ITIiO F 10110 B 10011 # 00100 

S 10 100 H 00 I a I P a I 101 :0 a I 000 of I I I I I 
Q 11101 I 01100 # 00100 T 00001 F 10110 

1. 01001 1. 01001 1. 01001 lOIOOI 1. 01001 

S 10100 00101 P 01101 = 01000 ~ I I I I I 
V a I I I I K I I I 10 F 101 lOB 100 I I # 00 100 
t llOTTt TTOT1-1' !"rO] I of- 110-11 t ITol1 

Control Functions: 1- FIGS Shift oE- Carriage Return 0 Blank 
v LTRS Shift == Line Feed # Space 

Figure 7-Recovery of minor cycles from Vernam cipher 

ferent ciphertexts result: SHP == 1 (ct l ); QI#TF (ct2), and 
VKFB# (ct3). 

In Figure 7 -D, Ctl is added (vectorially)* to ct2; in Fig
ure 7 -E, ct l is added to Ct3' In each instance, a constant 1 
and 1 respectively, results. We shall refer to these con
stants as ka and k b • 

The ka and kb are compound k~ys. ka is the sum of k i 

and ki-rx. yielding 1. kb is the sum of k i and kid. yielding ~. 
The appearance of these constant sequences signals the 

discovery of one of the minor cycles of which the com
plete (jXk) cycle is comprised. Each minor cycle is initi
ated by the stepping of the k tape. Having found suffi
cient minor cycles with the identical compound key, the 
analyst may now apply the periodic technique of Figure 
1, the Vigenere example. Ironically, the rigor of Boolean 
algebra ensures that the Baudot cipher alphabets are as 
immutable and predictable as those of the Vigenere. 

Boolean rigor leads to a second weakness of this kind of 
cryptosystem: If any part of the key is used to encipher 
as few as two plaintext messages, the messages can be 
"lined up" by a technique known as the index of coinci
dence.** Figures 8-A and 8-B show just a portion of two 
such messages. In practice, much more text is needed in 
order to line the messages up. 

The analyst then proceeds to add ct 1 to Ct2 as shown in 
Figure 8-C, to produce the compound key, ke" Assume the 
analyst suspects the word n u m b e r is probably con
tained in one of the plaintexts. To test the assumption, he 
tries each k(' letter as the starting point of the word 
n u m b e r, reading the resultant diagonals to see if a 

* Throughout the remainder of the paper, the process of addition refers 
specifically to vector addition unless otherwise stated. 

*'" The index of coincidence was discovered by WiHiam F. Friedman and 
published in "The Index of Coincidence and Its Applications in Crypto
graphic Analysis," Riverbank Publications, No. 22, Geneva, II: River
bank Laboratories, 1922. The method is described in Kahn (op. cit., pp. 
376-385). 
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pt I: - - - pet e r pip e r pic ked ape c k Q f - - -

G) key: =- =- =- rI2 ~ i £ i 1. iii. 9. ~ ! g J!.. SO .e 1.. ~ !L 1 ~ J. !!. .:. .:. : 
c tl: - - - R T of- Q 0 F BON X J Y C J K + X J S E V R R - - -

pt2 : 
G) key: 

ct2 : 

c t I : 
G) ct2: 

keyc: 

- A -

---repIYillessagenumberseven---
---mzj p I t++fqxwO#cpvxllkz I u---
~~=PTX~UUVG~HITINA[KlQECKwJ::: 

- B -

- - R T t Q 0 F BON X J Y C J K f X J S E V R R -
- - P T X II U U V G~tl U L N A L K + Q E C K'vI J - --

-I']Ol 'I! +I.!d.~# Qi!.!d. =E-~ t Lr!!.# ~~Q.~-

- C -

keyc: - - - m 0 i w oj, r u wild n u :; E- X t i ill H k z b e - - -
n ::~::t-;;--;:-~;ijf~~oj©#zmct~axyT:=-: 
u ---tuehofOhacjOs®gqs,a-pvi-
m ___ omgkap,koytof-vf@nYOowfsx

- - - s b f r i w v r x t y v t z II@' s x P~Oo-
e - xeulvjils~fiadmz®xsctoO-
r - prnbYOfbcaif~=qu«-®cs'wj-

- 0 -

Figure 8-Probable word solution of Baudot cipher 

reasonable plaintext sequence emerges (Figure 8-D). 
With luck and persistence, he finally obtains c ked a p. 
The tongue-twister recognized, the analyst tries 
peterpiperpi(ckedap) against ke, and with much 
gratification obtains rep I y m e s sag e (n u m b e r) as 
the counterpoised plaintext. * 

Extending the messages in the other direction, the 
analyst is aided by another phenomenon. The SEV of ct 1 

is the s e v of pt2 and the ECK of ct2 is the e c k of pt1.** 
So long as the two ciphertexts continue to share the 

common key, the messages may be recovered by the near
mechanical process of assuming a letter-by-Ietter contin
uation in one plaintext and seeing if it results in an 
acceptable continuation in the other. 

If the two preceding examples have produced further 
skepticism in the reader regarding those cryptosystems, 
the security of which is attributable solely to their having 
keys of length 10:Lt, they have served their purpose. 

The Shannon era 

Kahn declares Friedman's discovery of the index of 
coincidence is "the most important single publication in 
cryptology."*** The practitioner is likely to agree. The 
theoretician may justifiably nominate Shannon's analysis 
of secrecy systems for the honor.9 

The text, tightly knit in the manner of mathematical 
exegesis, admits of no easy summary. The writer faced 
with space limitations has open only a few options if his 
intent is to induce the reader to consult the original. The 
strategy selected here is to limit the discussion to just one 

* We have omitted the binary operations involved in this procedure, 
those in Figure 7 being deemed sufficient to show the principle. The full 
5-level Baudot code can be found in many standard electrical engineer
ing references by the painstaking reader who wishes to test the operation 
for himself. 
** Again, the reminder, the examples have been contrived to show 

variow; ront.ingencieR in a Rhort c;pace-
**" Kahn, op. cit., p. 376. 

topic, the "unicity point" or "unicity distance." (Shannon 
uses the terms interchangeably.) 

Earlier in the paper the question was raised: What is 
the longest simple-substitution cipher that has only one 
meaningful resolution? In essence, this length is Shan
non's unicity distance. But the value depends on the 
cryptosystem. For simple substitution, it is 27 letters. For 
the Vigenere example of Figure 1, it is 10 letters (or 2d, 
where d is the period length). For the random-alphabet 
example of Figure 2, it is 270 letters (equivalent to ten 
simple substitutions). For a periodic cipher of random 
alphabets and unknown key, the unicity distance is 53d, 
and so on. 

In the course of developing his thesis, Shannon proves 
the unicity distance for a cipher which employs a random 
key, never repeated, is infinite. The cipher cannot be 
solved. 

If, then, an impregnable cipher does exist, why is it not 
universally employed? The answer is logistics. To the 
originator of voluminous plaintext, the generation and 
testing of a truly random key, plus the expense of distrib
uting it (and the dangers accompanying the distribution 
as mentioned earlier), and the coordination of its use to 
ensure its one-time-only employment, add substantially 
to the user's cost. Only the more affluent governments, 
and then only for the most sensitive texts, can afford it. 

CRYPTOGRAPHY IN THE AGE OF AUTOMATION 

Those aspects of pre-computer cryptography which 
have now been covered are essential if the unfamiliar 
reader is to understand what has occurred now that the 
computer is a commonplace tool of the cryptologist. 
Except for algebraic cryptography, a genre not previously 
described, the reader will see that though the language 
and the claims have changed, there is at least some justi
fication for maintaining the skeptical attitude of the 
aphorism, Plus ca change, plus c'est la meme chose. 

Algebraic cryptography 

The seeds of modern algebraic cryptography were 
planted more than 40 years ago in two papers by L. S. 
Hill. 10. 11 To one not mathematically trained, the proce
dures are complicated, even arcane. Mathematicians (one 
is told) perceive an inscape of excellence unrivaled by 
competing schemes. The discussion has been postponed 
till now because in the absence of edp equipment, the 
encryption and decryption tasks entailed high cost and 
time factors for the legitimate users, even if calculating 
machines were employed. * 

* Hill patented an unwieldy mechanical device which could operate on 
up to six letters ("hexagrams") per cycle. Computers permit polygrams 
of any size to be processed, at least in theory. Programmers familiar 
with the demands matrix algebra place on machine time will see that a 
practical limit exists. The limit is set by the acceptable trade-off 
between cost fact()1" and the degree of s(>('urity Ql?sireri, both ;ncrea~iT1g 
exponentially with polygram size. 



Figure 9 is a simplified example of one algebraic meth
od, adapted from Davis. 12 The example consists of a 
matrix of order 3, which serves as the key, and a column 
vector, which is the plaintext. For encryptment, the 
numerical equivalent in the standard alphabet is substi
tuted for the plaintext letters. 

The encryptment algorithm is shown in detail in Figure 
9-A. The operations involved in enciphering the plaintext 
pet appear in Figure 9-B. For the remainder of the plain
text, only the skeleton of the encipherment is given. Fig
ure 9-G is the resulting ciphertext. 

Among others, the chief disadvantage of the method is 
that the encipherment process involves five steps per let
ter, or a total of 15 steps per 3-letter pt group. The num
ber of steps per pt group grows quadratically with poly
gram size according to the formula, S=n2+(n -1), where 
S is the number of steps and n is the number of letters in 
ihe-polygram~--- ... -.. . . - _ .. - .-
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Figure 9-Elementary algebraic cryptography 

An advantage which offsets the main disadvantage is 
also evident. Although the first 3- letter pt groups contain 
the letters p e, there is no indication of this in the cipher
text. Similarly, the reversal i p and p i in groups 3 and 4 is 
concealed. The principle applies regardless of polygram 
size. Thus if just one letter in an n-Ietter polygram differs 
from another n-Ietter polygram, the ciphertext will con
ceal the fact that all but (n -1) letters are identical. The 
phenomenon denies the analyst the use of one of his more 
powerful tools, the analysis of repetitions in the cipher
text. 

Figure 10 shows the decryption process for the cipher
text of Figure 9-G. Only the first 3-letter group is deci
phered; the others follow the same paradigm. 

The decryption key matrix, it will be noted, is not the 
same as the encryption matrix. The disparity may appear 
to add to the security of the cipher but the inference is 
misleading. The decryption matrix is merely the inverse 
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Decrypt ion: 
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Figure 10-Algebraic cryptography decipherment 

of the encryption matrix, a familiar mathematical proce
dure. 

Commerci.a.lciphersy-sl.ems 

Algebraic cryptography aside, most commercial crypto
systems depend on means for generating a key which to 
the casual observer appears random but is in truth only 
pseudorandom. The commercial systems take the form of 
both hardware and software. The two kinds may conve
niently be discussed together because whatever can be 
performed by hardware may be emulated by software. 
Indeed, some systemf employ software at the computer 
site and hardware at the remote terminals. 

The first algorithms for generating pseudorandom keys 
for computer use appeared in the '50s. The resulting key 
was fully deterministic, derived by a method identical or 
similar to the binary equivalent of the decimal example 
shown in Table II. The procedure begins by selecting a 
number, say 6378, squaring it, and then proceeding as the 
table indicates. * 

The operation yields the sequence 7-8-8-2-5-8-4-5-5-0-
1-9-2-1-1-4-5-7. The series is apparently random but 
wholly determined. 

Today, the most commonly encountered commercial 
cryptosystem is the "shift register." Despite design varia
tions, the principles and more importantly the results are 
identical: Shift registers are pseudorandom key genera
tors, but of a kind different than that illustrated in Table 
II. 

TABLE II-Generation of Pseudorandom Key 

Operation Product Key Sequence 

6378X6378 40678884 788 
788X6378 5025864 258 
258X6378 1645524 455 
455X6378 2901990 019 
019X6378 121182 211 
211 X 6378 1345758 457 

* A curious sidelight of the era was the discovery and promulgation of a 
rather small set of numbers, favored because they produced long 
pseudorandom sequences. Analysts presumably concealed their delight. 



576 National Computer Conference, 1973 

1 
Q 

~ 

1 
Q. 

t 

1 

PSEUDORANDOM 
KEY 

GENERATOR 

o T '0 X B L K I K • H 0 H ~n 

-A-

1 @ 0 ____ T 

g @ T----_____ , 
! @ ,~ _____ 0 

1 @ 0--- x 

p @ 1 
@ 1<. 

c @ !;. 

@ 1 
.i e x etc B @ Q. 

1. @ B L d @ t 
g e L K = • @ 1 

.e. = ~ @ K I a @ .i 

1. 
£ 
t 

1<. , 
9. 
;0 

Q. 

e 
e 
e 
@ 

e 

I K • Etl 1 
K II = P @ h 
II H e e 1. 
H o c @ £ 
0 H k e t 

-8-

Figure II-Simplified shift-register operation 

The key generated by a shift register is (in all cases 
worthy of consideration) not deterministic but Mar
kovian. A brief quote from Fellerl3 succinctly states the 
process: "If two independent systems subject to the same 
transition probabilities happen to be in the same 
state, then all future probabilities relating to their future 
developments are identical." * 

In the case of the shift register, the two "independent 
systems" are the pseudorandom key from the key gen
erator and the stream of the plaintext; designers may 
validly dispute the term "independent" as applied to the 
key generator. We retain it for the sake of the following 
example. 

Figure 11 shows a simplified shift-register system. For 
clarity, the operations use Baudot encipherment (truth 
table of Figure 6-A). 

The action is portrayed in medias res, since initial 
start-up conditions are unique and at most occur once per 
message. A comparison of Figure 11 and Figure 7 will 
reveal that in both cases a compound key is used to enci
pher the plaintext. In Figure 7, the final key is the sum of 
ji and k i- In Figure 11, the final key, kbi' is the sum of kai 
(the current output of the key generator) and cti - l , the 
cipher counterpart of pti - l , the last-enciphered plaintext 
letter. The compound key is formed by feedback from the 
ciphertext output stage. Feedback in one form or another 
(and it is usually more complex than shown here) is an 
essential feature of shift registers. 

Figure 11-A portrays the case cti=ptJ3) kbi (that is, 
T=pffii); simultaneously, k bi+l is being formed by the 
process, Kbi+l=kaifficti (that is, b=dffiT). The equations 
are rearranged slightly in Figure 11-B to show the forma
tion of the successive kbi~n and at the same time the inter-

* Fl'llpl', 'W cit, P ·121) 

relationship of the two streams. In order to start the 
sequence in Figure 11-B, we have assumed ct i - l was D 
and kai was i; the assumption also explains why kbi = i in 
Figure 11-A. As so many things are, the process is hard to 
explain but relatively easy to implement. The explanation 
has succeeded if designers who initially objected to the 
term "independent" are now modified. 

Figure 11-C, in turn, shows the formation of the succes
sive ct i+ n • Readers still with us will see that in Figure 11-
A, the pt stream and the ct stream appear in proper 
superposition. 

In practice, the commercial shift register is frequently 
a cascaded series of binary stages. The maximum length 
of the pseudorandom key cycle is (2n -1), where n is the 
number of stages. A common length for the shift register 
is 20 stages, yielding a key cycle of 1,048,575 bits. 

Some commercial shift registers provide the capability 
of allowing the user to change the feedback connections, 
and thus alter the pseudorandom key stream. Different 
key streams obtained in this way are usually referred to 
as "codes." An article by Twiggl4 treats the design logic of 
these devices. Interestingly, a complementary article by 
Meyer and Tuchman l5 outlines a method of attack on the 
ciphertext of such systems based on the recovery of just a 
small part of the key stream. 

Another method of attack is that of Figure 8. It is 
applicable when two messages enciphered with the same 
key can be lined up. If the user varies the initial setting of 
a given code for each message, the enemy must intercept 
considerable traffic in that code before he can achieve 
this felicitous condition. (It is appropriate to suggest here 
that the user never let his line go "dead." Meaningless 
character streams should fill the void between legitimate 
messages, to prevent the enemy from detecting the start 
and end points of messages.) 

In the absence of a definitive comparison of off-the
shelf commercial cryptosystems, let the writer nominate 
his own candidates for the top and bottom rungs of the 
security ladder-both, of course, a matter of personal 
opinion. 

Of the systems examined, the top rung is occupied by 
the IBM Feiste;/Notz/Smith system.* The design is too 
complex for explanation here, though on the other hand 
the user interface is admirably simple.** 

The apparently unchallengeable occupant of the bot
tom rung of the security ladder is the not-inexpensive 
"XYZ" system. The "black box" is furnished with a two
code "module," although users may purchase additional 
modules up to a total of more than 8 million codes. The 
key length is not revealed. However, it is irrelevant. To 
simplify operation by the user, the system is reset anew 
for each message to exactly the same place in the keying 
cycle. 

* Girdansky, op. cit., pp. 6-12. 

** As the poet-author of Ecclesiastes asked, "Is there a thing of which it 
is said 'Lo, this is new?'" The Feistel/NotziSmith method incorporates 
a programmable version of Friedman's bit-transposition scheme 
referrcd to carlier. 



The delighted analyst may now return to the example 
of Figure 2 and the accompanying text, where the fallacy 
of beginning each message at an invariant starting point is 
explained. 

A polydimensional transposition cipher 

The following cipher is described not for the usual rea
son (i.e., the amateur cryptologist has devised still 
another "unbreakable" system) but because it poses
rather, may pose-a challenge to the theoretical mathe
matician. The cipher is an (unbounded) extension of the 
3-dimensional system of Figure 5. The extension will be 
described first. The challenge follows shortly. 

The reader was asked to view Figure 5-A as the shadow 
Of~L3-dimensiort~IJ~!!h~~_~~1Qn.lh~_2~gjP1ensiQnalI>_@~.r. 
In the same way, without trying to visualize the object it
self, the reader may consider the graph in Figure 12-A 

1100 

- A -

ct = REPEE PTERD CIPKI P 

- C -

- B -

Figure 12-A 4-dimensional route transposition 

as the shadow of a 4-dimensional hypercube, or tesseract, 
as it would appear in 2-dimensional space. 

Paralleling the example of Figure 5-B, the plaintext 
pet e r pip e r pic ked has been written into Figure 12-
B from left to right and from top to bottom (although, as 
with Figure 5, in practice a Hamiltonian path should be 
used). The ciphertext has been taken out by a path which 
is also a circuit. 

The tesseract, the vertices of which are identified in 
vector notation, exhibits the same property as the cube. 
All Hamiltonian paths and circuits form Gray codes. This 
characteristic holds for the general case of the n-dimen
sional hypercube. The reader may test this for himself by 
tracing paths and circuits in the 6-dimensional hexact (or 
rather its shadow) in Figure 13, the largest hypercube 
which may reasonably be drawn in the available space. 

The reason for surmising that the polydimensional 
transposition may be usable as a secure commercial cryp
tosystem is based chiefly on the evidence in Table III. 
Note the rate of growth of the number of paths with 
increasing dimension. The table ends at dimension 4 
because it was estimated that three months of continuous 
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Figure 13-Hypercube of dimension 6 (Hexact) 

computation on the UNIVAC 1107 would be required to 
list exhaustively the paths and circuits for the 5-dimen
sional pentact if the program prepared specifically to 
count Hamiltonians for the n-dimensional case were used. 

Other grounds for giving the system further considera
tion include: (1) The routine which generates the Hamil
tonian paths is relatively simple and makes but slight 
demands on high-speed memory. (2) If successive blocks 
of plaintext are encrypted and decrypted by paths which 
vary in pseudorandom manner, multiple anagramming as 
a cryptanalytic tool is defeated. (3) Different sets of paths 
can be dedicated to individual remote sites, thus prevent
ing sites from reading traffic not intended for them. This 
capability does not exist in some current commercial 
systems. 

One advantage to the legitimate user is that he need not 
generate all possible paths for a hypercube of dimension 
(say) 20.* He need generate only a few thousand or tens 
of thousands-a relatively simple task. The enemy on the 

T ABLE III-Hamiltonian Paths and Circuits of the n-dimensional Unit 

U nit Dimension 

o 
1 
2 
3 
4 
5 

Hamiltonian Paths Hamiltonian Circuits 

o 0 
o 0 
2 2 

144 96 
91,392 43,008 

* A 20-dimensional hypercube may seem to imply that the ciphertext 
must comprise blocks of more than a million characters each. The infer
ence is not true because all vertices need not be filled-a complication 
easily programmable but which adds substantially to the enemy's work 
factor. 
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other hand must try all paths-and the trend of the data 
for dimension 20 indicates this is impossible. 

This is where the challenge to the reader enters: What 
is the generating function for the number of Hamiltonian 
paths and circuits for the general case of the n-dimen
sional hypercube? A respectable amount of effort by 
qualified mathematicians, supplemented by inquiries by 
the writer, has failed to unveil it. One is tempted to sus
pect that for the 20-space hypercube, the number of 
Hamiltonian paths is of the order 1 OXXX. * 

A CRYPTOGRAPHIC SCENARIO 

Till now, the emphasis of the paper has focused on the 
means available to the enemy to "read the mail" of the 
cryptouser. This stress may have given the user qualms 
about the security of his communications, an uneasiness 
which may have some slight justification in fact. But in 
practice, the defenses of the user (in the specific area of 
cryptography) surpass the weapons of the enemy to an 
overwhelming degree. (We speak here of nongovernmen
tal users and enemies.) 

Let the hypothesis be made that MSI is a large interna
tional corporation which maintains extensive digital links 
among many transcommunicating data banks holding 
information of a most sensitive nature. MSI is continually 
reminded of its vulnerability by the many vendors of 
commercial cryptosystems. But MSI's manager of tele
communications has not yielded to the suasions of any 
one vendor and has adopted a cryptosystem which admits 
not only of frequent and easy change of key but of the 
basic system itself. 

The enemy is IPF, MSI's largest competitor and 
rumored to budget a sizable amount each year for 
industrial espionage. Regard first the probable strategy of 
IPF in allocating its espionage fund: 

• Planting persons on MSI's payroll appears to be the 
tactic with the greatest potential payoff, and thus 
may account for the largest share of the funds availa
ble. 

• Bribing MSI employees and its vendors, the tactic 
which judgment would seem to rank in second place, 
consumes another share of the budget. 

• Of the money allotted to wire-tapping, bugging, and 
digital eavesdropping, the two former activities prob
ably receive priority. 

What resources are on hand for the manager of the IPF 
digital wire-tap fund? (We will grant him the knowledge 
of which data links carry the information of most value.) 

An obvious first need is a cryptanalytic staff. The staff 
must be familiar not only with cryptanalysis and with the 
protocols of digital communication. but must also be 

* In light of our previous skepticiE'm concerning large numbers. no guar
antee is implied or should be inferred regarding the security of the sys
tem based on this number alone. 

criminally inclined. While there does exist a pool of gov
ernment-trained analysts with the first two qualifications, 
it is unlikely they would participate in illegal activities 
unless they have greatly changed their lifestyles since 
receiving their clearances. 

But let's grant the manager his staff. Next he needs a 
fairly sophisticated data-processing system which stresses 
mass storage for recording the intercepted bit streams. 

Let's grant these facilities also, though by now the 
manager has probably exceeded his budget wh.ich was 
severely limited in the first place. What of the tIme and 
cost factors? We assume MSI keeps its lines active in the 
absence of genuine message traffic. Then not only is it 
perversely difficult to locate the (enciphered) mes~ages 
themselves it is often a stupendous task merely to Iden
tify the sys~em in use. And by the time the key for a given 
message has been discovered, the plaintext may refer to a 
division of MSI which had been sold two weeks ago. 
MSI's telecommunications system, then, appears reason
ably secure from cryptanalytic attack. However, this 
conclusion is drawn with the emphatic qualification that 
it pertains to the state of the art as it exists today. 

It may be instructive, though, to view the situation 
from the eyes of MSI's manager of telecommunications. 
He has wisely initiated cryptographic procedures which 
offer high theoretical and practical security. But unfortu
nately he must delegate responsibility for day-to-day 
operations to an army of programmers, operators, and 
clerks. All have many admirable qualities. Also, they are 
variously careless; forgetful; malicious; indifferent; hur
ried, and possessed of all the usual failings of humanity in 
general. As a result, MSI's manager is frequently con
fronted with such situations as: 

• A site transmitting in one cryptosystem to a second 
site currently set up to receive in another system. 

• Plaintext somehow evading the cryptoroutine and 
going out on the line en clair. 

• The same message transmitted repeatedly in the 
same system with but slight variation in key. 

• Messages (the more important ones) vanishing in a 
void, never to be seen in plaintext form again. 

Sometimes, the manager must yearn for an unlimited 
budget which would allow him to install the most sophis
ticated equipment available, and hire and train persons 
of only the highest caliber and personal integrity. The 
system would then work perfectly. One fervidly hopes his 
dream is not shattered, as shattered it might be, by the 
following quotation: 

Security Note: I had asked that a cable from Wash
ington to New Delhi summarizing the results of the 
aid consortium be repeated to me through the 
Toronto Consulate. It arrived in code; no facilities 
existed for decoding. They brought it to me at the 
airport-a mass of numbers. I asked if they assumed 
I could read it. They said no. I asked how the,V 



managed. They said when something arrived in code, 
they phoned Washington and had the original mes
sage read to them. 16 

CONCLUSION 

Inevitably, at various places in the preceding discourse, 
the feisty reader has objected, "Ah, but what the writer 
alleges is a weakness may be offset easily by adding the X 
complication." Just so. But the analyst has at hand the X' 
countermeasure which negates or ameliorates the X 
factor. To which the reader may reply, "Yes, but a Y
type strategy will nullify the X' remedy, and thus be a 
countercountermeasure." About this time, the analyst 
dusts off his y' technique, the countercoun
tercountermeasure. And so on. The situation is reminis
cemar-the ECM, EC"CM,----~;-. ;-splral~Wlritethe 
cryptographic and electronic countermeasure chains may 
not be infinite, they appear surely to be unbounded. One 
must cut the cord somewhere. Here. 
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Information theory and privacy in data banks * 
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IXTRODUCTION 

TM¥-oblem--OLproviding_--privacy and_ 13BCurit),: iu_ Letrjeyal 
systems falls into two rather modern disciplines: information 
theory and computer science. In this paper the concern is 
primarily with the former, i.e., how to relate security of data 
records in computerized retrieval systems and data banks 
with Shannon's information-theoretic treatment of secrecy 
systems for natural language messages in communication 
systems.1 In doing so, it is useful to establish first the analogy 
between retrieval systems and certain communication chan
nels. 

RETRIEVAL SYSTK\IS AXD CO~VI::\IUXICATIOX 
CHAXNELS 

Retrieval systems and communication channels have 
many similarities. The encoding and insertion of records into 
a file is akin to the process of transmitting messages through 
a communication channel. The acts of addressing, accessing 
and retrieval of records from the file are, likewise, similar to 
the operations that take place at the receiver end of a com
munication channel. (The analogy is even stronger between a 
common carrier communications system and a retrieval sys
tem-each station of the former may be either a transmitter 
or a retriever, or both, and many of the addressing, accessing 
and waiting-time problems have counterparts in a compu
terized information retrieval system.) 

The addresses or storage locations of ,vords in the retrieval 
system's memory may be likened in the communications 
channel to the "position" of a signal waveform in frequency 
and time. Synchronizing signals, header information and 
identity codes of a message in a common carrier communica
tion s)~stem aie analogous to the kc~y-'vord data in a record in 
a retrieval system. Finally, the access time problems as
sociated -with the open-addressing2 or the hash-addressing3 

techniques in modern retrieval systems are statistically simi
lar to some of the waiting-time and queueing problems in 
common carrier communication networks.4 

"The research reported in thi:,; paper was supported by the National 
Science Foundation Grant /I GI-29943. However, any views or conclu
sions contained in this paper should not be interpreted as representing 
the official position of the National Science Foundation or The Rand 
Corporation. 
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In order to analyze retrieval systems, it is necessary to 
become more specific and to idealize the nature of such sys
t-ems. -At--the-" traHsmi-tter-" -ffi! --the--enwding:-and insertion 
end of a retrieval system is the information source of records 
to be entered into the file (storage medium). The file or 
storage medium is the "channel". At the "receiver" end of 
the system is a retrieval mechanism which generates output 
records. A schematic "flow diagram" for this situation is de
picted in Figure 1. 

The record source, which could be the output of one or 
many individuals or machines, produces records to be en
coded and stored. The encoder generates an address, which 
can be a function of both the record and the state of the 
storage medium, encodes the record in symbols from some 
alphabet (e.g., binary), and inserts the data into the storage. 

At the retrieval end, an address is generated either from 
keyword information or a directory, and used to gain access 
to the desired record. Once accessed, the record is read out. 
Here such a readout operation is assumed to be destructive 
(i.e.,'no copy of the record remains in the storage medium). 
To accomplish the equivalent of nondestructive readout, 
which is usually desirable, the record, as it is being read out, 
can be reentered into the record source. By this means, some 
records can be discarded and others kept, thereby providing a 
means for efficient storage and retrieval management. 

Perhaps the greatest physical difference behveen a com
munications system and a storage-retrieval system is the 
dwell time-the time that data "stays" in the channel or 
storage medium. In the ideal channel, the transit time is as
sumed to be constant. However, in many "real" channels 
(e.g., in air-to-ground relay links) the length of the ~ra?s
mission path is variable and, as a consequence, transmISSIOn 
time varies from message to message. The dwell time of a 
given record, besides being variable in time, aiso varies f.rom 
record to record. In fact, the dwell time of a record III a 
random access storage system is evidently a random variable 
with some probability density function. For the ideal channel, 
the dwell time probability density is a Dirac delta function, 
,",·hereas for a random access storage one ,vould expect a 
dwell time distribution to have the character of a waiting 
time distribution. For the present purposes, it is convenient 
to make the assumption that the dwell time density is trun
cated. That is, the dwell time of any record R is assumed to 
be less than some value T, where T>O. 
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RECORD Record STORAGE RECORD Record 
ENCODER f--+ f--+ 

SOURCE MEDIA RETRIEVAL 

Figure I-Schematic of a general storage and retrieval system 

PRIVACY TRANSFORMATIONS AND MUTUAL 
INFORMATION 

In the above, the analogy between an information retrieval 
system and a communication system was developed. Here we 
show that, from the viewpoint of an invader of a data bank, 
the transformation of messages by either enciphering or noise 
is similar to the action of noise on a communication channel. 

A schematic of a privacy system for an information data 
bank is shown in Figure 2. At the input to the data bank there 
are two sources of information. One is the record source and 
the other is the source of privacy transformations. Privacy 
transformations are applied to the record source. This results 
in a perturbed or enciphered record source which is stored in 
encoded form in the data bank or storage medium. 

The dotted line to the decoder at the retrieval end indicates 
the data transmitted to the decoder needed to correct the 
perturbations or distortions of the record. Data about the 
privacy transformations is made available only to those re
questers of records who have a "need to know". Such infor
mation about the privacy transformation is presumed to be 
noninterceptible. 

The above scheme for a privacy system is very similar to 
communications over a noisy channel. The source record, 
which corresponds to the transmitted signal, is distorted by 
randomly chosen privacy transformations. The perturbed 
record, residing in the data bank, is analogous to a signal 
plus noise in a communications channel. However, in the 
communications channel the simple addition of noise to the 
message (see Reference 5) is usually a less complex trans
formation than is used for a secrecy system (see Reference 1, 
Section 3). 

If R is a record and T is a privacy transformation, the per
turbed or enciphered record, E, is functionally related to T 
and R as follows: 

E=T(R) 

where T is regarded as an operator on R. Assume that T is an 
element of a set of such transformations. For simplicity, let 
this set be finite, i.e., the set if Tt, T 2, ••• , T m. Associate with 
each element Tk is a probability P k • The transformations 
TI, T2, ••• , T m together with their probabilities form what is 
known as a finite scheme (see Reference 6, p. 2) : 

One can similarly assume that there is a finite number of 
records R I , R 2, ••• , Rn at the source with their associated 

a priori probabilities peRl), p(R2 ), ••• , p(Rn). The records 
and associated probabilities form the finite scheme 

for the records source. 
At the receiving end of a secrecy system it is desirable to 

recover R uniquely, given the received perturbed record E 
and the transformation T. Hence, for a secrecy system each 
T of a scheme P has a unique inverse T-I such that TT-I = I, 
the identity transformation. Thus, if E is received, the origi
nal record is uniquely decoded as R = T-IE. So, following 
Shannon,! ". . . a secrecy system is a family of uniquely re
versible transformations, T i , of a set of possible messages 
into a set of cryptograms, the transformation Ti having an 
associated probability Pi." 

The requirements of a privacy system are not as stringent 
as those of a secrecy system. For example, personal records 
stored in large data banks, such as census and income tax 
files, might be needed to study the distribution of incomes 
among various groups of professionals. In such a case many 
of the needs of personal privacy are met if an individual's 
record is merely distorted by the privacy transformation T. 
For satisfactory privacy, the "level" of distortion of a personal 
record should be sufficiently high to make inferences about 
personal identification non unique, yet low enough for the 
distorted records to be used in, say, statistical analyses. 

In order to quantify the degree of nonuniqueness and the 
level of distortion which is obtained from a privacy trans
formation, it is necessary to borrow from the measurements 
of modern information theory and rate distortion theory. For 
the present purposes it is convenient to use the notation and 
machinery of some recent references (e.g., see Gallager in 
Reference 7). 

The average mutual information is defined by 

leX; Y) = L L P(x, y) log2 P(x, y)/P(x)P(y) (1) 
'II 

where P(x, y) is the joint probability distribution of the 
record source and the receiver space, and P(x) is the distri
bution of the source. leX; Y) is the most generally accepted 
measure of uncertainty about the source X given the re-

RECORD R 

SOURCE 
ENCOOER 

PRIVACY 

TRANSFORMATIONS, T 

Transfonned 

DATA BANK I-'R"",e",-co~rd-,,-,-.... E---J--t DECODER 

: 
I 
I 
I 
I 
I 
I _________________________ .J 

Figure 2-Schematic of information retrieval with privacy 
tr:ln<:fnl"mAtiQn5 

R 



ceived record Y. I (X; Y) is the average of the "information" 
provided about an event xEX if an event yE Y occurs. 

The average mutual information is expressed as the dif
ference in the entropy of the source X and the equivocation 
of the conditional entropy of L given Y, 

leX; Y) =H(X) -H(X I Y) (2) 

where H(X) is the entropy, H(X) = - LX P(x) log2 P(x), 
andH(X I Y) = - LX L Y P(x, y) log P(x I y) is the equivo
cation of X given Y. From this equation I (X; Y) can be in
terpreted as the average amount of uncertainty in X, the 
entropy of X, which is resolved by an observation in the re
ceiver space Y. After the observation in Y, H (X I Y) is the 
average uncertainty still remaining about X. 

The mutual information leX; Y) is measured in bits; it 
represents the average number of bits of information which 
canoe inferred unambigm:msty-·ab-out-the-·~---spac-e-;--given--an 
event in the Y space. The properties of leX; Y), H(X) and 
H(X I Y) include the following: 

1. leX; Y) is symmetric, i.e., leX; Y) =1(Y; X). 
2. leX; Y) ~O, or H(X) ~H(X I Y), where equality 

holds if and only if X is statistically independent of Y. 
3. If X has N states, H(X) :::;;log2 N. H(X) =log2 N if 

and only if the states of X are equally likely. 
4. H (X I Y) = 0 if and only if there is no statistical uncer

tainty about X, given Y. 
5. If X has N states and Y has j1[ states, 

O:::;;I(X; Y) :::;;~'Iin {log2 N, log2111}. 
6. If X and Y have the same number N of states, 0:::;; 

I (X; Y) :::;; log2 N, and I (X; Y) is called the rate, the 
average number of bits of information transferred un
ambiguously from X to Yo 

::\;10st of the above properties are easily derived from the 
definitions of leX; Y), H(X), and H(X I Y). (See, for ex
ample, Reference 5 and Reference 7.) Property 5, though not 
usually provided, is an evident consequence of Eq. (2) and 
properties 1, 2, and 3. From these properties one can further 
see that if I (X; Y) is large, the uncertainty of X, given Y, is 
low and, conversely, if I (X; Y) is small, i.e., near zero, the 
uncertainty of X, given Y, is great. 

N ow return to a secrecy system and apply it to the con
cepts of mutual information. A theorem of Shannonl is used 
to obtain the following theorem: 

THEORE1'ff. A 11ecessary' and sufficient condition for 
perfect secrecy is that 

I(R;E)=O 

for all Rand E. That is, the mutual information con
veyed by an enciphered record E about the original 
record R is zero. 

The proof of this theorem is almost immediate by defini
tion (Eq. (2) and Reference 1, Theorem 6, p. 680). Shan
non's theorem states, "A necessary and sufficient condition 
for perfect secrecy is that peE I R) = peE) for all Rand E. 
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That is, peE I R) must be independent of R." By Eq. (2) 
the mutual information of E given R is 

where 

and 

ICE; R) =H(E) -H(E I R) 

H(E) = - L peE) log2 peE) 
E 

H(E I R) = - L L peE, R) log2 peE I R). 
E R 

Replacing peE I R) by peE) in H(E I R) yields 

H(E I R) = - L L peE, R) log2 peE) 
E R 

= - L peE) 10g2 peE) 
E 

sin.ce 
L peE, R) =P(E). 
R 

Thus, H(E) =H(E i R) and ICE; R) =1(R; E) =0 by sym
metry. 

The converse follows from property 2 and a reversal of the 
above steps. Hence, the theorem is proved 

Since 

I(R; E) =H(R) -H(R I E), 

the above theorem implies that perfect security or privacy is 
obtained if and only if the entropy of the source H (R) is 
matched to the equivocation H(R I E). To show how such 
matching can be accomplished, consider the following ex
ample. 

Example 1: 

The Vernam system for enciphering binary records (Ref
erence 1, p. 662). Let R be encoded into a sequence of binary 
digits 

{Xl, X2, ... , XN} 

where Xi = 0 or 1. Let the "running key" be the sequence 
nl, n2, . . ., nN of binary digits. Then define the enciphered 
message E to be the sequence 

E==. {YI, Y2, ... , Yn} 

==. {(xI+nl, X2+n2, ... , xN+nN)} mod 2. 

This transformation T is reversible since clearly R is ob
tained uniquely by merely applying the same transforma
tion again, i.e., 

For simplicity, consider now only the mutual information 
associated with single letters of the record. Then X = {O, I} 
and Y = to, I}. Let P(x= 1) =a and P(x=O) = l-a=~. This 
is the distribution of the source X. Let P (n = 1) = p and 
P (n = 0) = 1-p = q. A schema tic expressing the transitions 
from X to Y is shown in Figure 3. 
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Figure 3-Single letter transition for binary Vernam system 

From this 

P(y= 11 x=O) =P(y=O I x= 1) =P(n= 1) =p 

P(y= 11 x= 1) =P(y=O I x= 1) =P(n=O) =q. 

Hence, 

so that 

p(y= 1) =aq+fJp 

p(y=O) =ap+fJq 

y 

o 

H(Y) = - (aq+fJp) log2 (aq+fJp) - (ap+fJq) log2 (aq+fJp) 

and 

H(Y I X) = -fJq log2 q-fJp log2 p-ap log2 p-aq log2 q 
= - (a+fJ)p log2 p- (a+fJ)q log2 q 
= -p log2 p-q log2 q. 

Thus, 

leX; Y) = - (aq+fJp) log2 (aq+fJp) 

- (ap+fJq) log2 (aq+fJp) +p log2 p+q log2 q (3) 

is the average mutual information of X, given Y. One can 
recognize Eq. (3) as the expression for the average rate 
(bits per symbol) transmitted through a binary symmetric 
channel (e.g., see Reference 5). 

Note that leX; Y) can be expressed as 

leX; Y) =H(aq+fJp) -H(p) 

where H(x) is the "entropy" function 

0::; -x log2 x- (I-x) log2 (I-x) ::; 1. 

The point p* for which I (X; Y) = 0 obtains by setting 

p=aq+fJp. 

Solving for p, assuming 0 < a::; Y2, yields p* = Y2. This can 
also be seen in the graphs of H (aq+ fJp) and H (p), sho'wn in 
Figure 4. 

The above arguments show that the only value of p for 
which the Vern am system yields perfect secrecy is p = Y2. 
This is in agreement with one's intuition: for any other value 
of p, leX, Y) >0, so that enciphered record still contains in
formation about the original record. 

In the next section distortion measures are introduced in 
order to achieve maximum privacy (although less than per-

feet) for a given allowable degree of distortion. As men
tioned previously, such distortion is designed primarily to 
hide the identity of the individual that the record is about, 
yet the distortion is not so great that the record is unusable 
for statistical purposes. 

DISTORTING RECORDS FOR PRIVACY 

In this section a study is made of providing privacy trans
formations to the source of records, given an upper bound to 
the amount of distortion allowed ·in the record. The distor
tion measures defined to quantify the degree of distortion 
were originally defined by Shannon (Reference 8). Later 
works include Reference 7 (Chapter 9) and Reference 9 by 
Gallager and Berger, respectively. 

Let i range over the m symbols of the record source, and j 
range over the n symbols of the received (enciphered) rec
ords. Here the symbols of a record source might include let
ters of the alphabet, digits, given names, surnames, names of 
geographic locations, religion, etc., and, similarly, for the 
symbols of the received words. Let the set of such symbols 
for the record source be denoted by X, and the corresponding 
set for the received records by Y. 

Suppose a symbol i in the original record R is received as j 
in the received record, E. Assume there is a cost dij associated 
with every such input symbol i reproduced as symbol j in 
the output. If the reproductions are correct, set dij = o. If 
incorrect, dij is positive and proportional to the cost of the 
error. It is convenient to index sets X and Y so that dij=O 
if i=j, and dij>O if i=;e.j. Any cost matrix (dij ) which has 
these properties is called a symbol distortion matrix. 

If a record R is distorted by a privacy transformation to a 
word E, the distortion d which R undergoes is defined to be 

/ Pofnt of lntersectfon 

H 

H(p) 

o a 1/2 1-a p 

Figure 1 Plots of Ji(aq I 3p) and l/(p) 



the average of the distortions of its symbols. That is, 

1 N 
D(R, E) = N L dik, jk (4) 

k=l 

where iI, i2, ... , iN are the symbols of record Rand jl, j2, ... , 
jN the distorted symbols of E. To obtain the overall system 
distortion average d(R, E) with respect to the joint probabil
ity distribution peR, E) of Rand E, 

D[P(E! R) J= L peR; E)d(R, E) 
R,E 

= L peR) (P(E \ R)d(R, E) (5) 
R,E 

where d(R, E) is defined by Eq. (4) and peE \ R) is the con
ditional probability of E, given record R. 

I-f-ooe-mmi-mizes---tlw--mmual--inWr-matiD-Il J (R, E) over 
every average distortion D[P(E \ R)] less than some fixed 
value, say D*, the resulting function R(D*) is called, follow
ing Shannon (Reference 7), the rate distortion function. In 
this minimization, only the conditional probabilities peE \ R) 
in Eq. (5) are assumed to vary. Thus, 

R(D*) = mm feR; E) (6) 
D[P(EIR)l~D * 

where 

D[P(E \ R)]= L P(R)P(E \ R)d(R, E) 
R,E 

is the record distortion, defined by Eq. (4) and where P(R), 
the a priori distribution of the records, is held fixed. As de
fined by Eq. (6), R(D*) is the minimum average mutual in
formation about R conveyed by a knowledge of E, assuming 
the average distortion is bounded above by D*. R (D*) for 
present purposes is a measure of the maximum amount of 
privacy one might expect if he allO\ved only a limited amount 
of distortion of the stored record. 

In order to illustrate the utility of the rate distortion func
tion by examples, it is convenient to specialize the record 
source space R and received record space E to the symbol 
spaces X and Y, respectively. For the symbol spaces X and Y, 

where 

R(D*) = mm leX; Y) 
K[P(jli)l~: 

D[P(j \ i)]= L L P(i)P(j \ i)d ij • 

iEX JEY 

(7) 

Since X and Yare sets of symbols used in records Rand E, 
respectively, R(D*) can be called the single symbol rate dis
tortion function. To see the application of this concept, con
sider the following example ,vhere both X and Yare the two 
letter set {O, 11. 

Example 2: 

Let X be a binary letter source, the set {O, I} and likewise 
let Y = to, I}. Suppose P(X = 1) =a and P(x=O) = l-a=/3. 
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This is the source distribution of Example 1 in the preceding 
section. Let the transition probabilities for distortion be 

P(y= 1\ x=O) =P(y=O I x= 1) =p 

P(y= 1\ x= 1) =P(y=O \ x=O) =q. 

These transition probabilities and source distribution proba
bilities are the same as those shown in Fig. 3. The reader can 
recognize that Figure 3 is the schematic representation of the 
binary symmetric channel. 

The distortion matrix for this example is 

.. _ (doo dOl) _ (0 a) (d.}) - -
dlO dn b 0 

where a, b> O. Then, by Eqs. (5) and (7), the distortion is 

D=/3ap+abp= (/3£t+ab)p=op 

o=/3a+ab. 

Evidently, D is linear in p and ranges from 0 to 0 as p changes 
from 0 to 1. An allowable distortion D* is chosen from the 
interval (0, 0). D* determines a p* according to the relation 

where 

1 
p*= -D* 

o 

o=/3a+ab. 

The mutual information I (X; Y) needed in the present ex
ample was computed for Example 1 of the last section. This 
result, Eq. (3), is 

lp(X; Y) =H(/3p+aq) -H(p) 

where here I (X; Y) is subscripted to denote its dependence 
on the transition probability p of distortion. 

There are two cases to consider. 
Case l-Q<p*<Y2. This case is shown in Figure 5. From 

the figure for all p such that O:::;p:::;p*, 

lp*(X; Y) :::;lp(X; Y). 

Thus, by the definition of R(D*) and Eqs. (6) and (7), 

R(D*) =lD*/o(X; Y) 

=H(/3D*/o+a[I-D*/o]) -H(D*/o). 

Case 2-Y2:::;p*:::;1. If P*=Y2, 

ll/2(X, Y) =R(Y2o) =0. 

By Theorem 1 of the last section, this is the condition of per
fect secrecy or privacy. Any further increase in p*, which is 
proportional to the allowable distortion D*, will not lessen 
the degree of privacy. Thus, R (D*) = 0 for all p* ~ Y2. 

Combining Cases 1 and 2, one has 

R(D*) =H(/3D*/o+a[I-D*/o]) -H(D*/o) if 0:::; D*:::; 0/2 

=0 

where 
o=/3a+ab. 

if 5/2 <D*:::;lJ 

(8) 
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Figure 5-Graphical determination of R(D*) 

The privacy transformation to realize the rate distortion 
function R (D*), given by Eq. (8), is the Vernam system for 
enciphering binary records, given in Example 1 of the last 
section. This follows from the fact that for O~p~Y2 the 
equations for leX; Y) in Eq. (3) and for R(D*) in Eq. (8) 
are identical if one sets p=D*/o. Thus, if the sequence of 
"running key" digits {nl, n2, ... , nN} are chosen to be mutu
ally independent and with probability 

P(nk= 1) =D*/o if D*/o~Y2 

= Y2 if D*/o~Y2 

the amount of mutual information provided by R(D*) in 
Eq. (8) will be achieved exactly. 

It is of interest to consider briefly here how one might 
generate "noise-like" sequences such as {nl, ~, ... , nk} where 
q = prob {nk = I} is less than one half. If q = Y2, a number of 
feedback shift-register generation methods have been de
vised. (See, for example, Reference 10 for a study of both 
linear and nonlinear sequence generators.) Such methods 
h~v~ the advantage over numerical techniques of utilizing a 
mInImUm of computer hardware (and also soft\vare). 

The mathematical bases for the classical linear feedback 
shift-register is the irreducible polynomial P n (x) of n-th de
gree over the Galois field of two elements GF(2). Associated 
with each such Pn(X) are binary sequences of period no less 
than 2n-1. Assuming an unknown starting state, it can be 
shown that q= Y2 and that the autocorrelation function of the 
sequence is such that the digits of the sequence appear to be 
statistically independent. 

Consider the nonbinary shift register associated with an ir
reducible polynomial Pn (x) of n-th degree over the general 
Galois field G (pm) or pm elements where p is a prime. It can 
be shown that a particular element of the field occurs in the 
generated sequence with "probability" q= l/pm and with 
period no less than pmn_l. Evidently, these more general 
sequence generators over Galois fields of pm elements repre
sent a possible method for generating "running key" se
quences {nl, n2, ... , nd for privacy distortion where q= 
proD {ilk = I} = l;'Ji'r .. 

If sequence generators are used to distort a record and if 
the initial settings or "key" of the generator is retained for 
later use, it would be possible for those with the proper need 
to know to recover the message perfectly (except for possible 
natural errors). On the other hand, to all others without 
proper authorization, the retrieved record would appear so 
distorted or garbled that it would be unfit for any other use, 
say, than statistical purposes. 

Let us now discuss another important method of distortion. 
This method of distortion is called by some "data aggrega
tion", by others "distortion by coding", and by still others 
"distortion by data compression". Shannon was motivated by 
the following type of observation in his development of rate 
distortion theory (Reference 7): "If an error probability of 
.3 [the distortion] can be tolerated, a capacity of only .1 bit 
is necessary and sufficient [a code replaces on the average 
every ten bits by one bit]. If .5 error probability can be 
tolerated, of course, no channel capacity is required .... " 
Clearly, cod('s which reduce ten bits to one bit accomplish a 
form of information or data aggregation. ~oreover, this is a 
ten-to-one reduction in the number of bits needed to store 
the message. Thus, the allowance of distortion yields data 
compression and vice versa. 

Usually data aggregation schemes involve a coarsening of 
numerical data. The simplest and most widely employed data 
aggregation scheme for numerical data is quantization. For 
example, one form of quantization is the mapping of a finite 
real variable x onto a set of N real values, y = Ll <L2 < ... < 
LN , such that 

1. For Ll~X, y=LK if and only if LK~X<LK+l 
2. For X <L1, y=LI • 

Evidently quantization is a data aggregation scheme, as well 
as a data compression scheme, since only log2 N bits are re
quired to store the image y of the mapping f. Appropriate 
distortion matrices for data aggregation methods, such as 
quantization, and the resulting rate distortion functions will 
be considered elsewhere. For the present, discussion of data 
aggregation \\<1.11 be limited to the following simple example of 
bit reduction by coding. 

x 
o 

o 

o 
Figure 6-Line diagram of distortion matrix (dij) 

y 

o 



Example 3: 

Here, binary repetition codes of odd block length n are 
used to aggregate n bits of record into one bit. As in Examples 
1 and 2, let R be encoded into a sequence of binary digits 
{Xl, X2, ... , XN} where Xk=O or 1. Again, suppose PIX = I} =a 
and P (x = 0) = 1-a = ~ the distribution of the source. 

Specialize the distortion matrix, used in Example 2, by 
letting a = b = 1. A line diagram of this distortion matrix is 
shown in Figure 6. 

Tt..is assumes the costs of both types of errors, transitions 
from ~ 1 or 1 ~O, are the same. The average letter distortion 
is, in this special case, 

D=~p+ap= (a+~)p=p. 

Evidently the distortIOn in this case is identical to error proba
bility per binary digit produced by the distortion. 

Let n=-2m--=j::--t-arrd-supp-oseZI, Xi, ... , x;aren binary digits 
of the record. A binary repetition code is a mapping of the set 
of such n-triples, namely to, l}n, into the two-element set 
{O, I} according to the follo'\Ving rule: 

2m+1 

Z= 1 if L: xk2::m+l 
k=l 

2m+1 

=0 if L: xk<m+l 
k=l 

where {O, I} n denotes the Cartesian product of the two-ele
ment set {O, I}, n times, i.e., 

to, l}n= to, l}x{O, l}x .. . to, 1} n times 

A device which performs the mapping g(x) is called a coder 
(Reference 8, p. 9, 108). 

To reproduce a distorted facsimile of the originai record 
sequence {Xl, X2, ... , XN} one runs the output of the coder, 
sequence Zl, Z2, .•. , ZT, into another device called the re
producer. The reproducer realizes the follo'\Ving one-to-one 
mapping y=f(z) of to, I} into to, l}n: 

y=(O,O ... O)ifz=O 

=(1,1 ... 1) ifz=1. 

The composition 
y=f[g(x)] 

maps the record sequence {Xl, X2, ... , XN} into a distorted 
version {YI, Y2, ... , YN} of the same sequence at the output of 
the reproducer. The sequence {YI, Y2, ... , YN} is the n bits of 
output record E, corresponding to the n-bits {Xl, X2, ... , XN} 
of the record before encoding. 
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If one assumes that the letters of the source are equip rob
able, that is, 

a=~= Y2, 
it is a simple matter to compute the distortion exactly for this 
example. For this, 

{

2m+1 } 

D=Prob {YI= 11 XI=O} =Prob E xj2::m+l 

= ~ 2m (2m\ 
~~m L: I 
~~ k=m+l \ k/ 

,,,here e:) is a binomial coefficient. 
Te-illustrate 1-etn=~then 

D=p=5/16. 

The equivalent rate, number of bits used per record letter, is 
1/5. It is of interest to note that this rate is somewhat higher 
than would be required by the Vernam system in Example 2. 
If one uses D*=5/16 in Eq. (8) 

R(5/16) = I-H(5/16) :::::0.1, 

approximately half the rate achieved by the simple repetition 
code, above, for n = 5. 
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Privacy transformations for databank systems* 

by REIN TURN 

The Rand Corporation 
Santa Monica, California 

INTRODUCTION 

The term databank implies a centralized collection of 
dara-to wnic1f a number -of users have access. A computer
ized databank system consists of the data files, the asso
ciated computer facility, a management structure, and a 
user community. Several classes of databank systems can 
be defined on the basis of the nature of the organization 
supported by the databank, and its activity; the nature of 
the data and its uses; and the structure of the associated 
computer facility. Such classifications have been dis
cussed in detail elsewhere.! 

The recent years have seen a steady increase in the 
establishment of databanks in all sectors of our society in 
the United States,2 as well as in other countries: 3

.4 in the 
federal, state and local governments for administrative, 
law enforcement, education, social welfare, health care 
purposes; in business and industry for supporting man
agement, planning, marketing, manufacturing and 
research; in universities for administrative purposes and 
for supporting social research projects; and the like. 

The information maintained in such databank systems 
includes proprietary data on the operations of industrial 
concerns, sales data of business establishments, and large 
collections of personal information on individuals. In all 
databank systems there is a need to control the access to 
the data, if for no other purpose than, at least, to assure 
the integrity of the data-that they will not be acciden
tally modified or erased. In many databanks containing 
proprietary business information, classified defense infor
mation, or confidential personal information on individu
als, there is a requirement for data security-protection 
against accidental or deliberate destruction, and unau
thorized access, modification or dissemination of the data. 

In databanks maintaining personal information on 
individuals, often collected without the consent or knowl
edge of the persons concerned, the questions of potential 
violations of an individual's right of privacy-his right to 
determine for himself what personal information to share 
with others, arise. These, however, relate to what personal 

.;. The research reported in this paper was supported by the National 
Science Foundation Grant No. GI-29943. However, any views or conclu
sions contained in this paper should not be interpreted as representing 
the official position of the National Science Foundation or The Rand 
Corporation. 
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information is gathered in the first place, and thus are 
legal, political and ethical questions, rather than the 
technical questions of data security which are addressed 
in tlrisp-ap-er. 

Privacy transformations** represent one technique for 
providing data security-the mathematical/logical trans
formation of the protected data into forms which are 
unintelligible to all but the holders of the "keys" to the 
transformations, i.e., those who know what inverse trans
formations to apply. This capability of privacy transfor
mations is very useful for providing data protection 
beyond the more conventional access control mecha
nisms, such as passwords in their various forms, which 
can be circumvented or nullified through flaws in soft
ware, wiretapping, or outright physical theft of data
carrying, demountable storage media.5 

This paper will first briefly review the relevant charac
teristics of several classes of privacy transformations, 
then present a set of suitability criteria for databank 
applications, and conclude with a discussion of imple
mentation and operational considerations. 

PRIVACY AND TRANSFORMATIONS 

Historically, there has always existed a requirement to 
prevent access to information in a message when outside 
of the physical control of either the originator or the 
intended receiver, i.e., when the message is in some 
communication channel. Indeed, certain classes of mes
sages have always been subject to interception, copying, 
and attempts to uncover the information they contain.6 In 
the computer age this threat is also extended to stored 
messages and data. 

Shannon7 refers to the methods of protecting informa
tion in messages and data as secrecy systems. There are 
two kinds: 

• Concealment systems where the existence of a mes
sage is hidden, such as in the case of using invisible 
ink, or mixing a message with other, unrelated text. 

• ~ The term "privacy transformation" is synonymous with "crypto
graphic transformation". It was coined in the early days of computer 
security research5 to distinguish the use of cryptographic techniques in 
civilian and commercial systems from their use for protecting classified 
national defense information. 
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• "True" secrecy systems where the existence of a 
message is not hidden, but its meaning is concealed 
by the use of privacy transformations-encryption 
techniques. 

In the following, only the "true" secrecy systems are con
sidered, since concealment systems are not applicable to 
computerized databank systems-no one can assert that 
there are no data in such systems, although whether or 
not there is information worth protecting may be debata· 
ble. 

A privacy transformation is a mapping T(K), from the 
space RS(A) of all possible records of finite length which 
are composed of symbols from a finite alphabet, A, 
according to the vocabulary, syntax, and grammar of a 
natural or artificial language, L, into the space ES(B) of 
strings of characters from an alphabet B. The original, 
untransformed record, R, is called the "plaintext" and its 
equivalent transformed character string, E, the "cipher
text" or a "cryptogram." The transformation, T(K), is 
usually a member of a large space, TS, of similar trans
formations. The set of parameters, K, of the transforma
tion T(K) are called the "key" which selects T(K) out of 
the space TS. 

Several classes of privacy transformations exist and are 
in use. A major classification criterion is the nature of the 
mapping T itself: it may be irreversible (i.e., many-to
one) mapping of records into ciphertext strings, or a one
to-one mapping with a unique inverse, T-1. Both classes 
of privacy transformations find applications in protecting 
confidentiality and security in databank systems. 

Irreversible privacy transformations 

A many-to-one privacy transformation, T, when 
applied to record space RS(A), may convert more than 
one record into the same ciphertext string E in the space 
ES(B). That is, given E and the knowledge of the exact 
transformation used, an uncertainty remains which of the 
possible records was transformed into E. Unless the 
intended receivers possess additional contextual informa
tion for resolving the uncertainty, many-to-one transfor
mations are inappropriate for precise communication of 
storage of information. 

However, there are situations in databank systems 
where the maintenance of the original level of information 
content is not required or could be reduced in the interest 
of protecting the confidentiality of the information. For 
example, statistical databank systems, such as the U.S. 
Bureau of Census and various social sciences research 
projects, collect data on individuals under the authority 
of a law or with the individuals' voluntary participation. 
The data, especially in certain social sciences research 
projects, may be very sensitive and may lead to consider
able harm to some individuals if disclosed.s The threats to 
the confidentiality of such data include legal means
subpoenae issued by courts, grand juries, and investiga
tive committees with subpoena power.9 

Irreversible privacy transformations can be used in 
such databank systems to hide personal characteristics of 
individuals in the group characteristics, and by reducing 
the credibility of the information. The following can be 
used: 10.11,12 

• Aggregation. The irreversible transformation T 
applied to a group of data records computes the 
averages of various data elements in the records and, 
in each record of the group, replaces the original data 
elements with the group averages. As the size of the 
aggregated group of records is increased, the transfor
mation increases the uncertainty about the original 
information in the records. 

• Random modification. The transformation consists 
of adding a randomly varying component to the origi
nal information in the records, thereby introducing 
errors. If the random variables are produced by a 
process whose statistical characteristics are properly 
chosen, the statistical val ue of the modified records 
are not altered, but credibility of each individual 
record is now reduced and along with this, the value 
of such record as incriminating evidence against an 
individual. 

A prerequisite for effective use of the above classes of 
irreversible privacy transformation is, of course, the origi
nal, untransformed records be totally removed from the 
databank. The price paid for increased data confidential
ity is, however, a reduction of the future statistical utility 
of the data-it will not be possible to make new, precise 
correlation analyses between various characteristics of 
individuals (these have been aggregated or innoculated 
with errors) or to make longitudinal analyses-studies of 
changes in persons' characteristics or attitudes over peri
ods of time. The confidentiality protection vs. data utility 
tradeoff is an important question which is still being stud
ied. 

Reversible privacy transformations 

Transformations in this class are those which are 
usually discussed as "cryptographic transformations"
the one-to-one mappings from the record space R(A) into 
the ciphertext space ES(B) which have unique inverses. 
The protection provided to the data rests in keeping the 
key, K, of the transformation T(K) from falling into 
unauthorized hands, and in the expectation that the 
recovery of original records or the key from the ciphertext 
forms is a task beyond the resources and know-how of the 
potential interceptors. 

Further classification of reversible privacy transforma
tions, henceforth simply "privacy transformations," can 
be made on the basis of the mathematical or logical oper
ations involved in applying the transformation. Four 
principal classes of privacy transformations used in data
bank systems-coding, compression, substitution and 
transposition, are briefly discussed below. More detailed 
discussions ran he found in the literatllre. 6

.
13

,14 



Coding 

Coding is a transformation where an entire record, 
parts of it, words, or syllables of the language L i used in 
the record space RS(A) are replaced with words or groups 
of characters of some other (usually artificial) language 
L j .6.15 A coding transformation and its inverse are usually 
applied with the help of a coding dictionary (code book) 
or by using table look-up methods. The protection 
afforded depends on maintaining control over the code 
books and in frequent changes of codes. Besides providing 
confidentiality protection, coding can also provide a con
siderable degree of data compression in transmission or 
storage. The resulting economy is a main reason for the 
widespread use of codes in computer files. 

Compr.ession 

Data compression transformations are used to reduce 
the redundancy in stored or transmitted data by remov
ing repeated consecutive characters-blanks or alphanu
merics, from the records. Other types of data compression 
transformations attempt to achieve more compact storage 
of records by "packing" more characters into the storage 
space normally occupied by a single character. The 
resultant, compacted data files contain records which 
have been distorted by the compression algorithms and 
which will be largely unintelligible when accessed with 
normal utility programs in the databank. For correct 
retrieval, decompression algorithms must be applied. 
Even though data compression is applied mainly to 
achieve storage or transmission time economies, the asso
ciated confidentiality protection may also be sufficient in 
mild threat environments. 

Substitution 

Substitution transformations replace single characters 
or groups of characters of the alphabet Ai of language L 
used in the record space RS(A i ), with characters or 
groups of characters of some other alphabet B (or set of 
alphabets B I , •• " B M ). That is, the transformed record is 
still-composed in language L, but transmitted or stored 
using alphabet B. Replacement of characters of English 
alphabet with six-bit binary codes is a very simple substi
tution transformation. The key K of the transformation 
T(K) specifies a particular substitution correspondence. 
The protection obtained depends, in addition to protect
ing the key, on the number of possible substitution corre
spondences between alphabets Ai and B (i.e., the size of 
the key space) and the nature of the language L. 

Substitution transformations can be subclassified as 
monoalphabetic and polyalphabetic. Each of these could 
be monographic and polygraphic. The latter classification 
refers to number of characters that are being substituted 
as a group: in monographic substitutions, single charac
ters are substituted (independently of each other and the 
context of the message) with single characters (or groups 
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of characters). In polygraphic substitutions groups of two 
or more characters are substituted by similar (or larger) 
groups. 

• Monoalphabetic substitution. An alphabet B is cho
sen to correspond with the original alphabet A such 
that to each character in A corresponds a unique 
character (group of characters) in B. As will be dis
cussed later, monoalphabetic substitutions leave the 
basic language statistics (average character frequen
cy, average polygram frequencies) invariant and, 
thus, remain susceptible to basic cryptanalytic tech
niques. 

• Polyalphabetic substitution. Here the alphabet B is 
actually a set of alphabets B I , B2 , •• " BM which are 
used cyclically with period M. For example, in a 
~:r-aphic-M-~ sU~n-the first 
character, r l , of record R is substituted with a char
acter of alphabet BlI the second with a character 
from B2, the M-th with a character from B M , and the 
next character again from B l • The effect of a polyal
phabetic substitution is to hide the original charac
teristics of the language L, since a given character of 
alphabet A may now be transformed into M different 
characters of alphabets Bll .. " B M • 

It is common to derive the alphabet B from alphabet A 
by making a permutation of the characters of A to corre
spond with the original characters. The simplest such 
permutation is a cyclic shift of the characters of A by a 
fixed number of characters, J.l. This class of substitution 
transformations is called "Caesar ciphers." They are 
extremely simple to solve as, in the case of the English 
alphabets, a maximum of 25 trials are required to dis
cover the "key," the number of characters that alphabet 
A was shifted to obtain alphabet B. 

A polyalphabetic substitution transformation using M 
Caesar ciphers as the alphabets B l , •• " BM (with repeti
tion allowed, i.e., Bi=BJ> for some i andj, for several such 
pairs) is called a "Vigenere cipher." The key is now a set 
of M numbers which specify the shifts used to generate 
from alphabet A the alphabets B I , •• " B M • A special case 
of the Vigenere transformation is the situation where the 
number of alphabets, M, is larger than the number of 
characters in a set of records to be transformed. This 
transformation is called the "Vernam cipher" and it can 
provide a very high level of protection.7 

Substitution transformations may be implemented in 
several ways. Table look-up operations are used for sub
stitutions with alphabets Bi that are arbitrary permuta
tions of the alphabet A. Certain algebraic operations, 
however, permit relatively simple computation of the 
required substitutions. 14. 16. 17. 18. 19 

In algebraic substitutions, the NA characters of the 
alphabet A are set in a correspondence with the positive 
integers 0,1, .. " NA -1 (for example, a=O, b s;1, .. " 
y=25 in the English alphabet). These form an algebraic 
ring under the operations of addition module (iVA) and 
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subtraction module (NA ). Then, choosing an integer k in 
the range ° to N A - 1 specifies a particular substitution 
transformation of characters ri of records R into charac
ters e i of the transformed version, E, of R: 

and the inverse transformation 

For polyalphabetic substitutions, a sequence of integers 
k, ko, .. " k M - 1, are used cyclically: 

Polygraphic substitutions of n-character groups (n
grams) by other n-grams can be represented as sets of 
simultaneous linear congruences and computed by matrix 
operations. 16. 17 

n 

e i = Lcijrj, i= 1, ... ,n 
j=l 

where the elements c ij of the matrix C are selected among 
integers in the range 0, . . . INA - 1, such that the matrix C 
has an inverse. If the matrix C is fixed, the substitution is 
monoalphabetic (in terms of n-grams). Polyalphabetic n
gram substitutions are obtained by introducing a cycli
cally varying parameter, t, in the matrix C.IS The matrix 
crt) must have the property that its determinant is inde
pendent of the parameter t, and is a prime number mod
ulo (N.J. 

Transposition 

Privacy transformations that permute the orderin~ of 
characters in the original message are called transposition 
transformations. The transformation may be applied to 
the entire message all at once, or on a block-by-block 
basis. The alphabet of the message remains unchanged. A 
common method for implementing a transposition is to 
write the block to be transformed in a matrix form follow
ing some rule and then rewrite in linear form using a dif
ferent rule. For example, the message may be written first 
as rows of the matrix and then transcribed by taking the 
column of the matrix in some specified order. 

Transposition transformations retain the character 
frequency statistics of the language but destroy the higher 
order statistics (polygram frequencies). 

Composite transformations 

The effectiveness of privacy transformations can be 
increased (although not always) by applying a sequence 
of transformations, TI(K I ), T 2(K2 ), •• " Ts(Ks), such that 
E=RT I T 2 • • ·T..,. Typically, the transformation T; are 
either all substitutions. all transpositions, or a mix of 
the~e. 

The case where all transformations are substitutions is 
called an S-loop substitution transformation: 20 

where jg= 1 (mod M g), g= 1, .. " S. If the periods of the 
polyalphabetic transformations T I , •• " Ts , are mutually 
prime, the period of the composite transformation 
T= T I • •• Ts is the product of periods Mh .. " Ms of 
the component transformations. 

A particularly effective composite transformation sug
gested by Shannon7 is a "mixing transformation" which 
may consist of a sequence of n-gram substitutions and 
transpositions. Such mixing transformations can be 
highly effective in hiding the language characteristics, as 
well as possibly information in the ciphertext E of the 
nature of privacy transformations used. 

SUITABILITY CRITERIA 

Among a set of requirements stated by Kerckhoffs some 
seventy years ag07 are: 

• The cryptographic transformations used should be, if 
not theoretically unbreakable, unbreakable in prac
tice; 

• A knowledge by enemy of system's hardware should 
not compromise the protection provided to the mes
sages; 

• The key should be able to provide all the protection, 
it should be easily changeable; 

• The application of the transformation should be 
simple, requiring neither complicated rules nor 
mental strain. 

Kerckhoffs' requirements were derived for manually 
operated communication systems, but are also applicable 
in modern communication systems and computerized 
databanks. 

The suitability of a particular class of privacy transfor
mations for application in a communication network or in 
the files of a databank depends on: (1) the relevant char
acteristics of the particular application, (2) the inherent 
characteristics of the class of privacy transformations 
used, and (3) the technical aspects of the system that 
implements the application and the privacy transforma
tion. Although the principal purpose of using privacy 
transformations is to provide security to information in 
transit or in storage, the effects of application of transfor
mation to the utility of the system are equally important 
-a system may be designed to provide excellent security, 
but at such a cost in loss of performance that it may 
become useless. 

Application characteristics 

The characteristics that affect the effectiveness of a 
candidate class of privacy transformations in protecting 
information include the following: 



a. Value of the information. Whether or not the value 
of information can be determined adequately 
depends largely on the nature of information 
involved. The most difficult to assess is personal 
information, the easiest to assess is business infor
mation. Information affecting national security is 
usually treated as invaluable and any cost in its 
protection is considered justifiable. Important is 
also the time dependency of the assessed value, and 
this has a direct bearing on the suitability of a class 
of privacy transformations. For example, if the 
transformations can resist a cryptoanalytic effort of 
reasonable intensity for T hours, and the value of 
the protected information is expected to decrease 
below a critical threshold in less than this time, the 
transformation will provide sufficient protection. 

_ Determination __ nLihe_ y.aL~-.nf __ inf1uJD.atiQR_is __ dis::
cussed in more detail in Section V of this progress 
report. 

b. Language(s) used. The information to be protected 
by a privacy transformation is carried in the words 
of the message (or computer record) and is inextric
ably identified with these words and the language 
that provides the vocabulary, grammar, and syntax 
for embedding the information into the message. In 
natural languages the vocabulary, grammar, and 
syntax have evolved over periods of time with no 
regard to the possible application of privacy trans
formations. In artificial languages the need to pro
vide protection through the use of privacy transfor
mations can be taken into account already in the 
language design phase. 

c. Dimensions of the application. The static and 
dynamic aspects of the application-the ranges of 
volumes of messages or data to be stored, processed, 
and/ or transmitted; the required rates and maxi
mum allowed time for operating on a message or 
data record; and the nature of the processing 
(sequential, random access, concurrent, etc.), estab
lish criteria which must be satisfied in implement
ing the privacy transformation. 

d. The personnel characteristics that affect their role 
in the application, control, safeguarding of the 
privacy transformation system: level of expertise, 
integrity, discipline, etc. Errors made will require 
repetition of processing or transmissions in provid
ing more intercepted material for the cryptanalyst. 

Inherent characteristics of privacy transformations 

The most important overall criterion in selecting a 
privacy transformation is the amount of security that it 
can provide. In general, security appears similar to relia
bility-both are concerned with techniques for assuring 
proper operation of systems, and both require a priori 
prediction of the probability of proper operation. From 
the point of view of a particular implementation, how
ever, reliable operation is a prerequisite of secure opera
tion. 
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The inherent characteristics of privacy transformations 
which affect the amount of security provided, and the 
effective operation of the application process, include: 

a. Size (cardinality) of the key space. The protection 
provided by privacy transformations depends on 
the intruder's uncertainty concerning the transfor
mation used. In general, it must be assumed that 
the intruder knows the particular class of transfor
mations, but does not know the specific set of key 
parameters employed. For example, the transfor
mation may be a monoalphabetic substitution, but 
which one? There are 26! possible permutations of 
the English alphabet (although not all arepermissi
ble, such as the permutation that changes only two 
letters and leaves the rest the same). A large space 
of -permisB.ibl~k~~ each_ sill.ecte_~willi_thfLsame_-.a __ 
priori probability is a prerequisite for any effective 
secrecy system. 

b. Effect on language. A privacy transformation pro
vides protection by drastically altering the appear
ance of the plaintext record (or computer record). 
Ideally, all the characteristics of the source lan
guage (the plaintext language) are altered and 
made unrecognizable. The extent to which this is 
achieved is one measure of the suitability of the 
transformations. For example, a simple 
(monoalphabetic) substitution is not very effective 
for languages that have prominent differences in 
the average frequencies of characters. On the other 
hand, simple substitution may be quite effective in 
enciphering numeric-data where all numerals are 
essentially equally likely. 

c. Complexity. The complexity of the privacy trans
formation may contribute to the amount of security 
by providing more complete scrambling of the 
language characteristics, but it also contributes to 
the cost in its application: in computer data banks 
where transformations are applied by software 
techniques (programs) complexity translated 
directly into computer time used for nonproductive 
(from the point of view of the application) opera
tions. 

d. Effects on dimensions. Certain privacy transforma
tions involving substitution of characters or poly
grams with higher order polygrams (e.g., every 
character replaced by a pair of characters; a 
digram replaced by a trigram) increase the length 
of the ciphertext message compared to the plaintext 
message. This increases the transmission time or 
storage space required. Coding transformations, 
however, can be designed to reduce these require
ments. 

e. Error susceptibility. Compound transformations 
and super encryptions that invoive severai transfor
mations applied sequentially may have very unde
sirable error propagation properties. Lease suscep
tible are monographic substitutions where error in 
applying the transformation to a character affects 
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only that character and does not propagate. How
ever, substitutions that use the ciphertext itself as 
the key (with appropriate translation by a few 
characters) are extremely susceptible to error prop
agation. 

f. Length of the key. The concept of a "key" to a 
privacy transformation T is often used in two 
senses. In the case of polyalphabetic substitutions, 
for example, the sequence of numbers k i added to 
the corresponding message characters, ni , is called 
the "key." The length, N, of this sequence ki> .. " 
k.\" is the "key length"; it corresponds to the period 
in the use of different alphabets. For the cryptana
lyst who attempts to discover the key by studying 
intercepted ciphertext messages, longer keys mean 
more unknowns that must be determined, hence, 
providing more protection to the information. In 
certain implementations, however, the key 
sequence is produced by a computational process 
which is specified by only a few parameters. Here 
the "key" that selects the privacy transformation 
(i.e., the production of the sequence applied to the 
plaintext) is the set of parameters, rather than the 
sequence produced. If the cryptanalyst can attempt 
to solve for the parameters of this process, rather 
than the entire sequence produced by the process, 
his number of unknowns is greatly reduced. An 
example of this is the generation of random num
bers Xi=AXi_1+B (mod N). A large number of Xi 
are produced, but there are only three unknowns: 
A,B, andXo. 

The various characteristics listed above are evaluated 
for the different classes of privacy transformations in a 
following section. 

System implementation characteristics 

The third set of characteristics that determines the 
suitability of a particular class of privacy transformations 
is associated with the system implementation of the 
application. 

a. Processing capability. The processing speed of the 
system and the storage capacity. Availability of 
instructions for easy application of the privacy 
transformations. Availability of hardware devices 
or software programs. Capability to use suitable file 
structures. 

b. Error environment. The error characteristics of the 
communication channel, or the storage medium. 
The availability of error detecting/ correcting codes. 

c. Security environment. The capability to provide for 
the security of the keys for the privacy transforma
tions, and to protect the information in the enci
phering and deciphering processes. 

d. System personnel. These may be the same as the 
applications personnel. Also included are the opera-

tors, programmers, maintenance engineers of the 
system. Their expertise in operating the system, as 
well as their integrity has an important role in 
making the use of privacy transformations a suc
cess. 

Language characteristics 

As stated previously, information is communicated by 
using a language. Concealment of the information in a 
written record (on any medium such as paper, magnetic 
surface, electronic circuitry, etc.) through the use of pri
vacy transformations requires that the message is trans
formed in such a way that any resemblance with the orig
inal form is obliterated. 

Natural Languages. Investigations of the structures of 
natural languages21

•
22 have shown that there are a number 

of structural and statistical characteristics of their vocab
ularies that, in normal usage, are relatively insensitive of 
the context and can be used to identify the particular 
language used: 

a. Single character (monograph) frequency distribu
tion-there is a large difference in the usage of let
ters in the vocabularies of natural languages. For 
example, on the average the letter "e" appears 100 
times more often than the letter "q"; in French the 
letter "q" occurs 11 times as often as in English. 
Special vocabularies, such as family names of per
sons or tactical orders. 

b. Polygram frequency distribution. The data here is 
normally limited to pairs of characters (diagrams) 
which show transitions of letters to other letters in 
the word structure, and triplets of characters 
(trigrams). For example, the two most frequent 
diagrams in English are "th" and "he," but "es" 
and "en" in French and Spanish. The two most 
frequent English trigrams are "the" and "ing," in 
French they are "ent" and "que." 

c. Starting and terminal letter frequencies. These 
differ sharply from the general letter frequency 
distribution. For example, the letter "e" (most 
frequent in the general distribution) ranks 14 as a 
starting letter, and first as a terminal letter. The 
letters "v," "q," and "j" have extremely low fre
quencies as terminal letters. Proper names, in gen
eral, have different starting and terminal letter 
frequencies. 

d. Word usage frequencies. Word frequency distribu
tions are much more dependent on the particular 
application areas than the various polygraph fre
quencies. The first ranking words, however, tend to 
be prepositions and connectives which are used in 
the same manner in all application areas. For 
example, the first nine are: the, of, and, to, a, in, 
that, is, was. The word frequency distributions 
form the basis of the so-called "probable word" 
method of cryptanalysis. 
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TABLE I-Effects of Classes of Privacy Transformations on Language Characteristics 

Substitutions 

Monoalphabetic Polyalphabetic 

Characteristic Simple m-graphic Simple k-graphic Transposition Composite 

Single character fre- Invariant (changed Changed Changed"' Changed"' Invariant Changed** 
quency alphabet) 

k-gram frequency distri- Invariant Changed*** Changed Changed Invariant Changed 
bution 

Word irequency distribu- Invariant (within the new alphabet) Changed Changed Changed Changed** 
tion 

Pattern word structures Invariant Changed Changed Changed Changed Changed 
Syntactic structure Invariant Partly Changed Invariant Partly Changed Changed Changed 

'"wrtniii tne-period of apliryin~falpliaoetlC transrormatlOu;-overliirge numbers of 1)enoas~usome-of the cnaractenstics may show ifivaflan:ce. 
** Assuming a composite of transpositions and polyalphabetic substitutions. 

*** Changed for certain values of kin k-grams (e.g., for k not a divisor of m). 

e. Word structure patterns (isomorphisms). There are 
groups of words which have similar patterns of let
ter occurrences in the word (e.g., aDDeD, sEEmEd, 
have the pattern -xx-x-). This structural informa
tion can be used to place words in "congruence" 
classes, and the classes can be used in cryptana
lysis. 

f. Word length frequencies. This information also 
characterizes different languages and, on occasion, 
application areas. For example, the mean word 
length in English is 4.5, but 5.9 in German. 

Various other statistics about word structure, word-to
word transitions, etc. can be derived. Their utility from 
cryptanalytic point of view depends on the specific appli
cation area. Table I presents an assessment of the effects 
of privacy transformations on language characteristics. 

The statistical structure of a language provides a cer
tain degree of predictability in constructing words in that 
language. This predictability can be measured in terms of 
redundancy-the inefficiency in the use of the available 
character sequences from a given alphabet as words of the 
language. For example, a redundancy of .75 indicates that 
75 percent of the possible character-sequences (up to 
some relatively small length) are not used as words. In 
general, languages with high redundancy require more 
complex privacy transformations than those with low 
redundancy. 

The sentence structure and the rules of proper usage, 
syntax and grammar, likewise, place constraints in the 
formation of strings of words as sentences in the message. 
The more rigid the syntactical and grammatical require
ments imposed on the message source, the more complex 
privacy transformations are required to effectively diffuse 
the structure and increase the uncertainty of the cryptan
alyst. 

Artificial Languages. Application of privacy transfor
mations to information in computerized retrieval systems 

involves working with so-called artificial languages (e.g., 
codes, query languages, and programming languages) and 
data. These differ significantly from the natural lan
guages and can be expected to influence the protective 
effectiveness of privacy transformations in different ways. 

Four levels of artificial languages can be recognized. 
Starting with the level most similar to a natural language 
there are: 

a. Query languages. These are languages designed for 
user interaction with the retrieval system-to 
request information, choose processing options, etc. 
For easy interaction with the system the vocabulary 
of a query language statement available to the user 
is usually a restricted subset of natural language 
words, arranged with precisely specified structure 
in natural language sentences. For example, a 
request may be stated RETRIEVE ALL NAMES 
(ENGINEER, CALF, AGE: 30-50L Many query 
languages provide menus of operations that are 
allowed. Here the wording of the choices is, like
wise, kept relatively brief. Query language state
ments are used mainly in communication channels 
linking terminals with the retrieval system comput
ers. 

b. Higher Order Programming Languages. Programs 
written in higher order languages such as FOR
TRAN, PLj 1, ALGOL, etc. may require privacy 
transformations if they are considered sufficiently 
valuable (such as certain proprietary programs) 
and stored in computer accessible form. Program
ming languages have a fixed vocabulary of words 
selected from the natural language to specify the 
program structure and designate dataprocessing 
operations (e.g., EQUIVALENCE, DIMENSION, 
DO, READ, WRITE, etc.) and an open-ended vari
able vocabulary specified by the programmer for 
variable names, numerical values, arithmetic logi-
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cal processing statements, and such. The choice of 
some of these words is subjective with the program
mer. Often these are similar to words in the natural 
language (e.g., ICOUNT, JSET, II, 
AVALUE=BVALUE(J)+INDEX, etc.). The 
character set of a typical higher-order programming 
language includes many special characters (PL/1, 
for example, has a 60-character alphabet). The 
syntactical and grammatical rules are very rigid 
and must be precisely followed. 

c. Assembly languages. An intermediate step from the 
higher order language designed for increasing pro
gramming ease to efficient computer-executable 
form-the "machine language," is an assembly 
language. It is obtained from a higher-order lan
guage through a compilation process. The vocabu
lary of an assembly language consists of mnemonic 
names for the instruction set of the computer 
(usually two- or three-letter groups) and the varia
ble names specified in the higher order language. 
The format is quite rigid. Programs are sometimes 
stored in the assembly language form. 

d. Machine language. A machine language program is 
composed of instruction codes, constant numerical 
values, and addresses. All of these are coded as 
binary numbers. The instruction words are divided 
into fixed length fields that contain the different 
codes. The sets of allowed code numbers for the 
various fixed fields may have different cardinali
ties. No resemblance with a natural language is left. 
The alphabet consists of binary numbers with the 
ranges of values specified by the field lengths. 
Operating programs are usually stored in the ma
chine language form. 

e. Interpretive languages. In some interactive com
puter systems programs are stored in a higher-order 
language only in the execution phase (e.g., the 
JOSS language). For this, a dictionary and various 
analysis programs are maintained and used. The 
characteristics of higher-order languages discussed 
above are also typical of interpretive languages. 

The statistics of higher order artificial languages tend 
to reflect the statistics of the underlying natural language, 
but this similarity decreases in assembly languages, and 
is essentially nonexistent in machine language. 

The overall effect of the limited fixed vocabulary, large 
character set, rigid structure and lack of syntactic ambi
guity is a reduction of the effectiveness of applying pri
vacy transformation. On the other hand, the availability 
of the variable vocabulary can be used to change the sta
tistical characteristics of the language almost at will. 

Data. The principal use of privacy transformations in 
retrieval systems can be expected to center about protec
tion of data, both in storage and in transit. Certain cate
gories of personal information, in particular, require a 
degree of confidentiality sufficiently high to warrant the 
use of privacy transformation. 

In general, personal information records consist of the 
following parts: 

a. Person's name, address, and other identifying 
characteristics. In some data files the name and 
address may be replaced by a code number, where 
the name/ address and code number correspond
ences are maintained in some dictionary. The name 
and address, if included, can be expected to be in 
the natural language. Other characteristics may be 
coded. 

b. General descriptive information, a mixture of 
proper names (e.g., the birth place, parents), codes, 
and numeric information. 

c. Narrative information. A mixture of natural lan
guage sentences, abbreviations, and codes (e.g., the 
description of a person's criminal history). 

The inclusion of names, abbreviations, and numerical 
codes can be expected to considerably change the statis
tics of personal data as compared with the natural lan
guage text. In particular, it may be expected that the 
occurrence of proper names which have no identical natu
ral language words will tend to "flatten out" the single 
letter and polygram frequencies. 

In records with fixed formats (i.e., where fixed length 
fields are provided for names, addresses, etc.) the 
"blank" characters will have a relative high frequency of 
occurrence (just as in numeric data, zeroes will be the 
most frequent numerals). Sorting of the files into alpha
betic or numerical order, likewise, in a structural feature 
of data files that can weaken the effectiveness of privacy 
transformations. 

EFFECTIVENESS AND COST 

The two most important considerations in selecting a 
class of privacy transformations for implementation in a 
databank system are the effectiveness of the transforma
tions in providing data security and the initial and recur
ring costs of providing this protection. These must be 
weighed against the estimated val ue of the protected 
information in order to implement a rational protection 
system-one that provides a level of data security war
ranted by the value of the protected information. l 

Effectiveness measures 

The effectiveness of privacy transformations is usually 
discussed in terms of the resources and expertise required 
by the "enemy" cryptanalyst to "break" the privacy 
transformation used, i.e., to discover the key. The follow
ing assumptions about the intruder cryptanalyst must be 
made: 

• He knows in detail the class of transformations being 
used; the language (vocabulary, syntax, grammar) 



used in the records or programs; the general subject 
matter of the data. He does not know the specific key 
of the privacy transformations used or the exact 
contents of protected records, although he may know 
some words that are highly likely to occur. 

• He is knowledgeable in computer technology, opera
tion and use; knowledgeable in the operational proce
dures of the target databank; and has a digital 
computer at his disposal. 

A necessary prerequisite for attempting to break a 
privacy transformation system is the availability of a 
sufficient amount of ciphertext. The minimum amount 
required for unique recovery of the record or message is 
called the unicity distance by Shannon.7 It is a function 
of the size of the key space, the redundancy of the lan
gaage, -arul---the-- number -ef-alphabets--{k-ey- ~iOO~ useS-in 
polyalphabetic substitutions, or the period of transposi
tion transformations. For example, the unicity distance 
for M-alphabetic substitution transformation is 53M and 
for transposition of period M (i.e., character permutations 
take place in M-character groups) the unicity distance is 
1.7 log M!. In general, it may be expected that in data
bank applications there will be large amounts of cipher
text available to the intruders. Note, however, that the 
ciphertext available must be longer than the key period, 
i.e., a key is used more than once to transform records or 
messages. In databank systems this can be expected to be 
the situation, as using nonrepeated keys to transform 
large amounts of data will be impractical from the point 
of key management for permitting information retrieval, 
and for providing security to the keys themselves. 

Other information that helps the cryptanalyst includes: 

• A number of different records known to be trans
formed with the same key-these can be used for 
simultaneous solution and checking of trial solutions. 

• Fragments of plaintext corresponding to the availa
ble ciphertext, or paraphrased messages or records 
that are in the available ciphertext. These are very 
useful for generating trial solutions. 

• Knowledge of the probable words in the records or 
knowledge of the key selection habits of the target 
databank-if keys are short, they may be coherent
are words of natural language or generated by some 
algorithmic process. 

• As much knowledge of the statistical characteristics 
of the language used in the plaintext as possible. 

Again, a great deal of this information, including plain
text fragments, must be expected to become available to 
the intruder. The ability of a privacy transformation 
system to withstand a cryptanalytic attack for suffi
ciently long (i.e., for the information to lose its value, or 
for the data to be retransformed) can be regarded as a 
measure of effectiveness of the transformations. There are 
two kinds of measures of effectiveness: information-theo
retic measures and pragmatic "work-factor" measures. 
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Information-theoretic measures 

These measures assess the theoretical effectiveness of a 
secrecy system against cryptanalysis where the intruder 
has unlimited resources and expertise available. 
Shannon7 modeled the situation as follows: each message, 
R, and each choice of a privacy transformation key, K, 
has, from the point of view of the cryptanalyst, a priori 
probability associated with it. These are p(R) and p(K), 
respectively, and they represent the crytanalyst's knowl
edge of the situation before the message is transmitted. 

After he intercepts and analyzes an intercepted cipher
text, E, he can calculate a posteriori probabilities of the 
various messages and keys, pdR) and PE(K), respective
ly, that could have produced the intercepted ciphertext. 
Perfect secrecy is obtained if the PE(R) =p(R) and PE(K), 
i.e., the- -c~alyst- has Gbt-aineG nG inf-ffi"-m-atien at---a-ll 
from the intercepted ciphertext. Shannon shows that in 
order to have perfect secrecy, the number of keys must be 
at least as great as the number of possible messages. 

As a measure of the theoretical amount of secrecy, 
Shannon defined equivocation-a statistical measure of 
how near to solution is an average cryptogram E of N 
characters. There are two equivocations, that of the key, 
HdK,N), and the message equivocation, HdR,N), where 

E,K 

E.R 

where p(E,K) and p(E,R) are the a priori probabilities of 
cryptogram E and key K, and cryptogram E and message 
R, respectively. The summation is over all possible cryp
tograms of N letters and all keys or messages. 

The equivocation functions for the key of the privacy 
transformation, HdK,N), has the following properties: 

• Key equivocation is an non-increasing function of N. 
• For perfect systems, key equivocation remains con

stant at its initial value (when N=O). 
• For non-perfect systems, the decrease in key equivo

cation is no more than the amount of redundancy in 
the N letters of the language L used in the plaintext. 

• For most of the simple types of privacy transforma
tions, equivocation becomes zero after the number of 
intercepted characters exceeds the unicity distance. 
After that point, a unique sol ution is theoretically 
possible. 

• For certain privacy transformation systems, called 
ideal secrecy system, equivocation remains non-zero 
no matter how much ciphertext is intercepted. 

These properties point out the importance of the redun
dancy in the language used in the plaintext records or 
language. If there is no redundancy at all, i.e., if all 
words are of equal length, say N, and if any combination 
of N characters of the alphabet used is a meaningful 
word of the language, the secrecy of the system will be 
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perfect. Such properties do not exist in natural lan
guages, but can be designed into artificial languages. 
However, they tend to be in conflict with present trends 
of making artificial languages as close to natural lan
guages as possible. 

All presently existing large databank systems have 
redundancy in the stored data or programs. Large 
amounts of ciphertext, fragments of plaintext, etc. are 
likely to be readily available. Although exact evaluation 
of initial equivocation for such databank is a complex 
problem and has not been attempted, it is clear that 
simple privacy transformation systems applied here are 
theoretically solvable. Nevertheless, p privacy transfor
mation systems for databank applications can be devised 
to have sufficiently high levels of practical security, i.e., 
sufficiently high work factors for the intruders, to dis
courage attempts to break these systems through crypta
nalysis. 

Work factor measures 

On the practical side, an assessment of the effectiveness 
of privacy transformations can be attempted in terms of 
the effort and resources required to break the system 
through clytanalysis. Such a measurement has been 
called the intruder's "work factor." The units of measure
ment can be the expected number of logical/mathemati
cal operations. These can be converted into units of time 
and, subsequently, into dollars by specifying a computing 
capability which the intruder is expected to have availa
ble. 

Several authors have examined computer-aided crypt
analysis and the effort involved.2o.23.24 Tuckerman,2o.25 in 
particular, has probed the computational effort involved 
in breaking of polyalphabetic single-loop and 2-100p sub
stitutions under several assumptions of availability of 
plaintext fragments: 

• For the simplest monoalphabetic substitution, the 
Caesar cipher, a single subtraction is sufficient if a 
fragment of the corresponding plaintext is available. 
If not, the "running down the alphabet" method can 
be used to generate NA trial solutions (corresponding 
to the NA characters in the alphabet) and examined 
for plausible plaintext. Alternately, character fre
quency distributions can be computed for the cipher
text and matched with the known frequencies of the 
language to produce solution candidates for examina
tion. The time required on a moderately fast com
puter would be a few minutes at the most . 

• A single-loop polyalphabetic (Vigenere) substitution 
of period M, can be reduced to M Caesar ciphers by 
a statistical analysis of the ciphertext. At least 20M 
characters of ciphertext are required. Considerable 
computation may be re<juired to estimate the correct 
period-candidate periods are proposed, character 
frequency distributions computed, and correlation 
tests made. On a computer. however. the work is 
again measured in minutes or a few tens of minutes. 

The 2-100p poly alphabetic substitution transformations 
can likewise be solved by conversion into single-loop cases 
and, subsequently, into Caesar ciphers. The computation 
required is more extensive but, by no means prohibitive. 
A larger hurdle to the would-be intruder is the develop
ment of programs that are needed. 

Transposition transformations are solved by similar 
methods-by generating trial solutions, performing statis
tican analyses on n-grams, and using "heuristic" tech
niques to reduce the search space. Computational tasks, 
again, are not prohibitive. However, it is possible to con
struct complex composite transformations which require 
hours of computing time for their solution. 

In general, the availability of digital computers and 
sophisticated computational algorithms has greatly 
reduced the protection provided in the paper-and-pencil 
days by the polyalphabetic and substitution transforma
tions. Whether or not this protection is adequate in a 
given databank system depends on the value of protected 
information both to the intruder and to the owners. 

Costs 

The use of privacy transformations involves the initial 
costs of the necessary hardware or software, and the 
recurring costs of additional processing required and 
maintenance of the integrity of the privacy transforma
tion system used. 

Hardware costs are involved, in particular, in applica
tion of privacy transformations to terminal-computer 
communication links. Here the enciphering/ deciphering 
device at the terminals is likely to be a hardware device. 
However, the logic circuitry involved is not necessarily 
excessive or costly since the integrated circuit prices are 
steadily falling. For example, the hardware involved in 
one, rather sophisticated ciphering/ deciphering uniF6 for 
transforming 16-byte blocks consists of 162 TTL logic 
modules which could be placed on four LSI chips at a 
density of 280 circuits per chip. Transformation of one 
block requires 165 microseconds. 

Software requirements, likewise, are not necessarily 
expensive. Programming of the mentioned transformation 
required some 1300 bytes of storage of 9 ms. on the IBM 
360/67 computer.26 

Other experimental data on the cost of applying pri
vacy transformations yields similar results. The applica
tion of privacy transformations to 10-bit characters in a 
CDC-6600 computer27 has shown the following percent
ages of processing time required for the transformations: 

• Vernam type polyalphabetic substitution transfor
mation (with one-time-only key): .66 percent to en
code, .66 percent to decode. 

• Polyalphabetic substitution with a short, periodic 
key (using table look-up technique): .25 percent to 
encode, 3.32 percent to decode. 

• Polyalphabetic substitution with short, periodic key, 
using modular arithmetic for transformation: , .~4 
percent to encode, 4.38 percent to decode. 



As usual, there are the memory space vs. execution time 
overhead tradeoffs that can be applied. 

The above cost figures are quite sensitive to the type of 
application, the computer system, and specific implemen
tation of the transformations, and they represent only 
isolated data points. Estimates of decreased functional 
capability of a databank system due to the use of privacy 
transformations, as well as costs of maintaining the 
secrecy system integrity through providing key security, 
key changes, and the like, are even less available. 

IMPLEMENTATION IN DATABANK SYSTEMS 

Privacy transformations can be used in databank 
systems for protecting communications between the 
computer and remotely located terminals, the data stored 
In--mentes;- or Dotn. TIre sU:itaOttttycTIteriafor-tmp1e
menting privacy transformations in databanks-process
ing capability, error environment, security environment, 
and system personnel expertise-have already been dis
cussed. These, and the specific application characteristics 
of the databank, provide the general criteria for selecting 
the type of privacy transformations to be used. 

A privacy transformation system can be implemented 
by using hardware devices, software, or both. 26

.
28 Software 

implementation is more attractive for performing the 
transformations in the computer processor unit, while 
hardware devices appear more suitable for implementa
tion in the remote terminals. However, the decreasing cost 
of hardware is making feasible the use of special privacy 
transformation modules also in the central processors. 26 

A.pplication communication links and data files 

The major differences in the application of privacy 
transformations in communication links (usually hard
ware switched or dedicated telephone circuits) and in 
data files include the following: 

• In communication systems the encoding and decod
ing operations are done at two different locations and 
two copies of the key are required, while in file sys
tem application these operations are performed at 
the same location and only one copy of the key is 
needed. 

• A specific communication usually involves one user, 
while a file may be shared between many users with 
different access and processing authorizations. 

• In communication links, the message remains trans
formed for a very short time interval since encoding 
and decoding operations are performed almost simul
taneously, in data file application this time interval 
may be days or months. 

• The transformed records in files may be subject to 
seiective changes at unpredictabie time intervais and 
at unpredictable frequencies, while the message in 
communication link is not changed in transit. 

• A change of the privacy transformation keys in a 
communication application is a simple replacement 
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of the old key with the new one. In data files, this 
entails reprocessing the entire file of records, or 
maintaining an archival file of previously used keys 
and associated indices. 

• A common-carrier communication link normally 
uses certain signal patterns for internal switching 
control. These should not appear in the ciphertext 
form of messages. There is no such problem in files 
as the control data parts. 

• Communication links have higher error rates while 
errors in the file system are more amenable to detec
tion and control. 

• There is much less processing capability available at 
terminals than in the central processor. 

Several other differences emerge when the implementa
tion_ofQn~ oLth_e __ other Qf the:three main classes._nLpri: 
vacy transformations-substitutions, transpositions, 
composite transformations-are considered below. 

Key manage ment 

The differences in the nature of communication sys
tems and data files impact the choice of the type of pri
vacy transformations and, in particular, the requirements 
for key generation, storage, logistics, and safeguarding. 
For example, in communication systems totally random 
keys can be used only once and then discarded, but in the 
file system they must be stored or means provided for 
their generation later, thus reducing the level of security 
such systems usually offer. 

The need to store transformation keys in the data file 
application sets up different requirements for key posses
sion and control than in communication links. In the lat
ter case, individual users could be in possession of their 
own keys and copies stored in the processor. For file use, 
however, this is not desirable. The entire file, or the var
ious classes of records in the file, should be transformed 
with the same key, but the keys need not be revealed to 
the users. Rather, the access to the file would depend on a 
different set of identification-authentication procedures 
which establish the authorization of a user to access the 
file and give him access to routines that retrieve or store 
the involved records. If the privacy transformations used 
have a high work factor and the key security is also high, 
reprocessing of the file for changing of the key need not be 
very frequent. 

Key generation 

A long key, i.e., the specification of different alphabets 
and their sequence, is necessary in substitution transfor
mations where the transformation is performed by using 
modular arithmetic-modulo A x addition of the key 
characters to the plaintext characters. As discussed pre
viously, approximately 20M characters of ciphertext is 
needed for computer-aided solution of these transforma
tions. If the key is sufficiently long such that this amount 
of ciphertext is not produced, a high degree of security is 
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achieved (although fragments of plaintext and the lan
guage characteristics may still make breaking of the key 
practical). Since storage in the computer memory of very 
long keys is not economical, various algorithms are used 
to generate the key as required. Computation of random 
numbers and feedback shift-register sequence generators 
are among the standard key generator techniques. 29

•
3o A 

drawback of algorithmic key generation approach is that 
now the real key is not the pseudo-random sequence 
added. to the plaintext, but the much shorter set of 
parameters (an initial state and a few constants) that are 
used to specify a particular version of the key generation 
algorithms. For example, only 2n properly selected bits 
are needed in a linear feedback shift-register to produce a 
non repeating sequence of 2n bits. Also, it is possible to 
recover the parameters and, hence, the key by analyzing 
fragments of the key stream. 

Another problem with key stream generators in the 
communication links is the need for synchronization of 
the encoding key stream at the transmitting end with the 
decoding key stream at the receiving end. Such synchron
ization may be hard to achieve and maintain in noisy 
communication links. Self-synchronization is definitely a 
property which key stream generators should possess. 31 

Transposition and composite-privacy transformations 
are usually called block transformations as they are 
applied to a block of plaintext simultaneously. Very 
complex transformations with high work factors can be 
obtained. 26

•
32 The required keys can be stored in blocks of 

the main memory, special read-only memories, or gener
ated algorithmically. Assemblying of the key at the trans
formation application time for several independent "sub
keys" can provide additional protection against key 
compromises. A sophisticated block transformation can 
be expected to involve several sequentially applied trans
formations on the entire block or various subblocks. Since 
the computation time can be substantial for the software 
implementation in the processor, special purpose hard
ware may tum out to be more economical. In terminals, 
the hardware implementation is the only alternative. 

CONCLUDING REMARKS 

The need for data security in computerized databank 
systems is increasing. Privacy transformations can pro
vide protection against a variety of threats-wiretapping 
to obtain transmitted information or system access con
trol information, active entry into the system through 
illicit terminals, disruption through insertion of illegiti
mate information in the communication channel, snoop
ing in the files, theft of removable storage devices, and the 
like. Their use in the databank systems, both in commu
nication links connecting remote terminals to the proces
sor and in data files. is now economically feasible. 

On the other hand, digital computers greatly simplify 
the cryptanalytic tasks of the would-be intruders who 
must be expected to have available the necessary 

resources and expertise. It is important, therefore, for 
those charged with the design of data security mecha
nisms in databank systems to understand the capabilities 
and shortcomings of privacy transformations, and to be 
aware of the criteria which must be applied in their selec
tion. This paper has strived to contribute to such under
standing and awareness. 

However, privacy transformations are only one facet of 
the general problem of access control and data security. 
The design of a data security system providing protection 
commensurate with the value of protected information 
requires consideration of all types of available data secu
rity mechanisms, their relative advantages and disadvan
tages, cost-effectiveness, and the structure and operation 
of the databank system. The measures of the amount of 
security provided by different mechanisms, measures of 
the value of information, and the tools for tradeoff analy
sis, are now beginning to crystalize into a discipline of 
"data security engineering." It is likely that in a few 
years the design of data security systems will be much less 
an art than it is today. 
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Design considerations for cryptography 
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I~TRODUCTION 

~!l~!Q!!~~tn~<!!'!J~_~~PJ?!otect the transmission ()finf()rmation 
against unauthorized ob~~rvers. On~ -w~y-~f-(i~ing- thi~ ;h.-e~ 
data is transmitted in binary form is to add random num
bers to the data. If the string of random numbers is never 
repeated, the scheme is unbreakable. I , p.398 

With the above rationale, using a long set of pseudorandom 
numbers (perhaps in the order of millions of bits) would ap
pear to be a good enciphering technique. A linear shift register 
utilizing feedback is a convenient way to generate the neces
sary numbers (see Figure 1) and is an approach often taken. 
Addition of data and pseudorandom numbers is done via an 
exclusive OR (+) operation. The maximum period is equal 
to 2N- 1 bits before repetition, where N is the number of 
stages of the shift register.2 Hence, by making N large enough, 
extremely long periods may be realized. * 

However, there is a fundamental weakness in this system. 
For an N- stage shift register, the signal sequence at any 
point can be determined using a given set of N initial condi
tions and N-l switch positions (the N-th switch is always 
closed by definition). Hence, to break the system, all that is 
required is to set up (2N-l) independent equations involving 
the initial conditions and the feedback switch position. 

FORMULATION OF THE PROBLE}I 

To crack the code, assume that at least (2N-l) bits of clear 
text and corresponding enciphered text are known. Such an 
assumption is not unreasonable. In many situations a small 
fragment of plain text and the corresponding enciphered text 
will be known to an unauthorized person. In the most general 
case, this fragment of text v.ill be in some arbitrary location 
in the enciphered message. Also, very often, a highly for
matted text is transmitted. Usually, the formatted data and 
the text data will both be enciphered. For example, the head
ing of a column of names being transmitted via the proposed 
cryptographic scheme could contain as part of the source 
message the transmitted characters, "space K A:\IE space". 
If an eight bit code is assumed; this would provide an un-

* With a 21-stage shift register, a selection of more than two million dif
ferent sequences is possible, 84,672 of which are of the maximum length 
of 2,097,151 bits.2 
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authorized person 48 bits of plain and corresponding en
ciphered text. 

In other applications, an accomplice can be used to send a 
known message.-TIils -C-a;n oe--accompIisnea,- Tor exarripTe,-6n 
terminals that are available to multi-users. The assumption 
allows the determination of (2N-l) pseudorandom numbers 
which were used to encipher the message, i.e., R = 1+0 

where 

R is the set of random numbers, I is the input message and 
o the output message. 

To decipher the output message, it is only necessary to add 
to it the same random numbers used to encipher the input, 
i.e., 

I=O+R 

(This follows from the property of the exclusive OR operation 
which states that if A+B=C, thenB+C=A and C+A=B). 

ANALYZING THE SYSTEM 

The follo\ving analysis and subsequent formulation of an 
attack is given to gain an understanding of why linear feed
back techniques may result in poor cryptographic schemes. 

To analyze the system, expressions must be evaluated for 
any output of the exclusive OR (see Figures 1 and 2), R , ,2 

through Rt,N+I, in addition to the output from the first stage, 
RI,I. 

Let 
rt _= fO if SW i is open 

~. t 1 if SW i is closed 
(1) 

N = number of shift register stages to the right of the last 
closed switch, Hence, 

aN=1. 

z;=initial state ("0" or "I") of the i-th shift register 
stage. 

R"n.=output at the exclusive OR junction of the n-th shift 
register stage at clock time t, n~ 1 

RI,1 = output of the stage FF1, at clock time t. 
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Note: la} The initial conditions ot clocktime":' '" 1 ore repre'5ented by lj, j = I,--N. 
rb! Any cutout R"nl " =- 1, --,N, may be lJ5ed ~ ~eudoror-do ... nu ... be-1"l fOT encipJ..erj .. s or dof-o. 

Figure 1-Linear shift register with feedback 

With the aid of Figure 2 the following relations may be 
obtained 

n=l, ... ,N+l 
where 

ao=O, an=O and zn=O for n>N 

Rt,n=O for n>N+l 

using (2) and (3), 
R(")=T(n)Z 

where 

Z= Z2 (5) 

Zn R,.,.+Zn+t-l 

Tl,n 0 0 0 0 

,T2, .. Tl,n 0 0 0 

Ta, .. T2,,. Tl,n 0 0 

r(n) = rN-l,n rN-2,n rN-a,n rl,n 0 

rN,n rN-i.n TN-2,n r2,n Tl,n 

rN+l,n rN,n rN-l,n r3,n r2,n 

Tt,n r'-l,n rt-2,n Tt-N+2,n rt-N+l,n 
and 

n=1, 2, ... , N+l 

(2) 

(3) 

(4) 

(6) 

(7) 

(8) 

To generate the expression for rl,n in general, relation (8) 
may be used. Table I shows this approach in more detaiL 
With the aid of Table I and eq. (8) the expressions rl,n 
through r6,n used later are generated as follows 

rl,n=an-l 

r3,n = an-l(al+a2) +r2,n+1 

r4,n = an-l(al+a3) +ra,n+l 

T5,n = an-l (al +a2al +a2+a4) +T4,n+l 

r6,n = an-l (al +a~l +aaal +a5) +T5,n+1 

BREAKING THE SYSTEM 

Example of three-stage shift register 

(9) 

Assume that the output is taken from the first stage, i.e., 
n= 1. Using eq. (9) in conjunction with (2) through (7) 
and omitting the second index n, in RI,n, results in 

R'1 [1 
0 0 

1 0 

z'] :fl::+a

, 

al 1 Z2 

R4 al+l al+a2 al Zs 

R5 al +a~l +a2 al+l al+~ 

which permits solving for the a's and z's as follows: 

For the case R2R4 + Rs = 0, a solution for al exists only if 
R2=R3=0 and Rl~O, i.e., al=Rs/Rl. 

CLOCK PULSES 

No"'e: For t.,... 1 +I,e relotionsrip ~~_1 ,n-1 7':" zn (:-: in;~;cr ,:ond;~ions) I-o!ds. 

Figure 2-General section of linear shift register with feedback 



= R4+RI+[R2(R5+1) + (R4+RI) ]Ra if R R +R ;;eO 
a2 R2 (R2R4+Ra)R2 2 4 a , 

R2;;e0. 

a2= Rs+ (R4+RI) (RI+Ra) if R2R4+Ra;;e0, R2=0, Ra;;eO. 
R3 R3 

For the case R2R4+R3=0, a solution for a2 exists only if 
R3=R4=0 and R2;;e0, i.e., a2=RI/R2. 

From the conditions imposed on the solution, some randomly 
chosen sets of (2N -1) bits will not provide the information 
needed to solve the (2N -1) unknowns. To estimate what 
this means, from a practical engineering viewpoint, assume 
that the probability is 0.5 that a particular switch position 
can be determined. The selection of 0.5 is based on the fact 
that the output set is random and that it is always possible 
to arrive at a condition requiring the determination of one 
out of tvw-p-ossible values-(O or 1). --Usin:gD2N~ 1) +ioJ 
bits of clear and enciphered text instead of the theoretically 
required (2N -1) bits, there would be 10 sets of random 
numbers available instead of one. Hence, the probability of 
being able to solve for a feedback switch position increases 
from 0.5 to (1-0.510) = 1023/1024. Thus for all practical 
purposes, adding 10 more bits than required assures a suc
cessful attack. 

General case 

Using eqs. (4) through (7) the output at stage n can, in 
general, be written as follmvs (the index n in Rt,n is omitted 
again) 

R t=aN-t!t,N-I(aN-2, ... ,ai, Zn, ... ,Zl) 

+aN-dt,N-2(aN-3, ... , ai, Zn, ... , Z2) + ... 
+at!t,l (Zn, ... , Zl) (10) 

The knowledge of (2N -1) bits of clear and corresponding 
enciphered text allows the determination of R t , t= 1 to 
2N -1, providing the necessary information to solve the 
(2N -1) unknowns (al to aN-I and Zl to Zn). Factoring the 
a's as shown in eq. (10) is always possible because al=al, 
k=I,2 .... 

One of the equations out of the total (2N -1) equations 
may then be used to express aN-I in terms of the other un
knowns, thus eliminating one unknown. 

TABLE I-Normalized Expression rLn for Shift Register Output at 
Stage n and Clock Time t 

~- 2 , n 

=r',2 

j"! ;:3.n 

dcr'J_l,2'" r:_ 1 ,2 

I a ~::: -1,2 t- r j -1, II 

I d 2 r ~ _] .;:' + r ~ _: . u 

: a i - 1!"2,2 +!"2.1Tl: :d.l._.:.r j _ i ,2 + rj_:",i+_ 

~ .,_,r", - r"N :::T.'-'~i-1" - r:_1" 
1_. . 

. "'I\" - 1 l 2 , 2 - "":-.1-1 ~ J -1 • 2 • ~ J -1. !'"T":" 

~----~----~----------~------~~---------
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If Ri is used to eliminate aN-I, proceed as follows: 

Rih,N-I (aN-2, ... , ai, Zn, ... , Zl) 

= aN-l!J,N-1 (aN-2, ... , ai, Zn, ... , ZI)!i,N-I 
(aN-2, ... ,ai, Zn, ... ,Zl) 

+aN-ii,N-2(aN-3, ... , ai, Zn, ... ,zl)h,N-l 
(aN-2, ... , ai, Zn, ... , Zl) + .. . 

+at!i,l (Zn, ... , ZI)!i,N-I (aN-2, ... , ai, Zn, ... , Zl). (11) 

But, 

=R i +aN-ii,N-2(aN-a, ... ,ai, Zn, ... ,Zl) + ... 
+adi,I(Zn, ... , Zl) (12) 

which is not a function of aN-I. 
It is then possible to eliminate aN-2, ... ,ai, Zn, ... , Zl, 

thus-SOhcingJor the unkn.O-wILfeedbaclcswitch position- and
initial conditions. 

The ideas applied to the one shift register also apply when 
a variety of interacting linear shift registers are used. 

A scheme could be devised in which different switches at 
one shift register can be randomly activated by the output 
from other sp-ift registers. The a's of the previous analysis are 
then not constant any more, but depend on the feedback 
s",'itch positions and initial condition of some other register 
or registers. There will, however, be at least one register 
whose switches are initially set and kept invariant over a 
period of time. * 

Hence the "key" of the total system is represented by all 
the initial conditions and the feedback switches at one or 
more registers which are not controlled by other registers. 

The output of such a general system can then again be 
written as before but the general term is now a function of 
all conceivable initial conditions and the factors representing 
the "fixed" feedback switch positions. Due to the fact that 
all variables are binary, it is again true that no higher order 
terms (i.e., quadratic, etc.) of the variables occur. In that 
case, the method illustrated before (eqs. (10) to (12) can 
be used to solve for all unknowns and, hence, to obtain the 
"key". 

A SUGGESTED SECURITY SCHE:\IE 

Having shown the weakness of the scheme illlustrated in 
Figure 1, the question is asked, "What approaches should be 
taken in order to make information secure?" A rule of thumb 
for the development of good cr:ypto schemes is to combine 
several different mathematical operations, one of which is 
nonlinear, to encipher data. [In the linear shift register ap
proach only one (linear) mathematical operation is used, i.e., 
modulo 2 addition.] 

* If there is no point in the system where feedback switches are set over 
the time period where the "key" is used, i.e. if even these switches are 
varied continuously with the aid of a set of "true" random numbers, the 
system does not need any shift registers at all but is a "one-time sys
tem." Therefore, these random numbers may be used directly to deci
pher the message. 



606 National Computer Conference, 1973 

IIIlPlT 

10011011100···1011100110···11000 

~~~~~~~~~~~~~~~ 

TopiindBoltomHalvesl~nlnltrd\llngt'd 

Tup 
Half 

Nonlmear 
TransflJfrruIlIO~~ 

Key .... ddilloll 
10 Transfullned 
B)'le~ 

ConvolUllon 
wnh 
BouomHalf 

BOllom 

Ho" 

Slmpl1'-I~'d bh,Jolk.-di:.pJm ur ludkr t"ndpllcrnwnl'" DUlin" T'l"TmUIJih.n. hu""·\t .... Ihe- • .bIJ .Ire tw>itt"n d,,"n 1111" f,..I 

If,.b~··t" ,12!!-I'"1 d::Ir;r hlo~il i< 'phi intu "rop""md "oonnm" mdl\"lduJI b,". lI~d"lrlhlllt\l. ;rno.! J~'\C'mblo:d Inll. 1\1.'\1, Il~le' 

h.ll., ... 1.J"h <.II Ih,' ""I!hl b~IC" In Ih ... Ivp Inllt" untk-T(I:~( J III."luch unlkr!!" l'laiTWl';c' ,'"n,'ullilion w"h The b}'IC" in I"'~ 
drllr:n:nl nonlln .... ~r !iJn'<hlTlTI.oIlIun under Ihe ,'unlwl or;r ""linn! half .If Ih.: d;,tl~ blud. T,.p ~nd to..Jllom lullr(') ~rC' InIC! 

"'k',I"d kt"}' "'I" Jnll I" "J(h TWlhiuTmed l'~'IC' 1< .Iddcd.: "h;rnt-~d It:. ~u,h r<lund,_ Jlternah:d IIollh 15 'nh'nh"n~' 
'-C'k.'~'r~'d h~ I,' ." rh .. I.. .. ~, lhu, far, b}l\!" lellrn 11l':1r nl[ql:rl[~ .on_rI1UI(' cumpi<'r,· ('l'II:rphelm~nl Ill' J ~~I."n (bra bllH:k 

Figure 3-Cryptographic scheme developed by IBM 

A block cipher product transform scheme which operates 
on a group of data (instead of one character at a time) under 
the control of a key (known only to the legitimate user) was 
developed by Feistel, N otz and Smith at the IBM Research 
Center, Yorktown Heights, New York.3 The basic idea is 
shown in Figure 3. 

An advantage of the block cipher is that any change of a 
single bit in the input affects, in general, all bits of the out
put. Therefore, as a by-product, this scheme may also be 
used for error detection purposes. 

A single bit in the deciphered text is a complex function of 
all the bits in a transmitted message block. Therefore, if one 
or more of the transmitted bits are affected by transmission 
noise, it is almost certain that the entire deciphered text 
would be garbled. 

CONCLUSIONS 

A method was developed for determining the output at any 
point in a linear shift register with feedback in terms of the 
feedback switch position (a l:) and initial condition (Zi). It 
turns out that multiple terms of the a's, i.e., aiaj ... an, ap-

pear in the equations. Hence, a non-linear set of equations 
has to be solved if the feedback switch position shall be ex
pressed in terms of the output bit stream. 

The analysis is straightforward due to the fact that the 
a's and z's are either zero's or one's and, therefore, ain = ai 
and Zin=Zi where n= 1, 2, .... This fact eliminates the oc
currence of higher powers for the a's and z's and thus the 
mathematical approach is purely algebraic in nature. 

As a general rule a set of (2N -1) bits have to be known 
in order to solve for the (N -1) unknown switch position 
and the N unknown initial conditions of an N-stage shift 
register. However for some sets of possible (2N -1) output 
bits, no solution will exist. The mathematical reason is that 
some output combinations will result in dividing by zero in 
the analysis, which of course is not defined. To assure a solu
tion with a high probability, all that is required is to provide 
an additional ten bits of output. 

The output for the shift register can be evaluated if a set 
of clear text and corresponding enciphered text are known. 
Due to the fact that only a very limited amount of this in
formation is needed, the cryptographic scheme using linear 
shift registers is not a very secure one. This is especially 
true since the information may be obtained from either an 
accomplice who can provide it in a matter of minutes (with
out much risk of being detected), or by guessing at the text. 

Although the scheme of Figure 1 which was investigated 
in this paper is very basic, the same conclusion stated above 
can be made for much more complex schemes. For example, 
the feedback switches could be varied as a function of the 
output at different points in the shift register where these 
points by themselves could be chosen by a set of random 
numbers generated by another shift register. 

The analysis of such a scheme will, admittedly, be more 
difficult. But the important factor to consider is that even in 
such a system, only basic equations like (10) through (12) 
have to be solved, thus enabling the determination of the 
feedback switch positions and initial conditions. Once these 
are determined, the output is determined for all times to come 
and the system is broken. 
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INTRODUCTION 

This paper describes ways to make applications packages 
more useful to their int~nd.~_~L~!?er~_~_Th~ p~p~r i!?J~_~.§~!iQ:I! 
o{;~--experience with the new General Electric STATPAC, 
a general purpose -statistical package for analyzing data 
and for fitting models to data. The discussion is general 
and will aid those who use and develop applications 
packages in other areas. This paper is written from the 
viewpoint of the user and does not get into technical 
aspects of the statistical methodology and the computer 
programming. The methods we describe for making such 
packages more effective for users are not new. The pur
pose of this paper is to indicate how important and effec
tive they are. 

The following sections cover: 

• Program philosophy of aiding the intended users as 
much as possible. 

• Features that aid users. 
• Simple input. 
• Documentation that serves user needs. 
• Education and publicity to get people to use a pack

age. 
• Statistical features of STATPAC. 

Those wishing detailed information on STATPAC can 
find it in the Manual. 1 The Manual explains how to run 
STATPAC and interpret its output and presents its sta
tistical basis. A short introduction to the basics of how to 
run STATPAC is given in "STATPAC Simplified,"2 
which most readers would prefer over the Manual. 
STATPAC's model fitting capabilities are described in 
detail in a separate paper.3 

PROGRAM PHILOSOPHY 

Developers of general packages must first decide on the 
technical content of their packages. The content, of 
course, depends on the specific application and is outside 
the scope of this paper. Developers must also identify the 
intended users and their needs and human nature. These 
aspects of developing a package are discussed in this and 
later sections. To illustrate these ideas, this section 
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describes the intended users of STATPAC, their needs, 
and how STATPAC satisfies them. These things must 
similarly be considered for all applications packages. 
STAT~AC i& inlended_iP_T_alL in Gen~raLElectric __ who 

analyze data. Such users range from those who are igno
rant about data analysis and computers to those who are 
sophisticated. Thus STATPAC must be easy to use but 
powerful and general enough to satisfy sophisticated 
users. The ease of use cannot be overemphasized, particu
larly for statistical packages. They are at a disadvantage 
compared to other applications packages. Most users of 
packages in other applications areas understand the basis 
of the calculations and the output of their packages, and 
they are more highly motivated to learn to use their 
packages. However, many of those who wish to analyze 
data do not understand statistical calculations and out
put, and they are not motivated to put effort into learning 
to use a statistical package. 

It is important to aid users by making a general pack
age as easy-to-use as possible. This helps assure that the 
package will be useful to the largest number of users. This 
is done a number of ways. The package should aid users 
by relieving them of all unnecessary burdens. The com
mands for running the various features of the package 
should be simple and easy to remember, and their mean
ings should be self evident. The documentation for the 
package should be simple and tell the user what he wants 
to know. At the same time, the command language and 
documentation should serve the more sophisticated users. 
Each of these items is discussed in detail in the following 
sections. 

FEATURES THAT AID USERS 

STATPAC does a number of things to implement the 
philosophy of aiding the users as much as possible. This 
philosophy is necessary to encourage people to learn how 
to use the package with a minimum effort. This means 
that the package automatically does many things for the 
user. This results in a much more efficient package in 
terms of the time a user must spend. After all, the com
puter is better suited than users to detailed trivia. Of 
course, this convenience is usually bought at the price of 
greater development cost. The following provides exam
ples of such aids, which may be useful in other packages. 
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It also provides examples of shortcomings that should be 
avoided. 

STATPAC aids for users 

STATP AC is one of the few statistical packages that 
can count. Most packages require that a user tell the 
package the number of variables and cases in a data set. 
STATPAC merely requires that a user give his names for 
the variables in the order they appear in the data set. 
Then STATPAC counts the number of variables and the 
number of data values it reads in. It divides the number 
of data values by the number of variables to get the 
number of data cases. STATPAC does this and many 
other minor bookkeeping jobs so they do not burden a 
user. 

Data may be read into STATP AC with free format. 
This relieves a user of the necessity of struggling with 
fixed format. The package requires only that the data 
values be in the right order and be separated by commas 
or spaces. In reading data with free format, STATPAC 
automatically identifies which variables contain alpha
betic values and which contain numerical values and 
keeps track of this throughout a run. 

STATPAC automatically makes many decisions for 
users. However, STATPAC allows a user to specify cer
tain details, if he does not want them automatically. Such 
details may be as simple as specifying scales for histo
grams and crossplots or as complicated as specifying the 
iteration logic for model fitting by maximum likelihood. 
This way of doing things allows novices to get what they 
want automatically and allows sophisticated users more 
control over the package. Where it was necessary to 
compromise between simplicity and sophisticated flexi
bility, we generally chose simplicity. We thought that 
sophisticated users would be able to figure out how to do 
what they want by clever use of existing STATPAC fea
tures. 

STATP AC output is intended to be readable and self 
contained. Thus statistical output is accompanied by 
clear headings and descriptions. The error messages are 
complete to the point that they attempt to point out spe
cifically where the problem occurs in the data or in a user 
command. If STATPAC encounters a bad command, it 
does not kill the run but tries to give good output for the 
following commands. Examples of such output are given 
in the next section. 

We assume that most users of a general package would 
willingly sacrifice some computational efficiency to avoid 
wrong or inaccurate answers, which they might not detect. 
Thus, the computational routines in a general package 
must be robust; that is, they must be numerically accu
rate over a wide range of problems. This is more impor
tant than speed, particularly, in statistical work, which 
generally does not require appreciable computing. We 
tried to make the STATP AC routines for model fitting 
robust. Details of this appear in the appendices of the 
Manual. 

STATPAC shortcomings 

STATP AC fails to aid users in certain ways. These are 
consequences of software limitations of the GE and 
Honeywell computer systems. Some examples of these 
failures follow. They should be avoided in other packages. 

STATPAC is a batch program. We would have pre
ferred to make it an interactive Time-Sharing program. 
This would have encouraged people to use it, since many 
are attracted to sitting at a terminal and working directly 
with a responsive computer. We did not put STATPAC 
on Time-Sharing, because Time-Sharing would have put 
many severe limitations on ST ATPAC. 

In General Electric, many STATPAC users are in 
departments that do not have a computer that can run 
STATPAC. To accommodate such users, STATPAC is 
designed so it can be run as a remote batch program. To 
do this, users can submit a run from a teletype terminal 
and get the output back from the terminal. All STATPAC 
output is formatted to conform with a teletype. This fea
ture for remote runs is essential to make STATPAC 
available to virtually everyone in General Electric. 

On GE computers, batch programs must be submitted 
with system control cards to specify what computer 
resources will be used. These cards involve a separate 
system language, which is quite cryptic and which typical 
STATPAC users do not know and understandably do not 
care to learn. Roughly half of the user problems in run
ning STATPAC come from errors in these cards. This is 
particularly frustrating to users who are used to running 
programs on Time-Sharing systems, which automatically 
do the job of the control cards. To minimize the difficul
ty, we have developed an interactive Time-Sharing pro
gram. It asks a user questions to extract the necessary 
information and then sets up the command cards and 
submits the run. This program has been a big help to 
users. 

STATPAC is a large package. However, it consists of 
modules and does not require more than 27 K words of 
core, since modules not in use stay on temporary disc. A 
STATPAC run involves considerable swapping between 
the disc and core. Because STATPAC spends much time 
moving files between disc and core, it spends about 50 
minutes waiting for a minute of processor time, whereas 
typical programs spend 10 minutes. On longer runs, users 
are dissatisfied with this. However, reducing this problem 
would require more core and considerable restructuring of 
STATPAC. 

STATPAC accommodates a data set with up to 30 
variables and 500 cases. This has been adequate for most 
sets of data, particularly engineering data. The number of 
cases may be increased readily, and this requires propor
tionally more core. The number of variables cannot read
ily be increased. Although STATPAC can handle 30X 
500= 15,000 data values, it cannot allocate them to get 
any number of variables and the corresponding number 
of cases. Such dynamic allocation would be preferable 
but is not feasible. The size of the data set has been a 
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problem in a few applications. For example, a computer RUN AAE!A RATE NUMBElt VOLT 

survey analyzed with STATPAC contained over 100 
J. 1, 10. 10. ~1. questions. The data had to be analyzed in groups of fewer J. 1. 10. 11. 43. 

than 30 questions (variables). J. 1. 10. 12. 42. 
3. 1. 10. 13. 43. 
J. 1. 10. 14. 44. 

SIMPLE INPUT J. 1. 10. 15. 40. 
3. 1. 10. 16. J8. 

Simple input to a package is essential to aid users. The 3. 1. 10. 17. 47. 
3. 1. 10. 18. 45. 

following features of STATPAC input may be useful in 3. 1. 10. 19. 45. 
other packages. J;; 1. 10. 20. 3e. 

STATPAC analyses are requested through simple J. 1. 10. 21. 44. 

commands. Users readily understand the meanings of J. 1. 10. 22. ~9. 

most STATPAC commands-even users with a limited 3. 1. 10. 2J. 42. 
J. 1. Uh 24. 42e 

background in statistics and computing. Many new users J. 1. 10. 25. 51. 
are able to understand and use most of the commands J. I. 10. 26. 39, 
after reading the summary of commands in Appendix A J. 1. 10. 27. 34. 

of th-e-M-anual-;q'--he- simplicity -Mine eommarui--I-a-ngtIage- 3, 1 f! 10. 28, 4
1 ___ 

3. 1. 10. 29. 41. 
has encouraged people to become users, since there is so 3. 1 ! 10. 3Q. 3~h 
little effort in learning to run STATPAC through its J. 1. 10, 31. 44. 
commands. 3. 1 ! t tJl 32. 46. 

3. 1. 10' 33. 39. 
3. I. lC. 34. 41. 

STATPAC commands J. 1. 10. 35. 40. 
3. I! lQ. 36! 52. 

The following describes certain aspects of the STAT-
3. 1. 10. J7. 40. 
J. 1. 10. 38. 35. 

PAC language that should be useful in other applications J. 1. 10. 39. 40. 

packages. This section concludes with an example to illus- 3. 1. 10. 40. 39. 
3. 1. 10. 41. 46. 

trate the use of the commands. 3! 1. 10. 42. 47. 
The commands employ words that are readily recog- 3. 1. 10. 43. 44. 

nized by users, and the word order is generally logical. J. 1. 10. 44. 41. 

Thus, the appropriate form of a command is relatively 3. 1 • 10. 45. 46. 
3. 1. 10. 46. 46. 

easy to remember. Also, there are only about 15 basic 3. 1. 10. 47. 42. 
commands, excluding data selection and transformation. 3. 1. 10. 48. 45. 
Many users want only summary statistics and graphical 3. 1 Ii t ,., 49. 42. "\I. 
displays; they make do with 9 or fewer commands. In J. 1. 10. 50. 44. 

3. 1. 10. 51. 41. 
addition, most commands have certain options, which 3. 1. 10. 52. 44. 
most users do not need and can ignore. Only the one basic J. 1. 10. 53. 38. 
form of the command needs to be remembered. All of this 3. 1. 10. 54. 36. 

makes it easy for a user to remember the commands. J. 1. 10. S5 t 44. 

Most commands do not involve trivial details that a 
3. 1. 10. 56. 50. 
3. 1. 10. 57. 47. 

user could easily forget or misuse. For example, STAT- 3. 1. to. 58. 49. 
PAC reads commands with a free format. This means 3. 1. 10. 59. 46. 
that extra spaces or commas are ignored. Also, most J. 1. 10. 60. 34. 

commands follow consistent patterns. For example, the 
3. 1. 10. 61. 47. 
3. 1. 10. 62. 49. 

names of variables are always enclosed in parentheses, I 3. 1. to. 63. 43. 
and constant values in a command always follow the 3. 1. 10. 64. 43. 
names of the variables. STATPAC reads and executes the 3. ! • 10. 65. 48. 

commands one at a time. 
3. 1. 10. 66. J4 .. 
3. t. 10. 67. 38. 
3. 1. 10. 68. 47. 

Example of STATPAC commands and output 
3. 1. 10. 69. 35. 

Figure I-Voltage breakdown data on cards 

The data in Figure 1 are used to illustrate the STAT-
PAC commands. The data are shown as they would be time until dielectric breakdown was observed. For each 
punched on cards for STATPAC. This is one of six sets of breakdown, the variables consist of the RUN, the AREA 
data that were obtained from an experiment on the of the electrodes, the RATE of rise of voltage, the 
breakdown voltage of an insulating fluid. Voltage across a NUMBER of the breakdown, and the breakdown VOLT-
pair of electrodes in the fluid was raised linearly with age. 
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11 

11 

<+ •••• :t' •••• + •••• + •••• + ••••••••••••••• 

I" 
COL. 

~Q TOTAL 

""EIBULL . - VOl. T 

vOLT eoHoLA fI vE' pkO~A8IL..Itv 
.J .!5 .7 1 2 7 1(; 
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24.0. 
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17.0 

15.0. 

1J.0 

12. O. 

11.0 
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FIT 
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Figure 2-Preliminary analyses 



Figure 2 shows STATPAC commands for various anal
yses of the illustrative data. The figure also shows 
selected output. The purpose of these analyses is to exam
ine the VOLT data to assess whether the data are valid 
and adequately described by a Weibull distribution, 
which is assumed in the theory for such breakdowns. For 
example, the crossplot of breakdown VOLTage versus 
breakdown NUMBER provides a check of whether the 
distribution of breakdown voltage is constant over time. 

Figure 3 shows further STATP AC commands for var
ious analyses of the six sets of such data obtained with 
different combinations of RATE of rise and electrode 
AREA. The purpose of these analyses is to fit the follow
ing nonlinear and nonnormal model to the data. For an 
electrode area A and rate of rise r, the cumulative distri
bution of breakdown voltage V is the Weibull distribution 

_. - - ------_ ... -

F(V;A,r) = 1 - exp( - (V/a).B 

where the Weibull shape parameter {j is a constant and 
the scale parameter a is given by the inverse power law 
relationship 

a= [r{jexp( - 'Y )/AP.B· 

This nonlinear relationship contains the parameters {j 
and 'Y which are to be estimated from the data. Figure 3 
shows the commands for displaying the data, for fitting 
the model, and for examining the residuals. The output 
clearly shows that one of the observations is an outlier. 

A complete explanation of this example and the output 
is given in the STATPAC Manual.! 

DOCUMENTATION THAT SERVES USER NEEDS 

The main way a user can learn to use most packages is 
to read documentation. Thus documentation is a key 
factor in the success of a package. To serve the users, 
documentation must be easy to use and organized with 
the user in mind. Ways of achieving this follow. 

Good documentation 

The trouble with many manuals for packages is that 
they are organized logically. Instead, they should be 
organized intelligently with the needs and psychology of 
the users in mind. Logically organized documentation 
presents all of the material on a topic in one place. This 
strains the patience of a new user who has to read about 
special detail and features that do not interest him. Intel
ligently organized documentation tells a user just what he 
wants to know and in the order he wants to learn it. Thus 
the most basic and useful features of a package shouid be 
presented first and in their simplest form, and their spe
cial options and the unusual features should be presented 
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last. Of course, documentation must contain specialized 
material wanted by only a few users. But such material 
must not burden uninterested users. Such material is best 
put at the end of the documentation. 

The STATPAC Manual tries to compromise between 
logical organization and intelligent organization. Wher
ever a particular feature of the package is presented, all 
of the details are presented in one place. However, the 
basic information is separated from the trivia by two 
means. First, the minor technical details and special 
options are relegated to the end of a section and are 
clearly labeled "Technical details and limitations." Sec
ond, the key material is highlighted so readers can readily 
spot it. 

Documentation should be organized linearly; that is, so 
its readers do not have to know something that appears 
later in the document to understand what they read early 
in HiedocumenC-One--reaaer of the STATP AC Manual 
commented that it was the first manual he had read that 
did not assume he knew as much about the package as its 
programmer. An exaggeration perhaps, but his point 
about documentation is clear. 

The Manual is organized with the simplest and most 
widely used features first. It starts with data input, then 
goes into simple data displays and summaries, and finally 
covers model fitting. Thus, a reader can start at the 
beginning of the Manual and read until he can handle his 
data analyses; he will not need to read much that he does 
not need. Also, page 1-6 of the Manual contains a flow 
chart showing the ways one can read through the STAT
PAC Manual to learn as quickly as possible about any 
features. 

To say that documentation should be well written is to 
belabor the obvious. However, there are some common 
mistakes that should be avoided. Organizing the docu
mentation intelligently and linearly was mentioned 
above. Also, documentation should be written in users' 
language. Computer jargon should be avoided at all costs, 
and jargon of the applications area should be minimized. 
This is particularly true for statistics packages, whose 
users are generally not acquainted with either jargon. 
Where necessary, technical terms should be introduced 
and defined clearly. 

The documentation must tell the user what he needs to 
know to run the package. One way to assure this is have it 
written by someone who is not involved in the program
ming and computer aspects of the package. Such a person 
must find out how to run the package. Thus he can antici
pate the needs of users, since he has been in their shoes. 
This was previously done quite successfully with the ADA 
manual,' and this was also done with the STATPAC 
Manual. 

Shortcomings of the STATPAC manual 

One difficulty with the STATP AC Manual is its size-
234 pages. Most users need to read only selected material 
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Figure 3-Fitting the inverse power law model and checking the model 
and data 



from about 40 key pages (Sections 3 and 4). Unfortunate
ly, such a complete reference manual is necessary. A 
manual this size has two drawbacks: (1) it discourages 
readers so they do not read it and learn how simple the 
command language is, and (2) it is costly. The needs of 
most users are better served with a short handbook on the 
basics. Thus we are developing such a 20 page report 
called "STATPAC Simplified,"2 which people can read 
more readily. 

One reason the STATPAC Manual is so long is that 
much of it explains how to do data analyses (primarily 
engineering applications) and how to interpret the 
STATPAC output. Documentation of most statistical 
packages assumes that a user knows what analyses to run 
on his data and what the output means. However, this is 
not true of many users, even for basic analyses. Moreover, 
STAT PAC contains novel f~atJJr~.s.that reQJJjr~_ ~:X:j;)l~I1.~~ 
tion even to sophisticated analysts. Thus, the Manual 
contains many examples of actual data analyses and 
considerable explanation of them. For application pack
ages in other areas, it may be more reasonable to assume 
that users are better acquainted with the meaning and 
use of the output, since it concerns their field of expertise. 
An important benefit of the Manual is that people learn 
to do better data analyses from it. 

Section 2 of the Manual provides a general overview of 
data analysis and model fitting. This kind of general 
discussion appears early in the documentation of many 
packages. It is a waste of time. Most readers do not need 
it and do not understand it, and it tries their patience. 
Section 2 should have been the last appendix of the 
Manual. Also, Section 1 of the Manual, which describes 
the package, is much too long. Readers would rather get 
right to the business of how to run the package. 

EDUCATION AND PUBLICITY 

Users generally need assistance in learning what a 
package can do for them and how to run it. Thus public
ity and education have been a major concern for STAT
PAC. Continuing activities which contribute to spreading 
the use of STATP AC are described here. Such activities 
would contribute to the use of other packages. 

At the outset, STATP AC was supported by funds from 
a number of departments that recognized that STATP AC 
uniquely satisfied many of their needs for data analysis 
tools. Having a stake in STATPAC, such departments are 
then committed to carry through so their people can use 
the package. This, of course, requires training people how 
to run the package. Thus, STATP AC was fortunate to 
have a ready-made nucleus of a group of users who had a 
real need for the package. 

The Manual has contributed to wider use of STAT
PAC. General Electric has the Technical Digest System 
which sends abstracts of all reports to individuals who 
have indicated interests in certain technical areas. As a 
result of this system, over a thousand requests for the 

More Effective Computer Packages for Applications 613 

Manual came from all over the General Electric Com
pany. 

STATP AC was announced in the General Electric 
Statogram Newsletter, which has a mailing list of about 
five thousand GE employees who asked to be put on the 
list. There was considerable response to such Newsletters 
describing the package. 

Presentations on STATPAC have been given to several 
hundred people in General Electric. A forty-five minute 
presentation briefly describes the types of results that 
STATPAC provides and their practical value in real 
applications. A four hour presentation describes how to 
use ST ATP AC. Most of this time is spent on describing 
actual problems and how ST ATP AC was used to extract 
useful information from the data. This involves showing 
how to go about doing a data analysis and how to inter
pret.STATP AC Q!!!P!.l.t~Th~ !5rp._~.~.§! . .J>orti()n ().Lthe ttlll:~ 
is devoted to the ST ATP AC commands. 

The Manual and presentations serve real needs. How
ever, the most effective way for individuals to learn how 
to use STATPAC has been for them to work with us on a 
one-to-one basis on one of their applied problems. This is 
very quick and effortless for such users, since they are 
shown exactly what they need. Also, guidance from us 
helps them learn still more ways to look at their data and 
to extract more information. Those who have received 
such tutoring rapidly become adept at independently 
doing good data analysis, despite having only a minimal 
statistical background. This method of teaching has been 
remarkably successful for a moderate investment of time. 

CONCLUDING REMARKS 

The aim of this paper was to describe various means for 
making an applications package suitable for users. These 
means include simplicity of the package, easy-to-under
stand documentation that tells users what they want to 
know, and continuing publicity and education. Descrip
tions of such means were given. However, the most impor
tant thing is to identify the intended users and to satisfy 
their needs. 
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APPENDIX-STATISTICAL FEATURES OF 
STATPAC 

This section briefly describes the statistical features of 
STATPAC. It is mainly of interest to those who are con
cerned with statistical packages. Others may wish to 
skip this section. 

Statistical features 

ST ATP AC is a general purpose statistical package 
for data analysis and for fitting models to data. STAT
PAC and its Manual! were developed so those with 
limited backgrounds in statistics and computers can 
analyze data easily. The generality and power of the pack
age also satisfies highly sophisticated users. Written in 
batch Fortran for GE and Honeywell 600 and 6000 com
puters, it may be run as a batch program or by teletype 
or 115 terminal as a remote batch program. 

All analyses are conveniently available through one 
easy-to-use package requiring the data to be input only 
once. Simple commands select subsets of the data, trans
form variables, and perform analyses. STATPAC pro
vides versatile graphical displays of data, including histo
grams, tabulations, crossplots, and probability plots. It 
fits a great variety of statistical distributions and engi
neering relationships to data and provides standard rela
tionships on request. Fitting is done with a general 
approach based on the method of maximum likelihood. 
This includes as special cases the fitting of linear and 
nonlinear regression relationships and analysis of vari
ance by least squares. (Chambers5 describes a similar 
system for model fitting.) Also, STATPAC provides dis
plays and summary statistics of residuals from such fitted 
models. Both quantitative (numerical) and qualitative 

* Reprints and General Electric reports may be requested from the 
Distribution Unit, Building 5, Room 237, General Electric Co. Corp. 
Research and Development, Schenectady, New York 12345. 

(alphabetic) data are automatically handled. An impor
tant feature of STATPAC is its ability to analyze cen
sored data on product life. Such data, which consist of a 
mixture of times to failure on failed units and running 
times on unfailed units, occur frequently in General Elec
tric. 

The statistical features of STATPAC were developed 
with engineering applications in mind. Thus STATP AC 
lacks features for certain types of analyses including time 
series analyses, multivariate analyses (e.g., factor analy
sis, discriminant analysis, etc.), and nonparametric anal
yses. However, users may add such routines of their own 
to STATPAC. A comparison of STATPAC with some 
statistical packages appears in Appendix H of the STAT
PAC Manual. Other statistical packages are described in 
the survey by Schucany, Minton, and Shannon.6 

Applications of STATPAC 

STATPAC is being used in a wide variety of applica
tions ranging from simple data display and summaries 
through sophisticated model fitting. Examples include: 

• Graphical display of performance data from a 
computer operating system; this provided informa
tion on the factors influencing computer perform
ance. 

• Routine reduction of voluminous data on character
istics of solid state devices measured during manu
facture; simple displays and summa~j statistics are 
providing easy-to-grasp information. 

• Analyses of accelerated life test data on different 
capacitor designs; analyses of censored life data at 
accelerated conditions provided estimates and com
parisons of the life distributions of the different 
designs at operating conditions. 

• Analyses of data from a designed experiment on the 
yield of the manufacturing process of a medical 
device; data displays revealed factors affecting yield 
and showed which manufacturing tolerances had to 
be tightened and which could be relaxed. 

Those who are using STATPAC are doing better analy
ses than before. This is true of both novices and sophisti
cated users. There are several reasons for this. First, 
STATPAC makes it easy to run a large number of diverse 
analyses on a set of data. Such analyses are primarily 
graphical displays of the data involving several inches of 
output, which can be quickly scanned. Such analyses help 
extract more of the information in the data. The STAT
PAC Manual introduces many users to standard methods 
for data analysis. Also, STATPAC makes possibl~ many 
useful new analyses not previously available at GE, par
ticularly, model fitting with various distributions and 
relationships and censored life data. Indeed, the original 
motivation for developing STATPAC was to provide such 
new model fitting capabilities. 
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INTRODUCTION 

When surveying the available computer statistical pack
ages (see-e.g. {l», -one usually has in mind several ideal 
characteristics which should be possessed by such a 
package. First, the user envisions that the package will be 
both easy to learn and natural to use thereafter-hope
fully without any help from his local computer specialist 
and without any knowledge of computers or of program
ming. Specifically, knowing exactly what particular sta
tistical operation he wants performed by the computer 
and having his data in hand, the user should have a 
means by which he can (1) describe in a natural way that 
operation (e.g., a multiple linear regression) and that data 
(e.g., 6 variables and 23 observations per variable), and 
(2) present that data in a reasonable natural and uncon
strained way. 

Second, from the system's point of view, one envisions 
that the package provide a wide selection of statistical 
operations, accommodate a reasonably large amount of 
data, contain as few other "system restrictions" as possi
ble, be reasonably transportable among a large number of 
computers, run in a modest amount of main storage, and 
run identically in either batch or interactive mode. 

EASY STAT has been designed to meet these objec
tives. Its second version is now in use at Georgetown. 
That version has all except the last characteristic. This 
paper describes those characteristics of that version. 

LEARNING TO USE EASYSTAT 

The first encounter a user has with EASYSTAT is its 
text. Unlike other computer manuals, this text is written 
in plain English without a lot of "computerese." Further
more, it is self-teaching. That is, knowing what statistical 
operation he wants performed and the characteristics of 
the data upon which he wants that operation performed, 
the user is directed to appropriate sections of the text, 
answering questions relevant to his particular problem as 
he reads. When he has finished, his resulting list of 
answers is his "problem description" to the EASYSTAT 
system. 

For example, suppose you require that two multiple 
linear regressions be performed on data with 6 variables 
and 23 observations. In the first regression, you want 
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variable 6 to be the dependent variable and variables 1,2, 
and 3 to be the independent variables. In the second, you 
want variable 4 and variables 3 and 5 to be the dependent 
and independent variables, respectively. Finally, suppose 
you want a table of residuals to be printed for the first 
regression. 

The first question you encounter in the text asks you 
simply to identify the statistical operation you want per
formed. In this case, your answer will be the following. 

MULTIPLE LINEAR REGRESSION; 

You are then led to a section of the text which will ask 
you to describe the particular characteristics of the opera
tion you have chosen. For this example, that section is 
shown in Figure 1. Note there the following question/ 
answer conventions. Each question is written in all-caps, 
followed immediately by the form in which its answer 
should be written. An optional question (i.e., one that 
need not be answered) is so-indicated by its enclosure in 
square brackets. Each optional question has an associated 
default, which is the answer implied if one chooses not to 
explicitly answer it. 

For this example, one would have the following list of 
answers in response to the questions in Section 3.7. 

9 VARIABLES; 
23 OBSERVATIONS; 
DEPENDENT VARIABLE 6; 
INDEPENDENT VARIABLES 1,2,3; 
RESIDUALS; 
DEPENDENT VARIABLE 4; 
INDEPENDENT VARIABLES 3,5; 

Finally you are led to a section which shows you how to 
prepare your problem description (i.e., your answers) and 
your data to be run on the computer. Keypunching each 
of these into cards is quite easy since they can be 
punched in relatively free form. For this example, Figure 
2 illustrates a complete keypunched deck ready to run 
under EASYSTAT. 

The results of a successful EASYSTAT run are quite 
standard, as the example's results show in Figure 3. An 
unsuccessful EASYSTAT run, however, will contain an 
error message indicating both what went wrong and a 
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3.7 MULTIPLE LINEAR REGRESSION 

Your data may consist of one or more data groups, all having the same 
number, v, of var iables and the same number of observat ions. In a data group, 
each variable is identified by an integer from 1 to v. An "observation" is 
understood- here as consisting of exactly v data values, one for each variable. 
A "missing observation" is understood to be any observation which has at least 
one missing data value. Missing observations will be excluded from the calculat ion. 

For every data group, MULTIPLI! LINEAR REGRESSION operates as follows. 
You may specify from 1 to 10 "selections," each consisting of a dependent variable 
and one or more independent variables for the regression. For each selection, 
this operation gives the mea~and standard deviations of the selected variables, 
the correlation coefficients, the regression coefficients and their standard 
erTClI:8, the computed t values, and the beta coefficients. In addition, it gives 
the intercept, multiple correlation coefficient, standard error of the estimate, 
analYSis of variance with the appropriate F ratio for the regression, and 
(optionally) a table of residuals for each such selection. 

[HOW MANY DATA GROUPS 00 YOU HAVE? 1 
Answer: DATA GROUPS; 
Defau it: 1 DATA GROUP; 
~ You need answer this question only if you have more than one 
--data group. In that event, the maximum permitted is 99. 

HOW MANY VARlABLI!S DO YOU HAVE IN EACH DATA GROUP? 
Answer: VARIABLI!S; 
Note: The~mum permitted is 30 and the minimum is 2. 

HOW MANY OBSERVATIONS DO YOU HAVE IN EACH DATA GROUP? 
Answer: OBSERVATIONS; 
Note: The maximum permitted is BOOO/v, inc Iud ing miSSing observat ions. 

3.7.1 Your answers to the following questions select dependent and independent 
variables for the regression and specify whether or not you want a residuals 
table for that selection. 

WHAT IS TIlE DEPENDENT VAR lABLI!? 
Answer: DEPENDENT VARlABLI! __ ; 
l'iote: Your answer here must contain the ldem:ifying integer from 1 to V, 

- of the variable selected to be dependent. 

WHAT ARE TIlE INDEPENDENT VARIABLI!S? 
Answer: INDEPENDENT VARlABLI!S __ ; 
Note: Your answer here must contain the identifying integers of at 
- [lost ten (10) of the v variables, separated by cOEJIBas. Naturally 

those nlHTIbers must be both mutually unique and different from 
the dependent var iable specified in your previous answer. 

[00 YOU WANT A TABLI! OF RESIDUALS FOR THIS SELI!CTION? 1 
Answer: {RESIDUALS; 1 
-- NO RESIDUALS;') 
Default: NO RESIDUALS; 

IF YOU WISH TO SPECIFY ANOTHER SELI!CTION AND YOU HAVE NOT ALREADY 
SPECE lED TEN (10), TIlEN GO BACK TO SECTION 3.7.1. OTHERWISE, PROCEED TO 
SECTION 0.5.3. 

Figure I-Sample EASYST AT text section 

reference to an appropriate section in the text for correc
tive action. 

ADDITIONAL CHARACTERISTICS OF EASYSTAT 

In addition to this basic operating procedure, EASY
STAT supports a wide variety of options. First, a list of 
the statistical operations available in EASYSTAT is given 
in _Figure 4. 

Second, one's data may be either in free form as dis
cussed above or formatted. If data is formatted, the user 
is free to dictate what that format is and thereby must 
describe that format to EASYSTAT. Here, one does not 
give a FORTRAN-like format, but instead gives a graphi
cal description of his data layout. For instance, suppose 
one has data keypunched with 3 numbers on a card, in 
columns 1-6, 7 -12, and 16-18. Then his graphical descrip
tion of this format is as follows. 

Column 1 7 16 
{ V***** V***** V** 

It is felt that this alternative to the FORTRAN -like 
format is easier to learn, more natural to use, and thus 
less susceptible to error. 

Third, one's data may be either on cards or on tape. 
This is an important feature for those who input data on 
tape from sources outside the EASYST AT installation. 

Finally, it is important to emphasize that the EASY
STAT text attempts in no way to teach elementary statis
tics or its methodologies in the various disciplines. We 
feel that this is best done via a standard textbook. To 
support this viewpoint, a substantial number of refer
ences to standard textbooks are given in the EASYST AT 
text. Thus, the EASYSTAT text is naturally used in 
conjunction with, rather than in place of, anyone of a 
number of standard textbooks in a course of study. 

SYSTEM CHARACTERISTICS 

In this section we briefly discuss EASYSTAT's design 
characteristics adopted to meet the system objectives 
outlined in the Introduction. In addition to those objec
tives, the following two constraints bore upon these design 
characteristics: 

1. The entire system must run in 108K bytes of main 
storage on an IBM 360/40 running under OS-PCP 

IISAMPLE JOB 02220018,LARSEN 
II EXEC EASYSTAT 
IIEASYIN 00 * 

MULTIPLE LINEAR REGRESSION; 
b VARIABLES; 
23 OBSERVATIONS; 
DEPE~DENT V~RtABLE 6; 
INDEPENDENT VARIABLES 1,2,3; 
RFSIDUALS; 
DEPENDENT VARIABLE 4; 
I~OEPENDENT VARIABLES 3,5; 
CATA NAME IS SAMPLE; 

44 349 252 88 21 1 
44 141 236 129 56 1 
44 245 236 97 24 1 
45 291 256 111 45 3 
45 310 262 94 20 2 
45 151 339 96 35 3 
45 370 357 88 IS 4 
45 319 198 147 64 4 
45 463 206 105 31 3 
45 316 245 132 60 4 
30 313 239 91 le 0 
45 280 225 108 36 4 
35 243 275 95 30 2 
35 165 219 95 21 2 
44 395 215 leI 27 1 
29 289 216 85 14 1 
43 396 261 100 39 3 
43 356 274 19 19 2 
44 346 255 126 56 3 
44 156 258 95 28 0 
44 278 249 110 42 4 
30 391 244 92 16 2 
30 424 246 9C 18 2 

Figure 2-Sample EASYST AT run deck 
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MUlTIPl~ ll~EAR RfGRESSION; 
6 VIHI(AflFS; 
13 OHSFIlVATICNS: 
OFPENOF.';! VARIABLE 6; 
INCfY(Nr)E~H VARIABLES 1.2,3; 

6 RfSIOUAlS; 
1 OEPENDENT ~ARIABlE 4; 
8 I"ICEPENIJENT VARIABLES 3.5; 
9 OAr A II""E IS SAMPLE; 

DATA SU,."'ARY fOil OAT ~ NAMED SAMP\. E 
TOTAL NUI'BER CF ERRONFOl.S OHSERVATlONS" 0 
rOiiol r;U~DER 0;: ~iSSi'iG OBSERwAiiOr;5.. 0 
TOTAL NU"'tH:R OF EFFECT IVE OBSERVATIONS = 23 

MULTIPLE lINfAR REGRESSION FOR DATA NAMED SAMPLE 

SElECTICN 

It.lDEPEf>lCENT "EAN 
YAR IABlE 

1 --2 --
3 

OEPENOENT 
VARIABLE 

41.00000 
315.34183 
250.82609 

6 2.26087 

I"ITERCEPT 
,"UU I PlE C(jR~EUlTION 
STD. ERROR OF EST! ,.ATE 

STANDARD 
DEvl ATiON 

5.94673 
8,~-8TI'm-

31.12099 

1.28691 

-5.6e460 
0.58960 
1.11849 

CDRRElAT ION 
X vS Y 
0.42171 
0.2"6T43 
0.20652 

REGRESS ION 
CCEFFICIENT 

(j.09141 
0.-0-0011 
0.00798 

ANALYSIS OF VARIANCE FOR THE REGRESSION 

SOURCE Of VAR IAT ION 

STO. ERROR CCMPUTED 
CF REG.COEFF. T VALUE 
0.04128 2.36107 
-o-.-o-ez<tl- Z.U-all 
0.OCi676 1.18013 

F VALUE 

ATTRIBUTABLE TO REGRESSION 
CEV IAT ION FROM REGRESS ION 

TCTAl 

CEGREES 
OF FREEDOM 

3 

SUM OF 
SQUARES 
12.66556 
23.76919 
36.43416 

MEAN 
SQUARES 
4.22185 
1.25101 

3.37416 
19 
22 

TABLE IJF RESIDUALS 

CASE NO. Y VALUE 
1 1.00000 

2 I.COOOO 
3 1.00000 
4 3.COOOO 
5 2.COOOO 
6 3.00000 
7 4.00000 
8 4.CCOOO 
9 3.COOOO 

10 4.COOOO 
11 O. cocoa 
12 4.COOOO 
13 2.00000 
14 2.COOOO 
15 1.(0000 
16 1.00000 
17 3.COOOO 
18 2. (OCOO 
19 3.COOOO 
20 0.00000 
21 4. COOOO 
22 2.COOOO 
Z3 2.00000 

SHEenCN 

INDEPENOENT MEAN 
V,\lUASlE 

1 250.82609 
5 H.60e70 

DEPENDEfliT 
VARIABLE 

I~TERCEPT 

102.34183 

OIULTIPLE CORRelATION 
STU. ERROR or EST! ,.ATE 

Y ESTIMATE 
2.11042 
1.35844 
2.00057 
2.57876 
2.7C692 
2.33985 
3.83571 
2.62207 
3.2(j458 
2.60826 
1.01982 
2.22634 
1.42233 
1.72858 
2.15909 
0.65057 
3.08289 
2.89119 
2.71585 
1.62661 
2.30810 
1.6C134 
1.82106 

STANDARD 
OEVIA TlON 

37 .12099 
15.83075 

1/).88089 

93.0CI12 
0.956'01 
5.1/)658 

RFSIOUAl 
-1.71042 
-0.35844 
-1.00057 

0.42124 
-0.70692 

0.66015 
0.i6429 
1.31793 

-0.20458 
1.39174 

-1.07982 
1.77366 
0.51761 
0.21142 

-1.75909 
0.3'0943 

-0.08289 
-0.89179 

0.22415 
-1.62667 

1.69190 
0.39866 
0.17894 

CORRf:lATION 
l( VS Y 

-0.35069 
0.93892 

REGRESS 10~ 
CCEFFleIE,., 
-0.08436 
0.96510 

ANAL YSt S OF VARIANCE FOR THE REGRESS lOt. 

SOURCE OF VARIATION MEA,. 

STD. ERROR 
OF REG.eOEFF. 

0.03018 
0.0"1017 

F VALUE 

COr-PUTEO 
T VALUE 

-2.79515 
13.63127 

ATTlIlAUTAAlF TO REGRESSION 
{lfV[ATICN FRIlM REGRESSION 

TCT Al 

DEGREFS 
CF FRHDOM 

2 

SUM OF 
SQUARES 

513S. J42b9 
53).91CIo' 

/)2/)'1.21316 

SQU4RES 
2f167.67135 

Zt •• /)9352 
107.42948 

~O 
2l 

t'liO r ASYSTAT RUN 

Figure 3-Results of sample EASY STAT run 
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BETA 
COEFF. 

0.45040 
o-.--'t-l--l-8~ 

0.23026 

BETA 
COFFF. 

-0.18551 
0.90507 
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Class I: Univariate Operations 

TALLY 
TABULATION 
l-SAMPLE KOLMOGOROV-SMIRNOV TEST 

Class II: Two-sample Tests 

2-SAMPLE KOLMOGOROV-SMIRNOV TEST 
T TEST 
F TEST 
MANN-WHITNEY U TEST 
KENDALL RANK CORRELATION 
SPEARMAN RANK CORRELATION 

Class III: Multivariate Operations 

TALLY 
TABULATION 
SIMPLE LINEAR REGRESSION 
CORRELATION 
CANONICAL CORRELATION 
AUTOCORRELATION 
MULTIPLE LINEAR REGRESSION 
STEPWISE REGRESSION 
POLYNOMIAL REGRESSION 
CHI-SQUARE CONTINGENCY TEST 
KENDALL COEFFICIENT OF CONCORDANCE 
COCHRAN Q TEST 
FRIEDMAN 2-WAY ANALYSIS OF VARIANCE TEST 
FACTOR ANALYSIS 

Class IV: Structured Data Operations 

ANAL YSIS OF VARIANCE 
DISCRIMINANT ANALYSIS 

Figure 4-0perations available in EASYST AT 

2. The entire system had to be implemented within 6-8 
months by the designer working approximately 1/3-
time on it, and a programmer working approxi
mately 2/ 3-time on it. 

Thus the first decision was to write the entire system in 
PL/1. This was done both to take advantage of the statis
tical routines already available in the PL/l SSP (2) and 
to expedite programming those parts of the system which 
interpret users' answers. Of course, the PL/l choice 
might appear to render the system less transferable than 
would the choice of FORTRAN IV (at least for the pres
ent). On the other hand, however, one would probably 
need to write some assembler code to support implemen
tation of the string-processing aspects of the system in 
FORTRAN, thus negating the transferability afforded by 
"standard" FORTRAN. 

Second, due to core limitations, the system had to be 
highly overlaid and somewhat restrictive in the amount 
of data that could be accommodated in a single run. The 
system's organization is shown in Figure 5. EZMAIN is 
the main control section for the system. In turn, it calls 
EZEDIT, EZDATA, and the appropriate functional rou
tine. EZEDIT reads the user's answers (problem descrip
tion) and initializes appropriate control fields. EZDAT A 
reads the user's data into the area cabled A. Finally, the 
appropriate functional routine (e.g., linear regression) is 
called to perform the required operation and print the 
results. For this organization, the overlay structure and 
core requirements are shown in Figure 6. The resulting 
data limits are that no statistical operation in EASY
STAT can accommodate more than 8000 individual data 
values (numbers) in a single run and that the maximum 
number of variables permitted per run is 70. 

Design of the system was begun in November 1971 and 
the version described here was fully implemented by 
August 1972. Given the same limited resources, it is diffi
cult to see how this system could have been achieved 
using any other language than PL/l in a comparable 
amount of time. 

A common argument put forth in defense of Assembly 
Language as a superior system programming tool to PL/1 
is that the resulting code executes far more efficiently. Of 
course it does, and it always will. But that gain is not 
without its price-both in implementation time (or cost of 
programmers) and self-documentation of the source pro
grams. As for EASYSTAT, our tests using typical data 
show that any statistical operation in the system will run 
within 1-2 minutes on a 360/40. That time includes all 
I/O time as well as CPU time. For example, the regres
sion example shown above runs in less than 1 minute. Fur
thermore, this compiled version of EASYSTAT was not 
optimized for execution speed. Nevertheless, this speed is 
quite acceptable. The gain which would have been possi
ble had the system been written, in whole or in part, in 
Assembler seems to be minimal and might well have been 
totally offset by increased implementation cost and/ or 
time. 

----> 

o 

I 

L ___ --.J 

control flow 

data flow 

information stored 
in memory 

Figure 5-EASYSTAT system organization 
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Figure 6-EASYST AT overlay structure and core requirements 

CONCLUSIONS AND RECOMMENDATIONS 

Early experience at Georgetown indicates that EASY
STAT will indeed be widely used in support of both 
cour~e~work -andre-sea-rch-.Many---who--have-used it have 
been favorably surprised by the ease and speed with 
which they can use the system to do their statistical 
calculations. 
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This evidence is, of course, by no means conclusive. 
EASYSTAT is presently keeping account of the day-to
day numbers of successful and unsuccessful runs being 
made, as well as other information. This information will 
later assist us in reevaluating and improving the system's 
performance and ease of use. 

We strongly recommend that the philosophy exhibited 
here be widely.,considered, especially by those confronted 
with the problem of making the computer's power more 
directly accessible to the non-computer specialist. It is 
quite feasible to consider, for example, the development 
of other packages which use the same approach as 
EASYSTAT -e.g., a text-processing package, or a linear 
algebra package. 
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ACID-A user-oriented system of statistical programs 

by R. A. BAKER and T. A. JONES 

Esso Production Research Company 
Houston, Texas 

A common problem in any scientific or business effort 
is to organize large masses of data for human interpreta
tion. Today we will describe a program system which is 

-<resigned to do Just trns;-WecatllI--ltCID-;----wtrtctr-tsan 
acronym for Automated Classification and Interpretation 
of Data. Our system may not be unique, but we believe it 
is well-designed. The user can get his work done with this 
system, which is set up as an "executive design"-one 
program controls a lot of other programs. 

The executive, or interface, program puts a friendlier 
face on the system for the user. It works with him, not 
against him, which for many users is a unique experience. 
Too often we find a puzzled and bedraggled user on the 
point of either rage or defeat in his contest with Program 
X, which has stifled every effort on his part to communi
cate what is to be done. Running the cantankerous pro
gram becomes his major project, and the objectives of the 
real project get lost in the effort. This is less likely with 
ACID because the user gets in and out quickly. The 
major problems fall to making the analyses, not running 
the program. This is particularly a problem if the user 
must run several programs in succession. 

ACID is focused on a somewhat heuristic pattern recog
nition problem (in the general sense of that term) 
although the concepts discussed here are certainly not 
limited to this. In the pattern recognition studies, the 
computer organizes the information, and the user tries to 
recognize and interpret the organization. ACID may be 
instructed to provide several alternative organizations, 
perhaps with different interpretations. The heart of the 
classification scheme we use is cl uster analysis. This 
technique is as old as large-scale computer processing, 
but is none the worse for wear, as we have had good suc
cess with it. One of the secrets of success is having turna
round within the time frame of the project and the user's 
patience; this includes pre-processing of data as well as 
the actual analysis. The user will not experiment with his 
computerized tool if it's all he can do to get it to work 
once or twice. If he does not experiment, he will not be 
likely to get the results he is looking for. So far ACID has 
kept well within the patience and project times of its 
users. 

As an example of the kind of project ACID is designed 
for, we studied Galveston Bay, a major estuarine system 
in the vicinity of Houston. We have 85 sampling stations; 
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approximately 50 species of mollusks were observed and 
counted at the stations. Our objective was to find a pat
tern among these samples by use of the contents of the 
bioto-gic-at-co-H-e-ctions-at-t-he--st-ations-. Bn-e---m-ighH-hink---ihat-----
it would be fairly easy to quickly and efficiently solve 
such a problem. One need only go to the published litera
ture for programs that will do the job. After all, cluster 
analysis is some 15 years old, and there are at least 20 
programs available for doing the job. That was our origi-
nal thought and course of action. 

We obtained a program and ran our data with it. And 
ran it. And ran it. We soon found the practice to be 
nowhere near as simple as the concept. First our data 
arrays wouldn't fit the program dimensions. So we 
trimmed some data vectors. Then we couldn't transpose 
the matrix for an alternate analysis. Then we found the 
data formats were not usable with other programs, creat
ing added complications in the computation of simple 
statistical summaries, making data transformations, and 
in the use of different cluster and multivariate analyses. 

After great tedium we managed to perform the desired 
cluster analyses, and obtained four sample groupings. 
The procedure divided the bay complex into four areas: 
ship channel and tidal pass, forebay, backbay, and brack
ish bay-margins. This concluded the classification phase. 
N ext, in the interpretative phase, we wished to determine 
the species that defined each of the groupings. This 
required the use of other programs, thus repeating the 
above problems with formats, dimensions, etc. Again, 
after much effort unrelated to the interpretation, we 
managed to find that only 6 species were needed in gener
ating the pattern in the bay complex. 

We found the actual analysis to take less time than the 
preparatory work of getting the data ready. And we're 
talking about data manipulation, not data reduction. This 
made cluster analysis a tool of questionable value. Was it 
worth months of effort, especially when much of this time 
would be spent in re-coding and keypunching and so forth 
in getting ready to run the analytical program? We 
decided "no," and that's why ACID was developed. Over 
a period of a year-and-a-half we wrote some 25 programs 
-large and small-and toward the end of that period 
combined them into the executive framework of ACID. 
Most of the programs in ACID are actually auxiliary to 
the cluster analysis step. 
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ACID is essentially a sub-operating system. It does for 
the applications user what the operating system does for 
the programmer. It keeps track of those essential but 
nuisance items such as the location of programs and data 
sets within the system. The user may have three or four 
data sets each at various levels of transformation in the 
system. If he wants to operate on a particular data set, he 
prefers to call it up by a code name, not by location, 
because the physical location of the data set on tape or 
disc is of no interest to the user. The system also provides 
useful services during operation, such as error checking. 
For example, within the limits of Fortran, ACID attempts 
to tell the user what happened before going off the air 
with an abnormal end. It also checks input parameters 
and data sets for certain types of errors. In addition, if 
the user is requesting more storage than is available, 
ACID tells him how much more is needed. It also dynam
ically dimensions arrays, so as to allow virtually any size 
data set to be processed. As with the operating system, 
most of what ACID does as a system is invisible to the 
user. He sees only the functional programs that were 
stand-alone before being incorporated in ACID. 

The executive design gives us the flexibility of a library 
and the convenience of a single program. The basic sys
tem is set up with an executive that can call any of the 
individual programs. Figure 1 shows the structure 
whereby each of the operational programs is independent 
of the others and at the same level. Each is interfaced to 
the executive by a small driver subroutine. The user 
inputs a control card with the name of the desired option 
on it (e.g., STATISTICAL SUMMARY). At this point 
the executive calls the appropriate program. This pro
gram reads any necessary controls and performs the 
analysis. Control remains in this program until a special 
control card instructs a return to the executive. The var
ious options are processed sequentially. 

The control language used is basically hierarchical in 
nature (Figure 2). Some commands go to the executive 
program and some to the functional programs, and in 
general the commands are kept on separate cards and 
follow a sequence from highest to lowest level in the struc
ture. For instance, we might wish to perform transforma
tions on some of the variables in our data set, followed by 
the computation of some simple statistical summaries. 
The TRANSFORMS card instructs the executive to call 
the appropriate program. The program control then is 
used to define the data set required, and to set other con
trols. Following in the hierarchy comes the controls for 
each of the individually desired transformations. The 
controls for a second data set may follow. The end-of
program card returns control to the executive; by this 
time, two new data sets, 1A and 2A, have been created. 
The STATISTICAL SUMMARY card calls for the next 
program option to be executed. This sequence is similar 
to that of the computer operating system, and we have 
found it to be effective. 

The ACID data sets must be easily accessed by the 
user. In ACID most of the data are in the form of rectan-
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gular arrays, with samples arranged along one side and 
variables across the top; the body of the array consists of 
the observed values. The data sets are stored as arrays in 
binary form on a sequential file. Tapes are normally used 
if the data sets are to be retained permanently. In addi
tion to the data, there is header information for each data 
set. This information includes a code name assigned to 
the data, the dimensions of the data array, and code 
names to identify each sample and variable. These names 
are invaluable when the user is interpreting his results, 
and are also conveniently carried with the data in this 
form. 

Several data sets may be placed on the same file, and 
new data sets are normally created in the editing steps. 
The user assigns a four-character code name to each data 
set as he instructs the program in its operation. The user 
thus inputs the name of a data set to operate on and a 
name for the resulting data set. The program finds the 
first data set on the file and inputs it; it then operates on 
the data and forms a new data set. This new set is placed 
on the data file under its own name; the original data set 
is also left unchanged on the file. 

• 
• 
• 

CARDS FOR PREVIOUSLY EXECUTED PROGRAMS 

TRANSFORMS 

• 
• 
• 

PROGRAM CONTROLS, DATA SET 1 
M TRANSFORMS DESIRED 

PROGRAM CONTROLS, DATA SET 2 
X TRANSFORMS DESIRED 

END OF PROGRAM 

STATISTICAL SUMMARY 

PROGRAM CONTROLS, DATA SET lA 
PROGRAM CONTROLS, DATA SET 2A 

END OF PROGRAM 

• 
• 
• 

Figure 2 



One of the original difficulties we found in running 
several independent programs was that we invariably had 
data sets with dimensions that exceeded those of the pro
grams. The ACID system solves this by using a form of 
Dynamic Core Allocation. In this case, no arrays are 
defined directly in the programs. Whenever a data set is 
input, the number of rows and columns in the data set are 
used to compute the actual dimensions required for the 
program to process that data set. Then a routine is called 
that allocates the required number of words of core and 
defines the arrays. This core is released after the data set 
has been analyzed. 

In addition, the executive structure allows us to modify 
and add programs with little disturbance of the program 
system. The functional programs are essentially stand
alone applications programs. When they are put into 

- ACIRthe-main-c-hangejs-in-their-inpuLsecuooS-.- .. ln-th.e 
system they read data sets formatted and maintained by 
ACID on a sequential file, rather than reading decks from 
the card reader. In addition, a short driver routine is used 
to allocate the array space dynamically. Thus, we have 
the ability to develop functional programs independent of 
the system or to obtain programs from the published lit
erature or elsewhere and add these programs to the sys
tem. 

As part of the internal structure of ACID we have con
sciously kept the I/O as high up in the subroutine stack
ing as practical. This makes it much easier to come into a 
program and make a patch because the route from input 
to output is shorter and more direct. It also makes any 
data-editing more apparent, and t,he editing can be spe
cific to the input data. Whether making a modification to 
the program or tracing a bug, a direct route from input to 
output makes the task much simpler. On the other hand, 
we found it impractical to concentrate all of the I/O in 
one program, such as the executive, because that reduced 
our ability to treat the programs in modular fashion. 
Program modification is naturally much simpler if the 
modification in no way affects another program. 

Along this line, we might mention a "good" idea that 
didn't work out. An unsuccessful feature, since aban
doned, was to concentrate all the output, error messages 
in particular, into one program. The concept was to store 
several error codes and then call a program at the end of 
execution that would interpret the codes and print the 
messages. Changing a message would be a simple matter 
of changing the error-printing routine. The functional 
programs would not have to be changed at all. The idea is 
not new with us, and we expect that it might work in some 
environments. We found it to be a poor idea for ACID. In 
the first place, we found that the error message format 
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statements were very useful in supplementing our inter
nal documentation. Secondly, we found that considerable 
library effort would be required to maintain an error 
printing program since every new option in ACID would 
probably require an addition to the error-printer. Third
ly, we found that the probability of an error message 
changing was low once it was established. This slow
changing character pretty well obviated the need for an 
error printer. 

One feature of ACID which seems common to library 
maintenance programs but that is rare in applications 
programs is the activity log. The activity log keeps track 
of which functional programs have been called, in what 
sequence they were called, whether they operated error
free, and the data of the call. The activity log tells us how 
often each function in the system is used. It provides an 
OOjeet-ive--e-va-l-ttat-i-on- t-om-. -Keepi-ng---iraek- --of-t-he- sequence --
of functional steps gives us an idea of what functions 
might be combined. We might mention that the greatest 
problem in the interpretation of the activity log seems to 
be user habits. Once a user establishes a sequence of steps 
that work he's unlikely to change that sequence even if he 
no longer needs some of the steps. We cannot say that the 
activity log has been a resounding success, but it does 
provide interesting information. 

Another useful feature in ACID is a card editing pro
gram. The card editor lists all the input cards before any 
action is taken on them and makes whatever general edit
ing operations are possible at that level. It also has the 
capability to generate control records from a more general 
input instruction. We mean rather low quality editing at 
this level; really good editing can be done only by the 
functional programs, which know specifically what to 
look for. The best that can be hoped for from the card 
editor is that it will catch the gross absurdities which 
would totally confuse the functional programs. Both the 
activity log and the car-d editor are part of what might be 
called the "executive suite"; their existence is useful only 
because the functional programs have been put together 
as a system. 

In conclusion, we have found the executive, as exempli
fied by ACID, to be very effective. It brings us previously 
lacking user orientation. It brings us flexibility in large 
program systems. It brings us the opportunity to grow in 
a changing environment. We have four other comparable, 
but non-statistical, program systems with this same 
design currently operating. The design has been success
ful in every case; the systems are in use and rarely out of 
order for repairs. We recommend the design as a natural 
extension of the operating system. 





Graphics and engineering-Computer generated color 
sound movies * 

by LARA H. BAKER, JR. and EDWIN K. TUCKER 

University of California 
Los Alamos, New Mexico 

Over the history of computing, substantial effort has been 
directed toward improving the throughput of digital 
computer systems. Only recently, however, has a signifi
cant effort been devoted to enhancing the intelligibility of 
output. Computers are excellent tools for the inhalation of 
massive quantities of input and the disgorgement of mas
sive quantities of output. Frequently, as applications and 
systems programmers, our task is to create some order 
out of the chaos. The need for this effort is nowhere more 
apparent than in the display of computer-generated engi
neering data. 

Engineering calculations have several characteristics 
whose ramifications are not obvious. The calculations are 
in general reasonably straightforward to define. Com
pared to problems in cellular microbiology, for example, 
the parameters of most engineering problems are fairly 
well defined. This would lead one to expect that the pres
entation of their solutions would be equally straightfor
ward. This is not the case. Further, many engineering 
problems are dynamic, time-variant problems. Their 
solution is a function of time and time may be the most 
critical parameter in the solution. The presentation of 
dynamic, time-variant data in a static, two-dimensional 
medium can be worse than useless. Finally, engineering 
systems are usually complicated, if not complex. This 
implies that whatever intelligible information exists in the 
output may exist in a large dilute quantity. 

The data presentation difficulty is common to many 
forms of problem solving. Engineering problems suffer 
particularly from this bottleneck because of the quantity 
and type of their solution data. The solutions to problems 
involving optimization may often be simply displayed, 
but some classes of problems, e.g., time history calcula
tions, must be examined by the engineer at many points 
in their development. The engineer is also faced with the 
problem of extracting a few numbers out of a great many 
and trying to retain an overall picture from these num-

* Work performed under the auspices of the U. S. Atomic Energy 
Commission. 
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bers. Th~s~. dllJa .!;Ue gen~n!lly_J~lr._t.QO yal!1able __ an analy
sis tool to give up, but faster, even if less precise, methods 
of data scanning are required. Another significant obsta
cle facing the engineering analyst is the necessity for the 
perception of trends in the data rather than their precise 
numerical value. These trends are frequently hidden by 
the inherent synergism among the various problem 
parameters. Creating order out of chaotic output, then, 
requires the development of efficient, effective and feasi
ble techniques for data presentation. 

PROBLEM PARAMETERS 

Time frames 

One of the greatest difficulties with engineering prob
lems is the time frame in which the real world operates; 
very few engineering problems occur at the optimal rate 
for examination by an analyst. The occurrence rate of the 
problem is usually either far too rapid or much too slow. 
Some of these problems involve a long period of real time; 
e.g., heat transfer through a shipping container may take 
hours of real time. Some of the problems are very close to 
the analyst's time frame; e.g., the analysis of a building's
response to an earthquake loading may be within one 
order of magnitude of the analyst's speed of interpreta
tion. Some problems, for example, the catastrophic fail
ure of an overstressed cylinder, may take place in such a 
short time (i.e., milliseconds) that their duration must be 
stretched to allow the analyst any comprehension at all. 

Since the amount of time which an analyst is physiolog
ically capable of using to extract information from a dis
play is relatively fixed, the display techniques used must 
be flexible enough to provide a meaningful transition 
from the real time to the analyst's time. While the neces
sity for spreading the real time involved in a very rapid 
event is obvious, the requirement for compressing the 
time spent in a near real time event is more abstruse. The 
amount of time an analyst can spend concentrating on a 
relatively slowly changing scene is much shorter than one 
would estimate; that is, reasonably intelligent people have 
a low boredom threshold. 
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Nontemporal variables 

The variables to be examined in an engineering prob
lem are obviously functions of the analyst's interest. But 
regardless of the particular problem, a great number of 
interrelated variables are usually involved. Expanding on 
the examples given above, heat transfer problems are 
quite amenable to computer solution, particularly in the 
case of the time dependent flow of heat through a compli
cated object. The parameters of interest in this problem 
usually include indicators of the temperature and state 
(i.e., solid, liquid or gas) of the object, the rate of heat 
flow, and various representations of external boundary 
conditions. These parameters are of interest at essentially 
every coordinate within the object. The second example 
involves the response of a multi-story building to an 
earthquake or blast loading. Here the parameters of inter
est include the building'S shape and velocity, and the 
location and magnitude of material deformations (both 
plastic and elastic), as well as the stability of the entire 
structure or portions thereof. Again, it is the continuous 
interaction of these variables that is of interest to the 
analyst. In the third example, we consider the deforma
tion of a heavy multi-material cask under impact loads. 
Parameters of interest in this problem include the posi
tion of the cask, its stability, the state of stress around the 
point of impact, and the amount and rate of structural 
deformation wherever it occurs. 

All of the above problems are time dependent and 
multivariant, and generally require a massive quantity of 
information for the useful interpretation of the parame
ters of interest. Frequently, the numerical values of many 
of the variables are generated in tabular form, usually on 
microfilm, since these values are the most detailed, but 
least comprehensible form of output. Certain of the 
detailed nUqlerical results are necessary to the ultimate 
solution of the problem. The trick is to identify which 
ones. Due to the time varying nature of the problems, 
static graphs are almost as bad as numerical tables for 
data presentation. The dynamic nature of the problem 
must be reflected in the medium used for data presenta
tion. 

CORRECTING THE BOTTLENECK 

There are several approaches to "solving" the problem 
of the data bottleneck. The simplest "solution" is to stop 
using computers, i.e., to abandon any attempts to solve 
big analysis problems. Alternatively, in order to cut down 
output, the problem can be oversimplified or some of the 
output deleted. A third approach involves hiring smarter 
analysts, that is, people who are willing and able to figure 
out what is going in all that pile of numerical output. In 
all of these approaches, the supposed solution really 
means ignoring the bottleneck rather than alleviating it. 
But the evaluation of computer output need not be a tedi
ous process of numeric interpretation. The viable 

approach is to increase the comprehensible information 
density of the output we currently have. 

In attempting to increase this comprehensible informa
tion density, the industry has gone from strictly numeri
cal output (whether on paper or microfilm) to graphic 
displays. But while static graphs can improve the presen
tation of static information, it is only with dynamic dis
plays that a significant blow is dealt to the bottleneck 
problem. Interactive CRT displays have significantly 
increased the effective information density of computer 
output, and for a large class of problems offer the best 
available method of data display. Only when the com
puter time required to generate a solution prevents inter
action is this technique patently unusable. 

Another quantum jump in information density came 
about with the widespread use of color graphics. The abil
ity of the human eye to perceive and distinguish different 
colors can increase the comprehensibility of a display 
significantly. In many cases, color graphics provide the 
only technologically feasible means of presenting a partic
ular display. 

One of the more straightforward and effective methods 
of showing the time-varying phenomena in engineering 
problems is the use of motion pictures. Computer driven 
microfilm plotters provide efficient methods by which to 
generate these movies. Their development has received 
much attention and their use is now routine. The recent 
development of one pass multi-color COM considerably 
increases the effective information content of this output 
medium. 1 Motion pictures allow the analyst to view the 
problem solution at a pace of his choosing rather than at 
the pace of the solution time or of the real world. Data 
presentation by computer movies is not a theoretically 
difficult task, but neither is it trivial when one considers 
the man and equipment requirements needed to accom
plish it. However, motion picture film is probably a 
medium of data presentation which will assume greater 
importance in the future. Indeed, it presently enjoys a 
high level of utilization at the Los Alamos Scientific 
Laboratory, where computer film usage approaches 400 
miles per year. 

While the above techniques have provided greatly 
increased comprehensible information density for com
puter output, the bottleneck problem has only been alle
viated but not solved. Perhaps the problem will never be 
completely solved. However, techniques for using multi
sensorial output can go a long way toward optimal data 
presentation. 

THE STATE OF THE ART 

Of the five primary senses, two are highly developed in 
man. Vision and hearing seem to be the major channels 
through which he receives information about his environ
ment. These two are therefore the logical choices for data 
presentation using current technology. The use of the 
other three senses as channels for communication with 



computers is being studied for specialized applications, 
but these senses have not received the intensive study 
that has been devoted to vision and hearing. 

While both the eye and the ear are capable of accepting 
great volumes of data, they are not equall~ receptive .to 
all messages. The eye excels in the perceptIon of spatIal 
relationships, but hearing is the better temporal sense. 
Vernier visual acuity is the best our senses can offer for 
fine discriminations. Yet only the ear can perceive the 
high information content of voice inflections and 
emphases.2 Audio output alone from computers can be 
quite useful in certain applications. For instance, it is 
currently being used to answer "disconnected-number" 
queries by the telephone system in many parts of the 
country. But for complex problems, one must consider the 
nature of the various messages that can be involved in the 
0Yt-p-llt -bef-we--assi-gning particul-aI' iB-fur-matiGn to a pa-rt-ic
ular sensory medium. 

Due to the complexity of many problems, it is highly 
cost effective to selectively combine sight and sound to 
provide a sufficiently dense but comprehensible output. 
This combination is now being used at the Los Alamos 
Scientific Laboratory, where a method has been devel
oped for the production of computer-generated optical 
sound tracks on a microfilm plotter. Pictures and sound 
can be produced simultaneously in one pass through the 
plotter. The sound tracks can be used to facilitate the 
interpretation of data that is presented visually.3 How
ever, from the programmers' point of view, the addition 
of another channel for data presentation is as important 
as facilitating the interpretation of data. Not only can a 
sound track present explanatory and narrative material 
efficiently and appealingly, it can also be used to repre
sent additional data that might otherwise be lost. For 
example, it is always difficult to clearly represent the 
movements of a large number of particles within a 
bounded three-dimensional space. If, however, the colli
sions of particles-either with each other or with the 
boundaries of the space-are represented by sounds, the 
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interpretation of the phenomenon is greatly facilitated. 
This is feasible only if the sound track is computer pro
duced and not "dubbed in" after the fact. 

SUMMARY AND CONCLUSIONS 

The enormous quantities of relatively unstructured 
computer output associated with large simulation and 
analysis codes make data interpretation a very forbidding 
task, particularly in the engineering disciplines, where the 
meaning of the data can be so obscured by the density of 
numbers that the value of the analysis itself becomes 
doubtful. Furthermore, the effective presentation of 
dynamic, time-variant data demands handling that can
not be provided by a static two-dimensiotl~l medium. 
Dynamic interactive CRT displa~s and coIIlPutergener
ated motion pictures are two techniques that have sub
stantially improved data presentation, and the addition of 
color even further increases the comprehensible informa
tion content of these displays. But optimal displays will 
only come about through exploitation of more than just 
man's visual sense. Current developments allow the use of 
both vision and hearing as channels for communication 
with computers, but whether this will prove to be the 
truly optimal display or not will depend on man's ingenu
ity in broadening the concept of computer graphics. 
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Graphics and computer-aided design in aerospace 

by RONALD E. NOTESTINE 

Lockheed-California Company 
Burbank, California 

INTRODUCTION 

In-1-96-4--,--Ce-I'--tain---h-a-I"-dwa-r-e---d~--in--g-r-aphics
equipment were announced by IBM. The interest of 
management of the Lockheed-California Company was 
immediately aroused. Possibilities for the development of 
highly effective programs through the utilization of this 
equipment were foreseen and action was started to take 
advantage of this new technology. 

A task force was set up to study various applications 
and make recommendations. Representatives from Struc
tures, Aerodynamics, Loads, Stress, Project Design, and 
Computer Services participated in this work. This study 
resulted in the delivery of an IBM 360/40 with one IBM 
2250 scope in 1966. This task force also recommended the 
implementation of certain initial programs. The prime 
criteria for their recommendation being immediate need 
and use for the design processes associated with aircraft. 

From these early beginnings, we have progressed to a 
Modei 50, 65, 75, and finally the present shared 360/9l. 
On the 360/91, we have fine tuned the system to a high 
degree of effectiveness. We feel it is our most proficient 
and cost-effective configuration. 

CONFIGURATION 

The 360/91 on which we are presently operating graph
ics has 2 million bytes of high speed core. Those devices 
dedicated to graphics include a 2314 with 8 disk drives, 2-
2301 high speed drums, a 1403 printer, and 4 tape units. 
One 2250 is located in the computer room and is primar
ily used for graphic program development, batch program 
checkout and graphics systems maintenance. Three more 
2250s are located in the same building, but in a user envi
ronment. Eight scopes are located in an engineering 
building which is about a mile from the graphics com
puter. They are connected to the main frame through a 
2916 Long Line Adaptor and coaxial cable. 

Graphics occupies 528 thousand bytes of the total of 2 
million bytes of high speed memory. The rest is used by 
the system and the batch streams which are sharing the 
computer with graphics. Normally, at least three batch 
streams of programs are concurrently being processed. 
The graphics region is split into four partitions, which in 

turn drive the twelve scopes. This is done by utilizing a 
data roll technique for our design package, which allows 

--multipl-e--8C---Gpes--tG---OO-I"--ll-Il--G-tIt--Gf'----GIle--pa-rutiGn-. The-design 
package will be described later. 
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PROGRAMMING CONSIDERATIONS 

Certain programming considerations had a strong influ
ence on the direction taken early in the development of 
computer graphics. These considerations had their effect 
not only on the selection of applications, but on how those 
applications were developed. 

The first consideration was to provide a tool that was 
user oriented. The displays, and the actions taken should 
not be completely foreign to him. If he is a designer, and 
the scope is his drafting board, then the methods of con
struction on the scope should be basically the same as he 
would use on the drafting board, 

The prime reason for placing a user in direct contact 
with a high speed computer is to be able to achieve a high 
degree of interactivity. The application should be one 
where close interaction is essential to the effectiveness of 
the work to be performed. In addition, the program 
should use its ability to interact to assist the user in doing 
his work. This can be done with tutorial messages which 
always leave the user knowing what he did last, and what 
his choices are to do next. 

Cost had to be kept low in order to make cost effective 
a wide spectrum of applications. The numerator of the 
basic cost equation consists of the driving computer, the 
scopes, and the programming support. The number of 
scopes becomes the denominator in this equation, and as 
their number increases, the cost per scope is driven down. 
Our present need is for 12 scopes, however, the system we 
have today could be increased to 16 or even a 20 scope 
system with the only increase in cost due to the scopes 
themselves and a significant decrease in cost per scope. 

The tool that has been given to the user should be 
responsive. Neither his thought processes nor his actions 
should be slowed down by the system. Also, the responses 
should be consistent. Inconsistency in response time, even 
though fairly fast, can be very frustrating and disrupting 
to the smooth flow of thought processes. 
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Another way to reduce costs is to share the equipment 
with batch processing. This sharing can take place in two 
ways. The first way is by operating in a time sharing 
environment where the batch stream is soaking up the 
CPU time which is left over from graphics. However, 
graphics tends to be a prime shift capability which sits 
idle the rest of the time. Therefore, the second way is by 
scheduling batch processing to fully utilize these off 
shifts. There are several cost advantages which can 
accrue. The first is a reduction in the computer cost 
which is in the numerator of the previously mentioned 
cost equation. Because graphics does experience peaks 
and valleys of workload, it would be desirable to be able 
to increase or decrease without a major impact on cost. 
Sharing the computer allows a greater flexibility for 
change. 

A tool must be reliable to be effective. This reliability 
manifests itself in two ways. The tool must not only be 
available, but it must be continuous. A one minute down
time may have no effect on a batch user (he probably 
won't even know about it), but a one minute down time 
can have a major impact on all graphics users. The sys
tem should have quick and complete recovery for the 
user. 

Because the users are usually located at a place other 
than where the computer is, the scopes should be capable 
of remoting. High speed transmission equipment had to 
be used in order to satisfy the volume and response 
requirements of the equipment. 

USER CONSIDERATIONS 

Graphics systems were not developed in a research 
environment at the Lockheed-California Company. Our 
present uses are cost effective and have been since the 
early stages wherever they were applied. 

First it was necessary to plan and select the proper 
graphics applications. These applications were selected on 
the basis of need, and this activity was participated in by 
representatives from all potential user areas. 

Our new development was confined to programs having 
broad, immediate day to day use. We did not want to fall 
into the trap of planning for what we thought might be 
needed a year or two years down the road. This too often 
results in finding that the problem has changed and that 
the program does not now solve the present problem. 

We had to assure centralized forecasting of workloads. 
If we were going to have the equipment available at the 
proper time, we had to know what the needs were. 

Uneven workloads were smoothed out by either plan
ning new work for the valleys, extending scope time avail
able, or modifying the work plan in some cases. 

The scope time was in all cases scheduled and coordi
nated in order to assure a high degree of utilization. If one 
user is unable to utilize his time, another user is always 
available to take up the slack. 

We utilized a swing shift whenever possible. Not only to 
take care of peak loads, but to reduce cost. Scope hours go 
into the denominator of the cost equation. 

Adequate training of the proper type of individuals was 
a requirement. We found that many good, competent 
engineers did not relate well, did not work well in an 
interactive environment. Others were extremely effective 
in their capability of utilizing the equipment. The Lock
heed Training Department participates in this extremely 
important function. 

We have developed a comprehensive system for report
ing the highly essential statistics generated by Graphics. 
There are accounting programs that generate the costs of 
scope time so that it may be charged back against the 
user. There are programs that generate reports on utiliza
tion which may be used by management for measuring 
past performance and planning schedules and workloads. 
And there are programs which give information related to 
performance. What is the response being experienced? 
How many interrupts per user are being serviced? These 
help our programmers to improve the performance of the 
various graphic applications. 

ARRANGEMENT OF SCOPE FACILITIES 

At present, all of our scopes, except one, are located in 
the user environment. Proximity to the actual user was 
deemed necessary so that the engineers and other users 
would be able to have quick and easy access to the power
ful tool. Eight scopes are located in our commercial engi
neering building and support over fifty engineers on a two 
shift basis. They not only utilize analytical programs, but 
prepare drawings for production release in fuselage interi
or, wiring diagrams, floor beams, and other structural 
applications. One scope located in another area is manned 
by engineers doing surface development which is known 
as lofting. Another is used to prepare tapes for numeri
cally controlled milling machines which cut parts and 
tools for manufacturing. 

APPLICATIONS 

We have divided our program development into two 
general area-design analysis and design drafting. 
Design drafting includes all work on the Computer
graphics Augmented Design and Manufacturing System 
(CADAM) which is the powerful, general purpose pro
gram for design, drafting, numerical control, and lofting. 
It also includes all of the related system of supporting 
programs. The design analysis area covers all of the other 
graphic programs. These include structures analysis, 
simulation, scrolling, data display, editing, and other 
programs. 

SIMULATION OF AIRCRAFT FLIGHT 
CHARACTERISTICS 

The Interactive Continuous Systems Modeling Pro
gram (lCSMP) is a problem oriented program designed to 
facilitate simulation of continuous processes on a digital 
computer. The components of the continuous system for 



both input and output are represented graphically on the 
graphic display. It is an adaptation of IBM's CSMP digi
tal simulation language to graphics. Through the use of 
this language, both static and dynamic simulations are 
possible. This program has enabled us to simulate closely 
actual flight conditions. For example, trim, sideslip, wind, 
ground runs, and take-offs can be simulated for various 
aircraft configurations. Even feel or touch systems 
employing friction, detent, spring action or damping such 
as control column, wheel, or rudder pedal response are 
possible. The program provides for online editing, correc
tion, display of graphs, and extensive operational interac
tion through the modification of modeling parameters. 

ANALYSIS OF AIRFRAME STRUCTURE 

The Two Dimensional Structures Program was devel
oped to complement our larger batch computer programs. 
The program can analyze any two dimensional structure 
which can be modeled by assembling axial elements, 
beam elements and shear panels. It is also capable of 
analyzing shell supported rings or frames. External loads 
must be in the plane of the structure. In the case of rec
tangular panels, the engineer can insert special data on 
the panel to provide for cutouts, tapered stiffeners, and 
variations in thickness. Modifications may be made at 
anytime to any of the input data. Some typical modifica
tions are (1) changing geometry, (2) changing external 
loads, (3) changing the section properties of any member, 
or (4) changing support conditions. In addition to modifi
cations of the basic structure, new members and supports 
can be added to the existing configuration. 

ANALYSIS OF LINKAGE MECHANISMS 

The Spacebar program was developed to provide for 
the analysis of linkage systems in three dimensions. The 
program provides for the construction, on the graphics 
scope, of an operable or movable mechanism train made 
up for one, two, three, or four classic four bar units tied 
together in tandem and operating in three dimensions. 
Also provided are means to determine internal loads at 
any mechanism position, displacements under load and 
input-output curves resulting from the mechanism 
motion. 

The program constructs a discrete element mathemati
cal model of the composite mechanism and projects it in 
two views onto the plane of the graphics screen. It is 
viewed as a series of nodes, joined by elements of fixed 
length and relative position, all moving on the screen in 
accordance with the mathematical relationship of the 
physical mechanism in three dimensions. 

The engineer establishes the geometry by describing the 
plane of motion of the crank arm and giving a line of ref
erence for angular measurements within the plane. He 
then establishes the relative position of the linkage nodes 
and their lengths. The mechanism can then be dynami
cally operated in three dimensions by rotating the bell 

Graphics and Computer-aided Design in Aerospace 631 

crank and producing the input-output curve. The pro
gram provides the means to determine internal loads at 
any mechanism position and the displacements under 
load. 

INTERSECTING BEAM PROGRAM 

The Intersecting Beam program is another fully opera
tional program available in the Computer Graphics 
Library. Its primary purpose is to mathematically define 
a discrete element structural model of two limited series 
of parallel beams intersecting at mutual right angles, to 
apply concentrated loads at the points of intersection, and 
to compute the resulting bending moments and deflec
tions at those intersections. All the beams are straight and 
lie in a single plane, the plane of the display screen. The 
loads-areappfie-d--peqnmdicuiarw-ttm--grid--ar-tre-a:ms ··at 
the intersection points. Deflections and bending moments 
are measured in the same direction. Uniform loads must 
be distributed to the node points as concentrated loads. 

The necessary input data includes the applied loads, 
sufficient information to fully describe the geometry of 
the grid desired, and the stiffness of each beam segment. 
All information may be entered at the screen by altering 
the data of a standard grill called from the data library. 

In addition to the necessary minimum geometry and 
stiffness information, two options of additional data are 
available. Up to a maximum of fourteen flexible supports 
may be used to give intermediate support to the grid at 
the selected beam intersections. The end fixity of the 
beam may also be provided at the scope to vary the beam 
ends from full fixity through continuous beam to a condi
tion approaching simple support with no fixity. 

This program was used extensively in designing the 
floor beam structure of the Lockheed L-1011 TriStar. 

CADAM 

The Computer-graphics Augmented Design And 
Manufacturing System (CADAM) is a complete system 
of programs which give design, drafting, lofting, and 
numerical control capabilities from design concept to 
manufactured product through computer graphics. It is 
the result of eight years of development testing and use, 
and has been effectively applied wherever design input is 
required. Basically, it is a graphics drawing program, 
however, its capabilities have been developed to the point 
where, to my knowledge, I believe it is the most effective 
and productive graphics program in use. 

Let's check some of its capabilities. CADAM is based 
upon descriptive geometry. Information is stored within 
the computer in the form of a math model which is 
retrievable for various uses in the system. Complex 
shapes are readily constructed. Straight lines, circles, 
ellipses, splined curves, etc., are readily available by the 
selection of a function key on the console to enter the 
proper mode. Design sketches can be translated into pre
cise engineering drawings at considerably higher speeds 
than by the manual methods. 
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CADAM provides a common data base for all user dis
ciplines. Design models may be viewed at once by retriev
ing them from the data base storage and displaying them 
on scopes in different function areas. Several systems in 
one model can be developed simultaneously and inde
pendently with no loss of time. 

With CADAM, views can be stacked, separated, or 
otherwise located within a drawing perimeter in minutes 
-the designer sees immediately what he has done. If 
necessary, he can take immediately any further action 
required. Batch processing operations would require 
hours or days for successive adjustments. 

Accuracy to at least four decimal places is always 
obtained with CADAM. The machine plots which it 
produces are highly accurate and may be produced at any 
scale. 

Interfacing components or details may be shown simul
taneously on the scope to assure compatibility. Converse
ly, an assembly can be broken down into separate details, 
as may be required in the manufacturing process. It is 
done accurately, and in a matter of minutes for each 
detail. 

By using CADAM, a detail like a bracket, need be 
constructed only once and still be positioned and repeated 
on a drawing wherever needed. One may change sizes and 
dimensions automatically without distortion. 

Provisions in the program permit variations in scale or 
size to be readily extracted from master drawings to fit 
individual needs. Changes to drawings can be made accu
rately, and in minimum time without reconstructing 
unchanged elements. 

A complete library of standards, symbols, and details 
can be stored in computer memory and then called up by 
the user as needed. 

Error detecting logic within CADAM tends to reduce 
the incidence of human and construction errors. Interac
tion with the scope display allows the operator to detect 
an error in his design without resorting to hardcopy print. 
If he makes a syntax or geometrically impossible error, a 
message to that effect will appear on the scope so that 
immediate, corrective action can be taken. 

A key code in CADAM makes it possible to automati
cally control the release of drawings and prevent unau
thorized changes. This makes the data available only to 
authorized individuals. 

Multi-axis numerical control programming is available 
through CADAM. The interactive computer programs are 
designed to help the user develop a sequence of operations 
on a punched tape which in turn will be used to direct a 
specific machine tool to produce a part swiftly, accurate
ly, and with a minimum of tool tries. It is now possible to 
produce a machined part straight through from the design 
on the scope to the cutting of the part on the numerical 
control machine. 

CADAM makes available to the user the ability to 
dynamically display the cutter centerline path and the 
part geometry in both the plan and elevation views simul
taneously. An image of the cutter actually moves along 

the cutter path on the screen. This permits ready and 
easy editing of the cutter path. If the programmer notes 
an error, he can go backward or forward at any time to 
check the sequence of cutter motions. Errors of small 
magnitude are eliminated at an earlier stage by analysis 
verification of part geometry. In actual use, we have 
found 30 percent of the control tapes required no change 
to be put in production. The total number of tool tries was 
reduced by 50 percent. 

CADAM allows the complete definition of the surface 
geometry of a vehicle such as an airplane. This process is 
known as lofting. Its use falls mainly in three general 
areas. First is the building of contours and the smoothing 
of these contours from raw data. Next comes the interro
gation as required of these previously defined contours. 
Finally, there is the assembly of related contours into 
layouts suitable for plotting as undimensioned loft draw
ings. 

At present, work is proceeding on developing a system 
to generate parametric surfaces. This program is needed 
to enhance our capabilities in the generation of surfaces 
for compound curvature areas of an aircraft such as fil
lets, nacelle leading edges, and other difficult surfaces. 

CADAM SYSTEM 

One of the particularly unique features of CADAM is 
the ability to operate multiple scopes from a single region 
of memory in the computer. Up to seven scopes can be 
operated from a single region with no noticeable degrada
tion in response time. As many as ten scopes have been 
operated from a single region, but certain action on the 
part of the users can cause lengthy and somewhat unac
ceptable response times. Each of the multiple scopes 
operating in this data roll mode is working on a different 
drawing, but to each user it appears that he is the only 
one using the computer. 

The interactive graphics program requires only 126,000 
bytes of high speed memory. Of that memory, 84,000 
bytes are rolled to and from high speed drum storage. The 
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Figure I-These scopes are located in an engineering environment 
approximately one mile from the graphics computer. 



Figure 2-Here is a loftsman employing manual methods laying out a 
----- - -conwuTtliioiigfiTIie use of a-ITexiOfespIine. -

remaining 42,000 bytes contain the input-output buffers, 
the control monitor, the attention queue and the other 
fixed parts of memory. 

A comprehensive system of saving the drawing files has 
been implemented. Even though the drawing is released 
in its normal hardcopy form, we safeguard the drawing 
while it is being constructed and after it is released. Both 
drawings and programs are saved on a daily basis, a 
weekly basis, and finally on a monthly basis at a remote 
site. 

If the computer or the system goes down during the 
day, a "warm start" can be made to recover the drawing. 
The drawing will be in the same condition as it was the 
last time it was rolled to the drum storage. Within sec
onds after the computer is up again, the user can again be 
working on his drawing. Occasionally it happens that the 
drawing cannot be recovered, and the user has to go back 
to the drawing file or start over. For this he uses what is 
called a "cold start." 

The drawing files are managed by the user (i.e., the 
engineer, numerical control programmer, or loftsman). 
He may purge a drawing or file a drawing as his needs 
dictate. Normally, only one man in an area is assigned 
the task of data management. The user area is therefore 
responsible for and does all the work in maintaining their 
drawing files. 

The interactive graphics program of CADAM consists 
of 60 percent FORTRAN programs and 40 percent 
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Figu~~_~-T!t.~~~~_~_~~_~~eo.f Q.~!>_~~ the lol!sl!1an is ..§.\!Q_w.uJaring._out 
contours including mathematical splines on the graphics scope 

Assembly Language. The assembly language programs 
are those which are most frequently used and require 
very fast execution. It is in this way we achieve the high 
effectiveness and the fast response time of the system. 
Common response time is less than a half a second. Sys
tem up time is greater than 96 percent where the system 
up time is defined as what the user sees. The down time 
may be due to hardware, the operating system, the pro
gram, the computer operator, or the user himself. Occa
sionally, down time is generated by the transition time 
necessary to change allocations of memory or scopes. 

SUMMARY 

The Lockheed-California Company has developed a 
strong and effective computer graphics capability. It has 
grown from an idea based on new equipment announce
ments in 1964 to many scopes used on multiple shifts in 
1973. Adherence to sound considerations relating to both 
the programming and the user were important factors in 
this successful development. Computer Graphics need not 
be restricted to a research environment, but can contrib
ute profitably to all phases of work. At Lockheed, it is a 
growing computer-aided design tool with contributions 
ranging from design concept to manufactured product. Its 
potential for growth to meet future needs is unlimited. 





Graphics and digitizing automatic transduction of 
drawings into data bases 

by CHARLES M. WILLIAMS 

Virginia Polytechnic Institute and State University 
Blacksburg, Virginia 

INTRODUCTION 

Figure 1 is a computer graphic rendition of a sketch of 
Einstein by Hans Erni.l The original hard-copy source 
document was digitized in less than 1 minute by a Visicon 
AD-1 system.2 Approximately 20 seconds of IBM 370/165 
digital computer time were then required to organize the 
resultant data into list structures and generate plot 
commands. The plot itself required roughly 7 minutes of 
Calcomp 718 digital plotter time. The entire process was 
simple, fast, accurate, and inexpensive. It is a sample of 
the power of an automatic digitizing system operating in a 
computer graphics environment. 

The automatic digitizing system used contains a drum 
type raster scanner which yields the digital coordinates of 
the black points on hard copy drawings. These coordi
nates are then processed by a graphic collation software 
package to produce a list structure representation of the 
black areas on the drawing. These list structures can then 
be processed to yield such plots as shown in Figure 1. 

DIGITIZATION PROBLEMS 

Historically the development of computer graphics has 
been severely constrained by an inability to transduce 
hard copy drawings into computer data bases in an eco
nomical and rapid manner. Although excellent methods 
have been developed for displaying and recovering per
manent copies of drawings from such data bases, the 
input mechanisms have been largely constrained to tedi
ous and error prone line tracing methods inadequate for 
complex \vork. In essence, computer graphics has oper
ated as a television industry with no television cameras. 
The development of the automatic digitizer has now pro
vided the camera, the graphic collation software, the 
signal converter between the camera and the television 
set. 

The magnitude of the task of transducing even a simple 
drawing into a computer data base may be glimpsed by 
examining statistics taken from Figure 1. This drawing of 
Einstein required 531 distinct pen strokes which were 
constructed from 13,475 straight line segments. The digi-
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tal representation of such data more than amply justifies 
the --ad-age -Th8:f8:-·pictlire-ls·worth--a-iliousancr(compu:rerr-
words. 

The visual information in this drawing is contained in 
the nuances of the shape and thickness of the individual 
lines that compose it as well as the spatial inter-relation
ships of those lines to each other. Each line carries its own 
important message, and the impact of the drawing is 
reproduced only by faithfully copying all of its features 
by a camera-like process. 

Line tracing methods involving such equipment as 
manual digitizers, automatic line followers, or graphic 
data tablets are inadequate as they cannot capture the 
drawing in its original form. Aside from the fact that they 
do not standardly record variations in line thickness, such 
devices suffer from positional accuracy problems gener
ated by the requirement that they track individual lines 
separately. On the one hand there is a high correlation in 
the positional accuracy of the points which determine an 
individual line so that the detection and removal of errors 
by smoothing methods are ineffective. On the other hand, 
as there is no correlation in the positional accuracy of the 
points on separate lines, the inaccuracy of separate lines 
relative to each other can be twice that of the individual 
points themselves. As a result, traced lines can fail to 
intersect or intersect when they should not, and there is 
no contextual information provided which can identify 
and revolve the problem automatically. The resulting 
distortions can create large deviations in both shape and 
topology of the drawing which are exceedingly difficult 
and expensive to detect and remove.3 

These problems, howe\rer, are minor when compared to 
those a human can interject into the system when manual 
tracing methods are used. Errors of commission and 
omission become rampant when a human is required to 
concentrate both visual and motor skills in the laborious 
and tedious act of line tracing. His muscular coordination 
and mental attention will deteriorate rapidly if tracing is 
required over an extensive period of time. Although t.he 
equipment he uses is often highly accurate itself, the 
human is not, and worse yet his errors are not sufficiently 
repeatable for a verification process to be meaningful. 
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Figure I-Digital replot of an automatically digitized drawing 

AUTOMATIC DIGITIZATION 

Much of the power of an automatic digitizer is embod
ied in its ability to capture all the visual aspects of a 
drawing to an accuracy exactly specifiable by the 
mechanical and optical properties of the device itself. Its 
performance must be predictably repeatable within these 
known limits. Figure 1 for example was digitized at 200 
samples per inch, and each digitized point was repeatable 
to an accuracy of 0.005 inches. 

The power of the graphic collation process, on the other 
hand, is derived from its ability to transduce this data 
into graphic data structures in a rapid and efficient 
manner with no attendant loss of information. The 
graphic collator software performs this function in times 
essentially proportional to the length of lines on the draw
ing and independent of their complexity. The derived 
data structures are organized by curves in such a manner 
that distinct lines on the drawing are represented by dis
tinct list structures. 

As these data structures include both line width and 
line intersection information, they constitute both a pic
torial and a topological representation of the source data 
to an accuracy identical to that of the digitizing process. 
Moreover, their manipulation and analysis can be per
formed by standard list processing techniques. 

Figure 1 for example was obtained by plotting lines 
around the peripheries of the dark areas of the drawing. 
The points defining these lines were smoothed by least 
squares techniques to remove the 0.005 inch digitizer 
quantizing noise. Alternatively line thinning techniques 
could have been employed, or the data could have been 
fed directly to electrostatic (raster) plotting devices. As 
line connectivity information is also included, network 
analyses of the drawing can be obtained directly.4.5 

PROBLEMS OF AUTOMATIC DIGITIZATION 

Unfortunately, automatic digitization does not yet 
imply that all desirable input functions will automatically 
be performed. First, the labeling, or identification, of 
graphic elements must still be done by hand. On-line 
methods can use standard interactive techniques employ
ing such tools as data tablets, light pens, and joy sticks. 
Off-line techniques can profitably employ manual digitiz
ers for locating and identifying important points on the 
source document. The computer correlation of these 
points with those derived through automatic digitization 
can be efficiently accomplished during graphic collation 
provided reference lines are incl uded for orienting the 
document. The accuracy of the manual digitizer can now 
play a decisive role in resolving the identity of tightly 
spaced lines. Moreover, the human error factor has been 
greatly reduced as the muscular coordination required in 
line tracing is not involved. 

The second problem involves the identification and 
removal of unwanted information which is included in the 
data because the entire drawing has been transduced. 
Such information is readily and economically identifiable 
provided it has unique localized characteristics. Noise, for 
example, is easily handled when it occurs in the form of 
isolated dots or short, thin line segments. Lettering can 
also constitute unwanted information if there is a require
ment to replace it by coded text. Such lettering can be 
isolated if it can be uniquely described by its localized 
high spatial frequency characteristics.6 The recognition of 
individual letters is not necessary if the coded text is 
inserted and correlated by other means. 

Automatic editing will in some instances not be totally 
successful, and human auditing of the results may be 
required. The effectiveness of such interaction on-line will 
be considerably enhanced if the data structures describ
ing deleted material are available. The power of the sys
tem will still be in evidence even if considerable on-line 
manipulation is necessary. The suppositions are that the 
bulk of the task has been accomplished correctly, and 
that the interactive erasure of unwanted information on a 
line-by-line basis is a far easier and more accurate task 
than the creation of new information by sketching. 

SUMMARY 

This process is a realization of an economical, accurate, 
and easy method for capturing drawings for use in com-
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puter graphics systems. The implication is a far more 
productive utilization of computer graphics console time 
with emphasis on image manipulation, editing, and anal
ysis rather than on image creation. 

The value of automatic digitization lies in its ability to 
rapidly and accurately transduce drawings into computer 
data bases. Such ability implies that drawings may 
directly act as the original source of information for the 
various purposes for which they were conceived. That is, 
the data base will be in one-to-one correspondence with 
its own drawing and may therefore hopefully provide the 
same information to the computer that the drawing does 
to the human. 

The dream of computer graphics is of man and ma
chine working intimately toward the solution of complex 
problems by combining the visual power of the human 
wjth the _ cO!!!I?ul~liQI:l_1:!1I>9_~~! __ ()f th.~_ C:Q~put~r. This 
dream is indeed realizable provided that the data upon 
which it must feed is readily accessible, for the strength 

and viability of any computer system is measured by the 
data which it processes. 
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Graphics in medicine and biology 

by CAROL M. NEWTON 

University of California 
Los Angeles, California 

INTRODUCTION 

Interactive graphics is not new to biology. The need felt 
for intuitively guided~ graphically supported model explo
ration early predisposed physiological modelers to analog 
systems. Small computers derived from the LINC, which 
was designed for biomedical laboratory research, have 
long found favor among biomedical investigators both 
from experiment control and off-line interactive analyses 
with graphical displays. The decision to transfer from 
these "hands-on" approaches to larger digital systems 
often was made with considerable reluctance, despite the 
latter's greater capacity, versatility, precision, and rich 
libraries of statistical and other applications software. 
Modern interactive graphics terminals time-shared from 
major digital systems not only obviate the necessity to 
choose between these types of capability, they enable 
more versatile and meaningful forms of interaction than 
heretofore realized. 

Consider some basic characteristics of biology. Com
plexity is encountered from the molecular level through 
the physiological or population systems one seeks to 
model realistically. Hypothesis discovery is as important 
an activity as hypothesis validation in so rapidly develop
ing a field, and hence there is great need to support 
human intuition. The pictorial and other data bases in 
which one seeks to discern patterns entail ill-defined 
variances and overlaps that often yield better or more 
efficiently to visual inspection than to computational 
algorithms. Much of the computer-related progress in 
biology and medicine today requires collaboration of 
people with different backgrounds; at the graphics con
sole, mathematicians and biologists can exercise and 
cross-check the concepts they are seeking to communicate 
to each other. The interface problem is of controlling 
importance when one wishes physicians or other dedi
cated health-care professionals to use computers. Light
pen selection, conversational displays that include access 
to instructions, and meaningful graphical feedbacks have 
won acceptance from these professionals. 

The relationship of these considerations to indications 
for graphics support will be illustrated in a number of 
biomedical applications areas. Finally, some NIH-sup
ported developments in graphics technology will be men
tioned. 
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SOME IMPORTANT CATEGORIES OF GRAPHICS 
APPLICATIONS IN BIOLOGY AND MEDICINE 

3-dimensional structures 

Many people became aware of graphics' potential in 
biomedical research through Levinthal's displays of rotat
ing molecules. 1 Molecules encountered in biological sys
tems tend to be complex. One wishes to view these molec
ular structures from different directions, with an ability 
to highlight various substructures, alter substituents, 
explore allowable structural changes, and discern geomet
rical relationships such as planar or helical surfaces rich 
in atoms, which may not be easily suggested by a mole
cule's structural formulas. The limitations of conven
tional ball-and-stick molecular models are apparent. It is 
not surprising that a number of biochemical investigators 
have developed and used interactive graphics molecular 
modeling systems. Levinthal and others now are exploring 
similar approaches to depict neurai systems. Even an 
embryonic nervous system can be so complex that the 
unaided mental reconstruction of 3-dimensional relation
ships from serial sections is prohibitively difficult. 

Image processing 

The 2-dimensional images encountered in biology also 
tend to be complex. Early hopes that computers soon 
would fully automate interpretations of chest x-rays, 
chromosome spreads, and microscopic preparations have 
given way to a healthy respect for the human eye. 
Neurath's2 and Frey's3 interactive approaches to chromo
some analysis delegate to the human and to the computer 
what each does best. By light-pen, one can easily isolate 
individual chromosomes in graphics scope displays of 
overlapping spreads. Thereafter, the computer performs 
the required measurements and classification analyses. It 
is of considerable diagnostic interest to be able to esti
mate heart volume as a function of time. Biplanar cinean
giograms provide a stereoscopic view of the beating heart 
by recording a rapid sequence of pictures taken while a 
contrast material is present in the heart. The processing 
of this large amount of data can be facilitated greatly if a 
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human operator can intervene with light-pen whenever an 
otherwise automatic system for tracking heart boundaries 
derails. 4 A broad program in interactive image processing 
is being jointly undertaken by engineers and radiologists5 

at the University of Missouri. 

Examination of data 

Both physiological signals and the data bases encoun
tered in clinical studies are likely to be complex and 
noisy. The need to infuse human intuition and pattern 
perception into the analysis of these data has motivated a 
variety of interactive graphics developmental efforts at 
UCLA's Health Sciences Computing Facility6.7 and else
where. For the neurosciences, shifting details that may be 
obscured in large-sample averaging of evoked responses 
are sought by visual inspection of many smaller sub
sample averages. Different functional forms and initial 
parameters for non-linear regression fits to interspike 
interval histograms can be explored at the graphics con
sole, and sorts on various fitted parameters for large sets 
of research data provide ordered listings of descriptive 
data concerning each experiment, which can be inspected 
as a first step toward recognition of trends or clusters. 
Interactive graphics programs for file manipulation, 
regression, time-series analysis, and discriminant func
tion analysis are among the statistical utilities being 
developed. 

It is especially helpful to present data in association 
with the structures to which they relate, often not tabular 
in form when biological. In Sheu's neuropharmacological 
retrieval system,s a light-pen guides exploration of brain
section diagrams for domains where injection of a given 
pharmacological agent most frequently results in a speci
fied Boolean combination of physiological and behavioral 
reactions. Interaction with displays of data superimposed 
on a map of Los Angeles County facilitates the study of 
epidemiological variables in conjunction with census-tract 
data and other sources of socioeconomic information,9 

Data handling in pharmacology presents special prob
lems, among them the storage and retrieval of molecular 
structural information with subsequent exploration of its 
correlation with complex data bases derived from animal 
research or clinical trials. It therefore is not surprising 
that the PROPHET system being developed under NIH's 
Chemical/Biological Information-Handling Program to 
support pharmacological researchers lO has been designed 
for time-shared, remote graphics terminals. 

Designing of special-purpose medical equipment 

Interactive graphics systems frequently are used as 
design tools in engineering. Their use is especially appro
priate when inexpensive bedside equipment or economi
cal computer algorithms are being developed for the 
monitoring of physiological systems under realistic condi
tions where patient movements or environmental factors 

introduce signal artifacts. For example, Saltzberg and his 
associates ll compare inexpensive algorithms for electro
cardiographic monitoring, applying them to digitized 
recordings from a large number of patients who have been 
studied in intensive-care wards. The calculated statistics 
are displayed under a plot of each heart beat, along with 
markers at defined locations on each beat as determined 
by the computer. The program pauses and an alarm is 
ind.icated whenever one of the statistics being tested falls 
outside of allowable bounds. The concurrent display of 
statistics, markers, and ECG tracings facilitates insight 
into the reasons for algorithm failures and advantages. 
Honlz is using a similar approach to design bedside equip
ment for monitoring during labor. 

Guidance or implementation of therapy 

Computers have been used for many years in radiation 
treatment planning. 13 However, clinical acceptance rose 
significantly when the special-purpose interactive graph
ics Programmed Console was introduced. 14 More recently, 
remote interactive graphics terminals that access major 
computers over voice-grade lines enable somewhat more 
sophisticated computations and displays of dose distribu
tions and organ outlines to be presented to the therapist 
via a convenient conversational interface 15 that health 
professionals can use with very little instruction. 

An audio-graphics system is itself the therapist 16 for 
non-speaking autistic children. It is known that these 
children tend to love machinery and shy away from 
speaking adults. The system responds to the child's inter
ventions at the keyboard with graphics displays that are 
correlated with spoken words or other sounds. Initial 
results have been very encouraging; a high percentage of 
the children using this system have developed sufficient 
motivation to acquire speech, to enable productive 
resumption of conventional forms of therapy. 

Modeling 

Realistic mathematical description and productive 
investigation of the difficult models encountered in biol
ogy and medicine demand the highest levels possible in 
both analytical skills and biomedical knowledge. A very 
small number of people exist or now are receiving training 
that might enable them eventually to supply both types of 
professional support in a given problem area. For some 
time there will be a need to bring together people of very 
diverse backgrounds to attempt the truly difficult prob
lems. In addition, it often is necessary to involve experts 
from different biological disciplines in problems of great 
practical concern, such as treatment of cancer, where one 
seeks to expedite transport of recent experimental find
ings throughout biology into the clinical domain. At a 
graphics terminal, problem specifications and results can 
be presented in forms that are familiar to all of the scien
tists involved. When requested, a more precise descrip-



tion of underlying mathematical structures and the bio
logical assumptions upon which they are based can be 
made available. On the other hand, when the biologist is 
shown a graph of a proposed dose-response function, 
presence of a leading shoulder supports his confidence 
that the mathematician's formula may in fact correctly 
represent a reparable form of cellular damage. 

Characteristically, modeling problems in biology and 
medicine are complex. A large amount of information 
may be required to define the model to be explored or 
computation to be performed. Specifications in one area 
often risk conflict with those in another. Interactive expe
dition of problem specification can help both to reduce 
the incidence of conflicts and to alleviate a distraction 
from more demanding intellectual tasks required of the 
user. 

~iologically __ ~~~U~Y(L_~.Q~~_s having few parameters or 
closed solutions are not common--:- Model -expIc;raIi"on 
therefore tends to require the running of numerous com
putational probes representing a variety of model condi
tions. Total coverage of all conditions seldom is required 
or economically feasible. Since outcomes often are diffi
cult to predict in such models, strategies for efficiently 
terminating individual runs or varying conditions for 
subsequent runs may have to be developed as model 
exploration proceeds. Thus, the most effective possible 
graphics feedbacks to investigators guiding model explo
ration are both a scientific and an economic necessity. 

Better understanding of biological phenomena has been 
and probably remains the primary motivation for model
ing. However, there is an increasing awareness of its 
promising roles in facilitating the infusion of basic 
research into medicine, and in education. Interactive 
graphics is particularly supportive to these roles. 

Models developed to expedite transferrence of biologi
cal research findings to improved strategies for treating or 
diagnosing disease must be detailed and flexible enough 
to accept new findings while preserving a usable, intelligi
ble interface to the clinicians and medical scientists 
involved in their exploration. Ideally, the biological por
tion of the model should be embedded in a system which 
facilitates both its perturbation by the various therapeu
tic approaches being considered and its incorporation of 
labeling or other processes that support simulation of 
laboratory assessments of the treated system's status. 
When such a level of complexity and flexibility is 
required, it becomes difficult to envision other than inter
active graphics approaches. Lincoln's17 model for gu.iding 
leukemia therapy simulates the application of different 
schedules of cytotoxic treatment agents to the various 
types of cells that comprise the blood-forming system. 
Program construction was facilitated by RAND's 
BIOMOD system for interactive graphics modelingY 
Another interactive graphics model for exploring cancer 
therapy assesses the comparative cycle-specific damage 
inflicted upon two cellular systems by a variety of com
bined radiation and chemotherapeutic treatment strate
gies. 19 Mittman's2o lung model has been designed to aid 
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the development of better pulmonary function tests and 
of a better understanding of how conventional uptake
washout tests should be interpreted when complicating 
factors, such as marked inhomogeneity of compliances, 
are considered. 

Any of the above models can be used to aid education. 
Other interactive graphics instructional programs6 include 
illustrations of basic concepts in sampling and other 
supports to the medical curriculum in biostatistics. 

NIH-SUPPORTED DEVELOPMENTS IN GRAPHICS 
TECHNOLOGY 

Many of the early NIH-supported projects in comput
ing involved some developmental work in analog or 
hybrid computation, or in the designing of convenient 
laboratory computers, which entailed an interactive 
grai>hics--componenf.-some--mor-e- rec-ent-projectsha-v-e 
focused directly on graphics: Neilsen's21 low-cost, refresh
able interactive graphics terminal was developed with 
NIH support at a time when commercial efforts to 
achieve an order-of-magnitude slash in the cost of inter
active graphics were not evident. A project now is being 
supported to field-test this terminal as well as an inexpen
sive commercial system that subsequently became avail a -
ble. As mentioned earlier, the PROPHET project is 
developing systems support for time-shared remote 
graphics terminals. 10 The development of languages to 
support compiler-level access to interactive graphics sys
tems has been a longstanding activity at UCLA's Health 
Sciences Computing Facility.6 This wor~ recently has 
been extended to cope with the low-baud and noise prob
lems entailed in supporting remote graphics terminals 
over conventional voice-grade lines. 15

,22 Although Clark's 
macro-module approach to constructing computer 
systems23 was developed on the basis of a number of con
siderations relevant to needs in biomedical computing, 
one notes that one of its first major applications has been 
to graphics-supported molecular modeling. 

CONCLUSION 

The foregoing descriptions of interactive graphics activi
ties in biology and medicine are intended to be illustra
tive rather than complete. These activities are widely 
based and unmistakably increasing. The author apolo
gizes both to readers and to other investigators for omis
sion of some very excellent projects that would be 
included in a more comprehensive review. 

A deeper presentation of several projects at the confer
ence will be illustrated by motion pictures. 
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The topological design of sculptural and architectural 
systems 
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Salt Lake City, Utah 

INTRODUCTION 

In my work over the past 12 years I have consistently 
created systems with an approach which I will describe as 
topological design. I have tried to capture the spirit of this 
work in my film, "The Ron Resch Paper and Stick Thing 
Film," which will be shown elsewhere in the conference. I 
would like to present here, and in a color slide presenta
tion' the concept of topological design using examples 
from my work for clarity. I will show how the conception 
and fabrication of designed objects have a topological and 
a geometric aspect. Currently, these objects may be char
acterized as emphasizing the geometric aspect, by limiting 
an entire class of objects to be a unique one. Finally, I 
will show where the introduction of the computer into 
design and production process makes possible the topol
ogical aspect, so that the automation of custom made 
objects might replace a series of identical 'ready mades.' 

HISTORICAL BACKGROUND 

Before the Industrial Revolution, one imagines that 
manufactured objects were made by that commonly 
named group of people, the "Smiths." The blacksmith, 
the silversmith, the locksmith, and the gunsmith were the 
craftsmen that made the objects of daily living. The 
smithery, and the objects it made, emerged from, and 
were maintained by, an immediate collection of patrons 
whose wants and needs it satisfied. The legacy handed 
down by tradition was not just the object itself, nor was it 
the object and its smithery as caretaker. It was a sym
biosis of user, object, and maker that lived together in 
very close communication, both in time and in space. 

The gunsmith, for example, possessed a "soft proto
type" in his intimate and complete understanding of a 
gun. That his concept was topological is clear, from his 
ability to accommodate the varying needs of his users by 
varying the design of a gun to fit the user. The grip could 
be made a little heftier, the barrel a little longer. 

Industrialization came with the desire for greater 
volume. The inherent understandings of one man, in 
touch with his craft and his patron, gave way to an explo-
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sive fragmentation of this intimate process. The fragmen
t-atHm--G£-impJ.-icit-Junctionsinto-explicit Tolesj;O-bapl~ __ 
by many persons and machines, brought with it an 
incredible communications problem. 

In response to this, there came standardization and 
regimentation. The varying needs of the user were aver
aged by the researcher, the designer, and the engineer, 
and frozen into a "hard prototype." The responsive varia
tions of the craftsman were replaced by a cumbersome 
and complex organization that seems to be a patchwork of 
stop-gap measures, with a commenserate growth of 
communications problems. 

The introduction of the computer into this complex set 
of relationships, as the greatest and fastest of machines, 
may only lengthen and slow down the communications 
process. Its introduction as a medium of communication, 
however, could bring together the maker, the object, and 
the user into a cohesive whole once more. My work in 
structure design has produced the following concepts and 
structures which make this seem plausible. 

PERSONAL BACKGROUND 

In 1961 I began examining wadded sheets of paper and 
trying to understand the random folding that occurred. 
My desire was to understand what sculptural forms were 
possible. The study limited the possibilities from the 
outset by two highly controlling restrictions: 

1. Only folding of the flat sheet was allowed, i.e., no 
cutting or gluing. 

2. The folded edges were forced to be straight line 
segments; no curves. 

With these restrictions as goggles and blinders, I looked 
at a wadded sheet for randomly occurring wrinkles of 
interest. I selected several patterns, diagrammed them on 
a separate sheet in accordance with the imposed limita
tions, and folded them, Each of these forms had visual 
appeal, but was seemingly unrelated. The search was for 
something that had both conceptual and visual appeal. In 
an attempt to achieve this I was influenced by the classic 
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Figure 1 

notion that a form should be consistent with the material 
from which it is made. 

Consequently, I decided to impose a third restriction in 
the form of a question. It was the key to a rich set of pos
sibilities. Could these simple forms be replicated through 
symmetry operations into a single folded surface which 
would be an expanse of delicate and intricate folds? 
Could I rearrange the folding diagrams of these elemen
tary forms such that when combined with symmetry 
operations they would create two-dimensional mosaic 
patterns? The folded paper dome in Figure 1 was the first 
structure resulting from these restrictions. 

I was pleased with this first folded paper form, even 
though I understood it to be only one of a class of forms. 
This led me to ask, how many ways could I change the 
scoring pattern? How would variation in a particular scor
ing diagram affect the three-dimensional folded 
structure? What were the limits within each class of 
change? Before introducing the structures which resulted 
from these questions I will describe a classification 
scheme for man'-made objects. While the scheme is 
broadly applicable, I will focus on architectural struc
tures including my own. 

GENERATING SYSTEMS 

The geometric surfaces employed in architectural 
design are typically the plane and the sphere. When one 
wished to build a network approximation to these ideal 
surfaces, or more complicated ones, a generating system 
is required. A generating system is defined with the exist
ence of two associated rules which describe: 

1. How to determine the geometry of each part 
2. How each part is assembled into the system 

Following are three classifications for generating sys
tems: combinatorial, geometric and topological. 

COMBINATORIAL GENERATING SYSTEMS 

A combinatorial generating system has a part rule 
which determines a finite set of elements, and which 
allows for each to be replicated. Its rule for connectivity is 
not definitive, but is permissive within contextual con
straints by allowing the user to combine the parts in var
ious ways to form a single system. The geometry of the 
part, or syntactic rules, may dictate these constraints of 
part connectivity. Some examples of this would be the 
letters of the alphabet, modular architectural systems and 
certain constructional toys, such as Tinker Toys. 

GEOMETRIC GENERATING SYSTEMS 

As most structural systems in architecture are com
posed of parts arranged in triangulation, it is more reveal
ing to look at the rule for determining the geometry of the 
part rather than its connectivity rule. Two types of archi
tectural structure which make this consideration clearly 
relevant are flat space frames and domes. 

The shape of most architectural roof systems is flat, 
whether the system be horizontal or inclined. Space 
frames are often used where a large free-span, 
(uninterrupted by supports), is required. Of the many 
space frame geometries used, the "octet-truss" (composed 
of octahedrons and tetrahedrons), is the most common. It 
has the simplest part rule: cut all the pieces the same. It 
is not surprising that the simplest structure has the sim
plest rule. This simplicity contributes to its popularity. 
Such a flat structure was assembled into the well-known 
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pattern at the bottom of Figure 8. One can note that the 
identical pieces in this structure are equilateral triangles, 
the structure being more commonly fabricated from rods 
of equal length. 

The part definition for domes, however, requires a 
more complicated rule resulting from a geometric impos
sibility. It is impossible to transform a regular network of 
triangles, squares, or hexagons onto a domed surface 
without distortion. The regular network is usually trans
formed to fit a dome by a relative expansion of the inte
rior and relative contraction at the outer edges. What dis
tinguishes various dome designs is the method used to 
distribute the network on the dome surface, and the sur
face shape permitted. 

Of the several generating systems for the geometry of a 
dome, the geodesic system has become the most publi
cizeLILcombines the geomeir¥--.a Iegu}ar_-IWlyhedra.-the 
icosahedron, with the transformation of a triangular 
network onto a sphere. 

The transformation rule patented by Fuller* deter
mines that consecutive nodes of the network will lie along 
great circle arcs of the sphere. Thus, it borrows its name 
and method from classical geometry where a geodetic line 
on a sphere is defined to be a great circle arc. This means, 
of course, that the shape of geodesic domes is limited by 
its defining rule to be sections of a sphere. Also, Fuller's 
geodesic system has somehow achieved a popular miscon
ception, that the triangles composing its surface are all 
equilateral. The fact is, there is a 50-50 chance 
(depending on whether the subdivision of the icosahedral 
face is even or odd) that there is not a single equilateral 
triangle in the surface of the entire dome! 

The octet-truss and the geodesic dome characterize 
nearly ali current "generating systems." They each pro
duce only one shape of structure. The former produces a 
flat structure and the latter produces a spherical struc
ture. These shape-dependent systems I refer to as "geo
metric generating system," since they produce a fixed 
system shape with associated fixed parts, and geometry is 
the study which concerns itself with determining size and 
shape. 

The distinction between geometric and topological 
generating systems is in the rule for part definition; the 
rule for connections being held constant. A generating 
system is topological if the rule for part definition is a 
continuous mapping of the geometry of some or all parts. 
It is geometric if the rule for part definition produces a 
unique part geometry for each of the parts. The discrimi
nating question here is: Does the system define a continu
ous transformation which varies the geometry of some 
parts while maintaining connectivity? If the answer is 
'yes,' the system is topological; if the answer is 'no,' the 
system is geometric. 

TOPOLOGICAL GENERATI~G SYSTEMS 

As noted above, architectural generating systems have 
two rules: (1) a rule defining the part and, (2) a rule 

* R. Buckminster Fuller, Patent #2,682,235, June 29, 1954 

defining its connectivity to other parts. The first rule is 
geometric in nature and the second rule, as here defined, 
I would characterize as topological. 

There is no need for a duality in viewing a designed 
object as a system of parts, but it is useful to focus atten
tion on an object's quantitative aspects separate from its 
qualitative aspects. In the field of geometry, topology has 
been defined as the geometrical theory of situation with
out respect to size or shape. The popular definition is 
rubber sheet geometry. I will use topology to describe the 
continuous transformation of a system that may preserve 
only the connectivity of its parts. A topological generating 
system is a generating system whose rule of connectivity 
and whose set of parts remain constant, while a continu
ous transformation varies the geometry of its parts, or 
some subset thereof. 

TWO LEVELS OF CONTINUOUS 
TRANSFORMATION FOR FOLDED STRUCTURES 

My concern in the design of structures has been with 
the continuous transformation of the parts of a system. 
This concern is the basis for my concept of topological 
design. Some structures designed with this concept reveal 
that there is a two-level hierarchy of differentiable 
spaces; one traced out by a topological transformation, 
the other by a geometric one. 

First, there is the two-dimensional space of the mosaic 
in which the scoring pattern may be varied topologically. 
A continuous transformation of this space maintains 
connectivity while changing the geometry, i.e., the size 
and shape of the system parts, the simplest of these trans
formations is the "ribbon transformation," which 
increases or decreases the width of the "ribbon" while not 
altering the size or shape of the remainder of the mosaic. 
The effect of this transformation can be seen in Figure 2 
where three intersection "ribbons" of the mosaic are 
being decreased to a zero width. 

Secondly, there is the three-dimensional space in which 
a folded structure may be varied by folding. The triangles 
resulting from the topological transformation are con
nected to each other in such a way that each edge is an 
axis of folding. Thus the folding of the individual trian
gles relative to each other makes possible a rigid body 
motion of the triangular parts, while also determining a 
continuous, geometric transformation of the entire system 
of parts. The shape of the total system may become rigid 
by fixing the angular relations between the parts at the 
boundry of the system alone, or by fixing these angular 
relations throughout the entire system. 

Therefore, the selection of a distinct folded pattern 
from the topological space of a foldable mosaic will deter
mine an entire class of structures, the members of which 
are a rigid instance of the dynamic folding of its specific 
mosaic pattern. This can be seen by comparing the top 
module of Figure 2 with the folded form created from it, 
shown in Figure 1. 

For further illustration, pick the bottom module from 
the topological space of Figure 2. Repeat this pattern in 
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Figure 2 

the plane; and fold. One instance of the class of realizable 
structures from this pattern is Figure 3. 

Christiansen has written a computer program to simu
late the folding transformation. * It was used to compute 

* Reported in R. D. Resch and H. N. Christiansen, "The Design and 
Analysis of Kinematic Folded Plate Systems." Proceedings of the 
Symposium for Folded Plates and Prismatic Structures, International 
Association for Shell Structures, Vienna, Austria, October, 1970. 

the geometry in the sequence of computer simulated 
video pictures of Figure 4. It is evident from this sequence 
that a single scoring pattern may be continuously trans
formed by folding, to achieve a wide variety of architec
tural surfaces. 

Figure 3 
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Figure 4 

I have discussed the two levels of transformation (the 
topological and the geometric) which may be performed 
upon a "folding mosaic" of the two-dimensional plane. 
The combined transformations produce a continuum of 
physically realizable structures, from which a designer 
may select a specific architectural shell form, by specify
ing his needs. 

FOLDING MOSAICS AND MODULAR FOLDINGS 

The two levels previously described are imbedded 
within two more. While the first two levels are sets whose 
members exist in a continuous space, the members of the 
remaining two levels exist in a discrete space. They are: 

1. The set of all folding mosaics of the plane* 
2. The set of all modular foldings of the plane 

Above, I have shown one of my "folding mosaics" and 
allowable transformations of it. Many others may be seen 
in my film previously mentioned. This set may be 
included within a set of modular foldings of the plane. It 
will include modular foldings which are not infinite, two-

* R. D. Resch Patent #3,407,558 October 29, 1968. 

dimensional patterns, but are limited by their definition 
to some local, finite graph whose modules are interrelated 
by a rule. I will describe one example of this set which 
was published as the cover design of the "Communica
tions of the ACM" for November, 1970. 

This structure is named "bird form," as I have used it 
most often to create abstract, bird-like shapes. As in the 
folded mosaics, the scoring diagram for the bird-form has 
its associated topological transformations for which I 
have written a computer program with parameterized 
input. Each parameter controls a class of continuous 
topological change to the scoring diagram. 

Some of the classes of change are depicted in Figure 5. 
From top to bottom they are: 

1. Proportions of the "page" before subsequent trans
formations 

2. Variation of vertex location on inner and outer bro
ken line segments 

3. Scaling of outer broken line segments 
4. Angular variation of outer broken line segments 

A specific geometric scoring diagram of the bird form, 
resulting from these topological transformations, defines a 
class of possible three-dimensional structures. For 
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Figure 5 

instance, the bottom scoring pattern in Figure 5 is shown 
as a simulated video picture in Figure 6, and is shown as 
a photo of the actual three-dimensional folded object in 
Figure 7. 

Both of the examples sited above, the 'bird form' and 
the 'folded mosaic,' have an associated geometric and 
topological tramformation for achieving a specific three-

dimensional shape. The following structure is determined 
solely by a topological transformation. 

OCTET -TRUSS 

The traditional 'octet-truss' is produced by a geometric 
generating system whose part rule predetermines it to be 
exclusively flat. I have created a number of topological 
transformations for this well-known structure which will 
map it to some desired surface shape. Figure 8 shows a 
sequence of domes of increasing curvature being created 
from one of these transformations. Each transformation 
preserves some geometric feature of the structure while 
distorting others, in order to achieve the required surface 
discription. 

RESCH SYSTEM FOR HANDLING DISTORTION 

The impossibility of directly mapping a regular net
work onto a domed surface without distortion has been 
noted earlier. I have overcome this logical impossibility of 
building domes from identical pieces, by putting the 
required expansion and contraction in the folded crevices. 
The required variation of member length and facet 
dimension has been shifted to a variation in the angle 
between the modular plates. The procedure clearly iso
lates the necessity for variable length from the desire for 
identical modular components. 

Therefore, it is possible to construct any variety of dif
ferent domed surfaces from a repetition of identical 
modular plates by simply varying the dihedral angle 
between the plates. The mosaic fold shown in Figures 3 
and 4, for instance, is composed of only two distinctly 
different triangles. A small collection of these two trian
gles will create a module which when repeated will form 
the mosaic of an entire structure. 

It is easy to conceive of machines which would readily 
change this collection of plates by varying the fold angle 
between the plates rather than the dimensions of the 
plates themselves. In developing such an automatic 
manufacturing process for architectural structures, it has 
seemed wise to first develop experience at automating the 
production of models. Two automatic techniques have 
been explored. 

First, hand scoring of the flat sheets to be folded has 
been replaced by numerically controlled scoring. This was 
achieved by modifying a flatbed plotter with the addition 
of a custom made scoring stylus and four pounds of dead 
weight to emboss a score line into a sheet of rigid vinyl. In 
exploring the sculptural and architectural possibilities of 
the 'bird form,' this technique proved invaluable. as every 
designed form had a unique scoring diagram. 

Second, the automatic scoring procedure of scoring 
paper and vinyl sheets was extended to metal plates by a 
photo-chemical milling technique. Instead of pressure 
scoring, as in paper or vinyl, a metal sheet requires the 
removal of material along the line to be folded. Again a 
digitally CUI1lI'ulIeu plotter was used to draw the score 
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Figure 6 

Figure 7 
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Figure 8 

lines. This artwork was transferred to an aluminum plate 
and the pattern chemically engraved. The sheet was then 
folded by hand. The 'bird form' on the cover of the 
"Communications of the ACM" was produced in this 
manner. 

CONCLUSION 

My work in the area of structure design, having been 
coupled with the computer as a medium of design and 
production, seems to suggest its possibility as a communi
cations medium. The obstacles of achieving a facile rela
tionship of people and things seems to inhere not so much 
in the structure of things themselves as the structure of 
our ideas and values. I believe from present experience 
that it is possible to reintroduce a 'soft prototype'; to pay 
attention to the subtle variations of user needs; to con
ceive of objects as a continuously varying class of solu
tions to a continuously varying set of needs; and to use 
these needs as input to a transformation upon this topo
logically conceived object class such that it determines a 
specific set of instructions that will work within the varia
tions made possible by automatic machines and process. 

I believe that a large number of specific demands on a 
production process can result in an equally large number 
of individual objects, of a class of objects, at no substan
tial increase in total cost, if the system is so designed. 
This total concept I have called topological design. 



An informal graphics system based on the LOGO 
language* 
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INTRODUCTION 

This paper describes an attempt to create an informal 
graphics system: a system simple, flexible and inexpen
sive enough to be used by non-professional programmers 
for day-to-day problems. Informal computer systems of a 
nongraphical nature, most of them based on the APL or 
BASIC languages or on the RAND Corporation's JOSS 
system, are now quite commonplace. They are invaluable 
for teaching programming and for use by 'occasional' 
programmers in research and industry. In the future, as 
graphics equipment costs fall, the use of informal graph
ics systems is likely to become increasingly widespread. 

Simple line-drawing functions can be added to any 
conversational language without much difficulty; this is 
one way of creating informal graphics systems that has 
become quite popular. There is a danger, however, that if 
one tries to add to the system more powerful facilities, 
such as functions for transforming or structuring pictures, 
the system will become unwieldy and demanding on the 
programmer. The aim on this occasion has been to pro
vide all these facilities, and at the same time to keep the 
system simple and easy to use. The result is a system that 
enables even beginning programmers to write interactive 
graphical programs with ease. 

The system has been designed around the LOGO lan
gauge,l LOGO is the sole language available to the user, 
who therefore uses it both to write programs and to con
trol and edit them. The language has been extended by 
adding a number of graphical functions. Picture parts 
and symbols are defined as procedures, and a special 
DRAW function allows these symbols to be placed in any 
rectangie on the screen; this provides a very simpie means 
of scaling and rotation, and is a technique that may be 
used to several levels of depth in defining structured pic
tures. Symbols need not be predefined, since procedures 
may be created or modified by the program itself. An 
interesting feature of the system is the absence of conven
tional global variables or data structures; instead sequen
tial files are used wheneVer data must be stored nonlo
cally. These aspects of the system, and their relevance to 

* This research was supported by the Science Research Council. 
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future informal graphics systems, are discussed at some 
le]l~h in tbis _llaper . 

THE CHOICE OF LANGUAGE 

LOGO is essentially a string processing language. It 
therefore contrasts sharply with the arithmetic processing 
languages generally used in graphics systems. It is possi
ble to perform arithmetic in LOGO programs, but the 
functions to do so have the relatively unfamiliar prefix 
form, and the numbers they manipulate are stored as 
strings. Arithmetic expressions are therefore less compact 
than when written in normal infix notation, and are eval
uated somewhat less rapidly. 

Nevertheless LOGO has much to recommend it as an 
informal graphics language. It combines to an unusual 
degree the simplicity needed by the beginner or occa
sional user with the powerful structure needed by more 
serious programmers. It lends itself very conveniently to 
the use of procedures for picture definition. The simplic
ity of the language makes it feasible to implement a very 
compact interpreter. LOGO's emphasis on string process
ing, although it reduces the efficiency of arithmetic proc
essing, makes the system more versatile, and hence 
increases its range of applications. A system based on 
APL or BASIC would in contrast have few non-numeric 
uses. 

GRAPHICAL FUNCTIONS IN LOGO 

A number of criteria influenced the choice of graphical 
functions to add to LOGO. In the first place, it was desir
able to maintain the characteristic simplicity of LOGO by 
adding as few functions as possible, and by choosing func
tion names that would clearly indicate each function's 
use. The inclusion of a large number of functions for spec
ifying transformations, as is common in general-purpose 
graphics systems, would have been out of character with 
LOGO. 

A second problem was the choice of numbering system. 
For the sake of speed and simplicity, previous versions of 
LOGO have always restricted numbers to be signed inte-
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gers. Unfortunately it is difficult to define scaled pictures 1 000 ,-------------------~ 
if only integer scale factors are permitted. Consideration 
was given to extending LOGO to handle real numbers, but 
this was found to complicate the arithmetic and graphics 
functions excessively. Instead a scaling notation was 
adopted that uses rectangular instance positions, defined 
in integer coordinates. 

For the same reason, integer coordinates are used to 
define basic graphical entities. These may be placed 
anywhere on the screen's 1000X 1000 grid, using the fol
lowing functions: 

MOVETOxy 
MOVEdxdy 

LINETOxy 

LINE dx dy 
DISPLAY s 

move beam to (x,y) 
move beam through distance (dx,dy) 
from current position 
draw line to (x,y) from current 
position 
draw line of length (dx,dy) 
display string s, starting at 
current position. 

These functions have the effect of adding to the infor
mation being displayed on the screen. The user may type 
these functions as direct commands to the system, and 
hence may create a picture on-line. 

Alternatively these functions may be used within 
LOGO procedures. A rectangular box could be defined as 
follows: 

TO BOX/LEFT/ /BOTTOM/ /RIGHT/ /TOP/ 
10 MOVE TO /LEFT/ /BOTTOM/ 
20 LINETO /RIGHT/ /BOTTOM/ 
30LINETO /RIGHT/ /TOP/ 
40 LINETO / LEFT / / TOP / 
50LINETO/LEFT/ /BOTTOM/ 
END 

This procedure could then be used to display a rectan
gle of any size at any position on the screen. For example, 
the command BOX 0 0 1000 1000 would draw a square 
border around the screen. 

THE DRAW FUNCTION 

The technique just described for defining symbols has 
one clear disadvantage: the entire symbol must be 
defined in terms of the variables denoting its size and 
position. The DRAW function removes this difficulty. It 
allows the programmer to define a symbol at a fixed size 
in its own arbitrary coordinate system, and to specify the 
size and position of each instance of the symbol sepa
rately by defining the corners of the enclosing rectangle. 
For example, the BOX symbol could be redefined as fol
lows: 

TO BOX 
10 MOVETO 0 0 
20 LINETO 1000 0 
30 LINETO 1000 1000 

o 
o 

Figure I-Draw box in "500 5001000750" 

40 LINETO 0 1000 
50LINETO 0 0 
END 

1000 

A rectangle could then be drawn as shown in Figure 1 
by means of the following command: 

DRAW BOX IN "5005001000750" 

Rotated instances are specified by adding a fifth ele
ment to the instance rectangle definition, denoting clock
wise rotation in degrees. For example, the command 
DRAW BOX IN "500 500 1000 750 30" has the effect 
shown in Figure 2. The symbol is first positioned as speci-

a 

o 1000 
Figure 2-D raw box in "500 500 1000 750 30" 



fied by the first four parameters, and is then rotated 
through the angle denoted by the fifth. An ARCTAN
GENT function is provided for calculating rotation angles 
when only the slope is known. 

The DRAW function may itself be used in symbol 
definitions: 

TO HOUSE 
10 MOVETO 0 500 
20 LINETO 500 1000 
30 LINETO 1000500 
40 DRAW BOX IN "001000500" 
END 

DRAW HOUSE IN "300 300 700 800" 

The result is 'shown in Figure 3. 

THE SIZE FUNCTION 

The reader will notice that symbols are implicitly 
defined within a 1000 unit X 1000 unit definition space. 
This in fact a default size that may be overridden by 
using the SIZE function. For example, the HOUSE sym
bol could be defined to a size of lOX 10 units, without 
affecting any picture in which it is employed, as follows: 

TO HOUSE 
10 SIZE "00 10 10" 
20 MOVETO05 
30 LINETO 5 10 
40 LINETO 10 5 
50 DRAW BOX IN "0 0 10 5" 
END 

The inclusion of a SIZE- function call in a symbol defi
nition serves two purposes. Firstly, its arguments are used 
as denominators in determining scale factors for each 
instance of the symbol. Secondly, it defines a rectangular 
window onto the symbol: all information lying outside 
this window is clipped from the picture on the screen. By 
using variable SIZE arguments it is possible to view any 
rectangular region of the picture defined by a procedure. 

As the window onto a picture is varied, certain symbols 
may be excluded altogether from the screen. The clipping 
routine can detect this before the symbol procedure is 
called, and the call is instead by-passed. This can lead to 
considerable savings in the time taken to display a small 
section of a complex picture. 

As mentioned earlier, one advantage of defining 
instances by rectangular boundaries is that integer coor
dinates can be used throughout. The main advantage, 
however, is the convenience of being able to use a symbol 
without knowing about the coordinate system in which it 
is defined. One can define symbols as an entirely separate 
phase of programming, much as one writes utiiity rou
tines separately from the main program. Symbols may be 
redefined without the danger that their instances will no 
longer fit. The technique also makes it extremely easy to 
use a "library" of pre-defined symbols. 
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a 1000 
Figure 3.-Draw house in "300300 100 800" 

SEGMENTED PICTURES 

Each time the user types a command such as DRAW 
HOUSE IN"300 300 700 800", a logically separate seg
ment is added to the picture, identified by the name 
HOUSE. If another DRAW HOUSE command is typed, 
the segment is replaced. The user may create a picture 
out of a number of separate segments, anyone of which 
may be redrawn without affecting the rest. An ADD func
tion, otherwise identical to DRAW, can be used to add 
further instances to the same segment, and a REMOVE 
function will erase segments. 

This segmenting mechanism does not depend on the 
user to type the DRAW command, but on the fact that 
the DRAW function is not being called by another 
DRAW operation. DRAW operations that occur within a 
symbol, as for example in the HOUSE symbol, do not 
create separate segments. If we consider these as 
branches from the node represented by the DRAW opera
tion that calls the symbol, then it is only the DRAW 
operation at the root of the resulting tree that generates a 
separate segment. 

INPUT FUNCTIONS 

The language includes only two input functions: 
REQUEST, which reads a string from the keyboard, and 
PENPOINT, which reads a coordinate pair from the 
tablet with which the display is equipped. The PEN
POINT function returns a value each time the stylus is 
pressed down on the tablet surface. 

Since the system is designed to run in a single-user 
environment, it would be feasible to read the stylus posi
tion continuously and to execute a procedure every time a 
fresh position is received. This wouid permit the picture 
to move dynamically with the stylus. Unfortunately the 
slow speed of the input connection from the display to the 
computer made such a form of interaction infeasible in 
this case. 
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FILE HANDLING IN LOGO 

The principal feature that raises the system from the 
status of a graphical plaything to a useful system is the 
file system. Sequential files, consisting of records in the 
form of lines of text, may be created and accessed by 
means of the following functions: 

STARTf 
READf 
WRITEfr 
LOOKUPf 

FINISHEDPf 
DELETEf 

open file for reading, name f 
read a record from f 
write record r on file f 
look up f in directory, return 
TRUE or FALSE 
test for end of file 
delete file f 

The READ and WRITE functions perform most of the 
open and close operations that are normally involved in 
file handling. For example, WRITE opens the file named, 
adds one more record to it and closes it; if no file exists 
with the given name, a new file is first created. These 
conventions simplify programming and ensure that no file 
is lost due to failure to close it. 

The ease with which interactive programs may be writ
ten using these functions is illustrated by the next exam
ple. It allows the user to position HOUSE symbols on the 
screen, using the stylus. Pairs of points are stored as 
instance positions in a file called HOUSES; this file is 
periodically read to create the picture on the screen. 

TO RUN 
10 WRITE "HOUSES" SENTENCE OF PENPOINT 

AND PENPOINT 
20 DRAW TOWN IN "0 0 1000 1000 
30 RUN 
END 
TO TOWN 
10 START "HOUSES" 
20 DRA WHOUSES 
END 

TO DRA WHOUSES 
10 TEST FINISHEDP "HOUSES" 
20 IF TRUE STOP 
30 DRAW HOUSE IN READ "HOUSES" 
40 DRAWHOUSES 
END 

RUN 

IMPLEMENTATION 

Previous versions of LOGO have generally been 
designed for a time-shacing environment. In this case, 
however, the system has been designed to run on a small 
machine serving a single user. This appears to be a more 
economical and effective basis for an inexpensive, 
responsive graphics system. The particular computer 
used was an Interdata Model 4, equipped with a writable 

control memory, a drum and a refresh display. An 
advantage of this machine was that it offered, by virtue 
of its writable control memory, the opportunity to micro
code certain sections of the interpreter in order to 
achieve better performance. 

The choice of a single-user environment greatly simpli
fied the design of the most critical part of the system, its 
memory allocation system. Blocks of memory are allo
cated from one end of memory, while a single execution 
stack unfolds from the other; this stack contains both 
parameters and procedure return addresses. 

In most other respects the system follows quite closely 
the design of earlier LOGO systems. 1 An EXECUTE 
function has been added to permit procedures to modify 
each other. This function takes as its argument a string, 
which is parsed and then executed. Strings representing 
procedure editing commands can be constructed and then 
executed in order to modify procedures on-line. For 
example, the following is the kernel of a procedure to add 
lines to the procedure PICTURE; each line added con
sists of a LINETO function whose parameters are the 
coordinates of a point indicated with the stylus: 

TO ADDALINE /N/ 
10 EDIT PICTURE 
20 EXECUTE SENTENCE OF / N / AND SENTENCE 
OF "LINETO" AND PENPOINT 
30 END 
40ADDALINE SUM OF /N/ AND 1 
END 

The processes to handle graphical functions are orga
nized as shown diagramatically in Figure 4. Lines and 
text are clipped and transformed into screen coordinates, 
and are then formed into display instructions and added 
to the display file. The IN and SIZE functions, which 
specify transformation parameters, are passed to a con
catenation routine which combines the current transfor
mation with the one specified, in order to generate a new 
transformation; the old one is saved on the stack. The IN 
function, although it lexically follows the procedure call 
to which it applies, is in fact processed first. This permits 
the new transformation to be set up in readiness, and 
allows the procedure call to be by-passed if the symbol it 
represents lies off the edge of the screen. After the proce
dure has been executed the old transformation parame
ters are restored from the stack. 

LOGO 

:"YI£RPRETER 

'IN' 
'SIZE' 

'LINE' 
'LINE TO' 

ETC. 

CONCATENAT LON 

Figure 4.-0rganization of the transformation process 



This process differs in only one major respect from 
earlier transformation systems for handling display pro
cedures: 2

•
3 it includes a clipping routine capable of clip

ping to an arbitrary polygonal clipping region. Nonrectan
gular clipping regions are likely to arise with the use of 
rotated instances, since the rectangle defining the 
instance may intersect with the edge of the screen. This 
problem has been avoided in the past by specifying the 
position and scale of an instance, rather than its dimen
sions, and by clipping after transformation. In this case it 
was necessary to choose between three different solutions 
to the problem, each involving a different sequence of 
clipping and transformation: 

(a) Transform the symbol to screen coordinates, then 
clip to the non-rectangular intersection of instance 
and screen (see Figure 5a); 

(b )-Ti~~-~f~~m the screen boundary back into the 
symbol coordinate system, compute the intersection 
of symbol and screen boundaries, clip the symbol 
and then transform it to screen coordinates (Figure 
5b); 

(c) Clip the symbol against its own boundary, trans
form it to screen coordinates, and clip it against the 
screen boundary (Figure 5c). 

The first and second methods both involve clipping to 
non-rectangular boundaries. The first has the added 
disadvantage that large numbers of lines may be trans
formed unnecessarily, since they are eventually clipped 

I I 

U ztJ 
CLIPPING REGIO" 

SCREE); 

SL:r 

(a) Transform, then clip 

e' 
\ 

SIZE D CLIPPING REGION 

SCREE:\ 

(b) Clip, then transform 

LJD 
\ 5C3.EE:; 

SECO);O 

SIZE = 

r-It{Sl' C!...l??IXG REGIO:, 

CLIPPING 
REGIO:; 

( c ) eli p-transform -clip. 
Figure 5.-The three clipping and transformation sequences 
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out of the picture. Method (c) suffers less from this draw
back, but involves a separate transformation for each 
successive rotation applied to each symbol; in a highly 
structured picture this could lead to unacceptable 
amounts of computation. Method (b) is the only tech
nique that avoids unnecessary clipping and transforma
tion, and has for this reason been adopted. 

Clipping is performed by a version of the algorithm 
devised by Sutherland and Hodgman. 4 This algorithm 
performs both types of clipping required by the system: it 
functions as a polygon clipper to compute the intersection 
of symbol and screen boundaries, and as a line clipper to 
clip the symbol itself. In both cases the algorithm will 
handle arbitrary convex polygonal regions. The same 
algorithm is used whether or not rotation is involved; this 
results in some loss of speed in clipping, but greatly sim
plifies the design of the transformation software. 

CONCLUSION 

The system described in this paper was built with two 
aims in mind. One aim was to construct a system that 
offered a flexible high-level language with powerful 
graphics facilities, that was easy to use and that could be 
run on a small, inexpensive computer. The other aim was 
to explore techniques that might be applicable to future 
informal graphics systems. In some respects these aims 
were in conflict: it was not economically feasible to pro
vide certain features, such as the capability to handle real 
numbers, that would certainly be provided in future sys
tems. 

One feature that was included largely for experimental 
purposes was the file system. As small computers become 
cheaper, it is likely that many graphics systems will use 
these computers as their main source of processing power, 
and multiaccess systems will exist mainly to support 
shared file systems. The LOGO system was therefore 
designed to simulate the combination of a single-user 
graphics processor and a remote file system. Although 
only sequential files are provided, LOGO gives the user 
the capability to construct procedures that search for 
data in a non-sequential fashion: in effect he can super
impose a non-sequential structure of his own choosing on 
the sequential file. It is likely that experience with the 
system will generate useful information about the types of 
file structure needed by remote interactive users. 
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INTRODUCTION 

The National Center for Atmospheric Research (NCAR) 
maintains a CDC 6600 and a CDC 7600 computer for 
doing numerical studies related to the atmosphere. These 
computers are operated in a batched multi-programming 
mode by a unique operating system implemented by the 
system's development staff (seven programmers). Hard 
copy output from the computers is handled either by the 
line printers or by the two Computer Output Microfilm 
Recorders (COM). A large library of graphic routines is 
frequently used by the applications programmers to 
produce outputs ranging from contour maps to movie 
titles. Around 600,000 frames of graphic output are pro
duced each month, and nearly 80 percent of all jobs gen
erate some graphic output. 

The obvious success and importance of microfilm 
graphics at NCAR led to the rental of a CDC GRID 
(Graphical Interactive Display) to investigate the poten
tial of interactive graphics in atmospheric research. The 
primary question was whether interaction would prove as 
important to the atmospheric scientist as does graphical 
output. The answer to that question has not yet become 
clear, with user reactions ranging from enthusiasm to 
disinterest. The purpose of this paper is to describe a 
software system aimed at making the GRID as useful as 
possible to the atmospheric scientists and programmers at 
~CAR within a context of carefully limited allocation of 
system and manpower resources. 

Three topics will be examined. First, the context and 
limitations imposed by choice, by the existing facilities 
and by the orientation toward atmospheric research will 
be described. Second, a set of goals which grew out of the 
context will be itemized. Finally, the form of the imple
mentation will be briefly described, related to the goals, 
and evaluated as to success. 

* The National Center for Atmospheric Research is sponsored by the 
~ational Science Foundation. 
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SYSTEM CONTEXT 

Perhaps the most important features of a context are 
the set of constraints under which any new system must 
exist. At the time the GRID arrived, the KCAR operating 
system was undergoing major revision and change 
brought on by the arrival of a CDC 7600. Little help 
could be provided by the systems staff. Any implementa
tion had to mesh with existing system structures. The 
NCAR operating system uses quite different I/O and 
supervisory linkages than CDC systems. Therefore the 
GRID system implementation had to be complete, not 
just an extension of a CDC package. At least as important 
were a set of ohilosoohical constraints imoosed bv 
NCAR's computi~ng envi~onment. ~ ~ 

The CDC 6600 to which the GRID was to be connected 
is used primarily for fast turnaround batched Fortran 
jobs. Fast turnaround, for all but very long running jobs, 
has been one of NCAR's most cherished traditions for 
which the operating system as well as human procedures 
have been specifically tuned. It was therefore decided 
that under no circumstances was the GRID to cause sig
nificant degradation of that fast turnaround. This led to 
the decision to treat GRID jobs the same as any other 
batched job for system resource allocation. It also implied 
that host computer-GRID communication should be held 
to as Iowa frequency as possible. 

The last constraint was that the GRID was on trial to 
see if it was in fact useful. This made it mandatory to 
develop software that could be fruitfully applied to the 
class of problems that currently existed at NCAR, rather 
than develop a complete tool and hope that given the new 
sophisticated tool, a new class of problems would be 
posed to use the new tool. 

Atmospheric scientists have depended heavily upon all 
kinds of graphics since long before the computer existed. 
They also have made extensive use of computers since 
their inception. What a scientist does on the next com
puter run is a function of what the graphics, say contour 
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maps, show him about the last one. In this sense, NCAR 
scientists have been doing interactive graphics for many 
years with a response time on the order of minutes rather 
than seconds. What we needed were interactive programs 
with graphic output (display), not interactive graphics. 
Therefore it was possible to ignore a large number of the 
subjects currently in fashion among interactive graphics 
systems developers. 

The last context element was the very large library of 
available graphics routines at NCAR, their extensive 
documentation and the great familiarity of users with 
them. Harnessing the power of these without requiring 
extensive program changes by the user was a must. Since 
the COM units had the same 1024 X 1024 address space as 
the GRID, we decided upon the straightforward expedi
ent of direct translation of COM instructions to GRID 
instructions. 

DESIGN GOALS 

The context, just described, led to the adoption of a 
number of carefully chosen goals. The most important 
considerations involved deciding what not to do, in order 
that a useful system could be produced under our partic
ular limitations. Some of these goals are quite different 
than those chosen in other graphics systems. Despite their 
limited and simple character, the design decisions they 
caused have provided a surprisingly versatile and power
ful system. 

Simplicity, compatability and usability 

It was important that the whole effort be kept small, as 
only four people, each working part time, were available 
to work on it. Compatability of the software with existing 
operating system conventions was necessary because 
there was not systems programmer manpower available 
for any extensive modification. The graphics generation 
portion needed to be compatible with existing graphics 
generation procedures both to utilize that power and to 
avoid large manpower expenditures on a parallel effort. 
Since the GRID had only the status of visitor on trial, it 
was absolutely essential to make it easy for the user to 
understand how it worked and how to use it. Lack of 
manpower precluded voluminous manuals and extensive 
training programs. Therefore the more the GRID could 
be made to look like a collection of familiar I 10 devices 
the more the user could capitalize on his previous knowl
edge. 

Device independence 

Making the GRID look like a combination of reader, 
printer, and COM unit was important for other reasons. 
We were to have only one GRID and experience told us 
that it was apt to be down for extended periods. It might 
al~o be removed permanently at any time. Re~ear('h 

activities at NCAR had to continue no matter what the 
current state of the GRID, so making alternative non
interactive devices available as a surrogate interactive 
terminal made program running always possible, if not 
interactive. This problem is not unique to NCAR, and 
greater emphasis upon device and interaction independ
ence in the user interface would make interactive graph
ics a much more usable and dependable tool for the aver
age computer user. 

Minimum degradation of operating system. 

Besides the decision to treat an interactive job as a 
batch job for resource allocation, already mentioned, this 
goal implied that communication between the host com
puter and the GRID be kept to a minimum. Keeping the 
number of communications to a minimum simply means 
that each transmission must contain the maximum 
amount of information. This in turn forces the interactive 
graphics terminal resident program to be as self-sufficient 
as possible, and capable of collecting a fairly large fund of 
information before communication becomes necessary. 

DESIGN DECISIONS 

The preceding goals coupled with the initial constraints 
led to three crucial design decisions: 

(a) A high degree of modularity was to be used. 
(b) All graphics were to be generated by translation of 

COM graphic commands. 
(c) All interaction was to be through the use of card 

image transmission as line by line text in an 
extended form of the NAMELIST 1/0 input lan
guage. 

Modularity and staged implementation 

The system was to be designed as a set of modules 
embodying some of the principles of software engineering 
as expounded by Liskov 1

• In particular, levels of abstrac
tion would be identified, and modules designed to imple
ment each level. However, in this case the primary moti
vation was not correctness, but the ability to stage the 
implementation. The most essential (bottom most) levels 
of abstraction would be implemented first, leaving the 
less essential top levels till later. An advantage of a very 
structured approach was that part-time personnel could 
work on different levels of abstraction without necessity 
for constant interaction. Note that the bottom-up 
approach appears to be contrary to the top-down method 
recommended by Liskov 1 and Dijkstra. 2 A schematic 
diagram of this scheme is shown in Figure 1. 

To further ease the development task, it was decided to 
use a high level language (Fortran), wherever possible, 
with subprogram calls and named common blocks as the 
primary mechanism of communication between and 
within levf>ls of ab~tra('tion, 



Graphics generation 

The advantage of having the entire existing graphical 
software library available for generating graphical output 
was self-evident. User familiarity with and good docu
mentation of that library provided a valuable bonus. The 
need to provide archival graphical output was also solved 
by translation of the COM instructions since they would 
be available not only as input to a translation routine but 
also for direct use. 

A decision on how to use the light-pen was deferred 
until the main body of the package was functional. 

Interaction through NAMELIST I/O 

Card images are a rather limited form of' communica
tion,tmrtne-advantage of"-atiowlng thtrttltliJ to -oe used 
as if it were a combined card reader, line printer and 
COM let the inexperienced user begin writing programs 
for it without going very deeply into the methods being 
used. Furthermore, this approach took account of the fact 
that the user might desire his card image input from one 
of several possible locations (e.g., card reader, permanent 
file, etc.) besides the GRID. This not only provided flexi
bility for interactive runs, when the source of the next 
input card could be specified interactively, but allowed 
non-interactive use of the programs when the GRID was 
out of order. 

An extremely important decision was to use NAME
LIST I/O as the primary method of communication. A 
feature of NAMELIST input which made it extremely 

ABSTRACTION 
LEVEL 

+ I 

1'----------11 * USER Jt---------' 
Figure I-Diagram of GRID software system showing flow of 

information and levels of abstraction 
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attractive was what might be termed "mode independ
ence." By this is meant the fact that data-directed I/O is 
easy to use in either interactive or batched mode. Each 
statement is self-describing and self- contained, and the 
ordering makes little difference (unlike list directed I! 0). 

Since the NAMELIST I/O service routines at NCAR 
are implemented in Fortran, it was quite easy to modify 
them to add new features which made NAMELIST input 
an especially effective tool for interaction. One of these 
additions was to allow specification of output as well as 
input vaiues, in a NAMELIST input statement. An 
example of this is A =? (a statement meaning, "print the 
value of A"). 

These extensions to NAMELIST input resulted from 
the realization that NAMELIST serves to allow interpre
tive execution of simple assignment statements which are 
for all practical pU.rJ?Qses being iIl~~rtecl in th~_ c()d~ _ ~t the 
point of the NAMELIST read. Examples of extensions 
which proved particularly useful were: 

(a) implied DO loop 
(b) print statements 
(c) assignment statements with variables and expres

sions on the right hand side 
(d) definition of a special array called CORE beginning 

at location one (allowing patching and dumps). 

IMPLEMENTATION 

The discussion of the implementation must necessarily 
be brief. Further descriptive material can be found in the 
GRID User Manua1.3 

The GRID resident software 

The hardware of the GRID is composed of: 

(a) a refreshed CRT tube 
(b) a light-pen 
(c) a typewriter keyboard with supplementary function 

keys 
(d) a mini-computer for operating the device 
(e) an operator's console for the mini 

Even though the user is not concerned with the mini
computer software. we will briefly discuss how it was 
designed to match our overall context and constraints. 
Here again, restriction of the capabilities has allowed 
simplicity. The primary mechanism for transmission of 
information from the user of the GRID to the host com
puter is through the line of text (card image) typed in at 
the keyboard, and transmitted after possible backspacing, 
line clearing and retyping, by a SEND key. Text may also 
be generated by positioning the light-pen tracking cross at 
a desired position and pushing a special function key, 
causing text of the form "MX = 132, MY = 427," to be 
generated. This means, that for the majority of informa-
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tion transmitted from the GRID to the host, there is no 
essential difference between the GRID and a card reader 
or a file of card images. 

The only other kind of GRID input allowed is item 
selection by the use of the light-pen. The result of such a 
selection is the transmission of the number associated 
with the graphical object at the time it was generated by 
the host computer. 

Graphical displays and card images are handled by 
separate parts of the GRID resident software. This means 
that text and graphics can overlap, distinctly reducing 
readability. As a practical matter, overlap is normally not 
a great problem, since the screen is completely cleared 
preceding each new graphical display transmission. 

Host computer software 

Abstraction level 1 

The lowest level of abstraction of the host computer 
software, and the first to be implemented, is an assembly 
language routine named GRIDIO. This routine allows the 
host computer system to execute op-codes which control 
or interrogate the GRID. Arguments of the routine 
include: the op-code, a word for return of status bits, a 
buffer area and a count of words of information in the 
buffer area. The op-codes, status word and buffer areas 
are kept in named common blocks of the Fortran pro
grams which call GRIDIO. GRIDIO has no knowledge of 
or access to the routines which call it. It simply serves as 
the sole access mechanism for the Fortran routines at the 
next level of abstraction, which must communicate with 
the GRID. 

Abstraction level 2 

This level includes a single Fortran routine named 
WAIT. The host computer routines are able to request a 
number of different kinds of services from the GRID, 
such as clearing its screen or putting the next line of text 
on the screen. When the GRID is in the process of provid
ing such service, it must not be interrupted. WAIT pro
vides the synchronization of such service requests. 

Abstraction level 3 

This level is concerned with card image communication 
both ways, and graphical communication (complete pic
tures) to the GRID. 

Two Fortran routines, named RDCARD and 
WRCARD, read and write card images to and from the 
GRID (and other devices as well). Each of these routines 
has a single argument, the core location of the input or 
output card image. Besides calling GRIDIO to execute 
the appropriate op-codes for communication with the 
GRID, these subprograms also take responsibility for 
conversion of the charader codes. 

The RDCARD and WRCARD routines each use a 
specified location in a named common block which tells 
the subroutine the source or destination of the card 
image. This location contains a logical device name. 
Changing that logical device name during execution 
allows the ,sources and destinations of card images to 
vary. That change can be effected from within the stream 
of card images itself, by using the NAMELIST input 
mechanism to assign a new name to the specified location. 
An especially important point is that any new interactive 
device which becomes available will only require software 
implementation for text from this level down. 

Graphical entity transmission takes place at this level 
through a routine called FRAMEG. The products of COM 
instruction translation are kept in a work space classified 
by an entity number. A user indicates which entities he 
wishes to be displayed by this entity number. FRAMEG 
moves and combines these various entity display instruc
tions into a single display file and calls the lower level 
routine to accomplish the transmission. Hard copy can be 
produced on the COM unit at the same time. 

It is important to have the provision for many separate 
entities which may be combined, revised or recreated. For 
instance, a common occurrence is a weather map dis
played on the background of a world map. By creating 
the world map once as an entity, any number of weather 
maps may be displayed upon it without the computer 
time involved in creating the instructions for the back
ground map each time it is wanted. In the GRID, as in 
most refresh type display units, flicker and display file 
space are always a problem. It often happens that a 
complicated weather map uses so many instructions that 
the background map won't fit along with it. At this point 
the user may simply request that the background be 
omitted for this particular display. 

Abstraction level 4 

A user may communicate directly with the third level 
routines by creating and breaking down card images using 
ENCODE and DECODE statements. These are format
ted core-to-core write and read respectively, and are pro
vided on most Fortran compilers used on CDC machines. 
It would have been more desirable, in some ways, to hook 
the card image reads and writes directly into Fortran list 
directed I/O, but this would have required substantial 
changes to the Fortran I/O service package, which was 
undesirable due to the context of the project. The result is 
that a user desiring to put a simple message, with some 
formatted data, on the screen of the GRID must execute 
an ENCODE and then call WRCARD to transmit the 
card image. 

This level contains the extended NAMELIST I/O, 
COM to GRID translation with associated work space 
management, and provision for error recovery. 

NAMELIST input is accomplished through a routine 
called READLX. It is totally isolated from the GRID, 
and has no dependence upon specific GRID characteris-



tics. READLX acquires its card images through 
RDCARD, and prints through WRCARD, the third level 
routines. 

The basic tool of READLX is associating a memory 
location with a name. This is accomplished by the user 
calling a routine LEXCON (NAME, IWHERE, ITYPE). 
NAME is the hollerith character string defining what he 
is going to call this particular variable, IWHERE is the 
variable name itself, (an address) which READ LX will 
use in locating it, and ITYPE is the type of the variable 
(integer, real, double, complex, or character). If ITYPE is 
zero or the argument not provided, LEXCON assigns a 
type of integer or real depending on the first character of 
NAME according to Fortran conventions. LEXCON must 
be called for each variable name one wishes to reference 
during a run. Each variable is assumed to be the first 
addJ~~_~_9f~_t3i:J}.gly dirpep.fi_i()neq~:rJ:~Y, 5Q 1;h~t any varia
ble may have a subscript during READLX input. 

Extensions have been added to the input form to allow 
printing and multiple element definition, as well as full 
arithmetic assignment statement capability. In each case 
the extension has been borrowed from a familiar Fortran 
usage in order to seem as natural as possible. 

Several variables are automatically defined by the ini
tial call to LEXCON. These are variables the user may 
use to help define the behavior of the interactive package, 
such as ECHO, a variable that controls auxiliary printer 
and COM output of what goes on during an interactive 
run. 

In the early stages of system development the light-pen 
was completely ignored. The light-pen is rather difficult 
to handle in a device independent fashion, as it does not 
act in a way that is similar to other I/O devices. Upon 
completion of the early development stages, the 80 char
acter card image and NAMELIST I/O had clearly estab
lished themselves as simple yet powerful abstractions. As 
a result, it was decided to experiment with techniques for 
hiding the light-pen under the card-image, as this would 
allow the card reader to substitute for the light-pen. It 
proved quite simple, using NAMELIST input language, 
to represent the present position of the light-pen tracking 
cross by a pair of statements "MX = 1014, MY =523." 
This statement pair is generated by the GRID when a 
certain function key is struck. The NAMELIST I/O 
facility allowed long sequences of such data pairs to be 
transmitted and saved in a special array where they could 
be retrieved by the user program after completion of the 
NAMELIST read. A particuiar advantage of this 
approach was that pen positions selected by the function 
key but later recognized as undesirable, could be edited 
out of the card image before transmission to the 6600. 
Furthermore, this method tended to collect a sequence of 
pen positions before action was requested by the user 
from the host computer. It must be recognized that this 
method of handling positions of the light-pen tracking 
cross would be unsuitable in any application where draw
ing of general curves or objects was done on a regular 
basis, as a function key strike must be made for each X -Y 
position to be transmitted. However, in applications 
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where the user wishes to pick accurately selected posi
tions on the screen (e.g., when making corrections to 
graphically presented data) the technique is very success
ful. 

In the final stages of system development a capability 
was added for light-pen selection of a menu item or 
graphical object. The result of such a selection is that a 
number assigned to that object is immediately returned to 
the host computer. Those numbers are assigned to the 
graphical objects at the time they are generated by the 
6600. The number returned to the 6600 is not coded into 
the form of a card image. This is the one exception to the 
axiom of this system, that all information transmitted 
from the GRID to a user program is in the form of a card 
image. The only justification is that it seemed unesthetic. 
Note that device independence has not been lost, because 
the r()l}!ine which returI)s t~e nUl!:l:ber of the _ object 
selected to the user program can read a number from a 
formatted card image instead. 

Error recovery is a feature not mentioned thus far but 
important nonetheless. While GRID jobs are treated the 
same as batch jobs for resource allocation, it is necessary 
to avoid run termination in the event of a normally fatal 
error. Errors frequently occur in typing NAMELIST 
statements such as A =B/C where C is inadvertently zero. 
IERPROC is a machine language routine that causes 
control to be returned to the user when a fatal error 
occurs. The facility for this was already in the operating 
system for use with system simulation. 

When such an error occurs, a message is sent to the 
screen containing the error message and a request to the 
user to specify what to do next. His options are to go back 
to the NAMELIST routine, return to a specific part of his 
program, terminate the run, or get more CPU time. CPU 
time is doled out in one minute units, with a maximum of 
10 minutes. To avoid infinite loops, the program is auto
matically terminated when IERPROC is entered more 
than 30 times. 

EVALUATION 

The software system for the GRID has achieved con
siderable success within the limited goals set for it. The 
design decisions, to translate display commands, use of 
the card image as the message unit for interaction, and 
the use of data directed input as the primary method of 
interaction, have ail proved fortunate. The system is reia
tively easy to understand and modify. This is attested by 
the number of different programmers who at one time or 
another, participated in the development of a module. 
Users of the GRID found it easy to use, because only a 
few new calls on system subroutines were needed, beyond 
those graphics calls they were already making to generate 
microfilm. The data directed input facility provided users 
with great flexibility and power for examining the con
tents of different locations, either by name or by address, 
and modifying those contents. On many occasions the 
GRID proved to be especially useful as a debugging tool. 
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On the negative side, the reader should notice that the 
only facility available in the final design which requires a 
refreshed graphic display with light-pen is the menuing 
and object selection. This capability has not been terribly 
important in any success the GRID has enjoyed. Further
more, the refreshed display is often incapable of display
ing all the graphic information that a scientist desires, 
both because of excessive flicker and insufficient storage 
space. This lack, which is inherent in refreshed displays, 
has been the most detrimental to the usefulness of the 
GRID for the atmospheric scientist. Currently the use of 
storage scope technology (with cursor) is being investi
gated. Costs of such devices are much lower, and there is 
no flicker or storage space problem. Somewhat higher 
demands may be placed on the host computer if it must 
deal with characters instead of card images. The interac
tive portion of the software system, and the user programs 
which depend upon it, would continue to be valid down to 
the level of RDCARD and WRCARD on the text side, 
and down to the translator on the graphics side, no matter 
what device may replace the GRID. 

SUMMARY 

A software system for a graphical interactive display 
terminal, and the motivation for the decisions involved, 
has been described. Several abstractions proved useful in 
achieving the goals set. The most important of those were, 
the use of card images for interactive communication, the 
use of NAMELIST input as the primary user tool, and 
the direct translation of display commands. Most impor
tant system features were a high degree of modularity and 
device independence. 
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Recent advances in sketch recognition* 

by NICHOLAS NEGROPONTE 

Massachusetts Institute of Technology 
Cambridge, Massachusetts 

In a shocking and almost silly interview with Max 
Jacobson, Christopher Alexanderl recounted the fol
lowing story:---

"There was a conference which I was invited to a 
few months ago where computer graphics was 
being discussed as one item and I was arguing 
very strongly against computer graphics simply 
because of the frame of mind that you need to be 
in to create a good building. Are you at peace 
with yourself? Are you thinking about smell and 
touch, and what happens when people are walk
ing about in a place? But particularly, are you at 
peace with yourself? All of that is completely 
disturbed by the pretentiousness, insistence and 
complicatedness of computer graphics and all 
the allied techniques. So my final objection to 
that and to other types of methodology is that 
they actually prevent you from being in the right 
state of mind to do the design, quite apart from 
the question of whether they help in a sort of 
technical sense, which, as I said, I don't think 
they do." 

While we find notions of a "frame of mind ... to create 
a good building" extremely distasteful (and paternalis
tic), we wholeheartedly admit that computer graphics is 
guilty of great complication and noise. In general, com
puter graphics research has been totally self-serving, aptly 
fitting Weizenbaum's2 analogy: "It is rather like an is
land economy in which the natives make a living by tak
ing in each other's laundry." 

The following paper describes a specific experiment in 
computer graphics, one with which Alexander might 
someday be at ease: sketch recognition. The effort is par
ticularly exciting (to us) because it allows for a wide vari
ety of approaches (some contradictory), modestly execut
able, with the acknowledgment that the limiting case-a 
computer that can recognize a hand-drawn sketch with 
the same reliability as an onlooking human-will require 
a machine intelligence. The following pages report upon 

* This work has been supported by The Office of Computing Activities 
The National Science Foundation 
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the salient characteristics of an actual computer program, 
but most of the major issues are far broader than the 
exp-elierrc-e--l:-an -admit. 'Plre---re-a-d-ersilOutd se-dously won ~ -
der (as we continually do), if drawing is a two-dimen
sional language, does sketching have a syntax and 
semantics? Is any of HUNCH more than the syntactical 
processing of a hand drawing? 

The founding work in computer graphics was called 
SKETCHPAD.3 While this was an effective name, in 
some way it polluted the notion of "sketching" in any 
sense of the word. In contrast to SKETCHPAD, "We 
view the problem of sketch recognition as the step by step 
resolution of the mismatch between the user's intentions 
(of which he himself may not be aware) and his graphical 
articulations. In a design context, the convergence to a 
match between the meaning and the graphical statement 
of that meaning is complicated by continually changing 
intentions that result from the user's viewing his own 
graphical statements."4 Sketching can be considered both 
as a form of introspection, communicating with oneself, 
and as a form of presentation, communication with oth
ers. In the first case, the machine is holding the same 
pencil, eavesdropping so to speak. In the second case you 
are sharing a piece of paper with the machine, and both 
of you are drawing on the same sheet with his (its) own 
stylus. In both instances memory is the drawing medium 
(for the human at least) and the design vehicle for looping 
into the physical world. 

We are not suggesting that the heart magically tells the 
wrist something that embellishes a concept passing from 
mind to medium. We are proposing that a nebulous idea 
is characterized by not knowing when you begin a sen
tence exactly what you are going to say at the end. Fur
thermore, the final "phrases" are in fact flavored (for 
better or for worse) by your initial tack and your, our, or 
the computer's reaction to it. Consequently, in an act like 
sketching, the graphical nature of the drawing or doodle 
(that is, the wobbliness of lines, the collections of over
tracings, and the darkness of inscriptions) have important 
meanings, meanings that must not be, but are for the 
most part, overlooked in computer graphics. "A straight 
line 'sketch' on a cathode ray tube could trigger an aura 
of completeness injurious to the designer as well as antag
onistic to the design."5 
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Figure 1 

In contrast to most graphical systems, we have built a 
sketch recognition system called HUNCH that faithfully 
records wobbly lines and crooked corners in anticipation 
of drawing high-level inferences about ... ! The goal of 
HUNCH is to allow a user to be as graphically freewheel
ing and inaccurate as he would be with a human partner; 
thus the system is compatible with any degree of formali
zation of the user's own thoughts. Unlike the SKETCH
PAD paradigm. which is a rubber-band pointing-and-

Figure 2 

tracking vernacular, HUNCH takes in every nick and 
bump, storing a voluminous history of your tracings on 
both magnetic tape and storage tube. HUNCH is not 
looking at the sketch as much as it is looking at you 
sketching; it is dealing with the verb rather than the 
noun. It behaves like a person watching you sketch, 
seeing lines grow, and saying nothing until asked or trig
gered by a conflict recognized at a higher level of applica
tion. 

Unlike a completed sketch, that is, a two-dimensional 
representation, what we have just described is so far one 
dimensional. The information is recorded serially at the 
rate of 200 X, Y, and limited Z coordinates per second. 
This coordinate information is augmented by measure
ments of pressure upon the stylus, from zero to fifty 
ounces. At this writing, position and pressure are the only 
recorded data; one can imagine measuring how hard the 
sketcher is squeezing the pen or taking his galvonic skin 
resistance. In addition to position and pressure the 

Figure 3 

method of reporting X, Y, Z (that is, a continuous updat
ing 200 times per second) is in fact a built-in form of 
clock, which provides the added and crucial features of 
speed and acceleration. 

Either on-line or upon command, HUNCH performs 
certain transformations on the stream of data and then 
examines it for the purpose of recognizing your intentions 
at three levels: (1) what you meant graphically, in two 
dimensions; (2) what you meant physically, in three 
dimensions; and (3) what you meant architecturally. 
Each catagory is progressively more difficult. They range 
from recognizing a square, to a cube, to your being a new 
brutalist. 

GRAPHICAL INTENTIONS 

This section describes the most primitive level of recog
nition, which involves graphical intentions at the level of 
finding lines, corners, and two-dimensional geometric 
properties, For h11man<: to ""f'e" thf'f;f' intf'ntions is Sf) 



easy and apparently uncontrived that it is difficult to 
convey the enormity of the computing task without 
embarking on a technical memorandum of programming 
techniques. One major difference between the computer's 
problem and ours is that the computer is given the graph
ical information as a stream of points (indeed closely 
spaced but discrete) and does not "see" them as lines 
without some initial assumption making. A revealing 
game is to take any line drawing and ask somebody to 
recognize what is depicted by viewing the drawing only 
through a small hole in an overlayed sheet that can be 
freely moved about (thus always hiding the whole picture 
except for what is seen through the hole). This is how a 
computer treats the image. 

In a similarly sequential manner, HUNCH constructs 
two representations of the sketch while the user is draw
ing it, a one-dimensional ---.data structure and a two-__ 
dimensional data structure. The first is a faithful record 
of how the drawing was created in terms of speeds, accel
erations, pressures upon the pen. The second is a two
dimensional bit map that is, in effect, a surrogate piece of 
paper (see Figures 19 through 23). The two structures rep
resent (redundantly) the original sketch, and they are 
kept intact at all times. All subsequent structures, either 
sequential or positional, are maintained above and 
beyond these original descriptions. They may be tran
sient, manipulated, destroyed, updated, or reproduced ad 
nauseum. In contrast, the original sketch, as represented 
sequentially and positionally, is maintained as a faithful 
icon acting like the "real world" to which we can always 
return for another look. The bit map will soon be replaced 
by a vision system that looks at the sheet of paper, avoid
ing the need for surrogate paper. 

The process of recognizing graphical intentions includes 
seven kinds of operations, each of which relies to different 
degrees on the two structures. The following paragraphs 
describe specific transformations in their most usual, but 
not necessary, order. Even though they are described as 
specific transformations with known inputs, it is usually 
the case that several guesses must be made and that sev
eral candidate resolutions must be carried through, build
ing up evidence for and against. ~ll the transformations 
are ridden with contingencies that cannot be handled in a 
rote fashion that puts all of one's faith in one guess. 

Diagrams 

When one sketches, it is natural to intermingle ele
ments that have a projective geometry interpretation 
(intersections, limiting contours, demarcations of pat
terns, etc.) with those that have a diagrammatic intent 
(symbols, arrows, letters of the alphabet, figures, etc.). 
Consequently, one of the intial passes at recognition is to 
separate the diagrammatic elements from the projective 
elements. There is no foolproof way of distinguishing, for 
example, arrowheads from rooftops. In some cases it is 
necessary to leave the ambiguity for a future operation to 
stumble upon and untangle with "higher order" evidence. 
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Figure 4 

Diagrams fall into two classes: those recognizable by 
shape and those distinguishable by gesture. An arrow, for 
example, has a distinctive topology and can be defined in 
the jargon of line types and joints. A squiggle, on the 
other hand, is a hand movement, meaning, for example, 
either shading or "to be erased." The recognition of the 
arrow is achieved primarily with positional data, whereas 
the squiggle is more easily found in the sequential stream, 
in terms of jerking hand motions. The adjacent illustra
tions depict the sort of weeding out that takes place at 
this stage. Note that the squiggles are interpreted as "8's." 

5 5 

Figure 5 
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Figure 6 

Data compression 

Consider that at a 200 coordinates per second ten
minute sketch of a dog results in 3,600,000 bits of sequen
tial data. A major role for any sketch-recognizing system 
is to compress this data for the purpose of transmitting it 
to other procedures or other machines. An ultimate case 
of data compression would be to take the 3,600,000 bits 
and transform them into: "short-haired poodle that looks 
like Spiro." A more modest transformation, in the context 
of architectural drawing, is to reduce the projective geom
etry elements to a list of nodes and linkages of straight 
lines and curves. 

HUNCH performs this operation with uncanny success, 
guessing at the intended straight lines, curves, and cor
ners. It achieves this transformation with two simple but 
powerful parameters of intentionality: speed and pres
sure. Figures 6 and 7 illustrate the measures of in
tention in that the first square was drawn rapidly (and 
sloppily) and interpreted as a square, whereas the second 
was drawn slowly, hence with apparent caution and 
intent, and interpreted as an irregular figure with 
rounded corners, The correlation of speed and pressure to 
simple intentions yields a powerful measure of graphical 

Figure 7 

Figure 8 

"purpose." Nonetheless, it should be noted that these 
parameters are very sensitive to the hand of the individ
ual designer and thus must be delicately tuned and tai
lored, This is achieved at first encounter by a simple 
scenario of: "draw me a this ... or that . , . faster ... 
slower" and later is revised on-line, ultimately (wishfully) 
in context, 

Curve recognition 

A myth of computer-aided design has been that com
puter graphics can liberate architects from the parallel 
rule syndrome and hence afford the opportunity to design 

------

Figure 9 



and live in globular, glandular, freeform habitats. We do 
not subscribe to this attitude. We believe that orthogonal 
and planar prevalencies result from much deeper physio
logical, psychological, and cultural determinants than the 
T -square. Partly as a consequence of this posture, The 
Architecture Machine Group initially and purposely 
ignored curves, feeling that straight lines and planar 
geometries could account for most graphical intentions. 
However, it is the case that in demonstrating HUNCH, 
the sketcher invariably incorporates curves in his second 
sketch, if for no other reason than to see what the ma
chine will do. 

Recently we have incorporated curve recognition as a 
subset of data compressing. The problem is twofold: to 
recognize and to fit. The recognition is simply a matter of 
distinguishing a hastily drawn straight line from a pur
poseful curve. As with the previom;_e~~!!?-pt~l'_~ §p_e~~;:t_~d 
pressure provide the most telling evidence and form the 
basis for most neuristics. However, unlike finding corners 
and straight lines, recognizing curves requires a greater 
interplay between the two data structures, because taking 
derivatives of irregularly spaced points (without interpo
lation) can be very misleading. 

Two approaches have been employed for curve recogni
tion. The first approach (see Figure 8) is to try arbi
trarily to straighten all lines with minor variations in 
parameter weighting. This causes minor variation in the 
straight line interpretations and wide variations in the 
curves because of the programming technique. The sec
ond approach is to concentrate on the derivatives (second 
and third) in the assumption that curves are less speed 
dependent and, by their nature, require more cautious 
application. 

Curves are cumbersome graphical elements in the sense 
that neat ways for fitting and describing them in a simple 
"compressed" manner do not exist. Presently we repre
sent them with a B-Spline technique, a method that 
allows for a high level of curvature continuity and for a 
compressed representation that employs points that con-

Figure 10 
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Figure 11 

veniently are few in number and do not lie on the curve. 
Figures 10 and 11 show the effects of varying the 
order of the spline. For a more complete account of this 
technique the reader should refer to the thorough and 
definitive work of Richard Reisenfeld who is presently 
working with Ivan Sutherland at the University of Utah. 

Latching 

It is necessary to perform this task of latching, the 
process of guessing when a line is meant to be connected 
to a point, with as high a level of reliability as possible 
because a single unlatched line can make the simplest 
figure topologically impossible (or implausible) in a 
planar or volumetric representation. In the early 
HUNCH days, we assumed that latching could give rela
tively consistent success when treated in a manner similar 
to finding corners; that is, we relied on speed and pres
sure to vary the range in which one would venture a latch. 
In fact, it worked quite well until a user drew small pic
tures or incorporated detail like a window in a wall. In 
these cases the latching routines would be over enthusias
tic and latch lines to all the nearby end points, making 
mullions look like starfish. This was because latching was 
initially achieved in a very narrow context. More recent
ly, latching procedures have been redesigned to look for 
patterns in the positional data. Heuristics employ fea
tures like repetition, closures, and density to provide 
evidence that a certain endpoint probably is meant to be 
attached to a certain other endpoint. 

Intersections 

When a line is drawn that crosses or abuts another, the 
initial procedures do not locate the point of intersection. 
Finding intersections is a straightforward operation that 
has both significant and misleading results. It is often 
necessary to carry multiple representations, guessing 
when intersections are or are not important. For example, 
in the case of a five-pointed star, fifteen line segments 
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and ten endpoints are returned. This distorts the concept 
of "starness," intrinsically a five-sided design. 

Nonetheless, in most instances, intersections are inval
uable for the recognition of higher-order features. One 
case is an intersection that contains one line that does not 
"pass through," for example, a T joint. This form of in
tersection will often be unlatched at a later time inas
much as T's provide very strong evidence that one plane 
or body lines behind another. In that sense they repre
sent a more serious passing, not in the same plane. 

Implicit Constraints 

Early SKETCHPAD experiments included constraint 
application and resolution such that you could draw two 
skew lines and apply the constraints of parallelism and 
similarity in length, and observe the lines meander to 
equilibrium (if geometrically possible). Similarly, 

Figure 13 



HUNCH supplies four constraints; the only difference is 
they are initiated implicitly. They include horizontal/ 
vertical, parallel/perpendicular, continuous, and over
traced. They are relatively straightforward computations 
(described in the adjacent figures); some involve local 
consideration, and some require a search of the entire 
image. One can imagine many more implicit constraints, 
and one can also imagine an evolving set of constraints 

Figure 14 
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Figure 15 

resulting from a particular user's idiosyncracies and hab
its. These, too, would be a function of speed and pressure. 

Overtracing, however, warrants special attention 
because it is a fascinating drawing behavior that can 
imply two very contradictory intentions: reinforcement 
and correction. In "yellow tracing paper operations," so 
familiar to students and practitioners of architecture, one 
t~~~~_!~_<:_~nsider ___ ~!!'~ __ ~!~~~!_~59l!!E~~icto.ry __ ~ut_~~P!.2E~-
tory lines, with the result that the representation, if 
viewed in its entirety, would be a "nonsense artifact." It 
is also usually the case that, prior to overlaying more 
yellow paper, the most salient and ambiguous features are 
overtraced so that the translucency will cover the "noise." 
On opaque paper, the sketch often starts as light scribbles 
and construction lines and evolves into a black hodge
podge of many light lines accompanied by studied, pur
poseful dark lines. 

A simple way to handle overt racing is to consider it as a 
form of implicit erasure of the lines beneath. Or, equally 
simplistically, one could read the magnetic tape (that is, 
sequential data) backwards, automatically giving higher 
credence to the most recently sketched features. Both 
methods work with surprising success (especially when 
accompanied by factors of speed and pressure). However, 
they overlook some of the important implications of over
tracing. For example, highly reworded lines "may repre
sent important (perhaps semantic) dispositions toward a 
design such as being 'concerned about,' 'sure of,' 'puzzled 
by,' and so on."6,7 

Shape Recognition 

At this point the reader should be discouraged by the 
disparity between seeking an artificial intelligence and 
enumerating simple geometric transformations. Nowhere 
has learning been involved. All previous operations are as 
syntactical as parsing a sentence or separating words in a 
speech. Shape recognition begins to raise more challeng
ing questions, for example, at what point is a shape 
recognized? 

Figure 15 depicts the transformations of a cross
like figure achieved in the order in which I have de
scribed them. Note that the last representation remains 
irregular (let's assume I meant a regular cross) in that the 
four wings are of different proportions. A first thought 
might be to append the additional implicit constraint of 
repetition of line length. This in turn could be mapped 
into the concluding transformation: CROSS (as defined 
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rigorously by a figure with four equal ... etc.) However, is 
it not more rewarding to look for "crossness" much 
sooner? "The very concept of 'cross' furnishes many of 
the graphical inferences that until now have been handled 
in some sense brutally. "8.9 

INFERRING A THIRD DIMENSION 

How many people are aware that the general attitude of 
a cube is such that its silhouette forms a hexagon? Do we 
use such information to understand or to recognize the 
three-dimensional aspects of cubeness? 

The retinal image is a two-dimensional representation 
that we constantly map into three dimensions with no 
overt intellectual effort. The psychology of perception is a 
voluminous field with classic works like those of 
Gibson1o

,1l and Gregory12 that has provided some clues as 
to how we see. However, the traditional views of psycholo
gists have been of very little help in making machines 
that can see or that can infer a third dimension. The 
reader interested in machine vision per se should refer to 
the founding works by Oliver Selfridge 13 and his col
leagues, the works of Minsky and Papert,14 Guzman, 15 

and a great body of papers emanating from the three 
centers of robotics: MIT, Stanford, and Edinborough. 

Our own interest in machine vision has oscillated 
between low resolution and high resolution, between 
geometries and behaviors. One specific experiment is 
described in an early (1969) NSF proposal in "Machine 
Vision of Models of the Physical Environment." More 
recently our interest in vision has settled specifically on 
the inference making necessary to achieve three-dimen
sional information from a two-dimensional representa
tion, such as a drawing. Notice that in the case of sketch
ing, making inferences about the third dimension is 

o 

Figure 16 



somewhat easier than looking after the fact at a scene of, 
let's say, a pile of blocks. This is because one has the 
additional information of "construction sequence," which 
can be employed in heuristics that make speculations 
like: this is connected to that, this is behind that, and so 
on. 

The first task of inferring the third dimension in a 
drawing is to recognize the kind of projection. Is it a plan 
or a section? Is it a perspective or an axonometric? The 
two alternatives are distinctly different even though a 
section and an axonometric, for example, belong to the 
same family of orthographic projections, and a plan can 
be consideted as a perspective from above with the 
observer at infinity. They are different because the one 
group supports the illusion of three dimensions whereas 
the other requires conventions, consistencies, and a com
b4L~ton~tyj~\y~_ or j;J!~UldditiQI1~Lc!!~§ 9f~1;HHling, 

Let's consider axonometrics and perspectives first. 
They have fascinated researchers in computer graphics, 
in particular with respect to the removal of all lines and 
line segments that would be invisible from a given van
tage point. The so-called hidden line problem has been 
exhaustively studied by: Roberts;16 Kubert, Szabo, and 
Giulieri;17 Gilimberti, Montanari;18 Loutrel;19 Ricci;20 and, 
in a survey that proposed a new solution, Encarnacao.21 

But it is not an interesting problem, because it is deter
ministic and blatantly solvable though complicated. It is 
much more interesting to consider the opposite problem: 
given a perspective, fill in the hidden lines. We say it is 
more interesting because: (1) it is riddled with ambigui
ties; (2) there exists no algorithm that will work for all 
cases; and (3) it can only be handled with a knowledge 
about the physical world. 

Figure 16 illustrates the operations of a program 
that takes HUNCH input, constructs an axonome
tric, and maps it into three dimensions with modest accu
racy, using limiting assumptions. The primary operations 
include: (1) estimate the families of parallel lines ... an N 
point perspective; (2) find redundant points, stray lines, 
that is, HUNCH oversights in working in a two-dimen
sional frame; (3) axonometricize the figure, if necessary; 
(4) break all T joints; (5) project T's until they intersect a 
plane as defined by any two parallel lines that each 
belong to a different family but neither to the family of 
the projected T; (6) look for parallelograms; (7) furnish 
guesses at a third coordinate as a function of length and 
angle away from verticality; (8) project all horizontal 
planes to intersect any element that protrudes above. 

Notice that the eight steps and functions are quite arbi
trary; they represent an interpretation of desired results, 
not an interpretation of how we see. Each operation 
assumes a model of the world (it can be as simple as 
orthogonal) that imparts arbitrary legitimacy to the 
computer program in that it behaves with a nice preci
sion. HoweVer, no matter how hard we try, we embed 
simplifying assumptions, and we can never be assured 
that handling the abstracted set of arbitrary three 
dimensional figures will lead to handling the entire set. 
For example, we can limit the class of sketch to the extent 
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of making this mapping just about deterministic. Similar
ly, we can broaden it to handle any collections of irregular 
polyhedra. In the latter case we find that we make 
implicit assumptions (as opposed to built in limitations). 

In contrast to axonometrics and perspective, plans and 
sections through conventions afford more unambiguous 
descriptions. They require, however, the additional task 
of piecing together sections and matching different views. 
Furthermore, an additional step of recognition is neces
sary: Is the slice horizontal (a plan) or vertical (a section)? 
Once again this is usually so obvious to the onlooking 
human that it behooves us to understand the essence of 
plan and section. We do not agree, for example, with the 
often-stated position that a plan and a section should be 
indistinguishable. Our physiology is such that we tend to 
witness the world in section but, interestingly enough, to 
remember it pr~dQminaIltl~in plan In addjtjoD,--Ollr_ 
sense of balance plays a major, unexplored role in the 
primarily orthogonal structure of human concepts about 
the physical world, as described by terms like above, in 
front, right, left, etc. 

Unlike mapping perspectives into three dimensions, 
most energies in the recognition of plans and sections are 
devoted to the basic determination of which is a plan and 
which a section. A computer program must draw upon 
clues like steps, trees, sloping roofs, and take advantage of 
such facts as: floors are usually horizontal. There will be 
cases where it will be unclear to even the most experi
enced architect whether the drawing is a plan or section. 
It would be wrong to expect a machine to do much better, 
but it would be right to expect it to ask. 

The reader familiar with projective geometry tech
niques will understand that formats like those employed 
in mechanical engineering are quite a bit easier to corre
late than the typical architectural set of drawing. Unlike 
with mechanical engineers, architects do not share a gen
eral consensus of conventions for dotted lines, auxiliary 
views, and the like. This difference is less exaggerated in 
sketching. At this writing, little work has been done on 
this problem by The Architecture Machine Group. The 
reader should be referred to the recent work of Ejiri, 
Masakazu, Takeshi, Hauro, Tatsuo, and Kiyou.22 

ARCHITECTURAL INFERENCES 

An architectural inference can range from recognizing 
the propensity to use cheap materials to assuming a life
style. "When we recall that the process will generally be 
concerned with finding a satisfactory design, rather than 
an optimum design, we see that the sequence and division 
of labor between generators and tests can affect not only 
the efficiency with which resources for designing are used 
but also the nature of the final design as well. What we 
ordinarily call 'style' may stem just as much from these 
decisions about the design process as from alternate 
emphasis on the goals to be realized through the final 
design. ''23 "If we see a building with a symmetric facade, 
we can be reasonably sure that that facade was generated 
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Figure 17 

at an early point in the design. If, on the other hand, we 
see one with many asymmetries, we will conjecture with 
some confidence that these asymmetries are the external 
expression of decisions about how to meet internal 
requirements" (Simon, 1970). 

These two quotes may offend the professional architect; 
the notion of "style" belongs only to history and to a pos
teriori observation. However, if we replace the word style 
with intent and suggest that intentions are both implicitly 
and explicitly manifest in the method of work of the 
designer, the idea of looking for architectural inferences is 
more palatable; the problem is to infer what was meant 
versus what was done. By recognizing architectural impli
cations, one can begin to say something about the past 
experience of the designer. This is because a large number 

Figure 18 

of decisions are made through prejudice and preconcep
tion. 

One example of drawing inferences as a function of 
method of work can be found in an experiment associated 
with "plan recognition" (see illustrations). The "user" is 
asked to draw a plan of his house. We find two general 
methods of drawing such a plan. The first entails describ
ing the external envelope and then subdividing it into 
rooms. The second involves "walking a line around," 
space to space, tracing out interior compartments as cells 
that interconnect. With some confidence we can make the 
assumption th.at the first method indicates living in a 
detached house, for example, where one has the opportu
nity to witness the "whole" as set upon a plot of land. The 
second method is symptomatic of living in a high-rise 
apartment building, where one does not have the occasion 

Figure 19 

to inspect the external envelope of one's own living space. 
Another (wilder) interpretation might be that the first 
person owns his house (has observed it drawn in plan) 
and the second rents it and is therefore unconcerned 
with global matters of insurance or heat loss. 

More formal examples of looking for architectural in
tentions can be found in hunting for tendencies to repeat 
elements, in recognizing a propensity to align boun
daries, or in searching for playful and whimsical uses of 
angles and penetrations. These tend to be symptomatic of 
superficial constructs especially when viewed as ends 
unto themselves. A deeper level of intentionality can be 
achieved in what Gordon Pask calls the "cybernetic 



Figure 20 

design paradigm" by looking for unstated goals: "It 
should be emphasized that the goal may be and nearly 
always will be underspecified, i.e.: the architect will no 
more know the purpose of the system than he really knows 
the purpose of a conventional house. His aim is to provide 
a set of constraints that allow for certain, presumably 
desirable, modes of evolution."24 

A principal means of recognizing architectural inten
tions will be to look for architectural attributes, rather 

Figure 21 
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Figure 22 

than architectural properties, the physically measurable 
properties. Architectural attributes are measured in terms 
of our own experiences and are recognized in discourse by 
knowing something about the person with whom you are 
talking. To be sure, they are described by metaphors and 
analogies; they do not surface in the geometries of a 
sketch. To emphasize this point, I refer to Thomas 
Evans's early work25 on the program ANALOGY as an 
example of one kind of difference. 

The ANALOGY program tackles the so-called "geome
try analogy" intelligence test: Figure A is to Figure 3 as 
Figure C is to which of the following? The Evans program 
goes through four major steps: (1) the figures are decom
posed into subfigures; (2) properties are ascribed, such as 
inside of, to the right of, above, etc.; (3) "similarity" 
calculations are determined to successfully map A into B 
(4) the appropriate similarity is used to map C into 

Figure 23 
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whichever. The procedures are extremely complex; the 
program represents an historical landmark in the devel
opment of artificial intelligence. However, consider the 
example of: pyramid is to figs as as chaletis to ... This 
should alert us to a major difference between the geomet
ric analogy and the "meaning" analogy between proper
ties and attributes. It behooves us to ignore sometimes 
the formal counterparts and to recognize the· simplest 
architectural intention, a tiny step beyond geometry. 
But we really do not know how to do it in baby steps. It 
is exemplary of the desperate problem of arriving at 
simple frontiers in artificial intelligence that appear to 
be extendable only in their most consummate form. 

WHY BOTHER? 

In contrast to the unenlightening, recursive argument of 
"so what," "why bother" can be a particularly instructive 
question in the context of computers and, in particular, in 
the light of their continuously dropping costs. Historical
ly, a well-supervised parsimony with computing power 
has forced us to bend our manner of conversation and 
warp it into a man-machine communication characterized 

/ 

Figure 25 

by trumped up, unnecessary level of consistency, com
pleteness and precision. One is expected to be explicit and 
unequivocal with a computer. 

Consider the previous example of recognizing whether a 
sketch is a plan or a section. The amount of code neces
sary to perform that task and the amount of ensuing 
computation is enormous. It might make a good program
mer's doctoral's thesis and require five to ten seconds of 
fast computing to arrive at a reasonable conclusion. 
Would it not be easier to insist that the sketcher be 
required to exert the trivial additional effort of typing an 
"S" or "P" after completing his drawing? The answer is 
surely , Yes, it would be easier. The issue, however, is 
where to draw the line, even in the most timid, master
slave applications. 

Figure 26 

One extreme position is to adopt the SKETCHPAD 
explicitness: this is a line, this is its end, these two are 
parallel, this is an arc, and so forth. The other extreme is 
to consider all levels of communication as potentially as 
smooth, congenial, and free of explication as a conversa
tion with a very intelligent, very good friend. We opt for 
the latter in toto on the following counts: (1) it is crippling 
to force an explicitness in contexts where the participant's 
equivocations are part of the function of design; (2) the 
tedium of overt, categorical exchange is counterproduc
tive, unfulfilling for the speaker, and boring; (3) construc
tive and exciting responses are often generated by twists 
in meaning that result from the personal interpretation of 
intentions and implications; (4) finally, we view computer 
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time as a free commodity to be allocated in the abun
dance necessary to make a rich dialogue, perhaps richer 
than we have ever had with another human. 
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Interactive graphics for computer aided network 
design 

BY J. L. FRANKLIN and E. B. DEAN 

Naval Ordnance Laboratory 
White Oak, Silver Spring, Maryland 

INTRODUCTION 

Computer analysis codes for electronic networks have 
been in existence since about 1961. In spite of this, they 
have failed to generate much impact on electronics design 
and analysis. One of the main reasons for this is that most 
engineers do not have either a background in computer 
coding or the time (approximately two concentrated 
weeks) to learn the languages associated with each code. 

Another drawback of computer aided circuit analysis is 
that it is limited by the turn-around time of the computer 
facility. This, coupled with the fact that a large number 
of coding errors are made, slows down a potentially very 
fast analysis technique. 

As an illustration of the problems associated with batch 
operation of the codes, these steps are associated with 
their usage: 

(1) A schematic is coded into the computer language 
associated with the code being used. 

(2) Cards are punched. 
(3) The job is submitted to be run by the computer. 
(4) Keypunch errors listed in the output are corrected. 
(5) If there are coding errors listed in the output, a 

schematic must be drawn from the coding and 
checked against the original schematic. 

Steps (2) through (5) are then repeated until all the 
errors are removed and the code gives the circuit response 
requested. From this point on, the job is repeatedly 
resubmitted with different output requests, different 
values of the circuit elements, or an altered circuit topol
ogy until a complete analysis of the circuit is obtained. 

As a result of this process and of the low acceptance of 
the codes, it was decided that a prototype computer 
graphics input and output system should be developed. 
The objective of graphics would be to divorce the use of 
the analysis codes from traditional language program
ming. The only operation the user would have to perform 
would be to draw the circuit on the face of a cathode ray 
tube (crt). This would eliminate the excessive time 
required to learn the circuit languages, to acquire pro
gramming skills, to become proficient at keypunching, 
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and to redraw the circuit from the code. The output from 
the circuit woul-d-b-e--di-sptaye-d-on-the-ert~,--ihere---wtTt 
be essentially zero turn-around time for a job. Thus, the 
user could perform any changes he desires and see the 
results immediately. Whereas with a batch job a complete 
analysis would take days or weeks; with a computer 
graphics analysis it would take only hours. 

DEVELOPMENT OF THE SOFTWARE 

All the circuit analysis codes have their own input 
languages to describe the topology and values of the cir
cuit. In general, inputs to these languages are the circuit 
element names, node numbers for nodal connection 
points, and element values. Once the circuit has been 
described by the circuit analysis language, the analysis 
program will give the response of the circuit. SCEPTRE, 
NET-2, CIRCUS, AEDCAP, SPICE, and ECAP are 
among the main codes in use today for this purpose. 

The graphics approach is to use the terminal as a trans
lator for the circuit analysis language, i.e., to use a graphi
cal symbolic language the engineer is familiar with in 
place of an alphanumeric language. 

The first system was developed with the philosophy of 
maximum user flexibility. Thus, the user had control of 
the names, nodes, and values of each circuit element (see 
Figure 1). This proved to be too difficult to learn to use 
for people with no familiarity with the circuit codes. Also, 
it was time consuming and not that great a benefit for the 
sophisticated user. In the next version, user flexibility 
was traded off for simplified user operation. The only 
inputs required for this version were the values of the 
circuit element (Figure 2). 

This improved the system's usability, but it still had 
other drawbacks. The most serious of these was the ina
bility to rotate circuit elements. Element rotation had 
not been included in the first version because it was rea
soned that the circuit could be redrawn for the orienta
tion of the graphics elements. However, in practice, it 
was found that: (1) circuit diagrams were usually op
timally oriented and redrawing made them overly com
plicated; (2) mistakes were made in redrawing the dia
gram to agree with the fixed graphic element orientation, 
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Figure I-First version display 

and one could never be confident that the redrawn circuit 
was 100 percent correct; (3) redrawing accurately was a 
time-consuming operation. Besides non rotating ele
ments, the original version had other drawbacks which 
were more of an inconvenience than a source of error. 
These were the inability to edit (make corrections) on the 
circuit via a graphical operation, and the inability to re
quest the circuit output via a graphical operation. In 
this version, editing and output requests were imple
mented via the circuit analysis code. This method of 
operation necessitated the user to know some circuit 
analysis coding. Another drawback was that learn
ing to use the system was difficult because of the user 
instructions. These instructions told the user which opera
tions he could perform next. The problem with the set 
used with the second version was that they made the 
operator choose between more than two options. This 
turned out to be too complicated for the novice to resolve 
quickly. 

Further use indicated the need for "fail-safe" software. 
By this is meant that if the graphics user chooses an un-

Figure 2-Second version display 

listed option or happens to accidentally hit the keyboard 
or light pen, the program would not "clobber" itself. Also, 
and probably more important, we began to have the 
unhappy experience of putting up a large circuit and 
having the main computer crash. This sometimes resulted 
in the loss of one or two hours worth of circuit drawing. 

The current graphics version (Figure 3) has graphical 
editing, rotation of elements, and graphically requested 
circuit output. In addition, alphanumerics (such as ele
ment values) are not displayed on the screen unless 
requested. This latter feature was implemented because it 
was found that the alphanumerics associated with each 
circuit element take up more space than the circuit dia
gram itself. The third version is written from a "fail-safe" 
viewpoint, and in order to minimize the loss due to a 
main frame computer crash, the circuit and its associated 
information are saved on tape with every five elements 
drawn. Thus a main frame crash can only cost you, at 
most, a five element loss while drawing the circuit. 

Figure 3-Third version display 

Even though we have strived to maximize the graphical 
operations in this version, we still have retained a circuit 
analysis (alphanumeric language) text editor. Experience 
has taught us that there will always be times when the 
advanced circuit analysis code user will want to augment 
his work with the code. 

At this point a five-minute film showing the operation 
of the system will be· shown. In lieu of the film Figures a 
through I are provided. On the right side of the screen, 
the menu which contains the choices of elements from 
which the user may build his circuit is shown. To build 
the circuit, the user positions the tracking cross and with 
the light pen picks the appropriate menu symbol to bring 
up the element at the position of the tracking cross. To 
pick up succeeding elements the process is repeated. 
Elements can be joined by lines of arbitrary length. At 
any time, the user can change the topology of the circuit 
drawn (i.e., edit). A hardcopy can be made of what is on 
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Figure a-Third version display 

Figure d-Third version display 

Figure b-Menu of available circuit elements 

Figure e-Third version display 

Figure c-Third version display Figure f-Third version display 
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Figure g-Third version display Figure j-Third version display 

Figure h-Third version display 
Figure k-Output request display 

Figure i-Third version display Figure I-Alphanumeric code editor 
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the crt by picking "HCOPY" with the light pen. Figure m 
shows a hardcopy of the circuit drawn. Once the circuit 
has been drawn, the output desired by the user is 
requested by picking the circuit nodes for node voltages 
or the circuit elements for element currents. The response 
of the circuit is returned to the graphics (Figure n). The 
user can redisplay his circuit for further changes i.e., to 
continue his analysis. 

IMPLICATIONS AND EXTENSIONS OF 
COMPUTER AIDED NET\VORK DESIGN 
GRAPHICS SYSTEMS 

It became evident as development proceeded that the 
graphics system was more than a visual input-output 
device. In fact, it is a high level compiler of the natural 
language of the engineer. The half dozen circuit analysis 
c()(le&--cUI~r.entl.;c-in-use--COllld-3.ILba handled with almost 

identical graphics software. The exceptions would be 
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Figure m-Hardcopy of third version display 

• PLOl VALuES 

FORTRAN format statement changes to compensate for 
the idiosyncracies of the different languages. The user
engineer does not have to worry about learning the lan
guages of the various programs. Instead of having to train 
people in a new language, only the person who maintains 
the graphics software need learn it. Thus the compiler 
aspect of graphics affects a reduction in the training cost, 
training time, and the trauma of having to learn many 
new lang1...1ages. 

But the graphics is more than a compiler, it is a natural 
data manager. This became evident when it was decided 
to implement a feature called "nesting" which was availa
ble in one of the circuit analysis codes. Nesting begins by 
representing a subcircuit by a symbol. Whenever this 
symbol is used in another circuit it is like connecting the 
subcircuit into the new circuit. This new circuit can be 
defined by another new symbol and used in another main 
circuit. Figure 4 shows the nesting process. A nest of level 
one is commonly referred to as a model. 

Figure n-Response of circuit displayed on graphics 

The g:r:~.D_h!_~~~_i.mplementation of ~_E}sting is !!l:~J:"ely_ to 
draw a circuit and define a menu symbol for it. This 
menu symbol then becomes available to be used in draw
ing other circuits. The user can exercise an option to see 
and/ or alter the circuit represented by his symbol. It is 

MAIN CIRCUIT 

B 

NEST A 

NEST B 

NEST C 

Figure 4-Nesting 
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DCAMRSS,CMI50000,Tl00,P2.54301770,624,SHAKLAN. 
ATTACH(NETTWO,N~T1991 

NET-WO. 

"'TEST 
DEFINE MET VIN RMS 

MUL Tl 1 V I N YIN 
FILTl 13 
SU,'12 t. 3 -6 -
GA I N 1 4 6 -1 + 7 
ABY1 7 RMS 
MULT2 6 RMS RMS 

DEFINE FILT IN OUT 
LPASI IN 1 
LPAS2 1 2 
LPAS3 2 3 
LPAS4 3 4 .----i!> 
LPAS5 4 5 ~ LPAS6 5 6 
LPAS7 6 7 
LPAS8 7 8 
LPAS9 8 9 ~ .. ~." 
LPASI0 9 10 
LPASll 10 11 
LPAS12 11 12 
LPAS13 12 13 
LPAS110 13 14 
LPAS15 II, 15 
LPAS16 15 16 
LPAS17 16 17 
LPAS18 17 18 
LPAS19 18 19 
LPAS20 19 20 
LPAS21 20 OUT 

DEFINE LOWP IN OUT 
LPASI IN 1 
LPAS2 1 2 
LPAS3 2 3 
LPAS4 3 4 
LPAS5 4 5 
LPAS6 5 6 
LPAS7 6 7 
LPAS8 7 8 
LPAS9 8 9 
LPAS10 9 10 
LPASll 10 OUT 

DEFINE LPAS IN OUT 
SUMI 1 IN ->OUT 

DEFINE ABV IN OUT 
TABF1 TABLEI OUT IN 
TABLE! 

-1.+7 1.+7 
O. O. 
1.+7 1.+7 

PARAMETER 
MET3.FILTl.LPASl.INTI .628 
MET3.FILTl.LPAS2.INT1 .628 
MET3.FILT1.LPAS3.INT1 .628 

MET3.FILTl.LPAS4.INTl .628 
MET3.FIL Tl.LPAS6. INTI .628 
MET3.FILTl.LPAS7.INTl .628 

SUMI 5 4 -6 
INTl 5 6 P2 
P2 .0314 
RNGENI 3 1 
GAINI 3 4 PI 
PI .001 
MET2 4 7 
MET3 6 9 
LOWPI 7 10 
LOWP2 9 11 
STATE1 

END 
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PLOT N(4) N(7) 
PLOT N(6) N(9) 
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Figure 5-Graphical versus alphanumeric formulation of the same 
nesting problem 

obvious that by using the graphics to keep track of the 
nesting level rather than tracing it back through some 
symbolic circuit analysis language is a great aid with 
large circuits. Figure 5 shows the difference in complexity 
using graphics versus the symbolic language for the same 
nesting problem. 

It was stated that a nesting of level one is generally 
referred to as a model. Modeling is where the symbol is 

related to the actual electronic device. The device is 
measured for certain parameters that represent the phys
ics of the model. Here at NOL a computer controlled 
model parameter measurement system is being devel
oped. To get the parameters, curves are fitted to the 
measured data and displayed on the graphics. If the fit is 
not good, the user interacts with the data via the graphics 
to produce a good fit. These model data go into a library 
on disk and can be recalled to the graphics terminal at 
any time. 

The complete system is shown in Figure 6. As can be 
seen, the graphics acts as the center of the measurement 
system, the libraries, and the analysis program. In effect, 
Figure 6 demonstrated that the graphics-man interface is 
the data manager of the complete system. As an example 
consider the operations performed by the graphics from 
management of raw data to the final analytical results of 
the circuit simulation. 

The engineer receives a new circuit. First he displays a 
list of the devices on which data have been stored. For the 
devices in the circuit that have not been characterized, he 
measures the devices, displays the raw data, and fits 
curves via the graphics. Through a series of iterations, by 
adjusting the fitting routines and viewing the results, he 
gets satisfactory fits and thus acceptable model parame
ters. For the devices in the circuit that have been pre
viously measured, he simply calls these parameters from 
the disk library. The engineer then draws the circuit on 
the graphics and gets the response of the circuit. Let us 
say that for some reason the circuit analysis code does not 
work. One solution to the problem would be to try another 
circuit analysis code. Since for the graphics circuit compi
ler the only difference between circuit codes is a change 
in FORTRAN format statements, it is a simple matter to 
utilize the circuit drawn as input to another code. Thus, 
the engineer merely calls up another circuit analysis code 
from the graphics and runs the problem again. If he 
wishes to change the topology of the models associated 
with his stored data, he simply calls up his models and 

ANTENNA CODES 

ENVIRONMeNT CODES 

(fRCuSn 

OTrER SuPPORT CODES 

Figure 6-The Naval Ordnance Laboratory model measurement and 
data acquisition system monitored by graphics 
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redraws them on the graphics. After he is finished with 
the problem he stores his circuit. At a later date he can 
redisplay his circuit and immediately begin again where 
he left off. 

Solving a circuit response is mathematically equivalent 
to solving a system of nonlinear differential equations of 
N independent variables. Since there are many physical 
systems described by such a set of equations, the applica
bility of the graphics as a general compiler goes far 
beyond circuit analysis. For example, substituting the 
mechanical analogs for their electrical equivalents such as 
mass resistance, force for voltage, etc., gives a graphical 
mechanical language for a minimum amount of software 
change. 

At NOL, we are moving toward this goal by utilizing the 
system, or analog, capabilities of the NET -2 circuit code 
t1L solve regular and -partial __ diffe-.rential equatj9JL~L~f 
mechanical, electrical, chemical, and mathematical sys
tems. Although we have used the analog symbols in our 
graphics solutions, it would be a simple matter to have 
substituted the appropriate physical or mathematical 
symbols as part of the menu. If these symbols had been 
added instead of formulating the problem in electrical 
schematic, it could have been formulated in the natural 
symbols of the physical system. Figure 7 is an example of 

,If 

Figure 7-Equivalent formulations of problems that can be run on 
graphics 

a mechanical problem that was run using NET -2. It 
shows the mechanical, electrical, and mathematical 
equivalent formulations. Also, it can be seen from Figure 
7 that to formulate a spring, the graphics would need only 
write the code for a gain and a summer which is a simple 
format exercise. Similar analogies hold for the dash pot 
and the masses. 

A facit of graphics implicit in our program but not yet 
developed to its fullest is self-instruction. The instructions 
that tell the user which optimal he can exercise next 
essentially teach the user how to operate the graphics 
program and the circuit analysis codes. In fact, graphics 
systems have inherent self-instruction capabilities. 

The final and possibly the most important advantage of 
a graphics controled system is that it allows the man to 
interact with the computer in a natural and efficient way. 
This interaction allows theJ~~LQf~ftware complexity tQ_ 
be kept to a minimum. For example, with Newton Raph
son convergence algorithms, it is much easier for the user 
to pick trial solutions for a more optional convergence 
than to have to write software to do the same job. The 
interactive capability cuts the cost and frustration of the 
analysis. Instead of having to run a long involved para
metric study to see the way a system is responding, the 
user merely watches the results to see which analysis 
variables he need adjust (via the graphics). In short, 
graphics reduces the number of iterations on a trial
and-error type analysis problem by having the user 
act as part of the feedback loop. 

It has been our experience that this feedback loop 
property which improves temporal efficiency also 
improves psychological efficiency. The user sees a result, 
acts on it, and sees the result of that, etc. He finds his 
analysis going raster because he can maintain a continu
ity of thought. This, coupled with being able to manipu
late a naturally familar language (the schematic, etc.), 
acts as a catalyst for insight and efficiency. 

In conclusion, at NOL, our original goal was to write a 
graphics front and rear end to our circuit analysis pro
grams. However, in the process of accomplishing this we 
came to the realization that we had found more than just 
a new input/output medium. Maybe it is as one contem
porary thinker has said, "and the medium really is the 
message." 





Sorting and the hidden-surface problem 
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INTRODUCTION 

Ten years ago the task---.OL-Ill'~_uc.in~hjdden-surf.a.c_e_-pik:: 
tures by computer seemed untractable. Courageous men 
pressed forward nonetheless, and today we can have quite 
beautiful renderings of solid objects generated by com
puter in remarkably short times. The pictures being 
produced today and the speed of the programs producing 
them are beyond any but the wildest dreams of ten years 
ago. 

In December 1972 we embarked on a formal study of 
ten hidden-surface algorithms, hoping to develop a sys
tematic understanding of how they worked. We felt that if 
we could find a framework into which to fit the various 
programs, we could identify empty branches of that 
framework and thus discover approaches to the task 
which might be new. If we could understand some basic 
principle which all of the algorithms apply, we might gain 
some fundamental understanding of the inherent cost of 
rendering soEd objects, and thus some measure of the 
"ultimate" performance one might expect in such an 
algorithm. 

Two underlying principles have emerged from our 
study. The first of these we had earlier supposed to be 
important,14 namely sorting. All of the algorithms sort 
through collections of surfaces, edges, or objects according 
to various criteria, finally discovering the one visible item 
and displaying it. Although the order and kind of sorting 
used differ, our original supposition that sorting is the key 
to the task seems amply justified. 

The second underlying principle that emerges from our 
study· is coherence. The environments rendered by the 
hidden-surface algorithms consist of objects with more or 
iess flat surfaces and straight edges rather than random 
discontinuities. This coherence of the environments being 
rendered limits how different the picture can be from 
place to place or from time to time. All of the algorithms 
capitalize on various forms of coherence to reduce the 
work of sorting to manageable proportions. The kinds of 
coherence most helpful to particular algorithms are easily 
identified; to what extent useable coherence exists in a 

* Evans & Sutherland Computer Corporation-Salt Lake City 
** Stanford University; formerly with Evans & Sutherland 
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particular solid object seems to determine to a great 
extent the speed with which the algorithm will render it. 
_B~p---lilirj]!gJhese __ two P:!"!!!fi2!~ we hay_~ _~~mstrucjed_~ 

framework into which to fit the algorithms. The frame
work is expressed as a tree whose branch points represent 
different choices of sorting order, and thus different esti
mates of the importance of various kinds of coherence 
(see Figure 1). The framework seems comfortable in the 
sense that we have been able to fit everything into it 
nicely; programs that seem similar in some intuitive sense 
appear on nearby nodes of the tree; and the framework 
seems to have room for as yet uninvented algorithms. 
Indeed, the framework suggests some promising new algo
rithms that should be tried. 

SORTING 

Sorting is made up of a sequence of simpler operations 
which we call "searching," "culling," and "merging." A 
search operation identifies exactly one element of an 
input set which has some special property. A culling 
operation removes elements from an input set which fail 
to have some special property. A merge adds a new ele
ment to an input set to create an output set. 

A sort permutes an input set to produce an output set 
ordered according to some property. The output set may 
be an ordered table, an ordered list, or a tree. Although 
the techniques of sorting are well understood, it is impor
tant to distinguish a few special types of sorting particu
larly well suited to some of the operations which a hid
den-surface algorithm must perform. 

A bubble sort interchanges adjacent elements of the 
unsorted list to achieve ordering. The cost of a bubble sort 
increases with the square of the number of elements in 
the list to be sorted unless the elements are already nearly 
in order. In this case, a single pass through the list and a 
few interchanges will produce a correct ordering. Bubble 
sorting is particularly useful for sorting the X intercept 
positions of edges in the picture as a TV scan progresses 
because the order in which such edges cross a scan-line is 
nearly the same as for the previous scan-line. 

A bucket sort is a sort in which a large number of 
"buckets" are used to collect elements with similar prop-



686 National Computer Conference, 1973 

cdge:ed,!,(e 

CP,,"QUE llBJECT 
:;!.G",RITH,I.iS 

Ob]el:t~irragc. 
sT)ace each space 

LSnRTL\r, 
( ... LGORITP.HS 

.IST PRIORITY 
ALGORITHMS 

(Z first) 

" clU':;S O'\Titing 

point sampl in!! 

\ppcl . outrel Galimberti Roberts Schumacker :'\ewell Karnack ROlnney Bouknight \\"atkins 
lD6 7 196' f, ~ontinari 1963 et a1 et a1 1968 et :sl 1969 1970 

1969 1969 1972 1967 

Figure I-A comparison often opaque-object algorithms 

erties. For example, there could be one bucket for each 
scan-line in a TV picture, and edges might be placed in 
these buckets according to the scan-line in which they 
first appear. A bucket sort requires only a single pass 
through the data to put each element in its correct 
bucket. 

A quicksort may be constructed in anyone of a number 
of ways which depend on successive division of the input 
set into more and more nearly sorted outputs. Quicksorts 
require somewhat more time than bucket sorts and 
somewhat less than bubble sorts. Randomly distributed 
data will require n*logrm tests, where n is the length of 
the list to be sorted, m is the range of the key-field, and r 
is the number of sublists into which the input list is 
divided during each pass. The bucket sort can be thought 
of as a quicksort where r= m and thus n *logrm = n. 

COORDINATE SYSTEMS 

We are treating all of the algorithms as if they used the 
same coordinate systems even though some of them do 
not. Our approach is based on the notion of perspective 
projection as a transformation of the original three
dimensional coordinate system (see References 10, 11, 
and 15. 

The transformation from object to screen coordinates 
preserves straight lines, computes "perspective" so that 
the X and Y positions of each point are correct on the 
screen, and preserves depth ordering in the Z coordinate. 
The use of three, rather than two-dimensional screen 
coordinates simplifies the otherwise difficult visibility 
computations which appear in every hidden-surface algo
rithm. 

Because the transformation from real space into a 
perspective picture must necessarily include division, 
there is always the possibility of overflow. Because of this 
we uniformly think in terms of a pre-processing cull 
which we call clipping which will remove from considera
tion those faces and edges which lie outside of the field of 
view. 15 It is also common to eliminate all faces which face 
away from the observer and are thus obviously not visi
ble. These preliminary culling operations require compu
tations which grow linearly with the complexity of the 
environment. 

THE ENVIRONMENT 

A hidden-surface algorithm makes a two-dimensional 
picture of a collection of three-dimensional objects and 
surfaces which we call the environment. Different algo
rithms require different forms of internal description for 
the environment, and place different restrictions on it. 
We have translated the terms actually used by various 
authors to relate how they define environments into 
standard terms defined in this section. 

One should be alert to differences in the topological 
properties of the different environment descriptions. 
Some algorithms need to know which surfaces meet at a 
particular edge, while others make no use of such infor
mation. Similarly, some authors make use of groupings of 
faces into objects or clusters while others simply treat 
faces independently. The difficulty of building environ
ment models increases with the amount of such topologi
cal information required by the algorithm, but the algo
rithm may profit immensely from the availability of such 
additional information. 

The algorithms considered in this paper deal only with 
plane-faced objects; we have not considered algorithms 
for dealing with curved surfaces. Thus by the face of an 
object we mean a closed polygon composed of straight 
edges which connect a number of vertices. We assume 
that the vertices of each face lie in a plane, although some 
of the algorithms are able to handle non-planar or skew 
faces. 

A cluster is a collection of faces that can be treated as a 
group for some special reason. Schumacker,6 who intro
duced the concept. associates faces as a cluster provided 
that a preset priority order of visibility can be established 
for them independent of the viewpoint. Two clusters are 
linearly separable if a plane can be passed between them. 

The statistical behavior of the following picture quanti
ties is important in evaluating the sorting strategies used 

a. 

h. 

Scan-l~i~n~e~ ____ ~ ____ ~ __ ~~~ ________ __ 
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Figure 2-A scan-line intersects faces in segments. (a) The view on 
the screen, (b) The view in X =Z space, showing the depth 

relationship between the segments. 



in the algorithms. A face or edge is relevant if it survives 
an initial clipping or back facing cull. The depth com
plexity of an environment is a measure of how many rele
vant faces are pierced, on the average, by an arbitrary ray 
from the viewpoint. Watkins 18 measured the depth com
plexity for various environments and found it to be 
remarkably low, between 1 and 3. A segment is the 
straight line segment defined by the intersection of a face 
and the plane which contains both the scan line and the 
viewpoint. Segments are often illustrated in the XZ plane 
as shown in Figure 2b so that their depth relations may 
be seen clearly. 

DESCRIPTION OF THE ALGORITHMS 

In this section we shall briefly describe the major dif-
,.--f-erenees bet'.veen the ,-ep-~--t-algorithms,--inc--l--lli:led ' 

in Figure 1. A more complete summary of the algorithms 
may be found in Reference 17 and, of course, the pub
lished works of the authors listed in the bibliography. 

We have chosen to categorize algorithms into two basic 
classes: object-space algorithms and image-space algo
rithms, although some algorithms fit partly in each class. 
This classification, quite coincidentally, separates the 
hidden-line from the hidden-surface algorithms. The 
object-space algorithms seek to compute "exactly" what 
the image should be by discovering what parts of the 
object are hidden by other parts. The image space algo
rithms, on the other hand, seek to compute what the 
image will be only at each of the resolvable dots on the 
display screen. 

Object-space algorithms 

Among the object-space algorithms, we can identify a 
further division. Although all of these algorithms test 
relevant edges to determine what parts of the edges are 
visible, the invisibility criteria are quite different. In the 
Roberts algorithm, an edge may be obscured by an object 
that lies between the edge and the' viewpoint. The algo
rithm thus capitalizes on the spatial coherence of objects: 
it tests edges against objects. Roberts observed that a 
convex object could, at most, break an edge into two visi
ble segments. By computing the locations along the line at 
which the edge is first obscured by an object and last 
obscured by an object, he discovers which segments of the 
edge are visible. 

The algorithms of Appel, Galimberti & Montinari, and 
Loutrel, on the other hand, use quite another form of 
coherence. As Appel first observed, the invisibility of an 
edge can change only at places in the picture where 
another edge crosses it. Moreover, edges which share a 
common vertex have a common invisibility at the vertex. 
As shown in Figure 3, these algorithms work outward 
along a network of edges from some initial vertex whose 
invisibility has previously been computed, incrementally 

A = 0 
1 
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contour edges 

Figure 3-Computation of the quantitative invisibility ( ). The 
invisibility of the initial vertex, }..l, is computed. The quantitative 

invisibility on the edge changes only where the images of the 
relevant edge and contour edges intersect and the contour edges are 

closer to the viewpoint. The final invisibility, }.." is used as the 
initial invisibility of other edges emanting from the vertex 

changing the invisibility of each edge each time it crosses 
'another edge.--Appel comedthe term "quantItatIve mVISI
bility" to describe the property which is incrementally 
changed. Quantitative invisibility is essentially a count of 
the number of surfaces between a particular point and 
the observer. The quantitative invisibility of the initial 
vertex is calculated by an exhaustive search of all rele
vant faces to count how many faces hide the vertex. 

Although some minor distinctions can be made between 
the Appel, Galimberti & Montinari, and the Loutrel algo
rithms, they all share with Roberts the requirement that 
each object be compared against all other objects in the 
environment. Thus the cost of these computations grows 
as the square of the number of objects in the environ
ment, and these algorithms become impractical for very 
large environments. 

Image-space algorithms 

Historically, the pure image-space algorithms follow 
from work started in 1967 at the University of Utah by 
D.C. Evans. Evans understood clearly from the start the 
importance of the limited resolution of image space and 
the need for incremental computation during TV scan. 
The Utah efforts produced a series of interesting algo
rithms, the most recent of which is a real-time algorithm 
by G. S. Watkins that is now commercially available in 
hardware. 

The partly image-space algorithms of Schumacker and 
Newell, on the other hand, appear to be independent 
starts. The earlier work of Schumacker and collaborators 
was begun at Generai Eiectric in 1965. Their goal was to 
develop a high-quality image-presentation system for use 
in visual flight simulation. Their work culminated in the 
delivery and later enhancement of a system for NASA's 
Manned Spacecraft Center. This was the first real-time 
solution to the hidden-surface problem and has been 
operational since 1968. 

The more recent algorithm of Newell et al. is similar to 
the Schumaker algorithm in basic principle, but both are 
based on quite different notions from those used in the 
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Figure 4-Z sort to determine priority order. If the faces are sorted 

by furthest vertex from the viewpoint (arrows), the correct order 
Fl. F 2• Fa is produced. 

pure image-space algorithms. In the image-space algo
rithms the visibility test is postponed until last and comes 
about as a computation of the depth of the various sur
faces that would be penetrated by a viewing ray at a par
ticular point in the image. Thus these algorithms can 
capitalize on the lateral separation of the image to reduce 
the number of depth computations required. The list 
priority algorithms, on the other hand, precompute in 
object space a linear visibility ordering or "priority" for 
all surfaces before generating the picture in image space; 
if ever two surfaces conflict, the one with the higher prior
ity is the visible one. 

List priority algorithms 

The most significant difference between the algorithms 
of Schumacker et al. and that of Newell et al. concerns the 
way in which the priority list is computed and used. 
Newell makes use of a priority sorting algorithm to place 
the faces into priority orders as shown in Figures 4 and 5. 
Newell's sort will sometimes have to divide faces as 
shown in Figure 6. Newell next writes the surfaces into a 
picture buffer memory in inverse order of priority. 
Because of the priority order, each surface will be written 

z 

v 
Figure 5-The Z will sort faces Q and P into the incorrect order Q, P. 

However. the Newell special sort will interchange the order and 
discover that the order P, Q is acceptable. 

a. 

b. 

Figure 6-Faces P and Q cannot be placed in priority order 
because they conflict. However, if Q is divided into two faces Qa 
and Qb by the plane of P, then the order Qb. P, Qa is acceptable. 
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Figure 7-Face Priority. (a) Top view of an object with face priority 
numbers (lower numbers are higher priority). (b) Same object with 
a specific viewpoint located. Dashed lines show back faces. FAce 

'1' takes priority over face '2'. 



into the buffer after any other surfaces that it may 
obscure, and will thus overwrite them. By allowing cer
tain surfaces to partially (rather than completely) over
write, Newell achieved some interesting transparency 
effects. 

Schumacker, on the other hand, computed as much of 
the priority ordering information as possible for the envi
ronment before ever making any pictures. Schumacker 
observed that within certain clusters of faces a priority 
order could be discovered which is independent of view
point (see Figure 7). He divided his environment into 
such clusters so that for each frame of output picture his 
algorithm need only compute the relationship among the 
clusters rather than among all of the faces. Schumacker 
restricted his environment to ensure that clusters would 
be linearly separable, that is that they could always be 

. - sepal ated by plaIles~sh:owrrin-Figure---g-a;-a:nd-stoTe-d
the rules for such separation in a precomputed tree, as 
shown in Figure 8b. For each new viewpoint a prefix walk 
of this tree would produce the correct priority order of 

a. 

b. 

D 

/~ B 2" :'\., 

c I 
a. 

6 

n/\ 
3,1,2 3,2,1 1,2,3 

Figure 8-Cluster priority. (a) Three clusters (1,2,3) are separated 
by two planes (a.fJ). The viewpoint may be located in one of four 

areas (A,B,C,D). (b) A tree structure for finding the cluster 
priority. At nodes labeled with planes, we take a branch depending 
on which side of the plane the viewpoint lies. The result is to sort 

the clusters into priority order. 
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clusters. Schumacker's algorithm is thus very well 
matched to the essentially static environments found in 
flight simulation, but not at all well suited to environ
ments in which everything moves independently. 

Depth priority algorithms 

The depth priority algorithms divide neatly into two 
different categories: those that sample areas of the screen 
(\Varnock), and those that sample infinitesimal points on 
the screen (scan-line algorithms). We shall call these two 
approaches area sampling, and point sampling. 

The aim of the area-sampling approach is to compute 
an appropriate intensity for every area of the screen. If 
much of the screen is homogeneous, such as sky or back
ground intensity, the area -sampling approach need only 
peifOrm one-- computation for each -such homogene-Oli-s
area. In other words, the algorithm capitalizes on area 
coherence. 

The point-sampling or scan-line algorithms are all 
designed to compute answers to the hidden-surface prob
lem in a form and order suitable for a raster-scan display, 
such as a television monitor. These algorithms compute 
the intersection of the plane of a scan-line and each face 
in the environment; the line segments resulting from 
these intersections are called segments. As we shall see, 
the scan-line algorithms capitalize on the coherence prop
erties of segments: the relations among segments change 
only slightly from one scan-line to the next. 

The creation of segments simplifies the hidden-surface 
problem to an analogous problem on segments in two 
dimensions: segments are measured by X and Z coordi
nates only. The reduction of the problem from three to 
two dimensions makes many common computations, such 
as those that test segments for overlap or depth, simpler 
than the corresponding tests in three dimensions used in 
the area algorithms. 

This reduction has one serious drawback: the intensity 
calculated for a raster element cannot be an average 
intensity corresponding to all visible items that fall within 
the square raster element. Instead, the intensity is based 
solely on one computation at a discreet point. As a result, 
objects can "disappear" between scan-lines or between 
raster elements as shown in Figure 9. Even though the 
lateral extent of these objects is below the lateral resolu
tion of the screen, it is important that illumination of 
these objects be included when calculating intensities at 
surrounding raster elements. Similarly, raster elements 
near edges of large objects must have intensities that 
represent the average intensity within the raster element; 
if this average is not computed, ugly "sawtooth" patterns 
are displayed at object boundaries. 

J. E. ¥Iamock (1968) 

The Warnock algorithm hypothesizes that sample areas 
on the screen, called windows, can be declared to be 
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raster rid 

Figure 9-Incorrect shading intensities result unless locations of 
objects within a raster element are measured. The two small 

objects should contribute to the intensity at the points marked with 
x's. Similarly, the points PI> P2, etc. should have different 

intensities because the object does not fIll the raster element. 

homogeneous, and hence can be displayed after a simple 
shade calculation. The hypothesis is considered correct if 
(1) no faces fall within the sample window at all, or (2) 
one face completely covers the window and is nearer the 
viewpoint than every other face that falls in the window. 
If the hypothesis cannot be proven true, the sample win
dow is divided into four smaller sample windows, and 
each of these is examined analogously. When the size of 
the sample windows reaches the size of the raster element, 
the subdivision process is terminated. 

The procedure for dividing a sample window is a cull. A 
set of faces is compared to the window to see whether the 
face (1) surrounds the window, (2) intersects the window 
or (3) is completely disjoint from the window as shown in 
Figure 10. This cull for a sample window need not test all 
faces in the environment. The cull which produces new 
face lists for the four subwindows need only test faces 
which intersected the original window; faces disjoint from 
the large window will certainly be disjoint from the four 
small windows and faces which surrounded the original 

Figure lO-The relationship between a face and a sample window. Fl 
surrounds the window; F2 intersects the window, and F3 is disjoint 
from the window. ~ ote that these properties depend only on X -Y 

relationships, not Z. 

window will surround its descendent windows. Warnock 
saves "ancestral information" with each face to avoid 
needless computation: the surrounder and disjoint prop
erties can both be passed down to subwindows. 

The cull operation is turned into a legitimate sort (the 
"Warnock Special") by the subdivision operation. In fact, 
the algorithm bears a striking resemblance to a quicksort: 
the faces are culled into two groups; those that are dis
joint from this window, and those that are relevant to this 
window. The relevant faces are then passed down to 
subwindows, where the faces are again culled according to 
a new criterion (aspect to the smaller window), and so 
forth. The process terminates when a window is verified 
to be homogeneous, just as quicksort terminates when the 
lists contain indistinguishable elements. The Warnock 
cull and subdivision thus become a radix 4 quicksort. 

One difficulty with the Warnock algorithm is that its 
output cannot conveniently be passed to a raster-scan 
device like a television. The decisions about windows are 
reached in a seemingly random order, rather than in a 
top-to-bottom left-to-right order. D. Cohen has devised a 
scheme for driving a raster display from window compu
tations, but it involves a massive sort of the windows by Y 
and X coordinates (4). 

Scan-line algorithms* 

The three point-sampling scan-line algorithms are 
remarkably similar. For lack of space, we shall describe 
only the general philosophy used by all three, knowing 
the differences among them. 

All three algorithms perform a Y sort, then an S sort, 
and finally, a Z depth search to establish the visible face. 
The purpose of the Y sort is to limit the attention of the 
algorithm, on each scan-line, to only those edges or faces 
that intersect the scan-line. As processing for each scan
line begins, the Y-sorted structure is examined to find 
any new edges that enter on this scan-line: they are added 
to those already entered. Any edges that terminate on this 
scan-line are likewise discarded. 

Sorting edges by Y already takes advantage of one kind 
of scan-line coherence: the edges that intersect one scan
line are very likely to intersect the next scan-line. It is 
therefore quite sensible to keep a list of "active" edges 
and merely make incremental changes to this list as new 
edges enter or as old edges terminate. 

Given a list of active edges, the algorithms proceed to 
examine them in order to compute which faces are visible 
in which portions of the scan-line. This process involves 
dividing the scan-line into smaller sections, called sample 
spans, within which the same face is visible. Here, the 
algorithms are capitalizing on another form of coherence: 
point-to-point coherence along the scan-line. 

The processing of each sample span requires comparing 
the faces that fall within that span to determine which 

* C. Wylie, G. W. Romney, D. C. Evans, A. C. Erdahl (1967). W. J. 
Bouknight (1969), G. S. Watkins (1970). 



one is closest. The exact details of this comparison 
depend on the method of selecting sample spans. For 
example, if sample spans go from edge-crossing to edge
crossing, then the comparison is quite straightforward: we 
merely compare the depths of the faces at the limits of 
the sample span. As Bouknight2 showed, the procedure 
must be altered slightly if penetrating faces are allowed. 
This process is illustrated in Figure 11. At each X coordi
nate indicated with a caret, we compute the nearest face; 
that face is visible at least until the next edge crossing 
(i.e., next caret). A more aggressive selection of sample 
spans is shown in Figure 11 b. 

To summarize, the scan-line algorithms have four basic 
steps: (1) edges are sorted by Y so that only those edges 
intersecting the current scan-line need be examined; (2) 
on each scan-line, appropriate sample spans are deter
mined __ {thiallSually_invohr...es.sortingthaedges...on_thascan
line by X coordinate); (3) within each sample span, we 
must cull out the segments which fall in the span and 
therefore must be examined; (4) the segments that fall 
within a span are searched to find which one is visible. 
These four operations are called Y sort, X sort, span cull, 
and Z depth search respectively. 

OBSERVATIONS 

Our avowed intent in this activity was to study system
atically the existing hidden-surface algorithms to discover 
what principles they share in common and what distinc
tions exist between them. We had hoped that such a study 
might suggest new approaches to the hidden-surface prob
lem. In order to find such algorithms we need to examine 
our categorization carefully for missing nodes and for 
other combinations of the basic operations found in the 
various algorithms. 

a. 

b. 

x 

Figure ll-Sample span selection. (a) Each edge crossing starts a 
new span. (b) Aggressive sample spans. The caret divides the scan

line into two manageable spans. 
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Coherence 

Each of the algorithms chooses some form of coherence 
as the basis for efficiently computing the rendering. In 
some cases, the use of coherence permits special perform
ance gains in sorting operations; in others, coherence 
allows incremental calculations to replace more costly 
direct computations. Roberts used object coherence, no
ticing that each object can, at most, divide an edge into 
two pieces. Appel, Galimberti & Montanari and Loutrel 
all used edge coherence, progressing outward along the 
network of edges from some starting point in order to 
promote the known visibility of one vertex along edges to 
other vertices. The Schumacker and Newell algorithms 
both make use of depth coherence to precompute an order 
of priority for the faces, and Schumacker makes use of 
the _ additio_ual CQh~LenCJ~ 8-yailablein c1ustel's to .reduce 
the per-frame computing cost at some additional invest
ment in environment preparation. 

Finally, the four remaining algorithms make use of 
lateral coherence to reduce the number of surfaces under 
consideration at any position on the screen by eliminating 
from consideration those that are laterally displaced. 
Warnock used a kind of lateral coherence that is symmet
ric in the X and Y screen directions, whereas the other 
three, Watkins, Romney et at., and Bouknight, made spe
cific separation between the X and Y processes in order to 
capitalize on particularly favorable sorting techniques; 
bucket and bubble sorting. 

We believe that the principal untapped source of help 
for hidden-surface algorithms lies in frame and object 
coherence. These types of coherence are closely interre
lated because the objects presumably do not change 
between frames and thus, any computation done on 
objects may be preserved from one frame to the next. 
Only Schumacker13 was able to make significant use of 
frame coherence. Frame and object coherence should be 
powerful helps to the hidden-surface problem because the 
objects rendered are usually well-behaved and the 
changes between frames are often minimal. For example: 

• Newell et at. might make use of a frame coherence 
by saving the priority order of faces from one frame 
to the next. Thus, instead of an initial Z sort to get an 
approximately ordered list, one might use the list 
from the previous frame. 

Area coherence is a basic and powerful tool for the hid
den-surface aigorithms. If Watkins' statistics18 are any
where near right, the problem of rendering hidden-surface 
objects is far more one of finding out which surfaces 
among the thousands in the environment are involved in 
any part of the screen than it is a task of finding which of 
the two or three that are involved is the frontmost one. 
We feel that the parts of a picture should be sorted 
according to the area of the screen in which they appear: 

• Appel and the related algorithms could achieve a 
substantial gain in efficiency by sorting edges ac
cording to the boundaries of the smallest bound-
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ing rectangle. An edge could then be compared with 
a collection of edges very much smaller than the total 
set of edges, namely those whose bounding boxes 
overlap. 

Depth coherence might also be used in new ways: 

• The Utah family might keep a depth sorted list of 
polygons "active" during each segment in the scan
line rather than merely remembering the single one 
which is frontmost. As edges were crossed, new poly
gons might be entered into this list in the same nu
merical position (e.g., third), in which they were 
found to lie in the previous scan-line. The correct 
position would then be confirmed by comparison 
with adjacent surfaces and corrected by bubbling if 
necessary. 

Sorting order 

In sear~hing for a new combination of coherences to 
use, we are struck by the fact that one can consider the 
order of sorting as a measure of the types of coherence 
used. Sorting can occur along a specific dimension, X, Y, 
or Z, or along a combination of dimensions as in War
nock's area (Xy) sort. Enumerating all possible orderings 
of such sorts, we find: 

ZYX 
ZXY 
YXZ 
XYZ 
YZX 
XZY 
(XY)Z 
Z(XY) 

Newell and Schumacker 
Uninteresting variant for TV output 
Romney, Watkins, Bouknight 
Uninteresting variant for TV output 
U ntried** *** ** * * ** * * * * ** * * * 
Uninteresting variant for TV output 
Warnock 
This is what Newell would be were a frame 
buffer memory available to him. This 
scheme was implemented by Schumacker et 
al. (19) 

After each sorting operation in the various algorithms 
the number of items left to consider is reduced, often by 
more than an order of magnitude. On the other hand, the 
number of times that the resulting smaller number of 
items must be considered is vastly increased. The selec
tion of the types of sorts must account not only for the 
shortened lists but also for the increased number of times 
they must be sorted. 

An Untried Sorting Order. It is interesting that there is 
an untried order of sorting. Let us consider what its prop
erties might be. By the initial Y sort, we are making some 
use of lateral coherence to reduce the number of faces 
that need be considered at the next sorting step. Use of 
bucket sorting for the limited resolution required in this 
sort is particularly attractive. 

The intermediate Z sort might be accomplished by 
something like Newell's method, and because there are 
fewer faces to sort, the effect of the square law involved 
will be reduced. The final X sorting step would make full 
use of the scan-line coherence properties familiar in the 

other algorighms. X intercepts would be incrementally 
computed and kept in X order by a bubble sort. One 
would make use of scan-line depth coherence by remem
bering which segments are visible from scan-line to scan
line and repeating a visible segment if no edge crossing 
has occurred involving one of its visible edges. Note that 
penetration conflicts will have been resolved for entire 
faces during the Z sort process. 

Finally, one would capitalize on depth coherence by 
keeping an ordered list of involved segments during a 
scan. As scanning progressed, new segments would be 
entered in this list in the same position as was found 
appropriate during the last scan-line. From there the 
correct position would be found by bubble sort. This 
process would make available an ordered set of surfaces 
involved with the scanning ray at each point, and thus 
provide for the transparency effects Newell so attractively 
portrayed. 

Conclusions 

The conclusions we have reached from this paper are 
threefold. First, the hidden surface problem is one of 
sorting. Second, sorting methods which involve square
law computation growth with complexity are to be 
avoided. And third, the taxonomic approach taken in this 
research has amply justified the trouble. 

Our conclusion that sorting is at the heart of the hidden
surface problem seems inescapable in view of the consid
erable light such an approach has shed on the various 
algorithms. In every algorithm examined the sorting steps 
have been clearly definable, clearly separable, and easily 
describable. Most important, taking this view has pro
vided the basis for a framework within which to catego
rize the various algorithms and thus an approach toward 
seeking improved algorithms. 

Although many approaches to the hidden-surface prob
lem are applicable to simple situations, more complex 
environments rapidly eliminate the square-law 
approaches. Because the hidden-surface computation is 
difficult at best, great care must be taken in selecting 
sorting methods which will conserve computation by capi
talizing on coherence. 

Finally, our taxonomic approach seems to have pro
vided substantial fuel for future research. Having sug
gested a framework, the framework itself suggests how to 
look for improved algorithms. 
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APOLOGIA 

We would like to apologize in advance for any injustices 
we may have done to those authors whose programs and 
papers we may have overlooked, and to the authors of the 
papers we have used. We have associated certain key 
ideas with certain authors on the basis of the published 
works with which we are familiar. Other authors may 
have used these ideas, or even have priority on their 
invention; while we have tried to be careful about attribu
tion, we are more interested in what is to be learned 
through examination of a set of algorithms than in the 
historical record of who invented what. Because algo
rithms change, moreover, later versions of the algorithms 
described may include features which we have omitted. 
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Packet switching with satellites* 

by NORMAN ABRAMSON 

University of Hawaii 
Honolulu, Hawaii 

INTRODUCTION 

History 

The first computer-communication networks put into 
operation were designed around the communications pro
vided by the existing worldwide telephone network. Lucky 
has given a convincing rationale for that decision. l 

"The voice telephone network is perhaps the 
most remarkable information processing system yet 
constructed by man. In 1970 it served 100,000,000 
telephones in the United States. The number of pos
sible interconnections is clearly enormous. The 
worth of this plant is approximately 50 billion dol
lars. Over one million people are employed by AT&T 
alone in the care and feeding of this huge network. 
Virtually every statistic associated with the tele
phone network can be phrased in some extraordi
nary manner. Its ready accessibility and virtual 
ubiquity make it the obvious first contender for 
handling data traffic." 

As the limitations of this system for data communications 
became apparent, a number of methods were introduced to 
overcome the limitations of dial-up telephone and leased line 
systems. Data concentrators are used to increase the utiliza
tion of expensive long distance lines. High speed, wideband 
facilities are used to handle those situations where the burst 
data rate requirement of the network is larger than can be 
transmitted in a single voice channel. A few large systems 
use leased line data channels in a network with multiple paths 
between nodes for increased reliability. All of the systems 
built before 1970 however based the organization of their 
data communication channels on the circuit s,vitching meth
ods developed for voice signals during the latter part of the 
19th century. 

* THE ALOHA SYSTEM is a research project at the University of 
Hawaii, supported by the Advanced Research Projects Agency under 
NASA Contract No. NAS2-6700 and by the U.S. Air Force Office of 
Aerospace Research under Contract No. F44620-69-C-0030. Part of the 
work reported in this paper was supported by Systems Research Corpo
ration, Honolulu, under ONR Contract NOOO14-70-C-0414. 
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As the need for more powerful and more flexible computer
communication networks, distributed over large geographical 
areas, increased the basic limitations imposed by the organi
nzation_.of circ_uit_s.wiiched systems was _questioned 2,3,4 By 

1970 the ARPA Network,S the first computer-communication 
system to employ packet switching techniques suited to the 
peculiar statistics of digital data had gone into operation. 
The network is described in Reference 6: 

"The ARPA K etwork is a new kind of digital 
communication system employing wideband leased 
lines and message switching, wherein a path is not 
established in advance and instead each message 
carries an address. Messages normally traverse 
several nodes in going from source to destination, 
and the network is a store-and-forward system 
wherein, at each node, a copy of the message is 
stored until it is safely received at the following 
node. At each node a small processor (an Interface 
Message Processor, or IMP) acts as a nodal switch
ing unit and also interconnects the research com
puter centers, or Hosts, ",ith the high band",idth 
leased lines." 

By January 1973 the use of packet switching techniques in 
the ARPA Network had made possible a resource sharing 
computer network among more than 30 large machines; 
these machines represent an investment of more than 
$80,000,000, span a geographical region from Hawaii to 
lVlassachusetts and the network is still expanding at a rapid 
rate. At this time packet switched techniques are under con
sideration for other computer-communication networks in 
the USA, Canada, Japan and Western Europe.7 ,s But no 
common carrier has yet announced plans for a packet 
switched data service for the general user of data com
munications. 

Although the basic packet switched method of organizing 
communication channels in the ARPA Network represents a 
significant step forward from the circuit switched methods of 
the voice oriented common carriers the communications 
medium of the ARPA Network (with the exception of a 
special satellite link to the University of Hawaii) is still the 
point-to-point wire (or microwave) channel. 
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The medium is the multiplexor 

In June 1971 t.he first remote terminal in THE ALOHA 
SYSTEM, an experimental UHF radio, packet switched net
work was put into operation at the University of Hawaii.9 

THE ALOHA SYSTEM is a packet switched computer 
communication network using many of the design concepts 
of the ARPA Network. The design of THE ALOHA SYS
TEM departs from that. of the ARPA Network in two major 
respects however. The first is in the use of a new form of 
burst random access method of employing a data communica
tion channel. That method is particularly at.tractive for use 
with a broadcast radio channel such as in THE ALOHA 
SYSTEM; the characteristics of the ALOHA burst random 
access communication method are described in the next 
section. 

The other respect in which the design of THE ALOHA 
SYSTEM departs from that of the ARPA Network, and in
deed from the design of all other computer networks, is in the 
form of multiplexing which occurs in THE ALOHA SYS
TEM. The network uses two 24,000 bits/second channels 
for all remote units-one of these channels is used by all re
mote units for data into a central machine (an IBM 360/65) 
and the other channel is used for data out of the central 
machine. Since data packets from all remote users access the 
same 24,000 bits/second radio channel in 30 millisecond 
bursts, each user automatically multiplexes their data onto 
that single channel at the time it transmits its packet. Thus 
the multiplexing is accomplished between the transmitting 
antenna at each user station and the receiving antenna at the 
central station. Steven Crocker of ARPA has characterized 
this effect by noting that in THE ALOHA SYSTEM, "the 
medium is t.he multiplexor". 

A final point should be brought out about the lack of need 
for multiplexing equipment in THE ALOHA SYSTEM. The 
cost of communications for a network of terminals connected 
to a central time sharing system is often thought of as being 
composed of the line charges (lease cost or dial-up charges), 
the modem charges at either end of the link plus perhaps 
some portion of the cost of the communications processor. 
For long distance connections to a machine the line charges 
will usually dominate the cost of communications. Even for 
local connections however the real costs of simply connecting 
a terminal to a machine by common carrier communication 
facilities are hard to come by. A good portion of these costs 
can often be attributed to the front end communications 
processor and multiplexor. The need to sample telephone in
put lines on a frequent basis and to assemble characters, 
limits the number of input lines which can be handled by a 
single processor and the data rates at which these lines can 
operate. Some indication of the magnitude of the cost of per
forming these functions can be obtained from a survey of 
national time sharing services published in November, 1971.10 

The typical charge for connect time to one of these services 
(that is, the cost necessary for simply tying up communica
tions resources, not CPU time) was about $lO/hour. 

Since multiplexing in THE ALOHA SYSTE:\t[ is accom
pli8hed automatically the channel now used in the system i:s 
capable of handling over 500 active terminals9 each trans-

mitting packets at a burst data rate of 24,000 bits/second. 
(Of course the average data rate of each user must be well 
below 24,000 bits/second.) 

The ALOHA channel 

Consider a number of widely separated users each wanting 
to transmit data packets over a single high speed communi
cation channel. Assume that the rate at which the users gen
erate packets is such that the average time between packets 
from a single user is much greater than the time needed to 
transmit a single packet. (In THE ALOHA SYSTEM the 
ratio of these times is about 2,000 to 1.) 

Conventional time or frequency multiplexing methods or 
some kind of polling scheme could be employed to share the 
channel among the users. Some of the disadvantages of these 
methods are discussed by Roberts in a related paper in this 
session.14 The method used by THE ALOHA SYSTEM is 
suggested by the statistical characteristics of the packets 
generated by remote users. Since each user will g~nera~e 
packets infrequentlyll and each packet can be tr.ansrrutted m 
a time interval much less than the average time between 
packets the following scheme seems natural. 

Each user station has a buffer which it uses to store one 
line of text. When the line is complete a header containing 
address, control and parity information for a cyclic error de
tecting code is appended to the text to form a packet and 
the packet is transmitted to the central station. Each user at 
a console transmits packets to the central station over the 
same high data rate channel in a completely unsynchronized 
(from one user to another) manner. If and only if a packet 
is received without error it is acknowledged by the central 
station. After transmitting a packet the transmitting station 
waits a given amount of time for an acknowledgm~nt; if no~e 
is received the packet is automatically retransrrutted. ThIS 
process is repeated until a successful transmission and ac
knowledgment occurs or until some fixed number of unsuc
cessful transmissions has been attempted. 

A transmitted packet can be received incorrectly because 
of two different types of errors; (1) random noise errors and 
(2) errors caused by interference with a packet transmitted 
by another console. The first type of error has not been a 
serious problem on the UHF channels employe~. The sec~nd 
type of error, that caused by interference, wIll ~e of Im
portance only when a large number of users are trym~ to. u~e 
the channel at the same time. Interference errors WIll lImIt 
the number of users and the amount of data which can be 
transmitted over this ALOHA random access channel as 
more remote stations are added to THE ALOHA SYSTEM. 

Capacity of ALOHA channels 

In order to describe these limits we assume that the start 
times of message packets in our channel comprise a Poisson 
point process with parameter A packets/second. If each 
packet lasts T seconds we can define S = AT, where 

S = normalized channel message rate (1) 



S is called the normalized channel message rate since a 
value of S equal to one would correspond to a channel with 
packets synchronized perfectly so that the start of one packet 
always coincided vvith the end of the previous packet. (Of 
course this will not occur because of our Poisson assump
tion.) Note that S takes into account only message packets, 
not retransmission packets. 

In addition we a....~ume that the start times of the message 
packets plus packet retransmissions comprise another Poisson 
point process. (This assumption will hold only if the packet 
retransmission delays are large. See Reference 9.) Then we 
can define a quantity G, analogous to the normalized channel 
message rate, which takes into account the message packets 
plus the retransmission packets. 

G = normalized channel traffic rate (2) 

In general we know that 

G?S (3) 

In Reference 9 we showed that 

S=Ge-2G (4) 

and this relationship is plotted in Figure 1. 
Note from Figure 1 that the message rate reaches a maxi

mum value of Y2e=0.184. For this value of S the channel 
traffic is equal to 0.5. The traffic on the channel becomes un
stable at S = Y2e and the average number of retransmissions 
becomes unbounded. Thus we may speak of this value of the 
message rate as the capadty of this random access data chan
nel. Because of the random access feature the channel capac
ity is reduced to roughly one sixth of its value if we were 
able to fill the channel with a continuous stream of uninter
rupted data. 

The form of channel analyzed above corresponds to THE 
ALOHA SYSTEM channel now in operation. 

It is possible to modify the completely unsynchronized use 
of the ALOHA channel described in order to increase the 
capacity of the channel. In the pure ALOHA channel each 
user simply transmits a packet when ready without any at
tempt to coordinate his transmission with those of other 
users. While this strategy has a certain elegance it does lead 
to somewhat inefficient channel utilization. If we can estab
lish a time base and require each user to start his packets 
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Figure I-Traffic rate vs. message rate for a pure ALOHA channel and 
a slotted ALOHA channel 
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only at certain fixed instants it is possible to increase the 
channel capacity. In this kind of channel, called a slotted 
ALOHA channel, a central clock establishes a time base for 
a sequence of "slots" of the same duration as a packet trans
mission. Then when a user has a packet to transmit he syn
chronizes the start of his transmission to the start of a slot. 
In this fashion, if two messages conflict they V\-ill overlap 
completely, rather than partially. 

To analyze the slotted ALOHA channel define Si as the 
probability that the i'th user ",ill send a packet in some slot. 
Assume that each user operates independently of all other 
users and that whether a user sends a message in a given slot 
does not depend upon the state of any previous slot. If we 
have n users we can define S = 2::=1 Si, where 

S = normalized channel message rate (5) 

As before we can also cQp.sider the J::tte_at which a user 
sends message packets plus packet retransmissions. Define 
the probability that the i'th user will send a message packet 
or a packet retransmission as Gi . Then, for n identical users 
we define G= 2::=1 Gi where 

G = normalized channel traffic rate (6) 

and, as in the pure ALOHA channel 

(7) 

We note here that although S, the sum of the Si, is the 
probability that some user will send a message packet in a 
given slot, the analogous statement is not true for O. The 
sum of the Gi is not the probability that some user ",ill send 
a message or repetition packet in a given slot. In fact even 
though G is the sum of the probabilities Gi , G is not itself a 
probability and G may be greater than 1. 

For the slotted ALOHA channel with n independent users, 
the probability that a packet from the i'th user will not ex
perience an interference from one of the other users is 

n 

II (I-Gj ) 

i=l.#i 

Therefore we may write the follo"'ing relationship between 
the message rate and the traffic rate of the i'th user. 

n 

Si=Gi II (I-Oj) (8) 
i=1.#i 

If all users are identical we have 

(9) 

and 

(10) 

so that (8) can be written 

(11) 
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and in the limit as n~ 00 , we have 

S=Ge-G (12) 

Equation (12) is plotted in Figure 1 (curve labeled Slotted 
ALOHA). Note that the message rate of the Slotted ALOHA 
channel reaches a maximum value of 1/ e = 0.37, twice the 
capacity of the pure ALOHA channel. 

This result for Slotted ALOHA channels was first derived 
by Roberts12 using a different method. 

PROPERTIES OF SATELLITE CHANNELS 

The cable in the sky 

In the worldwide telephone system satellites are used more 
or less interchangeably with cables for transmission of voice 
signals. Because of this desirable feature, it is not surprising 
that the common carriers and even satellite designers have 
tended not to emphasize the differences between cable and 
satellite channels. 

A communications satellite however is not just a big cable 
in the sky. There are several significant differences between 
the communication channel properties of a cable or micro
wave link and the communication channel properties of a 
satellite transponder. 

In the next three sections we shall explain some of these 
differences and how they can affect the operation of a packet 
switched system using a satellite. But first we should mention 
one property of a satellite channel which the common car
riers have emphasized. A satellite transponder in geosyn
chronous orbit is stationed 36,000 kilometers above the equa
tor. A signal transmitted using the satellite will therefore ex
perience a delay of about a quarter second, corresponding to 
the round trip propagation time up to the satellite and down 
again. This delay can decrease the effective data rate of cer
tain error control schemes requiring positive acknowledg
ments sent from the receiver back to the transmitter. Such 
schemes should not ordinarily be used over satellite channels. 

There are three properties of communication satellites 
which we want to discuss here, in terms of their significance 
to packet switched communications. These are: 

(a) data rates 
(b) bilateral broadcasting 
( c) perfect information feedback 

Data rates 

The first property of satellite channels is not a fundamental 
property of the satellite itself, but rather a property of how 
the satellite is used. A single voice channel on INTELSAT 
IV uses a bandwidth of 45 Khz. and provides the capability 
of transmitting data at 56 kilobits on a single voice channel. 
This mode of operation is in fact employed in the SPADE 
demand assignment system now used in the Atlantic satel
lite; it is employed in the single-channel-per-carrier digital 

voice link installed in the Paumalu earth station in Hawaii 
and the Jamesburg earth station in California. Since Decem
ber 1972, THE ALOHA SYSTEM has been linked to the 
ARP ANET using a single leased satellite voice channel to 
transmit data at 50 kilobits to NASA Ames Research Center 
in California. 

Bilateral broadcasting 

In the conventional use of communication channels the 
term "broadcasting" refers to the fact that many receivers 
may obtain the transmission from a single transmitter. Per
haps the most striking feature of a satellite channel is its 
broadcast nature as opposed to the point-to-point nature of 
wire channels. The reception of broadcast signals for satellite 
communication channels used with conventional circuit 
switched methods is a natural idea. But when a satellite 
channel is used in a packet switched mode it is possible to 
consider broadcasting use of the channel by transmitters as 
well as receivers. This capability we have caned bilateral 
broadcasting. 

Since a number of transmitting ground stations operating 
in a packet switched mode may all access the same channel 
in an unsynchronized (from ground station to ground station) 
fashion the analysis of an earlier section applies to bilateral 
broadcasting without any change. Each of the twenty or more 
ground stations accessing a given INTELSAT IV channel can 
transmit packets at will up to the ALOHA random access 
capacity of that single channel. 

There is no technological reason why such a system could 
not be employed now to extend the capabilities of the exist
ing worldwide satellite communication network in data 
communications. There is an existing regulatory restriction 
on such an unconventional use of INTELSAT IV however 
and discussions are under way with several agencies to remove 
these regulatory barriers in either the INTELSAT system or 
one of the several domestic satellite systems to be installed 
(or already installed in two countries). 

Except for the not inconsiderable constraints imposed by 
regulatory considerations the same 50 kilobit leased satellite 
channel linking THE ALOHA SYSTEM to the ARPANET 
could be used to link machines in Alaska, Japan, Australia 
and any of the other sixteen earth stations which access the 
Pacific satellite. While these regulatory problems are being 
worked out however THE ALOHA SYSTEM has established 
a limited burst random access satellite network using the 
packet switching techniques described. In a joint experiment 
with NASA Ames Research Center in California and the 
University of Alaska we are operating such a link by means 
of the NASA ATS-1 satellite. The satellite transponder is 
operated as an unslotted ALOHA channel between earth 
stations in Hawaii, Alaska and California, and although usage 
of that channel is now restricted to two hours per day or 
less and the data rate of the channel is only 20,000 bits/ 
second, the experiment is providing valuable information on 
this new communications technique. 



Perfect information feedback 

In the use of satellites for packet switching yet another 
property of little value in circuit switching assumes impor
tance. In a packet switched system each ground station has 
the capability of transmitting packets up to the satellite ad
dressed to any other ground station (or to all other ground 
stations). Each packet is then received by all ground sta
tions, including the ground station which transmitted the packet, 
approximately one quarter second later. Therefore each 
ground station can initiate transmission of a packet at will as 
in THE ALOHA SYSTEM. However, whereas in THE 
ALOHA SYSTEM, it is necessary to provide information on 
packet interference to the sender in the form of positive ac
knowledgments, such information is not necessary in the 
system we are describing. Since each sender can listen to his 
own packet retransmitted from the satellite each sender can 
-be-c-onsiaere<rTo]iave-tlie--same iIiformali6J1 on pacKet inter
ference available to the receiver earth station. (In informa
tion theory terms, these channels are modeled as channels 
·with perfect information feedback.) 

Unfortunately in the real world, nothing is perfect and 
there will· undoubtedly be circumstances when the trans
mitter and the receiver do not detect the same bit string from 
the satellite. The fact remains however that positive acknowl
edgments to combat packet interference are not required, 
and the more efficient use of a negative acknowledgment 
scheme in conjunction with packet numbering is feasible for 
this system. 

EXCESS CAPACITY OF AN ALOHA CHANNEL 

The idea 

The type of packet switched satellite data channel we have 
described so far (either pure ALOHA or slotted ALOHA) 
has a certain elegant simplicity to it. The user of the channel 
simply transmits a burst of data when he wants at a data 
rate equal to that of the entire channel. Nevertheless there 
is a price to be paid for this simplicity in terms of channel 
capacity and in terms of delay. The question of delay is dealt 
with by Kleinrock13 and Roberts14 in the other two papers of 
this session. Roberts also discusses an effective method of 
employing the channel at rates significantly higher than the 
37 percent capacity indicated by Figure 1. In the next section 
we provide some results which show that a slotted ALOHA 
channel can be used at rates well above 37 percent of capac
ity, if all users of the channel do not have identical message 
rates. 

The idea of excess capacity in an ALOHA channel was 
first suggested by Roberts who derived a result for the case 
of several small users and a single large user of a slotted 
ALOHA channel. Roberts' proof was published along with a 
number of other interesting analytic results by Kleinrock 
and Lam.15 The approach we shall take was suggested by 
Rettberg,16 who also treated the case of a single large user 
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and was able to obtain numerical results for that case. In the 
next section we provide a complete analytic and numerical 
solution to the use of slotted ALOHA channels by any num
ber of users, each operating at an arbitrary rate. 

The theory 

From equation (8) we have a set of n equations relating 
the message rates and traffic rates of the n users 

n 

8 i =Gi IT (I-Gj ) i= 1,2, ... , n (13) 
j=I,j¢i 

Define 
n 

a= II (I-Gj ) (14) 
;=1 

theft {13} can be writ-ten: 

G· 8
i
= __ l_ a 

I-G i 
i=I,2, ... ,n (15) 

For any set of n acceptable traffic rates G1, G2, ••• , Gn 

these n equations define a set of message rates 81, 82, ••• , 8n , 

or a region in an n-dimensional space whose coordinates are 
the 8 i . In order to find the boundary of this region we calcu
late the Jacobian, 

Since 
j=k 

(16) 
j~k 

i¢j,k 

after some algebra we may write the Jacobian as 

Thus the condition for maximum message rates is 

(18) 

This condition can then be used to define a boundary to the 
n dimensional region of allowable message rates, 81, 82, ••• , 

Sn. 

The resuUs 

Consider the special case of two classes of users "\vith ni 
users in class 1 and n2 users in class 2. 

(19) 
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Let 8 1 and G1 be the message and traffic rates for users in 
class one, and 8 2 and G2 be the message and traffic rates for 
users in class 2. Then the n equations (13) can be written as 
the two equations 

81 =Gl(I-Gl)nl-l(I-G2)nl 

82=G2(I-G2) nS-l(I-G1)"1 

(20a) 

(20b) 

For any pair of acceptable traffic rates G1 and G'}. these two 
equations define a pair of message rates, 81 and 8 2, or a region 
in the 8 1, 8'}. plane. 

From (18) we know that the boundary of this region is de
fined by the condition 

(21) 

We can use (21) to substitute for G1 in equation (20) and 
obtain two equations for 8 1 and 82 in terms of a single param
eter G2• Then as G2 varies from 0 to 1 the resulting 8 1, 82 

pairs define the boundary of the region we seek. A FOR
TRAN program to calculate the boundary was written and 
used to calculate several curves of the allowable region for 
different values of (nl, n2) (Figures 2, 3). 

The important point to notice from Figures 2 and 3 is that 
in a lightly loaded Slotted ALOHA channel, a single large 
user can transmit data at a significant percentage of the total 
channel data rate, thus allowing use of the channel at rates 
well above the limit of 37 percent obtained when all users 
have the same message rate. This capability is important for 
a computer network consisting of many interactive terminal 
users and a small number of users who send large but infre
quent files over the channel. Operation of the channel in a 
lightly loaded condition of course may not be desirable in a 
bandwidth limited channel. For a communications satellite 
where the average power in the satellite transponder limits 
the channel however19 operation is a lightly loaded condition 

in a packet s¥.itched mode is an attractive alternative. Since 
the satellite will transmit power only when it is relaying a 
packet, the duty cycle in the transponder will be small and 
the average power used will be low. 

Finally we note it is possible to deal with certain limiting 
cases in more detail, to obtain equations for the boundary of 
the allowable 81, 8 2 region. 

(a) for nl =n2= 1 
Upon using (21) in (20) we obtain 

81 =G12 

82 = (I-G1)2 

(b) for ~---+ 00 

81=Gl(1-Gl)nl-loexp[ - (l- nlGl)] 

82= (l-n1G1) (I-G1) nl-l oexp[ - (l-n1G1)] 

(c) for nl =~---+oo 

(22a) 

(22b) 

(23a) 

(23b) 

Additional details dealing with excess capacity and the de
lay experienced with this kind of use of a slotted ALOHA 
channel may be found in References 17 and 18. 

PACKET SWITCHING IN DOMSAT 

Background 

The 50 kilobit INTELSAT channel now being used to link 
THE ALOHA SYSTEM to the ARPA Network could em-

1.0 

.9 

I/e 

(CD ,5) 

(CO,ID) 

n, users at rote S, 

n2 users at rote S2 

(n"n2) 

.3 I e.4 .5 .6 .7 .8 .9 

niS, 

Figure 3-Allowable message rates 

1.0 



ploy the techniques we have described to link additional 
nodes in the ARPANET at each of the 16 earth stations with 
access to the Pacific satellite. These same techniques could 
also be employed by a common carrier to offer packet 
switched data communications of a quality to which we 
would all like to become accustomed. 

As this is being written, there are in operation two domes
tic satellite systems (Molniya in the USSR and Anik in 
Canada) in addition to the worldwide INTEL'3AT system. 
Seven US domestic systems (DOMSAT) are under consider
ation and one has entered the construction phase with a first 
launch planned for 1974. Japan has announced plans for its 
domestic communications satellite and several other national 
systems are expected in the late 1970's. Most of the DO:\f
SAT proposals plan a system of less expensive and therefore 
more numerous earth stations than the standard 97 foot 
earth-statian---MltenIl-aS--Il{)W---USOO-in-tOO-~:r ~em. 
Thus the advantage of using a lightly loaded packet switched 
channel in a power limited situation19 assumes added im
portance. 

A proposal 

Consider the use of a single transponder in a US domestic 
satellite system to provide a public packet switched data 
communication service. INTEL'3AT IV employs 12 trans
ponders each with 36 Mhz. bandwidth. Only one of these 
transponders devoted completely to a public packet switched 
service in a US domestic satellite system could easily provide 
data at a rate of 10 million bits/second into a small earth 
station. The public packet switched service in the US could 
provide burst data rates between small communication con
trollers at each earth station of 10 megabits. Assuming 100 
earth stations over the US, and assuming the system is oper
ated at a message rate S = 0.15, the average data rate into 
and out of each station would be about 15 kilobits although 
the variance about this average (both from earth station to 
earth station and at different times at the same earth station) 
would be large. A packet switched system would function 
without difficulty in the face of large variations of this type. 

The capacity of such a system measured in terms of inter
active users of alphanumeric terminals would be about 
100,000 such active users at anyone time on the system. Of 
course the system would be used by other devices generating 
larger amounts of traffic than a single terminal and the num
ber of active users would have to be decreased accordingly. 
The point is that in a public packet switched service using a 
US domestic satellite the user of data communications could 
be charged by the packet, since the user would consume re
sources in the system proportional to the number of packets 
sent and received. 

The preceding three sections and the accompanying papers 
by Kleinrock and Roberts explain many of the technological 
advantages of such a system. Vie need only add some short 
observations concerning the operational advantages of a pub
lic packet switched service. The system would possess a 
flexibility of operation simply not attainable v.ith circuit 
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switched systems. Although the average data rate into each 
of 100 earth stations would be 15 kilobits, the burst data rate 
into any given terminal could be close to 10 megabits. This 
capability for remote job entry and file transfer leads to the 
same potential for resource sharing shown to be so valuable 
in the ARPANET. 

Another kind of flexibility is the flexibility in being able to 
start such a system "With a small number of communication 
controllers at a few earth stations. The system would become 
operational "With only two stat~ons and would yield data on 
packet interference patterns and delay with only three sta
tions. Since the computer-communication network brought 
into being by such a service is completely connected (topo
logically) there is no need for routing algorithms at each 
earth station (such as used in the ARPA~ET IMPS and 
TIPS) and to add a new earth station into the network it is 
ooJy---ne~ssaq----w--actWat~-tOO-id€ll-ti&atioo--~----m----that
station. Peak load averaging of such a system would operate 
to iIlcrease its total capacity since the system is peak load 
limited only at the satellite and not at the separate ground 
stations. (This particular advantage could be especially im
portant for a Pacific packet s"Witched service where the inter
national dateline would serve to average peak loads over 
different days as well as different hours.) 

Finally we note that the economics of such a system are 
consistent with the economics of existing computer communi
cation systems. The ARPANET in its present configuration 
provides a factor of ten or more in cost advantage over con
ventional circuit switched systems.5 During the month of 
January 1973, approximately 45,000,000 packets ,,,ere trans
mitted by the ARPAKET. The capacity of the ARPANET 
based on an eight hour day was about 300 million packets 
per month at that time. A public packet switching service 
using a single transponder of a domestic satellite system, 
operating at a normalized message rate of 0.15 would have a 
capacity of about 1,500 million packets per month, again 
based on an eight hour day. Furthermore, at such a low 
message rate the system would easily accommodate intermit
tent users with large files at a megabit data rate and still 
draw average power from the satellite corresponding to a 
transponder duty cycle of less than 16 percent. The 50 kilo
bit lines now used in the ARPANET cost about $1,200,000 
per year in January 1973 and this figure ,vas growing rapidly. 
The ARPANET is but one possible customer of a public 
packet switched service. The projected average annual reve
nue of a single transponder in the several proposed US do
mestic satellite systems ranges from less than $1,000,000 to 
about $3,000,000 per year.20 
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INTRODUCTION 

Imagine that two users require the use of a communication 
channet;i'he--cia-ssTc-ai . a-pproach to -satisfying this require
ment is to provide a channel for their use so long as that need 
continues (and to charge them for the full cost of this chan
nel). It has long been recognized that such allocation of 
scarce communication resources is extremely wasteful as 
witnessed by their low utilization (see for example the meas
urements of Jackson & Stubbs).1 Rather than provide chan
nels on a user-pair basis, we much prefer to provide a single 
high-speed channel to a large number of users which can be 
shared in some fashion; this then allows us to take advantage 
of the powerful "large number laws" which state that with 
very high probability, the demand at any instant ",ill be ap
proximately equal to the sum of the average demands of that 
population. In this way the required channel capacity to sup
port the user traffic may be considerably less than in the 
unshared case of dedicated channels. This approach has been 
used to great effect for many years now in a number of differ
ent contexts: for example, the use of graded channels in the 
telephone industry,2 the introduction of asynchronous time 
division multiplexing,3 and the packet-switching concepts 
introduced by Baran et al.,4 Davies,!> and finally implemented 
in the ARPA network. 6 The essential observation is that the 
full-time allocation of a fraction of the channel to each user 
is highly inefficient compared to the part-time use of the full 
capacity of the channel (this is precisely the notion of time
sharing). We gain this efficient sharing when the traffic con
sists of rapid, but short bursts of data. The classical schemes 
of synchronous time division multiplexing and frequency 
division multiplexing are examples of the inefficient parti
tioning of channels. 

As soon as we introduce the notion of a shared channel in a 
packet-s",itching mode then we must be prepared to resolve 
conflicts which arise when more than one demand is simul
taneously placed upon the channel. There are two obvious 
solutions to this problem: the first is to "throw out" or "lose" 
any demands which are made while the channel is in use; 
and the second is to form a queue of conflicting demands and 
serve them in some order as the channel becomes free. The 

* This research was supported by the Advanced Research PnJjects 
Agency of the Department of Defense under Contract No. DAHC-15-69-
C-0285. 

703 

latter approach is that taken in the ARPA network since 
storage may be provided economically at the point of con
flict. The former approach is taken in the ALOHA system7 

whichnses pttcire-Mwitehing wi-t-h---i'adi6 ehannels1--m t--his--sys
tem, in fact, all simultaneous demands made on the channel 
are lost. 

Of interest to this paper is the consideration of satellite 
channels for packet-switching. The definition of a packet is 
merely a package of data which has been prepared by a user 
for transmission to some other user in the system. The satel
lite is characterized as a high capacity channel with a fixed 
propagation delay which is large compared to the packet 
transmission time (see the next section). The (stationary) 
satellite acts as a pure transponder repeating whatever it re
ceives and beaming this transmission back down to earth; 
this broad casted transmission can be heard by every user of 
the system and in particular a user can listen to his own 
transmission on its way back down. Since the satellite is 
merely transponding, then whenever a portion of one user's 
transmission reaches the satellite while another user's trans
mission is being transponded, the two collide and "destroy" 
each other. The problem we are then faced with is how to 
control the allocation of time at the satellite in a fashion 
which produces an acceptable level of performance. 

The ideal situation would be for the users to agree collec
tively -when each could transmit. The difficulty is that the 
means for communication available to these geographically 
distributed users is the satellite channel itself and we are 
faced with attempting to control a channel which must carry 
its own control information. There are essentially three ap
proaches to the solution of this problem. The first has come 
to be known as a pure "ALOHA" system7 in which users 
transmit any time they desire. If, after one propagation de
lay, they hear their successful transmission then they assume 
that no conflict occurred at the satellite; otherwise they know 
a collision occurred and they must retransmit. If users re
transmit immediately upon hearing a conflict, then they are 
likely to conflict again, and so some scheme must be devised 
for introducing a random retransmission delay to spread 
these conflicting packets over time. 

The second method for using the satellite channel is to 
"sioe; time into segments whose duration is exactly equal to 
the transmission time of a single packet (we assume con
stant length packets). If we now require all packets to begin 
their transmission only at the beginning of a slot, then we 
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enjoy a gain in efficiency since collisions are now restricted to 
a single slot duration; such a scheme is referred to as a 
"slotted ALOHA" system and is the principal subject of this 
paper . We consider two models: the first is that of a large 
population of users, each of which makes a small demand on 
the channel; the second model consists of this background of 
users with the addition of one large user acting in a special 
way to provide an increased utilization of the channel. We 
concern ourselves with retransmission strategies, delays, and 
throughput. Abramson8 also considers slotted systems and is 
concerned mainly with the ultimate capacity of these chan
nels with various user mixes. Our results and his have a com
mon meeting point at some limits which will be described 
below. 

The third method for using these channels is to attempt to 
schedule their use in some direct fashion; this introduces the 
notion of a reservation system in which time slots are re
served for specific users' transmissions and the manner in 
which these reservations are made is discussed in the paper 
by Roberts.9 He gives an analysis for the delay and through
put, comparing the performance of slotted and reservation 
systems. 

Thus we are faced with a finite-capacity communication 
channel subject to unpredictable and conflicting demands. 
When these demands collide, we "lose" some of the effective 
capacity of the channel and in this paper we characterize the 
effect of that conflict. Note that it is possible to use the chan
nel up to its full rated capacity when only a single user is 
demanding service; this is true since a user will never con
flict 'with himself (he has the capability to schedule his own 
use). This effect is important in studying the non-uniform 
traffic case as we show below. 

SLOTTED ALOHA CHAN~EL 1iODELS 

Model I. Traffic from many small users 

In this model we assume: 

(AI) an infinite number of users* who collectively form an 
independent source 

This source generates M packets per slot from the distribu
tion vi=Prob[M=iJ with a mean of So packets/slot. 

We assume that each packet is of constant length requiring 
T seconds for transmission; in the numerical studies pre
sented below we assume that the capacity of the channel is 
50 kilobits per second and that the packets are each 1125 bits 
in length yielding T=22.5 msec. Note that So' = SofT is the 
average number of packets arriving per second from the 
source. Let d be the maximum roundtrip propagation delay 
which we assume each user experiences and let R = d/ T be 
the number of slots which can fit into one roundtrip propaga
tion time; for our numerical results we assume d = 270 msec. 
and so R = 12 slots. R slots after a transmission, a user will 

* These will be referred to as the "small" users. 

either hear that it was successful or know that it was de
stroyed. In the latter case if he now retransmits during 
the next slot interval and if all other users behave like
'wise, then for sure they will collide again; consequently 
we shall assume that each user transmits a previously col
lided packet at random during one of the next K slots, 
(each such slot being chosen with probability 1/ K). Thus, 
retransmission will take place either R+ 1, R+2, ... or 
R+K slots after the initial transmission. As a result traffic 
introduced to the channel from our collection of users will 
now consist of new packets and previously blocked packets, 
the total number adding up to N packets transmitted per 
slot where pI = Probe N = iJ with a mean traffic of G packets 
per slot. We assume that each user in the infinite popu
lation will have at most one packet requiring transmission 
at any time (including any previously blocked packets). 
Of interest to us is a description of the maximum through
put* rate S as a function of the channel traffic G. It is clear 
that S/G is merely the probability of a successful trans
mission and G / S is the average number of times a packet 
must be transmitted until success; assuming 

(A2) the traffic entering the channel is an independent 
process 

We then have, 
S=Gpo (1) 

If in addition we assume, 

(A3) the channel traffic is Poisson 

then po = e-G, and so, 
S=Ge-G (2) 

Eq. (2) was first obtained by Robertsll who extended a simi
lar result due to Abramson7 in studying the radio ALOHA 
system. It represents the ultimate throughput in a :\iodel I 
slotted ALOHA channel without regard to the delay packets 
experience; we deal extensively wit h the delay in the next 
section. 

For Model I we adopt assumption AI. We shall also accept 
a less restrictive form of assumption A2 (namely assumption 
A4 below) which, as we show, lends validity to assumption 
A3 which we also require in this model. Assume, 

(A4) the channel traffic is independent over any K con
secutive slots 

We have conducted simulation experiments which show that 
this is an excellent assumption so long as K < R. 

Let, 
co 

P(z) = LPiZi (3) 
i=O 

co 

V(z) = Ll\Zi (4) 
i=O 

* Note that 8=80 under stable system operation which we assume 
unless "tated nthpTwisp ("pp hplnw). 



Using only assumption A4 and the assumption that J.11 is in
dependent of N - M, we find [10] that P (z) may be expressed 
as 

[
PI (I_Z)]K 
:K(I-z)+P 1-[( V(z) 

If, further, the source is an independent process (i.e., as
sumption AI) and is Poisson distributed then V(z) = e-S(l-z) , 

and then we see immediately that, 

Lim P(z) =e-G(i-z). 

Ktoo 

This shows that assumption A3 follows from assumptions 
Al and A4 in the limit of large K, under the reasonable con
dition that the source is Poisson distributed. 

We have so far defined the following critical system param
et-el'S+- So, S, G, K and R. In the---ensying analysis we-Shall
distinguish packets transmitting in a given slot as being 
either newly generated or ones which have in the past col
lided ",i.th other packets. This leads to an approximation 
since we do not distinguish how many times a packet has 
met with a collision. We have examined the validity of this 
approximation by simulation, and have found that the cor
relation of traffic in different slots is negligible, except at 
shifts of R+l, R+2, ... , R+K; this exactly supports our 
approximation since we concern ourselves ",i.th the most re
cent collision. We require the follo",i.ng two additional 
definitions: 

q= Prob[newly generated packet is successfully 
transmitted] 

q t = Prob[previously blocked packet is successfully 
transmitted] 

We also introduce the expected packet delay D: 

D=average time (in slots) until a packet is 
successfully received 

Our principal concern in this paper is to investigate the 
trade-off between the average delay D and the throughput 8. 

Modelll. Background traffic toith one large user 

In this second model; we refer to the source described 
above as the "background" source but we also assume that 
there is an additional single user who constitutes a second 
independent source and 'we refer to this source as the "large" 
user. The background source is the same as that in ::.\Iodel I 
and for the second source, we assume that the packet arrivals 
to the large user transmitter are Poisson and independent of 
other packets over R+ K consecutive slots. In order to dis
tinguish variables for these two sources, we let 81 and G1 refer 
to the 8 and G parameters for the background source and let 
82 and G2 refer to the 8 and G parameters for the single large 
user. We point out that the identity of this large user may 
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change as time progresses but insist that there be only one 
such at any given time. We introduce the new variables 

8=81+82 

G=G1+G2 

(5) 

(6) 

8 represents the total throughput of the system and G repre
sents the traffic which the channel must support (including 
retransmissions). vVe have assumed that the small users may 
have at most one packet outstanding for transmission in the 
channel; however the single large user may have many pack
ets awaiting transmission. We assume that this large user has 
storage for queueing his requests and of course it is his re
sponsibility to see that he does not attempt the simultaneous 
transmission of two packets. \Ve may interpret G2 as the 
probability that the single large user is transmitting a packet 
in a channel slot and so we require G2 ::; 1; no such restriction 
ia.placed-<m14---<-nr-Du1Lin_'\1.od.eLI+.-. . ... -------------- -. -

We now introduce a means by which the large user can 
control his channel usage enabling him to absorb some of the 
slack channel capacity; this permits an increase in the total 
throughput 8. The set of packets awaiting transmission by 
the large user compete among each other for the attention of 
his local transmitter as follows. Each waiting packet will be 
scheduled for transmission in some future slot. When a newly 
generated packet arrives, it immediately attempts trans
mission in the current slot and will succeed in capturing the 
transmitter unless some other packet has also been scheduled 
for this slot; in the case of such a scheduling conflict, the new 
packet is randomly rescheduled in one of the next L slots, 
each such slot being chosen equally likely with probability 
I/L. Due to the background traffic, a large user packet may 
meet with a transmission conflict at the satellite (which is 
discovered R slots after transmission) in which case, as in 
Model I, it incurs a random delay (uniformly distributed 
over K slots) plus the fixed delay of R slots. More than one 
packet may be scheduled for a future slot and we assume 
that these scheduling conflicts are resolved by admitting that 
packet with the longest delay since its previous blocking (due 
to conflict in transmission or conflict in scheduling) and uni
formly rescheduling the others over the next L slots; ties are 
broken by random selection. We see, therefore, that new 
packets have the lowest priority in case of a scheduling con
flict; however, they seize the channel if it is free upon their 
arrival. The variable L permits us a certain control of chan
nel use by the large user but does not limit his throughput. 
VVe also assume K, L<R. Corresponding to q and qt in ::'\fodel 
I, we introduce the success probabilities qi and qit (i= 1,2) 
for new and previously blocked packets respectively and 
where i = 1 denotes the background source and i = 2 denotes 
the single large source. Finally, we choose to distinguish be
tween Dl and D2 which are the average number of slots until 
a packet is successfully transmitted from the background 
and large user sources respectively. 

RESULTS OF AKALYSIS 

In this section we present the results of our analysis with
out proof. The details of proof may be found in Reference 10. 
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Model I. Traffic from many small users 

We wish to refine Eq. (2) by accounting for the effect of 
the random retransmission delay parameter K. Our principal 
result in this case is 

(7) 

where 

(8) 

and 

(9) 

The considerations which led to Eq. (7) were inspired by 
Robertsll in which he developed an approximation for Eq. 
(9) of the form 

K-I 
ql"-J -X e-G (10) 

We shall see below that this is a reasonably good approxima
tion. Equations (7-9) form a set of non-linear simultaneous 
equations for 8, q and ql which must be solved to obtain an 
explicit expression for 8 in terms of the system parameters 
G and K. In general, this cannot be accomplished. However, 
we note that as K approaches infinity these three equations 
reduce simply to 

L · 8 L' . G 1m - = 1m q=Llm ql=e-
Ktoo G Ktoo Ktoo 

(11) 

Thus, we see that Eq. (2) is the correct expression for the 
throughput 8 only when K approaches infinity which cor
responds to the case of infinite average delay; Abramson8 

gives this result and numerous others all of which corre
spond to this limiting case. Note that the large K case avoids 

the large delay problem if T is small (very high speed chan
nels) . 

The numerical solution to Eqs. (7-9) is given in Figure I 
where \ve plot the throughput 8 as a function of the channel 
traffic G for various values of K. We note that the maximum 
throughput at a given K occurs when G = 1. The throughput 
improves as K increases, finally yielding a maximum value 
of 8= I/e= .368 for G= I, K = infinity. Thus we have the un
fortunate situation that the ultimate capacity of this channel 
supporting a large number of small users is less than 37 per
cent of its theoretical maximum (of I). We note that the 
efficiency rapidly approaches this limiting value (of 1/ e) as 
K increases and that for K = 15 we are almost there. The 
figure also shows some delay contours which we discuss 
below. In Figure 2, we show the variation of q and qt with K 
for various values of G. We note how rapidly these functions 
approach their limiting values as given in Eq. (11). Also on 
this curve, we have shown Roberts' approximation in Eq. 
(10) which converges to the exact value very rapidly as K 
increases and also as G decreases. 

Our next significant result is for packet delay as given by 

I-q[ K-I] D=R+I+ - R+I+--
ql 2 

(12) 

We note from this equation that for large K, the average 
delay grows linearly with K at a slope 

aD I-e-G 

Lim- =--
Ktoo aK 2e-G 

Using Eq. (11), we see that this slope may be expressed as 
G- 8/28 which is merely the ratio of that portion of trans
mitted traffic which meets with a conflict to twice the through
put of the channel; since G - 8/28 = ~~ (G /8 -I), we see 
that the limiting slope is equal to ~~ times the average 
number of times a packet is retransmitted. Little's well
known result 12 expresses the average number (n) of units 
(packets in our case) in a queueing system as the product of 
the average arrival rate (80 = 8 in our case) and the average 
time in system (D). If we use this along with Eqs. (7) and 
(12), we get 

[ K-I] lK-I] n=8D=G R+I+ -2- -8 -2- (13) 
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Figure 2-Success probabilities as a function of retransmission delay 



In Figure 1 we plot the loci of constant delay in the 8, G 
plane. Note the way these loci bend over sharply as K in
creases defining a maximum throughput 8max (D) for any 
given value of D; we note the cost in throughput if we wish 
to limit the average delay. This effect is clearly seen in 
Figure 3 which is the fundamental display of the tradeoff 
between delay and throughput for :\10del I; this figure shows 
the delay-throughput contours for constant values of K. We 
also give the minimum envelope of these contours which de
fines the optimum performance curve for this system (a 
similar optimum curve is also shown in Figure 1). K ote how 
sharply the delay increases near the maximum throughput 
8=0.368; it is clear that an extreme price in delay must be 
paid if one wishes to push the channel throughput muc.h 
above 0.360 and the incremental gain in throughput here IS 

infinitesimal. On the other hand, as 8 approaches zero, D 
approaches R + 1. Also shown here a~~ __ ~~~?!l~!_~_~t ___ ~_~~~=-
tours. Thus this figure and Figure-I are two alternate ways of 
displaying the relationship among the four critical system 
quantities 8,G,K, and D. 

From Figure 3 we observe the following effect. Consider 
any given value of 8 (say at 8=0.20), and some given value 
of K (say K = 2). We note that there are two possible values 
of D which satisfy these conditions (D = 21.8, D = 161). How 
do we explain this?* It is clear that the lower value is a stable 

G=3.0 

I SECOND =44.4 SLOTS 

G =1.0 ---,..c.--J .. 

G=0.7-- ------.....!:oJ!' 

ENVELOPE OF OPTI MUM PERFORMANCE 
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Figure 3-Delay-throughput tradeoff 

* This question was raised in a private conversation with Martin Gra
ham (University of California, Berkeley). A simulation of this situation 
is reported upon in Reference 13. 
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operating point since the system has sufficient capacity to 
-ahwr-h----any tluclu-atiQ.r:l-i-n--the--r~ppose-that--We--Il-OW-____ _ 
slowly increase 8 0 (the source rate); so long as we do not 
exceed the maximum value of the system throughput rate 
for this K (say, 8 max (K», then we see that 8 = 80 and the 
system l\.-ill follow the input. X ote that 8 max (K) always oc
curs at the intersection of the G= 1 curve as noted earlier. 
However, if we attempt to set 80> 8max (K), then the sys
tem will go unstable! In fact, the throughput 8 will drop 
from 8max (K) toward zero as the system accelerates up the 
constant K contour toward infinite delay! The system will 
remain in that unfortunate circumstance so long as 80> 8 
(where now 8 is approaching zero). All during its demise, the 
rate at which new packets are being trapped by the system is 
80-8. To recover from this situation, one can set 80=0; 
then the delay will proceed down the K contour, round the 
bend at 8 max (K) and race down to 8 = O. All this while, the 
backlogged packets are being flushed out of the system. The 
warning is clear: one must avoid the knee of the K contour. 
Fortunately, the optimum performance curve does avoid the 
knee everywhere except when one attempts to squeeze out 
the last few percent of throughput. In Figure 4, we show the 
optimum values of K as a function of 8. Thus, we have char
acterized the tradeoff behveen throughput and delay for 
Model I. 

Model I I. Background traffic with one large user 

In this model the throughput equation is similar to that 
given in Eq. (7), namely, 

8;=G; qit 
. . qit+ 1-qi 

(14) 

the quantities qit and qi are given in the appendix. Similarly 
the average delays for the hvo classes of user are given by 

(15) 
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0.5 

Figure 5-Throughput surface 

where En and E t are given in the appendix. It is easy to show 
that as K, L approach infinity, 

ql = q1t= e-G1 (I-G2) (17) 

81 =G1e-G1(I-G2) (18) 

q2 = q2t = e-G1 (19) 

82 =G2e-G1 (20) 

8= (G-G1G2)e-GI (21) 

where we recall G = G1 +G2 and 8 = 81 + 82• From these last 
equations or as given by direct arguments in an unpublished 
note by Roberts, one may easily show that at a constant 
background user throughput 81, the large user throughput 
8 2 will be maximized when 

(22) 

This last is a special case of results obtained by Abramson in 
Reference 8 and he discusses these limiting cases at length for 
various mixes of users. We note that, 

(23) 

(24) 

.1 .2 .3 e- I 5, 
BACKGROUND THROUGHPUT 

Figure 6-Throughput tradeoff 

In Figure 5 we give a qualitative diagram of the 3-dimen
sional contour for 8 as a function of G1 and G2• We remind the 
reader that this function is shown for the limiting case K, L 
approaching infinity only. From our results we see that for 
constant G1<1, 8 increases linearly with G2 (G2 <1). For 
constant G1> 1, 8 decreases linearly as G2 increases. In ad
dition, for constant G2 < 72", 8 has a maximum value at 
G1 =1-2G2/1-G2. Furthermore, for constant G2 >"72, 8 de
creases as G1 increases and therefore the maximum through
put 8 must occur at 8 = G2 in the G1 = 0 plane. 

The optimum curve given in Eq. (22) is shown in the 81,82 

plane in Figure 6 along with the performance loci at constant 
G1• We note in these last two figures that a channel through
put equal to 1 is achievable whenever the background traffic 
drops to zero thereby enabling 8 = 82 = G2 = 1; this corre
sponds to the case of a single user utilizing the satellite 
channel at its maximum throughput of 1. Abramson [8J dis-
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Figure 7-Delay-throughput tradeoff at 8, =0.1 

cusses a variety of curves such as those in Figure 6; he con
siders the generalization where there may be an arbitrary 
number of background and large users. 

In the next three figures, we give numerical results for the 
finite K case; in all of these computations, we consider only 
the simplified situation in which K = L thereby eliminating 
one parameter. In Figure 7 we show the tradeoff between de
lay and throughput similar to Figure 3. (Note that Figure 5 
is similar to Figure 1.) Here we show the optimum perform
ance of the average delay D = S1D1 + S2Dd S along with the 
behavior of D at constant values of K and S1 =0.1 (note the 
instability once again for overloaded conditions). Also shown 
are minimum curves for D1 and D2, \vhich are obtained by 
using the optimum K as a function of S. If we are willing to 
reduce the background throughput from its maximum at 
S1 = 0.368, then we can drive the total throughput up to ap
proximately S = 0.;')2 by introducing additional traffic from 
the large user. Xote that the minimum Dl curve is much 
higher than the minimum D2 curve. Thus our net gain in 



channel throughput is also at the expense of longer packet 
delays for the small users. Once again, we see the sharp rise 
near saturation. 

In Figure 8, we display a family of optimum D curves for 
various choices of S1 as a function of the total throughput S. 
We also show the behavior of Model I as given in Figure 3. 
Note as we reduce the background traffic, the system capac
ity increases slmvly; however, when 81 falls below 0.1, we 
begin to pick up significant gains for S2. Also observe that 
each of the constant curves "peels off" from the ::\trodel I 
curve at a value of S = S1. At S1 = 0, we have only the large 
user operating ,vith no collisions and at this point, the optimal 
value of L is 1. This reduces to the classical queueing system 
with Poisson input and constant service time (denoted 
M/D/1) and represents the absolute optimum performance 
contour for any method of using the satellite channel when 
theinpnt_is_ Poisson~JQr other input distIiQ~tions we !l}ay 
use the G/D/1 queueing results to calculate this absolute 
optimum performance contour. 

In Figure 9, we finally show the throughput tradeoffs be
tween the background and large users. The upper curve shows 
the absolute maximum S at each value of S1; this is a clear 
display of the significant gain in S2 which we can achieve if 
we are willing to reduce the background throughput. The 
middle curve (also shown in Figure 6 and in Reference 8) 
shows the absolute maximum value for S2 at each value of 
S1. The lowest curve shows the net gain in system capacity as 
S1 is reduced from its maximum possible value of 1/ e. 

COXCLUSIOXS 

In this paper we have analyzed the performance of a slotted 
satellite system for packet-switching. In our first model, we 
have displayed the trade-off between average delay and 
average throughput and have shown that in the case of 
traffic consisting of a large number of small users, the limiting 
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throughput of the channel (l/e) can be approached fairly 
closely ·without an excessive delay. This performance can be 
achieved at relatively small values of K which is the random 
retransmission delay parameter. However, if one attempts to 
approach this limiting capacity, not only does one encounter 
large delays, but one also flirts with the hazards of unstable 
behavior. 

In the case of a single large user mixed with the background 
traffic, we have shown that it is possible to increase the 
throughput rather significantly. The qualitative behavior for 
this multidimensional trade-off was shown and the numerical 
calculations for a given set of parameters were also dis
played. The optimum mix of channel traffic was given in 
Eq. (22) and is commented on at length in Abramson's 
paper.8 \Ve have been able to show in this paper the relation
ship between delay and throughput which is an essential 
trade-off in these slotted packet-switching systems. 

In Roberts' paper9 he discusses an effective way to reserve 
slots in a satellite system so as to predict and prevent con
flicts. It is worthwhile noting that another scheme is cur
rently being investigated for packet-switching systems in 
which the propagation delay is small compared to the slot 
time, that is, R=d/T«1. In such systems it may be ad
vantageous for a user to "listen before transmitting" in order 
to determine if the channel is in use by some other user; 
such systems are referred to as "carrier sense" systems and 
seem to offer some interesting possibilities regarding their 
control. For satellite communications this case may be 
found when the capacity of the channel is rather small (for 
example, with a stationary satellite, the capacity should be 
in the range of 1200 bps for the packet sizes we have dis
cussed in this paper). On the other hand, a 50 kilobit channel 
operating in a ground radio environment with packets on the 
order of 100 or 1000 bits lend themselves nicelv to carrier 
sense techniques. v 

In all of these schemes one must trade off complexity of 
implementation with suitable performance. This performance 
must be effective at all ranges of traffic intensity in that no 
unnecessary delays or loss of throughput should occur due to 
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complicated operational procedures. We feel that the slotted 
satellite packet-switching methods described in this paper 
and the reservation systems for these channels described in 
the paper by Roberts do in fact meet these criteria. 

REFERENCES 

1. Jackson, P. E., Stubbs, C. D., "A Study of Multi-access Computer 
Communications," Spring Joint Computer Conf., AFIPS Cont. 
Proc., Vol. 34, 1969, pp. 491-504. 

2. Syski, R., Introduction to Congestion in Telephone Systems, Oliver 
& Boyd, Edinburgh and London, 1960. 

3. Chu, W. W., "A Study of Asynchronous Time Division Multiplex
ing for Time-Sharing Computer Systems," Spring Joint Computer 
Conf., AFIPS Cont. Proc., Vol. 35, 1969, pp. 669-678. 

4. Baran, P., Boehm, S., and Smith, P., "On Distributed Communica
tions," series of 11 reports by Rand Corp., Santa Monica, Calif., 
1964. 

5. Davies, D. W., "The Principles of a Data Communication Network 
for Computers and Remote Peripherals," Proc. IFIP Hardware, 
Edinburgh, 1968, D11. 

6. Roberts, L. G., "Multiple Computer Networks and Inter-Computer 
Communications," ACM Symposium on Operating Systems, Gat
linburg, Tenn., 1967. 

7. Abramson, N., "The ALOHA System-Another Alternative for 
Computer Communications," Fall Joint Computer Conf., AFIPS 
Cont. Proc., Vol. 37, 1970, pp. 281-285. 

8. Abramson, N., "Packet Switching with Satellites," these proceed
ings. 

9. Roberts, L. G., "Dynamic Allocation of Satellite Capacity through 
Packet Reservation," these proceedings. 

10. Kleinrock, L., Lam, S. S., Arpanet Satellite System Notes 12 (NIC 
Document #11294); 17 (NIC Document #11862); 25 (NIC Docu
ment #12734); and 27 (NIC Document #12756), available from the 
ARPA Network Information Center, Stanford Research Institute, 
Menlo Park, California. 

11. Roberts, L., Arpanet Satellite System Notes 8 (NIC Document 
#11290) and 9 (NIC Document #11291), available from the ARPA 
Network Information Center, Stanford Research Institute, Menlo 
Park, California. 

12. Kleinrock, L., Queueing Systems: Theory and Applications, to be 
published by Wiley Interscience, New York, 1973. 

13. Rettberg, R., Arpanet Satellite System Note 11 (NIC Document 
#11293), available from the ARPA Network Information Center, 
Stanford Research Institute, Menlo Park, California. 

APPENDIX 

Define Gs ~ Poisson arrival rate of packets to the transmitter 
of the large user 

(A.l) 

The variables qil qit (i= 1, 2) in Eqs. (14-16) are then 
given as follows (see Reference 10 for details of the deriva
tions) : 

where 

ql = (qo)K (qh) Le-S 

qu= (qo)K-lqIC(qh)Le-S 

(A.2) 

(A.3) 

L=1 
(A.5) 

L?2 

(A.6) 

Let us introduce the follo\\ing notation for events at the 
large user: 

SS = scheduling success (capture of the transmitter) 
SC = scheduling conflict (failure to capture transmitter) 
T S = transmission success (capture of a satellite slot) 
TC = transmission conflict (conflict at the satellite) 
N P = newly generated packet 

Then, 

(A.7) 

(A.8) 

where 

En ~ average number of SC events before 1 
an SS event conditioning on NP = -an (A.9) 

E t ~ average number of SC events before 
an SS event conditioning on TC 

a. 

(A.lO) 

The variables ai, ri (i=n, t, 8) are defined and given below: 

where 

an~Prob [SS/NP] = (~)K (qh)L(I-;2-
S2

) 

rn~Prob [TS/SS, NP]=qKe;-Sl 

at~Prob [SS/TC]= K2.. 1- (qojq)K 
l-qo q 

rt~Prob [TS/SS, TC]=qK-lq2ce-Sl 

a8~Prob [SS/SC]=(~)K qsc 1- (qh)L 
q L l-qh 

r.~Prob [TS/SS, SC]=qKe-Sl 

q2c = -1---e---G-
1

-

(A.U) 

(A.12) 

(A.13) 

(A.14) 

(A.I.5) 

(A.16) 

(A.17) 

(A.18) 

(A.19) 



Dynamic allocation of satellite capacity through 
packet reservation 
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INTRODUCTION 

If {ffie projects-tne-growth uf 'cmnputer---cUIDTIluniemion-n-et
works like the ARPAKETl,2,3,4 to a worldwide situation, 
satellite communication is attractive for intercommunicating 
between the widespread geographic areas. For this variable 
demand, multi-station, data traffic situation, satellites are 
uniquely qualified in that they are theoretically capable of 
statistically averaging the load in total at the satellite 
rather than requiring each station or station-pair to average 
the traffic independently. However, very little research has 
been done on techniques which permit direct multi-station 
demand access to a satellite for data traffic. For voice traffic 
statistics, CO::\ISAT Laboratories has developed highly 
efficient techniques; the SPADE5 system currently installed 
in the Atlantic permitting the pooled use of 64KB PCM 
voice channels on a demand basis, and the MAT-1 6 Tn~1:A 

(Time Division ::\'lultiple-Access) experimental system. 
Both systems permit flexible demand assignment of the 
satellite capacity, but on a circuit-switched basis designed 
to interconnect a full duplex 64KB channel between hvo 
stations for minutes rather than deliver small blocks of 
data here and there. This work forms the technical base for 
advanced digital satellite communication, and provides a 
very effective means for moving large quantities of data 
between two points. However, for short interactive data 
traffic between many stations, new allocation techniques 
are desirable. 

TRAFFIC MODEL 

In order to evaluate the performance of any new tech
nique for dynamic assignment of satellite capacity and 
compare it ,vith other techniques, a complete model of the 
data traffic must be postulated. Given the model, each 
technique can be analyzed and its performance computed 
for any traffic load or distribution. Although it is difficult 
to fully represent the complete variation in traffic rates 
normal in data traffic, the following model describes the 
basic nature of data traffic ,vhich might arrive at each 
satellite station from a local packet network. 

There are Poisson arrivals of both single packets (1270 
bits including the header) and multi-packet blocks (8 
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packets) at each station. The overall Poisson arrival rate 
for both is L with a fraction F of single packets and the re
maiOOer---I-R-lllt4aek-et-s.----FeF-~it¥,~--ar-ri¥al----I'-ates..at 
all stations are stationary and equal. This is not completely 
representative of normal data traffic but for the assignment 
techniques of interest, non-stationary and unequal arrival 
rates will produce nearly identical performance to the 
stationary case. Techniques which subdivide the satellite 
capacity in a preassigned manner would be seriously hurt 
by non-stationary traffic rates but the poor perfQrmance 
of these systems will be demonstrated, at least in part, by 
their inability to handle Poisson packet arrivals effectively. 
The average station traffic in packets per second is: 

T= L(F +8(1-F)) (1) 

The destination of this traffic is equally divided between 
all of the other stations. 

For a truly reliable data communications network, each 
packet or block should be acknowledged as having been 
correctly received. Positive error controi using acknowl
edgments and retransmissions is very important for data 
traffic. Thus, acknowledgment traffic must be added to the 
station traffic. To achieve rapid recovery from errors there 
must be one small packet (144 bits) sent for each packet 
or block sent. This traffic is administrative overhead and 
will not be counted when computing the channel utilization. 

The analytic results presented later in the paper are all 
for equal arrival rates for single packets and multi-packets 
(F=.5). Other values of F have been examined as well as 
cases where the input traffic contains small (144 bit) data 
packets as well. The detailed effect of these variations is 
not sufficiently pronounced to consider here, however. For 
comparing techniques the equal arrival distribution is quite 
representative. 

ARPANET experience indicates that the data traffic one 
can expect is proportional to the total dollar value of com
puter services being bought or sold through the network. 
The total traffic generated by one dollar of computer ac
tivity is about 315 packets, half going each way.3 Thus, 
$200K/year of computer activity within a region produces 
2KB of traffic, of -which IKB is leaving the region. 'Within 
the next few years it is probable that the computer services 
exchanged internationally will be between $50K/ country 
and $21'vl/country 'which suggests that the traffic levels, T, 
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to consider are from .25KB to 1OKB. For domestic satellite 
usage the dollar flow would be far greater than this if the 
regions are ones like the east and west coast. However, if 
small stations become economically attractive, the indi
vidual user complexes or computer sites will have traffic 
levels well within this range. Therefore, several of the analytic 
results presented are for a station traffic of T = 1KB. This 
corresponds to one packet or multi-packet arriving every 
4.5 seconds, on the average. It is extremely important to 
note the infrequency of this, considering that the block 
must be delivered within less than a second. Even at 1OKB, 
with arrivals every .45 seconds, each arrival must be treated 
independently, not waiting for a queue to build up if rapid 
response is to be maintained. Only after the individual 
traffic exceeds 50KB is there significant smoothing and 
uniformity to the station's traffic flow. Thus, it is quite im
portant to devise techniques which do not depend on this 
smoothing at each station if stations with under $1OM of 
remote computer activity are to be served economically. 

CHANNELIZED SATELLITE TRANSMISSION 
TECHNIQUES 

F D M -F U LL interconnection 

The most common technique in use today is for each pair 
of stations which have traffic to lease a small full duplex 
data channel directly. If this technique were used for a 
large net of N stations, it would require N (N -1) half 
duplex channels, each large enough to provide the desired 
delay response. The total satellite bandwidth required is 
the sum of the N(N -1) individual requirements plus 
2KHz* per channel (minimum) for guardbands. However, 
since the channels are dedicated, variable packet sizes can 
be handled and the small acknowledgments fit in efficiently. 

FDM-Store and forward star 

Since it is clearly very costly for full interconnection, 
store and forward is an obvious alternative. With short, 
leased ground lines, the ARPANET very effectively uses 
this technique, but since each hop adds at least .27 sec due 
to the propagation delay, it is important to minimize the 
number of hops. Thus a star design is probably as good an 
example of this technique as any. The total number of 
channels for a star is N -1. The delay is the two hop total 
plus any switch delay (herein presumed zero and of in
finite capacity). 

TDMA 

Since all stations could theoretically hear all the trans
missions, a store and forward process is really unnecessary 

* Two KHz is the minimal possible channel separation determined by 
oscillator stability for current INTELSAT IV equipment based on a 
private communication with E. Cacciamani, COMSAT Laboratories. 
Actual guardbands in usc are wider. 

if each packet has an address and its destination can receive 
it. Further, the guardbands required for FDl\f can be 
eliminated if Time Division Multiple Access techniques are 
used. Instead, an 80 bit start up synchronization leader is 
required. This increases the small acknowledgment packets 
to 225 bits and the normal packets to 1350 bits, a 7.6 percent 
overhead. For this type of data traffic a strict alternation of 
time slot ownership between the stations was evaluated. 
All slots are the same size, 1350 bits, except for small ac
knowledgment packets which are packed in at the necessary 
intervals. Thus, each station has one Nth of the channel 
capacity and can use it freely to send to any station. Each 
station must examine all packets for those addressed to 
itself. To adapt to unequal or non-stationary traffic levels, 
there are many techniques6 for slowly varying the channel 
split. 

ALOHA 

Instead of preassigning time slots to stations and often 
having them be unused, in the ALOHA system they are all 
freely utilized by any station with traffic. When there are 
many stations this reduces the delay caused in waiting for 
your own slot, but introduces a channel utilization limit of 
36 percent to insure that conflicts are not too frequent. When 
conflicts do occur the sum check clearly indicates it and both 
stations retransmit. A very complete treatment of this 
technique is presented in the papers by Abramson 7 and 
Kleinrock and Lam. 8 For the comparison curves presented 
here, an approximation to the precise delay calculation was 
used and the possibilities of improved performance due to 
excess capacity were ignored. Thus, the ALOHA results 
are slightly conservative. 

RESERVATION SYSTEM 

In order to further improve the efficiency of data traffic 
distribution via satellite, the following reservation system 
is proposed. As with TDMA and ALOHA the satellite 
channel is divided into time slots of 1350 bits each. How
ever, after every M slots one slot is subdivided into V small 
slots. The small slots are for reservations and acknowl
edgments, to be used on a contention basis with the ALOHA 
technique. The remaining M large slots are for RESERVED 
data packets. When a data packet or multi-packet block 
arrives at a station it transmits a reservation in a randomly 
selected one of the V small slots in the next ALOHA group. 
The reservation is a request for from one to eight RE
SERVED slots. Upon seeing such a reservation each station 
adds the number of slots requested to a count, J, the number 
of slots currently reserved. The originating station has now 
blocked out a sequence of RESERVED slots to transmit 
his packets in. Thus, there is one common queue for all 
stations and by broadcasting reservations they can claim 
space on the queue. It is not necessary for any station but 
the originating station to remember which space belongs to 
whom, since the only requirement is that no one else uses 
the slots. 



Referring to Figure 1, a reservation for three slots is 
transmitted at t=O so as to fall in an ALOHA slot at t=5. 
If a conflict occurs, the originating station will determine 
the sum check is bad at t = 10 and retransmit the reservation. 
However, if it is received correctly at t = 10 and assuming 
the current queue length is thirteen, the station computes 
that it can use the slots at t = 21, 22 and 24. It does this 
by transmitting at t= 16, 17 and 19. By t=30 the entire 
block of three packets has been delivered to their destina
tion. If no other reservations have been received by t = 19 
the queue goes to zero at this point and the channel reverts 
to a pure ALOHA state until the next valid reservation is 
received. 

Reservations 

To maintain coordination between all the stations, it is 
necessary and sufficient that each reservation which is 
received correctly by any station is received correctly by 
all the stations. This can be assured even if the channel 
error rate is high by properly encoding the reservation. The 
simplest strategy is to use the standard packet sum check 
hardware, and send three independently sum checked copies 
of the reservation data. A reservation requires 24 bits of 
information and "i.th the sum check is 48 bits. Three of 
these together with the 80 bit sync sequence made a 224 bit 
packet. Given this size for the small slot and 1350 bits for 
the large slot, we can pack six reservations in the large slot 
space; therefore, V = 6. If the channel error rate is 10-5 and 
there are 1000 stations, the probability that one or more of 
the stations will have errors in all three sections is approxi
mately 1000 (48 X 10-5)3 or 10-7• With a 1.5MB channel 
this is one error every three days, a very tolerable rate con
sidering the only impact is to delay some data momentarily. 
If the reservation were not triplicated, hO\vever, the proba
bility of an error is .48, sufficient to totally confuse all the 
stations. 

Channel states 

There are two states, ALOHA and RESERVED. On 
start up and every time thereafter when the reservation 
queue goes to zero, the channel is in the ALOHA state. In 
this state, all slots small and the ALOHA mode of trans
mission is used. Reservations, acknowledgments and even 
small data packets can be sent using the 224 bit slots. How
ever, the first successful reservation causes the RESERVED 
state to begin. Let us define Z to be the channel rate in large 

RESERVATION SYSTEM CHAN:-lEL DIVISIO;\l 
SOJKB channel (R ~ 10 slots per round trip), M = 5, V ~ 6 

Figure 1 
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slots per second and R to be the number of large slots per 
round trip (R= .27Z). Then, considering time as viewed 
from the satellite, the data packets associated with the first 
reservation should be transmitted so as to start R + 1 large 
slots after the reservation. To avoid confusion, ::vI is kept 
constant for the entirety of each RESERVED state but it 
is allowed to change each time the state is entered. The 
initial reservation which starts the state contains a sug
gested new value for ~:L This value is used until the state 
terminates. The determination of .M will be considered later. 

Channel utilization 

The traffic of small packets (reservations, acknowledg
ments) is twice the overall arrival rate (NL) since every 
data block requires a reservation and an acknowledgment. 
If we assume- that the arrlva:1 rate o"iinese smarr pacKets is 
independent of the state (a good approximation since they 
are fully independent at both low and high traffic levels 
where the average duration of one of the states is short 
compared to R), then: 

Small Slot Channel Utilization in ALOHA State: 
SI = 2NL/ZV (2) 

Small Slot Channel Utilization in RESERVED State: 
S2 = 2NL(M + 1) /ZV (3) 

The channel utilization for large slots must be computed 
as if the channel were always in the RESERVED state 
since the ALOHA state is a result of the non-utilization of 
the reserved slots, not the cause. Thus: 

Large Slot Channel Utilization: S3=BNL(M+l)/MZ 

Where, average block size: B=F+8(I-F) 
B=4.5 (4) 

For the ALOHA transmissions, the channel utilization 
is related to the actual transmission rate (G) by the relation 
(see references 7 and 8): 

ALOHA State: SI =AGle-Gl 

RESERVED State: ~=AG2e-G2 

These relations must be solved for G by iteration since 
S is the known quantity. The correction constant, A, de
pends on the retransmission randomization techpique and 
R, but is always between .8 and 1.0. As a result of these 
relations the maximum useful ALOHA throughput is S = A/e. 
An empirically derived approximation* to A used for this 
analysis was (K = retransmission randomization period in 
slots) : 

K-l 
A=-- whereK=2.3 VR 

K 

* For an accurate and more detailed solution to the effect of a fixed 
retransmission delay, refer to Reference 8. 
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Small packet delay 

The average fraction of time the system is in the RE
SERVED state is equal to the large slot channel utiliza
tion, Sa, since that is the fraction of time the reserved packets 
are being sent. Thus, if we compute the delay for the small 
packets in both states a weighted average can be taken, 
using S3, to obtain the average delay. 

ALOHA State: 

GdN 
Initial queueing delay : WI = 2V (1- GdN) 

Retransmissions: 

Small Packet Delay: 

RESERVED State: 

D
1
= R+1.5/V + W1+H1 

Z 

(R+ W1+1/V +K/2V) 
X Z 

(M+1)G2/N 
Initial queueing delay: W2 

2V(1-G2/N) 

Retransmissions: 

Small Packet Delay: 
D

2
= R+1.5V +M/2+ W2 

Z 

K(M+1) 
+H2(R+ W2 +1/V + 2V 

Z 

Now, the overall average small packet delay can be de
termined: 

Overall Small 
Packet Delay: 

Large packet and block delay 

(5) 

For the reserved packets, the delay has three components; 
the reservation delay (Ds), the central queueing delay and 
the transmission-propagation delay of the packet or block. 
For a block of B packets where the general load is the de
fined traffic distribution the delay is: 

Average Delay 
for reserved: D r=------------

Z 

(6) 

"~here: Y = 7.2 packets (second moment of block size/ 
avg. block sizf') 

and: B=4.5 packets (average block size) 

Determination of M 

An optimal value for M can now be determined nu
merically for any given channel and traffic load. However, 
this value is not very critical at low channel loading factors. 
It is only when the channel is operating near peak capacity 
that M affects the delay more than a few percent. Since M 
cannot be changed rapidly it is desirable to set M to the 
value which optimizes the channel capacity and thereby 
minimizes the delay at peak load. For peak capacity, both 
the small and large slot portions of the channel in the RE
SERVED state should be fully loaded. This occurs when 
S2 = A/ e and S3 = 1. Doing this and solving equations (3) 
and (4) for the arrival rate, L, gives us: 

L= ZVA Z~f 
2eN(M + 1) BN(M + 1) 

Solving for M: 

M = ~: B rounded up to nearest integer 

for B=4.5, V=6: M=5 

If this peak capacity value for M is always used the 
delay is within 10 percent of optimal and the system is quite 
stable. As can be seen, the only traffic parameter M depends 
on is B, the average block size. 1\1 can be adjusted by the 
stations if the channel is monitored and the fractions of 
each type of packet sent are measured. From these fractions 
it is easy to determine M. 

DELAY 
(Sec. , 

AVERAGE BLOCK DELAY 
50 KILOBIT/SEC CHANNEl 

10 STATIONS 
1Or------------.----------.~ 

ALOHA 

O.1~~_~~~~~~~~-~~~-L-J-J~~~ 
1% 10% WOo/a 

CHA NNEl UTILIZATION 

Figure 2 



Performance 

Now it is possible to determine the delay given the traffic 
distribution (F,B), number of stations (N), and input ar
rival rate (L). One common way to examine performance is 
by plotting delay versus the channel utilization for a fixed 
channel. The channel utilization, C, is the ratio of the good 
data delivered to the new channel speed: 

Channel Utilization: C=NLBjZ 

Figure 2 shows the delay vs. C for the TD~IA, ALOHA, 
and Reservation techniques. The traffic distribution is as 

RELATION OF COST TO DELAY 
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Figure 3 

previously defined; half single packets and half blocks of 
eight. 

This type of presentation is not the best for deciding 
what technique to use for a specific job, but it does show 
the general behavior of the systems for a fixed channel size, 
as the traffic load varies. 

In order to really compare the cost of the various tech
niques to do a certain job, it is necessary to set the traffic 
level, number of stations, and the delay permissible. Then, 
for each technique, the channel size required to achieve 
the delay constraint can be searched for. To make the 
presentation more meaningful the cost of this channel per 
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Figure 4 

megabit of traffic can then be determined using as a price 
basis the current tariffed price of the 50KB INTELSAT 
IV channel (45 KHz) used in the ARPANET between 
California and Hawaii. It is presumed that any band\vidth 
could be purchased for the same price per KHz. Converting 
the cost to dollars per megabit permits easy comparison 
with the cost in the current ARPANET where distributed 
leased line capacity can be achieved for $.10 per megabit. 

Figures 3, 4 and 5 show communications cost as a func
tion of the three variables; delay, traffic and number of 
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stations. Examining Figure 3 it is clear that if a delay of 
less than two round trips (.54 sec) is required, the ALOHA 
system is superior. However, the cost for .4 sec service is 
over 6 times that of .8 sec service (using the reservation 
technique). It is also clear that delays of more than .8 sec 
are not necessary and save very little money. Figure 4 shows 
that as the individual station traffic is increased to 50KB or 
higher, TD:\IA becomes almost as good as the reservation 
system since there is sufficient local averaging of traffic. 
Similarly, at this same traffic level FD~I-Store and For
ward achieves its maximum efficiency but due to sending 
each packet twice its asymptotic cost is twice that of TDMA 
or Reservation. These traffic levels for each station are un
realistically high, however, and the flat performance of 
ALOHA and the Reservation System is vastly preferable 
since the cost of data communications to small stations is 
the same as for large stations. Finally, Figure 5 shows the 
effect of adding stations to the net. With FD::\1 the cost 
grmvs out of bounds quickly whereas the reservation tech
nique improves its efficiency until the total traffic from all 
stations exceeds lOOKB. Below 5KB total traffic ALOHA 
is superior, but this is not a very important case. For large 
numbers of stations at 1KB traffic per station and .8 seconds 
delay the reservation system is 3 times cheaper than ALOHA, 
6 times cheaper than TD~lA, and 56 times cheaper than 
FD:\1 Store and Forward. 

CONCLUSIONS 

The reservation technique presented here is one of several 
techniques which have been developed recently to take full 
advantage of the multi-access capabilities of satellites for 
data traffic.9 ,lO Both the ALOHA technique and the 
reservation system depend for their efficiency on the total 
multi-station traffic rather than the individual station 
traffic as does TD:'IA and FD:'1 Store and Forward. The 

performance improvement reflects this 'with the reservation 
system being up to 10 times as efficient as TD1IA for small 
station traffic levels. The worst possible technique for data 
traffic is pure FD:\l links between each station pair since 
this is only efficient if all pairs of stations have 50KB of 
traffic, driving the cost out of bounds for normal usage. 
The reservation system is also a factor of 3 more efficient 
than the ALOHA system and for large (lOOKB) traffic 
levels achieves almost perfect utilization of the channels. 
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Session on views of the future-Chairman's 
introduction-Opposing views 

by rv1URRAY TUROFF 

Office of Emergency Preparedness*-Executive Office of the President 
Washington, D.C. 

I:\TRODUCTION 

This session represents a "first of a kind.;' for a major 
computer conference. The session is devoted entirely to 
formal technological forecasting and assessment efforts 
dealing with the computer industry. Technological 
forecasting! as an autonomous discipline, with its own set 
of methodologies and techniques, is only about five years 
old. Of course, similar efforts have taken place over the 
years within the long range planning staffs of most tech
nology-oriented companies and organizations. Further
more, the intuitive judgment of recognized experts is a 
technological forecasting technique that has always been 
with us and has been well represented at these meetings 
by various panel presentations. What appears to be really 
new is a growing recognition of the need to examine 
potential futures systematically in order to assess a wide 
variety of concerns and potential consequences of techno
logical development. The days of looking only for profit 
related effects seem to be passing into history. Because 
the scope of concern has significantly widened, with an 
accompanying increase in the complexity of the required 
analyses, new approaches to forecasting have been sought. 

Several of these techniques are represented in the 
papers of this session (Delphi/ Scenario construction, 
Model Building, correlation analyses, and trend extrapo
lation). To a large extent the contributions are of interest 
not only for what they have to say on the future of com
puters and associated technology, but also for the manner 
in which they arrive at their observations. 

The number of technological forecasting studies dealing 
with computers has increased considerably in recent 
years. Some of these are informative primarily in telling 
us how not to do forecasting. We have, in fact, reached 
the point where some of these are old enough so that a 
portion of their forecasts can be evaluated for their accu
racy of prediction. 3 It appears from observing these 
efforts that the considerations which give the forecaster 
the most difficulty are not the projections of the technol
ogy itself, but rather its potential applications and inter
actions with the rest of society. There is a primary flaw 

* The views presented are those of the author and do not necessarily 
reflect official policy of the Office of Emergency Preparedness. 
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underlying much of this earlier work, namely, an implicit 
tendency to view the computer field primarily as a driv
ing force in society, while ignoring the- irripact of~;ociar; 
political, and economic forces on the computer field itself. 
Unfortunately, the rapid evolution of this technology, and 
the rate at which it has penetrated numerous segments of 
society, tends to reinforce this view subconsciously among 
those of us intimately involved in this area of endeavor. 
Therefore, as chairman of this session, I shall exercise my 
prerogative to offer the alternative view that the ultimate 
use of computer and communication technology will 
depend largely on factors outside the immediate scope of 
the field. To do this I offer two scenarios suggesting the 
use of computers in the 21st century.4 

These scenarios are based upon the same projected 
basic information technology, but use it in opposing or 
contrasting manners. Each one rests on differing but 
plausible assumptions about resources and values of 
society in the 21st century. Together they provide a fun
damental caveat for all the papers in this session by 
dramatizing the difficulties facing anyone attempting to 
forecast the future of information technology and its 
application. 

These two scenarios represent what might be character
ized as a plausible "open" society and "closed" society. 
They are not intended to portray the extremes of open 
society, which would be anarchy, or of closed society, 
which would be a slave state. Both scenarios are pre
sented as selected day-to-day communications that an 
average citizen might receive via his computer terminal. 
Thus they do not provide an exhaustive description of the 
alternative societies, but rather convey to the reader a 
Gestalt-a feeling for what these alternatives might be 
like to live in. 

Common a..<;sumptions for both scenarios 

\Ve assume that society in the year 2000 and thereafter 
can be characterized as "information rich." Essentially, 
ali the information generated by society and needed for 
its operation exists in electronic form. The collection, 
processing, transmission, distribution, storage, and 
retrieval of information on a day-to-day basis takes place 
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on a largely "self-generating and sustaining" basis. The 
information centers, the networks tying them together, 
and the procedures governing their use are sufficiently 
compatible that they may be viewed jointly as a single 
nationwide information complex largely transparent to 
the users and their applications-much as the telephone 
system is today. Terminals exist in every home, voice 
recognition is a common form of computer input, mass 
on-line storage is cheap and plentiful, and other similar 
marvels of technology (by today's standards) abound. 
Both scenarios, therefore, assume the continued advance 
of information technology along the directions now per
ceived. Barring a major holocaust, such evolution of the 
technology does not seem unreasonable. Of course, the 
implicit assumption that the industry has managed to 
agree by the year 2000 on standards for internal compata
bility of a nationwide information complex is somewhat 
more questionable. 

The "closed" information-rich society 

It is assumed that by the year 2000 some evolutionary 
process has resulted in a scarcity of important material 
and human resources-energy, mineral ores, medical 
talent, etc. Society is characterized and regulated by var
ious algorithmic and procedural models, operating on a 
real time basis and striving to maintain the precarious 
balance between supplies and demands. Government 
consists of a dictatorship by the system over which no one 
individual or group has an effective control. The various 
components of this system are largely the product of a 
reductionist philosophy and represent uncorrelated short 
term fixes to problems as they occur. The complexity of 

the overall interaction of these individual fixes is not 
really well understood. 

As resource limitations have become increasingly criti
cal individual options of choice have been eliminated 
whenever there has been any suspicion that this would 
benefit the objective of survivability of society as a whole. 
The education process is correspondingly driven largely 
by the needs of society and provides rather narrow train
ing. Information flow is regulated on a "need for" basis, 
strong pressures exist for conformance to a common "offi
cial" ideology or singular value set, and the system as a 
whole fosters a high degree of centralized control. How
ever, an illusion of free choice is not only allowed to exist 
but even encouraged, and other types of escapism are 
provided via recreational pursuits. 

The "open" information-rich society 

It is assumed that through effective planning society 
has reached by the year 2000 a posture in which resources 
are relatively abundant with respect to societal and indi
vidual needs. Emphasis is placed on maximizing individ
ual options of choice. Extensive understanding of adap
tive and cybernetic approaches to solution of practical 
problems allows a high degree of decentralized controls, 
although centralized predictive capability is retained to 
detect and announce potential conflicts. As a result of this 
abundance, society is tolerant of a heterogeneous set of 
ideologies and a multiple value system flourishes. Dis
tinctions among the functions of education, employment, 
and recreation have become blurred. Educational philoso
phy is holistic in nature, striving to prepare the citizen for 
a society which enjoys highly individualistic life styles 
but requires strongly participatory government. 

Open 

EMPLOYMENT AND EDUCATION 

Closed 

The package of information which you requested rela
tive to career and educational choices for your son has 
been prepared and is now available for access at your 
leisure. The package includes educational requirements 
and potential income ranges for the careers you selected. 
In addition, several careers that are similar in income 
and educational requirements to those you selected have 
been included for your consideration. Also included in the 
package is a report showing how people with similar per
formance profiles to that of your son, now feel about the 
career they entered. 

Your recent series of unsuccessful and unprofitable 
purchases in Phase XL of the Department Store Game 
indicates that you are not yet ready to commence partici
pating in the Economic Market Policy Game, Phase A2. 
Upon successful implementation of the A2 buyer's strate
gy, you will be qualified as Assistant Buyer and eligible 
for employment at the Group Store, if you so choose. 

I would like to exchange for one year my current job 
function as manager of distribution for a midwest appli
ance manufacturer for a job function in the sales area (at 
level B or above). 

As a result of your son's performance this past educa
tional cycle, he has been transferred to track three for 
preparation in employment class five. 

Under your job classification you are entitled to attend 
one professional meeting this year. According to your 
schedule of assignments and available travel funds the 
MIS system has determined that for the meeting in 
March of the SOCIETY FOR FORTRAN 84 PRO
GRAMMERS is best suited to fulfill this privilege. It is 
further suggested that you attend the following ses
sions .... 

Your recent series of unsuccessful and unprofitable 
purchases in Phase XL of the Department Store Game 
indicates non-orientation toward the merchandise manag
er's field. You are to report to the Group Store, as Stock 
Clerk, Class C, Malthusium Kit department. 

A recent computer evaluation of your job performance 
exhibits a discrepancy with respect to the job's require
ments. In order to avoid declassification, you must report 
for updating on .... 



Open 

Your request for educational opportunities has 
prompted us to bring to your attention the fact that Eco
logical Watchmen and Recycling Engineers are urgently 
needed. Many openings exist for this outdoor occupation, 
offering excellent wages and, currently, a one-to-one 
exchange program: for one year on the job, spend one 
year at any knowledge or recreation center of your choice, 
all expenses paid. 

Openings are now availabie for robotic controllers in 
building construction. In view of your experience in this 
area, we would like to enter negotiations with you for a 
work period of six months. 
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Closed 

As of ... you have been awarded a new job with the 
Government Employment Corporation. This opportunity 
to serve your government, of course, carries with it certain 
sacrifices in dwelling area and salary cash flow; however, 
be assured that the data banks have your file in the active 
list and will do all that is possible to reinstate you in pri
vate enterprise at some time in the future. Your current 
~mployer has requested that you be notified that a suita
ble transfer bonus will be applied to your account upon 
proper training by you of the replacement for your cur
rent job function. 

SERVICES 

Open 

Your proposal submitted last week to our venture bid 
service for a new product in industry sector 83 has 
received six complete bids and eighteen partial bids for 
financial support. None of these, however, meet all your 
initial constraints on ownership and profit sharing param
eters-a complete analysis of differences is attached 
including an estimated ten year profit flow analysis to 
you on the three most favorable bid combinations. Please 
advise should you wish to restate your constraints. 

Your current offer for a house painter has had no re
sponses the past week. Based on current market condi
tions we estimate only a .3 probability of response this 
month. A raise in your offer of 15 percent would increase 
the response probability to .95. 

The paper you submitted last month has been 
reviewed. It appears that your paper not only has original 
content but it will allow us to retire from our immediate 
access files ten other papers to the offline archives. We 
are, therefore, adding your paper to our system immedi
ately and we are informing users with appropriate inter
est profiles of its availability. Thank you very much for 
your contribution. 

In addition to the material resulting from your particu
lar search of our literature banks, the following four indi
viduals have indicated they are seeking contact with indi
viduals exhibiting your search pattern. This auxiliary 
service of your local knowledge center is intended to 
promote contact among individuals with common inter
ests. It is your option to establish contact. However, if you 
wish your name added to the list, please notify us. 

Your request of our news tile has revealed that the 
information you desired has not yet been released by the 
appropriate agency. We have therefore entered a formal 
request for disclosure and established a reporting team to 
handle the matter. You will hear further within ten days. 

Closed 

A recent survey by this office has resulted in your being 
chosen for a formal exchange of views with the "PRIME 
MONITOR." Any licensed barber shop may perform for 
you the hair shaving necessary for electrode placement. 

Your recent behavior at the community meeting of 
June 15 seems to deviate from your filed psychological 
profile. Please report for a reexamination on ... 

As a regular service we offer at bargain rates a monthly 
list of "suspicious" word combinations used by the gov
ernment computerized monitoring systems to select writ
ten or verbal communications for review by the Office of 
Internal Stability. If you wish to avoid observation for 
potential deviant behavior, our service is a must. 

Our agency stands ready to provide you with the data 
requested and to which you are entitled. However, since 
this data is computerized, we cannot predict the actual 
cost to you of providing this information. It is, therefore, 
necessary that you post a payment bond in the amount 
of ... before we undertake to process your request. In 
addition, your request is not sufficiently detailed and a 
new request certified by an information engineer must be 
submitted. 

A computer analysis of your professional writings indi
cates that you have been writing on subjects outside your 
rated discipline. Your current rating within your current 
field will be lowered unless this situation is corrected. 
You are of course free to apply for change of discipline 
area and the appropriate forms and schedules of govern
ing review hearings may be obtained from .... 

An analysis of your request of our news service shows 
your background profile provides no justification for 
supporting your need for this information. A check on this 
analysis by the government agency responsible for this 
information further confirms this result. Therefore, in 
order to conserve resources, your request is denied. You 
are, of course, free to seek modifications of your profile. 
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Open 

LEISURE 

Closed 

Your requirements for a vacation house for three 
months have been matched against housing available 
location and other features of homes that appear to meet 
your specifications. If you wish to negotiate detailed 
arrangements, please let us know. If you wish to make 
your own home available during the time you are on 
vacation, please indicate this on our next communication. 

We offer a complete line of "recreational," "education
al," and "experience" vacations. Our information service 
and planning system offers comprehensive data on the 
environment and facilities of all vacation centers in the 
southwest, including the scope of available knowledge 
banks and communication and processing capabilities. 
Depending on the type of facility you choose, our knowl
edge banks can offer a wide variety of games, courses on 
many topics and dreams in many emotional variations. 
Our analysis routines will provide complete simulated 
alternatives to meet your specifications. 

Mr. Norjk of Norway and his family will be in your 
city during the month of July. Our examination of your 
active hosting record in our files indicates a strong com
patibility of interests for your two families (analysis 
enclosed). With your permission, we will pass this infor
mation on to them. 

We regret to inform you that our home game service 
does not currently offer group simulations of primitive 
societies for youngsters. We will, however, poll the fami
lies using our service and establish if there is sufficient 
interest to modify one of the adult games in this area. 

The Boston Fine Arts Museum offers the recorded 
experiences of creating over four hundred works of the 
finest art of the day. Learn the techniques of many fine 
artists by reliving their emotions and actions in the crea
tive process. Our staff metric-psychologist is available for 
consulting in avoiding the psycho shock possible from 
merging disjoint personality traits of you and the artists 
of your choice. Be sure also not to neglect our recent 
acquisition in the performing arts-conductors, dancers, 
actors and singers. 

You can rest assured that our travel service provides a 
full range of vacation plans matched to your travel, food, 
and energy allowances. Do not hesitate to call .... 

We are very pleased to inform you that your eighth 
preference choice for a vacation has been approved this 
year. 

We are happy to announce that we were able to obtain 
accommodations for you at the Mountain hideaway 
resort. Accommodations for your wife and child were 
found at the Cliffside resort, a mere twenty miles away. 

Our robotic sports areas offer participation in a wide 
variety of robotic combats. Duel to the point of robotic 
destruction with your own wide choice of weapons
swords, tridents, mace, clubs of all shapes and sizes just 
to mention a few. Duels arranged to match your skills to 
those of your opponent's included in the standard fee. At 
slightly higher rates you may challenge the current 
champion in various weapon classes. Also, two mass bat
tles offered each day and special training sessions for 
beginners. 

The apex dream parlor offers over one hundred in the 
latest drug-electronic stimulated dreams. Our three most 
popular dreams this week are: 

(1) Own your own small business for a day-take full 
responsibility for all decisions-be your own boss. 
(2) A day on the beach-enjoy unpolluted waters and 
clear white sand, feel the warmth of the sunlight through 
a crystal clear atmosphere. 
(3) Have a creative idea-create and document a new 
idea, present it orally to a peer group and receive renown 
and acclaim. 

Open 

GOVERNMENT 

Closed 

To: K. Midas 
The XYZ Institute for Tax Assistance is happy to 

inform you that a tax rebate of 313,000 credits is due to 
you on your 1989 income. This amount includes a .06 
percent remonstrative penalty levied on the Federal Tax 
Bureau for its error, plus an added 7.40 percent compen
sating interest to compensate you for non-use of the cred
its in the intervening years. As your neighborhood Tax 
Assistance Center, we are ready to help you in any other 
tax matter. Please call on us. 

Your application for free control of your automobile on 
public metroconnectors has been denied. Your tested 
reaction timing is not sufficient to ensure adeq uate :;afety 

To: K. Midas, Sr. 
The Federal Bureau of Tax Analysis hereby informs 

you that a tax rebate of 288,000 credits is due to you on 
your 1989 income. The Bureau assures you that its evalu
ation of your 1989 tax return is now complete and correct. 
To: K. Midas, Sr. 

The Federal Bureau of Census has noted that you 
received an added income of 288,000 credits during FY 
1989 which was not reported on the census form. 
Accounting Department has therefore computed the 
required federal, region, state, county, city, block, head, 
automobile, and penalty taxes on this unexpected 
amount. A cupy uf your tax bill is herewith enclosed for 



Open 

margins for the integrity of all travelers. However, it is 
noted that your test results show a high probability that a 
standard course of training in Judo or tennis or a similar 
sport would probably increase your reaction rate to the 
point of satisfying our standards. 

This is an official notice under local ordinance 817 that 
a set of computerized caucus conferences reflecting pro, 
con, neutral, and alternative positions has been estab
lished to examine a rezoning bid that is pending in your 
area. As a local property owner, you may join any of these 
conferences at no cost. 

We are required by law to notify you once a month of 
any outstanding communications you have not accepted 
for delivery. These now include 118 advertisements, 16 
governmentaTnotlce-s~--an(ri3 -per-sonaCcorrespondences. 
Of the latter, one is classified as pertaining to an in-prog
ress contract arrangement which you must act on by July 
13 or suffer unnecessary financial loss to your credit 
account due to contract penalties to be awarded the other 
party. 

Following is your yearly tax analysis provided by IRS 
to each citizen based upon all automatically reported data 
pertaining to your tax account. This computerized analy
sis attempts to indicate your lowest possible tax liability; 
however, it is possible in unusual circumstances for this 
to not occur. You may therefore dial our local analysis 
service to attempt further optimization. Please notify us 
when filing of any apparent errors in the data pertaining 
to your account and supplied by other services. 
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Closed 

the amount of 373,000 credits, which will be deducted 
from your purchasing account today. A copy of this mes
sage has been sent to your employer and to your regional 
fiscal therapy center. 

Your request to move to another dwelling area must be 
submitted to the office of housing permits with copies for 
approval to the departments of energy management, 
transportation, tax assessments, environmental monitor
ing, societal impacts, and financial control. Upon reply 
by these federal offices you may proceed to seek concur
rence from appropriate government offices. 

You are hereby notified that per Public Law 813, you 
must vacate your dwelling unit within one month of 
retirement in order to maintain equitable transportation 
patterns:---YOlirnew-cTaSsIllCatloii will alIciw--you to seek a 
living unit in the following areas ... 

Your violation of allowed energy consumption this 
month has resulted in an automatic fine of ... due to the 
inability of your cash flow account to meet this deduction 
a proportion of your salary has been attached for ... 

It has come to the attention of the Economic Growth 
Office that your cash flow account is in excess of allowed 
positive limits. If you do not establish a higher purchase 
rate by June 5, we will be forced to impose a personalized 
tax on this account. 

MEDICAL 

Open 

To: Dr. O. Mark Hyman 
After reviewing the diagnosis of the patient you submit

ted to the neurological consulting network, a number of us 
at the Berkeley bio-engineering laboratory feel that a 
motor nerve hypors system we have recently developed 
may allow your patient normal use of his right arm and 
hand. Please notify us if you wish full specifications for 
implantation of this system. 

Your requested analysis of your health records and 
correlation to current test data indicate a need for at least 
a twenty pound weight reduction under a supervised 
program, if you are to avoid a future heart problem. 
Please contact your physician at your earliest conven
ience. Thank you for using our automated diagnostic 
booth. 

Thank you for calling on our community information 
service. In answer to your request, following is a list of 
medical personnel and clinics in your area with an assess
ment of specialties, performance histories, and fees for 
each. 

For a slight additional fee our computerized dating 
service offers an auxiliary matching procedure based on a 
complete genetic analysis of both parties. 

Closed 

To: Dr. O. Mark Hyman 
An examination of the neurological condition of your 

patient's arm and an evaluation of his job function shows 
too Iowa benefit/ cost ratio to warrant further corrective 
treatment. You are hereby instructed to terminate further 
effort on this case and revise your allocation of resources 
accordingly. 

Your computerized diagnosis does not provide you with 
a high enough priority to see a doctor at this time. Your 
appointment has been scheduled for next Thursday at 
10:00 A.M. Your probability of survival to that time is 
estimated at 68 percent; the current immediate appoint
ment threshold is 57 percent. Do not hesitate to dial us 
again should you feel a deterioration in your condition. 

Due to genetic mismatching your application for breed
ing with Ms .... has been denied; however, we offer the 
following list of egg or sperm alternatives with which the 
two of you may seek to form a family unit. 
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Enclosed is a list of local discussion groups which our 
analysis shows have a high potential of aiding you in 
resolving your current concerns. You may joint these 
physically or via remote terminal hookup on either an 
anonymous or non-anonymous basis. Do not hesitate to 
call on us for any further mental health service you may 
wish. 
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INTRODUCTION 

Rjgurnus .s1.udiesQf the futJu:e. h~ye bee_ome relatively 
commonplace in the past decade. This has been especially 
true in fields of rapid technological and social change. 
Two of these areas, the computer and communications 
industries, have been the subject of increasing interest 
and examination in the past few years. 1 The development 
of complex technological, regulatory, social and institu
tional interrelationships between these two industries and 
increasing recognition of their impact on the future of the 
economic, social, and political framework of modern 
nations has led to this intense interest. The future of these 
industries has been the subject of inquiry in both Canada 
and the United States by many governmental and institu
tional bodies as well as by groups within the affected 
industries. The purpose of this paper is to examine a 
number of these studies and outline their projections of 
events as they impact upon the members of the develop
ing post-industrial societies. 

The utilization of computer based systems with wide
spread communications links has been commonplace for 
some time in the military, space, corporate, Rand D, and 
educational sectors of the economy. However, with few 
exceptions to date, these systems have not had any signif
icant impact upon the everyday life of most North Ameri
cans.2 This situation is starting to change and it is this 
area that will be examined in the following analysis. The 
impacts to be explored include the potential widespread 
adoption of Computer-Assisted-Instruction services in 
both the classroom and the home. The use of computer 
and communications capabilities to substitute for inter
and intra-urban business travel will also be discussed. 
The future of various computer based services that could 
be provided in homes will also be forecasted. In all cases, 
factors that favor or mitigate against the adoption of the 
various services will be examined. 

FORECASTING THE FUTURE 

Forecasting in general 

Forecasting the future is an integral part of everyday 
life in both the private and institutional sense. In many 
cases individual decisions are made with some implicit 
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model of the short and intermediate future in mind (e.g. 
plane schedules, weather conditions, stock market trends, 
C_ODSllme.r_-p_rice_ tr_ends._ e.xIl-e_c1ed .careeLP....aths., re_al e...state 
conditions, etc., etc.). Longer term forecasting of eco
nomic indicators in the business and governmental sec
tors has been common for decades. In economics the tools 
used are mainly the various forms of trend analysis and 
extrapolation. Science and technology have also been 
forecasted by knowledgeable observers using various 
approaches. The emergence of Policy Research Institutes 
("think tanks") and the need to forecast broader futures 
for many organization planning activities has led to the 
development of many new technological and social fore
casting techniques since World War II.3 

Delphi analysis 

One of the important developments in the forecasting 
field has been the creation of a number of techniques that 
rigorously collect, analyze, and disseminate qualitative 
forecasts on expected developments in a particular area of 
interest. Generally these forecasts utilize the consensus 
opinion of groups of "experts" in the field under review. 
In relatively rare cases the output may be from a single 
individual who is acknowledged to have a talent and track 
record for developing plausible futures i.e., "genius" fore
casting and scenario building-some science fiction 
authors have been acknowledged (usually posthumously) 
to have this gift of clear vision. One technique that col
lects and analyzes opinions from a group of experts on a 
particular subject under defined conditions has been 
called the "Delphi" technique by its original inventors at 
the RAND Corporation. 

The Delphi technique has evolved considerably since 
its development at RAND in the early 1950'S.4 The basic 
RAND definition is described as follows: 

"The Delphi technique is a method of eliciting 
and refining group judgments. The rationale for 
the procedures is primarily the age-old adage 
'two heads are better than one;, when the issue is 
one where exact knowledge is not available. The 
procedures have three features: (1) Anonymous 
response-opinions of members of the group are 



724 National Computer Conference, 1973 

obtained by formal questionnaire. (2) Iteration 
and controlled feedback-interaction is effected 
by a systematic exercise conducted in several 
iterations, with carefully controlled feedback 
between rounds. (3) Statistical group response
the group opinion is defined as an appropriate 
aggregate of individual opinions on the final 
round. These features are designed to minimize 
the biasing effects of dominant individuals or 
irrelevant communications, and of group pres
sure toward conformity."5 

Material from Delphi studies has been selected for this 
paper since this literature has the richest store of fore
casts on the future applications of computer based 
communications systems. It should be stressed that there 
cannot be anyone "right" forecast of the future. The 
material outlined below illustrates expert opinions devel
oped at specific points in time. Each will have unique 
built-in biases. Proponents favoring the use of various 
new systems or technologies usually forecast their wide
spread adoption at an earlier date than other observers. 
Others may forecast what they would like to see happen 
rather than what may be socially, politically, or finan
cially likely. On the other hand, many of those invited to 
serve on Delphi panels are in positions to help influence 
the future through their decisions and actions, that is, 
they help invent the future. The combined viewpoints 
presented here should balance out these potential biases 
and outline plausible directions for the future. 

Computer and communications forecasts 

Examination of the available forecast data base for 
computer and communications capabilities indicates that 
there are many projections available on a pure technology 
base. That is, many studies on hand have outlined 
expected developments in science and technology. How
ever, studies that examine in any detail the adoption of 
technological capabilities by end-user groups in society 
are far rarer. The first area explored, educational technol
ogy, has been reviewed by the greatest number of user 
oriented research efforts. Selected examples are illus
trated in this paper. The Bell Canada Delphi research 
findings are integrated with the results of other examina
tions to present a more extensive data base. The substitu
tion of business travel through the use of new computer 
and communications capabilities is more virgin territory. 
Some broad scenarios and general research have been 
conducted but the data base is much thinner. The final 
area of interest, future home computer and communica
tions applications, has been the focus of generalized anal
ysis for the past few years and is currently being exam
ined by many organizations in North America. 

Organization of the forecasts 

Presentation of a number of differing forecasts on the 
same subject in a simple manner is difficult and some-

times misleading. Each study uses different definitions, 
assumptions, and styles in result presentations. Delphi 
study results are often presented graphically but well 
conducted studies also outline the panelist's background 
assumptions, comments, reservations, etc. as a modifica
tion and/ or amplification of the results summarized in 
the statistical charts. This background material cannot be 
included here although it is very valuable information for 
analysis. 

The results of several studies on a particular subject 
will be summarized here graphically in the following 
manner (see example - Figure 1). 

1. A map of the future is presented as a series of con
centric rings moving out from the center which is 
today (1972). Each ring represents a five year time 
period. 

2. Forecasts of an event are presented in the form of a 
small circle placed in a particular five year time 
period. This forecast only represents the median 
estimate of the Delphi panel. The inter-quartile 
range (middle 50 percent) of the forecasts which is 
normally illustrated in Delphi results has been 
ignored for the sake of simplicity. 

3. The forecast circle is divided into two halves: e.g., 

The top half of the circle includes the Delphi pan
el's estimate of the expected percentage penetra
tion of the service into the applicable universe 
(e.g., 20 percent above). The universe is defined in 
the charts (no. of schools, homes, business, etc.). 
The lower half of the forecast circle illustrates the 
panel's estimate of the probability of the forecast 
actually occurring (i.e., 3 or 30 percent above). In 
cases where either type of the above information is 
not available in the original study, the half circle is 
solid. The number to the left of the forecast circle 
references the source of the material. The sources 
are included on the figure at the bottom. 

While this process may appear somewhat complicated 
initially, it should enable comparisons between several 
forecasts on a subject on one chart rather than cross-ref
erencing between a number of figures and charts. 

Figure 1 

2 __ 
3_ , 

Forecast comparisons Example 



FUTURE APPLICATIONS OF COMPUTER Ai'JD 
COMMUNICATIONS SERVICES 

Educational technology 

Introduction 

The educational technology field has been the subject 
of a large number of studies in recent years. This is the 
result of several factors. Educational advancement has 
been a dominant national concern in North America for 
the past two decades. It has been assumed that a high 
degree of educational training in the population is a key 
to continued rapid economic growth and international 
standing. The education market has been a large one, 
although most of the money has gone into salaries and 
physical plants in the past. Many large· corporations 
-have regarded educatlOnal-wchnologyas- -~m emerging
growth market and have entered with computer and 
communications based instructional aids. This has re
sulted in the funding of pilot systems in a few centers 
and research into the larger potential markets for these 
systems. The R&D complex in government and in
dustry has also sponsored considerable activity in this 
field. These and many other factors have combined to 
produced a large number of Delphi studies in the educa
tional area.6 The selective sampling below illustrates 
some of the findings of this research. 

Computer-assisted instruction (C.A.I.)
Defintion 

C.A.I. is one of the earliest off-springs of the merger of 
computer and communications capabilities that could 
have a significant impact on the everyday life of students. 
C.A.I. embraces the remote use of computer capabilities 
by students who engage in a number of instructional 
activities. C.A.I. systems can provide very basic as well as 
sophisticated capabilities. These include: 

1. Drill and Practice systems (DP): a supplement to 
the regular curriculum taught by a teacher. The 
computer can relieve the teacher of the burden of 
routine work by reinforcing learning and at the same 
time provide practice work for a student at his own 
pace and level of complexity. 

2. Tutorial systems (T): those which take over the 
main responsibility of developing skill in a specific 
area. The instructions permit freely constructed 
responses on the part of the student and will analyze 
each student's comprehension in greater depth and 
detail than is possible for a teacher with a classroom 
of twenty or thirty students. 

3. Simulation systems (S): the student can change the 
inputs and vary the parameters. 

4. Socratic Dialogue systems (SD): participative pro
grams where the student helps develop the course. 
These systems would need extremely large branch
ing facilities. 

The Future of Computer and Communications Services 725 

5. Instructional Games systems (IG): creative thinking 
games perhaps used for group as well as individual 
learning experiences.7 

The Bell Canada Educational Delphi study examined 
the adoption of these five types of C.A.I. in three different 
school levels. The penetration rate examined was 20 per
cent of the applicable universe. The 20 percent penetra
tion rate was considered to be well beyond the experimen
tal stage or adoption in a few well funded but isolated 
centers of exceilence. The 55 percent penetration rate 
(shown later in Figure 3) was chosen to illustrate wide
spread use of CAl capabilities across the educational 
spectrum. The Bell Panel forecasts are presented in Fig
ure 2. 

The study results suggest that Drill and Practice and 
Tyt9_ri_;:tL~j;~~!L~ill b~j;he Ji!~itFQ tYP~s_t9_ p_eadoQted_ 
at all levels, followed by Simulation and Instructional 
Games Systems. Socratic Dialogue programs will be the 
most complex to write and will therefore be late in gaining 
usage. In fact, it has been suggested that SD programs 
may never be adopted at the Primary level as children 
"have such a limited attention span and shallow interest 
areas that the depth knowledge that is supposed to 
develop from such dialogue would be useless." (panelist 
quote). Most panelists agree on the programming difficul
ties but are not willing to concede "never." 

The pattern of adoption of these systems follows that of 
CAl systems in general, gaining initial usage at the higher 
level institutions and then subsequently being utilized by 
the lower level schools. Of course, experimentation with 
these systems at all levels will be an ongoing process.8 

Examination of several forecasts of CAl usage must be 
presented on a more generai piane. Most studies oniy 
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Figure 2-Usage of C.A.1. systems in 20 percent of schools 
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Figure 3-Computer assisted instruction-Forecasts 

forecast the use of CAl as one overall service package, not 
the five types of services shown in Figure 2. The forecasts 
of adoption of general CAl services by several studies are 
illustrated in Figure 3. Figure 3 is subdivided into three 
sections which show the future use of CAl in: (a) univer
sities (b) schools and (c) homes. 

CAl use in universities 

Much of the pioneering work in CAl has been under
taken at universities. However, it is interesting to note 
that most available forecasts of CAl adoption are in the 
school or home areas. The Bell Canada Delphi panelists 
forecast 20 percent penetration into the university envi
ronment by the end of the decade. Widespread adoption 
was expected in the first half of the 1970's. These fore
casts implicitly assume continued funding of prototypes. 
Production of content material for CAl systems is another 
important pre-condition. An analysis of the various sup
porting and inhibiting factors for the adoption of C.A.I. of 
all types will conclude this part of the analysis. 

CAl use in schools 

The several sets of forecasts illustrated in Figure 3 
relate to CAl adoption in schools. Initial adoption thresh
olds in this field are not expected by the various Delphi 
panels until the early to middle 1980's. An exception to 
this is the forecast of the Bell Canada panel which pro
jects 20 percent penetration in secondary schools by the 
late part of this decade. The Institute for the Future 

(IFF) study: Some Prospects for Social 
Change . .. projects 30 percent adoption in the early 
eighties at a .5 probability or in the late eighties at a .5 
- .7 probability.9 The Bell study for primary schools 
predicts a similar time frame for addition of CAl services. 

Widespread adoption (55 percent) of CAl is forecast by 
the Bell Canada study within approximately five years 
after early (20 percent) threshold adoption for the various 
school levels (including universities). The Bell group of 
panelists felt that once the threshold penetration was 
reached, dissemination of CAl capabilities throughout the 
various levels of the school system would occur rapidly. 
This "bandwagon" effect has been demonstrated many 
times before in other fields. The philosophy of "8" curve 
(logistic or Gompertz curve) trend extrapolation supports 
this contention. 

The Parsons and Williams forecasts for "widespread" 
adoption are earlier than the other predictions.1O A num
ber of factors should be considered when comparing these 
estimates to the others. 

(a) The study was undertaken in an earlier period 
(1968) than some of the more current research. The 
feelings of optimism for the future of educational 
technology were much more euphoric in the late 
sixties than they are in the early seventies. 

(b) This study had many European panelists. The 
control of most educational funding is much more 
centralized for many European countries than in 
Canada and the U .8. Hence, widespread CAl adop
tion could occur faster in Europe than in North 
America as a result of more central decision making 
and funding processes. 

(c) There are probably implicit differences of defini
tion for the term "widespread" between the studies. 

These factors and the interpanel differences help illus
trate the "soft" nature of qualitative forecasting. Differ
ent groups invariably will have somewhat varying views 
of the future even if the factors noted above could be held 
constant when conducting and comparing studies. 

In summary, most of the forecasts for the use of CAl in 
the educational system do not expect any significant rates 
of adoption until the 1980's. CAl system growth will con
tinue to be an evolutionary process, assuming that the 
various roadblocks that develop can be overcome. The 
developers and promoters of various CAl systems often 
forecast widespread development and societal benefits in 
the nearer future. A more balanced viewpoint from sev
eral groups of knowledgeable individuals indicates a cau
tious optimism. 

CAl use in the home 

Many futurists and speculators on the prospects for 
what is sometimes termed the "wired city" include CAl 
as one of the important services to be offered in the home. 



The logical provision of CAl services to the horne implic
itly assumes that the computer hardware, software, and 
content material is already available from school usage at 
zero cost and can be accessed cheaply from the horne. 
Additional implicit assumptions also include low cost 
communications capabilities, terminals, and a consumer 
demand for the service (beyond that required for ill or 
handicapped students). Institutional roadblocks and red 
tape are also assumed to be overcome. 

This network of implicit assumptions (often not out
lined in popular scenarios) is reflected in the conserva
tism of the various forecasts illustrated in Figure 3. The 
Bell Canada panelists forecast "some use" (no percent
ages given) of CAl capabilities in the horne by secondary 
students in the late 1970's and in the early 1980's for 
university students. The panelists also considered such 
tac-tMS --as---th-e---avai-l-abil-ity--m--pMt-a-hle-naee-astic coupled 
terminals which could help make supplementary CAl 
service in the horne available before permanent terminals 
would make it a routine part of horne educational activi
ties. The 20 percent penetration rate shown in the fore
cast circle with the dotted line relationship to the solid 
circle forecasts illustrates the panel's forecasts for 20 
percent of the homes to be equipped with the audio-visual 
communications capabilities that would make effective 
CAl -type horne service possible. Of course these technical 
capabilities could be used to provide many other services 
into the horne as well. 

All other studies referenced support the viewpoint that 
there will be little access to CAl in the horne until the 
middle or late 1980's. The IFF study Some Prospects for 
Social Change ... projects that there is a 50 percent 
chance of some use of CAl in the horne by the early 
1980's. The Parson's and Williams panelists feel that this 
will not occur until the late 1980's. This view is also held 
in another IFF study, Potential Demand for 2-way Serv
ices In the Home. ll The findings here are that 10 percent 
of the homes in the U.S. might be using CAl by the late 
1980's. 

All of the studies noted above expect a considerable lag 
between adoption of CAl in the school system and use in 
homes. This is a logical conclusion since many more 
economic, social and psychological factors have to alter 
before adoption occurs on a widespread basis in the horne. 
It would appear that forecasts of the future use of educa
tional technology in the horne should be examined on a 
broader basis than just CAl services, as sometimes occurs 
in the current "wired city'; literature. 

Factors inhibiting CAl adoption 

The forecasts above were all based upon various 
assumptions and qualifications outlined in the original 
reports. Rather than repeating them here in any detail, 
another recent Delphi study conducted by EDUCOM for 
the National Science Foundation will be referenced: 
Factors Inhibiting the Use of Computers in Instruction. 12 

The Future of Computer and Communications Services 727 

This study is different from the ones examined earlier as 
it does not try to forecast dates or rates of adoption for 
various types of CAl in the educational system in the 
intermediate and long term future. This Delphi study was 
designed "to identify those obstacles which have hindered 
the development and acceptance of computer use in 
instruction, and to suggest means for overcoming them." 
The basic factors considered were in three dimensions
educational, economic and technical. 

It found that the most critical dimension was the edu
cational one. That is, most of the issues and problems 
relate to the availability and quality of educational con
tent material in the systems. There is also a lack of 
detailed evidence to support the claims of CAl's effective
ness in the educational process. In total, 28 of the 37 fac
tors examined and rated in importance by the panel lay 

--in -t-OOSB---areas. 'rhese-fae-ter-s -ar-e---il-ltIs-trated--ffi---Figttre-4-;-
The question of cost effectiveness was judged to be almost 
as important as the first issue by the panel. Three overall 
factors were examined: 1. CAl is usually an "add-on" 
cost in the educational process, 2. capital investment is 
high even where cost effectiveness can be demonstrated in 
the long run, and .3 existing systems have had poor cost 
effectiveness to date. 13 The six technical issues reviewed 
were only regarded as moderate or slight overall inhibi
ters to widespread adoption of CAL 14 

The Educom study recommends 15 action activities 
that will enhance the more widespread use of CAL These 
are summarized in Figure 5 which is taken from the 
report. The Bell Canada Delphi research had similar 
recommendations. The important point to emphasize is 
that it is the human, social and financial implications 
that are paramount, not the technical issues. This situa
tion is normally overlooked by computer and communica
tions professionals or system promoters. The end user 
requirements cannot be overlooked if there is to be wide
spread acceptance of CAL 15 

CAl future-Conclusions 

The forecasts outlined above, and the important inhib
iting factors that have to be considered and overcome 
before CAl gets widespread adoption, leave the observer 
with a feeling of cautious optimism. The technical and 
cost factors will all be resolved with time. The social and 
behavioral issues will require patient planning and exper
imentation before they are resolved. This realistic vie'y'''''
point is not designed to downplay the importance of wide
spread CAl usage. Routine interaction with computers 
during the formative education years will create a fertile 
ground for the widespread acceptance of the use of com
puter and information processing power in all sectors of 
society. The students who grow up with these capabilities 
close at hand will expect their common availability at 
work, horne, and even leisure activities. This will lead to a 
true information revolution. Until that time we can only 
expect the use of computer power in everyday life in cer-
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tain isolated and special situations. The rest of this paper 
will examine two of these situations: 

Introduction 

1. The use of computer communications capabilities to 
help substitute for some forms of business travel and 

2. The adoption of certain types of computer based 
services in the home. 

Travel-Communications substitution in business 

The use of communications and computer systems in 
the business environment has been extensive for some 
time. Most business computer applications involve large 
volume "number crunching" activities or mechanization 
of existing manual procedures. The development of time
sharing led to a second generation of applications and the 

~ 

~~! f~ ~ ~ ~ i~t .S' ~ .~ !~ ~~ 
.:::;~ ~ ~ ~ ~ 

c.; Itt 

A. PRODUCTION DISTRIBUTION OF INSTRUCTIONAL MATERIALS. 1 2 3 4 5 

1. Lack of readily available and good computer-based educational materials. ~ 
2. Lack of professional and economic incentives for development of ~ computer-based materials. 

3. Lack of incentive for faculty members to expend any considerable time ~ and effort in modifying or creating alternative, instructional methods. 

4. Lack of incentives for dissemination of software. ~ 
5. The lack of personnel with appropriate training and talent in the diverse 

~ disciplines required; i.e., instructional psychology, computer science, 
engineering, educational administration, radio-TV-film. 

6. Application of the "textbook" or single-author model to curriculum 

~ production instead of the "movie production" model involving a highly 
skilled differentiated team. 

7. Lack of initiative with regard to distributing software and providing ~ training and services for its users. 

8. Lack of appropriate mechanisms for protecting patents, copyrights, etc., ~ for CAl materials. 

9. Lack of standardization of computer systems, limiting free exchange of ~ software. 

10. Lack of an organization to facilitate interchange of CAl program materials. ~ 
B. DEMONSTRATION 

11. Too few examples of high quality use. <tJ 
12. Lack of compelling evidence that CAl is more effective than other ~ methods of comparable cost. 

13. Lack of carefully planned broad programs of CAl experimentation in ~ actual school settings. 

14. Failure to design curricula and systems for high-impact, low-resistance ~ "markets" where real institutional problems can be solved. 

15. Lack of "critical mass" in setting up programs. ~ 
C. THEORY OF INSTRUCTION 

16. Failure to recognize that material must be completely recognized and ~ restructured if it is to be taught effectively with computer systems. 

17. Inadequate development of a range of computer-based pedagogical 

~ techniques. The range might include question-answers, tutorial, drill and 
practice, simulations, games, problem solving modes, etc. 

18. Tendency to put too much "on the computer" rather than share the 

~ presentation and testing of curriculum objectives with other instructional 
media. 

19. Lack of experimental data and theories in learning psychology which 

~ I would facilitate the design of effective CAl programs appropriate to I 
each age level. I 

-' ! 
Figure 4-Educational problems related to widespread use ofl C.A.I. 
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D. EDUCATIONAL SYSTEM AND THE TEACHER 

1 20. Reluctance of school personnel to go through reorganization and training ~ I that a broad use of CAl would entail. 

21. Cautiousness and uncertainty on part of educators as to effectiveness of ~ CAl in comparison with traditional teaching methods. 

22. Scarcity of resources available to train teachers and others in the skills ~ required to use CAl successfully. 

23. Fear of educators of being reduced to a "button-pushing" or clerical 

~ role by computer. 

24. Reservations as to possible negative effects of removing instructional 

~ process from social situation and replacing interpersonal feedback with 
mechanical. 

25. Extreme diversity of, and lack of coordination among, school systems ~ throughout the county. 

26. A prevailing attitude that the computer will be used to replace poor --~-______ teacbers instead of to make good teacbers more_effective --- -_.---_.- ... _- . -- -- .. _-- --.--- ------- ...• - ---- ---

27. Insufficiency of evaluative techniques, criteria, and agencies with which ~ to satisfy educational standards. 

28. Not enough opportunity for local school people to participate in ~ development of CAl programs. 

Source: E.J. Anastasio and J.S. Morgan, Factors Inhibiting the Use of Computers in Instruction, Educom, 1972 PP. 19,27, 31, ~ 

Figure 4-(Continued) 

spread of computer usage into more routine business 
activities. Generally these activities were in the technical 
research, scientific and statistical analyses areas. The 
impact of widespread computer system usage has not had 
a significant impact on regular middle management and 
executive activities to date (except perhaps to inundate 
these people with many computer generated reports that 
they don't have time to read). 

Intra-urban substitution 

One area where information management and distribu
tion activities may have a significant impact in the future 
is in the area of business travel. This can occur in two 
areas: Intra-urban and inter-urban travel substitutes. 
Some intra-urban commuting may become subject to 
substitution. Continuing problems with urban concentra
tion (pollution, poor public transportation, high cost 
office space, employee dissatisfaction, etc., etc.,) have led 
some to foreGast the shifting of many types of occupa
tional activities to the suburbs or even the home itself. 
Travel to the downtown office would only occur for cer
tain types of meetings and activities while the more rou
tine activities would be handled by various types of 
communication systems and remote access to computer 
stored files. 

One of the Bell Canada Delphi studies examined some 
potential tradeoffs between intra-urban travel and com
puter communications services. The various forms of 
possible developments considered were: 

(1) Office Center-a central location is maintained but 
there is increased reliance on audio-visual capabili
ties to supplement travel. 

(2) Home Remote Work Center-located in an employ
ee's home with access to computer and communica
tions capabilities as required. 

(3) Neighbourhood Remote Work Center-within 
walking distance of employee's home. Has work 
spaces equipped with required computer-commu
nications capabilities. 

(4) Mobile Worker-employee uses portable terminals 
with required input/ output capabilities. 16 

The panel forecasts for potential adoption of these types 
of activities are shown in Figure 6. 

The Bell panelists commented that the home remote 
work center could create many social problems, even 
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Figure 5-Educom C.A.I. action plans 
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Figure 6-Intra-urban travel substitution 

though the system may become technically and economi
cally feasible. The problem of isolation from the intellec
tual stimulation that can occur in a professional work 
environment was mentioned. The problems of working 
effectively in the home environment surrounded by fam
ily and other distractions were also stressed. On the other 
hand, these and other panelists recognized the benefits 
that could accrue from reduced commuting time, urban 
congestion, etc. The ability to pick the work period most 
suitable to individual life styles was pointed out. Several 
panels suggested a compromise view whereby white collar 
workers in the future might split their work periods 
between working at home and in the office, depending 
upon the task at hand. 
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Figure 7-Computer/communications services substituting for 
intra-urban bu~iuellll travel-Furecasl:,) 

The neighbourhood remote work center was regarded 
by the panelists as another form of compromise between 
the extremes of continuing today's work patterns versus 
shifting work to the homes. This development and that of 
the mobile worker were forecasted to occur in the mid 
1980's versus the mid 1990's for 20 percent penetration 
into the home work center concept. 

The Bell Canada panel findings have been compared to 
those of several other studies to determine whether or not 
these forecasts were unduly pessimistic. Figure 7 follows 
the basic format of the earlier comparison chart. How
ever, in this case, each of the forecast circles has a brief 
description explaining the forecasted item in more detail. 
These views are also conservative when compared to those 
of some of our more utopian social thinkers and planners. 
This reflects the broader variety of material available 
when compared to the CAl studies. The chart is divided 
into halves, the upper half indicating the forecast of activ
ities that might occur in the home and the lower half 
indicating the availability of supporting technology in the 
home. An overall evaluation of these forecasts indicates 
that the various groups who have examined the likelihood 
of these work functions occurring in the home share a 
similar conservative viewpoint to the respondents of the 
Bell Canada study (top half of Figure 7). Low threshold 
market penetration (2 percent-5 percent) for services 
such as remote secretarial service, remote access to 
company files and person-to-person (clerical etc.) services 
provided electronically in the home is not expected until 
the middle or late 1980's. Significant acceptance of mid
dle management activities at home (5 percent) or of total 
work hours at home (10 percent) is forecast for the 1985 
to 2000 time frame. In summary, the Bell Canada panel
ists' forecasts actually look optimistic when compared to 
the views of other study findings. 

The second half of Figure 7 displays some of the termi
nal and computer capabilities that may be available in 
the homes of the future. These types of capabilities would 
be necessary before many of the work activities forecast 
above could take place effectively. It is interesting to note 
here that most studies forecast 10 percent-20 percent 
penetration of the technology in the homes before the 
work function shifts significantly to the home. This lag 
may be as much as 10 years or more. 

The overall conclusion to be drawn from the available 
forecasts for intra-urban substitution of travel by com
puter / communications capabilities is that this will not 
occur in a widespread fashion until very late in this cen
tury. The build-up period prior to the work location shift 
will see an increasing proliferation of remote technological 
capabilities in the home. Once again the main deterrents 
to change are expected to be social, not technological in 
nature. Individuals will need to develop new attitudes 
toward working in physical isolation, and in electronic 
partnership with their fellow employees or professionals. 
Home life likely will be restructured. The secondary 
benefits and changes involved with this form of social 
engineering must be examined as well. Employers will 
have to shin their attitudes toward "managerial spans of 



control" when the "knowledge" workers are no longer 
physically present. Literally hundreds of questions of this 
nature will have to be examined and answered before 
computer communications and work systems are restruc
tured to favor the widespread substitution of intra-urban 
travel by computer based communications systems. 

Inter-urban substitution 

The substitution of inter-urban business travel by var
ious types of communications services is quite different 
from that of intra-urban substitution. In this case, travel 
tends to be less frequent but more expensive in terms of 
time and money. The purposes for business travel can be 
slotted into a number of different categories. Certain 
forms of travel are quite repetitive and might be substi
ttlt-oo--f-oo----by teleeonferencing-syst-e-ms tISing-va-ri-otls- eo-m· 
binations of audio/visual/ computer capabilities. This 
area has begun to receive some attention from various 
researchers in the social field as well as those in the 
communications field. Figure 8 illustrates various forms 
of transportation of men, material and information, and 
speculates on their substitution possibilities. Figure 9 
indicates some of the results of a survey of the opinions of 
business executives toward the use of various communi
cations media in specific situations. The overall conclu
sion is that as the complexity of the communications task 
increases the perceived felt need for face-to-face contact 
is greater. 

The behavioral research cited above illustrates the 
types of thinking being directed toward the question of 
inter-urban travel substitution. Bell Canada has several 
proprietary, current research activities in this area. The 
key point to consider when foreeasting the future in this 
area is that the basic technology is available now. Proto
type audio, 2 way television, and computer controlled 
teleconferencing systems exist today and are being used. 
Future directions in technology will only provide further 
subsidiary improvements (e.g., wall size flat color T.V. 
screen for visual teleconferencing) or cost savings. The 
main thrust in the current research efforts is to identify 
the types of business travel interactions that can be sub
stituted and the best combinations of teleconferencing 
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Figure 8-Travel/ communications substitution possibilities 
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Resolving a disagreement 85 

Praising a subordinate 82 

Conferring with peers about future plans 13 76 

Makmg a concession to someone else 12 19 60 

Checking on whether a subordinate has 
accomplished a task 26 59 

Dealing with customers you know 39 28 

Dealing with vendors 17 38 23 ~ 
Requesting information 35 12 

Source: Ronald Westrum. Unpublished Ph.D. dissertation, Purdue University, 1972. 

Figure 9-Executive attitudes towards media USed in work 
situations 
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systems to meet the user needs. The penetration rates for 
business travel substitution will be almost totally depend
ent on behavioral factors rather than technological ones. 

Computer and communications services into the home 

Introduction-Bell Canada study design 

The discussions of CAl and travel/ communications 
substitution each reviewed the forecasts in those areas 
that impacted on the home. The general conclusions of 
the referenced material were quite conservative, com
pared to previously published forecasts. This prompted 
the Business Planning Group to initiate a study to exam
ine consumer acceptance of a broad range of potential 
new computer based communications services in the 
home. 

The choice of forecasting techniques was especially 
difficult here. The use of the traditional Delphi methods 
to elicit the opinions of recognized "experts" in relevant 
fields left a considerable gap in the information base. 
This gap was knowledge of the attitudes and feelings of 
the potential consumers, that is, the housewives, toward 
"wired city" services. This school of thought stated that 
when it came to rating potential acceptance of these 
potential services, the housewives were in fact the only 
group of "experts" on the subject. The conclusion of this 
debate was to develop a new modified Delphi technique 
that utilized both "Experts through research" and "Ex
perts through experience" (housewives}.17 These two 
homogeneous Delphi panels examined and debated the 
market potential of various wired city services into the 
home. The emphasis was on services, not technology, 
and on analyzing the "comments" feedback from the 
panelists as well as their statistical estimates. This em
phasis on comments helped get at the underlying rea
sons for the various conclusions reached by the two pan
els. The developer of this technique has called it 
SPRITE (Sequential Polling and Reviewing of Interact
ing Teams of Experts).18 

This study examined four main types of home services 
as well as ten types of information retrieval from the 
home. These were grouped by considering whether they 
were either a) fully interactive services, or b) limited 
interaction services. The services studied are shown in 
Figure 10. Detailed service definitions given to the panel
ists to facilitate their analysis will not be repeated here. 
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Figure IO-Future of communications services in the home
Services reviewed 

Study findings 19 

An overall review of the findings of this research indi
cates that there were not very many significant differ
ences between the experts and the housewives. The main 
differences that emerged were usually based upon funda
mental attitudes in one group or another toward the 
acceptability of particular service features. The groups 
maintained their independent viewpoints although in less 
crucial cases, the experts sometimes agreed to shift their 
viewpoints toward those of the housewives. The study 
results are presented as overall evaluations of various 
service options rather than median estimates of the possi
ble future dates of service penetration. 

(a) Remote Shopping Service 

The panelists felt that the facilities of a shop-from -home 
service would be used mostly for the purchase of articles 
such as grocery dry goods, perishable goods (other than 
meat), small appliances, and drugs and cosmetics. Meat, 
clothing, and large appliances were rejected by about half 
the panelists. They did not expect users of the service to 
pay much of a price premium (over and above the current 
cost of shopping) for the service. The main benefit of the 
service seemed to be the convenience aspect rather than 
any perceived cost reduction. Preferred methods of 
payment for this prospective service appear to be through 
charge accounts (favored by the experts) and the remote 
banking option (favored by the housewives). 

Several panelists, both experts and housewives, made the 
comment that shopping trips fulfilled many more needs 
than the traditional purchasing of goods. It seems that if a 
remote shopping service is to become widely accepted, 
alternative outlets for housewives' social drives will have 
to become available. 

(b) Remote Banking Service 

Over eighty percent of the panelists expected that a 
checkless banking service (once developed) would be 
used for transactions involving retail stores, transporta
tion tickets, contractual payments, and utility payments. 
Use of the service in restaurants was rated only slightly 
less likely (about sixty percent indicating it would be 
used). The experts on the panel felt that all of the possi
ble optional features of the service were "very desirable" 
when ranked on a five point scale between "essential" 
and "definitely not desirable"; the housewives differed 

insofar as they felt that an overdraft privilege was less 
desirable and that an automatic payroll deposit feature 
was essential in any such feature. On the matter of costs 
for this service, both groups of panelists expected them to 
remain about the same as that for conventional banking 
transactions, regardless of what type of transaction was 
being considered. Hard copy of all transactions received 
at regular intervals was rated the most useful form of 
documentation for this service. In regard to soft-copy, or 
non-filable copy, the experts were generally more recep
tive to this form than were the housewives. 

(c) Electronic Security Service 

The panelists felt that the automatic detector/alarm 
would be most desirable for the detection of smoke and/ 
or fire, natural gas fumes, and intruders in the home. The 
threats receiving lesser ratings were carbon monoxide, 
high levels of radiation, and dangers such as flooded 
basements and frozen pipes. In the event any of these 
threats were detected, the panelists thought that an alarm 
to the proper emergency group would be more desirable 
than an alarm to a neighbor's home or an alarm ringing 
outside the home to be heard (hopefully) by anyone in the 
vicinity. An alternative type of alarm system provided a 
set of push-buttons in the home which would act as 
normally operated fire alarms or burglar alarms, but 
would also be equipped to summon help for accidents in 
the home, poisonings, et cetera. Panelists indicated that 
this type of alarm service would be most desirable for 
signaling the presence of fires or intruders to the proper 
authorities. Householders would expect to pay more than 
their present insurance costs if they could obtain this 
service, according to the panelists. This reflects the idea 
that the cost of the service to the household would be 
slightly greater than the expected reduction in insurance 
premiums for a home with the service. One of the expert's 
comments covers this point well: "The differential insur
ance losses would probably be nil. The real pay-off is 
one's increased perceptions of safety." 

An interesting observation throughout this part of the 
study was the housewives' greater acceptance of these 
security oriented services. They found all the services 
more desirable and felt householders would be willing to 
pay more for them than did the experts. 

(d) Programmed Education Service 

The results of the study regarding programmed education 
in the home were interesting because of the differences 
between panels. The housewives felt the service would be 
most useful for older (over 18 years) age groups and 
stressed the impact of the service on continuing adult 
education. The experts thought it would be most useful 
for school age (5 - 18 years) children. Both groups felt the 
service should offer a broad range of subjects in order to 
maximize the use of the service. In the words of one of the 
experts, "The consensus reflects the point that as much 
as possible should be available on the system so that it 
can be useful to the widest possible audience. On a per 



sonal basis, only a few subjects would be of interest." The 
experts and housewives both felt that courses provided 
through the service would not be free, but would cost less 
than comparable institutional courses. 

(e) Limited Interaction Services 

The Limited Interaction Services were grouped into sev
eral categories. The first grouping was Consumer-Ori
ented Services (Consumer Shopping and Service Guides 
and the Consumer Rating Service). The statistical 
response of the panelists indicated that these services 
were fairly important improvements over the current 
non-electronic means of providing them. However, this 
estimate was qualified with a very low estimate of the 
monetary value of these services. The median payment 
estimates lay between "free" and "less than $1 per 
mQmb~~~_A.._r~i~w Qfj;~~_J!fl.1l~lj~j;$' .~Ql!!JJle:J1j;s_iI)_this _an~a 
revealed strong negative feelings toward these electronic 
services in the minds of many respondents who were quite 
satisfied with the current means of obtaining consumer 
services. 

The second category was termed Information-Oriented 
Services (Demand News, Demand Entertainment, 
Demand Education). Both groups of experts regarded 
Demand Entertainment and Education Services as ones 
that would be used widely if available at a reasonable 
cost. These two services were regarded as significant 
improvements over the current means of providing the 
services. However, once again there were many negative 
comments directed toward the services, especially from 
the housewives. These centered around their low opinions 
of the potential quality of Demand Entertainment Serv
ices and the sterile and impersonal nature of Demand 
Education Services. Both groups also had many negative 
opinions toward the value of Demand News Service. The 
common point stressed here was that there are many 
alternative medi~ sources for news information. 

The third grouping of services was called Home Manage
ment-Oriented Services (Household Guide and Elec
tronic Bulletin Board Services). These services were also 
regarded as somewhat questionable electronic duplica
tions of current activities being handled quite well by the 
present media. The personal touch of the supermarket 
bulletin board was stressed by several housewives. The 
experts were more optimistic toward the services' accept
ability since they were more efficient than current means. 
Both groups saw very little economic value in the services. 

The final classification was Data-Oriented Services 
(Personal Filing Services and the Home Calculator). 
These services were the least attractive to the housewives. 
The experts also felt that these services were ahead of 
their time for normal homemakers and would only appeal 
to professionals working at home. 

Study findings-Conclusions 

Several points seemed to emerge clearly from this 
research effort. Planners, marketers, researchers, etc. in 
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the computer and communications fields often appear to 
feel that the new capabilities they are creating technologi
cally will be of great benefit in the home. However, most 
of the services that these "experts" are designing for the 
"wired city" are mere electronic substitutions for many 
low cost or free methods of obtaining the services today 
(note: the consumer considers advertiser supported or 
subsidized services as effectively "free"). The experts are 
planning for the use of these services by other people, that 
is, the impersonal thing called "the market." 

On the other hand, we have the housewives, the poten
tial consumers of these proposed services. The housewives 
represented on the panel were from an innovative modern 
community of upper middle class citizens, near Montreal, 
Quebec, (e.g., the most likely type of consumer to be 
offered these services in the near future). This panel 
r~ac:::t~_d tQj;he_JJ[Q!tQs~d _sJ~l'Yic~s __ in_t.wo __ way£~ Thei r statis" 
tical responses often indicated that they felt the various 
services would be widely accepted by "people in general." 
However, their comments which were carefully encour
aged and analyzed, clearly indicated that these women 
felt that the services might be acceptable to "people" or 
their neighbours, but not themselves. The housewives 
appeared to reflect the conventional wisdom of many 
readily available futuristic visions of the computer / 
communications fields in their statistical responses. When 
their own feelings were probed, they were often less than 
enthusiastic toward the services. 

The housewives' conservatism seemed to be based on a 
desire to maintain a personal relationship in many of 
their day-to-day activities. The new services were often 
regarded as efficient but impersonal. Many of the 
respondents volunteered fears of being shut off from the 
world in an electronic prison. The recreational nature of 
many daily events such as shopping was often overlooked 
by experts. Housewives also regarded the home as a place 
that did not have to be operated on a totally efficient 
manner. As one respondent commented: "Sometimes it is 
less convenient to be so well organized." 

These findings do not mean that the various services 
outlined above will not be offerred to the public or even
tually accepted by them. However, most services will 
start with professionals working in the home or with 
housewives who have many other activities beyond nor
mal home duties to help maintain their contact with 
people outside of the home. As new forms of outside activ
ities develop for housewives over time, they will come to 
depend upon electronic substitution for many of the old 
ones that seem so important today. Once again the trend 
is evolution not electronic revolution. 

CONCLUSIONS 

The theme of this paper is probably clear by this point. 
Development of computer based communications systems 
and their attendant technologies is going to continue at a 
rapid pace. Many of these advanced systems will be uti
lized in business, government and institutions. The devel-
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opment and acceptance of systems that interface directly 
with the ultimate users is going to continue to be a slow 
and painful process. These systems will have to be 
designed and redesigned with the human element (and 
frailties!!) at the center. Emotional and "irrational" 
human considerations will determine the extent and tim
ing of the use of CAl, travel/communications substitu
tions, and wired city services. The development of the 
more sophisticated systems will be based upon the struc
tures financed by mass and demand entertainment serv
ices as well as similar educational services. There will 
continue to be centers of excellence in specific North 
American locations where pilot systems are trialed and 
refined. However, these systems can only be regarded as 
crude models of widespread systems to be in use toward 
the end of the century, not as mirrors of a future that will 
be upon us in a few years. 
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Large time sharing systems and distributed networks of 
computers are already major factors in tying together 
decentralized national operations in both the public and 
the private sectors. In the public sector, the marriage of 
computers and communications is apparent in such sys
tems as the ARPA Network, the Air Defense System, law 
enforcement systems, weather forecasting and the like. In 
the private sector, there are many such systems used for 
tying together sales offices and warehouses or ticket 
offices and data banks of reservations systems, as well as 
serving various other scheduling, financial control or 
logistics operations in large corporations. In fact, discus
sions on the design and development of massive national 
or regional information utilities have been appearing with 
increasing frequency of late. 1 

In light of these developments it appears to be only a 
matter of time before these kinds of computers and 
communication networks are in widespread use across 
national boundaries. In fact, as will be briefly discussed 
in this paper, a small number of such systems are already 
in use in multinational organizations and many more are 
being contemplated. But while the national use of com
puter networks is just a logical extension of current trends 
and capabilities, the multinational use opens a whole new 
realm of considerations in the technical, as well as the 
social, political and economic spheres. These issues have 
not yet even been identified, let alone explored or 
addressed in any meaningful way. 

In order to begin an inquiry in this area, the Social 
Implications Committee of AFIPS sponsored a year-Ipng 
Delphi study at the Center for Futures Research of the 
University of Southern California. Some of the major 
findings of the study, which was completed in February, 
1973 are summarized in this paper. 
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PROBLEM AND METHODOLOGY 

The use of computers across national boundaries can 
take many forms. We will use the designation "multina
tional computer system" (hereinafter abbreviated as 
MNCS) to mean any arrangement whereby computers in 
one country are directly linked to other computers, data 
bases, or computer users in one or more other countries. 
The use of computers in this manner at the present time 
is certainly not widespread. However, as one projects 
ahead ten to twenty years and contemplates on the one 
hand, the rising tide of multinational ism in both corpora
tions and governmental organizations, and on the other 
hand, the rapid increase in capabilities and decrease in 
cost of computers/ communications networks, one can 
conjecture that it is only a matter of time (and probably 
not very much time) when these kinds of applications will 
proliferate. To help understand how such systems can be 
employed effectively, a brief look at the literature 
describing current applications might be instructive. 

In the public sector, one of the most dramatic uses of 
computers across national boundaries is in connection 
with the United States space program. NASA's Apollo 
Program, for example, employs a real time internationai 
(indeed, interterrestrial) network composed of computers 
linked to monitoring stations to provide instantaneous 
data for real time decision-making with regard to the 
landing of astronauts on the moon. A space ship on the 
moon may be the world's most remote terminal allowing 
man to interact with a central computer in a real time 
mode. NASA aiso uses a system called the Computer 
Assisted Network Scheduling System (CANS) to produce, 
modify and observe actual and simulated schedules for 
space flights tying together stations and equipment in a 
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worldwide network.2 In addition, NASA's RECON Sys
tem is an excellent example of a multinational on-line 
information utility, The network consists of a central 
computer facility in Germany linked to terminals in the 
Netherlands, Sweden and France for the purpose of 
permitting research users to operate in an on-line mode 
through access to a large collection of scientific and tech
nicalliterature.3 

The RECON System has served as a model to stimulate 
researchers to suggest that the United Nations sponsor a 
world science information system as a mechanism for 
permitting nations, universities and professional associa
tions to share scientific information more effectively and 
avoid needless duplication of efforts. Most nations still 
have a proprietary policy regarding the flow of scientific 
information across national boundaries. For this reason, 
UNISIST (the U.N. acronym for the World Science 
Information System) does not envision a world system in 
the sense of a preplanned, integrated organization under a 
single manager; instead, UNISIST hopes to operational
ize a flexible network of cooperating services among 
quasi-independent systems. The end goal technically of 
UNISIST is to have centralized processing of informa
tion, probably on a regional basis, so that users will have 
information available to them across national boundaries 
in an on-line time-sharing basis with display of informa
tion virtually anywhere via remote terminals. Part of the 
system would be a world register of scientific periodicals. 
At the Intergovernmental Conference for the Establish
ment of a World Science Information System, held at 
UNESCO House in Paris in October, 1971, the Confer
ence recommended that the Director General of 
UNESCO take steps to make adequate budgetary provi
sions available in order to implement the first stages of 
UNISIST during the fiscal period 1973-74.4 

In addition to UNISIST, the United Nations is cur
rently in the process of establishing its international 
computer center in Geneva, Switzerland to serve as a 
centralized computer facility for all U.N. organizations, 
wherever they are located. The center contemplates being 
on-line to other U.N. centers around the world, serving 
such users as the U.N. Development Program and the 
World Health Organization, with an ability to develop 
and maintain international data banks containing inven
tories of economic and social statistics, and to develop 
multinational management information systems for use 
within the United Nations. 

There are other public applications of MNCS as well. 
The World Meteorological Organization employs a world
wide computer network in its World Weather Watch 
program for monitoring and forecasting weather condi
tions at the global level.5 The banking community repre
sents another example. Most central banks are govern
ment run and are rapidly increasing their use of on-line 
computer services tying together remote branches. It is 
expected that by the late '70s, most central banks will be 
transferring funds and carrying out the bulk of foreign 

exchange operations via international computer networks 
linking chains of large multinational banks to create a 
global service industry in banking. Finally, in passing, we 
must at least mention the many multinational military 
uses of computers which have provided much of the tech
nology that will be applied in non-military applications. 

In the private sector, there are also numerous existing 
applications of the use of computers across national 
boundaries. The major international airlines and some 
travel agencies already have multinational reservations 
systems covering many activities. For example, Interna
tional Reservations, Limited has a multinational real 
time booking service to confirm reservations for hotels, 
motels and car rentals with a central computer center in 
Virginia linked to remote terminals in the United States, 
Great Britain, Switzerland and Ireland.6 The American 
Express computer network also is a worldwide system 
with links to remote terminals for reservations purposes. 
Similarly, such airlines as the Scandinavian Airlines 
System, Air Canada, Yugoslav Airlines and others have 
multinational networks serving reservations functions as 
well as management reporting, statistical analysis, pas
senger records and other accounting functions. In fact, 
there is already an example of an international coopera
tive effort to own and operate a multinational computer 
network performing similar functions for a large number 
of users. The Societe Internationale de Telecommuni
cations Aeronautiques (SITA) is a multinational compu
terized communications network owned by the airlines 
and serving about 130 companies.? 

Computer services networks for commercial purposes 
are relatively common within certain countries such as 
the United States and Great Britain but are now begin
ning to reach across national boundaries, particularly in 
Europe. For example, Honeywell, since its acquisition of 
General Electric's computer hardware functions, now has 
a vast network of on-line time sharing services. At pres
ent, Honeywell operates a European time sharing service 
consisting of seventeen time sharing systems covering 
fourteen countries from Denmark to Italy and serving 
more than 8,000 businessmen, engineers, scientists and 
students.s Similarly, University Computing Company, 
Limited has a multinational computer utility consisting of 
two Univac 1108 computers in London linked to regional 
centers in Paris, Dusseldorf, Frankfurt, Brussels, and 
The Hague.9 

The publications and broadcasting industries have 
expressed considerable interest in multinational comput
ers. For example, Triangle Publications, Inc. assembles 
eighty-one separate editions of TV Guide every week 
using its on-line computer communications system in the 
United States and Canada. lO United Press International 
is installing a computer based multinational news net
work which will link its New York headquarters to a 
worldwide information storage and retrieval system. ll 

Multinational stock quotations services are another 
example of computerized news services. Very extensive 



systems are now in operation by Reuters and Ultronic 
linking together stock brokers in the United States, 
Canada, Europe, the Far East and South America. 

Finally, there are several examples of multinational 
corporate information systems within companies but 
across national boundaries. For example, IBM has a sys
tem of interconnected computers which exchange engi
neering information among its" laboratories in Europe and 
the United States. Ford Motor Company similarly links 
its British plants to facilities in Germany. Such insurance 
companies as the British American Insurance Company, 
Metropolitan Life, the Sun Life Assurance Company of 
Canada and others link their home offices to terminals in 
other countries for the purposes of transmitting policy 
data and other statistical transactions. 

The Japanese have been very active in this area. In 
1971 I\.!itsl!i inst~J~Q._"?J~nY ~~IJlP_~!eriz~~Lgl"()l>:l1 ~9~mu
nications network linking together 115 Mitsui offices in 
sixty-nine countries, claiming to be the world's largest 
commercial computer telecommunications network. 
Mitsui claims that the company's management informa
tion system receives information daily, including a wide 
variety of environmental information regarding market 
conditions from all of its world-wide locations through its 
network. 12 

A number of companies have installed at least the 
rudiments of multinational information systems. For 
example, Monsanto has centralized its computer facili
ties in St. Louis but has tied that installation to remote 
facilities in the United States, Europe, and Latin America 
for management information system purposes. 13 Gulf Oil 
has tied its Pittsburgh computer center to twenty-five 
other computers located in the United States and over
seas in order to monitor and control Gulf refining and 
transportation operations around the world. 14 Vickers 
International Division of Sperry Rand Corporation has a 
multinational inventory control system, as does Canadian 
Pacific Railroad and other companies. 

This list of examples in the public and private sectors is 
far from complete. In fact, more than forty such multina
tional applications were discovered in the course of the 
brief literature search conducted for this study and there 
are certainly many more such applications than are 
reported in the literature. The point is that the multina
tional use of computers is no longer hypothetical; it is real 
and its influence is rapidly expanding. But what will its 
long term impact be? Nowhere in the literature is there a 
detailed examination of the likely future consequences of 
this new development. What will be the impacts upon 
intergovernmental relations and politics? What will be the 
impacts upon corporate management and operating 
practices? What will be the effects upon individuals and 
whole societies of this intimate linking together through 
computers and telecommunications of the peoples and 
nations of the world? 

To begin to identify the important issues in these areas, 
the Social Implications Committee of AFIPS asked the 
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authors to conduct a Delphi study of leading thinkers and 
researchers in related fields. 15 With the assistance of 
AFIPS officers, an outstanding Delphi panel was assem
bled consisting of corporate officers, government officials 
and computer experts. In all, fifty-seven people partici
pated in the process as listed in the attachment. A care
fully prepared list of questions was developed from an 
examination of the existing literature and extensive dis
cussions with members of the AFIPS Social Implications 
Committee and other computer experts. Three iterations 
of the Delphi questionnaire were necessary to ciarify 
issues and to develop a preliminary understanding of the 
reasons for the positions that the panel took on the issues. 

One word of caution is necessary before summarizing 
the results. The study suffers from all the limitations of 
the Delphi approach. 16 Moreover, it was not intended to 
be a comprehensive or systematic (much less scientific) 
examln.-ailon ofihe issues that "can" arl"se"" from the use of 
multinational computers. This will require a far more 
detailed and rigorous study than was possible here. The 
only intent was to have one particular panel help us to 
define issues so that the professional community would 
have some guidance as to where to look further in assess
ing potential impacts. Since the panel had to consist of 
computer-knowledgeable people, it would be surprising if 
the data did not reveal an optimistic bias favoring the 
spread of computer usage. Thus, the reader is cautioned 
not to consider the data presented here as predictions, but 
rather simply as the first crude attempt to define a new 
field of inquiry. 

The results will be discussed under five headings which 
correspond to the five major areas of inquiry of the study. 
They are: technological aspects, socio-cultural implica
tions, public policy and administration, multinational 
business implications, and impacts on the developing 
countries. 

TECHNOLOGICAL ASPECTS OF MULTINATIONAL 
COMPUTER SYSTEMS 

While the study was not concerned primarily with 
technological dimensions of the MNCS, it was necessary 
to explore a few of the technical developments that would 
most affect its use. The entire panel agreed that it would 
be necessary to increase the speed and reduce the cost of 
transmitting data through developments in telecommuni
cations such as the following; 

1. Improved facilities, particularly satellites; 
2. Better switching systems for wide band communica

tions; and 
3. Improved and more widespread use of CATV for 

home communications. 

Similarly, 97 percent of the panel agreed that in order to 
utilize computers across national boundaries on a large 
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Scenario D-1 

Global data banks will permit individuals everywhere in the 
world to share the latest technical knowledge. As a result, 
there will gradually be a homogenization of the way people 
understand and interpret problems, and the information they 
use to solve them. 

Strongly 
Disagree Disagree 

No 
Opinion 

Question 2 

Agree 
Strongly 
Agree 

In what year will a new industry emerge whose function will be 
to operate multinational computer systems for educational 
purposes that will be used by at least 250,000 people in five 
countries? 

~ ___ u= 
1975 1980 1985 1990 1995 12000 Never 

Question 10 

In what year will educational data banks be established to 
service, with on-line capabilities, at least 25 percent of all 
IWltinationa1 organizations throughout the world? 

~w ____ = 
1975 1980 1985 1990 1995 2000 Never 

1D Question 15 

In what year will the first university extend its course 
broadcasting to satellites, thus making possible a world-wide 
enrollment in a particular educational program? 
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Figure 1 

scale it would be necessary to provide improvements in 
portable, on-line and inexpensive terminals as well as 
smarter and more flexible terminals. The same percent
age agreed that it will be critical to improve computer 
storage systems through providing cheap, high speed 
associative memories; faster, larger capacity and cheaper 
secondary multiaccess memories; and safe, inexpensive 
storage to replace magnetic tapes and discs. Many (92 
percent) focused upon the man-machine interface sug
gesting that improvements were needed in interface sup
port facilities; in cheap, high speed hard copy printers 
with unlimited character sets; and in more sophisticated 
man-machine interaction possibilities. 

With regard to software, the panel felt that for the 
MNCS to be widely applied, international agreements on 

software standardization would be needed, as well as 
improved large scale multicomputer operating systems 
and improved software support for "human intellect 
augmentation." The panel also agreed that cost-effective
ness improvements were required in the development of 
data management systems capable of handling large, 
decentralized multinational data bases; in automatic 
language translation; in automated mass education tech
niques and in the use of time sharing systems. However, 
with regard to automatic language translation, a large 
majority did not believe that we would see the "first prac
tical application of voice-to-voice transmission with 
computerized translation and voice synthesis across the 
boundaries of at least five countries" until the end of this 
century if at all. Further, it was felt that once developed, 
this use of computers would likely be restricted to narrow 
technical domains with highly constrained query lan
guages. 

SOC I O-CULTURAL IMPLICATIONS 

One of the main themes investigated in the study was 
that global technologies such as the MNCS have a tend
ency to support various forms of cultural uniformity and 
homogeneity. Most (75 percent) of the panel agreed with 
the statement that "the use of computers across national 
boundaries will contribute to the homogenization of cul
tural tastes and attitudes, although the process that each 
country goes through to attain this homogeneity may be 
different, and in some cases may lead to social upheaval." 
This was further reinforced by the panel's opinion regard
ing the question illustrated in Figure 1A. We must be 
careful about interpreting these findings however. While 
Country A may come to contain the same general spec
trum of beliefs, behavior and values as Country B, the 
spectrum for both may greatly widen from that of today 
as technologies permit much greater diversity of life styles 
and actions. As one panelist pointed out, the linkage of 
computers and communications can individualize the 
mass media by permitting many more specialized mes
sages to be sent to specialized audiences in place of a few 
messages sent to everyone. 

On the psychological effects associated with multina
tional computer systems, 84 percent of the panel agreed 
with the statement that multinational computer systems 
will increase the level of fear that some people have 
regarding the mechanization of life they associate with all 
computer systems. On the other hand, as indicated in 
Figures 1B, 1C and 1D, the panel strongly anticipates the 
early use of MNCS for educational purposes, an applica
tion that might eventually go at least part way toward 
negating that fear. In all these questions, the panelists 
expect great activity in the decade between 1980 and 
1990. 

A somewhat less optimistic picture emerges with regard 
to multinational library and data bank applications, as 
shown in Figure 2. Many panel members felt that the use 
of these library networks would be so limited in the near 



future, so expensive and so difficult to achieve interna
tional agreements on, that collaboration as proposed 
could not be foreseen before the end of the century, if 
then. Of course, they are more optimistic about scientific 
data banks (Figure 2C) because of the experience with 
the NASA RECON System and UNISIST, but even here, 
they are very sensitive to the potential economic and po
litical barriers. On the other hand, at least several panel
ists expressed the opinion that there would be mounting 
political pressures to establish systems of this type since 
all countries would want to have access to the most cur
rent developments in science and technology, and thus 
political barriers may fall earlier than the majority are 
willing to anticipate. 

Figure 2D illustrates the views of the panel with regard 
to the future of multinational man-machine interaction. 

2A 

2B 

2C 

2D 

Question 14 

In what year will libraries in different countries housing 
information of a specialized nature (such as information 
relating to the location of journals, scientific reports, etc.) 
be interconnected via display terminals into a common library 
network built up around regional computers? 

[TJ--.---,L ______ = 
1975 1980 1985 1990 1995 2000 Never 

Question 13 

In what year will half of all the world's educational output -
dissertations, scientific reports, lectures, convention reports, 
programmed instruction, reference material, journals, etc. --
be standardized in order to be indexable and used for retrieval 
purposes with an on-line capability in at least 5 countries? 
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Event Statement 11 

In what year will: science and technology data banks be estab
lished to service, with on-line capabilities, at lesst 25 per
cent of all multinational organizatiOns throughout the world? 

~---= 1915 1980 1985 1990 1995 2000 Never 

Question 8 

In what year will at least 25 percent of the people living in 
the highly industrialized societies be actively involved 
(perhaps 1/2 hour per week) in some form of man-machine rela
tionahip (e. g., direct working relationship with a computer at 
work, home, school, etc.)? 
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Figure 2 
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The panel seemed fairly confident that a great number of 
people living in industrial areas of the world would be 
interacting with computers by 1990 at the latest. In 
answer to another question, 72 percent agreed that "the 
inability to effectively interact with computers will be 
viewed as a particularly disabling form of illiteracy." 
Presumably this assumes a considerable simplification in 
the processes of man-machine interaction and a general 
movement toward the computer as a major means for 
augmenting human intellect through access to multina
tional data bases, on-line conferencing, etc. 

PUBLIC POLICY AND ADMINISTRATION 

One of the major themes emphasized by the panel 
members throughout this study was that the use of com
-put-eIS aCIOSS national-bonndaIies-is-inf-used-with-a public _ ... 
character such that increased public regulation would be 
inevitable. In fact, one of the distinguishing features of 
institutions that may emerge from the use of MNCS is 
that they might tend to blur the distinction between pub
lic and private domains of action, since the use of such 
systems requires the utilization of public communications 
networks on a large scale. The effects of this interaction, 
however, are not entirely clear from the comments of the 
panel members. As shown in Figure 3A many respondents 
felt that the MNCS had at least some impact on aggravat
ing tensions between nation-states and multinational 
corporations. Those who expect a high impact do so 
because they feel that MNCS will make multinational 
corporations more powerful, but a significant minority 
(35 percent) believe that the use of MNCS might actually 
reduce tensions, since it would make visible much infor
mation now closely held or hidden by corporations. 

Figure 3B suggests that some kind of mechanism might 
be needed to resolve these tensions and this was con
firmed by the fact that 91 percent listed as one of the 
most important barriers to the use of multinational 
computer systems "the lack of legal or political mecha
nisms to resolve conflicts over who controls multinational 
data banks." Moreover, 61 percent agreed "there is a lack 
of international coordination in all areas concerned with 
computer sciences, particularly hardware and software 
interfacing standards." 

Probing further in this area, the panel was nearly unan
imous that "the inhibiting role of political ideologies, 
particularly the notion of national sovereignty, but also 
the tensions between capitalism and socialism, multina
tionalism and nationalism, etc." was a major barrier and 
in fact, this was cited as the single most important barrier 
to the use of computers across national boundaries. The 
panel was less concerned with national language differ
ences (only 40 percent cited this), but nearly 70 percent 
felt that an important barrier was that "nations will be 
preoccupied with the military significance of multina
tional data systems, both from the point of view of linking 
together military allies and from the point of view of 
protecting such systems from enemy infiltration." Thus, 
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3B 

3C 

3D 

Question 34 

The use of computers across national boundaries will accelerate 
the trend toward increased tension between nation-states and 
multinational corporations. 

lio 
Impact 

D 
Slight 
Impact 

Some Substantial Maximum 
Impact Impact Impact 

Scenario B-4 

One result of the use of computers across national. boundaries 
rill be that regional "Development Agencies" or some other 
mechanism will be needed to resolve tensions between nation
states and multinational organizations that emanate from the 
manner in which these organizations use information to make 
decisions regarding the goals and objectives of economic 
development. 

Strongly 
Disagree Disagree 

No 
Opinion 

Question 25 

Agree 
Strongly 
Agree 

In what year will a mechanism (e.g., an international ombudsman 
agency) be established among at least 5 countries to adjudicate 
disputes over issues arising out of the transmission of data 
across national boundaries? 

~mn_CJ 
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Question 26 

In what year will international conventions regarding informa
tion flows across national boundaries, including laws on wire
tapping, fraudulent uses of data, etc., be ratified by at 
least 5 countries? 

~. 
1975 1980 1985 1990 1995 2000 Never 

Figure 3 

they feel that language and technical differences could be 
solved much more easily than political barriers, which 
seem to be the major constraints. 

How could these political problems be overcome? Fig
ure 3C may provide some clues in that a majority of the 
panel believes that some form of judicial machinery 
(some were very much opposed to the notion of an 
ombudsman for this purpose) would be needed to adjudi
cate disputes arising out of data transmission across 
national boundaries, and that such a mechanism will be 
developed by 1990 or shortly thereafter. Although some 
panel members felt that there are too many political bar
riers for this event ever to come about, others pointed out 
that the International Standards Association is currently 
formulating a proposal along these lines and that prece
dents are being set in other areas such as environmental 

monitoring and law enforcement. The picture in Figure 
3D goes one step further and suggests that panel members 
do not see international conventions on information flows 
across national boundaries until at least 1985 and that, 
even then, there will be serious problems because people 
from diverse cultures do not necessarily share a common 
set of values concerning the nature of fraudulent use of 
data. For example, the United States and Western Euro
pean countries have differing legal concepts about the 
nature of price fixing by corporate organizations and the 
types of collusion that are permissible. 

The conflict between the individual's right to privacy 
and society's right to use computers and data bases for 
planning purposes is much in the news in the United 
States. The panel agreed that at the moment, "there is a 
lack of multinational agreement on the protection of indi
vidual privacy and the limits of government censorship on 
data transfers across national boundaries." When asked 
in what year there will be an international agreement to 
protect the privacy of individuals such that agencies of all 
types would not use data dossiers in ways considered to 
be repugnant to individuals, most of the panel responded 
that such agreements would not occur in the next fifteen 
years and 38 percent even indicated that international 
agreements on this subject would never be signed. Some 
of them pointed out that there might be limited agree
ments of this sort between a few very close neighbors such 
as the United States and Canada, but they were very 
pessimistic about larger scale agreements. Some said that 
differing concepts of individual rights and civil liberties 
would preclude the possibility of defining the issue at the 
multinational level, and others felt that even if agreement 
on definition were possible, it would still be politically 
unfeasible to design machinery at the global level to 
police the agreement. If such agreements cannot be for
mulated, this is likely to raise some very difficult prob
lems in deciding what kinds of data can be transmitted 

In What Year Will Multinational Computer Systeas be Used to 

IIou1tor or Cootrol Global Problems in the Following Area.: 
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across national boundaries and how the flows could be 
regulated. 

Some of the public areas in which the use of multina
tional computer systems may have an important impact 
are illustrated in Figure 4. In all the listed areas, the 
panelists expected very great progress before 1990, with 
the possible exception of the utilization of natural 
resources where the major stumbling block appears to be 
the national economic plans of individual countries and 
their reluctance to permit some form of global economic 
planning or decision -making regarding their resources. 

In addition to the areas cited in Figure 4, the panel 
very strongly agreed that by 1990, at least half of all for
eign exchange operations will be carried out by multina
tional computer systems linking together the large inter
national banks. They were similarly highly confident (i.e., 
95 percent agreement) that by 1990, a medical data bank 
will be estabusn-ea:- to serVIce, on an on-Iiriebasis, at least 
25 percent of all multinational organizations throughout 
the world. 

MULTINATIONAL BUSINESS ADMINISTRATION 

Earlier in this paper, it was pointed out that there are 
already many examples of multinational management 
information systems in operation for various purposes. To 
explore the proliferation of these systems, the panel was 
asked in what year at least 25 percent of all multinational 
organizations would use multinational information sys
tems in dealing with certain problems. As indicated in 
Figure 5, very great progress is expected in these areas 
within the next ten to fifteen years. The researchers were 
particularly interested in the impact of these applications 

In what year will at least 25% of all multinational organiza-

tions (both public and private) use multinational information 

systems in dealing with the following problems? 
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on management theory and practice. Some of the relevant 
findings in this area are summarized below: 

1. There was strong agreement that multinational 
computer systems will make it possible to more 
closely integrate the management and research skills 
of one geographic area with the production and 
natural resource usage of another. 

2. The majority of the panel members (78 percent) 
believed that computer technology per se, not neces
sarily the use of MNCS but also including it, would 
accelerate the trend toward professionalization of 
management around the world. That is, with the 
increasing use of computers in big business organiza
tions' the management education required to utilize 
this technology would likely create uniformities in 
management behavior and practice in diverse cul-
tural contexts around the wodd. -

3. 78 percent agreed that multinational computer sys
tems will help to enhance the power and influence of 
multinational organizations whose interests tran
scend national interests. Since these multinational 
organizations tend to be financed and dominated by 
the highly industrialized countries, their increased 
power and influence may tend to widen the gap 
between the rich and the poor nations. 

4. 80 percent disagreed with the concern sometimes 
expressed in the literature that multinational com
puter systems will create large, hierarchical, highly 
centralized and unflexible management organiza
tions. In fact, according to some panel members, the 
use of MNCS by a corporation might have quite the 
opposite effect since the widespread use of remote 
terminals throughout an organization to collect data, 
transmit it to a central computer facility, and then 
receive it back in a form useful for local decision
making, would have a tendency to decentralize the 
overall structure of multinational corporations. 

5. Many panel members agreed that the spread of 
multinational computer systems will create prob
lems of national citizenship and organizational loy
alty. For example, employees of multinational cor
porations could be asked to make decisions that may 
not be consistent with the policies of their own gov
ernments. Management may be forced to deal with 
these problems of loyalty at all levels in the organi
zation and some of them may involve legal consider
ations sinCe individuals may be making decisions 
within conflicting legal systems (differing laws of 
nation-states, world law vs. nation-state law, etc.). 

6. 60 percent agreed that multinational computer sys
tems will help to redefine the meaning of work and 
leisure by freeing people who work through distrib
uted computer networks from time and place con
straints associated with traditional modes of work. 
This suggests that people might work in decentral
ized information centers or perhaps in their home or 
other choice of location by communicating in the 
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real time mode with people in other locations, even 
across national boundaries. Although no time 
perspective was attached to this statement, a num
ber of panel members believed this alteration of 
work habits was possible for at least some sector of 
the population in the next twenty years. 

7. 55 percent of the panel agreed that multinational 
computer systems might have some slight impact, if 
any at all, on the multinationalization of union 
activity. Many panel members believe that most 
union policies will continue to be made at the 
national level. 

8. The panel, by a 66 percent majority, appeared to 
agree that the use of multinational computer sys
tems would have, at best, a slight impact on the 
trend toward uniformity in multinational law, 
including tax laws, anti-trust laws and the charter
ing of corporations. The feeling was that these mat
ters of law were deeply rooted in national legal phi
losophies and would unlikely be changed by the use 
of MNCS. Conflicting notions of monopolistic 
behavior and effective tax rates would seriously 
delay cooperation in defining a set of multinational 
laws regarding the behavior of multinational corpo
rations. 

IMPACTS ON THE DEVELOPING NATIONS 

The issue of the relationship between MNCS and eco
nomic development was explored in several questions of 
the Delphi questionnaire. The panel strongly agreed that 
world economic development will be greatly affected by 
the globalization of information processing. They also 
agreed, by a 72 percent majority, that the use of MNCS 
should help the developing countries enormously by tying 
them into advanced technologies, suggesting that the 
MNCS itself may constitute a potential vehicle for accel
eration of technology transfer. The suggestion was also 
made by 71 percent of the panel that the developing 
countries will be motivated to have their own large com
puters for prestige purposes, much as African countries 
have done in their investment in airlines. The majority 
(67 percent) believes that the use of MNCS will make the 
developing countries "more familiar" to corporations 
desiring to establish facilities in their country and thereby 
will accelerate industrialization. 

All this optimism does not indicate that the panel 
expects the developing countries to be uniformly assisted 
by the development of multinational computer systems. 
On the contrary, most of the participants do not feel that 
the use of MNCS would narrow the gaps presently exist
ing between the rich and poor nations. Some observed 
that a form of "information dependency" might be a 
likely consequence of this development. Moreover, 55 
percent agreed that the developing countries will not have 
enough people with needed computer skills to benefit 
from the use of MNCS in the foreseeable future. 

Some other positions of the panel with regard to devel
oping countries are summarized below: 

1. Most of the panel (90 percent) felt that the use of 
MNCS could be a strong force in bringing about 
changes in education, management, medicine and 
public administration in the less developed coun
tries. Similarly, 92 percent agreed that the use of 
MNCS will provide opportunities for developing 
nations to improve public administration in such 
areas as obtaining statistics, planning and finance. 

2. A majority (76 percent) agreed that multinational 
computer systems will help to institutionalize a 
method of socioeconomic change whose origins are 
multinational, thus competing with national strate
gies of change. 

3. A majority of the panel (70 percent) felt that the use 
of MNCS will have little impact in the developing 
countries unless developed nations subsidize the 
development of computer technology in the LDCs 
and promote the development of the skills and 
capabilities required to fully utilize computer tech
nology. 

4. The impacts of MNCS on the less developed coun
tries are likely to be asymmetric in nature and 
should be evaluated on a country by country basis. 
Nonetheless, it will likely become one of the major 
vehicles by which technology is transferred across 
national borders and will definitely help to further 
integrate the developing countries into the world 
economic structure. 

SUMMARY AND CONCLUSIONS 

In this paper, we have been able to present only the high
lights of a much more detailed study of the possible social 
implications of the use of computers across national 
boundaries. The clearest lesson from the study was that 
there will indeed be some major impacts, and many of 
them will occur in the next ten years, but that the nature 
of these impacts are still only vaguely perceived. Never
theless, certain conclusions seem safe to make at this 
time. 

The use of computers across national boundaries in 
both the public and the private sectors will expand very 
greatly in the next two decades as the costs of computa
tion decline, new applications are proven economical, and 
the scope and influence of multinational organizations 
increase. On the technical side, there appear to be few 
barriers to the development of MNCS that are not now 
already close to solution. The problems that do exist are 
more in the nature of political or socio-cultural and while 
there is no guarantee that all these barriers can be swept 
away in the next two decades, there are promising starts 
already. 

In the public sector, the use of computers across 
national boundaries will strengthen multinational public 



enterprises in such areas as public health, criminal activi
ty, pollution, weather and disaster control, with major 
impacts before 1985. New institutions will be required at 
the multinational level to resolve disputes over the trans
mission of data across national boundaries, to develop 
regulations concerning the activities of multinational data 
banks, to provide individual safeguards, and to deal with 
problems of standardization of data transmission facili
ties and capabilities. In the private sector, progress may 
be even faster because much can be done within individ
ual companies. As a result, the use of MNCS is already 
beginning to enhance the power of multinational corpora
tions vis-a-vis the nation-state while at the same time 
contributing to a growing uniformity of business practices 
throughout the world. 

These developments are likely to have their most pro-
_fmll~d __ and_te~sJJlnd~LstJ!Qd imJ1acts_Qnth~_JsQdQ~J~wt!!rnl 
level. Within the highly industrialized societies, many 
people will find themselves in some form of man-machine 
relationship, often involving multinational communica
tions, within the next decade. These interactions may be 
for educational, health, library, business, or other reasons 
but the net effects will be the enhancement of shared 
beliefs and values and a growing sense of interdependence 
on matters of the most fundamental nature. One effect of 
this, for example, might be to create new problems of 
national citizenship and organizational loyalty whereby 
individuals will be asked to make decisions in a multina
tional context that may not be consistent with the policies 
of their own governments. 

In the developing nations, the widespread use of MNCS 
may be considerably delayed, perhaps for fifteen or 
twenty years, but when it happens it will have enormous 
impacts. In the short run, the use of MNCS may tend to 
enhance the economic interests of the information-rich, 
wealthier nations at the expense of the information-poor, 
but in the long run, the use of MNCS will increase the 
technological options available to the LDCs and speed up 
their ability to industrialize, and to take advantage of the 
latest developments in education, management, medicine 
or public administration. The danger to the developing 
nations is that the MNCS may distort their investment 
priorities or lead to policies that favor multinational as 
opposed to national socioeconomic change. This provides 
a new challenge to the developed nations to create inter
national organizations and agreements that strengthen the 
position of the developing countries in regard to all flows 
of science and technology, particularly the use of :MNCS. 

In the long run, we may find that the use of computers 
across national boundaries will be one of the three or four 
most important factors tending to bring the world closer 
together through the creation of new multinational insti
tutions and interdependencies. If this should happen, the 
impact on human society will have been truly revolution
ary-perhaps equal to the impact of the invention of the 
printing press or of human language itself. The main 
contribution of the data developed in this study has been 
to suggest that these impacts may begin to be felt sooner 
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rather than later-before 1985 for many of them-and 
that it is not too early to begin to plan how to avoid the 
obvious traps and to assure the greatest benefit for the 
world's peoples. 
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A new NSF thrust-Computer impact on society 

by PETER L YKOS 

National Science Foundation 
Washington, D.C. 

COMPUTER IMPACT ON SOCIETY PROGRAM 
DESCRIPTION AND OBJECTIVES 

Program description 

The recently formed (Nov. 9, 1972) Computer Impact 
on Society Section in NSF's Office of Computing Activi
ties reflected a growing need to understand the wide and 
deep impact which computers and associated information 
technology are having on our social organizations and way 
of life. The program has two principal thrusts, computer 
impact on organizations and computer impact on the 
individual, to be implemented via studies and demonstra
tions. As experience is gained and the program matures, 
research projects of considerable scope and import may 
be reasonably expected which will develop ways computer 
science and technology can be creatively applied to meet
ing individual and social needs. 

Program objectives 

The primary significance of the computer for society is 
its function as part of information technology. The pro
gram objectives for the immediate future center on four 
areas; namely, the computer as a management support 
tool including computer simulation and modeling, man
agement information systems, and computer-aided con
ferencing; the role of the computer in the financial sys
tems of the country; citizen access to public data bases, 
supporting models and other analytical aids, and an 
improved human/ machine interface; and an assessment 
of public attitudes and perceptions toward the computer, 
computer literacy, and computer impact on life styles. 

Importance of the program in terms of need 

The primary significance of the computer for society is 
its function as part of information technology. As societal 
systems become more and more complex, information 
handling and transfer becomes an increasingly important 
factor. Breakdown of such systems happens generally 
because of an information problem. In examining such 
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systems, how they operate and how they might be 
improved, invariably underlying technical problems are 
uncovered which need to be solved. Formal interaction 
betwe_en the ipdiyjd:tIala,I!c::J,sQ~!~ty _ invo!y~s _oJ~erating 
within society's legal structure and society's economic 
structure, both of which lean heavily on information 
technology. Deep penetrations have been made in: devel
opment of computer hardware, both very large and very 
small scale; computer software both in sophistication of 
information handling and in transparency to the user; 
interface with the larger information technology; and in 
sophistication of communication through the human/ 
machine interface. A large gap exists between current 
computer science and technology capability, and its 
actual application supportive to the information technol
ogy which enables society to function. 

The new program should lead to increased economic 
capacity and productivity through: 

• Improved machine-based management techniques 
supportive to management of people in organizations 
and to management of traffic flow be it information, 
objects, or people. 

• Improved techniques of information gathering, vali
dation, storage retrieval, transmission and display, 
including use of remote servo and sensor devices. 

• Improved modeling and simulation methods cou
pled with better optimization approaches with effec
tiveness enhanced by more comprehensive and acces
sible data bases. 

• Normalization of laws particularly regulatory laws 
through machine-based analysis, consistency checks, 
and presentation of alternatives. 

Other societal effects of the proposed program should 
be better matching of human needs and wants with social 
resources and opportunities such as students with schools, 
workers with jobs, goods with buyers, sick and health 
services, and so on. In addition access by citizen groups to 
public information, as an aid to intelligent decision mak
ing' can improve the common weal. 

The NSF's Office of Computing Activities has devel
oped an awareness and close working relationship with 
the nation's research scholars in the emerging disciplines 
of computer science and engineering. In addition OCA 
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has established good working relationships with other 
elements of the research community through other parts 
of the Foundation close to the Social Sciences, Engineer
ing, and Mathematics. Accordingly NSF is in a unique 
position to identify and to attack problems arising at the 
society-computer interface. 

SIGNIFICANT RECENT ACHIEVEMENTS 

Although OCA's Section Computer Impact on Society 
was formed only recently (Nov. 9, 1972), there has been a 
long-standing and growing concern of OCA with this gen
eral problem area, and the following projects supported 
through OCA are examples of Office achievement in this 
regard. 

1. A project to design a software clearinghouse for local 
municipalities. The HUD-Ied USAC is well into a 
$10,000,000 five-city municipal information system 
program. However, there are 12,000 local govern
ment units which do not have access to that high 
technology . 

2. A project to upgrade a major city's machine-based 
public information system and to make it available 
to research professors and graduate students in a 
local university. 

3. A pair of research projects to examine computer
augmentation of technology-forecasting through 
computer-based conferencing, and to examine in 
depth multi-participant decision making in a single 
organization. 

4. An in-depth analysis, and generation of correspond
ing recommendations, regarding the competencies 
required to design and implement a management 
information system together with a corresponding 
description of an extended masters degree program 
to train corresponding professionals. 

MAJOR CURRENT YEAR (FY 1973) PROGRAM 
EFFORTS 

The major focus for the remainder of the current fiscal 
year (CIS was formed November 9, 1972) was on a set of 
four intensive two-day workshops addressing the follow
ing: 

• Public Perceptions and Attitudes toward the Com
puter, and Computer Literacy 

• Simulation and Modeling as an Aid to Decision 
Making 

• Role of the Computer in Banking and Finance 
• Role of the Computer in the Legal and Regulatory 

Processes 

In addition to publication of the Proceedings, a major 
goal was to develop more structure for CIS. 

LONG TERM PROGRAM DEVELOPMENT AND 
IMPACT 

The Computer Impact on Society program was formed 
within the NSF, a part of the executive branch of the 
federal government and, by its creation, represents an 
awareness of the need for an action program to address 
that general problem area. Recent activity in Congress 
reveals a strong inclination on the part of Congress to
ward legislation to support civilian research and en
gineering programs directed at the problems of our 
society. 

Although the program is in its developmental stage 
and is being funded at a modest level, from a long range 
point of view it seems reasonable to expect increasing 
support for projects designed to realize the potential, 
and to anticipate and avoid the problems of using, com
puters to help mankind. While it is impossible to de
scribe specifically the problems which the program will 
address in the future, their general features are appar
ent, and it is important to consider the way in which this 
CIS program relates to both our national goals, and to 
the problems and needs of our individual citizens. 

In the economic sector the program should improve 
the utility and acceptability of automated data bases, 
which are vitally important to our healthy economic 
development, by addressing and solving many import
ant problems in accuracy, quality, controlled accessibil
ity, and public perception and understanding. The cor
respondingly improved management techniques and 
systems, as well as the improved modeling, simulation 
and heuristic problem-solving methods, and computer
augmented conferencing which will result from the CIS 
effort, should lead to significant improvement of the 
efficiency, accuracy, and quality of decision making in 
academic business, industry and government. In addi
tion the program should support research in use of real
time computing and distributed intelligence associated 
with sensor and servo devices. 

In the social sphere the work supported under the CIS 
program will help to enhance significantly the public and 
professional understanding of computers and information 
systems and allow a much broader participation in deci
sions involving their use. Many direct benefits such as the 
more efficient and "humanized" delivery of services in 
welfare, medicine, law enforcement, education, mainte
nance, retail trade, entertainment and transportation 
should be stimulated by CIS supported activities. The 
clearer understanding of the social impact of computer 
systems which will result from CIS supported work may 
have an important indirect effect on the troubled, but 
rapidly developing, field of technology assessment. At the 
individual level, work on technical and attitudinal prob
lems at the man-machine interface should lead to more 
flexible and natural audio-visual (and perhaps tactile) 
ways for both professional users and the general public to 
interact with and draw upon the great resources of infor
mation systems, particularly in the delivery of social serv-



ices. It should also result in progress toward directly 
applying the enormous power of automated systems to the 
problems of the physically handicapped and other disad
vantaged groups. 

Environmental concerns will not form a direct part of 
the program thrust, yet much of the work to be supported 
in management systems, modeling, and data bases will 
prove directly applicable. In later years, as the program 
begins to explore problems in improved techniques and 
strategies for collecting, reducing, and displaying remote 
sensor data, particularly in pattern recognition, the 
results should prove enormously important. Work in 
selected problems in long range social planning and cost
benefit analysis may likewise prove important from an 
environmental point of view. 

"Social planning" and the "quality of life" are widely 
used phrases which, because of the diverse range of 
images- they evoke, ill-usi-be used . with some care. 
Obviously the CIS program will not be, and shouldn't be, 
in the business of support for decision-making on future 
social organizational values systems and life styles. But it 
will be in the business of supporting the development of 
many of the information system tools which will be 
important in making such future decisions and it will be 
actively involved in encouraging a widespread public 
understanding of, and access to, these tools. From a long 
term point of view these activities may prove vitally 
important to the preservation and development of a 
democratic way of life based on individual freedom, 
knowledge and dignity. 

The benefits which computer projects bring to society 
are inevitably mixed with new problems and frustrations. 
In order to minimize negative consequences, the implica
tions of each project should be systematically evaluated. 
An on-going program emphasizing "computer impact on 
society" would serve to focus attention on both the com
puter potential and the critical social issues. An impor
tant by-product of this direction might be the enhance
ment of the computer systems involved as a consequence 
of greater attention to the people-computer interface. 

While other areas of impact certainly exist, it should be 
clear that the potential significance for CIS supported 
work at both a national and individual level is enormous. 
Whether this positive impact is realized will depend upon 
the vigor with which the program is pursued, the ade
quacy of funding, and the quality of the investigators who 
can be enlisted to approach problems associated with the 
impact of the computer on society. 

NSF'S COMPUTER IMPACT ON SOCIETY 
PROGRAM GUIDELINES 

The National Science Foundation awards grants to 
support studies, research, and demonstrations which 
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explore the social impact of computer science and tech
nology and promote creative applications of these fields to 
meeting individual and societal needs. The primary sig
nificance of the computer for society is its function as 
part of information technology. 

The areas for which support is available are indicated 
below. Projects may contain elements considered within 
several programs or deal with topics not explicity men
tioned here. In addition projects are expected which will 
overlap with other NSF programs and may be joint 
funded. The primary focus of the study, research or 
demonstration will determine which program will con
sider the Proposal. 

Computer impact on organizations 

-~s--progrnm--~s---stOOies, Fese-a:re---h, --arul---4e-HlB-Il-------
strations aimed at assessing, designing, and developing 
creative use of computer and information technology 
supportive to management and decision making at all 
levels; anticipating, defining, and making more visible 
computer impact problems in such areas as law and 
economics, and encouraging application of real-time 
computer use in process automation, robotics, traffic flow, 
and other fields. 

Computer impact on the individual 

Grants in this program support studies, research, and 
demonstrations involving use by citizens of machine
based information resources with emphasis on ease of 
access, accuracy, intelligibility, confidentiality, and 
related problems; human and technical approaches to 
improving communication through the human-machine 
interface especially for non-technical users; and the 
development of computer and information technology 
which will service individual human needs and promote 
the growth of individual talents and interests. 

ELIGIBILITY 

Guidelines on eligibility and proposal preparation and 
other helpful suggestions are contained in the NSF 
pamphlets, Grants for Computing Activities (NSF 71-4), 
and Grants for Scientific Research (NSF 69-23), which 
may be obtained from the Foundation. 

DEADLINES 

Proposals may be submitted at any time. 





The impact of technology on the future state of 
information technology enterprise 

by LEE A. FRIEDMAN 

Planning Research Corporation 
San Antonio, Texas 

___ PREPARING FOR TOMORROW 
--------

In the near future the cumulative impact of consumer 
demands for certain goods and services, eminently absent 
from current information system inventories, will surface 
in the competitive market place. At that time many infor
mation technology enterprises l (see Table I) that are not 
now prepared to meet the demands will be forced (or, 
maybe, freely enticed) to alter their courses of action, to 
hurriedly seek new endeavors and invest heavily in more 
diverse resources and capabilities. And such extraordi
nary measures that augment archaic practices, will be 
employed in order to maintain a survival posture. How
ever, it is not necessary for the subject enterprises to wait 
for the consumer's broadcast before embarking on ad hoc 
augmentation adventures. 

The intent here is to outline a few principal techniques 
and programs that can answer cogent questions about 
preparations for change and survival. As an introductory 
offer, several outstanding preparatory measures which 
the subject enterprises should, or will be seriously 
engaged with in the next 5 to 10 years are listed in Table 
II. It is almost certain, for the most part, that no radical 
or revolutionary transformations need occur within a 
specific enterprise, or even within the industry, especially 
if the initiation of preparatory programs anticipate or at 
least attempt to parallel consumer demands. The techno
logical pursuits (Items 1, 2 and 3 in Table II) represent 
aggregates of expected consumer and market demands 
that also si~al evolutionary trends or technological 
requirements. These, in turn, wili require adequate and 
... : __ 1 __ --,,~ ... :o-- h ..... 1..._: ~-- 4o. + 1... 1 ., 
L111u::ay 11::<:1\"Ll 11;:' uy LUI:: InlUlma"lon "eCllnOlOg'j Inaustry, 
which can only be effected by the initiation of the noted 
preparatory programs. Before further elaborations on the 
techniques to derive essential preparatory programs it 
would be helpful to first put them in perspective. 

ITable 1 (derived from reference 9) pieSents a list of ~rtinent types of 
enterprises. The general category of enterprises includes profit and non
profit organizations engaged in hardware, software, systems engineering, 
R&D and allied services associated with the development/uses of infor
mation processing systems. 
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TIMELY POLICIES 

Product or mission oriented 

Frankly, acquiring and building the kinds of goods and 
services that can accommodate the impact of evolution
ary trends will require no complex or innovative formula. 
Only a shift in enterprise policy and procedural emphasis 
is necessary, but a shift that is nonetheless significant 
because it entails the reallocation of resources and 
expenditures applied to the production of goods and serv
ices. The alternative is to stand still and continue the 
current operating pattern. Still, as the evolutionary signs 
grow stronger the subject enterprises will have to make a 
commitment deciding whether or not to remain with a 
pol~cy of product performance maximization (PROMAX), 
whIch has of course been very profitable so far, or to 
introduce a policy feature that will divert some crucial 
energies to accomplish what can be labelled as mission 
performance maximization (MISMAX). And it is within 
the rationale of this latter policy that we shall also find 
the key thrust of the evolutionary trend. 

Retarded robots 

The MISMAX policy stems from justifiable and some
what negative consumer attitudes toward information 
systems as a viable and effective commodity. MISMAX 
specifically represents unwritten yet unavoidable invita
tions to fix known technological gaps or lags, weaknesses 
and faults that hinder maximum application of available 
system products. Behind these invitations are reasonabie 
people who, while they continue to adopt consecutive 
product increments, are nevertheless also becoming dis
contented about the costly imbalances now existing 
among supposedly complementary system components. 
Or stated more concisely, these claims are indicative of 
two prevailing conditions: (1) there are a few major sys
tem components (hardware or software or humanware) 
that seem too advanced for full utilization, i.e., they 
cannot be used at or near capacity, because complemen
tary components are either inadequate or non-existent; 
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Table I--Major Enterprises Information Technology 

ItEguiEment and Related SUEEort ~ComEuter Services 

Mainframe (CPU) Manufacturers Regular Service Bureaus 
Peripheral Manufacturers Time Sharing 
Mini-Computer Manufacturers Network Management 
Electronic Components Libraries 
Information/Computer Technology 

Research 'Other Services 
Other Automated Processing Equip-

ment Producers (OCR, COM, Facility Management 
Process Control) Systems Management 

Education, T raining and 
~oftware Engineering Information 

Media Suppliers 
Independent Software Produce rs 
University, Users 
Government Agencies (as producers) 

and (2) there are obvious and detrimental disparities 
between the system's automated and non-automated 
functions that clearly inhibit a system's ability to do 
what it must or should do (with non-automated functions 
impacting on the reliability, validity, accuracy, perform
ance effectivity, etc., of the automated). 

Shifting commitments 

If critical deficiencies persist and expand the hope of 
achieving significant technological objectives-as mass 
information system network-utilities, or the intelligent 
man-machine system, among others noted later on-will 
remain as idle dreams for some time to come. Further
more, if the consumer is not able to fully use what he has 
already, can information technology expect to continue 
selling product improvements or refinements that could 
compound the consumer's problem? This market 
approach, by the way, is representative of a PROMAX 
policy. Standard PROMAX practices are directed in the 
main toward iterative redevelopment or improvements of 

Table II-Primary Technology Enterprise Preparatory Program 
Elements 
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a current product line or technique (by improving or 
increasing a product's capacity and/or by reducing pro
duction costs), Yet, at some point in time a PROMAX 
program becomes problematically anachronistic and 
risky, especially a program that is not supported through 
supplemental programs such as new product/technique 
R&D. Now, these problem conditions will not impress the 
consumer as much as they will the technological enter
prise. When faced with disconcerting conditions the enter
prise will not easily be able to reallocate limited energies, 
resources and expenditures to cover both current product 
improvement activities and the development of new and 
perhaps replacement items being sought by the customer. 

SURVIVAL 

Free market factors 

The problem of making a timely commitment to more 
fruitful policies and programs is of course not always so 
easily resolved. Many technological enterprises cannot 
afford to engage in both a strict PROMAX policy and 
supplementary R&D programs that anticipate future 
market place demands. And in a free market environ
ment how then can we induce prospective victims of evo
lutionary changes to shift their soon-to-be "fatal" 
policies? The normal route usually consists of impatiently 
awaiting the sudden felt signals of supply and demand 
pressures. But by the time the manifest pressures are felt 
and understood, by some PROMAX oriented firms it is 
too late to enable a quick and healthy recovery. So this 
problematic condition leaves us with a question as to how 
the subject enterprises can be aided in recognizing and 
accepting (near-future) technological trends, to assist in 
the timely reduction of all too risky PROMAX ventures 
and re-orientation toward MISMAX programs. 

Internal factors 

Essentially, survival in a free market environment will 
depend for the most part on how well an enterprise allo
cates, adjusts or commits its internal factors (resources, 
goods, services, investments) to accommodate anticipated 
or forecasted market demands, in the MISMAX sense. In 
order to identify and regulate internal factors-the degree 
of preparatory program elements implemented-the 
enterprise should also engage in systematic technology 
forecasting and planning programs that serve twin pur
poses. First, the forecasting program can structure a 
wholistic picture of relevant external factors that will 
impinge on the future state of an enterprise's intrinsic 
factors. Table III presents a succinct list of those factors. 
Second, the forecasting program can aid in generating 
plans for preparatory programs, continually structuring 
the means-end activities required for some period into the 
future. 
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Attribute mapping 

Table III-Key Factors 

J:\'FOg\1AT!OX TI::C::'\O .0(.Y_ 

A profitable and cost-effective preparatory program 
can only be gained when adequate resource expenditures 
are made available to purchase the necessary baseline 
forecasting capability. Initial efforts of significant magni
tude will therefore be required to create a detailed map
ping of each inevitable extrinsic and intrinsic factor. The 
mapping tasks entail the identification and allocation of 
sufficient qualitative and quantitative attributes-time 
scales, probabilities, weighted events and priorities, dollar 
amounts, utilities, authentications, goals, life spans, 
among others-associated with each factor, for the essen-

Table IV-Trends in Information Technology 
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tial purpose of generating an indispensable, real-time, 
forecasting data base. The price of building and main
taining this data base will be returned dollars for pennies, 
for with this rich vein of information we acquire a better 
understanding of the events impacting our livelihood and 
can better control our own forces to maintain a posture of 
survival. 

The first areas to be mapped should be the extrinsic 
factors depicting technological capabilities, trends and 
presumed information technology requirements, as out
lined in Table IV. Not only is it important to identify 
each topical subject of concern, but it is equally as impor
tant to apply appropriate qualitative and quantitative 
attributes, the sources of which are noted shortly. These 
attributes will eventually be applied as criterial elements 
within the context of a continual comparative analysis 
that is intended assess the internal status of a subject 
enterprise_' s rictors In term-s--or-extrinsIC markefcondi ~ 
tions, trends and demands. The main features of these 
criterial attributes can be easily discerned by seeking 
complete answers to certain questions, using Table IV 
entries as topical guides. Procedurally, after deriving 
relevant "requirements imposed on information technoI
ogy," one would evaluate the current position and capabil
ities of information technology and determine: what is 
and what is not being accomplished, what must be accom
plished, when and how, to satisfy the aims of technology. 
This initial set of steps should then be followed by a 
determination of: what competitors (and consumers, and 
funding sources) can and cannot do, what is being done 
and planned and what they say has to be done. Subse
quent to these studies, an enterprise must, of course, map 
the current state of its own set of intrinsic factors, as an 
extension of the Table III (Columns 5, 6 and 7) entries_ 

Valid sources and good indicators 

Now, with our abundant supply of information media 
and channels it should not be too difficult to find proper 
sources containing the answers. However, the issue of 
source message validity and reliability or meaning will 
certainly have to be tackled, given the often intangible 
and moot nature of the subject matter. Or stated in more 
practical terms: How does one cull a source message for 
reliable and meaningful intelligence? And how -can one 
select valid operational indicators that signify, to varying 
degrees of certitude, the extant state of extrinsic trends 
that might have potential impact? Providing methods to 
resolve these problematic issues, unfortunately, is not 
within the purview of this brief essay. There are, indeed, 
many ways to identify and measure meaningful informa
tion within the context of a well structured intelligence 
data analysis. But I wouldn't really be skirting the prob
lem by stating that knowledge and application of such 
techniques are an integral part of a technological f{)recast
er's span of abilities. In this particular case for example, 
a forecaster would stipulate whether or not singular overt 
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Table V-Public Sources for Attribute Acquisition 

2. Message Parameters 3. G .... neral Indicators pro~ 
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sition policles 

expressions, by several consumers, of either general dis
satisfaction with a product or desire for a new product 
would constitute a reliable and cogent attribute-or an 
industry consensus-depending on the weighted levels of 
confidence, certitude or authority assigned (by a fore
caster), and supported perhaps by confirmations of past 
judgments by these· spokesmen. However, for the simple 
purposes of this essay, it is probably more important to 
disclose some of the intelligence sources, and indicate the 
purposes they could serve. Table V presents such a disclo
sure. Here again, unfortunately, the captured intelligence 
data will be frequently superficial in depth, thereby 
requiring further probes and investigations to gather a 
necessary level of detail for the forecast data base. 

Analyses 

A primary goal of forecast analysis is to reduce, to 
workable and understandable dimensions, the complexi
ties of present market place conditions in terms of the 
directions and pathways dictated by selected future 
states. The forecast approach is intended to expose cogent 
economic and technological potentials and their contem
porary constraints, as well as provide the rationale for 
crucial preparatory programs designed to equalize threats 
(competition, enemy technology, disequilibrium) and gain 
a prosperous market posture. Procedurally, a forecast 
analysis, which can be performed in several ways to serve 
many purposes (see References 1, 3, 7 and 11), interprets 
present conditions and potential in terms of two gross 
interrogative objectives, viz.: (a) what can we possibly 
achieve in the future with what we now have (an explora
tory forecast); and/or, (b) what must we do now in order 
to achieve a future goal (a normative forecast)? 

Yet, while the results of a forecast analysis might well 
provide a concise picture, so to speak, of things to come 
and things to do the picture will not be complete. An 

enterprise still needs to know how, when, why and with 
what, before it can make a commitment decision. A more 
complete set of answers to the latter group of interrogative 
objectives can be developed through the application of 
two techniques which are complementary to the forecast 
function, viz., technological planning and assessment. The 
utility of these two additive functions can be defined, 
briefly, in context, as follows. Planning, of course, refers 
to a method that generates discretely bound and ordered 
arrangements or sequences of actions (preparatory pro
grams) meant to achieve a specified goal or target. Tech
nological assessment,-a feedforward or ada-predictive 
operation-refers to a method that analyzes a (series of) 
preparatory program(s) and ascertains the anticipated 
benefits and risks of each program alternative in terms of 
extrinsic factor impact, exploring and exposing the proba
ble consequences and potential of each program. 

Synthesis 

Although the orientation of this essay leans toward the 
implementation of a morphological forecast analysis, the 
attributes of the forecasting data base described earlier 
can also be applied for assessment and planning purposes 
(and to other forecast analyses as well, such as micro
economic, heuristic and intuitive techniques). The 
approach to the joint application of forecast-planning
assessment functions is relatively simple, straightforward 
and iterative. In essence, the following controlled path 
should be programmed: 

1. Data Base Generation 
1 

2. Forecasting 
L 

3. Planning 

1 
4. Assessment 

1 
5. Commitment/ Decision and Action 

1 
6. Program Monitoring and Feedback 

1 
7. Adjustments/Additions to Functions 1--+5 

To complete this discourse on technique a short descrip
tion of elementary operational requirements associated 
with the forecasting, planning and assessment functions is 
presented in Table VI. Because of the potential complex
ity involved in accessing, manipulating and relating the 
range of data base attributes, among other (mental) infor
mation processing tasks, it is suggested that these require
ments be translated into (EDP) computer software func
tions, to take advantage of automated information proc
essing capabilities. (Although this latter bit of advice 
might seem obvious, it is nonetheless offered because 
quite a few information technology enterprises will not 



normally build for themselves what they are paid to build 
for their customers.) 

SURVIVAL STRATEGIES 

Technology impact on technology 

It should not be surprising that any organized enter
prise can at times demonstrate unreasonable human-like 
qualities, such as manifesting provisional beliefs in 
immortality or omnipotence. And when operating under 
this pseudo-protective umbrella an obstinate veil will hide 
any inner signs of imminent decline or outer events sig
nalling possible repudiation. In this final chapter certain 
negative (inner) and positive (outer) confirming signs of 
probable decline are presented. Their disclosure is 
intended to spark subject enterprise vigilance, and direct 

Table VI-Operational Requirements for Forecast Program 

FU:\,CTION 

TREND 

FORECAST I: 

Match Posture -

FORECAST II: 

Planned Postures -

PLANNING: 

Preparatory 
Programs -

ASSESSMENT I: 

Venture Plan 
Parameters -

i ASSESSMENT II: 

Venture Plan 
Outcome -

REQUIREMENTS 

Analyze extrinsic factor activities, trends, 

sources, etc., among competitive, complemen

tary and consumer enterprises; structure in 

terms of principal goods and services, contracts, 

resources, percent of market dollar, funds avail

able, captured, expected, etc., - for selected 

time periods. 

Compare enterprise's current intrinsic factor 

levels with those of extrinsic competitor, con

sumer and other market place elements (e. g., 

funding sources, new applicable products achieved 

through research), for each selected time frame. 

Identify posture, position and pace of the enter

prise at each time frame (given that current 

goods, services, resources, expenditures re

ma.in intact through each future period).. Flag 

constraints, degradations, market capability 

potential and consequences. 

Generate alternative market postures (goals) for 

various potential goods, services, resources 

and investment levels for each time frame, per 

selected variations identified by MATCH opera

tion. Identify levels/ranges of goods, services 

and capital expenditures per available and poten

tial income / contract/funding source, as baseline 

for generation of multi-level venture plans. 

Device possible (most feasible, cost-beneficial) 

enterprise preparatory programs - unique com

b inations of goods, se rvice s, re source s, inve 5t .... 

ments, expenditures - per each derived market 

posture for each time frame. Presented as 

multi-level venture plans. 

Generate scales of payoffs, risks and utilities 

of selected venture plans given varied levels of 

enterprise capabilities and market place potential/ 

postures for selected periods into the future. 

Apply combinations of criterial attributes and 

I 
derive indices of survivability; stipulate con

sequences (e. g., loss of income, personnel, 

fringe benefits, et all if venture plan(s) not im-

I 
plemented at specified time frame, and indicate 

costs of adaptation if ve nture plan implemented 

at later time period. 
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attention to signs of the times before the consequential 
impact of change is felt. 

To briefly illustrate the consequential results of inap
propriate reactions to signs of change let us go back in 
time and review a particular telling event: In the mid-
1930's American railroad industry executives produced 
and narrated a documentary film intended to promote 
public interest in transcontinental passenger travel. As a 
bonus offer, or what we might today call a sales gimmick 
or loss leader, the film's railroad executive-narrator sug
gested (not too seriously) the possibility of interlinking 
transcontinental railroad travel with short airline trips, at 
the passenger's option. Passengers could leave the train at 
one city where they would board an airplane to transport 
them to another city en route, at which point they would 
reboard the train, and so on through to the coast. In a 
concluding footnote to the film, in reply to the statement 

. tnat thIS proposed ]omt travel arrangement could very 
well be destined to be the future of transcontinental pas
senger travel, a nodding consensus was expressed by the 
chorus of railroad executives present-as an indirect 
boost for a young airline entrepreneur sitting amongst 
them (it was either Rickenbacker or Lindbergh). 

An epilogue to this situation occurred in the mid-
1960's, when the film was shown again on national televi
sion as part of a series of comedy films. The film elicited 
a comic effect because the audience pictured Molierian 
executives slipping on many banana skins in the interven
ing three decades. Even when subsequent events indi
cated signs of change these executive decision-makers 
continued to manifest idee fixe attitudes that overvalued 
their services, overestimated the sureness of their posi
tion' underestimated potential competitors and continued 
to misinterpret the market place; resulting in the eventual 
decline of passenger railroad enterprise. 

Signs of decline or death 

Creating a believable causal link between extrinsic and 
intrinsic signs of change is often difficult because of a 
time differential that exists between the occurrence of the 
two. Extrinsic signs, which normally occur well in 
advance of intrinsic signs, will not normally have any 
significant effect on the intrinsic for some initial latency 
period. (See Figure I, area between t2 and t 3 , for a sche
matic illustration of this process.) And any enterprise 
that is a party to this hazy condition faces a problem, for 
they will indeed have difficulty measuring and confirm
ing the strength and potency of the several diverse signs 
identified as being precursors of change, since intrinsic 
reactions will not as yet have occurred-as negative con
firming evidence. Given an adequate multi-variate fore
casting capability any positive interpretation of the 
instrumental nature of extrinsic factors could provide 
sufficient lead time to at least prepare a search for other 
possibly related clues, attesting further to the probability 
of change. However, as described earlier, the policy of 
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Figure I-Processes of technological evolution and extinction 

many enterprises in a free market is to await the felt 
pressures of supply and demand. Which is to say that 
they will await for more direct, certain and tangible signs, 
viz., uncontrolled impacts on intrinsic factors. But at that 
point in time extrinsic changes would be well under way, 
and (as noted in Figure 1, area beyond t.) the subject 
enterprise's adaptation-recovery programs would be cost
lier and riskier. 

The following is a listing of selected extrinsic and 
intrinsic indicators which, this author believes, will serve 
as the most significant signs of change. (The term signifi
cant, here, is, of course, used in a relative sense, its defini
tion being a function of an enterprise's own stated condi
tion, including the possible fact that the enterprise may 
itself be a major initiator of forecasted technological 
changes.) 

Extrinsic: 

• Resources-evidence of continual searches and 
acquisitions (by industries not listed in Table 1) of 
professional level personnel representing changes in 
required educational backgrounds, and/ or represent
ing the initiation of new endeavors (competitive) 

• Consumer-evidence of continual changes in source 
of (contracted) services, and resources; in sources 
and types of information system goods and services 
acquired and developed 

• Competitors-evidence of notable shifts by major 
competitors in types of resources acquired, released; 
types of contract services; facilities gained; enter
prises acquired; and types of standard goods and 
services sold, or dropped from inventory 

• Funding Sources-evidence of notable increases and 
decreases in planned and available dollars; alloca
tions of dollars for specific goods, services and 
resources; shifts in types of winning contractors 

Intrinsic: 

• Resources-increasing loss (within specified period 
of time) of principal managers and professional per
sonnel; reduced saleability of current professional 
capabilities; partial or total lack of resources to ena-

ble successful competition for major funding source 
contracts 

• Goods/Services-reduced saleability of current line 
of goods, services and techniques; partial or total 
lack of goods, services, techniques to enable success
ful competition for major funding source contracts; 
decrease in number of consumer-based contracts and/ 
or decrease in size of contract. (The ultimate test for 
significance in, for example, reduced sales, would be 
the occurrence of lost income, profits and higher 
operating costs.) 

• Capital Expenditures-increase in expenditures to 
maintain market positions, especially those associated 
with increase in number of competitors for contracts 
in some goods and services category and/ or reduction 
in contracts won (or RFPs received) in other cate
gories. (The ultimate tests for significance in, for 
example, expenditure increase, would be the occur
rence of extended, below-the-line profit/loss ratios 
and cash positions.) 

Three strategies 

This concluding section focuses on three general strate
gies, the execution of which depends on an enterprise's 
current posture and prevailing policies. To select an 
appropriate approach an enterprise would, in terms of its 
technological forecasting ability, review its current pos
ture to identify strengths and availability of goods, serv
ices, resources, capital, income and market potential. In 
sum, the principal features of the three strategies include: 

1. Immediate-to implement actions prior to initia
tion of trend (or to initiate trend) to act as precur
sory agent. This approach will require risk expendi
tures the extent of which will be a function of basic 
capabilities available and required, and the 
expected market payoff. This strategy would be 
initiated during the time period shown in Figure 1 
as t2 to t a, and would rely mainly on the current 
scope of resources, goods, services and income dur
ing this period. Since this strategy entails the great
est gamble, significant changes to these intrinsic 
factors will probably occur in the post-ta period. 
The successful execution of this strategy, to its full
est, would also require the following types of pos
ture-sustaining actions: 
a. investments in marketing efforts to sell antici

pated new products 
b. investigating other marketable areas and capa

bilities (for periods beyond t2 and t a) plus inclu
sion of technology forecast engineering pro
grams 

c. investments in enterprise promotional activi
ties 

d. investments in management development pro
grams and professional promotional activities 
(publications, professional societies) 



e. investments in extended in-house applied 
research and development activities 

f. investments in in-house basic research activi
ties 

2. Immediate Future-to engage in limited develop
ment/ production activities, following-up precur
sor's achievements, (to save costs of initial develop
ment expenditures and risks) to either provide 
enhancement to precursor's products (a better 
mouse-trap) and/ or to fill in goods and service gaps 
created by the introduction of new product. Payoff 
outcome expected to be smaller share of market 
(but if small enterprise this may be sufficient). The 
successful execution of this strategy, if engaged 
during the t2 to t3 period, would require some effec
tive investment Jevels_ allo_cate_d __ iQ_ .p!lslJ1:r~_S1ls_tain
ing action items a. through c., with some minimal 
attention to items d. and e. Expenditures of time, 
money and energy in this group of actions can be 
expected to stabilize in the post-t3 period. 

3. Extended Future-to engage in production activi
ties when the market place and new technological 
products become established. Unless enterprise is 
able to serve as filler of gaps (as in 2 above), the 
consequences of a late arrival, with intent to join 
the stream, will be higher risk expenditures 
required to immediately improve selected capabili
ties (resources, goods and services) and adapt to the 
major changes that have occurred, and with payoff 
outcome being a small share of the market. Enter
prises normally employing this strategy up through 
the t4 period and beyond divert little or no expendi
tures to engage in any of the posture-sustaining 
action items. Any subsequent efforts, in post-t3 
period, especially, to "catch-up," will have a very 
high price tag. Enterprises which plan to employ 
this strategy at the t3 mark will be required to 
expend additional investment capital in order to 
sustain its position (to, e.g., develop a better mouse 
trap, or acquire new (overhead) professional engi
neering capabilities, in non-hardware affiliated 
firms, to pursue and market new techniques). 

CONCLUSION 

Since most readers have little interest in perusing didactic 
conclusions this one will be short. 

The underlying theme of this essay was to propose a 
viable class of attitudes, goals and elemental control 
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techniques that could be applied to stabilize the two 
opposing forces affecting organizational processing
adaptation and extinction-as they are implied in the life 
and death cycle of a substantive (information) technol
ogy-bound enterprise. To be sure, such enterprises, as 
organismic parts of an institutional body, are not immune 
to the debilitating effects of budding evolutionary predi
cates of technological change. Because of the potential 
hazards in times of rapid external changes, the signs of 
the predicates must not be quickly interpreted as mere 
circumstantial evidence, although some may not yet be 
substantiated. However, the veracity of the signs will 
certainly be verified by tests of reality, over time, espe
cially as we listen to the final calls by early victims. As a 
concluding proposition, the following is offered: that the 
enterprises of information technology must avail them
s~ly_~s of ::i[lY !l~§f1Jl aIl9.~ff~~ti\"~_J~Gbnology that Gap 
purchase and sustain a posture of survival. 
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The home reckoner-A scenario on the home use of 
computers 

by CLAUDE A. R. KAGAN and LAWRENCE G. SCHEAR 

Western Electric Company 
Princeton, New Jersey 

PART I-THE HOME RECKONER "H.R." SET
AN EXTENSION OF THE HOME 
ENTERTAINMENT CENTER 

Certain similarities between the "H.R." set and Gen
eral Purpose computers currently marketed, would indi
cate that the community of people engaged in the various 
phases of that business might be interested in a techni
cally oriented description of the appliance in question, 
and its potential role in the home. 

Currently available models of the "H.R." set make 
extensive use of integrated circuit modules, as well as a 
few transistors in those parts where high voltages and 
currents prevail. The "H.R." set is carefully designed to 
permit rapid and simple interconnection with the very 
broad range of models, types, and standards of units 
currently found in home entertainment centers. 

It is hoped that, as time passes, incorporation of certain 
elements which are now duplicated in the several units 
shown in Figure 1 in the "H.R." set itself will cause sig
nificant price reduction of the entire system complex, and 
permit more convenient and broader application of some 
of the features to be discussed in this article. 

Figure 1 shows in block diagram form the components 
of such a fully equipped, and admittedly, "De Luxe" 
system. It should be observed that the cost of the "H.R." 
set is commensurate with the investment value of the rest 
of the system illustrated. 

Essentially the "H.R." set serves as a programmed 
input-output controller for a variety of signal sources and 
destinations. Furthermore the "H.R." set is capable of 
processing the signals in their transfer from the number 
of available input channels to their desired destinations. 

In its present form the "H.R." set is modular in con
struction permitting the rate of growth and extension 
appropriate to the owner's desires and budget. 
(Membership in a proposed "Quarterly Module Club" 
will provide the members with the opportunity to expand 
their system conveniently, systematically, and economi
cally.) 

The basic "H.R." set is furnished in a variety of cabi
nets to match contemporary tastes in furniture. Custom 
installation is possible by discarding the attractive but 
inexpensive housing of the "H.R." 
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The standard configuration of the basic "H.R." set 
incorporates, in addition to the necessary power supply, 
interconnecting jacks, plugs, and connectors, a minimal 
l-ogieal.-capabtlity-whieh-in-el-ttties---a--speeiaHy wired eOffi---

mand module designed to perform the scanning algorithm 
of a string language, and to execute its twelve most popu
lar primitive functions. 

In addition, all models are equipped with a minimum 
fast access memory pack with a capacity of 8000 words. 
This pack is divided into Memory Units, where the 
number of bits allocated to each MU is a function of the 
particular alphabet used, or the desired application of the 
moment. Command extension modules and additional 
memory packs may be added by the user at his conve
nience, and as required by the sophistication of the con
trol scripts he wishes to use. (It is expected that lending 
libraries may possibly include the loan of specialized 
command modules when required to properly make use 
of the scripts being borrowed.) 

Since the most frequent output is via the T.V. set, the 
basic "H.R." is equipped with a module capable of gener
ating highly legible and pleasing characters in both upper 
and lower case, as well as arabic and roman numerals and 
a variety of frequently encountered punctuation marks 
and special symbols. 

Anticipated offerings to members of the "Quarterly 
Module Club" will be of modules for additional fonts of 
characters, and to enable the display of these in a broad 
range of color and hue. The user may also, if he wishes, 
design and install fonts of his own choosing. 

A suggested minimal configuration is shown in Figure 
2. With the system shown it is possible to extend very 
greatly the scope of utility and enjoyment of the elements 
of the home entertainment center indicated. 

Let us examine the elements shown and their function 
in the system illustrated. 

As previously mentioned the T.V. set serves as the 
prime means of displaying messages originating from the 
"H.R." set (in addition to its basic function as a receiver 
of television signals), and also provides through use of the 
TVHR pointer a means of feedback to the "H.R." set of 
the user's wishes. 

The 16 button keyboard is an inexpensive means of 
controlling or inputting information to the "H.R." set as 
well as serving as a channel selector for the T.V. set. 
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Figure 1 

The pair of stereo arranged loud speakers needs no jus
tification. 

The HI-FI Stereo phonograph is used to play into the 
system the wide range of available musical and other 
offerings as well as the expected equally wide variety of 
material designed to fulfill the desires and needs of the 
"H.R." set owners. 

One of the albums, popular with young and old, is 
"PARTY GAMES," which, when played into the "H.R." 
set will condition the system with the ability of playing 
literally dozens of games, single player as well as team. 
This album includes such old time favorites as TIC-TAC
TOE, ONE-ARM-BANDIT, Pin the tail on the BUNNY 
(Moving)-using the TVHR pointer, BATTLESHIPS, 
and educational games such as GABBLE, FINANCIER, 
POST -OFFICE, and furthermore the user can receive 
coaching in games as CANASTA, BRIDGE, and CHESS. 

It is obvious that, although relatively slight, the invest
ment in an appliance such as the "H.R." set should pro-

Figure 2 

vide a modicum of use other than pure FUN. To this end 
a variety of educational albums will be offered, initially 
to charter members of the "SCRIPT of the Month Club" 
and later through the usual retail consumer outlets. 

Description of the broad range of amusement and 
educational albums may be found in Figure 3. 

It is expected that as the number of "H.R." sets 
increases throughout the homes of T.V. viewers we will 
find wide demand for a future module for the "H.R." set. 
This module will permit the reception and storage in the 
memory packs of the "H.R." set of a variety of informa
tion to be broadcast either as a sub-carrier or in 
"QUICKIE" or subliminal burst mode by the T.V. sta
tions. Such information may include weekly program list
ings, details of news items too lengthy or of such limited 
interest as not to warrant more than a fraction of a second 

Figure 3 

of broadcast time, as well as a host of other useful infor
mation, including contests, sales promotion and miscella
neous educational items. 

In fact it has been suggested that one of the UHF 
channels in each community be reserved and devoted to 
the broadcast in a recycling mode of nothing but INFOR
MATION, educational aids, and other scripts solely for 
use in "H.R." sets. The user need only select the UHF 
channel that serves this need in his community, depress 
the INDEX button, and within a minute or so, when the 
index is being broadcast, a display of available scripts or 
"H.R." loads in the current broadcast cycle will be dis
played on the screen of his T.V. set. Selection is achieved 
simply by pointing to the desired item with the TVHR 
POINTER and again within a minute or so the desired 
one from a choice of 1800 or so items will reside in the 
memory park of his "H.R" spt reany for use. 



Purveyors of proprietary "H.R." control and other 
information may also be called upon to sell their offerings 
through use of the hard-wired telephone switched net
work. Typical telephone line holding times of the order of 
ten seconds should fulfill most domestic users' needs, 
thereby obviating the need for a third telephone line 
merely to provide home information system needs. 
Computer Utility Companies will find this feature of the 
"H.R." set particularly convenient in their attempts to 
provide ever improving service to the general public. 

The modularity, relative small size, and low power 
consumption of the "H.R." set opens up new vistas to the 
automobile owner. Sports car enthusiasts will find the 
combination of the "H.R." set and appropriate inter
connections to the automobile's odometer, direction 
finder, and other navigation aids invaluable in the gen
er-ation---an.cLdispl~ of maps and other rally---IDds.. 

International travellers will also find the "H.R." set 
inval uable, in combination with a small T.V. set and their 
automotive cartridge player set as a conversational mode 
real-time aid to the understanding of foreign road signs, 
and even in direct communication with the natives. 

Recognizing the fact that neither the schools nor the 
universities will be able to provide suitable instruction in 
time to meet the rapid acceptance and acquisition by the 
nation's technically minded and highly receptive citizenry 
of this new addition to their homes, a special effort is 
being made in the interim, by the AOHRSM (Assoc. of 
Home Reckoner Set Manuf.) to design reasonably stand
ardized but attractive and effective learning aids to ena
ble all "H.R." set owners and users to enjoy to the utmost 
his latest addition to the home entertainment center. 

PART II 

Technological forecasting, the Nostradamus of today, 
shows us the most probable future based on an estimate 
of the impact of changes. It is a study of trends and prob
abilities, of psychology and social science. Usually such 
forecasting is oriented toward product lines, manufactur
ing techniques, or our changing materials technology. 
Rarely, outside of the realm of science fiction, does it 
attempt to relate to the daily life of the so-called average 
family. Occasionally, however, a serious attempt is made 
to predict in reasonable detail the effect of one or more 
facets of changing technology on everyday life in the not
too-distant future. 

The Home Reckoner* Set may be thought of as a 
computer with many peripherals or as a very smart ter
minal, using today's terminology, in that it may work 
perfectly well in a stand-alone mode or can be augmented 
by external storage and/ or processing unit. It may be tied 

* The use of the term "reckoner" was originated by Jules Verne in his 
story entitled, "One Day in the Life of an American Journalist in the 
Year 2889," first published in English in the October, 1889, issue of the 
"New York Forum" magazine. In this story, Jules Verne makes a dis
tinction between a computer, which he visualizes as a mathematician's 
tool, and a reckoner, envisioned as an information processing tool. 
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COST - TI ME FORECASTI IIG CURVES 

Figure 4 

to a central computer, not only for the rapid transfer of 
data from one memory to another, but also for increased 
processing power. This large central computer could be 
located at a service bureau, with different rates depend
ing upon use or time. The Home Reckoner Set as envi
sioned would be completely modular, being able to oper
ate effectively with whatever peripherals happen to be 
connected at that time, assuming that they are adequate 
for the job. Moderate-speed serial interfacing would 
probably be the least expensive, and would facilitate 
interconnection of devices from a variety of manufactur
ers. Each Home Reckoner Set would probably be differ
ent, depending on the owner's existing electronic equip
ment and on whatever peripherals happened to be on sale 
at his local appliance discount store. Since the concept of 
the Home Reckoner Set makes as much use of consumer 
electronics as possible, emphasis is on low cost, and today 
this favors the moderate-speed serial mode of data trans
mission among the Various units. 

The first part of this paper was written in 1967 by Mr. 
Claude A. R. Kagan of Western Electric. It was based on 
a series of graphs tracing through the years the minimum 
retail price of three items-radios since 1925, television 
sets since 1945, and "small" general-purpose computers 
since 1957. These graphs have since been updated. 

As can be seen from the curve showing the trend of 
computer prices in Figure 4, the $2000 computer should 
become available to the consumer in 1977 or 1978. How-
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ever, the Intel MCS-8 micro-computer is available now 
with 3K of memory for about $1000. This is in anticipa
tion of the predicting curve. As we know, technological 
forecasting usually gives us trends, not exact dates. The 
Home Reckoner Set, as originally envisioned, is not far 
from reality today. Of course, all the audio-visual equip
ment is available, including the high-speed data transmis
sion equipment required to enhance the local memory or 
local capabilities. The possibility of a local service bureau 
or a Cassette-Of-The-Month Club has as its basis one of 
the record or tape clubs, or, for instance, the monthly 
information tape put out for shop foremen by the Ameri
can Management Association. We already have Learn
By-Cassette tapes covering a wide variety of fields
everything from speed-reading to automobile tune-up to 
accounting mathematics. 

Character generator chips are available today that 
allow graphic display of characters of all types to be 
shown on a standard television receiver, and this type of 
chip is in use in a number of teledisplay terminals, such 
as the Digi-Log Telecomputer 109. It is already possible 
to use the television receiver for games and learning with 
a device called Odyssey, introduced last year before 
Christmas by the Magnavox Corporation. Odyssey con
sists of a video modulator, character generator, a pair of 
positioning mechanisms, a detecting device, and a series 
of patterned, colored overlays for the television screen. 
Plug-in cards allow different effects to be generated or 
controlled on the screen, allowing such games as football, 
tennis, and name-the-states to be played. Odyssey came 
with 12 games for $100, with additional games being 
available for from $3 to a high of $25, that being a light 
"rifle" capable of across-the-room control of the picture 
on the screen. 

Input and output for the Home Reckoner Set may use 
the asynchronous serial mode, easily achieved with the 
Western Digital Systems, Inc. Tr1402A transmitter/ 
receiver chip. The speed, up to 9600 baud, depends on an 
external clock pulse, and may be driven from either the 
computer clock or a multiple of the line frequency. The 
Philips cassette was chosen as the local storage medium 
because of its size, attractive package, tape protection, 
and its capability to record medium-speed frequency
shift-keying tones with inexpensive equipment, improva
ble with a Dolby noise reduction system. 

However, program libraries may also be enlarged with 
pressed vinyl stereo records, available at the local super
market, which may have data on one channel and music, 
commentary, or instruction on the other, or data on both. 
Being ultra-conservative, implying monaural, medium
fidelity records, about one million ISO 8 bit characters 
may be stored on each disc. High-fidelity quadrasonic 
recording may more than quadruple this density. An 
average record collection today may consist of about 50 
albums, enough to store about 50 million characters of 
data. By comparison, an average IBM 360 Operating 
System may use about 2.5 million characters, with about 
60 million available on a standard Disk Pack. 

A few years ago, Neiman-Marcus advertised a com
puter for use in the home kitchen to keep running inven
tory of the family larder, to make up shopping lists, and 
to prepare interesting and varied menus. A number of 
engineers today have computers in their homes, where 
they are used for everything from income tax computa
tion to student homework problems to architectural 
designing. Many more people have remote access to a 
computer via the telephone network. The home computer 
is still a very rare exception. It has not yet become a sta
tus symbol. As with other electronic devices, when it does 
achieve this position of desirability, as we are sure that it 
will, the supply of inexpensive, easily interfacable com
puters will increase, because it will become profitable for 
manufacturers to make them available. Already the 
stored-program version of the Standard Logic Inc. 
C.A.S.H.-8 is available for $600 and a complete Intel 
MCS-8, including 1 K of RAM for about $1000. Figure 5 
shows the Intel CPU and Figure 6 shows the complete 
computer-only one card! 

Fifteen years ago, color television sets cost about $1000 
and were the extreme status symbol. Today a color set is 
available for little more than a seventh of that. The audio 
cassette tape recorder, main mass storage device of the 
Home Reckoner Set, sells for as low as $14, including 
tape. Very few aspects of the Home Reckoner Set require 
standardization in order to make the concept work. One is 
the information interchange code, of which the ISO 8 bit 
code is probably the most logically suitable. The other is 
the language of the information processor-the command 
structure which the untrained user interacts with, not the 
machine language. This is the language in which the cen
trally available scripts are written, and may very proba
bly be a string language. Libraries today lend books, 
records, tapes, pictures, and other works of art. It is only 
a small step to include tapes of computer programs or 
scripts. Of course, computer libraries already do this, but 
we are talking about a different medium and a different 
potential user population than they have. 

Figure 5 



Figure 6 

Inasmuch as the Home Reckoner Set allows the user to 
be an active participant rather than a passive viewer, 
there would probably spring up a number of users groups, 
which mayor may not be affiliated with the various 
manufacturers, and at least 2 competing magazines in 
which new programs, new processors and new perpiherals 
would be advertised, experimented with, and expounded 
upon. Eventually, of course, there would be a convention 
held at least once each year, perhaps in the spring and in 
the fall, in opposite sides of the country. Lest you think 
that I am referring to the Spring Joint and Fall Joint 
Computer Conferences held in days of yore, let me state 
that similar conferences exist for science fiction fans, 
camera collectors, stamp and coin collectors, Airstream 
travel trailer owners, and for just about any other special 
interest group you'd care to name. The proliferation of 
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CA TV and the "wired city" opens additional possibilities 
to the Home Reckoner Set concept. We then have in the 
home a potential wide-band communications port which 
may provide enhanced local communication. Could not 
some of the useful bandwidth be used for 2-way video 
communication on a demand-interrupt basis? As time 
passes, the possibilities increase. As you can see, it is now 
economically possible to have a useful computer at home. 
It may be used with a variety of peripherals for business 
and pleasure, for education and recreation. Computer 
logic and programming is now taught in high school. More 
and increasingly younger people are viewing the computer 
as a tool and as an enrichment to life, not as the manifes
tation of the Big Brother concept. As the demand increas
es, the cost of these small but capable machines will 
decrease further, necessitating a reconstructuring of the 
fOl~~c?!;ting curve. Per4~--P!; thesIIl~1l machiIl~!; will war
rant their own curve! The computer is not yet all-know
ing. Only time will tell! 

Examples of costs-
asynchronous transmitter/receiver chip Western 
Digital Systems, Inc. TR1402A-$15 
keyboard-Controls Research Corp.-$49 
black & white television set-$50 up 
color television set-$150 up 
Magnavox Odyssey game-$100 up 
Data Set/modem-$200 up (high, due to low produc
tion) 
IBM Selectric typewriter-$550 
Panasonic converter-JK-102K-makes a data ter
minal from a Selectric typewriter-$250 
Intel MCS-8 micro-computer-2K PROM, 1K RAM 
-$1000 up 
Hi-Fi stereo set-about $29.95 plus obligation to buy 
10 records or tapes during the next 2 years 





What's in the cards for data entry? 

by GEORGE B. BERNSTEIN 

Naval Supply Systems Command 
Washington, D.C. 

INTRODUCTION 

A data entry system should have three major objec
tives. 

Enter data: 

1. in a timely manner; 
2. accurately; and 
3. economically. 

Today, we measure the speed of a computer in micro
seconds or nanoseconds; however, normally we measure 
the speed of data entry in hours, days, weeks or months. 
We measure the accuracy of the computer to 109 power 
and accuracy of data communications to 106

• However, 
we measure the accuracy of data input to one error per 
one hundred or thousand key strokes or to one error per 
ten or twenty documents. 

When people talk about the data entry cost they nor
mally limit cost considerations to the cost of the key entry 
devices and the people who operate these devices. We 
tend to ignore the cost of the people at the source creating 
the documents and the cost of communicating the docu
ments and/ or data to the central processing department. 
Also, we tend to ignore the costs incurred because of inac
curate and untimely information in our computer system. 
If we are to have effective computer systems for providing 
management data, business data or technical data, we 
must have efficient and cost effective methods for enter
ing data into the system in a timely and accurate manner. 

Even though data entry generates 30 percent to 50 
percent of the total cost of a computer system, the data 
entry techniques used today are essentially the same as 
those used in the early 1960's. During the intervening 
decade, all that has been gained is a small amount of 
machine efficiency. An International Data Corporation 
study estimated the data entry workforce for the U.S. at 
700,000 people representing a payroll of $3,800,000,000. 
Virtually all of these people are retranscribing data. The 
total cost of data entry is approximated as $4.5 billion per 
year. These figures, while large, do not include the mil
lions of people and billions of dollars spent generating 
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data at the source. Obviously, the driving cost element in 
data entry is labor. Since data entry is a labor intensive 
function, there is little to be gained by reducing the cost 
oT-a-xey--statiDTI --a-few dollars a -rrronth or-by-acidirrg-a-tew-
modifications to improve efficiency. Source Data Auto
mation is where it's at. 

In the decade of the Sixties, the cost for storing a unit 
of data in the computer was reduced approximately 
twentyfold; the cost of processing data in the computer 
was reduced approximately threefold; and the cost of 
communicating data to and from the computer was 
reduced approximately fivefold. Meanwhile, the cost of 
entering data to the computer has nearly doubled. 

It is true that the keypunch has been improved via 
buffering. It is also true that devices have been substi
tuted to replace the keypunch on a one to one basis. 
However, the data normally is still retranscribed at the 
central data processing location and rekeyed for verifica
tion. This new equipment has only improved the hard
ware cost factor by 10 percent to 30 percent. Meanwhile 
the cost of labor has almost tripled. After debiting and 
crediting these changes, we find that the total cost of data 
entry has essentially doubled. Meanwhile, the accuracy 
and timeliness of data entered into the computer have 
remained relatively unimproved. While we spent ten 
years improving the keypunch, we might better have 
concentrated on eliminating the retranscription function 
from data entry. 

What is data entry 

The steps for data entry are as follows: 

1. The data is recorded on paper at the source using a 
typewriter, pencil, accounting machine, cash regis
ter, or other device. 

2. The paper or data is communicated to the central 
data processing organization. 

3. At the central data processing organization the data 
is: 
(a) edited and checked; 
(b) keyed; 
(c) key verified; 
(d) errors are corrected; and 
(e) finally it is entered into the computer. 
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As currently practiced, data entry involves a series of 
transactions and data handling that requires a combina
tion of people and an elapsed time period that varies from 
a few hours to a week or more. 

Let's carefully differentiate between a data entry 
device and a data entry system. A data entry device is a 
piece of equipment used to transcribe data from paper or 
a keyboard into computer language. A data entry system 
should combine the generation of the data at the source; 
communication of the data to the data processing center 
or computer; and the personnel and equipment involved. 

We began by talking about the cost of data entry. But 
those figures only reflected the cost of data retranscrip
tion. They fail to reflect the cost of data preparation in 
the field and the cost of communications. They do not 
reflect the cost of the total data entry system. This is true 
because the responsibility of data operation and commu
nication normally fall outside the responsibilities of the 
data processing manager. 

When most people talk about a data entry system, they 
emphasize the hardware. However, in most cases when 
you consider the entire system and system costs, the driv
ing cost factor is the operator. For example, when we 
compare the cost for the keypunch or teletype, a stand 
alone system for magnetic tape, and an intelligent termi
nal against the cost of the operator for various number of 
hours of useage per month, it is interesting to note that if 
the terminal is only used a few hours a month, the termi
nal cost dominates the cost of an operator. However, if the 
terminal is used 50 percent or 100 percent of the time on 
just one shift the cost of the operator is three to four times 
the cost of the terminal. In most data entry situations, we 
should concentrate on obtaining the equipment that 
optimizes the efficiency of the operator rather than seek 
out the cheapest hardware available. We see that data 
entry must be approached in systems terms. Evaluating 
anyone element of that system in a vacuum may obtain 
lower initial capital cost-but only at the sacrifice of 
higher total systems cost, reduced accuracy, and reduced 
timeliness. 

Improving a data entry system 

There are a number of ways of reducing the cost of data 
input. In order of importance they are: 

1. Eliminate retranscription. This will probably bring 
the biggest savings of all. This can be done by cap
turing the data at the source either through a pencil 
or typewriter or intelligent terminal. 

2. Edit at the keyboard. This removes a considerable 
amount of clerical functions from the computer 
main frame and therefore should make a major 
reduction in overall computer system cost. Addition
ally, editing data at the keyboard makes it possible 
to catch errors at an earlier date and makes it possi
ble to correct these errors at a lower total cost. 

3. Improve operator efficiency. This enables the opera
tor to key more data in a given period of time with 
reduced errors. 

4. Use data compression and blocking. The amount of 
data is reduced and only the essential data sent to 
the computer blocked in a format suitable for rapid 
entry into the computer system. 

5. Improve the equipment used for retranscription. 
The functions of the keypunch could be improved 
by making it more efficient to skip, duplicate, cor
rect errors and by utilizing one machine for both 
keying and verifying the data. 

During the Sixties and early Seventies, little has been 
done to implement the four most effective approaches. 
The major attempts at cost reduction in data entry have 
been to improve the keypunch itself or the functions 
offered by the keypunch. This has been done by improv
ing the keypunch with a buffered keypunch and by 
attempting to replace the keypunch at the central data 
center on a one-to-one basis. Normally, this has resulted 
in a ten to thirty percent improvement in the cost of 
retranscri pti on. 

EVOLUTION OF DATA ENTRY EQUIPMENT 

Introduction 

Now let's look at how data entry systems have evolved 
historically. My approach will be from a systems concept 
viewpoint rather than a chronological viewpoint. This 
approach will allow us to develop some trends to project 
the future of the data entry industry. 

The evolution of data entry equipment can be divided 
into five phases: 

1. the keypunch; 
2. keypunch replacement; 
3. keypunch improvement; 
4. optical character recognition (OCR); and 
5. the intelligent terminal. 

Keypunch 

The original keypunch was invented in 1890 by Dr. 
Herman Hollerith. It was part of a punch card system for 
processing U.S. Census Data. The keypunch inventory 
grew throughout the decades of the Thirties, Forties, Fif
ties and Sixties. This led to the development at IBM of 
the 80 column card and at Univac of the 90 column card. 

Key to paper tape 

The first attempt to replace the keypunch was made 
with paper tape equipment. Paper tape development 
started in 1875 when paper tape was combined with a 



printing telegraph. By 1914 paper tape in a typewriter 
was the basis of most teleprocessing equipment. In 1945 
United States Steel Corp. and several other companies 
stimulated the use of paper tape equipment for entering 
data at the source in an office environment. This was the 
first attempt at source data automation. 

Direct entry to magnetic tape 

In 1951, Univac invented the unityper, a very basic 
incremental recorder on computer compatible magnetic 
tape. In 1964 a group of individuals broke away from 
Univac Corp. and started Mohawk Data Sciences Corpo
ration. The stand alone key-to-tape developments of 
Mohawk Data Sciences Corporation were quickly fol
lowed by other manufacturers such as Sangamo Electric 
Company, and-Minneapolis Htm-eyweU C-ofperati-en. 

Clusters 

In the late Sixties and the early Seventies a number of 
companies including Computer Machinery Corp., Min
neapolis Honeywell, Inforex and Entrex developed a clus
ter system that combined a number of key stations 
around a central processor for editing, formatting and 
pooling data on computer compatible magnetic tape or 
disc. 

Buffered keypunch 

In 1967 Univac pioneered improvements in the original 
keypunch by introducing a buffered keypunch, the Uni
vac Model 1701 followed by the 1710. IBM followed this 
development with an improved keypunch of its own in 
1971, the Model 129. The major features of the improved 
keypunch is a buffer which permits error corrections to 
be made by the operator and provides for high speed 
duplicating and skipping along with limited arithmetic 
logic for check digit and batch balancing. In addition, the 
same piece of hardware can be used as a verifier. 

Review of one-to-one replacement 

It is interesting to note that the improved keypunches 
and one-to-one keypunch replacements do very little to 
change the system. Whiie they do simplify error correc
tion and speed up skip and duplicating functions, the 
total improvement in speed of data entry averages less 
than 20 percent. This means that we are still left with the 
problem of carting the documents to the data center and 
re-editing, keying and reverifying the data. 

The major advantage of the clustered key processor 
systems is the fact that they are based around a mini
computer which can perform the following editing func
tions: batch balancing, check digit verification, range 
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checks, sequence checking, field validation blocking, and 
the development of operator production statistics. 

While the data entry throughput rate may be the same 
as that for an improved keypunch, the edit functions offer 
the added advantage of removing overhead functions 
from the main frame. The major disadvantage of clus
tered key processor systems is that the documents still 
have to be transferred to the central data processing cen
ter. 

Optical character recognition (OCR) 

The fourth phase of evolution in the key entry field was 
the development of the family of optical character and 
mark readers which consisted of document readers, jour
nal tape readers and page readers. The optical reader was 
the- -sec-oncrcrttempt at-source -data -automation.-q'---he--basi-c
principle of the system was to read documents, tape or 
pages generated at the source by a pencil or on slightly 
modified office equipment. 

The principal advantages of optical recognition are: 

1. a hard copy document is generated; 
2. data can be captured at the source, therefore, elimi

nating retranscription; and 
3. it is possible to search the documents. 

The major disadvantages of optical recognition are: 

1. data cannot be key verified (it must be sight veri
fied); 

2. edit features are available at the keyboard; and 
3. the principal method of communication is still cart

ing the paper from the source to the central OCR 
reader. 

Intelligent terminal 

The latest phase of the evolution in the data entry field 
is the development of the intelligent terminal. It combines 
a keyboard, a communications adapter, a mini-computer 
or intelligent buffer and a typewriter or printer. 

The principal advantages of the intelligent terminal 
are: 

1. data is captured at the source; 
2. data can be key verified; and 
3. data can be edited at the terminal at the source; 
4. hard copy is provided; 
5. the terminal can be combined with disks, cassettes 

or tape to create an off-line system; 
6. the data can be searched automatically; and 
7. it is relatively simple to correct the data. 

The principal disadvantage of the intelligent terminal is 
the cost of the system. Prices range from $2,500 to 
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$12,000 for purchase and $150.00 to $400.00 per month 
for rental. 

FACTORS RETARDING THE EVOLUTION 
OF DATA ENTRY 

Introduction 

In summary, we have improved data entry over the last 
20 years by: 

1. improving the keypunch; 
2. replacing the keypunch on a one-to-one basis; 
3. using clustered systems for keying and editing; and 
4. using optical character recognition. 

With the exception of OCR, source data automation 
and the elimination of data retranscription have been 
largely ignored. Also very little emphasis has been placed 
on improving the efficiency of the operator. 

The evolutionary change in the field of data entry has 
been slowed by a variety of factors which are a combina
tion of equipment, human and market shortcomings: 

Equipment 

The major equipment shortcomings could be found in 
the hardware, software, and communications areas. 
Technical or economical reasons have limited the hard
ware and software for data entry. For example, the type
writer-to-computer compatible magnetic tape had the 
disadvantages of lack of hard copy and the high cost of 
the tape transport. The typewriter-to-paper tape had the 
disadvantages of no key verifying, as well as difficulty in 
searching files and correction of errors. 

It was difficult to interface the data entry system at a 
remote site with both the communications and computer 
system due to different software requirements for the 
communications system, computer and terminal. For 
example, even though the ASCII code was pushed as 
interstate international communication standard, most 
code systems involved with IBM equipment were the 
EBCDIC code. Communication systems were expensive 
and error prone. 

Human 

People related problems include human resistance to 
change, empire building, and split authority. It is natural 
for a human being to be resistant to any form of change. 
People are set in their ways. In spite of education, desire 
for improvement, and other factors, they are basically 
resistant to any form of change. 

Empire builders-Data processing managers are noto
rious empire builders and one of the biggest segments of 
their empire is the keypunch room. In most cases the 

data processing managers remuneration is based on the 
number of people and the amount of equipment under his 
management. If the data entry function is removed from 
the data processing department and transferred to the 
user in the form of source data automation, the data 
processing manager will lose a large percentage of his 
people and equipment empire. 

Split authority-The data processing manager has the 
responsibility for retranscription. Line managers have the 
responsibility for generating the source document. In 
almost all organizations, no one person has total responsi
bility for information management. Information is the 
only major resource of an organization that is not prop
erly managed. 

Market 

IBM has over 500,000 keypunches and key verifiers in 
use throughout the United States. The magnitude of this 
valuable rental base is a major reason why the largest 
supplier of data input equipment, IBM, has not pioneered 
new and more efficient devices. If the keypunch were not 
as reliable and long lasting as it is, I am confident that 
data entry would not be in its present state of evolution. 

A NEW BALL GAME 

Introduction 

Today the ball game is changing: 

1. new technology has made it practical to capture data 
at the source; 

2. over 150 companies with 275 different products have 
incorporated the new technology to give the potential 
user a practical input device for any given situation; 

3. necessity and education are overcoming the human 
reluctance to change; and 

4. we no longer can tolerate the high cost, inaccuracy, 
and lack of timeliness of data. 

Equipment 

There have been several major changes in technology in 
the last five years that when combined will, or at least 
should, radically change data input terminals. These 
changes can be found in: 

1. the data storage media; 
2. the communication system; and 
3. in the size and cost of mini-computers. 

The major change in the storage media has been the 
use of cassettes and floppy discs to replace punch cards, 
paper tape and direct entry into computer compatible 
magnetic tape or discs. 



Paper tape expanded the record length of the punch 
card and was easier to correct. Computer compatible 
magnetic tape and discs gave the advantage of duplicat
ing, skipping and fast data transfer; however, drives and 
storage media was expensive. Cassettes and floppy discs 
have the advantage of computer compatible magnetic 
tape and disc and yet their co!;t is compatible to punch 
card punchers and readers and with paper tape punchers 
and readers. In other words, the user can have all of the 
advantages of computer compatible magnetic tape at a 
greatiy reduced cost. The only problem with cassettes and 
floppy discs has been their reliability; however, this has 
been steadily improving. 

A summary chart comparing punched cards, paper 
tape, computer compatible magnetic tape, computer 
disc, cassettes, and floppy discs is shown below: 

- ---_ .. ------------_ ..... _--_ ... 
Punched Paper Computer Computer Cas- Floppy 

Cards Tape Tape Discs settes Discs 

Error Rate E E G VG G F 
Cost of Storage F G F P VG F 
Error Correction P F G E E E 
Duplicating G G E G E G 
Communications F G G VG E E 
Searching G F P E E E 
Cost of Drive $500 $800 $3000 $10,000 $1,500 $1000 

E = excellent G=good P=poor 
VG = very good F=fair 

It has always been economical to communicate data 
from one point to another by utilizing the telephone lines. 
For example, if an operator key 7,200 strokes an hour 
during a 6-hour day, this data can be transmitted on a 
voice grade line and a 1200-baud modem in 6 minutes. 
This means if data is key punched and key verified at the 
source, the average operator's normal production can be 
transmitted in 3 minutes. If we use data compression 
techniques, the data can be transmitted in even less time. 

Recently communication adapters have been developed 
for individual terminals which makes it practical to use 
the telephone lines to transmit data from the source to the 
computer and back. Some of the features of these com
munication adapters are: 

1. hardware interfaces; 
2. code converters from EBCDIC, ASCII or Baudot to 

the code of the terminal; 
3. auto answer or polling; 
4. parity checks by character and/ or blocks; 
5. built-in modems; and 
6. software interfaces with the communication and 

computer systems. 

Communication adapters having all of the features 
shown above, can be purchased from $800.00 to $1800.00 
and rented from $40.00 to $90.00 per month. 
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In the past, editing functions were done at the central 
computer or in a mini-computer in the cluster system. 
Today, mini -computers with most of the functions listed 
above, can be built into the terminal for a cost that ranges 
between $300 and $2,000. This makes it possible not only 
to enter data at the source, but also to edit and check the 
data at the source. 

Human 

The barriers of resistance to change begin to tumble 
when the people who are resisting the change begin to 
understand what the change is all about. Education and 
experience with data processing has resulted in a change 
in attitude on the part of the people in the organization 
outside of the data processing department. The computer 
is· -n01ongeTc-onsldereaYo-oean maglcoliicK:-1)ox--and the 
people who run it are no longer metaphysical magicians. 
The users can now begin to identify with data processing 
and they are emotionally prepared to carry out the data 
entry function. 

Simultaneously, we have had budget restrictions placed 
on the organizations from two points of view. Personnel 
cuts are hitting the operating divisions of the users. The 
users are going to have to do their work with fewer people. 
Meanwhile the data processing budget is being slashed. 
The data processing budget is no longer a sacred cow 
immune to top management's cost cutting scalpel. 

Today's management can no longer tolerate the high 
cost, inaccuracy, and untimeliness of data entry. There
fore, data entry must be removed from the data process
ing department and moved to the source. 

Meanwhile, the data processing empire builders have 
been placed between the crunch bunch-higher volumes 
of data to process and a lower budget to carry out their 
function. The data processing manager must now make 
up his mind to expand his responsibility to become an 
information manager. In the past he has accepted data 
and returned processed data; now he must take responsi
bility for information management rather than data 
management. 

Market 

While the keypunch continues to "die on an upslope," 
IBM has been forced by competition to develop and 
market alternate methods of data entry. These include an 
improved CRT system, the 3270 cluster and the 3275 
standalone unit; several OCR equipments, the 1287, 1288, 
and the new 3886 reader; and several recent remote batch 
announcements such as the 3740 floppy disc system. 

In the January issue of Modern Data, L. A. Feidelman 
spoke of the data entry industry "hearing the footsteps of 
IBM." However, these announcements indicate that while 
IBM continues the strategy of attempting to protect its 
extremely profitable keypunch base, it has also chosen to 
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slowly introduce a new line of data entry products as a 
hedge for the future. A hedge against what? These new 
product lines are designed to meet the challenge of over 
150 new companies with 275 different products who are 
beginning to nibble at that profitable keypunch base. 

MARKET FORECAST 

Progress in data entry can best be described as evolu
tionary rather than revolutionary. New innovative data 
entry techniques and devices are being developed, but 
there are now over 600,000 keypunch units installed per
forming 80-85 percent of all data entry work in the U.S .. 

Short haul 

Under these conditions, we can expect the data process
ing manager to continue an attitude of low risk for change 
in data entry during the next two to three years. We 
might call this a period of consolidation. During this 
period the data entry market will be characterized by the 
following changes: 

1. Small 80-column card keypunch installations will be 
replaced by buffered keypunch units. New and 
growing small businesses getting their first experi
ence with data processing will account for a substan
tial percentage of the keypunch market of this 
period. Thus, we can see that keypunch equipment 
will still maintain significant sales. 

2. The higher volume keypunch installation (8 or more 
keypunches) will be penetrated by the central 
collection keyboard to tape and processor keyboard 
to disc systems. These systems can be expected to 
show significant sales volume in 1973 of about $150 
million. However, these sales will tend to level off 
during the 1974-1975 period as many larger users 
choose to use SDA approaches. 

3. Keyboard to tape (cassette/cartridge) units will be 
widely employed in a source data automation envi
ronment. Present keyboard to tape/ disc sales are 
not sufficient to maintain the current large number 
of companies. There has been and will continue to 
be an extensive shakeout of vendors. However, the 
keyboard to tape/ disc terminal system will experi
ence marked growth during this period. 

4. Keyboard-to-magnetic tape cassette units, with 
communication capability, will show significant 
sales growth. In this respect, the keyboard-to-tape 
unit will be gathering data at the source and trans
mitting data in bulk during off hours. This applica
tion can demonstrate sizeable economic savings 
and will show significant growth throughout the 
decade of the 1970's. 

5. Smaller installations can be expected to employ the 
electronic buffered card reader and keyboard-to
tape stand alone systems. 

6. The optical mark reader will experience sizeable 
sales, mainly due to the lack of a reliable alphanu
meric handprint reader. OMR sales will progress up 
to $50 million a year by 1974. However, a low cost 
alphanumeric hand print reader by 1975 will seri
ously restrict sales. 

7. The portable data recorder is still in its initial phase. 
The portable data recorder will be employed in 
selected applications such as production control, 
sales inventory, and surveys. 

8. OCR progress has been slow. This market is depend
ent upon the low cost OCR reader. The low cost 
OCR reader, less than $20,000 (and possibly under 
$10,000) will be commercially available by 1973. 
These low cost-single font readers will permit typed 
data to be automatically read. These low cost read
ers will also be used as remote scanners. The advent 
of such low cost OCR devices will result in a signifi
cant downward trend in keypunch and keyboard-to
tape/ disc systems sales. In fact, most data entry 
equipment will be a combination of low cost reader 
with a keyboard and display in a multi-media sys
tem. 

9. We will see a substantial increase in use of termi
nals, especially the alphanumeric display terminal. 
Keyboard to tape terminals and remote scanners are 
just starting. This growth will reflect the trend 
toward decentralization of data processing activity. 

10. Electronic integrated point of sales (POS) systems 
represent a new data entry category with a potential 
250 million dollar annual sales volume. The total 
POS market holds a potential sales volume of 675 
million dollars per year. 

Long haul 

A business normally uses three types of keyboard 
devices: 

1. the typewriter; 
2. the teletype; and 
3. data entry equipment. 

Traditionally these three types of equipment are made by 
different industries and sold to different people in the 
organization. The office manager purchases typewriters, 
the communication manager purchases telecommuni
cation equipment and the data processing manager pur
chases the key entry equipment. 

By sheer coincidence all three key devices have gone 
through stages of evolution to where they are almost the 
same device. IBM pioneered the modification of the 
typewriter to include a keyboard, hard copy and a dual 
cassette. Recent studies have indicated that the replace
ment of the typewriter with the CRT and printer 
increases the speed and effectiveness of the typewriter 
MTST dual cassette system by approximately 40 percent. 



All the new models of the teletype include a cassette and 
the more advanced models of the teletype include a CRT. 
The data entry field is rapidly moving to combination of 
CRTs, cassettes and printers for source data automation. 
As a result, the more sophisticated word processing ma
chines, dual processing equipment, communications 
equipment and data input equipment include the fol
lowing: 

1. the keyboard; 
2. a CRT; 
3. cassettes or floppy discs; 
4. a printer; and 
5. a communications adapter. 

Even though the hardware equipment has evolved to 
thE;)~mn~_p~~ELQf ~guiprp.~J)._Ltb} .. e_~_t;~p_~rate _~nd distiI!ct 
industries remain to manufacture and market it and in 
most organizations three separate and distinct people 
make the basic decision to purchase it. The word process
ing industry was pioneered by the typewriter people, the 
teleprocessing industry was pioneered by people who 
make teleprinters, the data processing industry was 
pioneered by a multitude of equipment manufacturers 
who make data entry equipment. Few, if any, companies 
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that make equipment for one of these three fields makes 
equipment for all three fields. For example, in IBM the 
data processing division is completely separated from the 
office products division. Additionally, IBM does not sell 
equipment to convert cassettes or make any cards in 
computer language. 

It is obvious that if one piece of equipment can perform 
three separate functions in an office and it is not required 
fulltime for anyone of these functions, then the cost for 
all three functions can be reduced by sharing the same 
piece of equipment. For exampie, in an insurance office 
terminals are needed for data base inquiry, automatic 
typewriters are needed, and data input equipment is 
needed. Also, telecommunications are needed with the 
home office. Then one piece of equipment can easily 
perform all four of these functions. 

___ H __ h; rea_§'9~Ql~ J() _pr~Qic;t.tha:t the com.p~.Ilies who 
make keyboard equipment will start to realize that equip
ment can and should have multiple functions. Also, it is 
reasonable to predict that people who purchase keyboard 
equipment will centralize this purchasing so that the 
equipment can perform multiple functions and the 
advantages of vol ume purchasing can be recognized in the 
form of discounts. The word processing, teleprocessing, 
and data processing industries must be merged. 





Assessing the regional economic impact of pollution 
control-A simulation approach* 

by J. R. NORSWORTHY 
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IXTROD17CTION 

This paper presents a computer simulation approach to 
assessing the maj or economic dimensions of the regional 
impact of pollution control technology. The framew'ork for 
the analysis is a regional economic input-output model. 
Impact measures are estimated in terms of price, employ
ment, and output in the affected region. A 22-sector input
output model of the St. Louis area ** is used as the basis for the 
demonstration. Summary economic impact measures com
bining price and employment effects are developed for the 
region and for the rest of the nation. The simulation model 
is applicable to any set of wage, price, or technology changes 
which can be specified as changes to an input-output model, 
and has been implemented as part of the regional economic 
impact analysis program of the Office of Emergency Pre
paredness. The full algorithm has been implemented on 
:\1CL's UNIVAC 1108 computer for application with the 
data base for the multiregional input-output model developed 
by the Harvard Economic Research Project. The price
change portion of the algorithm has also been implemented 
for the 1963 OBE 478-order interindustry model of the 
U. S. economy. 

An ideal basis for assessing the economic dimensions of 
environmental protection would compare costs and benefits; 
however, public policy is leading economic science in that 
assessment of benefits is lagging far behind pollution control 
decisions. The simulation procedure presented here is directed 
only toward the effects of control expenditures; although, as 
,ye shall see, there are often benefits in the form of increased 
income which accrue as the direct result of control expendi
tures. A particular advantage of a simulation procedure in 
this case is that several critical variables, most notably 
demand elasticities, are not kno'wn, or are known only with 
great uncertainty so that repeated simulation for various 
"scenarios" adds considerable dimension to an application. 

We first present a simulation approach to estimating the 
major economic effects of significant technology changes 
brought about by pollution control expenditures in the 
second section. The use of the simulation procedure is 

* The views contained in this article do not necessarily reflect the policy 
or position of the Office of Emergency Preparedness. 

** The model is from Liu.! 
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demonstrated for comparing two hypothetical pollution 
cOrttrolstrategies in the third section.W e also show in that 
secti~~ ~~ -i~po~t~:nt differ~~c~'b-~t~-~~n ~~gi~~~l an~T~ation~ 
perspectives in the choice of environmental strategy; this is 
highlighted in the demonstration. Generalizations of the 
model for other purposes, such as assessing the effects of price 
or wage changes, are discussed briefly in the fourth section. 
An appendix describes the mathematical basis of the simula
tion procedure. 

The basis of the simulation procedure is an algorithm for 
estimating the price impact multipliers associated with 
changes in technology, resulting-in this application-from 
pollution control expenditures. These changes are expressed 
in terms of alterations to the interindustry transactions 
matrix. The price changes are considered as the chief motiva
tion of resource reallocation in the region, and in the nation at 
large. The price changes induce changes in usage by regional 
industries and consumers, and by extraregional purchasers as 
well; that is, output changes for regional industries result 
from price changes. Output changes are accompanied by 
changes in the incomes of regional households, and hence in 
regional consumption spending. (Capital spending by regional 
industry may also be changed, although ,'..-e ignore such 
effects in this demonstration.) Changes in consumption 
spending induce further changes in output, incomes, and 
consumption, and so on until a new equilibrium allocation 
is reached. 

THE SIMULATIOX PROCEDURE 

Simulation procedures for the impact model may be 
summarized as follows: 

Step 1. Represent pollution control (or other regional 
economic phenomenon) expenditures as changes 
in interindustry transactions matrix. 

Step 2. Estimate new interindustry transactions matrix 
based on changes introduced in Step 1. 

Step 3. Derive estimates of regional price changes from 
new transactions matrix (an iterative procedure). 

Step 4. Derive estimates of ne\v income and consumption 
patterns from employment changes. 

Step 5. Estimate new output levels for regional industries 
from (a) new regional consumption pattern, and 
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(b) extraregional response to price changes. Loop 
through Steps 4-5 until changes in income and 
output converge to zero. 

Step 6. Compute price and income impacts for region and 
rest of nation. 

(The appendix shows more generally how new price indices 
for each industry sector are derived, and how a new trans
actions matrix is inferred.) We have assumed in this demon
stration that 

(1) Elasticities of demand for exports from the region are 
unitary; that is, that the dollar value of expenditures 
remains the same. Consequently, a one percent in
crease in price results in a one percent reduction in the 
quantity sold to extraregional customers. 

(2) Elasticities of demand for local consumption are also 
unitary. 

(3) Elasticities of demand for regional interindustry trade 
are zero; that is, regional production processes are 
assumed to be characterized by fixed input coefficients. 
This is the standard assumption underlying input
output analysis. 

(4) Increased demand for labor in the region leads to new 
employment at (implicitly) existing wage rates. 

The elasticities of demand are critical to the results of the 
demonstration; practically, since information regarding 
demand elasticities at the regional level is typically limited 
or non-existent, repeated simulations for a range of elasticity 
assumptions are in order, particularly since substitution 
possibilities, and hence demand elasticities tend to increase 
over time. The labor market assumption is less critical; in 
a tighter labor market, some labor would be reallocated from 
other industries, but higher wages would be necessary to 
attract it. Consequently regional incomes would still increase. 

The processes involved in obtaining the new transactions 
matrices and the ne,,, prices may be understood intuitively 
in the following example. In this example, we represent the 
interindustry transactions matrix as shown in Table I. 

TABLE I-Interindustry Transactions Matrix 

Xu ···XI .. 

Xu .•• X 2,. 

Xaa ••• Xa" 

X,,3 X"" 
X,,+1.3 ••• X,,+l.n 

where the column index represents the purchasing industry 
and the row index represents the supplying industry. Thus 
X 23 , for example, represents the dollar value of sales from 
industry 2 to industry 3. Entries in the lower part of the 
table. indexed n+ 1, ... , n+k, represent "value added" 

activities: payments for labor inputs, state, local, and federal 
taxes, imports from the regions, profits, etc. In the right hand 
side, the vector C represents final consumption demand by 
regional households, the vector E represents external de
mands (or exports) for output from the region, and the 
vector F represents all other regional final demands (e.g., 
investment by regional businesses, purchases by state and 
local governments, etc.). 

The transactions table is constructed so that the row sums 
(total output for a sector) equal the column sums (total 
expenditures by a sector) for all n sectors. This balance sheet 
condition is used in our simulation as a convergence criterion. 

The technology of production for an industry is determined 
by the column vector of its inputs: we simply divide each 
element in the vector by the column total to obtain 

/

n+k 

aii=Xii LXii 
i=l 

and aij is the expenditure on output from industry i required 
to produce one dollar's worth of output in industry j. 

Step 1. Suppose we wish to study the effects of major 
environmental protection expenditures in industry 1 in the 
region;. and suppose that these expenditures are used entirely 
to buy inputs from industry 2. Then in the "first round," we 
increase industry l's purchases from industry 2. 

Step 2. Two results are immediate: 

(a) industry 1 now has a different production process, 
characterized by greater expenditures per unit of 
output, and hence a higher price. The new price, 
relative to the initial price, is simply the ratio of total 
expenditures after the technology changes to total 
expenditures before the technology change. That is 

where P1l is the price for industry 1 output in round 1 
relative to its price in the base period, 

X;IO is the dollar value of sales from industry i to 
industry 1 in the base period 

XiII is the dollar value of sales from industry i to 
industry 1 in round 1 after the technology change 
is introduced. 

(b) Industry 2 now must produce more output to satisfy 
the additional demand by industry 1 for input~; 
industry 2 must therefore buy more of all inputs 
according to its own technology to produce more 
output. 

On the next round, we must take into account the two 
effects: higher price for industry 1 outputs, and greater out
put and inputs for industry 2. 

We do so in the following way: since the first row in the 
transactions table represents sales from industry 1 to all 
other industries, we can reflect industry 1 passing along the 
price increase to its customf'rs hy multiplying the dollar 
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transactions in row 1 by PIt. (Recall that PIt is an index of 
price change.) 

Thus 

where 

Xll is the dollar value of sales from industry 1 to industry 
j before the technology change 

and 

Xli is the dollar value of sales from industry 1 to industry 
j after the technology change. 

Thus we reflect higher prices for industry l's output. 
To reflect the greater output for industry 2, we construct 

the "production index" 

where 

X 2j represents the dollar value of sales from industry 2 
to industry j in the base period. 

and 

X 2/ represents the dollar value of sales from industry 2 
to industry j in round 1. 

In the first round, the only change is in X2lt, reflecting the 
new environmental protection purchases by industry 1. 

We now use R2t to obtain new purchases by industry 2 to 
increase its O"\\-TI production: 

i=l, ... , n+k 
where 

X120 in the dollar value of sales from industry 1 to industry 
2 in the base period 

and 

X t"2
2 is the dollar value of sales from industry i to industry 

2 in round 2. 

In the second round of transactions (or calculations) two 
kinds of effects are induced on other industries in the region 
arising from the initial change in a single cell in the trans
actions matrix: 

(a) price changes resulting from higher prices for output 
from industry 1, affecting all customers of industry 1 

and 

(b) output changes resulting from greater purchases by 
industry 2, affecting all suppliers to industry 2. 

In general, then, ,,·e must account for these possible effects 
in all industries. We do so by first adjusting for price changes. 
We form the ratio of price changes for each industry j 

n+k / n+k 
Pl= EXd 'EXd j=l, ... , n 

and then multiply the corresponding row by the price change 
index 

for i=l, ... , n 

Thus each industry is assumed to pass along price increases 
to its customers. 

For simplicity, we suppose that price and quantity changes 
take place in different rounds. Now we form for each industry 
the production ratio 

/n 'I. lIn 'I. 

Ri3 = (~Xil+Ci+Ei+Fi)/ ( ~ Xil+Ci+Ei+Fi) 
\r-l \r-t 

and obtain new purchases for each industry by multiplying 
the corresponding column by the production ratio 

Step 3. We continue this process until the production 
ratios and price ratios converge to prespecified tolerances; 
that is, both 

and 
p8+l_p8<<h 

where dl and <h represent the convergence criteria selected in 
advance. At the end of the process, we have a new transaction 
matrix which reflects higher prices and greater outputs 
throughout the system, reflecting the initial change in 
technology in industry 2. Final price indices may be com
puted from 

where t is the index of the computation round when con
vergence was achieved. 

Based on our assumptions up to this point in the simulation 
algorithm, we have estimates of payments to labor in row 
n+ 1 of the new transactions table. Suppose that employment 
is proportional to expenditures on labor. Then we may 
calculate the relative increase in employment as the ratio 

Wj=Xn+l,//Xn+l} 

Incomes to regional households have increased III the 
proportion 

(t Xn+1,/+Cn+lo+ En+1°+ Fn+lO
) 

y = ------------

CE Xn+1.l+Cn+10+En+10+Fn+10) 

Step 4-. In the process of adjusting outputs of each in
dustry by the production ratios, we have changed purchases 
of all inputs, including labor; based on the assumptions that 
(a) final demand (C, E, F) remain unaffected by price 
changes, and (b) that the changes in labor (household) 
incomes result in no changes in final demands. We now 
successively relax these assumptions. 
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The elasticity of demand measures the response in quantity 
demanded by a commodity to a change in price. Analytically, 

Thus, for known (or assumed) values of e, we can derive 
relative quantity changes from the relative price changes 
derived in Step 2. The simplest assumption, and that which 
we adopt here, is that e = 1 for each element of C, E, and F; 
consequently, the dollar values of C, E, and F remain un
changed in response to the price increases brought about by 
environmental protection expenditures. Because prices have 
increased, the same level of expenditures by final purchasers 
will result in lmver physical quantities of output. In other 
terms, total expenditures by each industry will now exceed 
total receipts; column sums will exceed row sums. Under 
these circumstances, we would expect producers to scale 
down their production; \ve simulate this effect by forming for 
each industry the ratio of receipts to expenditures 

(For simplicity, we now reindex successive rounds of com
putations 8+1, ... , t) 

On the other hand, increases in household incomes within 
the region will generate increased consumption, so that we 
compute 

for all i 

where yl is computed as in Step 3 above. Our procedure 
corresponds to the simple assumption that consumers spend 
additional income in the same pattern as before. 

Step 5. We now construct a new sequence of operations 
which adjust at each round of computations for both of 
these effects. 

First, we adjust for the excess of expenditures over receipts. 
For each industry j, we compute 

S/= (~XjIO+C/+El+Fjo) IE, Xml j=l, ... , n 

This differs from the expression in Step 4 only in that we 
replace Co with CI. Because we have done so, S/ may be 
greater than or less than 1. We then scale purchases by 
industry j 

i=l, ... , n+k 

In so doing, we create new income patterns, from which WE 

compute 

CE Xn+I}+ Cn+II+ En+Io+ Fn+IO) 

Y=------------

CE Xn+1.l+Cn+lO+En+lO+Fn+lO) 

At each subsequent round we obtain 

r.s = r$-l • ys-I 

which is entered into 

to obtain 
Xi/=X;/-I·S/ 

We iterate these procedures until convergence for Ys and Sl 
is obtained in terms of prcspecified tolerances. When con
vergence is achieved, we have obtained the following in
formation: 

(1) A new interindustry transactions matrix which 
reflects the new technology, and consequent new 
levels of output, income, employment and consump
tion demands for each industry and for the region as 
a whole. 

(2) A set of price indices which show the effects of the 
new technology on prices throughout the interindustry 
model. 

Step 6. We can use this information to summarize the 
effects on the region in terms of impact multipliers based on 
the original technology change and our assumed values of 
the elasticities of demand: 

(1) a vector of indices of relative (or absolute) production 
changes for each industry; 

(2) a vector of indices of relative price changes for each 
industry; 

(3) a vector of relative (or absolute) employment changes 
for each industry; 

(4) a vector of relative (or absolute) changes in con
sumption for each industry. 

These measures, together with the ne\\" technology and 
Leontief inverse matrices, whose derivations are described in 
the Appendix, provide a complete description of the regional 
economic impacts brought about by whatever set of changes 
are initially put into the transactions matrix. 

Policy-makers are likely to be most interested in the 
effects of policy decisions on incomes (or employment-which 
in this example is proportional to income) and-perhaps to a 
lesser extent-on prices. We can readily construct summary 
measures of these impacts at the expense of industry detail, 
although this use should be considered only indicative. 

The dollar value of the change in regional income may be 
expressed as 

n 

W1= L: (Xn+I./-Xn+l}) 
i=l 

where t represents the final iteration in Step 5 and 0 repre
sents the original transactions matrix. 

Price indices may be computed for each component of 
final demand (in this case C, E, F) by 
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where P/ is obtained as in Step 3 above and where 

GP 
Wi=-- and G=C or E or F 

n+k 

L:GiO 
HI 

That is, base period weights are used to measure the effect 
of price increases. 

The effects of income changes and price changes may be 
compared by expressing both in dollar terms. For regional 
consumption 

n+k 

W2 = L: (P/-l)C; 
i=1 

Estimates of the effects of the technology change on the 
rest of the nation can be derived from (a) changes in "im
porls-" from-ootsffl:e the r-egioo and (b}-ehaRges- in the-pFice 
of goods shipped outside the region. 

Changes in imports from the rest of the nation affect 
incomes elsevv-here; a dollar measure of this effect may be 
obtained by 

n 

W3= L: (Xn+2./-Xn+2})·K 
j=1 

vv-here t is the index of the final iteration in Step 5 and 0 
represents the initial transactions matrix. K is the income 
multiplier for the nation at large; that is, each dollar of final 
demand in a national model generates K dollars of income 
throughout the system. (The value is about 2 for the 1963 
OBE interindustry model of the U.S. economy.) 

Finally, we may construct a dollar measure of the effect of 
price changes for goods shipped outside the region: 

n 

W4 = L: (P/-l)Ei 

i=1 

These summary measures, although crude and heavily 
dependent on assumed values of elasticities, may be useful in 
determining the distribution of the effects of a given policy 
between the region under study and the rest of the nation. It 
can be argued, for example, that a regional authority will, 
because of its narrow' constituency, tend to favor policies 
which raise prices of "exported" goods and thereby generate 
greater incomes within the region, whereas a different policy 
with less favorable local results would have lower national 
costs. 

A DE:\IONSTRATION OF THE MODEL 

The model has been used to demonstrate the difference 
behveen regional and national perspectives in environmental 
pollution control, based on hypothetical alternative strategies 
for t\VO industrial sectors. * Some of the results are reproduced 
and briefly discussed here. 

Table II summarizes the industries defined for the St. 
Louis region. 

* These results are taken from a longer study, Norsworthy and Teller! 

TABLE II-Sectors in the St. Louis Input/Output Model 

Sector Total Corresponding 
No. Description Production * SIC Code 

Food, Tobacco & Kindred Products 1,283,957 20-21 
2 Textiles & Apparel 197,447 22-23 
3 Lumber and Furniture 83,890 24-25 
4 Paper and Printing 506,693 26-27 
5 Chemicals, Petroleum & Rubber 1,584,148 28-29---30 
6 Leather Products 106,859 31 ... Stone, Clay and Glass 219,898 32 I 

8 Primary Metals 851,358 33 
9 Fabricated Metals 535,675 34 

10 Machinery (Except Electrical) 439,483 35 
11 Electrical Machinery 386,357 36 
12 Transportation Equipment 3,555,604 37 
13 Ordnance & Miscellaneous Manu- 293,673 19---38--39 

facturing 
14 AgIicultme -SS-,-2§i -(Jt=W 

15 Mining 78,669 10-14 
16 Construction 922,382 15--17 
17 Transportation, Communication & 1,481,926 40-49 

Utilities 
18 Wholesale Trade Services 870,227 50-51 
19 Retail Trade Services 1,350,862 52-59 
20 Finance, Insurance & Real Estate 1,656,675 60-67 
21 Business, Personal & Other Services 1,483,274 70-89 
22 Households 8,065,226 
23 Local Government 601,055 93 
24 Other Exogenous Payments 5,511 ,801 
25 Imports 6,097,453 

* Thousands of 1967 dollars. 

The scenario on which this demonstration is based may be 
described as follows: A regional air pollution control authority 
must decide between two pollution control strategies of 
equivalent effectiveness for the local chemical, petroleum, 
and rubber industries (Sector 5 in the St. Louis input-output 
model). The sector serves an external market: only 5 percent 
of total output is old within the region. Table III shows the 
distributions of expenditures among input-output sectors for 
the two strategies. Strategy 1, while more expensive, results 

TABLE III-Hypothetical Technology Change for Pollution Control 
in Sector 5* 

Sector Expenditure Change** 
Sector No. Strategy 1 Strategy 2 

Machinery 10 $111 MIl) 
.1.""Xt~ $ 0 

Construction 16 18,000 4,400 
Utilities 17 6,120 5,400 
Households (Labor) 22 25,380 4,700 
Local Government 23 900 1,100 
Other Exogenous Payments 24 7,200 8,800 
Imports 25 12,600 50,600 

TOTAL COST $84,600 $75,000 

* Sector 5: Chemicals, Petroleum Refining and Rubber. Production is 
primarily for export to other regions (95%). 
*'" In thousands of dollars. 
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TABLE IV-Impact Multipliers for Strategy 1 in Sector 5 

Relative Price 
Changes for Change in Change in 

Regional Regional Regional 
Sector Production Production Employment* 

1.003 2290. 507. 
2 1.001 434. 168. 
3 1.0020 102. 41. 
4 1.0002 200. 45. 
5 1.0564 3223. 8158. 
6 1.0010 86. -11. 
7 1.0001 -375. -174. 
8 1.0001 956. 306. 
9 1.0001 1310. 463. 

10 1.0001 14148. 6762. 
11 1.0002 19. -17. 
12 1.0001 478. 39. 
13 1.0001 138. 36. 
14 1.0000 108. 49. 
15 1.0001 513. 230. 
16 1.0001 17186. 9383. 
17 1.0000 7988. 3560. 
18 1.0006 729. 133. 
19 1.0002 6378. 3598. 
20 1.0000 5734. 2057. 
21 1.0001 4883. 2937. 

* Thousands of 1967 dollars. 

in far greater expenditure "within the region. Strategy 2, less 
expensive, depends primarily upon imported equipment. 

Table IV shows the impact multipliers on prices, regional 
production, and regional employment or income for Strategy 
1. The major price effects are ",ithin Sector 5* where the 
expenditures take place. )'fajor changes in output occur in 
Sectors 10 and 16, the major suppliers for the given pollution 
control technology. A major part of the initial increase in 

TABLE V-Summary Measures of Regional and National Impacts 

Strategy 1. 
WI: Change in Regional Income 
W 2 : Dollar Value of Price Increases in Regional 

Consumption 
Price Index: Regional Consumption 

W3: Change in Extraregional Incomes 
W4 : Dollar Value of Price Increases in Exported 

Goods 
Price Index: Regional Exports 

Strategy 2. 
WI: Change in Regional Income 
W 2: Dollar Value of Price Increases in Regional 

Consumption 
Price Index: Regional Consumption 

Wa: Change in Extraregional Income 
W4: Dollar Value of Price Increases in Exported 

Goods 
Price Index: Regional Exports 

$38,471 
$ 5,864 

100.07 
-$15,718 

$78,911 

100.68 

-$11,154 
$ 5,138 

100.06 
$32,374 
$69,955 

100.60 

* There are two reasons for this: most of Sector 5's output is exported, 
and in highly aggregated input-output tables such as this, the diagonal is 
almost dominant. 

regional incomes in Sector 5 is dissipated ($25,380 down to 
$8,158) because customers outside the region reduce some
,,·hat their purchases of Sector 5 output. Impact multipliers 
are not shmvn for Strategy 2; however, they can be inferred 
to some extent from Table V, which presents summary 
measures of regional and national impacts of the two strate
gies. Here the difference in the distribution of the strategies' 
impacts is clearly shown. 

First, the price increases fall largely outside the region in 
each case, as shown by the price indices for regional con
sumption and regional exports. 

Second, suppose we make the tenuous assumption that a 
dollar increase in prices is offset by a dollar increase in in
comes. Then a regional perspective "would evaluate Strategy 1 
at $38,471-$5,864=$32,407, ignoring the negative effects 
outside the region amounting to -$94,629. Again from a 
regional perspective, Strategy 2 has a value of $16,292, so that 
Strategy 1 is clearly preferable. From a national perspective, 
however, "which would include both regional and extra
regional effects, both strategies have negative value, but 
Strategy 2 (at -$52,873) is preferable to Strategy 1 (at 
-$62,222). 

The conclusions from this demonstration are twofold: 
first, that the characterization of proposed policy-guided 
technology changes in terms of impact multipliers can provide 
a useful basis for evaluating policy alternatives; and, second, 
that a regional model can be used to infer the distribution of 
impacts between the region studied and the rest of the 
nation. As a subsidiary observation, we also observe that an 
authority with only a regional constituency may have 
incentive to adopt a "beggar-my-neighbor" policy in cir
cumstances similar to those presented here. 

GENERALIZATION OF THE MODEL 

The simulation procedure which we have described here 
derives from a simple case of technology change for a single 
industry in the interindustry model. The procedure can be
and in several instances has been-applied to a variety of 
circumstances. Several of these applications are outlined here. 

National basis 

Clearly the simulation procedure does not depend upon the 
regional nature of the input-output table. Technology change 
at a national level may be particularly interesting in connec
tion with, for example, substitution of fuels to meet the 
"energy crisis" forecast for later in this century. At the 
national level, there is better information about consumption 
behavior and demand elasticities, so that the results of the 
macro-economic analysis can be brought into the model. In 
addition, national tax and other fiscal policies may be studied 
as adjuncts to the technology change under study. 

Estimating the effects of final demand changes 

Certain national fiscal policy changes have widely differing 
regional effects. For example. the SST cutbark had its 
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greatest effect in the Seattle area, and to a lesser extent, on 
the West Coast generally. Traditional regional input-output 
analysis estimates only the first round of impacts on regional 
incomes. Our procedure takes account of the feedback from 
changes in regional incomes to changes in regional consump
tion, and so on until a nmv equilibrium is achieved. Effects 
on regional consumption and hence on regional incomes are 
slight for short term disturbances such as strikes; hmvever, 
major changes in procurement policy have long term effects 
which are much larger than "one round" analyses imply-as 
the Seattle merchants can testify. 

Our procedure is adapted to study regional effects of this 
kind by beginning the simulation with Step 4 where changes 
in final demand are introduced. There are, of course, no price 
changes brought about by changes in final demand. 

E-stimatirtrt the effeets-of-pTiee-ehange-s 

During the recent wage-price-rent freeze, there was con
siderable interest in the effects of price increases in individual 
industries on prices in other industries, and ultimately on the 
Consumer Price Index and the Wholesale Price Index. We 
used the simulation procedure described here to estimate the 
potential inflationary impacts, * and the actual inflationary 
impacts of price changes in each of the industries in the 1963 
OBE 478-sector interindustry model.** The impacts were 
estimated only in terms of prices in other industries, and in 
terms of the G~P deflator, and deflators for GNP com
ponents: personal consumption expenditures, residential 
investment, equipment investment, exports, federal govern
ment purchases, etc. 

In more general terms the impetus for price changes may be 
from wage, productivity and/or technology changes provided 
only that these can be expressed as changes to the inter
industry transactions table as demonstrated in Step 1 above. 

Estimating time-phased effects 

The effects of a time-phased sequence of changes to the 
transactions table can be estimated by applying the procedure 
successively. The ne,v transactions table resulting from the 
set of changes for the first time period serves as the starting 
point for the changes corresponding to the second time period, 
and so on. The impact multipliers and other measures of 
interest are computed as a sequence of impact measures. 

Estimating the effects of several simultaneous changes 

The simulation procedure as demonstrated above deals 
with only a single change in technology; however, (1) a 
technology change may affect several entries in the industry's 
vector of inputs, and (2) one may "ish to consider simul
taneous technology changes in several industries at once. 
The simulation procedure as actually implemented accepts a 

* Norsworthy.7 

** National Economics Division.5 

set of changes to the transaction matrix and computes 
relative price and production change ratios for all sectors at 
each round of computations. 

APPENDIX: TECHXOLOGY CHANGE IN IXPUT
OUTPUT ANALYSIS 

Traditional input-output analysis permits derivation of 
new (relative) prices for an input-output system based on 
changes in the prices of primary inputs. t This paper demon
strates a simple process which permits inference of the new 
equilibrium input-output system, including price and tech
nology changes, from stipulated initial changes to an input
output transaction matrix. The effects of these changes may 
be measured in terms of relative price changes by sector, and 
change to the technology and Leontief inverse matrices. The 
~- has---been----awliOO---t0--demens-trate---tfte- regional 
economic impact of pollution control technology,5 and to 
estimate for the Price Commission the potential and actual 
effects of price changes on GNP component deflators6 in the 
478-order 1963 OBE interindustry model. 

The classic input-output model defines prices in terms of 
the direct and indirect labor requirements for production of 
the output of each activity. The analogue to labor require
ments in applied interindustry analysis is value added, which 
is composed primarily of the payments to labor and capital 
and direct and indirect taxes levied by the various levels of 
government. These inputs are described in "primary" 
inputs. An additional primary input-which is not classified 
as value added in OBE interindustry models-is imports. 

Prices in a Leontief input-output system are typically 
described as follows: 

where 

P is a vector of (relative) prices 
I is the identity matrix 
A is the Leontief Coefficients ::\1atrix (excluding the 

labor or value added row) . 
Ao' is the (transposed) value added rmv of the matrix 

expressed in dollars per unit of output. 

Consequently a given set of changes in the price of value 
added, dA o, "ill result in a set of price changes, dP, in ac
cordance with 

dP= (l-A')-l·dAo' (1) 

To determine the impact of price increases for any set of 
industries (the proceeds are assumed to be distributed to 
value added only) on equilibrium prices in the system (meas
ured in terms of the GNP and GNP component deflators), 
construct a diagonal matrix D ,,,hose components transform 
price changes into value-added changes. 

t See, for example, Dorfman, Samuelson, and Solow. 1 

An application may be found in Leontief.3 
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Thus 
dP= (I-A')-l·D·dP* 

where dP* represents a vector of first round price changes. 
Computationally, we may avoid direct inversion of (I-A') 

by using the identity* 

(I-A')-l =1 +A' +A'2+ .... 

=1+A'+A'2(1+A') 

(2) 

+A'4(I +A' +A'2(I +A') + . .. (2a) 

This series converges when the standard input-output 
assumptions hold, i.e., when the Hawkins-Simon2 conditions 
are satisfied. 

We now express equation (1) in terms of the transactions 
matrix. The algorithm used to estimated dP is based on the 
power series expression in equation (2a) above. We re\\Tite 
equation (1) as 

dP=[I+A+A2(1+A) 

+A4(I-A+A2(I +A» .. . ]'.D·dP* (3) 

We analyze equation (3) in the following form 

dP = 1 D· dP*+ A' . D· dP*+ A'2D· dP*+ ... (3a) 

and interpret the first term on the right hand side as the 
change in the price vector P induced by all activities (indus
tries) "passing through" the first round of price changes; 
the second term as the change in P induced by passing 
through the second round of price change, etc. 

Let T represent the matrix of interindustry transactions. 
Then T is related to A by 

A=D1·T·D2 
or 

where 

and 

where 
v,: is total output for the ith industry. 

Following the above formulation, 

* See Waugh.7 

dP= (I-A')-l·D·dP* (4) 

= (I- (D1 ·rp·D2 )')-1.D·dP* 

dP= (I+D1 ·T·D2+(D1·T·D2)2 ... )'D dP* 

The new transactions matrix T* (assuming that the quanti
ties of output demanded are unchanged) is 

T*=D3· T (5) 
where 

D 3 =diag (l+dP i ) 

and the new matrix of technological coefficients is 

A * = Dl *. T*· D2 * 

A more general procedure is used to accommodate changes in 
technology which may be expressed as changes to the trans
actions matrix. 

Let dT represent expenditure changes in interindustry 
transactions and let dAo represent changes in value-added 
expenditures. 

Then 
(6) 

and 
dP= (I-A *')-l·dAo 

A computation algorithm may be framed in terms of (4)-(7). 
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An automated system for the appraisal of 
hydrocarbon producing properties 

by KIM D. LEEPER 

PURPOSE OF PAPER 

This paper is presented for the following reasons: 

(1) To inform petroleum engineers that there does exist 
an automated system for the appraisal of hydrocar
bon producing properties. 

(2) To inform the public that one more application of 
computers to an area that has traditionally been 
the domain of human decision has been accom
plished. 

(3) To inform the computer industry of another market 
(i.e., petroleum producers) for software and hard
ware. 

(4) Stimulating further research in the area of hydro
carbon production prediction and hydrocarbon 
property appraisal. 

CONCERNS OF THE DEPARTMENT OF 
INTERCOUNTY EQUALIZATION 

A major element of the California State Board of 
Equalization, Property Tax Department Intercounty 
Equalization program is the completion of approximately 
5500 property appraisals per year. Because all locally 
assessable property is not reappraised annually by county 
assessors' staffs and because the appraisals that are made 
by them are not always made to uniform standards, there 
is disparity among the counties in the relationship of 
county-appraised to true, current full cash value. 

For use in supplying equalization aid to school districts, 
providing for school construction loan repayments, 
County Medical Contribution, and other purposes for 
which equalized assessed values constitute the primary 
test of ability to raise revenue locally, it is essential that 
an unbiased state agency measure the assessment level of 
each county each year. In general this is done (1) by 
selecting and appraising samples of locally assessable 
properties and estimating the aggregate full value of the 
universe of such properties as of the preceding Hen date* 
in each of 19 or 20 counties each year, (2) trending each 

* This date is March 1 of every year. 
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of these aggregate forward to the succeeding years' lien 
dat-es-- -u-nti-l- they a-re-repl-ae-ed wit-h- B-eW- (Hl-€-&;an-Q (3-) 

comparing each county's current total locally assessed 
value with the aggregate full cash value for the corre
sponding lien date. 

The properties identified in the samples are inspected 
analyzed, and appraised by the Intercounty Equalization 
Division's appraisal staff, using accepted professional 
appraisal procedures. The sample results are then 
ascribed to the universe of locally assessable property to 
produce, at three-year intervals, an estimate of the full 
cash value of all locally assessable property in each 
county. 

The types of property appraised include residences, 
vacant lots, farms and ranches, commercial and 
industrial enterprises, oil and gas fields, and timber hold
ings, as well as unsecured personal property. The proper
ties chosen for appraisal constitute a randomly selected 
sample within assessed-value strata, except for those 
developed petroleum and water rights which are a signifi
cant part of a county's economy. All or substantially all 
developed hydrocarbon mineral rights in the counties 
where they are deemed to be a significant part of the 
economy are appraised in every three-year cycle, and 
their values are trended between appraisal years sepa
rately from the trending of other property values. 
Appraising all these properties in a county (and designat
ing this group as Stratum 10), instead of a random sam
ple is considered more reliable than appraising only a 
sample because an oil and gas field can be appraised 
more accurately as a unit then as a group of separate 
wells and undeveloped well sites. 

One part of the Intercounty Equalization Divisions 
program is to determine the value of all hydrocarbon 
producing properties in those counties where the value of 
such properties is greater than 3 percent of the total 
county roll. Originally, 2 percent was recognized as the 
statistically significant limit for sampling purposes (12 of 
California's 58 counties were in this category). In suc
ceeding years, the number of fields and secondary recov
ery projects have increased, with a corresponding increase 
in the appraisal workload. In June 1969, the statistical 
limit was raised to 3 percent of the county roll to compen-
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CALIP:.HC;l.\ ~'l".:_T;_ .... !:A!::.., d; 
UT[hUlr:JTY L·,U,\LlZ; no" 

Estimated Petrolew,. ~liner<ll :{i':ilts Valu(: 

County L'1ar~~et Valul: 

Fresno S 175,683,200 

Glenn 10,377 ,200 

kern 917,695,100 

Santa Barbara 184,982,41)0 

Solano 115,224,200 

Sutter 31,619,800 

Ventura 133,107,500 

$1,613,639,400 

:fate: Petroleum resources subject to valuation in counties other tllan StratwTI 
10, i,e., where petroleum assessments are less than 3 percent of entire local 
assessment roll, are presently valued as part of the randomly selected appraisal 
workload. 

:lajor petroleum producing counties l-'resently not in StratuI;l. 10: 

Colusa 
Contra Cos ta 
Los Ante1es 
~lonterey 

Orange 
Sacramento 
San Joaquin 
San Luis Obispo 

1/ Stratum 10 counties are those counties whose present petroleum n..ineral rights 
constitute more than 3 percent of the counties market value. 

Exhibit A 

sate for this increased workload (7 counties are not in this 
category; See Exhibit A). Since then, the trend in fields 
and secondary recovery projects has continued to increase 
to a point where it is becoming very difficult to continue a 
quality appraisal program for petroleum properties with 
the present staff. (See Exhibits B, C, D and E). 
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The Hydrocarbon Property Appraisal System (HAS) 
described in the remainder of the paper allows the Inter
county Equalization Division to maintain acceptable 
appraisal quality standards and remain within the pres
ent budget limitations. * Moreover, the system's ability to 
handle a greater volume of current data will allow for a 
more accurate and flexible value-trending program in 
succeeding years. The program creates a high level of 
confidence within the counties that the petroleum prop
erty appraisals are well documented and professionally 
done. 

The Board of Equalization is making this system avail
able to counties with the hopes that it will result in 
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Exhibit D 

67 68 69 70 

* An increase in the market value of several counties is expected to 
occur when HAS is used to value the petroleum mineral rights in the 
counties. The program reduces the time needed to appraise petroleum 
mineml rights so the Senior Petroleum ann Mining Enginef'r ('an devote 
more time to other tasks (i.e. appraising other types of mineral rights 1. 



improved property tax equalization and greater appraisal 
standardization for oil and gas producing properties. 

The remainder of the paper is devoted to describing the 
traditional method of hydrocarbon property appraisal, 
how the traditional method was automated, short comings 
in the present automated system, and overall system 
improvements to be made in the future. 

MANUAL METHOD 

Producing hydrocarbon properties to be appraised in 
the triennial survey are selected by two methods. First, as 
previously stated, all hydrocarbon producing properties 
are appraised in each county where these properties 
exceed 3 percent of the county assessor's roll. Second, in 
those counties where the value of such properties is less 
-ma-n-~p-eTc-enr-of-tmn;ounty- assesso-r-'s--rofl,- -ihe---hy-d-roe--ru:-~ 
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bon properties are randomly selected as are all other 
properties, 

Once a specific property or field is selected from the 
assessor's roll, the appraisal of the property follows this 
step-by-step procedure. 

1. Identify property to be appraised. 
2. Collect historical production data on subject. 
3. Collect historical expense and cost data on subject 

property. 
4. Collect historical capital expenditures on subject. 
5. Discuss properties operations with company engi

neering personneL 
6. Review items 2 through 5 and select the best method 

(volumetric, material balance, or decline curve 
extrapolation) for predicting reserves and future 
production rates. 
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A~ ALTU;·IATEiJ HYDROCARbON APPRAISAL SYST~ 

GENERAL SYSTK-\ DESIG;i {~~g~ 

Production file of petroleum. 
properties 

Per£orl!1S Arpa 1 decline curve analysi& 
and reserve estimates. plots 
production curves. prints ten-year 
production summary. potential for 
other methods of extrapolation 

Cost Data Tape contains information 
00 price of oil, price of gas, cost 
of production. etc. 

Calculation of economic limits II 
capitalized earning ability based 
on net cash flow 

Exhibit F 

7. Review items 2 through 6 and select the appropriate 
operating costs and capital expenditures for the 
reserves and production rates selected in step 6. 

8. Determine future net income by multiplying the 
estimate future production rate by the price of oil 
and subtracting the estimated future costs. 

9. Capitalize the net income to a present worth indica
tion at the appropriate interest rate to derive a 
market value indicator. Separate studies are 
required to identify an appropriate rate of capitali
zation. (See Appendix A). 

All AUT~TLD SYSTE:'I OF hYDIWCARrlOK AFPMISAL - SUBSYSTEMS 
IHTI: llKIl:.f DI:.SCRIPTl0NS OF GKAPhS At;1J iL"CIlOiiS 

PET](OLWII PRODUCTlON~ GMPhS. EXTRAPOLAllo:l A.~lJ CASE FLU;: 

HISTORY TAPE Storage and retrieval of prcduction data 

PTROL 

CFLO\; 

Printing of lO-year production history 

Lxtrapolation by Arps Decline Equation 

A. Graph A 
il. Graph b 
C. Cra?h C 

Graph plotting routine (11) 

A. barrels per day vs. time (semilog) 
B. Barrels per day per well vs. time (semilog) 
C. aeF per day vs. time (semilog) 
ll. Gas oil ratio vs. time (semilog) 
L. ~.jumbcr of T.."el.ls v::;. time (cartesian) 
F. Number of '-:ells full time producing vs. time (cartesian) 
G. Percent cut vs. tir.:e (cartesian) 

Cumulative gas vs. cumulative oil (log log) 

l 1.. :~~:~;!~ ~~~ ~~:d~~~!~~i:~) cumulative oil prcduction (one 

J. Grap~l of ?ercent cut v.!:>. cumulative oil production 
(cartesian) 

{ 
Calculation of econor:Iic limits 

Ca.Lculdtion or capitalized earning ability oa::i€c ui-un net cas;l 
flow 

Cuml,ar i~on of capitalized earning ability value indicator wit11 
ot.ler v.:lue inc.:icators derived from sales 

"';rCl:-':.s <lre r.l.ott~L on sImulated s~milogt loe lor: and cartesian 
c.00rdinc1te :'aper 3.S noted. 

Exhibit G 
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10. Compare the value indicator derived in step 9 
with value indicators derived from sales. 

11. Estimate the market value for subject property. 

AUTOMATED METHOD 

The Hydrocarbon Appraisal System, HAS makes 
major changes in the above job stream. (See Exhibit F 
and G). The system can only provide meaningful reserve 
estimates for those fields that are amenable to ARPS' 
decline curve analysis. 1 If the appraiser is aware that a 
specific field is not amenable to decline curve analysis he 
may, by a control card modification cause the computer 
to plot a"suite of production curves for the field in ques
tion. These curves are not as good as an estimate of 
reserves but they do provide the appraiser information 
which would otherwise have to be found elsewhere with a 
resulting large amount of effort expended. These curves 
are of great importance to the appraiser, who uses them to 
estimates reserves. Once the reserves are estimated he 
inputs this information into CFLOW, the cash flow mod
ules. 

Although the fields amenable to decline curve analysis 
contain only about 25 percent of the state's oil and gas 
reserves they constitute 60 percent of the total number of 
fields, and therefore 60 percent of the workload. The 
other 75 percent of the state hydrocarbon reserves may be 
appraised by use of CFLOW, a subsystem of HAS. 

County petroleum production figures, before the advent 
of PTROL, had been trended manually by estimating 
reserves and production rates, using over-simplified 
straight-line extrapolation of the historical production 
curve manually plotted on semilog paper for each field. 
The production figures when multiplied by the price of oil 
would result in the future gross income. The gross income 
stream thus derived is adjusted to net income using costs 
collected during the last survey year. Such a method does 
not respond well to technical innovations, new discover
ies, and extensive well repair programs, and therefore, left 
much to be desired. 

The mere extension (by use of a straight-line projec
tion) of past production level into the future until the 
economic limit of production is reached on a time frame 
is an expedient method, but in many cases, not viewed by 
industry, or government as an accurate measurement of 
future production. One technique generally accepted and 
used by industry and government is known as the ARPS 
Decline Curve analysis. Due to human error and time 
constraints, hand calculation of the curve is impractical 
in light of the volume and difficulty of calculations 
required. The practical use of this equation (together with 
other uses based upon the needs of each user) has been 
made possible by the advent of automated data process
ing.2

,3,4,5 The primary objective of PTROL is to plot pro
duction curves and use the ARPS Decline Curve analysis 
in the prediction of future production. The main objective 
of CFLOW is to extend PTROL by using the predicted 
production as input for the automation of summary capi-

talized earning ability that is required to value hydrocar
bon producing properties and the printing of a final 
appraisal report consisting of a summary of value conclu
sions derived from the entire system. 

In order for HAS to be effective, it must have a data 
base of production history. The Board of Equalization is 
grateful to the Conservation Committee of California Oil 
Producers for releasing through the Service Bureau Cor
poration of Inglewood, California, once a month, a copy of 
their monthly hydrocarbon production statistics. This 
tape of production statistics is the heart of the data base 
as without it none of the system except CFLOW would be 
able to function. The data base has a capacity of ten 
years of monthly production data for every field in Cali
fornia. There are approximately 1250 named producing 
fields in California. The monthly production data consists 
of oil, gas and water production figures as well as total 
numbers of wells and total number of fulltime producing 
wells. 

The Board of Equalization originally was able to cap
ture only 3 years of data for the data base. This was not 
viewed as a serious drawback because the PTROL sub
system which requires the data base will not be needed 
until next year when four years of data will be available. 
It is felt that four years at a minimum, of data will suffice 
for curve plotting purposes. The extrapolation routines in 
PTROL do not require all ten years of data for accurate 
fitting. The ten years of data are there primarily for the 
appraisers benefit so he might have historical information 
which he can use and override the predicted hydrocarbon 
production with values of his own before allowing the 
information into CFLOW. 

With the advancements provided by HAS, the job flow 
is reduced to the following: 

1. Identify specific property to be appraised. 
2. Collect historical expense or cost data on subject. 

(Used in CFLOW) 
3. Collect historical capital expenditures on subject. 

(Used in CFLOW) 
4. Input items 1 through 3 into HAS system. 
5. Discuss properties operations with company engi

neering personnel using the PTROL graphs and 
CFLOW report as an information source. 

6. If disputes arise or errors are found in the graphs or 
the report, correct errors and go to Item 4. 

The PTROL subsystem extrapolates the data base 
explained earlier (i.e., the oil production decline curves) 
using the method developed by ARPS and later tested 
on California oil fields by Higgins and Lichtenberg. The 
extrapolated curve is integrated by year to determine the 
volume of oil produced for each year in the future. 

The subsystem CFLOW takes as input either manual 
extrapolations or machine fitting from PTROL. The 
volume of oil is multiplied by the price of hydrocarbon 
products to give the gross income per year. The future 
value of the hydrocarbon products are balanced against 
the future expenses and costs required to produce them. 



The economic life of the field is the number of years 
required for the expenses to overcome the income earned 
from production hydrocarbon substances. Given the 
economic life, the net income is capitalized at five differ
ent fixed rates as well as by one rate specified at input. 
(See Appendix A) Various other value indicators are 
calculated and printed. These indicators are used to 
check the value of the property derived by machine. 

If errors arise as mentioned in Item 6, above, machine 
time is not required to extrapolate the future production 
again. If the appraiser feels the extrapolations are correct 
he may use these values for input to CFLOW and change 
only the cost and expense value to correct the errors in 
Item 6. 

The inspiration for CFLOW came after perusing a copy 
of the Kern County, California appraisal program. Theirs 
is-a--madi-£ied--~--9f- -a--StiU---illder Standar-d-Oil-9f- Cali~ 
fornia Program. After discussions with the Intercounty 
Equalization Senior Petroleum and Mining Appraisal 
Engineer we came upon the calculations and format 
which we thought would express the value of the hydro
carbon mineral rights best. It is embodied in CFLOW. 

FUTURE IMPROVEMENTS 

Future improvements in the hydrocarbon property 
appraisal system (HAS) would include a cost history 
subsystem for cost and expense data, a new system flow 
when aforementioned subsystem is completed and more 
methods of predicting future production (i.e. material 
balance, volumetric, etc.). 

A problem encountered during the implementation 
phase of HAS was the staggering amount of detailed cost 
data required for the system to function. A manual sys
tem was developed to reduce the cost data to a useable 
form for the machine. This manual process was very slow 
and due to the turnover of clerks not very accurate. The 
solution to the manual system of cost data reduction 
would be to design and implement a cost history system 
to reduce the data for the appraiser. 

A cost history subsystem would consist of a file of cost 
and expense data and file maintenance system for adding 
and deleting data. The file for each hydrocarbon produc
ing field would be of sufficient length so that as much as 
ten years of cost and expense factors could be stored. 
These could be printed so that the appraiser could review 
and correct them if necessary before using the factors as 
input to HAS. 

Taking cost history subsystem and integrating it into 
(HAS) would result in a far more sophisticated appraisal 
system. Once triggered by the Petroleum Engineer, the 
automated cost factors produced by the data reduction 
program would be directly input into HAS. PTROL 
would then process as it does now. 

This improvement would not only allow the Petroleum 
Engineer to modify the appraisal data and reenter it into 
the process at any point but would also allow the system 
to completely appraise a property without appraiser 
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intervention. This would shave the budget even more, 
because a significant amount of cost is contributed by the 
hand processing of cost data by the appraiser. 

Another improvement would be to allow PTROL more 
methods of predicting future production. This would 
require more research into the state of the art of hydro
carbon production prediction. During the research 
required for PTROL and CFLOW design several sources 
were found that indicated that methods dealing with 
volumetric and material balance were already developed. 
It would not take too much effort to acquire copies of 
these sources so that evaluation of their methods could be 
made in the light of information present in the data bases 
of this hydrocarbon substance appraisal system. 

SUMMARY 

HAS is an example of a cooperative effort between a sys
tem analyst and a technical engineer. The analyst knew 
nothing about petroleum engineering and the engineer 
knew nothing about systems. The system was designed so 
that if any new technical innovations were published they 
would be incorporated into HAS with a minimum of down 
time. This flexibility of the system was due to the report 
established between the analyst and the engineer. 

In conclusion the following reasons summarize the 
arguments and suggestions for the implementation of 
PTROL and CFLOW. 

1. More accurate appraisal of petroleum properties in 
California. 

2. Better standardization and equalization in petro
leum counties throughout the state~ 

3. Greater accuracy and flexibility in trending oil and 
gas property values. 

4. Quality appraisals at a substantial savings to the 
state. 
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APPENDIX A 

Capitalization is the process whereby present worth is 
calculated. The present worth mentioned here is concentrated 
at midyear. Present worth (P.W.) is defined by the following 
equation: 

where 

tJ n( j) E (1+i)f-l/2 

e-the economic life of the property 
n (j) the net profit of the jth year 

i-the interest rate desired 

The value that the above process provides is the amount of 
money one must pay today for a value described in to
morrow's dollars. 

Example: If a property made a net profit of $5 per year for 
5 years in an economy that was expanding at 8 percent a 
year, how much would that property be worth in today's 
dollars? 

YEAR NET PROFIT AMOUNT 

5.00 
$ 4.81 1 (1.08)0.5 

5.00 
4.45 2 

(1.08)1.5 

3 
5.00 

4.12 
(1.08)2.5 

4 
5.00 

(1.08)3.5 
3.82 

5 
5.00 

(1.08)4.5 
3.54 

$20.74 

Therefore, in an expanding economy that is expanding at 
8 percent the twenty-five dollars in the future will be worth 
$20.72 in today's dollars. 



What is different about tactical military operational 
programs 

by GEORGE G. CHAPIN 

Litton Systems, Inc. 
Van Nuys, California 

INTRODUCTION 

The increasing complexity of tactical military operations 
has required a corresponding increase in information 
processing using systems built around general purpose, 
stored program digital computers. The operational pro
grams for these systems have attracted increased atten
tion because cost overruns and missed scheduled deliver
ies have been common. The cost referred to is the one
time total programming cost (personnel, equipment, facil
ities, etc.) per instruction for the definition, design, pro
duction, test, installation and documentation of the pro
gram. Typically, the initial development takes from three 
to six years and often includes at least two iterations 
before a useful product is obtained, while the program
ming cost runs from $60 to $100 an instruction. 

In the author's opinion, these difficulties are partly 
caused by the different data processing problems encoun
tered in tactical vs. other systems. Clearly the differences 
are not absolute, for there are degrees of similarity 
between tactical and certain non-tactical systems as well 
as differences between tactical systems themselves. 

In order to discuss these differences, it will first be 
necessary to define tactical systems in terms of equip
ment, operating personnel and problems being solved. 
This will provide insight into the kinds of data inter
change between the computer and the rest of the system, 
into the "response time" requirements, and into the 
requirements for continuous 24-hour per day operation. 
This in turn will lead to a discussion of the nature of the 
data processing, the parallelism of processing to imple
ment system tasks and the resulting high rate of commu
nication between the major elements of the program. 

PURPOSE AND NATURE OF TACTICAL MILITARY 
SYSTEMS 

Tactical military systems are generally housed in ships, 
aircraft, transportable shelters or vehicles. Their purpose 
is to support operating military personnel by: 

• coordinating the collection of data from own-site 
sources and from external sources and systems; 
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• correlating the data to obtain a clear picture of the 
t-aetie-al situatiGn-; 

• processing the data required for the decision-making 
function; and 

• communicating the decisions and actions to weapons, 
other users, or other systems. 

The objective of the manl machine relationship in the 
system is to remove from the operator, to the maximum 
practicable extent, tiring and repetitive operations in 
order to concentrate his effort in areas requiring decisions 
based on judgment and experience. Figure 1 illustrates 
the relationship between the manl machine elements and 
the operational tasks which the system must perform. 

Many tactical systems are for the purpose of establish
ing a clear picture of fixed and moving objects-in the 
air, on the surface of the ocean or under the surface. 
Tracks are developed and, in conjunction with amplifying 
information, are used for decisions related to air traffic 
control, the assignment and control of weapons, the con
trol of rendezvous and strike missions, etc. Other systems 
are for the purpose of deriving and processing information 
for artillery fire planning and coordination or for the 
control and switching of communications data. Still other 
systems combine several or all of the above purposes. 

There are other military and commercial systems 
which mayor may not be called "tactical" but which 
perform similar functions. Examples include fixed site air 
defense, air traffic control, process control and communi
cations switching systems, as well as the many applica
tions of inter-active, on-line terminals. Further, many 
tactical systems now solve "business" data processing 
problems in such applications as logistics and intelli
gence. Thus there is no clear line of demarcation between 
the problems solved by tactical military vs. other sys
tems, and hence between their computer programs. 

Even though we cannot define tactical systems exactly, 
we shall consider programming for the most common type 
of tactical system-a "real time", manl machine system 
which deveiops "tracks" from sensor and data link inputs 
for ultimate assignment to and control of weapons. Such 
programs must cope with inaccurate andlor false data 
inputs, short response times to a large number of essen-
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Figure I-Man/Machine relationship in a tactical system. 

tially unpredictable inputs, operator errors and equip
ment failures, in such a way as to handle peak processing 
loads while operating reliably 24 hours per day. The typi
cal characteristics of such a program will be discussed 
and compared with those of non-tactical programs. 

DESCRIPTION OF TACTICAL MILITARY 
SYSTEMS EQUIPMENT AND PERSONNEL 

General purpose digital computers 

Computers now in use range from mini-computer 
capability to large capability. Most of the less capable 
computers are used either in rather specialized applica
tions (such as a small digital communications switching 
system) or to perform pre-processing or special functions 
in a larger system. Many systems have multiple comput
ers (unit computers), multiprocessors, or combinations 
for the basic central processing functions, augmented in 
some cases by specialized processors. Typical systems 
with interconnected computers have from two to six proc
essors, from 32K to 192K of main memory with cycle 
times from 1Jl,sec. to 8Jl,sec. and from 8 to 48 input/ output 
channels, employing two cables per channel or bussed 
data techniques. 

Sensors and interfacing equipment 

The most common sensors are radar, radar beacons 
(Identify Friend or Foe) and sonars. In addition there are 
a variety of sensors employed for electronic countermea
sures and for determining platform motion and position. 
Other sensors are remote in aircraft, helos, satellites, 
sonobuoys, etc. All sensors measure an analog quantity, 
and the corresponding electrical signal is usually analog. 

To be used for processing by digital computers, the analog 
signed must be converted to digital within the sensors or 
by use of special interfacing devices. 

Examples of such interfacing devices are processors 
which receive radar or radar beacon video and automati
cally extract target position information in digital form. 
Resulting target reports, whether from radar or radar 
beacon, are inaccurate and often false. The computer 
program must be designed to cope with these false and/ or 
inaccurate reports, which are termed "clutter" from 
radar and "fruit" or "garbles" from IFF. 

Some sensors are controlled in a simple manner, 
requiring little control or processing by the computer. In 
effect, they just run. The computer receives only simple 
information such as sensor azimuth or own-site speed and 
heading. Some more modern sensors are much more 
complex and require substantial processing with severe 
time constraints, for example, to direct the steering of the 
sensor beam hundreds of times per second. 

In interfacing sensors with the computer, there are 
usually trade-offs between use of special processing logic 
vs. the general purpose computer. Examples include 
radar and radar beacon video processors and sensor beam 
steering processing. 

Since the digital inputs received from sensors are 
derived from analog information, the accuracy (and 
hence precision) of the inputs is limited by the physical 
process of conversion. Typically, the precision of a single 
quantity is 12 to 14 bits (for example, a position coordi
nate). 

Operator-manned equipment 

A variety of operator-manned equipment are used for 
input and output of data to/from the computer. The most 
common type is a display including a Plan Position Indi
cator (PPI) cathode ray tube augmented by readouts and 
data entry devices. Other equipment include alpha
numeric cathode ray tube displays, special data readout 
devices using film projection techniques, light-emitting 
diode devices, keyboards, etc. Still other devices are made 
up of panels of lights, indicators, and entry buttons. Often 
sensor data is presented in conjunction with computer 
derived data. 

The PPI display console utilizes a cathode ray tube for 
display of radar, radar beacon (IFF) or sonar data, 
augmented by data readouts, keyboards, and data entry 
switches. Most tactical systems have from three to thirty 
displays of this type. Sensor data, such as radar video, are 
distributed to each of the displays. Usually the data from 
several sensors are available, and the display operator 
selects the one required for his function. Computer-gen
erated data are displayed as special symbology, alpha
numeric data or lines. 

There is considerable programming required to service 
displays. Again, there are trade-offs between program
ming vs. special logic built into the displays. Because of 
the importance of displays as the prime man / machine 



interface, a later section discusses display processing in 
some detail. 

Operators 

Military personnel are an integral part of all tactical 
systems. Systems must be designed to assist real opera
tors, many of whom are enlisted men with limited train
ing. System designers and programmers too often over
look the fact that the tactical system is there to assist the 
operators and is not an end in itself. The proper involve
ment of the ultimate user in system design and program
ming is one of the more important ingredients in the 
development of tactical systems. 

Communications equipment 

A variety of communications terminals may be directly 
connected with the computer to permit site-to-site com
munications of digital information with other fixed or 
moving platforms. Typical speeds of transmission vary 
from 75 to 4800 bits per second and, through use of multi
plexing techniques, much higher speeds. In addition, digi
tal data from remote sites such as satellites enter (and 
leave) through terminals. Also computers are intercon
nected with other equipment in some systems to assist 
operators in circuit establishment, equipment turn on and 
tuning, performance monitoring, and message processing. 

Computer peripheral equipments 

Standard (but ruggedized) peripherals include mag
netic tapes, disk files, card readers and punches, paper 
tapes, etc. Normally such equipments (with the possible 
exception of disk files) are not used in the mainstream of 
operations. Rather they are used for program entry, sys
tem restart, simulated entry of data for training and sys
tem debugging, recording of extracted data and recording 
of critical data. 

Weapons systems and interfacing equipment 

Such systems include surface-to-air missiles, torpedoes, 
anti-submarine rockets, and (indirectly) interceptor and 
other aircraft. Since outputs from the computer are used 
to control some physical process, the digital data must 
ultimately be converted to analog. This limits the 
required outputs to 12 to 14 bits per quantity in most 
cases. 

Since most weapons systems are complex, considerable 
processing is required for control. Special purpose inter
facing devices are often used to assist in the processing. 
Analog computers are also used in some cases. When digi
tai techniques are used for control of guns or missiies, 
critical timing requirements are imposed on the program 
to accommodate a many-times-per-second feedback loop 
involving data sampling, computation and orders. 
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EFFECT OF MULTIPLE INSTALLATIONS 

The number of installations and the similarity of 
installations significantly affect both the development 
and maintenance of tactical system programs. Some sys
tems, particularly airborne, have very similar if not 
identical installations on many aircraft. Other systems, 
such as shipborne, tend to be one of very few of a kind, 
although employing very similar data processing hard
ware. Usually the sensors, weapons and ship mission 
cause the major changes. Still other systems have multi
ple installations which are generally similar but have 
different radar locations, geographical constraints, and 
perhaps weapons. 

Even identical systems have a way of changing with 
time, causing more than one program to be in use at one 
ti!l!~: __ A ~~~~~~t~_~~~~~~l'1:t _ ~_~_~t _2.e m~~~_~::t_rly LIl<1_~~~~
opment of the number of similar but different programs 
and the method of program maintenance, for quite differ
ent program design concepts may be employed based on 
the results. For example, a system for thirty "identical" 
aircraft can emphasize highly efficient programming. 
Conversely, the ship requirement for many similar but 
different programs has lead to a "modular" program 
design approach which is tailored to ease of constructing 
new programs but at the expense of computer storage and 
execution time. 

CHARACTERISTICS OF COMPUTER INPUT / 
OUTPUT DATA TRANSFER 

The input/ output problem consists of a concurrent 
transfer of data with up to twenty equipment groups con
sisting of up to fifty or more equipment items. The word 
concurrent means that in a short period of time (say two 
hundred microseconds) data may be transferred between 
the computer and four or more equipment groups. Typi
cal data transfer rates total 10,000 to 300,000 words per 
second. 

The programming associated with set up and control of 
input/ output is highly computer dependent. Well 
designed computers make the I/O problem quite easy, 
even though there are many peripheral devices (including 
other computers) and considerable data transfer. Most 
systems employ buffered transmission on multiple I/O 
channels or data busses with timing controlled by the 
external equipment once the transmission is started. A 
single computer instruction initiates either an input or an 
output buffer mode. Once established, buffer transmis
sions employ independent access to memory, and the 
entire buffering operation proceeds to completion with no 
additional program instruction executions. As a result, 
the buffer mode of data exchange provides an input/ 
output operating asynchronously with the main computer 
program so that the computer can continue execution of 
program instructions in the normal sequence. In most 
cases it is desirable for the program to be informed of the 
completion of a particular buffer transmission. Some 
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computers have an internal interrupt which is generated 
within the computer when the buffer mode terminates. 
The internal interrupt provides the signal to the Execu
tive program indicating completion of the I/O buffer, 
thus eliminating the programming problem of monitoring 
the status of the I/O transfer. 

On an average, the computer should spend only a small 
percentage of its time in getting data in and out of the 
computer. Occasional peak input/output loads will occur, 
lasting for a period of a few milliseconds, during which 
the time used for input/output increases significantly. 
The system should be designed, however, so that even 
during peak loads, it is not possible to miss a transmission 
of data because of equipment overload. The program 
processing the I/O should be more flexible in that under 
peak load conditions, certain outputs (such as display) 
can be temporarily deferred and highly repetitive inputs 
can temporarily be ignored. 

In general, many items of data are received from or 
sent to the same equipment. All data words must either 
explicitly contain information identifying their contents 
or have positional (implied) encoding. The data trans
ferred (other than control information) are of two basic 
types. One type is normally sent only once. Care must be 
taken to have positive acknowledgment of such data so 
that they can be sent again if not received properly. For 
example, entry of information from a keyset or keyboard 
is done only once. Such data are normally retained by the 
system until a new entry is made. Another example is a 
request for computation made just once by an operator 
and acknowledged by displaying the results of the compu
tation. 

The second type of data is somewhat "cyclic" in 
nature, that is, similar data are sent on a more or less 
periodic basis. Data derived from search radars, for 
example, essentially repeat once each radar scan time. 
Data on tracks received from a data link are repeated as 
the track position changes. 

Since most tactical systems data are cyclic, the ratio of 
data received by the system to data stored by the system 
is quite high compared to commercial systems. Therefore, 
it is usually possible to store most, if not all, data in the 
computer. As a minimum all rapidly changing data 
should be stored in main memory because of the many 
accesses to it that are required. 

EXAMPLES OF COMPUTER PROCESSING 

In order to provide a "feel" for the type of processing 
required, several examples are discussed in this section. 

Display processing 

The type of display under consideration is the PPI-type 
device discussed previously, and the system functions will 
be tracking and the assignment and control of weapons. 

The computer generated data to be displayed change 
frequently, for example, the position of an air track. In 

addition, the superimposed sensor data usually must fade 
prior to its next sequential presentation or scan in one to 
ten or more seconds. This combination of computer and 
sensor derived data requires, for visual clarity, a display 
phosphor which rapidly decays and must be frequently 
regenerated or refreshed. 

Typical refresh rates are 10 to 50 times per second if 
the display is to be "flicker free." In most systems the 
computer does the refreshing, that is, it retransmits the 
data to the display at this 10 to 50 times per second rate. 
Since the computer must continuously have the rapidly 
changing display data in high speed memory anyway and 
since at least some output data changes each refresh peri-
0d' it is less expensive to use output time than to provide 
memory in each display or on some intermediate storage 
device such as a magnetic drum. 

There must be an effective way for the operator to 
request information from the system and to enter data. 
One method of requesting information is through use of a 
"ball tab" or cursor on the face of the display. The ball 
tab symbol is sent from the computer and displayed. As 
the operator moves his track ball or joy stick, coordinate 
changes ~x and6y) are accumulated in a display register. 
Periodically the 6x and 6y are sent to the computer. The 
computer adds the6x and6y to the previous x and y posi
tions which, when sent to the display, caused the ball tab 
symbol to be positioned. The next output to the display 
sends the updated coordinates, x+6x and y+6y, which 
causes the symbol to change its position on the display. 
This entire process must be done rapidly enough so that 
the symbol appears to be moving smoothly across the face 
of the display and can go from one side to the other in a 
few seconds. This can be done if each refresh of the dis
play has a new value for the ball tab position, which 
requires the6x and6y values to be received by the com
puter once each refresh period. In most systems, the 
computer "interrogates" each display once per refresh 
period, obtaining the ~x and ~y values or any other data 
entry made at the display since the last interrogation. 

The display console operator enters data or requests 
information using such devices as keyboards, quick action 
buttons, number entry dials, etc. Some of these buttons 
have the same meaning for all functional uses of the con
sole. Other buttons have different meanings, depending 
upon the functional use of the console (determined by a 
switch position). The input to the computer is a discrete 
code for any button action which has occurred. 

The operator action must be detected by the computer, 
usually through decoding the response to the interrogation 
described above. Another method of entry uses an inter
rupt to the computer to indicate some operator action. In 
any event, the program must decode the request or action 
and usually perform some processing to provide an output 
back to the operator. The decoding can be quite complex, 
for the same digital input can have different meanings 
depending on console function and on such ancillary fac
tors as range selection, offset, etc. From 200 to 1000 dif
ferent possibilities are typical. In order to maximize 
operator performance. the response should be "instanta-



neous" insofar as the operator is concerned, that is, in 
several hundred milliseconds. 

Frequently the program must search data stores 
because of the operator action. Such searches normally 
look for values closest and within limits to a reference 
rather than for equality; e.g., the operator may wish to 
"hook" a track in order to take some action or obtain 
some amplifying information. To do this, he moves his 
ball tab over the track symbol and depresses a button, 
say HOOK. The program uses the ball tab coordinates as 
a reference and searches track stores for the track whose 
coordinates are closest to the ball tab and within some 
maximum search area. After finding the track, the pro
gram prepares the appropriate outputs such as a HOOK 
symbol and amplifying data. 

Normally a group of displays shares a single computer 
output chann.eL..o-r-data-bus.--Logi-c-is-huilt--into-.each--<lis.-,,
play to permit acceptance of data based on console 
address, category selected, etc., and to extract needed 
digital data such as track position. (Analog symbol infor
mation is usually generated by a central device.) The 
information must be organized in a manner understanda
ble to the displays. For reasons of economy, the word 
formats are usually designed to save display hardware 
and reduce the number of words transmitted, rather than 
for the convenience of the computer program. Output 
data are organized by the program into one or more 
blocks for buffered data transmission. Once started, the 
transmission proceeds without attention from the pro
gram, usually at a rate determined by the display system. 

The organization of data in the output buffers requires 
considerable logical processing to change it. For example, 
an output word might contain X, X dot, and console 
address data. Changing the X or X dot requires masking 
and perhaps shifting, assuming the basic computation 
causing the change has been made from a separate track 
store which is organized for computational convenience. 
Also, there are problems of packing the buffers, keeping 
track of data locations, and preventing update at the 
wrong time. 

A typical display system might require 2,000 words of 
output at a frequency of 20 times per second. If 2J,Lsec. of 
memory time are required per word, then the total 
memory time used is 2,000X20X2=80,000J,Lsec. per sec. 
or 8 percent. If the computer does not have independent 
I/O, an equivalent amount of processor time also may be 
required. 

Track processing 

Let the system involve a radar processor and radar 
beacon (IFF) processor as described previously. In the 
first case, assume the system is to have the ability to 
automatically initiate, update and maintain the tracks, 
with manual operator inputs also aHowed to inhibit por
tions of the automatic operation and to correct or assist 
the automatic operation. 

The radar processor inputs coordinates of targets, 
usually in polar coordinates. The IFF processor inputs 
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polar coordinates plus IFF codes. In addition, radar 
azimuth data must be input. Input buffers must be con
tinuously available to receive both radar and IFF reports. 
This requires a double buffering scheme for each device. 
As discussed previously, the inputs may be real or false 
and when real, are inaccurate. 

The problem then is to reject the false reports while 
using real reports to update previously developed tracks 
or to initiate "new" tracks. The processing involves exten
sive searching to determine if inputs are within computed 
(and variable) "bins" around predicted track positions 
(where the program thinks an established track should 
be). The processing algorithms are complex exercises in 
logic and involve much "housekeeping." False inputs 
must be retained until proven false. Identity codes must 
be correlated for friendlies with means of handling inputs 
which are satisfa.c:tru¥- position-wise but have conflicting ___ 
identity codes. Radar and IFF data on the same track 
must be correlated. Established tracks must be continued 
even though no inputs are received. Operators must be 
allowed to make inputs from displays and inhibit auto
matic tracking on a selective basis. Crossing, merging and 
splitting tracks must be handled for aircraft with sub
stantially different speeds. 

The basic anomaly in tracking is caused by the inaccu
rate nature of the input data. Is the inaccuracy just an 
error in position or is it caused by aircraft turning? This 
basic problem leads to additional programming, again 
"logical" in nature, to follow aircraft in turns and may 
include the establishment of "possible tracks" until later 
data are available. 

Once correlations between existing tracks and inputs 
have been performed, track position and velocity must be 
updated to obtain the best estimate for the next radar 
scan. These updates utilize typical filter theory algo
rithms which involve nllmerous but simple arithmetic 
operations. 

A much simpler program is required if all tracks are 
initiated by the operators and then maintained automati
cally. More operator actions are required and hence the 
system capacity is reduced, but so is the size of the pro
gram. Also, there are other combinations of initiation/ 
extrapolation which are used in various systems. In all 
cases, however, the processing is quite similar, differing 
more in amount and complexity than in type. In addition, 
track information arriving over digital data links must be 
correlated with own-site data in order to obtain a clear 
picture, since more than one site often sees the same air
craft. 

Concurrent with the tracking, information must be 
continuously presented to operators on their displays. 
Operators must attempt to identify non-IFF tracks 
through a variety of means, which could include flight 
plan correlation. 

Weapons assignment and control 

The picture of the air situation is used by other opera
tors who determine what action, if any, is required. Based 
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on weapon status data which must be continuously avail
able, the program assists the operators in various ways by 
making trial engagement computations (can an intercep
tor make the intercept with existing fuel and weapons?) 
and threat assessments. If a decision is made to engage a 
track with an interceptor or missile, the program must 
prepare orders to control the weapon. These orders are 
then dispatched over data link (or by voice) to an inter
ceptor or through interface electronics to the missile sys
tem. There is substantial variation in the processing 
required depending on the type of assistance provided the 
operator, on the weapon being controlled and on the type 
of control system. In general, complex but infrequent 
computations are required. In the case of some modern 
missile systems, the computer must frequently perform 
the complex guidance and control computations, involv
ing a computation/ order / receipt-of-new-data feedback 
loop between the computer and the missile, repeated 
many times a second. 

Other processing jobs include assessing the results of 
engagements and maintaining the status of weapons. 
Finally, information on actions taken must be transmit
ted to other sites. 

PROGRAM RELIABILITY 

Most tactical systems have a 24 hour per day operating 
requirement with a very high probability of operation. 
The computer program clearly must support this reliable 
operation, not only by being inherently "error free" but 
also by coping with problems occurring elsewhere in the 
system. 

High reliability is built into the program in a variety of 
ways. First, the program must not fail because of im
proper operator actions-it must be "idiot proof." This 
requires all program paths used to process operator 
actions to be closed, with feedback to the operator of ille
gal actions. Second, the program must reject bad data 
entering the computer from sensors, data link, etc. This 
requires reasonableness checks, parity checking, error 
detection/ correction decoding, etc., as well as the logically 
complex processing required to reject bad sensor derived 
data. Third, the program must operate even though some 
system equipment has failed. The system design dictates 
whether useful system operation is possible with equip
ment failure by the amount of equipment redundancy, 
switching capability, etc. Fourth, degraded modes of the 
program itself must be available when less than the 
needed complement of computer hardware is available. 

The overall control of the program and data processing 
system is normally accomplished by an operator located 
at a special display position with remote computer con
trols. The operator typically may select program modifi
cations, eliminate program functions, restart the program, 
etc. Also he may order a reconfiguration of the system. 
Considerable programming is involved to provide the 
operator with sufficient information so that he can initi
ate the best action. The major rlifficujtips are in thp 

Executive (the Loader and Memory Allocation scheme) 
and in saving critical data (i.e., restart with data). 

Building not only a reliable program but also a program 
that supports reliable system operation is the most diffi
cult area in tactical systems programming. Typically 10-
30 percent of the code is used for these purposes, even 
though less has been accomplished in this area than else
where in the tactical program. Part of the problem is that 
features must be incorporated in the computer and other 
equipment, which in turn requires rather complete sys
tem/program design before equipment is designed. 

PROGRAM ORGANIZATION 

There have been many techniques implemented to 
organize tactical operational programs. The implementa
tion technique is influenced by several of the factors pre
viously discussed, such as: 

• The number of similar but different versions of the 
program caused by different missions, equipment 
configurations, and other site variables. 

• The projected changes in the data processing equip
ment during the life of an installation. 

• The projected changes in sensors and weapons dur
ing the life of an installation. 

• The requirements imposed by short response times 
concurrent with peak input loads occurring in an 
unpredictable manner. 

• The projected problems of producing and testing all 
of the programs as a result of the above factors, while 
retaining high program reliability. 

The size of tactical programs varies considerably but 
is typically 30,000 to 150,000 instructions (plus data). 
Because of the size, clearly the program must be orga
nized into "subprograms" which in turn must be orga
nized into one or more levels of "subroutines." The prob
lem first is to establish the boundaries of each subpro
gram and the method of communication between subpro
grams; then to establish similar rules for the communica
tions between subroutines (at all levels) within the sub
program. It is then possible to have one or more persons 
developing subroutines in parallel and, if the interfaces 
are adequately defined, to perform reasonable testing of 
each subprogram prior to integrating the subprograms 
into the overall program. Also, if the subprograms are 
properly defined, it is possible to accommodate changes 
in sensors, weapons, and even displays by modifying only 
one, or at most only a few, subprograms. Further it is 
possible to produce similar but different programs using 
some common subprograms plus new subprograms and/ 
or augmented existing subprograms. Program reliability 
is theoretically enhanced because the smaller number of 
subprograms get more operational use and can therefore 
be modular programming" (one of several uses of this 
over-used term). A typical tactical program may have 
from ten to thirty subprograms, one of which is the Exec
utive. Thp intPfsllhprogram rommlmirHtion tf'chnique 



involves passing messages (under control of the Execu
tive) between modules. Messages include both control 
information and data. If a multiple computer system is 
employed, then messages destined for a subprogram in 
another computer must go through an intercomputer 
transfer. 

Queues must be established to hold the messages until 
they can be processed. Some programs have one input 
and one output queue per subprogram, sometimes aug
mented by a priority designator to determine the prece
dence of message processing. Other programs have one 
input and one output queue per processor with priority 
designators; still others have one priority and one non
priority queue for input and for output per processor, 
with a first-in/first-out approach within a given priority. 
Clearly the problem of designing queues (including han
dling ~f -9V-eIiWwJ is a diftK:ul-tprobW-m, u-S-U-ally resulting 

COMPUTER 1 

1 - PRESS ACTION BunON 

2 - COMPUTER INTERROGATES 

3 - ACTION TRANSMITTED 

4 - DECODE ACTION 

5 - PACK INTERCOMPUTER MESSAGE 

6 - INTERCOMPUTER TRANSFER 

COMPUTER 2 

........... ~ 

L!J ................. 

7 - DECODE MESSAGE 

8 - PERFORM COMPUTATION 

9 - PACK INTERCOMPUTER MESSAGE 

10 - INTER COMPUTER TRANSFER 

I I - DECODE MESSAGE 

12 - PREPARE D!SPLAY BUffER 

13 - TRANSFER TO DISPLAY 

Figure 2-Events in processing a display request in a two computer 
system 

in queues large enough to handle peak load conditions at 
the expense of computer memory. 

In a typical tactical program, there are 500 to 2000 
intermodule messages processed per second, with 200 to 
400 messages waiting to be processed at one time. 

The method of organization described above requires a 
number of actions to be accomplished to complete a sys
tem task. As an example, consider a two computer system 
as shown in Figure 2. If a request for computation is initi
ated which must be processed by the computer not sen·ic
ing the display, a sequence of 13 events must occur. In 
addition to these events, the Executive must be utilized 
between 7 and 11 times (depending on the design). 

In Figures 3 and 4 more specific examples are given 
showing the events required to enter a NEW TRACK and 
to compute a TRIAL INTERCEPT. Here the individual 
subprograms are named and the action of each subpro
gram (including the Executive) is described. 

In all of these examples, the time from initial operator 
action to receipt of reply is from 150-400 milliseconds (in 
the specific systems used for these examples). 
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Ini tial Conditions: 

• Two processors with access to common I!lemory 

• Processor 1 handles Display; Processor 2 handles Intercept 
Campu ta tions 

• Track symbol has been "HOOKED" 

• BALL TAB symbol is over interceptor symbol 

• Display Operator depresses TRIAL INTERCEPT button. 

Sequence of Even t 5 : 

1. EXEC 1 - initiates display interrogation and receives reply 

2. EXEC 1 - schedules operation of display (OS) to process results 
of interrogation 

3. OS - decodes reply; prepares message for further display 
processing 

4. EXEC 1 - schedules OS 

5. OS - determines that Intercept Control Program (IC) is 
responsible; searches and finds track associated wi th 
ball tab; prepares message for IC; prepares message 
for Exec I 

6.. EXEC 1 - notes that EXEC 2 is required; prepares message for 
EXEC 2 

7.. EXEC 2 - receives message; determines need for IC 

8. IC - decodes message; extracts information on hooked 
!:E-.E9~J:_ :f.!='~_.~.~.~:f~_s;_ .. ~.~~!'J~? .~g_I!!P~J:~ili:tI...i _ !::!?'~!!];"!1§. ~9 
EXEC (because completion would exceed time away 
from EXEC criteria) .. 

9. EXEC 2 - schedules IC 

10. IC - completes computation; prepares message for OS 

11. EXEC 2 - notes that EXEC 1 is required; prepares message 
for S'<EC 1 

12. EXEC 1 - receives message; determines need for DS 

13. OS - decodes message from IC; prepares output to (several) 
output buffers 

14. EXEC 1 - initiates output buffer(s) 

Final Result: 

• Results of trial intercept displayed with amplifying informa
tion on readouts 

Figure 3-Typical events in processing a NEW TRACK INPUT 

If the time required in the Figure 4 example is 200 mil
liseconds and if the program processes 100 messages per 
processor in this time, then the average time per message 
is 15 milliseconds and about 7 percent of the message 
traffic during this time is related to processing this high 

Initial Conditions: 

• One processor is i::l opera t j on 

• Oisplay operator depresses ENTER :<IE\1 TRACK button 

Sequence of Events: 

~.. EXEC - i:1i t:'ate5 display i!1ter.!:"ogation and receives input reply 

2. EXEC - schedules operation of Oisplay (OS) 

3. OS - decodes reply; prepares message for further display 

processing 

4. EXEC - Schedules OS 

5. OS - determines that !~ocal Track':'ng (~T) is res?onsible ror 

processing; prepares message for LT 

6. EXEC - Schedules LT 

7. LT - enters position da~a, zero velocity, unknown category, 

new track "firmness, etc. into t rack stores; prepares 

message- fo!" OS 

8. EXEC - schedules OS 

9. DS - prepares output message for :-.lEW TRACK symbol and adds to 

output buffer 

10. EXEC - initiates output buffer 

Final Result: 

New ~rack symbol displayed at console 

Figure 4-Typical events in processing TRIAL INTERCEPT request in 
a two-processor system 
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INPUT - OUTPUT 

• Concurrent Opera ticn wi th Many 
Peripherals 

• Time-Unpredictable Inputs Requiring 
Response 

• Sensor or Data Link Derived Inputs 

• Amount of Precise OUtput Timing 

• Packed Words Containing Data and 
Identifiers 

• Character Strings 

DATA BASE 

• Size 

• Update Rate 

PROCESSING 

• Tasks In Process at Same Time 

• Subprogram Calls per Unit Time 

• Use of Multiply, Divide, Floating 
Point, Mu.l tiple Precision 

• Use of "Bi t Fiddling" Instructions 

• Character Oriented File Processing 

• Core Residency of Program 

• Time Away From Exec. 

RESPCfISE TIMES TO INPUTS 

TYPE OF SYSTEM 

LEGEND: 
Smaller 

Tactical 
Non-Tactlical 

Larger 

Figure 5-Relative characterists of tactical vs non-tactical data 
processing systems 

priority request (assuming two processors). Since the 
typical average wait time for processing is 50 millisec
onds, there are many low priority messages which can 
(and do) wait for relatively long periods before being 
processed. It is this concept, properly implemented so 
that all tasks are accomplished, which is sometimes 
referred to as "load smoothing." 

CHARACTERISTICS OF PROCESSING AND DATA 
BASE 

This section summarizes the characteristics of the 
inputs, the data base and the types of processing required 
to generate required outputs. In Figure 5 a comparison is 
made of certain of these characteristics for tactical vs. 
non-tactical systems. 

Typical inputs/outputs 

• Sensor inputs are derived from analog information 
which is converted into digital; hence, precision is 
limited for each item of data; the inverse is true for 
output data which controls some physical process. 

• Many inputs require a response to be output in a 
short time period; many of these inputs are unpre
dictable time-wise. 

• Concurrent operation with many peripherals is 
normal; data rates are high. 

• Many inputs are "cyclic" in that the data are 
replaced by new data in a roughly fixed cycle. 

• Inputs/ outputs are usually "packed" with variable 
length fields and identifying codes; character strings 
are uncommon. 

• "False" inputs are common from some types of sen
sors and radio data links. 

• Many high data rate outputs require precise timing, 
for example, display buffering, sensor control and 
weapons control. 

• Real time clock inputs are essential for control. 

Typical data base 

• Contains mostly variable length fields representing 
physical quantities, coded representations of status, 
memory addreses, etc.; character strings are uncom
mon. 

• Size is relatively small because much input data 
replace existing data. Rapidly changing data are 
normally in high-speed memory. 

• Often tables are packed in that each word contains 
multiple fields of variable length data items. 

R R R R 

100 millisecond time slice ~ 

1~~~qJ~--E: I~~~~tr 
TACTICAL ~ 

Input for II I/O fo II =. -_- -=-t Input for III r r_.,;;.. 

I Job I - 111---+---=.J..:..:Ob:.....-::.:II=--_--IIIIJO~~III 

c-----
LEGEND: 

Input/Output for I 

"TIME SHARING" NON-TACTICAL SYSTEM 

Executive Program in Operation 

I/O i\ction Started 

r/o i\ction Complete 

\,B,C, ••• Subprograms Being Executed 

~ote: Typical Subprogram executes 
Multiple Tasks associated with Many 
Jobs being Processed Concurrently 

El and 1-:2 : :~ubprogram E starts (£1 period), 
returns to exec. aftpr using time 
allowed, and completes (E2 period). 

Output Refresh of Displays Starts 

1/0 Interrogation of Glsplays 

• "RaIl Tab" Update for all Displays 

Figure 6-Typical timing ~equenceH fur tactical and nun-tactical 
systems 



Typical processing 

• Usually is highly "parallel" in that many jobs (say 
10-50) are being worked on in a short time period 
(say 100 milliseconds); not serial in sense that a job 
is worked on from start to finish except for I/O waits. 
(See Figure 6 for a simple timing chart.) 

• Complex method of intra-program communications 
is required involving many subprogram calls. 

• Subprogram is permitted only a short (10-25 millise
conds) operating time away from Executive. 

• Logically complex algorithms are required to process 
inaccurate and false input data; considerable search
ing is required, usually for "nearest within limits" 
rather than for equality. 

• Data formatting/ deformatting is common, making 
exiensiY£LU8!LOf'~hit fiddling'~j~sj;r_Qcj;jnns in _ .mask .. 
selectively set and clear fields, shift, etc. 

• Control of data base update is a major problem in 
multi-computer or multiprocessor systems; responsi
bility is normally assigned to one subprogram only 
for each table or file. 

• Building reliability into the program requires from 
10-30 percent of the code. 
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• Fields being processed are mostly short in length
one to 18 bits. 

• Relatively small use is made of multiplication and 
divide instructions; little use is made of floating point 
and multiple precision. 

• Table look-up is often used for "housekeeping" and 
for decode of inputs such as display action requests. 

CONCLUSION 

This paper has discussed the nature of tactical data proc
essing systems as it affects the computer program. The 
single most important problem for the program is the 
requirement for it to respond in very short times (50-500 
milliseconds typically) to many inputs which arrive at 
unpredictable times and which may peak in number at 
~myjiIDJh_Tpi~_xequir~~_~_Q!ogra_ITI_().!:g~LI!i?:ation whicb ___ _ 
combines common processing functions for better com
puter memory utilization while permitting the many tasks 
to rapidly occur that are required to process a typical 
input. 

The characteristics of inputs and outputs, the data base 
and the computer program have been described and 
compared with non-tactical systems. 
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INTRODUCTION 

A recent special issue of the Proceedings of the IEEE on 
computer communications! provides an excellent state
of-the-art report on the burgeoning field of digital tele
communications and computer networks. Included are 
papers on terminals, modems, errors and error control 
multiplexing, processors and computer communicatio~ 
networks. Many of the system elements and system con
cepts in Tactical Military data processing systems are 
similar to those discussed in the above papers but there 
are also distinct differences. The purpose of this paper is 
to identify the differences between the hardware required 
for Tactical Military Data Processing Systems and the 
better known hardware requirements for fixed commer
cial and strategic military data processing systems. As 
system designers will appreciate, it is not possible to 
address the hardware aspects independently of the overall 
system design concepts including the software design. 
Accordingly, some discussion of overall system design 
concepts is included as background to the discussion of 
the hardware requirements. Discussion of the software 
problems, however, will not be covered except as neces
sary in this context, since other papers will emphasize the 
unique software requirements of these systems. 

An attempt has been made to keep the system concepts 
as general as possible in recognition of the varying appli
cations among the tactical systems of the different serv
ices, i.e., Air Force, Army, Marine Corps, and Navy. Spe
cific examples will tend to emphasize the Navy systems 
solely because of the greater experience of the authors in 
the development of the Navy systems. 

TYPICAL SYSTEM CONCEPTS 

Typical tactical system 

Figure 1 is a greatly simplified block diagram of a typi
cal Tactical system. It consists of one or melre sensor 
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Figure I-Typical tactical system 

subsystems, a single command and decision subsystem, 
and one or more weapons control subsystems. Communi
cation with the outside world, i.e., other tactical svstems 
and higher level command systems, is usually handled by 
the command and decision subsystem using automatic 
radio or land line data links. 

Typical hardware found in the sensor subsystems are 
Radar, Electronic Warfare, Sonar, Optical and Naviga
tion sensors and associated preprocessing and display 
equipment. Sensor subsystems may vary from relatively 
simple manual entry systems to very complex automatic 
entry and signal processing systems using very high
speed, large scale digital processors. 

Functions of the command and decision subsystem 
include (1) the coordination of the data collection from 
the sensor subsystems and from external sources via the 
communication data links, (2) correlation of the data to 
provide a "clear" or filtered display of the tactical situa
tion to the system operators, (3) development of threat 
evaluation and alternative weapon assignment recom
mendations for the Commander, and (4) communication 
of the decisions of the Commander to the weapons control 
subsystems and to other tactical units. Typical hardware 
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found in the command and decision subsystem are gen
eral purpose digital computers, interactive graphic dis
plays and alpha/numeric readouts, A/D and D/ A con
verters, data link modems, and a very limited number of 
the more conventional computer peripheral devices. In 
contrast to the typical large scale commercial data pro
cessing systems which employ large numbers of auxiliary 
s~orage units such as tapes, drums, or discs and many off 
lme card and tape handling devices, the "pure" tactical 
system uses only that auxiliary memory required to load 
and change various operating programs. These include 
operational, maintenance and training programs which in 
most cases use no off line hardware except for historical 
record keeping purposes. 

Once the decision to employ a weapon is made, the 
weapons control subsystem generates the detailed ballis
tic or vectoring solution and launch orders and the 
weapon is launched or vectored. Typical weapons are 
guns, missiles, torpedoes, interceptor and attack aircraft 
and active countermeasures. Hardware for these control 
syste~s vary widely depending on the type of weapon, 
but, m general, most of these subsystems now use digital 
computers and associated interactive displays. 

The complexity of the tactical system may vary from a 
single sensor and a single weapon to the very complex 
multi mission systems employing many different sensors 
and weapons. 

In some cases the sensor or weapons control subsystems 
are physically separated from the command and decision 
subsystem. This requires specialized high speed data 
links using radio or land line communication circuits. The 
separated systems are typical of some of the transporta
ble ground systems of the tactical Air Force, Army, and 
the Marine Corps. This variation on the basic tactical 
system is shown in Figure 2. 

On the other hand, the sensor, command and decision, 
and weapons control subsystems installed on a single 
~o?ile platform such as a ship or aircraft having very 
lImIted real estate require as much consolidation as possi
ble. The stringent space and weight restraints dictate a 
much higher degree of integration among the subsystems 
and raise other very difficult technical problems not 
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encountered in the separated systems. A diagram of this 
variation is shown in Figure 3. 

Tactical support system 

Figure 4 illustrates a very different class of tactical 
systems which has its origin in commercial batch process
ing and management information systems. This class of 
systems provides data processing support to the higher 
level tactical commander in such functions as intelli
gence, communications, and logistics, or support to the 
local tactical unit in supply, maintenance and personnel 
acco~nting functions. These support systems typically 
reqUIre batch processing, maintenance of large files and 
information retrieval programs. An important disti;ction 
between these support systems and the other tactical 
systems is their data bases. In the basic tactical system 
much of the data base is volatile. Typically, the tactical 
system starts an operation with almost zero data base 
which then builds up to a maximum as the operational 
activity peaks and finally goes back to zero at the end of 
the operation. On the other hand, the tactical support 
system usually has a relatively large, stable data base 
which changes little from day to day. 

Typical hardware in these systems include large scale 
general purpose computers, fewer interactive displays 
than in the other tactical systems, a large number of aux
iliary memory devices such as magnetic tapes and discs 
and conventional off-line card and tape handling devices: 
~unc~ionally, the hardware in these support systems is 
IdentIca~ to ~any commercial and fixed military systems. 
The maJo~ differe?~e is that most of these support sys
tems reqUIre mobIlIty or transportability under adverse 
conditions and hence, the hardware must be designed to 
meet the same environmental conditions which will be 
discussed later for the other tactical systems. In some 
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Figure 3-Typical integrated platform system 
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Figure 4-Typical tactical support system 

cases, these support systems require colocation or a high 
degree of integration with the command and decision 
subsystem of a tactical system as indicated by the dotted 
lines in Figure 4. 

Other variations 

There are many other variations to the basic tactical 
system which involve combinations of the major varia
tions discussed above. In all cases, the driving force 
behind the system design is the nature of the tactical 
operations which will be discussed next. 

INFLUENCE OF TACTICAL OPERATIONS ON 
SYSTEM AND HARDWARE DESIGN 

The tactical systems described above are required to 
operate as a network of systems in a variety of tactical 
warfare operations. Since it is not possible in this unclas
sified paper to cover in any depth many of the tactical 
warfare operations, the discussion in this section will be 
limited to those generalized operational concepts which 
most significantly influence system and hardware design. 

Mobility and flexibility 

Perhaps the single, most important operational require
ment for the tactical forces is mobility. Figure 5 is a very 
simplified illustration of a hypothetical tactical situation 
involving air, sea, and ground forces. The several tactical 
systems shown are interconnected with a network of 
automatic tactical data links. Not shown for simplicity 
are the many other communication links between the 
tactical units and higher level or rear echelon commands, 
Ships and aircraft are continuously moving with respect 
to the area coordinate system. Although the ground sys
tems are usually fixed during periods of operation, they 
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Figure 5-Typical tactical operation 

must be capable of rapid repositioning by means of heli
copter, aircraft, truck or ship, frequently over rough ter
rain and during adverse weather conditions. In the 
absence of an air strip, initial positioning may only be 
possible by helicopter lift from a ship, or by ship to shore 
movement in an amphibious landing craft. 

The number of tactical units may change from hour to 
hour, day to day. Additional units may be assigned to the 
force or the mix of units may be changed as the operation 
changes. For example, as more ground forces are moved 
ashore from ships, or by aircraft after air strips are cap
tured or built, the number of ships may be reduced and 
the number of ground tactical systems increased. Aircraft 
on station must be relieved several times a day. If the 
operation continues over weeks or months, the ships must 
be relieved on station for refueling and supply replenish
ment. During this continuously changing situation, the 
readiness of the overall tactical force must be maintained. 
The mobile, continuously changing tempo of operations 
create a need for a high degree of flexibility and many 
technical requirements not usually found in a fixed net
work of interconnected computer system. Some of these 
requirements are: 

(1) Correlation of the positions of all friendly and 
enemy units in the area of operation and facilities 
for the resolution of conflicts caused by the obser
vation of a single target by more than one Sensor. 

(2) 3D coordinates of sensors and weapons must be 
converted to the coordinate system used by the 
local data processing system. This requires accu
rate alignment and calibration of equipment 
mounted on a single platform such as a ship or 
aircraft or accurate positioning and coordinate 
compensation for any separated sensors or weapons 
used in a ground tactical system. 

(3) Coordinate conversion from the local tactical sys
tems coordinates to a common area coordinate 
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system. The dynamic positioning of the mobile 
units requires accurate navigation systems in order 
to successfully achieve the correlation described in 
(1) above. 

(4) Facilities for communication between the computer 
equipped systems and the tactical units not 
equipped with data systems. This usually involves 
additional processing time and some additional 
hardware such as a D I A converter and display on 
the receiving end of a low speed data link. 

(5) Provision for rapidly adding or subtracting tactical 
units from the communications network without 
interrupting current operations. Each change repre
sents a step function change in the data which must 
be handled by each of tactical systems in the net. 

(6) Provision for the smooth "handover" of the tactical 
units from one system to another, e.g., shift of con
trol of an interceptor or attack aircraft from a ship 
to a shore based tactical system. 

The hypothetical tactical operation illustrated by Fig
ure 5 is only one of an almost unlimited number of possi
ble combinations of tactical forces. The tactical data sys
tems of each of the services are part of the U.S. general 
purpose forces which are required to operate globally. In 
most cases this requires that each system have the flex
ibility to operate independently or in combination with 
other tactical systems of its own service and the tactical 
systems of other services and our allies. In the communi
cation area, this requires a network organization which is 
designed to meet the essential, common needs of all par
ticipating tactical systems rather than to optimize the 
design for anyone system. This also requires a rigid 
standardization of performance specifications, word 
formats and operating procedures for all automatic data 
links used by the tactical systems. The requirement for 
world wide operation also requires that the hardware for 
the systems be capable of reliable operation over a wide 
range of environmental conditions. These environmental 
requirements which directly result from the mobility 
requirement represent a major difference between the 
military tactical hardware and the hardware used in the 
fixed military and commercial data processing systems. 

Continuous on-line, real time operation 

There are many so-called real time systems in opera
tion today. Some might consider a payroll to be a real 
time operation since the objective is to calculate the pay 
of an employee as of a certain day and deliver the pay 
check on that same day. The interval between the peri
odic pay calculations is in terms of a week or weeks and 
the tolerable delay time is in hours. An airline reservation 
system is a better example of a real time commercial 
system. A typical system2 provides a response time of less 
than three seconds to the inquiry of a ticket agent. In the 
tactical data systems there are many events occurring 
concurrently and asynchronously. Some of the events are 

created internally by the action of diverse portions of the 
systems; other events from outside the system, e.g., the 
motion of a high speed missile or aircraft or automatic 
communication from another tactical system. The system 
must handle time critical and time dependent functions 
and also respond to asynchromous external stimuli. 
Response time to operator inquiry of a few seconds (as in 
the airline reservation system) is acceptable for many 
functions but millisecond response to other operator 
actions is required. Functions such as target tracking, 
data base update, automatic communications, and weap
ons fire control require millisecond response and in some 
cases with microsecond tolerances. 

The real time operations of the tactical systems 
require that all of the sensor, weapons control, and com
munication equipment be electrically connected on-line 
to the system. Delays in switching these equipments in 
and out of the system or delays in transferring data by 
means of manual off-line handling to tapes, cards, etc., 
are not tolerable. 

Tactical operations require that the systems be oper
ated around the clock without interruption for long peri
ods of time, sometimes for days or months. This requires 
very high equipment reliability and redundancy as 
required to meet some minimum acceptable operational 
capabili,ty at all times. The system must be designed for 
several alternate modes of operation and "almost real 
time" system recovery and system reconfiguration when a 
casualty to any of the system elements is encountered. 
Ideally, this system recovery and system reconfiguration 
should occur in "real time," i.e., so that any delays in the 
operations are imperceptible to the operators required in 
the alternate mode of operation selected. At present, sys
tem recovery and reconfiguration is limited to time of 
reload of programs from auxiliary storage such as tape or 
disc and reconstruction of the volatile target tracking data 
base from own sensors or from target data from other 
systems by means of automatic data link. 

The continuous real time, on-line requirements dictate 
a multicomputer system with multiprogramming or mul
tiprocessing capability. In fixed commercial or military 
systems requiring continuous operation, it is possible to 
provide system reliability by operating redundant com
puters or completely redundant systems in parallel with 
the operating system. Examples of this are the airline 
reservation systems,2 the SAGE air defense system and 
some of the NASA ground support systems for the space 
programs. In most of tactical systems, however, the severe 
space and weight limitations rule out redundant operation 
which makes inefficient use of much of the equipment. 
An alternate design approach has been used successfully 
in the Naval Tactical Data System for over a decade. In 
this approach3 the system on each ship uses two or more 
identical computers and several identical displays and a 
minimum of idle or standby equipment. System reliabil
ity is achieved by taking advantage of the back up pro
vided by the use of multiple, identical equipments. The 
system is designed to make use of all the equipment to 
perform all fllncti()n~ at full capacity. hut can he recon-



figured rapidly in the event of casualty to operate at a 
reduced capacity (e.g., reduced number of tracks) for all 
functions, or full capacity on the most urgent functions 
(e.g., full surveillance capability, but reduction in the 
number of weapons which can be used). During periods of 
relatively low operational activity this same flexibility 
permits part of the system to be operated for training or 
maintenance while the remainder of the system performs 
the functions required of the operational situation at the 
time (e.g., surveillance and communication with other 
ships in the force). 

An exception to the above discussion is the airborne 
tactical system where the requirement for continuous 
operation is in terms of hours instead of days and weeks 
as in the case of the other tactical systems. The extreme 
space and weight constraints on the airborne system legis
late against redundant equipment. The emphasis instead 
is placeQori achIevmg me hardware relIabIlIty requireQto 
assure the high availability required for the relatively 
short mission duration. 

Man-machine interaction and time-sharing 

Although the real time requirements of tactical systems 
dictate extensive automation of functions, many decisions 
are made by the human operators and hence the man
machine interfaces are of major importance in system 
design. Operators must be provided with effective aids to 
decision making and operator actions must mesh 
smoothly with automatic machine operations. In most 
systems the operator interface is provided by one or more 
interactive CRT displays which time-share the computers 
in the system. At first glance, these time-sharing systems 
look very similar to many commercial time-sharing sys
tems which are now in use, but there are important differ
ences. In most commercial applications, the system and 
program are designed to insure completely independent 
operations by each operator, i.e., so that each user 
appears to have private use of the data processing facili
ties without interference from other users. In the real 
time tactical application, the system is designed to 
achieve a controlled, cooperative interdependence among 
several operators and the system. For example, an action 
taken by one operator must be immediately made availa
ble to other operators in the system to achieve the team 
effort required for many tactical operations. 

Adaptability 

Over the life of a tactical system there will be many 
changes in the nature of the tactical operations. Some of 
these changes are the result of changes in the expected 
enemy threat or changes in the tactics used to counter 
existing threats. New types of weapons, sensors or com
munication equipment may be substituted for the old. 
Certain operations (or functions) within the tactical sys
tem will require updating, change or replacement by new 
functions. Within the data processing capacity of the tac-
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tical system, this adaptability is generally accomplished 
by software revision. It follows that the data processing 
hardware design must be able to accommodate or adapt 
to such changes in function without hardware redesign or 
disruption of other ongoing functions in the system. The 
requirement for adaptability over the life of a system is a 
strong argument for modular design and hardware ex
pandability. For example, the computer design should 
allow for the addition of such modules as CPU's, directly 
addressable memory modules or I/O channels without 
any changes in the basic system design. 

HARDWARE REQUIREME:\"TS 

It is impractical to make an exact comparison of mili
tary and commercial data processing equipment because 
Qfj;he wide yariatio-.njn t_he characteristics of these eqill12~_ 
ments and because of the changes that have been made 
over the years. Since the military systems were the first 
major users of real-time and time-sharing techniques, 
characteristics of the hardware used in these systems 
were decidedly different than commercial hardware. 
However, over the years with increased use of real time 
systems by FAA, NASA, etc., using commercially availa
ble equipment, there have been many changes which 
closely resemble the functions found in military real-time 
systems. Today it is difficult to identify technical features 
which are clearly and universally unique to one of the 
other types of hardware. The discussion of the hardware 
requirements which follow will emphasize those features 
which generally are not found in commercial equipment. 

Requirements applicable to all hardware 

Environmental 

As was discussed earlier the hardware for tactical mili
tary systems must operate reliably for long periods of 
time under a wide range of environmental conditions. A 
detailed examination of the environmental specifications 
of the various services is beyond the scope of this paper. 
Discussion will be limited to some of the environmental 
factors which account for the major differences between 
the tactical military hardware and the commercial or 
fixed military hardware. 

The hardware of all the services must operate over a 
wide range of temperature and humidity and also with
stand severe shock and vibration. As an example of the 
difference in requirements, a typical military computer 
must operate over a 100 degree F range as compared to 20 
degrees for commercial. In addition, airborne hardware 
must be capable of operation at high altitudes and at high 
"G" forces. Ships hardware must operate under condi
tions of severe roll, pitch and heave and also withstand 
the corrosive salt water environment. Ground systems 
hardware must contend with sand, dust, very rough han
dling over rugged terrain and extreme storage require
ments. 
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When feasible, a controlled environment (e.g., air con
ditioning) is provided to improve operator efficiency or 
system reliability, but in most cases the equipment is 
required to operate satisfactorily with no long term 
damage in the event of casualty to the environmental 
control equipment. 

On the mobile platfor:r:n systems such as ships and air
craft, electromagnetic compatability becomes a major 
technical problem. For example, because of the limited 
real estate, high power radar and communication trans
mitters frequently must be installed in close proximity to 
sensitive receivers. The design option of widely spacing 
the transmitting and receiving antennas to reduce RF 
interference is not available as in the case of the sepa
rated tactical systems. 

The hardware for all of the systems and particularly 
for the mobile systems must meet severe size, weight and 
power limitations which require special packaging and 
cooling techniques not required in the hardware for 
commercial systems. To illustrate the size difference, 
large scale military computers including memory, CPU 
and I/O are typically packaged in less than 10 to 15 cu. 
ft. This is an order of magnitude smaller than the equiva
lent commercial computer. 

Meeting all of the above requirements is a major factor 
in achieving the high reliability required in the tactical 
military system and has a major impact on the cost of 
military hardware. An important factor is the extensive 
testing which is necessary to prove that the reliability 
requirements will be met in the operational environment. 

Logistics support 

The tactical military systems must be designed so that 
they can be operated and maintained by military person
nel in remote locations without ready access to field engi
neers or rear echelon repair and supply activities. This 
requirement for self sufficiency requires an approach to 
system and hardware design different from commercial 
systems. For example, maintenance documentation must 
be more extensive and diagnostics more highly developed 
for the military technician because of the absence of 
engineering backup in the field. Rapid repair requires 
extensive use of replacement modules and the design of 
modules must match the support philosophy used. On 
board repair of modules requires on board piece part 
support. Rear echelon repair of modules or throwaway 
modules require that spare modules be available to the 
technician. 

The maintenance philosophy differs widely for the 
various tactical systems and is strongly influenced by the 
nature of the operations. For example, Navy ships are 
required to operate for several weeks or months away 
from bases. The Navy maintenance policy is primarily 
on-board maintenance of all hardware with very limited 
rear echelon support over the duration of the ships opera
tion. On the other hand, most airborne systems have mis
sion durations of only a few hours and hence are normally 

designed for no on board repair during the mission but 
require rear echelon support upon return to base (e.g., to 
an aircraft carrier or shore air base). 

Computers 

Military computers are typically required to meet relia
bility requirements which are an order of magnitude 
greater than equivalent commercial computers. To meet 
this higher reliability under the environmental conditions 
discussed above, circuits must be designed to operate with 
much wider margins and use special components, e.g., 
lithium cores for memory to meet the temperature 
requirements. 

Some of the specific functional characteristics which 
are associated with military computers are: 

(1) Large, high speed, directly addressable memories 
are required since in most instances these systems 
cannot tolerate the delays of "rolling" information 
in and out from auxiliary memories. This is gov
erned by the requirement that many of the systems 
must respond to tasks within specific critical time 
frames. 

(2) Automatic system recovery and reconfiguration 
requires special hardware features such as small, 
read only memories to bootstrap the reloading of 
the operational program. 

(3) Since tactical systems are not designed for maxi
mum throughput but rather to respond to job 
requests within specific time intervals, the use of 
high resolution clocks and well-organized interrupt 
capability with many different states and priority 
levels is required. 

(4) Because of the large number and types of inputs 
and outputs to these real time systems the actual 
system operation is dependent upon efficient I/O 
operation. As a result there are normally many 
bidirectional, buffered I/O channels with separate 
access to memory. In addition, special I/O func
tions such as externally specified index, externally 
specified address and intercomputer operations are 
features in these systems. It should be noted that 
when commercial computers have been adapted to 
shorebased, real time systems usually there have 
been special I/O cabinets and multiplexers added 
to the computers to meet the abnormal I/O 
req uirements. 

(5) Since data used in these systems is usually bit ori
ented and byte oriented, word lengths are not nec
essarily dependent upon some multiple of a byte, 
but are determined by accuracy of required calcu
lations. Military computers have had word lengths 
of 14, 16, 18, 21, 24, 30, 32, and 36 bits. 

Displays 

The interactive CRT displays, which are widely used in 
the tactical systems, are similar to some of the displays 



found in the commercial time-sharing systems. There are, 
however, some differences in addition to the requirement 
for an order of magnitude increase in reliability over the 
commercial displays. For example, some of the displays 
are required to display raw sensor data (video) concur
rently with computer generated spots, symbols, and vec
tors. This requires very wide bandwidth deflection ampli
fiers and higher deflection speeds than required for the 
more conventional interactive displays, which display 
alpha-numerics or graphics. Typical tactical displays are 
required to display the tactical Hpicture" over a wide 
range of geographical coordinates; from the large area 
surveillance "picture" to the very short range "picture" of 
the local tactical situation, or an expanded "picture" of 
the area of action around4 a distant remote tactical unit. 
This requires a "smart terminal" (i.e., small processor in 
the di~lay) or a c0Inbination of some logic inthe display 
and the-rem~ii-tde-r o-{the proces-sIng In one of th-e system 
computers. The computer generated data on CRT dis
plays must be refreshed at a high rate to provide a 
"flicker free" picture, either by means of a small memory 
in the display, or from one of the system computers. 
Trade off between the "smart display" and displays 
driven from a central processor is influenced by the over
all system design. The "smart display" is usually found 
in systems requiring very few displays. In systems requir
ing many displays (e.g., 6 to 25) or interaction among 
many operators, it is usually more cost effective to drive 
the displays from central processors. The design of these 
display systems requires adequate consideration for cas
ualty modes of operation. This requires that most of the 
displays be designed with the flexibility to be used for 
several functions and the capability for rapid switching in 
and out of the system and for change in functions without 
program changes, e.g., change of function by a selector 
switch on the display which automatically changes labels 
on operator action buttons and readouts and informs 
computer of change of function. The design of the display 
hardware and software must also insure that the system is 
resistant to inadverdent operator error. 

Communications 

The real time, on-line tactical systems require auto
matic computer to computer communications without 
human intervention, except for network initialization or 
change in network participation. Extensive error detec
tion and correction is required to achieve reliable commu
nications over a wide range of noise conditions. This is 
particularly true in the case of the radio links where there 
are wide variations in error rates caused by changes in 
propagation paths or by jamming. 

There are two types of automatic data links used in 
tactical systems. One is used to net all the tactical sys
tems together, and the other is used to interconnect two 
widely separated subsystems, or as a control link to a 
mobile weapons systems, e.g., a ground to air link to con
trol an aircraft. 
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The data link used to net all of the systems together 
must necessarily be designed to rigid technical perform
ance specifications including data word formats. In addi
tion, the design and operating philosophy of each of the 
tactical systems in the net must be compatible with the 
design restraints of the common links. For example, the 
mobility requirements of many of the tactical systems 
require that the common operating net make use of radio 
data links. Because of the limited bandwidth available for 
these radio links, each data source in the net must pre
process the raw data in order not to monopolize the link 
or saturate the processors at the receiving end. 

On the other hand, the point to point subsystem inter
connecting and control links can be designed to provide a 
more optimum match between subsystems. When such 
links are required to be used by several different tactical 
systems, however, rigid standardization is required, e.g., 
tIiesl.iifac-e -to air data linKs-to aiicraIf wnlcIi-ffiusfl)-e 
controlled by either ship or ground systems. 

Functionally, the hardware in the military systems is 
identical to that used in many commercial digital com
munication systems. The major differences are in the 
higher reliability requirements and the facilities re
quired for flexible network control. 

Other peripherals 

In some of the tactical systems, large numbers of 
equipment must be connected on line to the system by 
means of AID and DI A converters. Functionally, these 
converters are identical to many converters found in 
industry, except for the requirement to achieve high accu
racy and rapid response times over a wide range of envi
ronmental conditions. 

Other peripherals such as magnetic tape units, discs, 
printers, punched card and paper tape devices, when 
used, are usually adaptations of commercially available 
hardware to meet the stringent environmental require
ments. 

SYSTEM STATUS AND TRENDS 

Systems 

The design, development, production and operational 
introduction of military tactical data processing systems 
has been and continues to be a difficult and challenging 
problem for both the military and industry. An indication 
of the difficulty of the design of these systems is that very 
few of the many systems under development since the 
mid 50's have survived the development cycle and 
reached operational maturity. There are many reasons for 
the failures but, in the opinion of the authors, the major 
factors are (1) premature obsolescence of the systems 
because of faulty systems design concepts which did not 
recognize the continuously changing nature of tactical 
operations, and (2) management of system development 
by people who did not understand the operational prob-
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lem or who had no actual experience with data processing 
systems or both. 

On the positive side, there are several tactical systems 
now being operated successfully. One such system is the 
Navy Tactical Data System (NTDS)3 which was first 
installed on 3 ships in 1961 and is now on 48 ships and 
planned for most future combatant ships. For over a 
decade this system has been operated reliably by Navy 
operators and technicians for long periods of time (for 
months in many cases) and with practically no support 
required from contractors' engineers or rear echelon 
repair activities. Since 1961 this real time, on-line system 
has continuously demonstrated the feasibility of: 

(1) multiprogramming in multiple computer systems 
(1-4 computers) 

(2) time sharing with many (up to 25) interactive CRT 
displays. 

(3) automatic computer to computer communications 
between ships using digital radio links, and since 
the mid 60's between ships, the Navy Airborne 
Tactical Data System (ATDS) and the Marine 
Corps Tactical Data System (MTDS). 

The major factors in the successful development of the 
NTDS were: 

(1) Continuous, active participation in the develop
ment by several key operational officers represent
ing the user. 

(2) Staffing of the project management office in the 
developing agency with several key officers and 
civilian engineers having some knowledge of the 
operational problem and! or prior experience in 
digital data processing. 

(3) Establishment, early in the development, of a Navy 
programming activity staffed with operational offi
cers and civilian programmers. This activity was 
initially under the control of the system developing 
agency but later assigned to a user command to 
support the operational ships. 

(4) Excellent performance by several key industrial 
firms and a Navy Laboratory in the development 
of systems hardware and software. The high relia
bility of the hardware from the beginning was a 
major factor in the rapid solution of early system 
and software problems. 

Development of the early tactical data systems concen
trated on the command and control and communication 
functions, i.e., the Command and Decision Subsystem of 
the overall tactical system. Most of the sensor and weap
ons control subsystems at that time were analog systems 
and the tie-in with the Command and Decision subsystem 
was made by extensive use of AID and DI A converters. 
Today most of the new sensor and weapons control sub
systems are being developed using digital computers and 
digital interactive displays. Much of the current systems 

development effort is to standardize the hardware and 
software of the various systems and better integrate the 
operational functions in order to achieve more effective 
and less costly overall systems in terms of life cycle costs 
such as training, software support, supply support, etc. 
This increased integration and standardization has cre
ated a significant management problem because of the 
greater interaction among the subsystems and the overall 
tactical system. Progress toward greater integration and 
standardization is dependent upon the solution of the 
system management problem, not the technical problems. 

In the system reliability area, the requirement for real
time system recovery is being implemented in a specific 
system and shows promise for widespread use in future 
systems. 

Hardware 

Computers and data processors 

In 1965 the authors3 suggested that the multicomputer 
system using multiprocessing computers appeared to be a 
competitor to the multiprogrammed, multicomputer sys
tem, but that actual experience was required to verify the 
performance of these systems before they could be seri
ously considered for use in real-time tactical systems. 
Enough experience has been accumulated with available 
multiprocessor computers to warrant their use in tactical 
systems. Acceptance of their use is slow as indicated by 
the fact that available multiprocessor computers are in 
many cases being multiprogrammed. This is a manage
ment, not a technical, problem. It is evident that multi
processing will be more widely accepted and used in both 
commercial and military systems. 

In applying LSI to military computers and processors, 
the major stumbling block appears to be the problem of 
testing and proofing the hardware. Because of the high 
reliability requirements over a wide range of environ
mental conditions and the relatively low volume produc
tion of military systems, it is highly probable that wide
spread application of LSI to commercial computers will 
precede its use in tactical military systems. 

Preprocessing of sensor data before transmission to the 
Command and Decision computers is usually done by 
very specialized high speed processors or combinations of 
special purpose logic and a general purpose computer. In 
the area of special purpose logic, it is likely that much of 
the hard wired logic will be supplanted by associative and 
lor microprogrammed processors as the reliability and 
cost problems are overcome, and applications become 
better understood. 

Displays 

Although there are many promising developments in 
display technology (e.g., large screen displays) it is 
unlikely that the interactive CRT display will be replaced 
in the foreseeable future as the "workhorse" display in 



the tactical systems. There will be evolutionary changes 
in these displays to increase their utility as a standard 
display in all subsystems and at the same time preserve 
the unique features required to match each operator to 
the system. An evolutionary not revolutionary policy is 
dictated not solely because the state of the technology but 
by the requirement to maintain a long term commonality 
of operator functions in order to maximize the effective
ness of operator training. There will also be an evolution
ary trend to automate more functions and reduce the 
number of operators in the system. 

Communications 

In commercial computer communication networks the 
trend is to do more processing at the terminals in order to 
minimi-zethe c-emm--l:lB-ication line costs. In the tactical 
systems, the trend will be the same but for a different 
reason, i.e., the limited bandwidths available for radio 
data links. 

There will be a trend toward adaptive communica
tions, i.e., automatic adjustment of the redundancy in the 
data link in response to changes in the error rates. 

It is expected that the tactical systems will make exten
sive use of satellite communications in the future. 
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Summary 

Because of the rapid increase in the use of multipro
gramming, multiprocessing, interactive displays, remote 
terminals and on-line communications in time-sharing 
and real time commercial and fixed military systems, it is 
clear that the functional characteristics of the hardware 
for these systems and the Tactical Military systems will 
tend to converge. The high reliability requirements of the 
tactical military hardware under a wide range of environ
mental conditions will continue to be the major differ
ence. 
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What's different about tactical military languages and 
compilers 

by RAYMOND J. RUBEY 

Logicon, Inc. 
San Pedro, California 

BACKGROUND 

Until recently, the programming for tactical military 
computer applications relied on assembly or machine
oriented languages in contrast to the widespread use of 
higher-order languages in commercial applications. In the 
past, the tactical military software development process 
was plagued with many problems, including the relatively 
high cost on a per-instruction basis, the long development 
time required, the necessity for highly-trained engineer
programmers, the non-transferability of the resultant 
programs, and the considerable difficulty of effective 
program maintenance. The military customer who had to 
pay the penalties resulting from these problems became 
convinced that at least part of the reason for the problem 
was the reliance on MOLs. As a consequence, the military 
customer provided the impetus and funding to apply 
HOL concepts and technology to the unique problems of 
the tactical military software environment. At the same 
time, KASA, which encountered the same problems in 
developing real-time software for space applications, took 
the same approach. The conclusions reached from the 
resulting HOL studies and developments has led the cus
tomer, in many cases, to insist on the use of a HOL unless 
it could be conclusively demonstrated that such usage was 
infeasible. 

TACTICAL MILITARY HOL ALTERNATIVES 

An organization beginning the development of tactical 
military software has several alternatives as to the HOL it 
can useo First; an existing commercial HOL, such as 
FORTRAN, ALGOL, or PLjI could be selected. This 
alternative has been universally rejected because of the 
limitations of these languages in tactical military pro
gramming. A second alternative is to select and modify a 
language originally intended for another application to 
make it suitable for the tactical military software envi
ronment. This approach was taken, for example, in the 
selection of a JOVIAL J3 subset and its modifications for 
the B-1 avionics software development. A third alterna
tive is to select a more specialized language that was 
developed in response to requirements of the tactical mili-
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tary software environment or the closely related real-time 
SPJi.c.e .S.QftFJHe.envir:QJ.H!1:l:mJ~. Th~ lan~ages in this cate
gory include the Navy's Compile~ M~~itor System-2·· 
(CMS-2), the Air Force's Space Programming Language 
(SPL), NASA's Computer Language for Aeronautics and 
Space Programming (CLASP), and NASA's HAL. 
Whether the second or third alternative is taken, the 
language must contain the facilities for performing func
tions not common in most commerical programming 
endeavors. Because of the different approaches of the 
language designers in solving the problems in the tactical 
military environment, the languages indicated above are 
significantly different with regard to the way these facili
ties are provided. The following paragraphs provide gen
eralizations about these facilities. 

TACTICAL MILITARY HOL FACILITIES 

A tactical military program development is a more 
varied activity from the software viewpoint than the typi
cal commercial program development. The tactical mili
tary programmer begins with an empty computer and 
must code his own executive program, I/O routine, sub
routine library, and diagnostic routines. Thus a tactical 
military HOL must provide the facilities which, in the 
commercial environment, are associated with systems 
programming. Of course many of the facilities in commer
cial HOLs are essential in tactical military HOLs, includ
ing arithmetic, conditional, looping, and transfer-of-con
trol statements. 

Besides dealing with the usual numeric data, a tactical 
military HOL must allow for the definition and manipu
lation of logical, Boolean, textual, and character data. It 
also must provide the facility for manipulating portions of 
data words down to a single bit as well as the usual full 
data words. All of the conventional arithmetic and Boo
lean operations on these portions of words should be pro
vided. The programmer uses this facility to operate on the 
varied inputs and outputs received and transmitted by 
the typical tactical computer and to create the needed 
data structures. 

Many of the calculations performed in tactical military 
applications involve the movement of objects in three-
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dimensional space. An effective tactical military HOL 
simplifies the programming of these calculations by 
allowing for the definition of appropriate arrays and by 
providing powerful non-scalar operators. Examples of 
such operators are vector dot product, vector cross prod
uct, and matrix multiply. 

No matter how rich in facilities a HOL is, there may be 
some functions that cannot be easily or efficiently per
formed. Thus many HOLs provide for easy regression to 
assembly or machine-oriented languages. If this facility is 
not provided, the object code generated by the compiler 
must be modified, which is more difficult and more likely 
to induce errors. 

A tactical military computer has specific locations 
dedicated to a particular purpose through hard wiring. 
Examples are the dedicated, fixed locations where the 
computer registers are automatically copied when an 
interrupt occurs. Through declaration statements, the 
HOL must provide for the association of programmer
defined symbols with such hardware locations and func
tions. Similarly, the HOL must allow the programmer to 
allocate the operational tactical military program and 
data to specific computer locations according to a 
declared memory map. 

The architecture of many tactical military computers 
and their application often require the use of fixed-point 
arithmetic in addition to or in place of the floating-point 
arithmetic that is universal in other applications. This 
requires that the HOL have facilities for the declaration 
of fixed-point data containing both integer and fractional 
parts, and for the utilization of such data in calculations 
with a minimum of programmer effort. The scaling opera
tions performed for fixed-point arithmetic calculations 
become an important part of the HOL semantics. The 
increasing use of floating-point architectures are likely to 
solve many of the existing problems before completely 
effective language and compiler solutions are found. 

The real-time nature of tactical military applications 
requires that suitable HOLs contain facilities for the real
time control of the programs. Facilities are needed to 
enable and disable interrupts, to correlate specific pro
gram actions with particular interrupts, and to indicate 
the required interrupt levels. Less obvious but equally 
important is the need for facilities to control the accessing 
of data by several levels of interrupts. For example, an 
array computed at one interrupt level should not be refer
enced at a higher level without checking that the complete 
array has been computed. 

The debugging and validation of a tactical military 
software system is the most expensive and difficult part 
of the software development cycle. A tactical military 
HOL must assist in these debugging and validation 
efforts. First, the language itself must have a minimum 
number of error-prone features or syntactic constructions. 
Second, it must enable the creation of a compiler that can 
perform a considerable degree of compile-time fault diag
nosis. Finally, it must provide for the generation of run-

time diagnostics, particularly those produced by simu
lated execution of the object code obtained without any 
changes in the object code itself. While such features as 
these are desirable in a commercial HOL, they are man
datory in a tactical military HOL. 

One problem that has not been completely solved in 
any existing tactical military HOL is the definition of a 
computer-independent and general input/output facility. 
This problem is caused by the widely varying input/ 
output devices in tactical military systems, the consider
able differences in the input/ output modes of tactical 
military computers, and the stringent constraints on real
time input/ output operations. Indeed, some language 
designs are based on the assumption that input/ output 
functions will continue to be coded in the appropriate 
MOL and therefore do not provide input/ output facilities. 
Other languages provide basic input/ output facilities lit
tle different from those provided in commercial HOLs. 
Regardless of the input/ output facilities in the HOL, 
many compiler implementations contain custom-tailored 
input/ output statements that are both computer and 
application dependent. 

TACTICAL MILITARY COMPILER 
CHARACTERISTICS 

A single commerical computer installation may execute 
a hundred programs in the course of a week; a single tac
tical military computer program, on the other hand, may 
be the only program executed in a hundred tactical mili
tary computers. While the savings in programmer labor 
made possible through HOL usage more than compen
sates for compiler inefficiencies in the commercial envi
ronment, this is not necessarily true in the tactical mili
tary environment. If a tactical military compiler gener
ates code that requires 50 percent more memory than the 
equivalent MOL program, then memories 50 percent 
larger for all one hundred computers have to be pur
chased. The efficiency of a tactical military compiler is 
usually measured by determining the increase in memory 
and execution time of the object code it generates com
pared with an. expertly-coded MOP program. A high effi
ciency, usually on the order of 80 percent for both time 
and space, is crucial to the acceptance of a tactical mili
tary compiler. Therefore, the typical tactical military 
compiler has more extensive optimization features than 
most commercial compilers. There is usually more 
emphasis on local optimization than global optimization 
because this approach appears to offer the biggest payoff 
at the lowest cost and because the effect of many global 
optimizations can be obtained by appropriate modifica
tions to the source code. 

The task of creating a highly efficient compiler is facili
tated because the usual emphasis on compilation speed is 
absent in the tactical military environment and because 
the compiler usually executes on a larger general-purpose 
computer rather than on the tactical military computer 
itself. This enables the use of optimization algorithms 



What's Different About Tactical Military Languages and Compilers 809 

that take a long time to execute and require a large 
amount of compiler storage. 

Many tactical military HOLs contain features that 
allow the programmer to control the optimization that the 
compiler performs. For example, the programmer may 
specify that space optimization is more important in one 
portion of the program, and time optimization in another 
portion. This is desirable because the minor-cycle portion 
of a tactical military program may be executed 50 times 
more frequently than the major cycle portion, and unless 
the appropriate areas are delimited, the compiler does not 
have sufficient information for effective optimization. 

Compilers for commercial applications are supplied by 
the computer manufacturer; tactical military compilers 
are often developed by the same organization that devel
ops the operational software or are supplied by the mili
taT~_CJlstmI1eI:,j¥hile _a,CQ!p.m~I:G.i~lj:QmQH~r _may Q~. \1:§~<i 
in hundreds of installations, a tactical military compiler 
may be used by only one or two organizations. The cost of 
tactical military compiler development can therefore be a 
significant portion of the total tactical military software 
cost. Considerable attention has been paid to methods of 
reducing compiler cost; in particular the meta-compiler 
approach has been under study. Although the meta-com
piler approach has shown considerable promise, most 
tactical military compilers have followed relatively con
ventional designs. Usually the code generation module is 
written so that it may be easily replaced when a compiler 
for another tactical military computer is needed. 

Because it receives much less usage than a commercial 
compiler, a tactical military compiler would be very simi
lar in reliability to the first release of a commercial com
piler unless special testing precautions are taken. Anyone 
familiar with the lack of reliability in early releases of 
commercial compilers can appreciate how much effort 
must be expended in tactical military compiler testing. 
Even with extensive testing, those responsible for the 
validation of operational tactical military programs pay 
considerable attention to the object code. 

FUTURE LANGUAGE AND COMPILER TRENDS 

The use of HOLs in tactical military software develop
ment will continue to grow, largely because of pressure 
from the military customer to reduce development cost, 
simplify maintenance, and provide visibility into software 
behavior. The recent rash of overlapping language defini
tion efforts will come to an end and language standardiza
tion will become more important, again largely because of 
pressure from the military customer. The language or 
ianguages that prove to be successful in large, significant 
tactical military software developments will have the 
greatest chance of being selected as the industry stand
ard, regardless of any theoretical virtues or faults. This 
will parallel the Air Force's selection of JOVIAL as its 
standard command and control language. 

The greatest improvement in languages will come in the 
feature~ alat aid- develop-ment-o(refiable oI;eratlonal 
software. Diagnostic directives, required redundant state
ments, and compile-time limit and validity checks will be 
added to existing languages and their use will become 
mandatory in an effort to reduce debugging and valida
tion costs. The current emphasis in language design will 
thus shift from defining succinct and elegant ways to 
describe the procedures that should be executed. Instead, 
the emphasis will be on creating forms that more clearly 
(and even redundantly) describe those procedures. 

The cost and long development times for tactical mili
tary compilers will be the chief inhibiting factor in the 
use of HOLs in tactical military applications. Efficiency 
considerations will grow less important as more improve
ments are made in optimization methods and as the cost 
of computer hardware itself continues to become cheaper. 

Finally, the tactical military computers themselves will 
become more suited to the HOL approach. Initially, this 
will take the form of computers whose organization and 
instruction set facilitate the writing of compilers. Ulti
mately, the tactical military computers will execute an 
HOL directly, obviating the need for a compiler. 





What's different about tactical executive systems 

by WILLIAM G. PHILLIPS 

Radio Corporation of Amer.ca 
Moorestown, New Jersey 

The program for a computerized command-and-control 
system is generally a combination of critically time-co~
strained real-time tasks, which directly control the tact!
calmis-sion--envilolIIllent;-and---non=-real--t-ime--t-asks,·--whleh· 
support the system. This computer program structure is 
the basis for determining the allocation of the total avail
able processing time for a complete mission cycle. 

TIMING ALLOCATION 

Since tactical command-and-contr~l systems (Figure 1) 
are triggered by a series of predictable and non-predicta
ble events, the computer-program task allocations must 
be designed for complete flexibility within the total avail
able processing time period. In the case of predictable 
event triggers, the design may be simple to the extent of 
repetitive processing of a single chain of tasks, called a 
"thread." In the case of unpredictable event triggers, such 
as special-threat target detections, the design must be 
more complex to the point of interleaving threads. The 
process of interleaving threads presents an interesting 
timing problem within this type of system because of the 
requirement that a real-time thread must complete its 
processing in a predefined critical time period. This time 
period is frequently a function of the design requirements 
of the interfacing tactical equipment. 
equipment. 

Figure 2 illustrates a processing sequence where the 
triggering events are predictably separated and therefore 
the thread allocations (PJ and their respective critical 
time periods (QJ are predictably separated. The slots 
which occur between threads (RJ are available for proc
essing of non-real time tasks. The real-time tasks (qo), as 
individual items, must all satisfy their individual time 
allocations within their respective critical time thread 
period Qi. This timing constraint can be represented by 
the following inequality: 

(1) 

where t(qij) is the time allocation associated with task qij. 
If the non-real-time tasks are also time constrained to a 

fixed completion period (Tp), then the general equation 
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for timing allocation within a complete processing 
sequence (Tp) is: 

.(2) 

which describes the inequality to be satisfied by the 
combination of real-time and non-real time tasks over the 
total available processing period, T p. This period repre
sents a complete cycle of tactical events, such as radar
track processing, weapons assignment and firing, and 
special-threat target processing. The critical time-thread 
period (Qi) of Ineq. 1 represents intervals of tactical 
events, such as radar-target detection, weapons designa
tion, and special-threat target-assignment processing. 

This time allocation can also be easily applied to non
tactical systems, which frequently allocate a range of time 
(Qi), in equal quantums, to a group of application tasks. 
Any unused time (RJ between the actual completion of a 
quantum period cycle, i.e. all process state tasks have 
completed their respective quantum period or execution 
(PJ, and the beginning of period Q i + 1 is allocated to 
system background processing such as on-line fault anal
ysis or some accounting procedures. 

The major difference between the two types of systems 
is the criticality of satisfying Qi in inequality (1). Non
tactical systems most frequently are responsible for the 
scheduling and processing of a group of non-related 
homogeneous tasks, which are not critically dependent 
upon when they initiate or complete processing. That is, 
the tasks will not have failed their intended purpose if 
they complete processing two or three seconds later than 
if they had been run in a "batch" environment. This 
philosophy can also be applied to some real-time systems, 
such as a communications network which, while a two or 
three second delay would postpone the completion or ini
tiation of a call, it would not cause the system to fail its 
intended "mission" of initiating and completing phone 
calls in sufficient time to be compatible with humanreac
tion speed. Tactical systems, on the other hand, are con
strained in time by high speed device interface require
ments which frequently must be satisfied within toler· 
ances no greater than a few milliseconds. Any perturba
tion to tactical task scheduling could cause these toler
ances to be violated, thereby possibly causing the 
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intended mission to degrade or fail. The degree of impact 
due to mission failure (criticality) is far greater in a tacti
cal system primarily because of the direct relationship 
between mission success and human lives. 

An added perturbation to the system-timing allocation 
is the introduction of the executive program tasks that 
support the scheduling and dispatching of the system 
tasks. This additional allocation can be represented by 
expanding Ineq. 2: 

(3) 
ij ik 

where t( e ij ik' is the time allocation associated with task 
eif or eik and t(rik) is the time allocation associated with 
task rik. 

This general inequality must be satisfied for timing 
allocation over the period Tp; it includes the real-time 
task times, t(qij); the non-real time task times, t(rik); and 
the executive task times, t(eij) and t(eik). We can also 
expand Ineq. 1 for the critical-thread periods (Q;) to 
include the executive tasks: 

Qi 2:t(qij)+t(eij) (4) 
ij 

It is apparent from Inequalities 3 and 4 that there are 
many unknowns: in addition to ascertaining the process-
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Figure 2-Processing time allocation non-interleaved 

ing-time allocations for the real-time and non-real-time 
tasks, we must also determine the time expenditures of 
the executive tasks. This is further complicated by the 
fact that executive-task durations may vary because of 
the varying types of services to be performed (such as 1/0 
scheduling), the type of real-time task scheduling (i.e., 
immediate with or without messages, time delayed, etc.), 
and the scheduling queue backlogs. Until all of these 
unknowns are determined, or at least closely predicted. 
Inequalities 3 and 4 cannot be credibly satisfied. 

A practical solution to this problem is to arbitrarily 
allocate a budget of a fixed percentage of the total availa
ble processing time (Tp) to the executive tasks ~t(eij) and 
~t(eilJ. A more precise procedure is to further allocate a 
fixed percentage of the available critical-thread period Qi 
to the executive tasks ~t(e;j). A typical allocation, at the 
beginning of system development, is 10 to 15 percent for 
both of these periods. As the development progresses and 
the task timings become more defined, the terms of the 
inequalities must be adjusted. This, in fact, is an excel
lent method of ensuring that the task design is meeting its 
timing allocations; for if the inequalities fail to be satis
fied, the system integrity is compromised, and the system 
must be redesigned. 

Real-time command and control systems differ in 
complexity. A simple system, with predictably sequenced 
trigger events, has its real-time-thread critical periods 
(Qi) allocated somewhat as in Figure 2, with the required 
condition that the following inequality be satisfied: 

(5) 

However, some systems are more complex because of 
unpredictable sequences of trigger events. These types of 
systems frequently require that real-time threads overlap 
each other, but that each thread must still complete proc
essing in its allocated critical period, as illustrated in 
Figure 3. This figure shows the critical real-time periods, 
Qi, overlapping the non-real time tasks, R i , naturally 
being delayed until the completion of all real-time 
threads. This allocation permits us to then concentrate on 
the critical real-time periods, Q;, and to process the low 
level, R i , tasks, in a background mode, if and when time 
is available during Tpo This overlapping (interleaving) 
process is described by the following inequalities: 

2:Q;>Tp (6) 
i 

Qi> 2:t(qij)+e i + Lt(q) (7) 

where e t represents the total fixed executive overhead 
time allocated for the period, Q;, and t(q) represents the 
tasks interleaved in Q;. 

This type of complex system requires that the executive 
program, through a scheduling mechanism, manage the 
interleaving process to ensure that inequalities 3 and 7 
remain satisfied during task processing. To accomplish 
this, the executive-program scheduling mechanism must 
be designed to manage a dynamic queue based on task 
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priorities and to resolve any timing conflicts between 
competing tasks across threads, as described by inequal
ity 7. 

It is not unusual to encounter system requirements that 
-dietate----thathe--4Hs-t---t-ask-wit-hin -a----tlH€aG,-fj-ITI +F-ig:ur-e-~~ 
and therefore the thread itself-shall be repetitively trig
gered at some frequency relative to the occurrence of an 
event; that is, the thread initiates a processing sequence, 
Pi' (Figure 3) repeatedly at some frequency after some 
initial event trigger. This may occur for three general 
reasons in a command and control system: 

(1) Periodic interface requirements with time-pulsed 
radars or other similar equipment. 

(2) Periodic interface requirements with display con
soles, which require refreshed data. 

(3) Periodic polling of interfacing equipments for input 
messages. 

In the case where a thread is scheduled in constant 
intervals, relative to a single event (i.e., the triggering 
event always occurs at the same time within each T 
• p 

mterval), the thread timing allocations in Figure 3 are 
identical for each succeeding Tp interval. Howev~r, in 
complex systems, the possibility exists that some periodic 
threads will be scheduled some constant frequency after, 
or possibly before, the occurrence of an unpredictable 
event. This case will then cause the thread critical alloca
tion times, Qi' to drift from one Tp period to another, as 
illustrated in Figure 4. This drifting would also occur for 
those cases where a thread was scheduled with a variable 
frequency. 

It is important to understand, at this point, that tacti
cal tasks are not amenable to a multiprogramming 
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Figure 4-Drifting critical time periods 
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scheduling technique because of their homogeneous func
tional properties. Unlike a commercial data center envi
ronment, where each task in the processing queue is 
completely heterogeneous and consequently is not 
dependent on the processing state of any other task; the 
tactical system tasks, within a thread, are dependent 
upon their predecessor/s to supply both data and initia
tion triggers. This dependency is required primarily 
because tactical tasks frequently interface with equip
ments which require time tagged data from other equip
ments. For example, it is unrealistic to execute a task 
which supplies data to a display console, prior to the 
completion of a predecessor task whose function was to 
pre-process the data from a radar buffer. 

Let us now summarize the four common types of criti
cal real-time tasks: 

(1) The dynamic task that must be scheduled-- ~t~ictly 
according to a priority sequence. 

(2) A periodic task that must be scheduled repetitively 
at a fixed frequency relative to a predictable event 
occurrence. 

(3) A periodic task that must be scheduled repetitively 
at a fixed frequency relative to an unpredictable 
event occurrence. 

(4) A periodic task that is scheduled repetitively at a 
variable frequency relative to a predictable event 
occurrence. 

Since a mixture of these type tasks may be required to 
complete processing within the same critical-thread 
period and since each task will perform a unique tactical 
function, a priority scheduling philosophy must be devel
oped, which will ensure the hierarchy of tasks in relation 
to one another. This is especially true in the case where a 
periodic task, and possibly its associated thread, is unpre
dictably triggered while a lower relative priority task is 
processing. Inequality 7 represents the total time allo
cated to a complete mix of real-time tasks over a critical 
processing period, Qj, assuming, of course, that random
interrupt processing is included in the appropriate alloca
tion; and therefore is the principal timing requirement to 
be satisfied by the design of the executive scheduling 
mechanism. 

EXECUTIVE DESIGN APPROACH 

The executive program, to satisfy the above timing 
allocations, must provide efficient mechanisms for per
forming the following functions: 

Scheduling critical real-time tasks according to a 
dynamically changing priority-sensitive environment. 
Interleaving processing threads. 
Monitoring the processing of all tasks and threads to 

ensure critical time periods and total available process
ing time periods are not violated. 
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Figure 5-Single-level queuing model 

If a unique task program is equivalenced to each timing 
allocation, q iJo in Figure 3, we can state the following 
general priority characteristics of threaded tasks in this 
type of command and control system: 

(8) 

where q(Lij) is the priority of task qij, and 

(9) 

where P(L i ) is the priority of thread Pi. 
Inequality 8 shows that tasks are always structured 

within their respective threads in descending priority 
order, independently dynamic. This priority structure 
differs considerably from most non-tactical systems, 
which contain tasks of different priorities within a single 
thread and the execution of any specific task is a function 
of both priority and associated I/O states. 

The reason for the difference is, again, because of the 
heterogeneous characteristics of tactical tasks versus the 
homogeneous characteristics of most non-tactical systems. 

As established in Eq. 9, the priority of thread Pi is dic
tated by the priority of its first task, q i1. These character
istics show that the only dynamically changing priorities 
in the system are those associated with the "lead" task of 

each thread; thus, a simple queuing model can be struc
tured to satisfy this scheduling requirement. Figure 5 
illustrates a standard queue structure in which the tasks, 
q ij (Figure 3), are randomly dispersed and are serviced by 
the executive according to their respective priorities. This 
queuing model will satisfy the task-scheduling require
ments of our system, but will not provide the executive 
with an adequate mechanism to monitor the thread criti
cal time periods for possible overrun conditions. 

This dynamic process of time budget management is 
probably the greatest single difference between tactical 
and non-tactical computer systems. The tactical execu
tive design must contain the capability to compensate 
automatically for as many perturbations to the processing 
norm as possible, while maintaining each critical thread 
period, whereas the typical non-tactical executive design 
logic usually will rely on an external operator to restore 
system integrity. The process of automatic time budget 
management contributes greatly to the sophistication of 
tactical executives, especially in the area of dynamic task 
queue maintenance. 

An approach to provide an executive time-monitoring 
capability is to structure the basic queue with time 
bounds which correspond to the critical thread periods, 
Qi' illustrated in Figure 3. The priorities of these time 
bounds could then be established according to the priori
ties of the threads they represent, Pi (Figure 3). All of the 
tasks associated with a thread, and consequently a thread 
critical period, would then be contained within the corre
sponding thread priority level in the queue, as shown in 
Figure 6. This structuring is possible because of the char
acteristics described by Eqs. 8 and 9. If we now associate 
an overrun time parameter with each thread level and 
with each task, it is possible to predict the probability of 
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Figure 6-Multiple-level queue structure 



achieving the required critical period constraint of Qi (Eq. 
7) and Tp (Eq. 3). If an overrun occurs at the thread level 
-i.e., Qi is not satisfied-the only recourse is to transfer 
to some error-processing state. However, it is simple to 
predict the varying probability of achieving Qi by care
fully monitoring each intra-thread task for an overrun 
condition. If a timing problem should arise, the executive 
program has the capability to temporarily suspend the 
interleaved Qi+ j tasks (Figure 6), which are processing 
within the P(L J thread priority level, in favor of keeping 
the P(L i) tasks within their time constraint, Qi' This is a 
simple process whereby the tasks, which are interleaved, 
are simply moved to their normal thread priority level, 
thereby allocating the entire critical period, Qi' to qi tasks 
only. 

For example, task q41 (Figure 6) would be moved out of 
the_thread-criticalperiod, _Q-3-.and inJQ the thread c_dtkal 
period, Q4' if task qa, was in a time overrun condi
tion, which jeopardized the completion of P(L a) tasks 
within the thread critical period, Qa. This methodology is 
possible because of the common priority structure of 
these type systems, as described in the following ineq ual
ity: 

(10) 

for a thread critical period, Q i. 
Inequality 10 states that interleaved tasks (qi+j) have a 

priority less than or equal to non-interleaved tasks, (qJ, 
~ithin the same thread critical time period (Q J. This is 
likely to be the case, except in the rare instances where a 
high priority task may be dynamically interleaved into a 
thread period, in which case the high priority task would 
be processed in priority order within the thread and the 
lower priority non-interleaved tasks could overrun their 
critical thread period. This requires a tradeoff on the part 
of the system analyst/ designer of the tactical priority 
structure to determine whether it is more important to 
satisfy a critical thread period or immediately process a 
high priority task. 

Under certain circumstances, a complete thread of 
tasks _ may require immediate processing because of the 
arrival of some unpredictable high priority event. If the 
priority of this event is higher than the thread priority 
level of the currently processing task, the executive pro
gram will initiate a special suspension process called 
"preemption". This preemption process is not unlike a 
multiprogrammed non-tactical system's interrupt logic, 
except that tactical system preemption takes place at the 
thread level (i.e., an entire group of tasks is interrupted), 
while most non-tactical systems interrupt at the single 
task level. This thread level preemption evolves from the 
functional properties associated with a tactical thread. 
For example, if a currently processing thread's primary 
function was to load a launcher and fire a missile, and at 
the instant of load, the computer system, by virtue of 
some event, decided to suspend the thread, the preempted 
thread may actually be recalled to support the preempt-

What's Different About Tactical Executive System 815 

ing event by reloading the launcher and firing at another 
target. Thread level preemption then requires that the 
tactical executive scheduling logic be capable of suspend
ing and awakening multiple tasks simultaneously. It is 
intuitively obvious from the previous scheduling queue 
structure discussions that a preemption could occur as the 
direct result of (1) the current processing task requesting 
the scheduling of a higher-thread-level successor, or (2) 
an external interrupt from a decrementing clock or an 
input/ output operation. The most frequent cause for 
preemption is the arrival of an external interrupt from 
another computer subsystem announcing "special-threat" 
target detections. This event arrival will cause any proc
essing task, and its associated thread, to be suspended 
during normal executive interrupt processing, and the 
appropriate higher priority event processing thread will 
be pl~e_~d into its a,pprQ.P:ri~te Q!i()Xity posHi9nt!!Jh~ 
scheduling queue. The executive will then examine the 
scheduling queue in search of the highest priority pending 
task (which in most cases would be the suspended task). 
In this hypothetical case, however, the highest priority 
pending task is the new arrival. This special case causes 
the executive to preempt the previously interrupted 
thread/task and save all registers and volatile data-base 
contents. Processing control is then transferred to the new 
candidate. The executive then increases the priority of 
the preempted task to the highest within its predefined 
thread level. This procedure ensures that the preempted 
task is "awakened" prior to any other pending candidate 
selection in its (the preempted tasks) thread priority 
level. 

This scheduling logic and queuing model enables the 
executive program to manage the critical processing peri
ods, tp (Eq. 3) and Qi(Eq. 7): to provide instantaneous 
response to special high priority events while maintaining 
the system integrity; and to permit task interleaving 
between threads. 

Let us now examine periodic task scheduling require
ments which are represented by either of the following 
process initiation triggers: 

or 

j 

ti=t1+L~ti 
i~l 

(11) 

(12) 

Eq. 11 is the scheduling-time calculation for determining 
when to begin processing predictable periodic tasks. 
This is obvious because the term t1 represents the first 
time the task was processed and :1ti represents the fixed 
frequency; therefore, the next processing time will al
ways be initiated some ~t factor after the first process
ing time. These types of periodic tasks are scheduled 
for processing in an identical manner to non-periodic 
tasks, as earlier described. 

Eq. 12 represents the scheduling time required for un
predictable periodic tasks. This is evident because the 
term ti is the last time the task was processed and ~t 
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is a constant time increment, therefore in the event the 
last processing time t i was triggered by a random event, 
this type of task would not always be scheduled in exact 
flt intervals relative to the first scheduled time. As men
tioned earlier, periodic tasks may be more critical than 
nonperiodic tasks, especially those represented by Eq. 
12. This then requires that periodic tasks must begin 
processing in relation to their relative priority, when com
pared to all other system tasks. The executive program 
could satisfy this requirement by inserting all periodic 
tasks, which are ready for processing, per Eq. 11 or 12, 
into the scheduling queue, according to their thread level 
and priority. This technique will avoid having high pri
ority pending tasks delayed because of lower priority 
periodic tasks instantly being processed upon achieving 
their respective scheduling times. 

We can represent this design concept in Figure 7, 
where the "periodic waiting queue" is a "holding table" 
of unordered frequency dependent tasks awaiting their 
scheduling times, (t;), as represented by Eqs. 11 or 12. 
Periodic tasks are selected from the "periodic waiting 
queue" and inserted into the scheduling queue according 
to their respective thread level and priority; i.e., they will 

compete for processing time with the entire set of system 
tasks. 

CONCLUSIONS 

The performance criteria for today's sophisticated tac
tical Command and Control systems imposes unprece
dented requirements on the design of both the hardware 
and the software which control the systems. The most cri
tical aspects include the time tolerances associated with 
the scheduling; dispatching and processing of tactical 
tasks, and the dynamic attribute of an ever changing, 
highly unpredictable tactical environment. The execu
tive program, which is the nucleous of any tactical system, 
must be designed to operate not only in the classical 
non-tactical environment, but must additionally con
tinually monitor the critical time periods associated with 
task group (threads) processing and automatically com
pensate, if possible, for any overruns. The executive 
scheduling and dispatching mechanism must also be suf
ficiently flexible to suspend and subsequently awaken 
groups of tasks in the event of unpredictable high pri
ority event arrivals. These dynamic attributes of a tacti
cal executive set it apart from the typical non-tactical 
executive, which operates in a well structured and fairly 
predictable environment, however it is obvious that 
many similarities do exist and in fact frequently out
weigh the differences. Although most of the techniques 
discussed here are not new to the computer sciences, 
the method of implementation to solve the tactical prob
lem is noteworthy. Most of the system characteristics 
described in this paper are representative of the U.S. 
Navy's AEGIS program presently being developed by 
RCA Corporation. 
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COMPUTERS IN THE CONGRESS 
Ernest C. Baynard 

"It must be remembered that there is nothing more difficult 
to plan, more doubtful of success, nor more dangerous to 
manage, than the creation of a new system. For the initiator 
has the enmity of all who would profit by the preservation 
of the old institutions and merely lukewarm defenders in 
those who would gain by the new ones". 

--- Niccolo Machiavelli, The Prince (1513). 

INTRODUCTION 

Information is the lifeblood of the legislative process, yet Con
gress has not exploited computer technology to meet its needs. 
Present-day computer technology, applied to the legislative pro
cess, would have a dramatic impact upon the effectiveness of the 
Congress. Most importantly, computers applied to the budget 
and appropriation cycle would provide information concerning 
budget requests and the nature and effectiveness of Federal ex
penditures far beyond the capacity of traditional data processing 
procedures. There are other areas of computer application -
improving retrieval of reference and historical data -- an effective 
bill status system -- administrative improvements in the offices of 
Members of Congress. Applications in these areas that interface 
with the substantive legislative process is where Congress will 
obtain the true advantage of the computer. 

Congressional payrolls, equipment inventories, and other 
"housekeeping" applications of computers have come to Capitol 
Hill in recent years. There have long been discussions of broad 
application of computp-" to the Congress. However, the first 
formal effort to bring this abl)ut began in 1965, when Congress 
established t~le Joint Committee on the Organization of the Con
gress to stl'jy means by which its operations could be improved. 
More effective legislative control over the budget and Federal 
expenditures was a priority item of the Committee. 

Congressman Jack Brooks, Democrat of Texas, the leading 
congressional proponent of effective and efficient use of comput
ers, was instrumental in adding language to the committee's 

. -reporftnat recommended the development of a sophIStICated 
computer system to support the budget cycle in both the Execu
tive and Legislative Branches of the Government. Legislation 
implementing the Committee's recommendations was approved 
by the Senate, but the House failed to act and the Committee was 
dissolved in 1968. In 1969 January, Brooks introduced legislation 
aimed at getting congressional computer operations off the 
ground. But by then the House Rules Committee, which must 
give approval to legislation to reach the Floor for debate, had 
assumed responsibility for congressional reorganization and con
sidered computers as falling within its jurisdiction. As a result, 
this legislation, although approved by the House Government 
Operations Committee, did not get to the Floor of the House for 
consideration. 

Fortunately, however, the Rules Committee bill, which Con
gress finally adopted as the Reorganization Act of 1970, included 
the language concerning computers which Brooks had previously 
recommended. Thus an affirmative mandate was established call
ing for cooperation between the Executive Branch (represented 
by the Office of Management and Budget) and the Legislative 
Branch (represented by the Comptroller General), in the devel
opment of a computer system to support the budget and appro
priations cycle. 

However, progress has been painfully slow and at times dif
ficult, if not impossible, to observe. The decisive steps necessary 
to exploit the power of computers in the Congress have not been 
taken. All the necessary ingredients are available. The resources, 
the expertise in both computers and in the legislative process, are 
available for the asking. All that seems to be lacking is initiative 
on the part of key officials in the support units of the Congress, 
and a comprehensive plan detailing the flows of data that are of 
value to the Congress and the extent these data are susceptible 
to modern data processing techniques. There is no plan in exis
tence outlining who in the Congress should do what to make the 
computer systems Congress needs a reality. 

There is an equally important problem -- the need to describe 
this plan in language that people who are not computer techni
cians, peopie iike Congressmen and their staffs, will readiiy 
understand. This is no altruistic requirement. Congressmen are 
zealous of their prerogatives. "Big" money is involved. Members 
will want an explanation of the product before Congress writes 
the checks. 
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Accordingly, this paper has two purposes. First, it is an at
tempt to explain computers and their relationship to Congress in 
simple language that laymen might understand. Second, it is to 
provide a rough "discussion draft" that could be altered or re
fined by computer experts and those involved in the legislative 
process, or, in fact, by anyone who might wish to make a contri
bution. Hopefully this might ultimately lead to development of 
a coordinated and comprehensive approach to congressional 
computer system development. 

THE COMPUTER 

Computers -- or, in more precise terms, electronic data pro
cessors -- as their name implies, process data. Information is 
some recallable or communicable tidbit of data that is oriented 
to the needs of a specific person or persons, for an identifiable 
purpose, at a specific time and location. 

A computer is a very highspeed adding machine, commonly 
using binary (base 2) numbers instead of decimal (base 10) num
bers. 1 is 1, 2 is 10, 3 is 11, and 4 is 100, etc., etc. Using binary 
numbers makes it easy for computers to add and subtract. To 
mUltiply can be to add repeatedly. To divide can be simply to 
subtract repeatedly. 

The potential of the computer flows from this highspeed com
putational capacity, coupled with the ability to compare numbers 
according to some predetermined order or sequence. 

These two seemingly limited functions, computing and com
paring, can theoretically be structured into any nonintellectual 
thought process of the human mind. A very simple example is the 
check reconciliation process, known to practically everyone. The 
computer, by a series of programmed instructions, calls each 
check up for examination. After feeding both the information on 
the check stubs and the returned checks into the computer via 
cards or tapes, the computer compares the number of the check 
stub with the number on the check. The computer scans the 
numbers. If the first number is less than the number on the check, 
the program "loops" back to repeat the comparison on the next 
number, and so on until the numbers on the stub and the check 
match. The amount of the check is then, by a simple follow-on 
computer operation, subtracted from the balance and the next 
check number is brought up for comparison. 

This basic concept is·simple. The structuring of "software" -
the body of instructions and codes that direct the computer -
almost always becomes a complex, tedious, time-consuming, and 
costly operation, with the quality of the result depending upon 
the capability of the programmer. 

Computers can process data into information of a quality and 
at speeds impossible to obtain from traditional data processing 
methods. A medium-sized computer reconciles the Govern
ment's checkbook on a current basis -- a task previously employ
ing hundreds of clerks who were usually months behind. Larger 
computer systems, properly designed and coordinated with the 
sources of data of value to the Congress, can be applied with 
equal efTectivl:lIess to key facets of the legislative process. 

Before discussing the use of computers in Congress, certain 
fundament ... l policies must be recognized. 

POLICIES PROTECTING THE INTEGRITY OF THE 
LEGISLATIVE SYSTEM MUST GOVERN THE APPLICA· 
TION OF COMPUTERS IN CONGRESS 

• The legislative process is a direct reflection of our democratic 
form of government. No computer should be used in any way 
to alter, or in any substantive sense compromise, the rules of 
the House or Senate or the basic parliamentary procedures of 
the Congress. Computer concepts must be moulded to meet 
the needs of the Congress. The Congress must not be subordi
nated to computers. 

• Computers must be used to improve the quality of informa
tion available to Members and enhance their decisionmaking 
capability. Through improvements in the quality of informa
tion available to Members and committees of Congress, 
higher quality decisions, directly benefiting the nation, can be 
made by the individual Members. Computer applications that 
might dilute the decision making power of the individual 
Member or interfere with his representative capacity cannot 
be tolerated. 

• In the design and development of computer systems for use 
in the Congress, no arbitrary restrictions or restraints affect
ing the ultimate availability of data to all Members of Con
gress should be allowed. 

• The committees of the Congress must control the determina
tion of their informational requirements. There are only three 
acceptable responses to the request of a committee of the 
Congress for data processing capacity. First, "Yes, the system 
now in use has the capacity"; Second, "Sorry, the capacity 
requested is beyond the state of the art"; Third, "Sorry, the 
system now in use does not have the capacity, but could be 
improved or extended at the cost of 'X' dollars. If you can 
obtain this additional funding for us, the data you request will 
be provided". 

Under this approach, the capacity of computer systems 
available to congressional committees will depend directly 
upon the state of the art and the ability of the committee 
requiring information to obtain the resources needed to pro
vide the capacity. 

It is unrealistic to assume that any committee having policy 
control over any aspect of computer system development 
should limit or deny any request of any other congressional 
committee. 

• Computer systems will be costly, but if system development 
is properly coordinated and carried out, benefits from com
puter use will be well worth the cost. No computer system 
should be introduced in Congress without the appropriate 
Committee of Congress first requiring a full explanation of 
the computer output in language the average Member can 
easily understand. Only on the basis of easily understandable 
explanations of the computer capacity to be provided should 
the Congress agree to the substantial expenditures inherent to 
introduction of computers into the legislative process. 



• Extensive periods of time are often required to develop com
puter systems. It is therefore vital to avoid distortion of the 
effort to get quick results in order to justify the expenditures, 
when the distortion compromises the ultimate quality of the 
system. 

• It is also fundamental that the Congress, in the procurement 
of computer systems, should follow the same policy consider
ations and businesslike management practices that have been 
laid down for the Executive Branch under Public Law 89-
306. Of particular importance is the mandatory constraint 
that hardware should be procured under competitive condi
tions. 

APPLICATIONS OF COMPUTERS IN THE CONGRESS 
FALL INTO SlY-CATEGORIES 

Computers Can Provide the Members and Committees of the 
Congress with Better Data about the Budget and Appropriations 
Process 

Attempt to obtain data concerning the funds available during this 
fiscal year for any program in the Executive Branch. A response 
could take days, or eveli weeks. Most probably the materials 
obtained would be very general and limited in amount. 

Broaden your request to include the amount in the budget for 
the coming fiscal year covering this specific program. Or ask 
about the funds expended in prior years, the number of personnel 
employed, the results achieved, the statutory authority, and other 
rudimentary data regarding the program. You will find that 
weeks can elapse before any material is received. 

On a more general basis, make a request for the total sum being 
expended for some particular category of expenditures, such as 
education. Request data about specific types of expenditures, 
such as travel on a governmentwide basis. There will be a similar 
delay, if, in fact, it is possible to obtain the data at any time in 
any form. 

Relatively simple requests for data concerning the budget, just 
as outlined above, are preliminary to any evaluation regarding 
the need for, or efficiency of, any Federal program. 

Through the use of computer techniques, a broad variety of 
data would be readily available within a period of a few hours 
concerning any facet of government operations. The day a new 
budget is submitted to the Congress, the committees and individ
ual Members could obtain data concerning those facets of gov
ernment operations, as reflected in the budget, of specific interest 
to them. They would not have to grapple hopelessly with the 
telephone-book-sized Budget Appendix. 

Accompanying the basic fiscal data (what agency is to obtain 
how much for what purpose) would be the ability to obtain a 
limited, but important, number of basic evaluations. As an exam-
pIe, a Government Operations subcommittee could obtain, on the 
day the budget was submitted to the Congress, a printout of the 
funds allocated to each program in each of the departments and 
agencies under the subcommittee's jurisdiction. These funds 
could be broken down under the traditional object classification, 
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indicating the amount to be spent for travel, personnel, etc., etc. 
Accompanying this breakdown could be a comparison with the 
funds available for these programs during the prior fiscal year. 
Immediately available would be data as to what programs in
volved increased expenditures, the areas of activity in which the 
increased expenditures would fall, and the percentage differences 
from prior years. 

With this data could be a statement of statutory authority 
corresponding to the specific programs, a present and projected 
breakdown of personnel by as rating, together with the ability 
to develop input-output indexes to indicate changes in opera
tional efficiency of programs as a whole. The same data, but in 
differing formats to reflect the specific requirements of the legis
lative and appropriations committees, could be available within 
the same time frames. 

With data of this nature readily available, it would be possible 
for Congresst6- slgnHi"canify Improve its corliro16ver-PederaI 
Government fiscal operations. On a "follow-on" basis, in the 
years to come, advanced data processing techniques could be 
used to develop a sophisticated analytical capacity that would 
assist Congress in evaluating the justifications for expenditures 
involving the various programs under way in the Federal Gov
ernment. In the technical area, such evaluations would be a major 
responsibility of the Office of Technology Assessment which the 
Congress has recently established as a part of the Legislative 
Branch. 

In very general terms, evaluations or assessments would be 
made by using historically-oriented reference or opinion data to 
evaluate and analyze the budget data. Example: Suppose that a 
NASA budget request for $10 billion were before Congress to 
send spaceships to Mars to collect rock samples. Among other 
things, the Congress would want to have expert opinion data 
reflecting the opinions of geologists as to what might be learned 
from an examination of the the rocks. The Congress might well 
wish to evaluate historical and reference data as to the extent that 
knowledge had been gained when rocks had been collected on the 
moon. 

Through Use of Computers, Congress Can Obtain More Effec
tive Access to the Vast Store of Historical and Reference Data 
Essential to the Evaluation of Legislative Proposals and the 
Budgetary Requests of the Executive Branch 

Even assuming that you have reliable, current fiscal data con
cerning an identifiable segment of a Federal program, to assess 
ongoing and proposed new programs, and the efficiency of the 
operations that are involved, requires a research capability to 
obtain reference or historical data on the basis of which judg
ments can be made. 

The contemporary testimony of witnesses before Congres
sional committees, at least in the form that it has been presented 
traditionally, is not susceptible to computer techniques. How-
ever, the prior testimony of \'litnesses and other experts, and the 
almost infinite store of knowledge in the Library of Congress and 
other depositories is "on call". It is needed by the Congress to 
properly evaluate the budget and other matters flowing through 
the legislative process. 
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The extraction of historical and reference data is a difficult; 
time-consuming process now. library of Congress researchers, 
following traditional methods of past decades, examine a series 
of bibliography cards to locate data pertinent to a request. 

In contrast to this inadequate approach, computers can be 
employed. The Library of Congress, without adequate funds, has 
been working in this area for years. Modern library science tech
niques aid the researcher in locating the desired data. Library 
bibliography cards can be computerized so that key words identi
fying the data requested will be matched up with synopses of 
books and periodicals and other materials, allowing for location 
of the data in minutes, when manual search would have taken 
hours or days. 

Computers do not like unstructured data. Their application to 
historical or reference material, such as in the Library of Con
gress, will be a difficult and costly job. But through their use, 
substantial improvement in access to this type of material can be 
obtained. 

Computers Can Be Used to Develop an Effective Bill Status 
System for the Congress 

At present, a Member's office or a committee must make at least 
five or six calls to determine authoritatively the status of a legisla
tive proposal. This is a time-consuming, error-provoking process. 
A sophisticated bill status system, utilizing computers, can pro
vide a status report on all legislation with one telephone call to 
a centralized bill status operational center. A computer system 
operator, given either the bill number or the subject matter of the 
legislation of interest, could query the system and provide a short 
response. Example: "H. R. 1234 is pending before the House 
Armed Services Committee; no action is scheduled at this time". 
If the Member or staff member needed additional information, 
the operator could obtain a "printout" from the computer system 
of all information relative to that proposal. This would include 
the text of the bill, its author, action taken, references to the 
reports of various agencies, and other data concerning the pro
posal that an individual would need to make at least an initial 
assessment of the legislation. Requested printouts would be ex
tracted from the system in the computer room and delivered to 
the Member's office. 

After the system had been established, terminals could be in
stalled at various locations on the Hill where printouts could be 
obtained. Ultimately, should the House or the Senate feel that the 
cost could be justified, terminals could be installed in each Mem
ber's office. 

Computers Can Also Be of Some Possible Immediate Help in the 
Operation of Individual Members' Offices 

In discussing computers in the offices of the individual Members 
of Congress, a clear distinction should be made between -- the 
overall development of computer systems that will benefit all 
Members of Congress -- the linkage between these systems to the 
offices of individual Members for purposes of transmitting data, 
and -- computer systems within the office to process data exclu
sively for the individual Member. 

It is academic to discuss providing individual Members with 
information as to the (1) budget and appropriations cycle, (2) 
historically-oriented research or reference data from the Library 
of Congress, or (3) data from a bill status system, until these basic 
systems are developed and are in operation. 

Aside from the installation of terminal or computer units in 
individual Members' offices to satisfy their needs for data from 
the systems enumerated above, computers don't offer any broad 
or immediate potential to the individual Member. However, there 
are some applications that would be helpful. 

There is a present possibility that a computerized filing system 
could act as an adjunct in the development and maintenance of 
the Member's constituent mailing lists and also form the "base" 
for ultimately bringing into his office direct computer access 
capability with the systems referred to above. 

Using a computerized filing system, a secretary would type, on 
an electric typewriter linked with a computer, the name of a 
constituent writing or contacting the Member. A "write-out" 
would immediately show whether the individual had previously 
written or contacted the Member, the subject matter of the letter, 
and the date of the response. 

Incident to the final answering of the constituent's letter or 
request, in lieu of filing a copy of the response or noting the 
response on a file card, the secretary, using the same method just 
described, would add the identifying information as to the letter 
to the data stored in the computer for future access. The name 
could then be added to the permanent mailing list under subject 
matter categories, or could be printed out for whatever purposes 
the Member might require. 

Computers Can Be Used to Improve the Communications Link
age Between Members and Their Constituents 

Computers can be used to vastly improve the maintenance of 
mailing lists and the processing of correspondence with constit
uents, and this is already under way in both the House and the 
Senate. 

Computers Are Needed to Maintain the Housekeeping Responsi
bilities of the House and the Senate 

As in all other organizations, computers are effective in the devel
opment and the maintaining of payrolls, inventory systems, and 
other "housekeeping" activities. However, application of data 
processing techniques to these areas of activity is not as relatively 
important as those applications interfacing with the substantive 
legislative process, which these do not. Unlike the other applica
tions already listed, there is no need for these systems to be 
compatible or uniform in any way between the House and the 
Senate. There is no need for compatibility between House and 
Senate housekeeping computers. There is no need for them to 
react. In fact, there may be an advantage in maintaining a lack 
of compatibility to avoid any possible compromise in the inde
pendent status of the House and Senate. 

All meaningful computer applications in Congress will fall 
logically within one of the general categories referred to above. 
and depicted on the facing chart. 



Computers in the Congress M07 

STRUCTURE OF PROPOSED CONGRESSIONAL COMPUTER SYSTEM 

HOUSE SENATE 
(Policy Control: House Committee on Administration) (Policy Control: Senate Committee on Rules & Administration) 

COMPUTER USAGE 
IN THE 

CONGRESSMAN'S 
OFFICE 

Operational Control: 
--- -----c----lefk---6f the HOtlse----

Notes: 

CONGRESSMAN'S 
MAILING 

LIST 

Operational Control: 
Clerk of the House 

HOUSE OF 
REPRESENTATIVES 
"HOUSEKEEPING" 

SYSTEMS 

Operational Control: 
Clerk of the House 

BUDGET AND 
APPROPRIATIONS 

DATA SYSTEM 

Operational Control: 
--€6mptroller General 

RESEARCH, REFERENCE, 
OR HISTORICAL DATA 

SYSTEM 

Operational Control: 
Congressional Research 

Service 

CONGRESSIONAL 
BILL STATUS 

SYSTEM 

Operational Control: 
Congressional Research 

Service 

COMPUTER USAGE 
IN THE 

SENATOR'S 
OFFICE 

Operational Control: 
---- SeIgeant-at-AInlS ----

SENATOR'S 
MAILING 

LIST 

Operational Control: 
Sergeant-at-Anus 

SENATE 
"HOUSEKEEPING" 

SYSTEMS 

Operational Control: 
Sergeant-at -Arms 

1. Computer systems depicted in boxes with heavy outlines 
must be compatible because they support or interface with 
the substantive legislative process. Data from the Office of 
Management and Budget (located in the Executive Branch), 
the General Accounting Office (headed by the Comptroller 
General), the Library of Congress, the congressional bill 
status system, and any computer capacity provided individ
ual Members' offices, must be compatible so that these com
puter systems can "talk to each other" and their data can 
be blended for evaluation purposes. 

2. The jurisdiction of the Joint Committee on Congressional 
Operations would emphasize the overall development of in
formation systems for the Congress as a whole and, to the 
extent necessary, provide the coordinating linkage for the 
development and maintenance of the unified systems which 
are needed by both the House and the Senate, shown in the 
middle column of the diagram. 
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THERE ARE SERIOUS LIMITATIONS ON THE TYPES 
OF DATA SUBJECT TO COMPUTERIZATION, AND 
THESE LIMITATIONS MUST BE UNDERSTOOD IF OP
TIMUM USE OF COMPUTERS IS TO BE A IT AINED IN 
THE CONGRESS 

Computers are like some cats. They are finicky eaters. Computers 
will not accept just any data that comes along. And even if "just 
any data" is somehow fed into the memory of a computer, this 
does not mean that access to that data is possible. And even if 
the data can be gotten out of the computer, this does not mean 
it will have any informational value. In fact, computer output 
processed from poor data, or by inadequate computer programs, 
can be dangerously misleading. Data that is input to a computer 
must be structured, identified, and classified in advance, in exact 
terms of its prospective use, or else the computer simply refuses 
to work. 

The information on a gasoline pump in a filling station as to 
the price and amount of fuel placed in an automobile tank is a 
good example of structured data -- data that is identifiable and 
predictable in terms of form and description. These characteris
tics of the data remain stable although the data itself may change. 
On the gasoline pump, which is in essence a very simple com
puter, experience has shown that information as to the quantity 
of gasoline and the corresponding price of that quantity will be 
of value. The data as to these items will be constantly changing 
and will recur every time gasoline flows through the pump. 

In contrast, there is nonrecurring, unstructured data, such as 
that generally found in testimony before congressional commit
tees and in the vast collection of books, newspapers, and periodi
cals stored in the Library of Congress. While computers love 
structured and recurring data, the storage and retrieval of non
recurring data present formidable problems. 

While computer science is making inroads into the use of 
computers to retrieve data from loosely structured data bases, 
generally, as the flexibility of data structure increases, the ability 
to select specific data in the data base decreases. 

Generally, data is either structured under some access concept, 
or is only subject to some library science-type indexing, where a 
trained researcher must take over from the computer and make 
the final identification of the data desired. Because of these limi
tations, only certain flows of data in the Congress are directly 
subject to computer techniques. They are vital to the legislative 
process but constitute only a limited part of the total data flow 
in Congress. 

The knowledge of every Member, staff member, committee 
witness, visitor -- the contents of every newspaper and book that 
is delivered to the Congress -- every broadcast or telecast that is 
heard or seen by anyone interfacing with the legislative process 
-- are all data sources that potentially affect the progress of 
legislation through Congress. Computerization of this entire flow 
is impossible. Our interest is in principal data flows, having sig
nificant impact on the substantive process, that fall within the 
perimeter of practical computer application. Note that a princi
pal flow of data into the legislative process, the testimony of 
witnesses appearing before committees, is not generally subject to 
computer techniques. 

Material submitted in oral testimony or for the record can be 
similar and related to budgetary and appropriations data received 
from the Executive Branch. Possibly future witnesses will offer 
material in computerized form that is compatible with and can 
be merged and evaluated on congressional computers, but in 
most instances such data will be predominantly current, unstruc
tured, or reference-type. Example: "I am against the SST because 

...... ". Thus the testimony of congressional witnesses, although 
a principal informational flow into the Congress, is of no immedi
ate concern in applying computers to the legislative process. 

To the Congress, (1) budget data from the Executive Branch, 
(2) historical or reference-oriented data, such as from the Library 
of Congress, and (3) a bill status system, constitute the principal 
flows of data essential to the legislative process subject to mean
ingful improvement through computer techniques. The data 
flows on a functional basis correspond with the principal com
puter modules in a congressional computer system as previously 
described. 

THE PRINCIPAL DATA FLOWS IN THE CONGRESS 
THAT ARE SUBJECT TO COMPUTERIZATION 

The Budget, As Prepared in the Executive Branch, Is the Princi
pal and Most Important Data Flow In the Congress 

In 1921, Congress delegated responsibility for the preparation of 
the budget to the Executive Branch. Each year, the Office of 
Management and Budget submits to the Congress the President's 
proposed budget, prepared under his direction on the basis of 
data supplied to the OMB by the 69 departments and agencies 
in the Executive Branch. 

This flow of fiscal data is most important for two reasons. 
First, money is involved. Money is always important and 
achieves a top priority in its own right. In practical terms, the 
appropriation of funds to carryon the functions of government 
is the most fundamental aspect of the legislative process. Al
though it may not be the soul, surely appropriating money is the 
heart of the legislative process. 

The second reason that budget and appropriations data is of 
prime importance to the application of computers in Congress is 
that the budget items may be the most extensive and most accept
able "common denominator" needed to unify the various com
puter applications Congress may require. The basic architecture 
of a computer system must have a backbone. It is doubtful 
whether a subject matter index (as would be the backbone of a 
bill status system) would be as satisfactory as the individual seven 
to eight thousand budget or cost elements in the OMB's proposed 
budget and appropriations system. 

The budget is a prime candidate for a computer application. 
The structured fiscal data is highly susceptible to computers. The 
benefits to C .. mgress are formidable. The computer gives Con
gress a real opportunity to regain fiscal control over the Federal 
Government after having delegated the budget function to the 
Executive Branch in 1921. Such a system could be the keystone 
of the legislative process, and could with logic and reason be 
ranked as the most important computer system in the nation. 



Historical Material, Such as That Found in the Library of Con
gress, Is Also a Principal Source of Data Relative to the Substan
tive Legislative Process 

Unstructured, historical, or reference data that Congress might 
need cannot be identified in prospective terms and made available 
systematically in anticipation of need. Data does not become 
information, and therefore of value, until related to specific need. 
And legislative informational needs, as in most endeavors, are for 
the most part unpredictable. However, Congress must have 
means to acquire individual items of data concerning practically 
any facet of human endeavor that might relate to or be pertinent 
to matters under consideration in the legislative process. 

The Library of Congress, the Executive agencies -- the entire 
outside world -- have vast stores of data of this type. Because the 
need for most reference material cannot be anticipated, data from 

-- historical or reference sources-musfgenerallyoerequestec[The 
sum total of these requests constitutes a second vital flow of data 
into the legislative process. This data, served up "when needed", 
is what judgments are based on. Nonrecurring data of past 
events, opinions, and prior decisions are one of the most impor
tant sources of information in the legislative process. 

Although access of this data for the most part is not subject 
to direct computer application, the library science and biblio
graphic data used to identify and locate the desirable material can 
be processed by computers. Synopses of certain classes of refer
ence material, such as normally accompanies medical and other 
scientific treatises, can be placed in computer memory and re
trieved on a subject matter or "key word" basis. 

Other computer techniques with significant potential in the 
storage and retrieval of nonrecurring data must be exploited. 
Note that the structured budget data and the contents of a con
gressional bill status system become reference material after the 
fiscal year or a particular Congress come to an end. As time 
passes, reference or historical data on past budgets and prior 
legislation should be subject to immediate recall. 

The Congressional Research Service must provide Congress 
the highest level of computer capability, recognizing that this is 
a difficult area for computer applications. 

The Flow of Data As to the Status of Bills and Other Proposals 
in the Legislative Process Is Also of Vital Concern to the Con
gress 

The nation's vast telephone system would be useless without 
telephone books. Likewise, the legislative process, to operate 
most effectively, must provide individual Members of the Con
gress and the committees with a flow of data as to the status of 
the various legislative actions under consideration. 

The tendency to underestimate the complexity and the cost of 
this system should be recognized. Many state legislatures have 
"bill status" systems. OMB has recently developed a relatively 
simple system to follow legislation affecting the President's pro
gram. But these systems have little in common with the system 
Congress requires. Experts on the legislative process must "think 
out" every step of the process and identify in detail the ultimate 
product or requirement the computer is to provide. 
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Design of a bill status system requires much preliminary work 
on the part of experts in the legislative process even before com
puter technicians are involved. A standard and improved subject 
matter index applicable to the Congressional Record and the U. 
S. Code must be completed. Fortunately, the Congressional Re
search Service has done considerable work on a project of this 
kind. 

A number of other exceedingly delicate problems must also be 
worked out so that the system will be of meaningful value to 
Congress. There must be an effectiv~ way to handle "clean bi1!s", 
that is, measures that are introduced after committee consider
ation has been completed, to reflect, in "clean" draft form, the 
amendments that the committee recommends to the House or 
Senate. If a Member should query a bill status system concerning 
"H. R. 1234" and be advised that the bill had been indefinitely 
postponed, he would be rightfully concerned to learn at a later 
diite1nafa--'-'CTean-6lIf'-'-&-ia-fieen Introaucecris T'IT.l{:-34Y6" ana-
had gained the approval of the Congress. 

As computers don't like undefined, unstructured data, every 
bill that goes into the system must be analyzed and given a title 
or reference in accord with the system's subject matter index. 
This takes time. Yet the system must be immediately responsive. 
Think of the logjam at the beginning of a Congress when hun
dreds of proposals are introduced at one time. There is no re
quirement, nor is there likely to be one, that Members conform 
the titles of bills they introduce with some standard subject mat
ter index. To fit each bill into a standard index will require 
individual evaluation by the Congressional Research Service. 
This, and other analyses that must be made if the system is to be 
of real value, will require considerable time for much of the 
legislation introduced. An apparent solution is a temporary sys
tem based on bill number and title. Then, when action is sched
uled on the bill, it could be placed in the permanent data system. 
The delay between introduction and action would give the Con
gressional Research Service time to analyze the bill and to struc
ture its contents in data forms acceptable to a computer. 

There are countless other problems that must be anticipated 
and researched before a bill status system concept should be 
allowed near a computer. 

THERE ARE A NUMBER OF SYSTEMS DESIGN COl'l
CEPTS AND OTHER IMPORTANT CONSIDERATIONS 
THAT MUST BE TAKEN INTO ACCOUNT IF THE CON
GRESS IS TO UTILIZE COMPUTERS EFFECfIVELY 

Computer Compatibility Is Essential to the Efficient, Effective 
Use of Computers in Congress 

Computer usage in Congress will evolve over a long period of 
time. It isn't practical or even possible to develop in one cycle a 
comprehensive system covering all possible computer applica
tions. \Vhat Congress must do is develop computer systems on 
a modular basis with the view that systems that relate to the 
substantive legislative process will ultimately interface or even 
merge. Congressional computer development will be like planting 
plugs of zoysia grass. 
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The interests of the Congress demand that these modules be 
capable of mutual interaction at some future date. Computers 
supporting the substantive legislative process must be able to 
"talk to each other" through data exchange, as data systems grow 
and the data they maintain begins to intermingle with data in 
other legislative systems. This means that congressional comput
ers in both the House and Senate that support or potentially 
interface with the substantive legislative process must be compat
ible between themselves and with the basic budget systems main
tained by the Office of Management and Budget. Data generated 
at various points within the government must be merged and 
evaluated, for understanding by all concerned. 

There must be uniformity. Otherwise, computers will not 
work. If the Senate were to develop a system that stated the date 
as "3 November 1969", the House were to use "11/3/69", and 
the Executive branch were to use "November 3,1969", hopeless 
confusion would be the computer output rather than valuable 
information Congress needs. 

The development and maintenance of a broad spectrum of 
classifications, standards, and conventions essential to an accept
able level of compatibility will be a difficult, time-consuming and 
permanent job. Some people say it is impossible. Others suggest 
that it is not necessary. But they are wrong. Compatibility is the 
key to effective use of computers in Congress, and compatibility 
requires a unified approach at the operational level in the devel
opment of initial systems Congress urgently requires. A unified 
approach to the development of computer systems directly relat
ing to the substantive legislative process must either be the cardi
nal rule, or you can virtually write the future effectiveness of 
Congress "off the books". 

During the Design Stage, the Architecture of Congressional 
Computer Systems Must Be Tailored To Meet the Needs of the 
Committees 

Design of effective computer systems for the Congress does not 
allow all 535 Members of the House and Senate a choice in 
system structure or data format. Computer systems design must 
reflect the same considerations that led Congress to develop the 
committee system, under which the organizational structures of 
the House and Senate allow special attention to be given specific 
matters of legislative interest. 

Variations in system output, such as the format of the data, 
must be kept within reasonable bounds. The requirements of 
Members must be placed in logical categories in the same manner 
that their interests are categorized under the committee system. 
This does not compromise the interest of the individual Member. 
The sum total of committee requirements for data is essentially 
the same as the collective requirements of the Members. Once the 
systems are in operation, the data would be available to individ
ual Members under whatever procedures and policies the House 
and Senate may adopt. 

The requirements of the committees during the systems design 
stage are the immediate goal of any congressional computer ef
fort. Responding to this more specific objective will be difficult 
enough, even considering duplication in requirements among the 
committees. 

The House has 21 so-called "standing" or regular committees, 
the Senate has 17. Apart from the rules and administration com
mittees, with no extensive interface with the substantive legisla
tive process, the congressional committees fall into these four 
categories: 

• The Revenue Committees 

The House Ways and Means and Senate Finance Committees 
raise revenue. They are interested primarily in a data flow 
from the Office of Management and Budget as to the fiscal 
condition of the government and revenue estimates of the 
funds that will be paid into the Treasury under tax laws now 
in effect. Most of this is heavily structured, budget-type data. 

• The Appropriations Committees 

The House and Senate Appropriations Committees are inter
ested in structured budget data from OMB in the traditional 
object classification format. In addition, these committees are 
interested in related support data justifying an expenditure 
for the particular item at the level requested, which is a 
combination of structured budget data and reference or his
torical data. 

• The Legislative Committees 

The various legislative committees, with subject-matter juris
diction over varying categories of operations such as "Armed 
Services", "Labor", "Commerce", etc., deal with the authori
zation of programs. Although requiring structural fiscal data, 
their primary interest is in contemporary, reference, and his
torical data. 

• The "Oversight" Committees 

The House and Senate Government Operations Committees 
have responsibility to audit and evaluate the economy and 
efficiency of government, i.e., follow the appropriated dollar 
to see that it is properly expended in accordance with the 
legislation authorizing the program. These committees have 
a primary need for fiscal data, but in a different format than 
that presented in the budget and used by the Appropriations 
Committees. The primary need is for Federal expenditures set 
forth in a program format. 

Thus the data requirements of all congressional committees sub
ject to computer techniques can be met by three basic systems: 
(1) a system providing information as to the budget and appropri
ations cycle, with the capability for formatting or arranging the 
data in a manner consistent with the different needs of the four 
types of committees; (2) a system encompassing the latest ad
vances in library science computer techniques to provide the 
most effective retrieval capability for historical and other un
structured data that might be stored in the Library of Congress 
or any other depository available to the Congress; and, (3) a bill 
status system. In other words, the systellis prt!~ iously des~ribed. 



The design of these three basic systems, with data structures 
and formats required to meet the needs of these four basic types 
of congressional committees, is the immediate goal. This ap
proach reduces the congressional computer system design prob
lem to a manageable size. 

It Is Important, As Far As the Use of Computers in the Congress 
is Concerned, to Distinguish Between the Acquisition of Data by 
Computers and the Follow-On Analysis of This Data Using Com
puter Techniques 

The application of computers in Congress will be a long process 
that will evolve continually for decades. Use of a modern cost
benefit analysis technique in the Congress is a popular concept 
-- and quite reasonably a controversial subject. In practical terms, 
the broad and meaningful nse_Df..suchlechniQJ.l~sjn t~e Congr~ss 
is a long way off. In any event, it will depend upon Congress' first 
acquiring the data in the proper quantity, quality, form and 
structure to analyze. 

Meanwhile, broad access to fiscal data alone, without any 
accompanying analytical capability, would be of the greatest 
value. Just a simple inventory of the money. Just a simple state
ment of "who" is getting "how much" for "what" would be 
"hawg heaven" for most Congressional committees, in contrast 
to what is presently available. 

Congress must not overlook the data to be analyzed in grasping 
for analytical capability. 

The Most Effective and Efficient Computer System Design 
Comes from Blending the Technical Expertise of the Computer 
Expert with the Knowledge of Those Familiar with the Field of 
Application and Those Who Will Use the System 

While there are always exceptions, computer systems must be 
tailormade. Few applications programs can be purchased "off the 
shelf'. The system design must reflect the highest level of under
standing of the substantive process to which the computer is to 
be applied. Good system design technique requires a "cycling" 
or repeated exchange between computer experts and the experts 
in the field of substantive application. It is essential that prospec
tive users demand a complete explanation and data format de
scription of a proposed system before implementation begins. 

This is particularly important if computerization of obsolete 
systems is to be avoided. Present noncomputer data systems often 
reflect the limitations of their time, and some of these presently 
in use in Congress date back to George Washington's administra
tion. These limitations need not be retained after computers are 
introduced. Example: There is no need to limit the requirement 
for an update of the budget to July 1 each year as provided in the 
Reorganization Act. Computers can provide for a constantly 
updated budget, reflecting changes as they are made. 

Only through the blending of computer expertise with that 
relating to the proposed application can such limitations on data 
flow be identified and discarded. Only by such discussions -- in 
a "give and take" environment -- can an optimum system be 
devised. Such discussions are essential before any system is slated 
for implementation. 

Compuiers in the Congress Mll 

THERE MUST BE AN AGREED-UPON PLAN DELINEA
TING RESPONSIBILITY FOR THE ORDERLY AI'iD EF
FECTIVE INTRODUCTION AND USE OF COMPUTERS 
IN THE CONGRESS 

Applying Computers to Congress Immediately Becomes a Ques
tion of Who Does What 

There are a number of potential players in the congressional 
computer game, each with different roles. It is essential that the 
fundamental question "who does what?" be settled in advance of 
computer system development. Otherwise, the success of the 
overall effort will be endangered from even an additional source. 

All parties potentially involved in computer use in Congress 
can be set forth in three categories. First, the users of the system, 
that is, the committees and the individual Members. Second, 
-tOOse---who---wi-H---ha \> e poliey -een-trol---e-ver-s-ys-t-em--tie-velepmeH-t--arui 
use. Third, those who will have operational responsibility for the 
development, maintenance, and continual improvement of com
puter systems. 

At this point, a traditional philosophy of congressional opera
tions comes into play. Congressional committees do not become 
involved in the routine operation of the various systems and 
services that support the legislative process and the Congress in 
general. Example: The staff of the Joint Committee on Printing 
does not directly manage the Government Printing Office, but 
rather asserts policy control over those officials with this respon
sibility. 

The advantage of this policy is that it will allow the congres
sional committees to maintain the necessary independent "over
sight" and policy control. If the committee were to become 
involved in the day-to-day operations through the use of its staff, 
then the committee would have no "leverage" in maintaining 
"oversight" and policy control over the operations. 

In keeping with this policy, congressional committees should 
not become involved in actual computer system design and oper
ations, but should remain aloof. Only thus can the proper policy 
control and the essential "oversight" function be maintained on 
a viable basis. 

The House and Senate Committees with Administrative Juris
diction Have Primary Policymaking Control Over Computer 
System Development and Maintenance in Their Respective 
Houses 

In keeping with the policy of avoiding change or distortion of the 
present legislative or parliamentary system, it is logical that the 
House Committee on Administration and the Senate Committee 
on Rules and Administration maintain jurisdiction over com
puter system development and maintenance in their respective 
houses .. However, the emphasis on the oversight and policy 
control these two committees assert should be on the final prod
uct the committees, the individual Members, and other units of 
the Congress require. Both of these administrative committees 
should determine informational requirements and see that what
ever operational unit has responsibility for providing these re
quirements delivers "the goods". 
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This approach allows the subordinate operational unit in the 
Congress with jurisdiction over development and maintenance of 
a particular system to "merge" the requirements of the House 
and Senate into one system that will provide for the needs of both. 
Not only will this allow for compatibility in computers between 
the House, the Senate, and the Executive Branch, but it will also 
avoid costly and unnecessary duplication in computer systems 
between the House and the Senate. 

There is ample precedent. All major congressional subordinate 
support units -- that is, the General Accounting Office, the Li
brary of Congress, and the Government Printing Office -- have 
always operated under this principle. Both the House and the 
Senate levy requirements against these units in terms of the prod
uct required. Neither the House nor the Senate require some 
unique auditing approach, library reference system, or printing 
classification that forces a division or duplication of operations. 

The same fundamental policy must apply to computers. With 
the House and the Senate administrative committees saying what 
the two Houses of Congress want, rather than how to meet the 
requirements, the operational units can merge these needs into a 
unified compatible system. 

The Joint Committee on Congressional Operations Should Un
dertake Long-Range Policy-Oriented Studies of the Informa
tional Needs of Congress As a Whole 

A vast improvement in basic data as to the budget and appropria
tions cycle is within our grasp. With additional funds, limited 
improvements can be made in the reference and research activi
ties of the Library of Congress. An effective bill status system can 
be developed within a reasonable time period -- assuming the 
magnitude of the task is recognized and proper discipline is kept 
during development. 

The advantages of this data acquisition capacity are small 
compared to those that will flow from the use of advanced com
puter techniques in the simulation and analysis of legislative 
proposals and appropriation requests, and in the audit of govern
ment operations. Such sophisticated systems cannot be developed 
overnight. They must evolve from the more rudimentary com
puter capacity discussed here. Painstaking analysis must be made 
of the overall informational requirements of Congress as a pre
lude to the development of more sophisticated computer capac
ity. 

The Joint Committee on Congressional Operations is ideally 
suited to carryon such studies and analyses. It has no legislative 
authority, but no other committee of the Congress has compara
ble jurisdiction regarding congressional operations. The Joint 
Committee can operate effectively in this area without concern 
that its work impinges upon the jurisdiction of other congres
sional committees. Its reports need not and undoubtedly will not 
always reflect the optimum approach Congress should follow, 
but they can provide the essential discussion base, for those who 
might disagree, to otTer affirmative and constructive criticism. 

In a sense, the overall application of computers to the Congress 
requires "discussion drafts" of proposed computer system capac
ity. The Joint Committee offers the most comprehensivejurisdic
tion for the development of thes.e studies. 

The Comptroller General Has the Responsibility to Establish the 
Essential Classifications and Other Standards Necessary to Pro
vide the Government with a Computer System to Support the 
Budget and Appropriations Cycle 

The Legislative Reorganization Act of 1970 requires the Comp
troller General to cooperate with the Secretary of the Treasury 
and the Director of the Office of Management and Budget to 
"develop, establish, and maintain standard classifications of pro
grams, activities, receipts, and expenditures ... " necessary for the 
development of a computer system to support the budget and 
appropriations cycle. This delegation of authority extends to the 
Comptroller General the responsibility to develop and maintain 
a compatibility "linkage" between the various departments and 
agencies in the Executive Branch and the Office of Management 
and Budget. While primary responsibility for the development of 
a computer system to support the budget and appropriations 
cycle rests with the Office of Management and Budget, the act 
provides for the Comptroller General's "cooperation" in this 
task, to see that the various classifications in the overall system 
that is developed reflect the needs of the Congress. 

The Comptroller General should extend the classifications and 
other standards developed in cooperation with OMB to systems 
in Congress interfacing with the substantive legislative process. 
This means that when other units of the Congress develop a 
computer system, the standards that are necessary to assure com
patibility of the new system with the basic system of the Office 
of Management and Budget will be provided by the Comptroller 
General. The Comptroller General will not become involved in 
computer system design and development for other subordinate 
units of the Congress, but will provide the "rosetta stone" of 
compatibility that is essential to effective use of computers in 
Congress. 

The Subordinate Units of Congress Should Maintain Responsi
bility for the Development of Computer Systems under the Over
all Policy Control of the House and Senate Committees on 
Administration 

Those units of Congress with present responsibility to provide the 
data under traditional systems of processing should be directly 
responsible for systems design, maintenance, and improvement. 
The Clerks and Sergeants at Arms of the House and the Senate 
should have responsibility for applying computers to the various 
housekeeping operations. These officials should also maintain 
responsibility for the mailing list operations and whatever com
puter applications the House and Senate may desire regarding the 
tabulations of votes on the Floors of the two houses. 

The other main computer applications referred to earlier are 
the responsibility of the General Accounting Office and the Li
brary of Congress, with an increasing role by the Government 
Printing Office as concepts such as "text editing" and computer 
typesetting prove out and are implemented. To the extent these 
Congressional support units need computers, they should be pri
marily responsible for system development, subject to compati
bility standards set by the Comptroller General under authority 
extended ill Tille II, LegislaLivt: Rt:orgallization Ad of 1970. 
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STRLCTrRE OF PROPOSED CO~GRESSIONAL CO}1PUTER SYSTE~I 

The Committees on Rules and Administration 

• Both the House and the Senate committees, independently, 
should oversee the development of computer systems by their 
subordinate units to ensure that the computer capacity to be 
provided meets the needs of the House and the Senate as a 
whole. To a great extent this means developing '~laymanlike" 
statements of proposed computer systems. If subordinate offi
cials of Congress responsible for system development can't 
fully explain the system output to the complete satisfaction 

__ oi..aJa_)Lman •. Jhen they have n.Qi gotten._liLtb~Q..Qint wb.~r~ tl1e 
system should be implemented. Testimony or reports as to 
"progress" being made should not be accepted as substitutes 
for actual computer system descriptions. 

• The House and Senate committees should order studies of the 
individual Members' offices to obtain an authoritative deter
mination of potential computer applications (apart from bill 
status, and budget and appropriations) that might be of assis
tance now. Of particular interest should be development of a 
computerized filing system that would form the basis for 
updating the Member's computerized mailing lists, as well as 
relieve his staff of the drudgery involved in the maintenance 
of present filing systems. As these systems may be linked 
directly to basic congressional computer systems supporting 
the substantive legislative process, compatibility should be 
maintained through the Comptroller General by means of the 
standards adopted under the authority of the Reorganization 
Act. 

This project should be undertaken on a pilot basis, and the 
basic system should be "proved out" before any computer 
peripherals are installed in Members' offices. 

• Both the House and the Senate should continue the present 
active development and improvement of computerized mail
ing lists to improve the communicative link between individ
ual Members and constituents. 

The Congressional Research Service and the Library of Congress 

• The first job for the Congressional Research Service is to 
develop requirements for a comprehensive bill status system. 
This computer application is difficult, but nevertheless within 
the present state of the art. 

• The Congressional Research Service and Library of Congress 
generally, in cooperation with the Joint Committee on Con
gressional Operations, should study and delineate what com
puters now offer in areas of reference and research. This 
problem definition is mandatory before any substantial sums 
of money are expended on Congressional Research Service 
computer systems. 

The Comptroller General 

The Comptroller General should modularize his efforts in the 
computer field in order to maintain the identity of the different 
programs and objectives that must be carried out on a parallel 
basis. 

• The General Accounting Office should obtain computer ca
pacity corresponding to that which the Office of Management 
and Budget uses in the preparation and maintenance of the 
_1;?!l_g&t:t~Tpis ~i!l allow the Comptroller General's staff and 
interested Memb~rs-o-f-th~ Congress and their staffs to 
become familiar with the computer operation in the Office of 
Management and Budget. This familiarization is essential to 
future budget and appropriations cycle system design and the 
bringing of this capacity into the Legislative Branch on a 
broad and effective basis. Members and committees conver
sant with computer operation would also find this of immedi
ate value. The Congress has data and program tapes for the 
current fiscal year available, but nothing is being done with 
them. 

• Congress must have a budget and appropriations computer 
system comparable to and compatible with the system used 
by the OMB of the Executive Branch to prepare and maintain 
the budget. Fundamentally, Congress must have the capacity 
to make independent evaluations of its own data for use by 
the Congress. An independent Congressionai computer sys
tem is also necessary to solve the "executive privilege" prob
lem. Obviously, the President would never permit the 
Congress direct access to Executive Branch computer sys
tems. They contain data about discretionary matters, future 
policies and expenditures, possible courses of action, etc., etc., 
that the President logically wants to remain confidential. Yet 
such data is often intermixed with that which Congress can 
justly claim and must have for legislative purposes. Therefore 
the transfer of data tapes and disks from OMB to Congres
sional computer systems is the only practical way of commu
nication which also protects the informational integrity of 
both the Congress and the President. 

• Plans should be made to bring into the Legislative Branch the 
new Office of Management and Budget computer system 
McKinsey and Company has designed to support the budget 
and appropriations cycle 1. As with the present system, this 
will begin with compatible hardware in the Legislative 
Branch plus the acquisition of Office of Management and 
Budget computer programs and data base. On the basis of this 
system, future analytical capacity for the Congress will be 
developed. Classifications and other standards for this system 
must be extended to all systems in the Congress that interface 
with the substantive legislative process. 
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• A clear, layman like description of this new budget and appro
priation computer system under development in the Office of 
Management and Budget should be created and provided to 
the Congress. If Members and their staffs know exactly what 
the new system is designed to provide in the form of data, 
much of the mystery and complexity that presently envelop 
the concept would disappear. 

• There should be developed a hierarchy of categories of clas
sifications, standards, and conventions that are essential to 
the development and maintenance of a compatibility linkage 
between the Office of Management and Budget and legislative 
computer systems. 

The highest order of budget classifications is the budget 
and appropriations system itself, in that there will be compan
ion systems technically of the same "order" or "level" for use 
in both the Executive and Legislative Branches of Govern
ment! 

The next order of classifications is for the variations in 
which the basic budget can be formatted to meet the unique 
requirements of different officials. At present, there are 1200 
budget accounts in the budget. But these 1200 accounts can
not be rearranged in any simple way to translate the budget 
data they contain from, say, the traditional object classifica
tion the Appropriations Committees require to the program 
classification the Government Operations Committees re
quire, or any other classifications that are needed in both the 
Executive and Legislative Branches. 

The present Office of Management and Budget effort un
der the so-called "McKinsey Report" is to go down to seven 
or eight thousand cost elements that can be arranged into any 
format that might be required. 

Information as to these varying categories or formats must 
be provided Congress at the earliest possible date. There is at 
least the outside chance that Congress might require other 
formats of the budget that do not presently fall within the 
contemplation of the OMB's proposed system. 

Below these basic budget classifications are tiers of other 
classification standards and conventions relating to systems 
design and data that directly affect compatibility. These clas
sifications soon become so technical in nature as to be beyond 
the interest of anyone other than computer technicians. How
ever, congressional computer technicians must understand 
them to protect compatibility and the general interests of the 
Congress. 

The identification of these various categories is an essential 
first step in the development of effective standards for com
puter systems. 

• The Comptroller General, in cooperation with the Director, 
Congressional Research Service, should begin an inventory of 
substantive data bases in and outside the Federal Govern
ment and that might be of interest or value to the various 
congressional committees. Included would be whatever com
puterized data bases have been developed either in the Execu
tive Branch or can be obtained, that would be of interest to 
spe(.;ific (.;ommittees. 

As an example, data on unemployment and labor trends 
from the Department of Labor, presently maintained in com
puter form, could be adapted and made available to the 
House and Senate Labor Committees. Adequate safeguards, 
however, would have to be maintained to protect the purity 
of the basic congressional system from whatever incompati
bility may lurk in the data obtained by this means, as well as 
whatever computer capacity may presently exist in the Con
gress that interfaces in any way with the substantive legisla
tive process. 

This inventory would be reviewed and assessed incident to 
the preparation of an individual report concerning the poten
tial benefits of computers to each specific committee. In the 
preparation of these reports, the Comptroller General would 
be expected to adhere to the similarity in structure of various 
committees referred to earlier in this paper so that he could 
plan to provide the computer capacity for all of the commit
tees and Members by the determination of a net requirement 
to be obtained from the operation of just the one basic system. 

• Discussions should be held with the Director of the Congres
sional Research Service, the Government Printing Office, and 
other possible support units of the Congress whose data re
quirements interface with the substantive legislative process, 
to work out a system of maintaining standards on a legisla
tive-wide basis. 

• The General Accounting Office's requirements for computer 
capacity should be evaluated, aiming at the development of 
a modern audit concept based upon computer usage. By this 
means, the GAO's requirements could be merged into those 
developed in the Congress so as to avoid unnecessary and 
costly duplication, as well as possible problems of incompati
bility. 

There Should Be a Congressional Computer Working Group 

For reasons already discussed, there is little likelihood of obtain
ing rigid centralized policy control over computer system devel
opment in Congress. Nor is such an approach necessarily 
desirable except in the area of computer standards, to assure 
compatibility, and they are usually oflittle concern to the average 
user. 

Yet the nature of systems design requires some degree of over
all coordination. This coordination could be brought about by a 
quasi-formal working group. This group would represent the 
chairmen of the various committees involved in system design 
and implementation, as well as the Comptroller General, the 
Director of the Congressional Research Service, and the Public 
Printer. This group could identify some of the problems that will 
inevitably plague computer system development in the Congress 
and report these problems to the appropriate officials so that they 
might be resolved in a timely manner. Aside from this limited but 
most important function, such a working group would have no 
power and would not undertake any concerted action of a formal 
nature. 



CONCLUSION 

As the 93rd Congress begins its deliberations, the complex ques
tion of limiting Federal expenditures will be a primary subject of 
concern. It is a fact of life that neither man nor nation can live 
within available resources without reliable information about 
needs and expenditures. For this reason it is hoped that among 
the solutions that are devised will be the granting of top priority 
to the development of the computer system to support the budget 
and appropriations cycle. Above all other considerations, this is 
the most critical need of the Congress. With annual expenditures 
at the 5250 billion level, even a minor improvement in the budget 
and appropriation system would save billions. 

Computers are the only hope that our Congress has to acquire 
the basic data needed to control expenditures. Without this data 
there can be no effective Congress and, ultimately, no democratic 
system. 
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THE ROLE OF A COMPUTER 
IN THE PUBLICATION OF A PRIMARY JOURNAL 

INTRODUCTION 

by ROBERT W. BEMER 

Honeywell Information Systems. Inc. 
Phoenix, Arizona, US 

The Honeywell Computer Journal has had some acclaim for 
social responsibility in the computer milieu and for the extensive 
and pervasive use of a computer in the publishing function. The 
basic elements of the latter are described here. The Journal is 
published simultaneously in hardcopy, microfiche, and magnetic 
tape with embedded text control. Its mixed-media character is 
accented by the fact that not all articles in the microfiche and tape 
editions appear in the hardcopy edition. 

Specifically, the copy that you are now reading has been pro
duced by the identical methods of the Honeywell Computer Jour
nal, as are all of the papers in the Methods and Applications 
Section of these Proceedings. Thus many of the features can be 
self-descriptive. The only differences are: 

• Video Times Roman font is used here (instead of Optima). 
• Column width is 242 points (instead of 228). 
• Column height is 57 lines maximum (instead of 60). 

To reset this paper for the alternate conditions would cost $3.50 
per page! 

MAJOR COMPONENTS OF COMPUTER USE 

The computer plays a major role in: 

• Subscription fulfillment. 
• Entry of text, tables, and figures. 
• Production of photocomposed copy, 

with justification and hyphenation. 
• Control of page layout. 
• Proofing of copy. 
• Control of readability and style. 
• Indexing. 

All except the first and last functions are covered in this paper. 
The first is omitted because it is common, and we have made no 
innovations; the last because we make little use of this admittedly 
powerful feature for the Journal per se. 

Furthermore, we do not use the automatic pagination features 
that are available to us, because computers can never be more 
than dull and pedestrian in this role. It may be suitable for a 
contract specification, or legal documents, but not for a publica
tion that must be artistic, attractive, and readable. Automatic 
pagination also chews up expensive store and time to keep the 
total text in core to work with. 

SCHEMATIC OF THE SYSTEM 

The HIS 6000 system is used for text entry, editing, storage, 
and running concordances. It is not normally used for the "run
off" function (producing formatted copy on the entry terminal). 
Even though this feature is available, it is tedious, expensive in 
line cost, and has little value for final copy. 

Formatted copy is produced only by photocomposition. When 
this is desired, a special postprocessor program converts the text 
stream and embeds macros for the Page 2 System. This produces 
a magnetic tape which is (now) transported physically to the 
facilities of Datagraphics, in Phoenix, and input to a Univac (nee 
RCA) 2 driving a III Videocomp 830. The resulting copy is laid 
up in desired page form, and a cycle of editing and further photo
composition begins. 

Final copy is waxed on templates in the traditional manner. 
Special heads are added (in fonts not available to the computer 
system, and chosen to symbolize article content, where possible), 
and it's off to the printers. 

Basically, we have adjoined two free-standing systems, and in 
so doing removed from the middle the expensive and non-graph
ic-quality output of the first, and the somewhat tedious and 
inflexible input of the second. Jury-rigged as it is, it is neverthe
less superior to any method formerly availabie to us, and points 
the way to integrated systems for the future. We can live for now 
with our 2-hour turnaround. 

TEXT ENTRY 

Text entry is accomplished in the timesharing mode with the 
standard HIS 6000 Text Editor System, I an embedded format 
system based upon M.I.T. work and similar to the IBM Script. 
It is not a numbered line system like A TS, and eight years of 
experience has proved this wisdom. Searching and alteration are 
done primarily in the string mode. "Cut and Paste" is limited to 
operate by number of lines moved, but they are not numbered. 

All control actions are signified by embedded "dot" com
mands. This input convention states that a CR (Carriage Return) 
character followed by a full stop character (period, dot) signifies 
a control statement, thus: 

.begin .center 

.space (n) .adjust 
.indent n .subpara n . TAB 
. un dent n . para .break 

These are but a subset of the standard Text Editor, and can be 
learned by an unskilled person in an hour or so. The editing 
commands will be explained in the running text of this paper. 
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ENTRY FOR UNSKILLED PERSONNEL 

The postprocessor program that converts for the Page 2 Sys
tem is vital for simple text entry. The standard entry methods for 
the Page 2 System are certainly not simple, and require some 
training and a crib sheet constantly on display to the enterer. 
Remember that graphic quality output requires a separate font 
generation for each unique character. It is not sufficient to over
print an umlaut (in its fixed position) for both the upper and 
lower case "u", for exampk The postprocessor does extensive 
string analysis, much of it based upon backspace and overstrike 
for entry, which makes it simple for personnel. Examples: 

• Characters with diacritical marks - accent acute, accent 
grave, tilde, umlaut, etc. - are produced by backspace on the 
terminal and overstrike with the proper character (doubl~_ 
quote is used for umlaut). 

• Double and single quotes are used as they are for entry. The 
postprocessor determines whether they are opening or closing 
quotes. A double quote is two single quotes in photocomposi
tion, and this is called automatically. 

• For minor occurrences in text, boldface may be indicated by 
overstriking single characters three times. This is visible on 
the terminal when the line is verified. For a longer string of 
bold characters, the font is altered by a .bold command, and 
turned off by a .bold end command. These commands do not 
force a new line. 

• For minor occurrences in text, italics may be indicated by 
backspacing the length of the word and underlining. This is 
visible on the terminal when the line is verified. For a longer 
string of italics, the font is altered by a .ital command, and 
turned off by a .ital end command. These commands do not 
force a new line. 

• The bulleting seen here is accomplished by a .indent 3 fol
lowed by a .undent 3 (which is operative only for the next 
line), a lower case "oh", 2 blanks, and then the text. The 
uniqueness of this string permits the convention. 

• To the regular Text Editor convention of using the "at" 
symbol to delete the previous character (guess why our arti
cles never contain this character!), and CAN to delete the 
entire line of entry, we have added the caret to indicate the 
"en" space, which is incompressible to the justification pro
cess. Thus a new paragraph is caused by a .break and an 
initial line with two carets for indention. 

• Normal font sizes for the Journal are: 

9 point - text 
8 point - references, some displays as necessary 
7 point - sub- and superscripts, figure captions 

Point size may be changed at any point in the text by inserting 
the ESCape sequence: 

ESC g (7-pt), ESC h (8-pt), ESC i (9-pt) 

These override the original settings, and are used for formu
las, etc. 

CONTROL OF PAGE LAYOUT 

It has been a remarkable discovery to us that reader attraction 
and satisfaction is increased significantly by tight control of page 
layout. Only in the most exceptional cases will a column start in 
the middle of a sentence, and then only on the second column of 
the same page. Usually a column will start with at least a para
graph (not just an arbitrary paragraph, but one that makes sense), 
and very often with a heading. The appearance of a figure or table 
will never precede its first mention in text, nor will it often be on 
a page that is not visible when that mention is made. "Widows" 
never occur. 

Under traditional methods, the editor loses control of page 
layout after the galley stage; all of the niceties must be left to a 
composer who has little understanding of the subject matter, and 
is often less interested in reader satisfaction. With the low cost 
of text processing taken in conjunction with photocomposition, 
we do not mind expending many runs to get just what we want. 

A quick reading of the first galley copy gives an estimate of the 
author's redundancy or flowery speech factor, and other ways 
that compression can be achieved if necessary. Accordingly, the 
actual film is cut to layout an approximation of the article. As 
the last page is always full, we work backward. Whatever is left 
for the first page we leave for artistic treatment and the "From 
the Editor" commentary. Great attention is paid to aspects of 
future readability, left or right page assignment, pleasing place
ment of tables, figures and photos. Virtually no attention is paid 
to typos and other mistakes that exist in the copy. Accordingly, 
the single columns are taped on with more lines than our stan
dard, trusting to editing to cut back to the right number (60). 

The beauty of this system is that many things can be changed 
simultaneously to create correctness, harmony, and interest -
point size for certain paragraphs or tables, tab seUings, subpara
graphing, font style, and text changes and corrections. Imagine 
a situation where the column copy has to be reduced by two lines, 
and yet previous editing has taken advantage of all short lines at 
the end of paragraphs, filler words have been removed, and big 
words replaced by commoner smaller words with equivalent or 
clearer meaning. Now you have to get into the guts of the au
thor's meaning and say it shorter and clearer, without altering the 
flavor or meaning in any way! Being forced to do this by our 
aesthetic standards for page layout yields a big dividend in in
creased readability. 

Depending upon the content, we may photocompose the text 
from 2 to 5 times. Do the authors complain about the alterations? 
Never, in our experience. When it reads well, they just assume 
that they wrote it that way, never checking their original copy. 
We have also experimented in putting the author's work in to 
typeset even when it is only rough draft; results seem to indicate 
that the visualization of final copy permits him to improve it 
more that he could by editing from a typed draft. 

Obviously, taking this much work for readability means high 
acceptance standards, and we insist that this is a good thing. 
Dung coated with 53 layers of Chinese lacquer is still dung, and 
we do not intend contributing to information pollution. 

Hopefully, it is now clear why we do not use the computer for 
automatic pagination. 
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PROOFING OF COpy 

An optional feature, or byproduct, is the concordance run, 
usually exercised on what is expected to be the next-to-Iast photo
composition run. This produces two listings on the high-speed 
(upper case only) printer. The first listing is a Key Word Out of 
Context (KWOC) listing; each numeral and word (except for the 
very small common ones) is listed on the left in collating sequence 
order, with its entire entry line on the right. The lines are 
numbered here, for cross-reference to the second listing, which 
is the consecutive text. 

The concordance is now scanned visually, primarily to detect 
input errors ("typos"). See Figure 1 for some examples. It is our 
experience that these fairly jump out at one in scanning a con
cordance, whereas they remain stubbornly glossed over by the 
eye and mind in traditional proofreading. However, we do read 
the text - for style and making sense, not for typos. In fact, 
knowing that you are freed from the typo-hunting task creates a 
different frame of mind for doing real editorial work. 

AU TOMUH I Lr DISPOSITION HASSACHlJSFIS 
AUTOMOiHLt DIS R R lJ r T 1(, N HIISSACtiliSI I I S 
AUTOMOli I LIES LlISRUPT HASSACHlISE: ITS 
AVAILAHILIIY DISRUPTIONS HASSES 

GfRTAINLY INSHAD SOLVEIl 
Cf:RTAINty I ,"S If All S()LVI;~ 

C[-IlHlf 1r.~TIl1N INS TIl UE SOLVFIlTO 
CERTIf ICAlE I ,,"S T I 1 U T EO SOLVEli. 
CfRTlrICAII(JN INS T I 1 U I E Sal Vf. 

CIiARGlS KLlIlI STFRI'OSCIlPIC 
CHARGES KY. STEI/Eu I YP! iJ 
CHARII'IAN LO SHIH-OTYi'i 0 
CHARITY LA S 1 FRO G II A P fi I C 
CHARLATANS LAA STUlOlVI'E 

S 1 E 'III 1111 S 
COLlJMf-lIA LOCATIONS 
COLUMt<IA LOCATIO~. SLiccrs" 
CQMAP"Y LOCATION. SIICCI:SS 
COMHI"ATIIlN LOCATIOX~ SUCCI'~H I NG 
COl":81NA111iN LOfJGEIl SUCfS~IHI 

SUCH 

Figure 1. Typos Exposed by Concordance 

CONTROL OF READABILITY AND STYLE 

The concordance produces a histogram of word size distribu
tion as a byproduct, and the average word length may be calcu
lated. We target 5.0 characters per word, and are very suspicious 
of readability when the author gets above 5.5. 

One aspect of style, or rather one of our rules, is that an 
acronym shall always be given the spelled-out version in paren
theses the first time it is encountered in text. One has only to spot 
the first occurrence in the concordance, and look to the corre
sponding line on the right to see if this has been done. If not, edit. 

The Journal has other style rules. Most important is adherence 
to ISO Standard 1000, or the International System of Units (SI). 
Check the concordance for inches, feet, yards, miles, pounds, etc. 
.iJ they occur, and are for measurement, they had better be in 
parentheses foBowing a metric value. Other examples: $2 million 
- not 2 million dollars; 0.5 s - not .5 sec; focused - not fo

cussed. 

ECONOMIC CONSIDERATIONS 
IN WORKING METHODS 

As there is no way to predict the pagination of printed copy 
when entering text, one could enter it all under a single file name. 
However, the 6000 Text Editor keeps the entire file in the main 
store for faster processing (and it is really fast), and these facili
ties must be paid for. Thus original input is made in judiciously 
separated and named files, breaking at headed sections, for exam
ple. These are then adjoined for the photocomposition run. 

After page layout is determined, they are adjoined again and 
resplit by page into files with new names, and the old ones 
purged. This permits single columns to be reworked into final 
form. The present rate is $1.75 per column. Thus a page costs 
from $6 to $10 to compose, comparing rather favorably with the 
$70 per page we were paying for linotype setting to our standards 
before our system was operable. The 6000 cost is not included, 
as we have been unable to get real figures because we work on 
an inhouse "exposure" system used for checking out new soft
ware releases. We do, however, feel that this cost is compensated 
by the system doing automatically what we would have to do 
ourselves otherwise (like proofreading), and the added quality. 
We do need to modify to set double column on the last run. 

Economy dictates that we should process as much text as 
possible on each photocomposition run. This means linking sev
eral files and saving them as a single file. But this increases the 
risk that something going wrong early will spoil the balance. Care 
must be taken to separate and insulate each file from any other. 
Convention starts each file with .begin (for a new galley), .indent 
o (in case the file ahead of it lacked a command to restore inden
tion to 0), and .adju (in case the preceding file had been using 
tabulation and was not restored to the justification mode). 

The power of the Text Editor is of great assistance in checking 
for correctness of the adjoined file, particularly for closure. Type: 

fs:/.bold/; * (meaning "find all occurrences of that string") 

and you will almost instantly get a message like: 

end of file - request executed 122 times 

Hit "b" and CR (for backup to the file beginning, and type: 

fs:/.bold end/;* 

If the message doesn't say 61 times - trouble! A 60 would mean 
that bold did not get turned off somewhere, and the copy follow
ing will be in useless boldface. Do the same for italics, subpara
graphs, point size changes, etc. 

The files must always be correct for the magnetic tape edition, 
and identical to the printed copy . Yet it is often wasteful to rerun 
the entire file for simple patches. A copy is made, and the correct 
parts wiped out by string replacement, leaving only the changed 
copy to be reset as a patch (with due consideration to leaving 
enough text so that paragraphing, etc., is unchanged). These 
patches are saved under a different name; a number of them are 
adjoined and run at nne time 
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INCIDENTAL ADVANTAGES 

A number of dividends have shown up that we amateurs did 
not really foresee: 

• Doing our own typesetting permits laying up mechanicals for 
articles as soon as they are ready, without waiting to group 
an entire issue for the typesetter to schedule in some time slot. 
Exclusive of conditions of extreme timeliness, this permits 
better selection for issue makeup and content. 

• Having the feel of the final product, by mockup during the 
editing and changing stages, affects everyone - author, editor, 
and reviewer. For the latter, particularly, it gives psyphologi
cal impetus to hurry up - lest what he dislikes might be in the 
finished product. All can work simultaneously to cor~e~t and 
imQrove the copy and make _ it more readable. 

• The Pag~2-Sysi~-m hyp-henates --io- EngTlsh- rules anci!or cus-
tom. Normally we run our French, German, Italian, and 
Spanish sections in "fill mode" (stretching the spacing be
tween words to fill the line without hyphenation). But if 
glaring gaps exist we remove them easily by doing a dummy 
hyphenation, splitting the first word of the next line into two 
components: 

rs:/whippersnapper / 
ENTER 
*whipper- snapper 

* 
READY 

This technique can also be used in our English text when Page 
2 fails to hyphenate opportunely or (rarely) incorrectly. 

On one occasion ihe entire article was side-by-side in both 
German and English. Here we could proceed more elabo
rately, removing Page 2 hyphenation that was incorrect for 
German, forcing correct hyphenation paragraph by para
graph. 

• Page 2 also has the flaw of assuming that a change in font 
style permits a break for a new line just as hyphenation or a 
space does: 

...... Protection A 
gency ... 

Text Editor can force a correction by replacing sufficient 
spaces between words by incompressible en spaces. 

• We don't have to worry about losing corrected galleys in the 
mails, as the Journal of the ACM did in 1971 October. We 
also know that the corrections have actually been made in the 
printer's copy, without waiting for a blue to be returned and 
show that they were not made. This often shortens the pro
duction cycle, and certainly cuts costs. 

II Secretaries can make very creditable copy inhouse by cutting 
and pasting galley segments with Scotch Tape, and then using 
a reproduction method such as Multilith. Interoffice memos 
are becoming artistic, easier and pleasanter to read, and cer
tainly use less paper. 

OUR WISH LIST 

A major purpose of the First National Computer Conference and 
Exposition was to have the end users tell the suppliers the nature 
of their applications and what they would like to accomplish 
those applications better, cheaper, and faster. I must follow my 
own principles. We would like: 

• A larger portion of terminals to be equipped with cassettes. 
Entering text in the timesharing mode is not efficient in line 
cost. 

• Cassettes attachable to office typewriters. If this means new 
office typewriters, then let them have standard keyboards! By 
this I mean not only the placement of the printing symbols, 
but also the placement of the controls, either as separate keys, 
or in the control position on the regular keys. For example, 
CoiitroI~Xls--ilie--usual positIon for-CANcel (deletes the line-
just typed). Some keyboard designers have not realized that 
this makes Control-Z a poor place for EOT, because a slip of 
one position turns off transmission, with resultant loss of all 
one's work to that point! 

With an increased portion of input being generated omine, 
it would appear that the introduction of the computer at the 
proper point in the copy production cycle permits entry by 
less skilled people, possibly to the point where the original 
creator of the text and the enterer are one and the same 
person. One can imagine an author out in the woods typing 
his rough copy and getting a cassette record. He would mark 
up the pages as needed, and send both pages and the cassette 
to an editing service, which would enter the cassette contents 
and make online corrections to the author's copy according 
to his indications. 

• Alternatively we would take a CRT display if it corrects 
certain faults of existing systems in line runaround, etc. 

• And perhaps a pointer system that could indicate both the 
beginning and end of a string to be identified for a working 
purpose. 

• A registry of available digitized symbols, so that one would 
know where to buy their representations in a transferable 
form. 

• More than any hardware imaginable, we would like to see the 
development of a common composition language, and its 
elements, that is, universally-agreed encodings for printed 
symbols - their graphemes, their placement, and their style. 
Elements of a proposal follow: 

FEASIBILITY OF A COMMON 
COMPOSITION LANGUAGE 

Production of graphic copy from encoded data is an important 
component for present and future information retrieval systems. 
Dot matrix characters on a CRT screen wi!! just not be satisfac
tory for some purposes. Production of graphic hard copy from 
an information bank may in the future be cheaper than ordering 
an existing printed reproduction to be invoiced, found, packaged, 
mailed, and delivered. 
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Because future information retrieval will consider many more 
symbols than those of the present ISO Code, existing and future 
graphic devices must be connectable to the retrieval system. 

Equipments that produce hard (or film) copy may be viewed 
in the same way that we view computer central processors utiliz
ing different instruction sets and object code, and as we view 
various numerically-controlled machines. There are single pro
gramming languages that are common to many central pro
cessors. In N/C, the APT language is processed to produce the 
CL Tape, which is also common to many processing machines. 
In both cases the common language is processed by computer to 
produce instruction for specific and multiple equipments. In both 
cases the translation capability to specific equipment is usually 
the responsibility of the manufacturer of that equipment. That 
this is not so in the composition industry is due to the lack of a 
standard composition language and metarepresentation of text 
(with associated characteristics of alphabet or other symbol class, 
font, size, style, weight, and 2-dimensional positioning). If this 
existed, it would be a high-level language for copy production 
which is translated, by computer, to instructions for the various 
hard-copy equipments. The industry suffers from this lack. 

To be feasible, the basic functions of copy production must be 
similar, even if not carried out in the same way. This appears to 
be so; it has been proved for the Honeywell Computer Journal, 
which can also be printed from entry terminals. Indention, font 
change, size change, etc., seem to operate as primitives. 

To construct a general text-processing language, of which the 
composition language is one part, we need to enumerate the 
functions and then assign standard encodings to them. The provi
sions to do so exist in the ISO Code and the associated expansion 
and extension techniques. The most general mechanism is ESC
ape, although SO and SI exist. Some 2-character ESCape se
quences are now virtually standard in the 7-bit code, and will 
likely be single characters in the 8-bit expanded code. Examples 
are Half Line Reverse Feed, Cursor Up. 

Utilizing code extension procedures, provisions are made to be 
able to select unambiguously a group of symbols, a font, weight, 
size, etc. We then use a key device or pressure display panel with 
single function buttons. The operator would perhaps press 
"Cyrillic" (to get the GOST Standard encoding), "8" point on 
"10", "bold". Each key would generate an ESCape sequence in 
series, inline in the text. He then uses either a special typewriter 
keyboard, a standard keyboard with a chart of correspondences, 
or some other device, to enter the Russian text. One can imagine 
the total set of symbols paged on a microfiche for back projection 
on a screen. 

Computer programs (postprocessors) are created to translate 
from this standard language into the actual commands and char
acter inputs for the copy device, which could be 6-level Teletype
setter, Monotype, Photon, RCA Page One and Videocomp, 
Datel typewriter terminals, IBM Selectric Composer, etc. 

Until new entry equipment is made available to conform, simi
lar preprocessors could be written to convert from the various 
entry conventions to the metarepresentation. This would reduce 
the translations from N! to 2N. If all entry equipment would 
eventually conform, a further reduction to N occurs, where N = 
the number of different composition equipments. 

It is expected that this would free the photocomposition indus
try for expansion in the same way that FORTRAN, COBOL, 
and ALGOL did so for computational usage. It would provide 
international standards for alphabet representation, to aid the 
UNISIST project. 

CLASSIFICATION AND GROUPING OF SYMBOLS INTO 
PAGES 

ISO TC46 (International Standards Organization Technical 
Committee 46), Documentation, has a Subcommittee 4 on Auto
mation in Documentation. This body has responsibility for col
lecting and/or developing the pages of encoded symbols. 
Examples of such pages are: 

• Characters to form natural languages (alphabets) 

ISO [DIS 646] Kata Kana [JISCII] 
National/accented Kanji 
Cyrillic [GOST 13052-67] Braille 
Greek Phonetic 
Hebrew Dactyology [hand signs] 
Arabic 
Sanskrit Other punctuation [character 

augments, bullets, rules, 
bars, leaders, etc. 

• Symbols of various fields 

Aeronautics 
Astronomy [Astrology] 
Biology, Botany 
Business [Commerce] 
Chemistry 
Ecclesiastic, Fraternal 
Electricity, Magnetism 
Flowcharts 
Games 
Heraldry [flags, insignia, arms] 
Logic diagrams 
Mathematics, Geometry, Physics 

Medicine 
Meteorology 
Money 
Music 
Philately 
Pictorial, Ornaments 
Transportation 
Typography 
Welding 

Other Scientific 

• Controls - for changing point size, weight, slope, font, posi
tion relative to the base line, horizontal compression, etc. 

An ESCape sequence and prefix character should be proposed 
for each page of symbols, for registry with ISO TC 97, Computers 
and Information Processing, which body maintains this registra
tion authority for extension and expansion of the ISO Code. 
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This paper is not about everything between man and machine, 
but about man-machine everything, that is, the desirable future 
condition where most of our information and tasks are attrac
tively and comprehensibly united through man-mechanisms. The 
breadth of possibilities is mind-boggling, but it does not seem to 
be clear to people yet that they are possibilities for the choosing, _ 
rather than eventualities to be engineered. The myth of technical 
determinism seems to hold captive both the public and the com
puter priesthood. Indeed, the myth is believed both by people 
who love, and by people who hate, computers. This myth, never 
questioned because never stated, holds that whatever is to come 
in the computer field is somehow preordained by technical neces
sity or some form of scientific correctness. This is cybercrud. * 

Computers do what people want them to do, at best. Figuring 
out what we should want, in full contemplation of the outspread 
possibilities, is a task that needs us all, laymen no less. There is 
something right about the public backlash against computers: 
things don't have to be this way, with our bank balances unavaila
ble from computers, the immense serial numbers of our drivers' 
licenses generated by computers, the unstaunchable rivers of junk 
mail sent to us by computers. And it is the duty of the computer
man to help demythologize, to help the intelligent layman under
stand the specifics of systems he must deal with, and to help the 
public explore the question, what do we want? 

Various "professional" approaches to our online future have 
confused us and left us stumbling. I refer particularly to (a) the 
field of "computer-assisted instruction", where a computer is 
often programmed to act like a crabby schoolmarm, coercively 
leading students around by the nose and chiding them personally; 
and (b) the field of "information retrieval", where a computer is 
often programmed to act like a wind-up librarian, sorting new 
questions into obsolete categories. 

The possibilities are much, much wider, and not to be re
stricted by the parochialism of "professional" approaches. This 
paper approaches the question: "If computers can give us rich 
services - and they will - what do we want?" And it supposes that 
the answer is specific. And that a lot of new terms are needed to 
cope with the variety of what's coming. 

* "Putting things over on people using computers ".1 
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THE HOM:E SYSTE!'.1 

Computer fans agree that the home computer is on the way. 
Soon a minicomputer can be put on a few integrated circuits, and 
the price will be right - perhaps a thousand dollars retail before 
discount pricing. But the question of how we will use it, and thus 
how it will be marketed, stalls such an enterprise. There are 

. ·perhaps four-models for the Personal or Home Computer. We 
might want it as a Calculator; Genie; Toy; or Crystal Ball. The 
question is, what will catch on? We have always had a strange 
inability to realize what will Catch On Next, though by now we 
have the vivid hindsight precedents of gramophone, Kodak, tele
phone, movie, TV, tape recorder, Instamatic, videotape, audio 
cassette, stereo LP, pocket calculator, and so on. But now what? 

People are not likely to pay a thousand dollars for a calculator. 
As to the genie - something that will open garage doors, manipu
late the hi-fi and the model train - the interface costs are prohibi
tive. The supertoy idea is swell, but too expensive for most of us. 
Inescapably the home computer that catches on is going to be a 
Crystal Ball: that is, its principal function will be as a general
purpose viewplate into realms of digital text and graphics. It may 
cost more, of course, but in this form the Home System may 
provide a sufficient and viable basis for a whole new market. 

Various combinations have been suggested for media of the 
future, from branching video cassettes to (almost) holograms 
with dial-up audio. But when things get sorted out there will be 
resolution to fewer things. Just as movie-makers usually do not 
mix-and-match different forms of output, but stick with sound
on-film 35mm, certain combinations in the grand computer
audio-visual realm will surely predominate. The question is 
where to cut and combine, what not to bother with, and pre
eminently, what will Catch On. I think when the smoke clears 
our main new medium of the future will be the branching, per
forming, digital text-and-picture package. Coming over the 
phone (or other) line to the home system, in pieces summoned 
by a chain of user choices, it will be almanac, encyclopedia, novel, 
comic book, playground, travelog, and time machine. The Home 
System will thus be both a Fun System and a Work System. 

It is conjectured that a Universal Console, a text-and-picture 
demand console, will evolve - standard in its performance and 
interface specifications, permitting the free interchange of mater i
also Such a general unit must include graphics refreshment, key
board input, a selection device, and many service provisions and 
conventions. There are of course two major ways to do this: as 
a satellite "terminal" to big computers, or stand-aione. 

The usual supposition is that graphics systems need support 
from a big computer. Indeed, for that case we now have a stun
ning demonstration that mass computer graphics are practicable, 
the PLATO system.2 
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The opposite approach is exemplified by XANADU,* de
signed over the last decade under private auspices. XANADU is 
presently under development as a program for a popular mini
computer. However, possible reduction to microprocessors - spe
cialized to the functions of retrieval and display - is foreseen. 

XANADU's basic design criteria were to compress the com
munication, retrieval and revision of big and fancy files, along 
with interactive animation, into a small stand-alone machine. 
The software design, completed in 1972, may best be character
ized as a retrieval-and-animation complex handling very large 
and versatile files. These files, stored on a mix of disk and tape, 
may be recursively coupled (annotations on annotations on anno
tations), with couplings surviving revisions; they may have nu
merous separate data-type breakouts or "enfilades"; they may be 
large, being currently defined over a addressability-space of 15 x 
220 elements. XANADU files are subject to extremely rapid 
revision due to the storage structure, retrieval and edit al
gorithms; these will, for instance, swap two halves of a large book 
in a few consecutive disk fetches and writes. Finally, the system 
has an unusual display language, DINGO (Display lINGO), 
permitting interleaved retrieval and animation, and maintaining 
picture stability while data and picture parts change. Finally, the 
design permits incremental roving in n dimensions of uniform 
data web, n not related to the number of enfilades. 

None of these things seems difficult by itself, or with "enough 
core" on a big machine; but setting up to operate on a mini (16K 
or less) without stopping for breath has been the problem that 
we believe has been solved in this proprietary design. 

XANADU is intended as the programming substrate for a 
variety of simple-user front-ends involving complex animation, 
retrieval and data entry. Designed as a stand-alone system with 
communications facilities, it is expected to function as a network 
machine simpliciter, nothing else being necessary to communi
cate text, pictures, or interactive animations between XANADU 
sets. We intend to create a standard XANADU file transmission 
protocol for all varieties of text, pictures, etc. This involves a 
complex range of mating conventions among files and programs 
and data, including preambles with faceted data classifications, 
and default conventions of program and data, so that, e.g., 2-
dimensional graphic picture lists can be piped through 3-dimen
sional display programs with the missing features assigned the 
proper arbitrary values. Finally, our approach to security in
volves systems of criss-cross integrity checks to prevent falsifica
tion and counterfeiting, a problem that perhaps has not received 
enough attention for library systems of the futu.e. 

One hope is to promulgate this system with sufficient force -
e.g., widespread licensing and PR - to create a de facto standard 
for extremely intricate files. The main problem is, of course, how 
to enforce standardization in a field where intentional destand
ardization is a universal lowdown trick. 

In any case, since the undemonstrated XANADU system has 
met much incredulity, we will merely assume here that if this one 
doesn't work there will be another one of comparable breadth, 
and talk about what that ought to be. 

* "XANADU" and "ParaJJe/ Textlace" are claimed as trademarks for 
romj'lltr:r "ystems ofTtYt:d b) ihe .VdSOll Organiz[Jlioll, in,;.. 

INTERPENETRA TING SCREENWORLDS 

We all agree that, one way or another, a heyday of computer 
graphics is coming, and for uninitiated users (let's call them 
simple, as they may not necessarily be naive). But it seems to be 
supposed that the simple user of graphic systems will still have 
the same psychological environment of to day's computer user: he 
will "call programs" and employ "terminal languages", or at best 
make selections from uniform-looking columnar menus. In other 
words, there will still be explicit user-invoked transactions and 
transitions among data and programs. A little thought may re
veal that this is neither desirable nor necessary. We want to be 
able to roam across boundaries, to call things from one place into 
the windows of another. Thus tomorrow's sensible graphic sys
tems should permit merged graphic composites - 2-dimensional 
tapestries or 3-dimensional scenes that may be selected and 
blended from among available graphical and program structures, 
and roamed over freely by the user. 

This suggests that a preliterate child, for instance, could guide 
his display screen down a carnival midway with a joystick, turn 
to watch a cartoon "juggler" do tricks with numbers, and then, 
if interested, guide his screen through an entrance into a "circus 
tent" where the number tricks continue. An adult, roving on his 
screen through explorable views of Stonehenge, may branch from 
twinkling screen-markers to the many theories about it, and 
thence to the books and articles expressing these theories - all the 
while he still explores, and searches out relevant angles in, the 
3-dimensional model of Stonehenge still on part of the screen. 

Such screen worlds can be created for the wholly computer
naive. The sophisticated user should be allowed to move with 
freedom through graphic tapestries opening not only into per
forming graphics and text, but other services and structures as 
desired. 

THE VENDING MACHINE OF IDEAS 

The data conventions of a Universal Console system will allow 
interpenetration of contents; e.g., juxtaposition and interframing 
of graphics, windowing between graphics files, and selection 
mechanisms among them which include the showing-through of 
jump markers and other advertising for materials availabk 

If we call a graphic environment and its rules a "screenworld" 
- whether a tapestry of drawn data or a set of simulation pro
grams - then this many-ported visual (and calling) access between 
them creates interpenetrating screenworlds. The advantages of 
such explorable graphic mosaics should be obvious: roaming over 
them will be like perusing the Sunday comics (or Ray Bradbury's 
Illustrated Man), without getting lost, remaining always in a 
vividly comprehensible setting. Editorially we will be laying out 
such tapestries and scenes like magazine spreads. 

The question is, what does the human mind want? Given the 
possibilities of digital exploration, what systems will be best for 
scholarship, learning, creativity and fun (all closely related)? 
What are the cleverest and best unifications? We have yet to find 
out these answers. But to suppose the desirable systems resemble 
"illstrudiull" UI library searches is hugely premature. 



We will probably want a variety ofthings that may be grouped 
loosely under headings of "responding resources" and "hy
permedia". By responding resources I refer to the kinds of things 
computer people usually think of as "useful programs" - JOSSes 
and simulators, timetables and typesetters and so on; services and 
facilities and programs. Hypermedia ("Hyper-" here meaning 
"extended, generalized, and multidimensional" - roughly the 
mathematical sense) are essentially prearranged presentations 
without fixed sequence: animated, branching word-and-picture 
bundles. These include branching and performing graphics, and 
branching or performing text, or hypertext. 

A few simple examples should indicate the potential power and 
usefulness of hypertext. Consider the simple case of quoted mate
rial in writing. Seeing an interesting quotation in text, it would 
be nice if we could ask to see it in its original setting, and have 

. the_J1reseDL~UILOJIDdin~_f~dejJ)lQ._th_~ Q.DZm'!!. .!il!U9l,lndings of 
the quotation. We could read in the original to satisfaction, and 
then return to the setting in which we saw the quotation. This 
quoteback feature may be thought of as links, of quotations to 
their sources, that we may jump along. 

In another application of simple hypertext, many of us long to 
be able to follow news stories over enough time and detail to 
transcend the plainly misleading headlines - but can't, given the 
existing structure of news~edia. Hypertext could make it possi
ble. When authors and editors are given the ability to create such 
discrete jump-links, the character of writing should change 
dramatically. The potential strength of such new forms of writing 
can only be surmised at this point, but it should be considerable. 

All this was seen by Vannevar Bush in a classic article,3 but 
what he really said has been largely ignored4 and the ramifica
tions of this approach - hypergraphics, hypercomics and so on -
have scarcely been touched. 5 As with the movies when they were 
first introduced, most people are having difficulty visualizing the 
possibilities.6 We may summarize some interesting conjectures 
on hypertext, or branching text structures. 7 

Conjecture 1: we've been speaking hypertext all our lives, and 
never knew it. Tinkertoy structures of thought, inherently paral
lel, must be conveyed on the linear conveyor belt of speech. 
Cross-citing connections by intonation, self-interruption, pushes, 
pops and cross-reference, has always been a daily problem. 

Conjecture 2: there has been pressure toward hypertext since 
the written word began. (Consider the footnote; hypertext is 
immanent in any attempt to put text into man-machine systems, 
and is certain to emerge no matter where we begin.) 

Conjecture 3: the interconnective structure of hypertexts will 
gravitate toward the real structure of the thoughts expressed. 

Conjecture 4: understanding of complex relations will come to 
the hypertext reader via traversal in different directions - like 
learning the way around a complex piece of architecture. 

Conjecture 5: hypertext will be easier to write. This is because 
rather than deciding among expository and transitional struc
tures, the writer may use them all. 
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It is hard to guess what the forms will be. I suspect that 
hypertext need not be generally sequential or hierarchical, or 
general-to-specific in structure, or have obligatory catenas or 
sequences for the reader to traverse. This remains to be seen. 

PRESTIDIGITATIVE PUBLISHING 

To make these things possible, the Universal Console must be 
complemented by a range of meshed services: by central feeder 
machines (large or small), forwarding message and graphic com
plexes between consoles, and serving up prepared materials. We 
may call this latter "prestidigitative publishing", involving as it 
does both the rapid motion of digital data, and the supplying to 
screens of material that may be controlled "like magic" . 

the general-purpose texHtnd-gniphic console may thus plug 
into libraries, explanatory and teaching complexes, literary and 
entertainment clusters. But we may also expect the basic console 
to be merged into complex control systems, with a variety of 
sensors and effectors. (Therefore the data conventions will have 
to cover a much wider base, expandable to all possible input and 
output modalities just as ASCII is expandable to all possible 
alphabets.) Many modalities may therefore in principle contrib
ute - text, diagram, video, feelies and smellavision and whatnot; 
but most basic will be text and pictures, for these will be able to 
come or go among standard systems. 

PYSCHIC ARCHITECTURE 

I can now state what I believe to be the central problem of 
screen world design, and indeed of design of man-machine any
thing - that is, psychic architecture. * 

By the psychic architecture of a system, I mean the mental 
conceptions and space structures among which the user moves; 
their arrangements and their qualities, especially clarity, integra
tion and meshing, power, utility and lack of clutter. ** 

It should be noted that these notions are much like those by 
which we judge regular architecture, and indeed the relationship 
would seem very close. An architectural grand design - say, of a 
capitol building - embraces the fundamental concepts a user will 
have to know to get around: main places, corridor arrangement 
(visualization and symmetries), access structure. These concepts 
are the very same in a screenworld or other complex man-made 
virtual structure: main places, corridors or transition rules (and 
their visuaiization and symmetries), access structure. it is a vir
tual space much like a building (though not confined to three 
"normally" connected dimensions), and susceptible to the same 
modes of spatial understanding, kinds of possible movement 
within, and potential appreciation and criticism. 

* "Psychic" is used here for the dynamics of feelings and ideas, 
as distinct from "psychology': whatever it is psychologists stud}~
- "menta/, as distinguished from physical and physiological" -
Funk & Wagnalls Standard Dictionary, 1960 ed. 

** Similar criteria are also considered in (8). 
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The orientation problem in both cases - real building and 
screen world - is immensely important. Because there is no "natu
ral" structure is to fantic space (definition to follow), as there is 
in our 3D world, great care must be given to maintaining the 
user's clarity of mind. Especially for this reason, the fantic space 
should have a Grand Design - an overall shape easy to remember 
and visualize in some way. I think that there is art to it, that it 
is not all "human factors" and reinforcement schedules. 

I propose the term "fantics" for this newly-structured but very 
old realm, the art and science of presentation, especially to the 
mind, sometimes to the hand. I derive the term, like most English 
"fant-" words, from Greek phainein, show, and its derivatives 
phantazein, render visible or present to the mind, and phantasia, 
appearance or imagination. The related English terms fantasy, 
phantom, and phantasmagoria (succession of zooming images) 
also contributed to forming this word. The word "phantom" is 
used in the graphic arts for diagrams which show opaque things 
transparently and also in medicine, for a victim's feeling that a 
lost part of his body is still attached. 9 

These usages suggest visualizations and physical sensations 
that come and go, clustering matters I think belong together: 
showing and presenting things, visualization and kinaesthesis, 
and alternate ways to structure them in information systems. 

Thus fantics. Computer graphics will be its principal mecha
nism, but not its center. Its center is the communication of ideas 
and thoughts, whether they be facts, poems, or body gestures 
translated electronically to complex happenings on another 
planet. Inventing the best presentational media from among the 
remarkable options now requires our close attention. 

FANTIe UNIFICATION, CONSTRUCTS, AND FIELDS 

By "fantic unification" I mean tying things together in a cen
tral presentational or control structure which unites them con
ceptually. Example: several wing-flaps of an airplane are united 
in its control yoke, a crescent on a rod which may be both turned 
and moved forward and back. The airplane's flaps do not individ
ually correspond to a desired effect, nor do the combined move
ments of the control, necessarily; yet this integration provides a 
convenient unified "feel" to the pilot. 

It is in much the same way that we unify things in all presenta
tional modalities - in writing, in diagrams, in movies, or whatever 
- creating structures, organizing principles or unifications which 
have an integrating conceptual character. Often they may have 
a fictive or not-quite-real component, yet this fiction may con
tribute some kind of clarity or simplification, allowing the mind 
more neatly or conveniently to manage information. 

We may define a fantic construct as a virtual reference struc
ture used to help imagine or handle ideas and things. It may be 
added to subject matter or somehow put into a presentational or 
manipulative system. This concept of fantic construct, then, ex
tends from sequential organizations and headings of text to 
grossly artificial mnemonics. A fan tic structure, however, is the 
structure of a presentation or presentational system, whether 
experienced by the user, intended by the designer, or discovered 
later on by somebody else, or an abstraction never suspected. 

A fantic field is the fan tic structure of a complete and closed 
presentational, manipulative and/or conceptual field system, 
within which complicated things may be shown or handled. Thus 
communication media such as books and radio are fan tic fields, 
but then so are complex interactive screen worlds and work-sys
tems such as Sutherland's. 

Fantic controls are any controls whose correspondence to the 
realm affected is restructured or mediated by fantic structure, 
whether by fictive fantic constructs, integrated transpositions, or 
some other form of conceptual combination or rearrangement. 
Thus wands and puppet-yoke controls, and "virtual gloves" with 
which we feel inside a display-space, are fan tic controls, but 
brakes and gearshifts are not. The suppositions are these: 

• We now pass to an era where the structure of objects them
selves is less important than formerly. Not just using or hook
ing into objects, but structuring the perceptual and 
conceptual field interestingly and usefully, is the problem. 

• This is the same as the general problem of creating presenta
tions in written, audio and other media. Thus we unite with 
writing, theater, movies and plastic and graphic arts: organiz
ing for presentation to the mind. The problem is aesthetic as 
well as cognitive and functional. The aesthetics are important 
and, if not inseparable, should not be separated. 

• The principles of psychologically reorganizing receptors and 
effectors in complex man-machine systems are the same as 
those of organizing thoughts and other intellectual materials 
for presentation to the mind. 

The most basic principles are making things look good, feel right, 
and come across clearly. Perhaps there are special-case princi
ples, like those offered by learning theory and "human factors", 
but clarifying their correct range of applicability is essential. 

It should be realized that it is not only screen worlds to which 
these criteria apply, but any media and arbitrarily-structured 
entities to be presented to people. (For example, if someone were 
to develop a "hypermusic", with alternatives among which a user 
could move, it would presumably be subject to these criteria.) 

PERFORMANCE VALUES AND VIRTUAL SPACES 

We need a general terminology for the performance features 
and special effects that we are going to see in the coming years. 
Unfortunately, because of the variety of devices, modalities, sub
jects-matter and professional specialties touched, such a common 
vocabulary emerges only with difficulty. If we concentrate on 
aspects which are independent of particular areas and subjects, 
we obtain some generality, of at the price of occasional vagueness. 
The following terms have come about from rather detailed con
siderations of possible screen performance techniques, but wider 
generality is intended. Hopefully the following language applies 
regardless of what we are showing or controlling, or how. 

A number of performance features or special effects are desir
able; we may call these "performance values" (cf. "production 
values" in films). Many performance values may be turned inside 
out, and described as if they were places and events. 



Fantic space. Spacelike structure, of accessible text, pictures, 
animations, etc. * 

A space may be I-dimensional (plaintext), 2-dimensional (a 
tapestry), or 3-dimensional (a scene or object) or even higher. If 
it is not regular, but consists of two or more dimensional zones 
attached by discrete connections, I suggest the term funny-space 
(which can be suffixed with the dimensionalities of the zones). 
Note that the fantic space of the contents joins with the fantic 
space of the yiewing system and controls; the result we should 
perhaps cali a grand mntic space - the overall space the user 
perceives, thinks about and moves in. 

(Note an inversion here: the concept of fantic "space" makes 
a user's viewplate or other sensorium a moving vehicle, rather 
than a stationary place to which data are brought. This is as it 
should be, taking the wider view.) 

Fantic contents: The contents of fantic space, as a system of 
arranged materials and potential performances and events. As in -
modern cosmology, the space is defined by its contents. Fantic 
tissue: the connective structure offantic contents, particularly of 
their interconnections and transition arrangements. Data web: 
the data structure which underlies fantic contents, not necessarily 
homologous or proportional to them. 

Direction: transition gradient in fan tic space or tissue; may be 
presentational or psychological or content-based; may be mapped 
in visual analogs. Roying: moving through a fan tic space. Jump: 
discrete step between discontiguous places in fan tic space. Choice 
point: place where a choice may be made; e.g., one displaying a 
menu of jumps. Juncture: joining place of two continua of fantic 
space, contents or tissue. If presentable, it may be a choice point 
involving continuous alternatives, e.g., paragraph beginnings 
which continue otT the screen. 

Royer: a movable place-marker that denotes a currently acces
sible location in fantic space. Jump-set: a set of things io which 
one may jump at a given moment. Fast track: a set of rovers 
constituting a jump-set; that is, a bunch of markers you can move 
individually and keep homing to. Jumpstack: a stack holding 
addresses, in series, of jumps to be undone by a RETURN func
tion. Jumptrack: a currently active system of recorded jumps, all 
remaining accessible under some scheme, and constituting a fast 
track. 

Border: notable division between spaces, places, media, works, 
services or facilities, fan tic fields, etc. Note that they may connect 
only at a few points. Opening: local access to another linked 
place. 

Portal: opening permitting full movement of a rover. WIndow: 
opening permitting access but not unrestricted rover movement. 
Border station: official portal (crossing- or entry-point) on a 
border. Tunnel: quiet portal between spaces, places, etc.; border 
is not seen. Customs: markers, crossing protocol and/or restric
tions at a border. Crossing zone: area of parallel or other multiple 
access across a border. Seamless tissue or web: tissue or web 
having no break or sharp discontinuity in performance at a bor
der, or simply no borders. 

* Cf "filmic space'~ the yirtual space created by InterCUttIng 
different shots in the moyies. 
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Link: connection between two points, as between rovers and 
placemarkers, which may serve as a jump from one to the other; 
connector between ends of an opening. Coupler: facility permit
ting a link to be made, or data structure resulting. Prehensible 
coupler: one coupling into a file that has not been forewarned. 
Multicoupler: facility permitting mUltiple links to be set between 
parts of two entities, thus establishing a sort of corresppondence 
between these parts; the resulting data structure (also called "zip
per list").]] Collateral structures: entities linked by a multicou
pIer. 

Mooting system: system permitting complex alternatives to be 
studied indecisively, e.g., by use of collateral structures. Cre
atiyity system: mooting system with design (or text, etc.) facili
ties for creating complex entities indecisively. 

-VISUAL GRIENTATIONTIEVICES .. 

Setting aside some of this intended generality, let us consider 
the visual modality, and screen tricks to keep the user oriented 
during complex screen transitions. 

Orienters: pictographs that show a user where he can go spa
tially. Rose or compass-rose: pictograph showing possible "di
rections" in the space. (Map: diagram showing the structure of 
the space, and perhaps the user's current position.) 

Ticklers: pictographs or messages that tell a user what he may 
do next. (Not sharply distinct from orienters.) A maplet, for 
instance, is a fractional map that tells immediate alternative 
moves, and possibly which way to some sort of "home"; a blurb 
is a writeup or title of something that may be gone to; a jump
marker is an element you point to to jump. Function box or 
function rose: pictograph indicating alternative functions which 
may be chosen. A menu, of course, is a textual listing of alterna
tives. (Note: for fast-roving performance on slow-filling screens 
it is desirable to put the ticklers up first in each new screenful, 
permitting the user to jump or move at once.) 

By the careful crafting of media and screenworlds, using these 
devices with as much consistency and attractiveness as possible, 
we may encourage well-oriented mobility in our fan tic systems. 
This is the point. 

A FANTIC AGE 

A variety of media await us, and which ones make the "best 
cuts" remain to be seen. (Conjecture: they will resolve to a very 
few.) The major mixable options I wish to point out here are: 
"hyper-" (nonsequential); text; pictures (2D or 3D); animation; 
overlays; complex roving; complex coupling of structures; inter
penetration of presentational tissues; linkage of video and movies; 
linkage of special control yokes; linkage of special forms of view
ing (3D, smellavision, etc.). 

Except for the more expensive viewing situations - film, smel
lies and the like - all these may be presented in the Universal 
Console, and those which cannot may still be comprised within 
a generalized data and transmission structure built around such 
a Universal Console. 
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HUMAN INTERCOURSE IN A F ANTIC ENVIRONMENT 

With the spread of computer graphics and prospect of a Uni
versal Console, computers may furnish backgrounds to human 
intercourse as varied as the blackboard and drive-in movie. 

Till now, graphic systems have been built with an organiza
tion-based frame of mind. They have involved sitting in office
type chairs at desk-like furniture having screens and keyboards 
perched or attached. Home models, however, may well be built 
into lounging chairs, conversation pits, children's furniture, or 
even into bedlike environments. I am particularly interested in a 
backpack design for portable wear, one which would mirror the 
CRT image into a concave transparent faceplate or visor. 

The active use of such systems in conversation should make 
possible whole new depths of communication, both factual and 
ideological. Engelbart's recent work has shown the power of text 
CRT systems to enable people to work together over the same 
materials. Pehaps this ability can be extended to miniature porta
ble systems delivering graphics as well, e.g., where people can 
exchange graphics or text through a quick umbilical connection 
between backpacks. Suppose we can carry our favorite animated 
diagrams and reference works around, and exchange them and 
talk about them and manipulate them together. Does it matter 
how turtle-like such portable Houses of Intellect might seem? 
May we not actually come to understand each other better? 

SHOULD SYSTEMS TALK? 

From Weizenbaum's ELIZA program to HAL-9000 of Ku
brick and Clarke's 2(}()1, there is a constant sense that "of 
course" we want talking computers. And while the problem of 
how to get them to talk back is investigated every which way, the 
question of whether computers should talk back seems never to 
have been examined, let alone posed. As there are far simpler 
methods of commanding system activity - e.g., light-pen thrust 
- conversation is by no means necessary. Moreover, it is not 
obvious that people will enjoy mechanized conversation; rather, 
it may be offensive, alarming, and a tribulation. Mischievous 
programmers get a kick out of writing programs that pretend to 
speak and understand, wise-guy programs that identify them
selves as "I, the computer", insist on being talked to by typed 
input, are full of snappy replies, but don't really do much with 
the input. The capacity of such systems to offend and annoy has 
not been sufficiently recognized. 

There obviously must be a method of sending new information 
to the user, and so sentence generation is unavoidable. But that 
does not mean a system has to be a smart aleck, or, indeed, to 
disguise the exact method of its sentence generation procedures. 
What I am getting at is: we should have standard ways to intro
duce systems, to know what kind of an entity you're communi
cating with. Who wants to be the goat of the Turing-test? The 
user is entitled to know if he is typing into a real sentence-parser 
or just a keyword trickster program. It's infuriating to have a 
program pretend it can understand you and then fail to parse 
eight consecutive input sentences. There ought to be a law against 
wasting people's time with this sort of silly program. 

More generally, the spread of consumerism means people want 
to know who they're dealing with. As we program online systems 
that will involve innocent people, we had better think hard about 
ways to get the system's cards on the table (or heart on its sleeve) 
- and play neither coy nor god. 

VICTORIAN REMARKS 

I think that the Grand Corpus of our written heritage, chaotic 
and individualized as it is, is a precious substratum of our world. 
The new age of hypertext and hypergraphics should build on this 
tradition, rather than mush us into committee authorship and 
indifference to the past. In forging toward the Screen Future, and 
the creation of screen worlds we will love to live in, let us remem
ber and esteem the traditions, scholarly mechanisms and arts that 
have worked so far, and build on them. And we must begin to 
worry about the problems of privacy, access for everybody, 
"what gets kept?", and dangers to the corpus once it is online. 

CONCLUSION 

The foreseen extension and unification of words, pictures, and 
control will be the apotheosis of "computer graphics"; but the 
sooner we resolve that field to a set of techniques at the service 
of explicit presentational goals, the better. 

The ambitious terminology was presented to nail down crucial 
aspects and distinctions of an entirely new realm of human en
deavor and experience, not cluttered with mumbo-jumbo from 
other creeds. The psychic engineering of fantic fields - adult's 
hyperspaces of word and picture, child's gardens of verses - is our 
new frontier. We must look not to Asimovian robotics and the 
automated schoolmarm and librarian, but to the penny arcade 
and the bicycle, the clever diagram and the movie effect, to 
furnish this new realm. 
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The computer may be compared with the clock as an artifact 
capable of altering man's life and manner of viewing and experi
encing the world. The growing literature on the community in
formation utility (CIU) calls an analogy to mind. I am reminded 
of the clock in the cathedral of Lund, Sweden, where I once lived. 
It is a typical medieval clock that tells the time, date, courses of 
the sun and moon, etc. Furthermore, at noon (1 P.M. on Sun
days) and 3 P.M. mechanical knights clash on top of the clock 
and three wise men appear in the wings to pay homage to Mary 
and Jesus whIle an organ plays In ctutctjuuitu-"-:---ete-aTfythe-t-4th 
century builders of astronomical clocks were interested in push
ing their new technology to the hilt 1 and quickly putting as many 
applications as feasible on the town clock. 

Today such clocks serve only as tourist attractions. We have 
developed alternative means for some of their functions, and are 
getting along without others, like clashing knights at 3 P.M. 

Throughout the CIU literature one encounters appreciation 
for subject complexity and potential costs as well as benefits, yet 
there seems to be considerable consensus that the CIU should 
and will eventually be with us. I am uncertain of this conclusion, 
and uneasy with the haste often urged for its realization. 

A common proposal is to establish a prototype CIU as a re
search vehicle. In the report of an excellent, comprehensive con
ference - Planning Computer Information Utilities (PCIU)2 - we 
find "consensus" that "a well-designed, scientifically-evaluated 
prototype CIU would greatly reduce the long-term social risk". 

Rather than building a prototype CIU as quickly as possible, 
I would advocate a moratorium on CIU construction until the 
year 2000. At a time of pressing need for our national resources, 
I am skeptical of building a system which will be obsoleted by 
changing technology, may provide unwanted or unnecessary ser
vices, or might alter man's way of living and experiencing the 
world in unpredictable ways. Deferring CIU development will 
give us a chance to gather new information (without a prototype) 
on technology, applications, and man's values. 

TECHNOLOGY 

Around the year 1500, Peter Hele of N uremburg is said to have 
hit upon the idea of using a spring to furnish power for a clock 
and he created the first clocks without towers. By the end of the 
16th century the domestic clock was introduced in Holland and 
England. Certainly by the year 2000 there will also be significant 
changes in information processing technology. 

Without explicit impetus of a CIU project, research and devel
opment are proceeding in virtually all of the underlying tech-
niques. \11 e see efforts toward understanding the nature of 
programming projects and languages; alternative storage and 
communication technologies are being explored, processors are 
becoming faster, cheaper and more reliable; new forms of pro
cessor organization are under investigation, etc. 

This all portends cheaper and more reliable systems in the year 
2000,3 with a higher probability of ever working (we have many 
examples of abandoned projects). A prototype implemented in 
the technology of 2000 would be organized differently than one 
of 1973; stories of using 1401/10 emulation mode on IBM/360s 
to run IBM 650 programs under 1410/650 simulator attest to the 
problems of getting locked into early design conventions. 

The year 2000 will present not only improved technology for 
CIUs, but also alternatives to the CIU. E.g., many potential CIU 
appticatiun-s- in---education and enter taiIlIllent-might-be----done-via
videotape cassettes, purchased or checked out from the public 
library, if costs of creating, duplicating, and playing videotapes 
were to fall drastically. 

APPLICATIONS 

Clocks have been built which predict eclipses and tides; show 
the movement of the earth, moon, sun and other planets; show 
the date, day of the week, zodiac sign, and season; depict a wide 
range of religious and other events; entertain and tell time. 

Today many of these applications seem humorous. Obviously 
they were generally more important to 14th century man than to 
us, yet even then there were doubtless citizens who didn't care 
when the next eclipse would occur, or could predict seasons 
accurately enough for their purposes by alternative means. But 
since such predictions were of some value and could be made, 
they were. Alternative techniques (printing) have also appeared 
for many of these applications. 

Like 14th century clockmakers, CIU designers are in danger 
of implementing applications that have insufficient justification, 
or which will become unjustifiable due to changing public needs 
or development of non-CIU means of performing them. 

The major advantage to a moratorium in applications is that 
by 2000 the public will probably be better informed and familiar 
with the nature and functional capabilities of information sys
tems, enabling partial decentralization of design responsibility for 
the CIU. A computer-literate public could be expected to write 
programs, specify individual applications, and make more rea
soned political judgments on a CIU (including the possibility of 
forgetting the whole thing). If the CIU is a good idea, a comput
er-literate public would also save us the effort which Gilchrist (in 
PCIU) predicts would be necessary to sell the idea. 

The importance of (right to) computer literacy cannot be 
overstressed. If the CIU becomes as important in our world as 
some feel (and others fear) it will, then will skill with and under
standing of computers become proportionately important? 
Understanding \vil! be necessary in order to fully participate in 
and utilize the CIU, while a lack of it would result in alienation. 
It would be one more facet of society upon which a person is 
dependent and yet ignorant - one more area in which to defer to 
the expert and the repairman. 
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Of course we would not remain passive during the next 27 
years. A year's exposure to a terminal in an elementary classroom 
or math lab, with access to a library of programs for school work, 
teaching, and entertainment, might suffice for a child to gain 
understanding of what a computer can do - and also learn to take 
it for granted. Then he might be ready to learn a simple, specially 
designed (not BASIC, etc.) programming language - to help him 
internalize the nature of algorithms and the structure of a com
puter system. We can seek out and work with noncomputerized 
organizations and individuals in our present communities to see 
what applications, if any, they can use, and develop techniques 
for training them. 

When and if a CIU finally comes into existence, users would 
be able to specify and program their own applications. Through 
incentives to share programs and charging for personal storage 
space, many user-developed programs would eventually end up 
in the public domain, probably in generalized form. Many of our 
current general-purpose systems, from report generators to trans
lator-writing systems, have evolved in this "bottom up" fashion. 

As an alternative, it may be argued that a prototype CIU could 
serve as a vehicle for testing the viability of applications. There 
are two major problems with this approach. The potential user 
is passive and is only in a position to accept or reject what is 
offered him, which (as Parker points out in PCIU, in a different 
context) puts him in a relatively powerless position. 

The second drawback, and this point is more important since 
it transcends the area of applications, or even CIU's, has to do 
with scientific organization and method. By virtue of the cost and 
status of a prototype CIU project it is improbable that we would 
conduct more than one, and it would certainly be a major influ
ence on all future community information processing. I feel that 
the topic is too important to be left to scientists, period, much less 
a single group associated with a prototype project. To quote Paul 
Goodman, this sort of big science risks "favoring a limited num
ber of scientific attitudes and preconceptions with incestuous 
staffing". To put it another way, it is difficult to imagine men like 
Goodman having a place in the prototype CIU project.4 Instead 
the moratorium should be used for decentralized (shoe string) 
science with studies by diverse investigators in diverse communi
ties (the "example" city recurring in PCIU is Santa Monica, 
home of RAND and SDC. I would be surprised if citizens of 
adjacent Venice shouldn't desire different applications from a 
CIU, not to mention, e.g. Pittsburgh, KA. Of the 17 chapters in 
PCIU, 14 are by RAND employees or Californians). 

Note that many investigations bearing upon CIU design and 
applications (such as those mentioned) may be carried out at 
relatively small marginal cost using today's timesharing systems 
to simulate a facet of a potential CIU. 

A final danger in the applications area overlaps with the third 
topic, the effect of the CIU on man and his world. This concerns 
the tendency to define a need or application in terms of what is 
amenable to our technology. Though not meaning to criticize 
here the particular articles in PCIU, the education application 
serves as an example. The danger is that "education" becomes 
redefined in terms of what is implemented on the CIU. The 
question shifts from what constitutes a "good" or "relevant" 
education to what is feasible to program and deliver via a CIU. 

A package of educational applications such as those outlined 
in PCIU would strongly alter our view of what constitutes educa
tion and would of course lead us to divert resources from alterna
tive educational activities. If, as a society, we are to radically alter 
our concept of education and our educational system, we must 
consider a wide range of alternatives, not just the CIU. For 
instance, our moratorium period studies should be concerned 
with free schools, urban storefront schools, the British and Chil
ean school experiments, University Extension programs, etc., as 
well as with computer-assisted instruction. 

MAN AND HIS VALUES 

To return to the clock, let us refer to Lewis Mumford5 who 
states that "The clock, not the steam engine, is the key machine 
of the modern industrial age". He goes on: 

"the orderly punctual life that first took shape in the monasteries 
is not native to mankind, although by now Western peoples are so 
thoroughly regimented by the clock that it is 'second nature', and 
they look upon its observance as a fact of nature. Many Eastern 
civilizations have flourished on a loose basis of time: the Hindus 
have in fact been so indifferent to time that they lack even an 
authentic chronology of the years. Only yesterday, in the midst of 
the industrializations of Russia, did a society come into existence to 
further the carrying of watches there and to propagandize the bene
fits of punctuality". 

Mumford points out that the popularization of timekeeping in 
America is as recent as the middle of the 19th century. In other 
words, we have only recently learned that "time is money", and 
we are different people and live in a different world than if we 
had never learned this lesson. 

Would a CIU have a major effect on the nature of man and 
his life? If so, are the changes desirable or undesirable? Let us 
consider three views. First, Thomas Watson of IBM,6 who sees 
technology (not restricted to the CIU) as having a major, positive 
impact on man's life. He recommends three uses or goals for our 
technology: the improvement of men's lives, bolstering our econ
omy to meet the challenge of international communism, and 
helping people in underdeveloped nations to improve their lives. 
While much has happened since 1960, when Watson wrote this, 
to shake our confidence (or better "faith") in the power of tech
nology, no doubt similar views are held by many today. 

As to the question of changes in what man is, Watson says 
"human adjustment to (technological change) should not be 
forced, rushed, or humiliating, but must be carefully considered 
and carried out". He obviously feels that there is no question but 
that the readjusted human, even if different, is better off. 

A more conservative assessment is made by Herbert Simon,7 

who feels that it is fashionable today to overstress potential 
change from the computer or communication "revolutions", and 
who therefore tries "to show in what important respects tomor
row's megalopolis will resemble today's metropolis, and indeed, 
yesterday's Athenian polis". 

Simon feels that, assuming man's physiological needs are satis
fied, his floating aspiration level will keep him in hedonic equilib
rium regardless of computers and communications. As to the 
nature of man, he states that: 
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"It is the truth, if not the whole truth, that the focal events and the 
climactic emotions in my life and my neighbor's are almost identical 
with those in the lives of Pericles, his neighbors and his forebears. 
Homer would find all the materials for his third epic in the morning 
newspaper: wars, floods, murders, shipwrecks, negotiations, births, 
deaths and marriages. Love, hate, curiosity, friendship, ambition, 
fun, pain were and are the substance of the human condition. Man 
is the significant part of man's environment; the nonhuman environ
ment, whether the forest or the sea designed by nature, or the farm 
or city by man, largely defines the rules of a particular game within 

which meaningful human interaction takes place". 

The third position is that technology has and/or will have a 
profound but devastating effect on man and his world. This 
viewpoint has been offered by D.H. Lawrence, Aldous Huxley, 
Jacques Ellul, George Orwell, Kurt Vonnegut, Samuel Butler, 
Lewis Mumford, and many other authors. I know of no story 
more d-irectiy relevant to the tID thanE..M. Forster's "The 
Machine Stops", 8 science fiction depicting the "ultimate" CIU. 

The world has moved underground, where each individual 
inhabits his own room. All communication is electronic and all 
goods, services, and information are delivered to the rooms so 
one seldom leaves his room or sees the light of day (eventually 
visiting the surface of the earth is outlawed). 

The inhabitants of Forster's world are physically changed. A 
woman is described as "a swaddled lump of flesh about five feet 
high with a face white as fungus". People are barely able to walk 
short distances, hold objects, and can no longer breath air. They 
are deluged with input and therefore fanatic about saving time 
and often "irritable". Direct experience of any sort repels them 
and they value only one thing: "having ideas". The inhabitants 
of the machine are well adapted. Artificial grapes with no bou
quet, and images without nuance or expression, are "good 
enough". When the machine begins to fail, they readily adapt to 
putrid food and stinking baths, and when it finally fails, the 
sudden silence causes many heart attacks and great pain. 

As foreshadowed by the title, the people are totally dependent 
upon their CIU and no one understands it. When it begins to 
deteriorate, they begin to deify and worship it, and when it even
tually fails totally, mankind perishes. 

Good, bad or indifferent? The answer is clearly not known, but 
Forster et al raise serious questions concerning the potentially 
negative effects of a CIU. What is the psychological cost of 
depending upon a perhaps poorly understoo~ CIU? What of the 
psychological effects of decreased personal contact? Will we tend 
to further neglect our physical selves in favor of more (active or 
passive) information processing? What of the social development 
and "babysitting" function of conventional schools? Will we be 
transformed by information overload? Will we process ever more 
abstract information ever more superficially (one thinks of Tho
reau9 who admonishes us to read sparingly only "the best in 
literature ... read as deliberately and reservedly as they were writ
ten")? Will the "rat race" force us to complete ever more, often 
irrelevant, instruction to compete with the Joneses? 

The answers are not known, nor is it even possible to complete 
the list of questions. This high level of uncertainty and risk argues 
for prudence in the implementation of our technology. 

Prudence is also suggested by an even more fundamental cha
ractistic of our time. Our values as individuals and a society are 

in a state of violent flux. Even if we knew the likely effects of a 
CIU with certainty, we have no commonly accepted metric for 
judging it. In a discussion of the CIU concept my students were 
able to state several reasons why a CIU should promote family 
units and several reasons why it might tend to weaken the institu
tion of the family. A straw poll showed them almost evenly 
divided as to whether the family should be strengthened. 

CONCLUSION 

CIU development should be prudent, ecological and decentral
ized. I suggest a moratorium on any large prototype CIU experi
ment until the year 2000, when we may re-evaluate our position. 
We may expect CIU and CIU-alternative technology to mature 
in the interim, and the general level of understanding of comput
ers to rise, particularly if we work actively for that goal. Possibly 
our current value upheaval is temporary, a transition to a new, 
stable state, and society will be more sure of itself then. 

I am not advocating that we sit back and passively watch 
profiteers take over and create a "vast wasteland" of the CIU, but 
an active interim period for the gathering of more information for 
the major decisions which we are not yet ready to make. During 
this period we should conduct diverse, decentralized investiga
tions using current timesharing systems to simulate the CIU 
when necessary, as well as actively monitor and control such 
commercial ventures as do arise in the CIU realm. 

A CIU by 1980 or by 2080 makes little cosmic difference (it 
will just be implemented by different people). We have often been 
imprudent and irresponsible with our technologies in the past, a 
lesson understood by the general pUblic, if not by ourselves. 
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SOME EXPLORITORY EXPERIENCE 
WITH EASY COMPUTER SYSTEMS 
by Harold Sackman 

The Rand Corporation 
Santa \-fonica, CA, US 

Like the alchemists of the Middle Ages seeking the magic key 
to transform base metals into gold, we have a new race of com
puter alchemists seeking the Universal Computer for Everyman. 
The magic key for the modern alchemist is the "easy" computer 
system. The belief is based on the seemingly plausible premise 
that an easy language, with an easy input keyboard, feeding into 
easy programs, producing easy outputs and simple displays, will 
make it easy for anyone to use--so easy as to be virtually idiot
proof, the ultimate goal. 

The halo effect of the easy computer system extends its warm 
glow over the entire system development cycle. Planning, design, 
production, implementation, 'and operational use of easy com
puter systems should also be easy, and the payotTshould be huge 
because of the vast economies of scale for easy systems when the 
potential market includes everyone. 

The objective of this paper is to determine whether there are 
proven, easy ways to develop easy computer systems. The tech
nique is to cite some examples of relative successes and relative 
failures, and some inbetween. Six brief examples are selected to 
illustrate the remarkable scope and diversity of easy computer 
systems. The last example raises a host of new problems in a new 
approach to public computer services, particularly for the under
privileged. 

Dunlop I describes an "easy" management information system 
developed for top executives in a large corporation. This interac
tive system came complete with a human-engineered typewriter 
keyboard, easy language, special training sessions for the busy 
executives, with hardcopy output and online video displays. Most 
executives, after some initial fiddling with the system for various 
minor queries into the management data bank, had the entire 
terminal wheeled out and placed with the secretary outside the 
executive office. Thc cxe.:utivcs wercn't interestcd. Why? 

Dunlop describes the executives' negative reaction as a kind of 
status shock. The executive sees himself in a high-status role. He 
is "people oriented" rather than "device oriented". Sitting and 
typing at a console terminal is his concept of what subordinates 
should do, not what the boss should do. The executive felt much 
more comfortable calling up the information specialist at the 
computer center, giving the specialist the information request 
over the phone, and getting answers back verbally or on hard 
copy. This easy system failed because designers did not anticipate 
culture shock for the prime user. 

Let us turn to a long-term success story. Blackwell and Robert
son (1973) have recently completed a survey of JOSS system 
users at Rand which provides us with a profile of these users. 
JOSS is one of the pioneering timesharing systems which first 
went into operation in 1963. The system was designed to solve 
modest computational problems involving arithmetic, algebra, 
trigonometry and logic. The user interacts with JOSS in conver
sational commands through a mobile typewriter terminal con
nected to the computer with a telephone line. 

Blackwell and Robertson found that users liked the fast re
sponse time, simple language, convenient program storage, im
mediate hard copy, extensive math functions, low cost, and 
around-the-clock availability. The most-used applications for the 
Rand clientele included scientific calculations, statistics, simula
tion, accounting, gaming, scheduling, and demonstrations. Only 
one-third of the programs were written by users, and those 
ranged from 10 to 50 statements. Users were apparently hooked 
on JOSS, since most reported that a I-week shutdown would hurt 
their work, and that they do not have readily available substitutes 
for JOSS. An intriguing finding was that personal trial-and-error 
was ranked first in learning JOSS and getting to use the system. 
The moral behind the success of this easy system is that it was 
developed as a limited, special-purpose system for relatively spe
daliLcJ usen" llol as a 'Glliversal Computer System. 
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The next example is taken from a study conducted by the 
author (1970) at the Air Force Academy on a sample of 415 
cadets. The primary objective of this investigation was a compari
son of timesharing versus batch processing in teaching introduc
tory computer science. A byproduct of this study was some useful 
positive fallout on the attitudes of these cadets towards comput
ers and computer programming. These attitudes are summarized 
in Table 1. 

Positive Attitudes 

• Understanding program concepts. 
• Understanding the speed and power of computers. 
• Insight into the structure of syntax. 
• --k-ami-R-g--Mw-t.(). 4e-bu-g -aI-Kl--test pr-Og-f-ams. 

• Appreciation and respect for computers 
and computer science. 

• Programming is logical. 
• Learning how a computer works. 
• Appreciation of computer language. 
• Batch and/or timesharing is easy. 
• Successful communication with computers. 
• Sense of triumph over computers. 
• Understanding flow charts. 

Negative Attitudes 

• Inadequate access to computer facilities. 
• Unreliability of hardware. 
• Programming is too complicated. 
• Poor support services. 
• Computers are wasteful for many types 

of easy problems. 
• Too much work, too time-consuming. 
• Batch and/or timesharing are poor ways 

to use computers. 
• Painstaking care and attention. 
• Computer is an antagonist. 
• Batch and/or timesharing are unreliable. 
• Disappointment in not solving a well-understood 

problem after great effort. 
• Antagonism toward computer language. 

Table 1. Positive and ;-';egative Student Attitudes Toward Computers 

and Computer Programming 

A distressing finding in this study is that 26 percent of the 
cadets reported unfavorable attitudes toward computers as a re
sult of their introductory course. This poses a major challenge for 
our educational institutions. Initial attitudes are difficult to 
change; introductory computer courses should not only teach 
technical content, they should also be oriented toward winning 
friends and influencing people for more effective lifelong use of 
computers. 

Barmack and Sinaik02 reported user experience at the TRW 
Space Technology Laboratories in connection with their review 
of human factors problems with interactive graphic displays. The 
Culler-Fried system was introduced at TRW to permit engineers 
and scientists to work with interactive graphic portrayals of a 
wide variety of mathmatical functions. Over 400 of the technical 
staff received an indoctrination program. Records of system use 
indicated that less than 100 used the equipment for project work 
for ten or more hours over the ensuing half-year period. Why? 

The major constraint was an underestimation of the mathe
matical skill required. The Culler-Fried system was not easy as 
it was supposed to be. The instruction manual was often difficult 
to understand. There was a lack of self-tutoring features for users 
at different skill levels and interests. Dissemination of system 
changes was inadequate. This example highlights the vital re
qui-r..ement to systematicalJ-¥ tql out the. proposed -S-¥S1em...onrep.:: 
resentative users with representative problems before introducing 
it to a large and diversified user community. 

The next example is from a pilot study conducted by the 
author4• 5 comparing problem solving with and without comput

ers for real-world problems. In this study, 19 subjects reported 
their experiences solving a computer and a noncomputer problem 
to test for similarities and differences in problem solving. The 
problems were significant projects or assignments perceived as 
being important for the subject's job. The data were collected 
through self-administered problem questionnaires. 

The results showed the usual gripes over computer system 
performance: poor reliability, slow response time, poor documen
tation, inadequate software, ineffective training, poor diagnostic 
and error-correcting features, etc. However, in spite of these 
complaints, practicaHy all respondents indicated a more favor
able attitude toward computers as a result of their problem
solving experience. In essence, the computer helped them to get 
their work done faster, cheaper and better, typically for problems 
that could only be conceived and tackled with computers. The 
key to the attitude change was that computers were helpful where 
it really counted -- contributing to successful problem solving on 
the job. The moral for computer system designers is to develop 
computer services that people can effectively apply to important 
problems in their working environment, as opposed to expecting 
users to force-fit their diverse problems into the vendor's procrus
tean vision of universal software. 

The last example concerns a new approach to a resistant prob
lem -- getting computer service to the ghetto. The Tie Line Cor
poration in Los Angeles is a nonprofit foundation dedicated to 
facilitate the flow of information from citizens to community 
institutions, and from citizen to citizen via newsletter and com
puterized data banks. Tie Line is staffed by young volunteers 
(including some computer-trained personnel) who receive practi
cally no pay. Their monthly news service lists extensive informa
tion on community agencies where individuals can get free help 
in seeking a job, medical and dental assistance, mental health 
support, drug rehabilitation programs, vocational training, senior 
citizen discounts, legal aid, etc. Distribution of this news service 
purportedly reaches some 10,000 subscribers, mostly nonpaying. 
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The computerized data bank is under development and is not 
yet operational. Tie Line plans to demonstrate prototype opera
tions at the California Museum of Science and Industry at Los 
Angeles to "spread the word". Local universities donate com
puter time. The data bank consists of messages from individuals 
in the community asking for or offering almost any kind of 
"legitimate" goods or services. The Tie Line system is designed 
to store this information so that an individual with a particular 
need can be matched with the individual who has the resources 
to meet the need. The system is called PIE - Public Information 
Exchange. 6,7 A kind of realtime want-ad matching service. 

The user initiates the cycle by communicating by phone with 
the information specialist at the data center. If the user offers a 
good or a service, it is tagged and stored in memory. If he has 
a request, the specialist searches the data bank and tells the user 
what, if anything, is available to meet it. If nothing is available, 
the request is stored in memory for subsequent checking against 
updated files. The service is mostly based on simple barter - a 
piano for a typewriter, a carpenter and auto mechanic doing work 
in kind for each other, baby-sitting in exchange for books. In 
deference to the prevailing economic culture, cash is also accept
able in exchange for goods or services. The idea is to help people 
help each other via interactive want ads. 

Tie Line is too new to be evaluated. It is not economically 
self-sustaining at this point. They have not published their work 
in the literature. There are countercultural elements in this move
ment to "give computers to the community", and this movement 
is not restricted just to Los Angeles, but has counterparts in other 
major urban centers. 

Tie Line is novel and interesting in its approach to users. The 
telephone is effectively the user's "console", not a tricky termi
nal. Recall, from Dunlop's example cited earlier, that top execu
tives preferred the telephone/information specialist method of 
input over the keyboard terminal for queries to their management 
information system. We use this approach widely today with 
airline reservations. There is much to be said for leaving key
boards more complex than telephone receivers to trained and 
certified information specialists. 

If the main objective is to hook the "ordinary mortal" user, as 
Tie Line is trying to do, why put a monkey on his back with a 
forbidding terminal and an arcane computer language when he 
can talk naturally to another person over the phone and get his 
information verbally or soon afterwards on hard copy if desired? 
The user has to be convinced he really wants and needs the 
"user-oriented" information system, whether he is an executive 
or a ghetto dweller, before he will even consider investing signifi
cant time and effort into finding out what it is all about. In the 
absence of knowledgeable and firm guidance from management, 
computer professionals, left to their own devices, have tended to 
use the worst possible and least representative examples of users 
- themselves - in designing "easy" systems. 

The information specialist in Tie Line is the only one who 
interacts with the computer. This raises the problem of the con
centration of information power with the information gatekeeper. 
Service is theoretically open to everyone. Information requests 
represent personal needs and personal problems. Barter is pre
ferred over cash. The constituency (or market) is actively solic
ited and serviced with a monthly 

ited and serviced with a monthly newsletter which keeps all 
up-to-date. The modus operandi of Tie Line is to hang loose and 
proselytize actively to build up the subscriber base. With this 
approach, the central data bank could potentially evolve into a 
realtime community information center with many ramifications 
in economic, political, and social spheres. (See Fig. 1 for ultimate 
scope of community services for PIE.) 

It must be granted that the Tie Line concept is radically differ
ent from conventional approaches in trying to link computer 
services to mass personal use. If the concept works, it could 
conceivably become a kind of Computer Confessor in collecting, 
analyzing, and mediating personal problems in the community. 

The Computer Confessor notion is fact, not fancy. Tie Line 
personnel have indicated that intermediaries such as ministers 
and social workers have placed requests for personal assistance, 
such as particular types of psychotherapy, for their "clients". 
PIE acts as a clearinghouse for matching such requests. If a 
potential match is found, the minister or the social worker 
screens the response (e.g., group therapy for alcoholics) and ad
vises the individual whether he should follow it up with a per
sonal call or visit. Tie-Liners believe this procedure maintains the 
privacy of the individual via his personal intermediary, and re
duces the computer system requirement for data privacy. 

The trick is not in the computerization, which is basically 
off-the-shelf technology, but in getting people to be willing to 
open up in return for useful leads to other people. The ghetto 
dweller can understand, and perhaps may trust this kind of infor
mation service, particularly if other avenues are blocked. How
ever, the Computer Confessor, as with its "manual" precursors 
throughout history, is open to at least as much social abuse as it 
is to social melioration. Perhaps the moral of the Tie Line effort 
is that it is based on a moral rather than an economic approach 
to computer services for the community. 

This anecdotal tour through six examples of "easy" computer 
systems has succeeded if it has demonstrated one point - easy 
systems for Everyman may be the hardest problem the computer 
world has ever faced. 
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*Figure 1. Scope of Long-Range Tie Line Services 
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University of California San Francisco Medical Center 
San Francisco, California 

DEFINITION AND INTRODUCTION 

Over the past few years, the use of interactive systems has begun 
to shift from program development to a wide range of applica
tions. Simultaneously, the users of interactive systems have begun 
to shift from programmers and others familiar with computer 
systems to those without a technical understanding of computer 
systems and programs. These trends seem likely to continue with 
the increased availability of muItiprogrammed systems, the re
duced cost of computer hardware, and the development of new 
application programs for retail sales, medical systems, law en
forcement, financial analysis, and other tasks. This steadily in
creasing number of conversational applications programs will 
produce a growing number of computer users who are well
trained in their application areas without knowing how the pro
grams that they use actually work. These technically 
"unsophisticated" users view the computer simply as a too] and 
are willing to use this tool only if it is easy for them to do so. 

A considerable number of devices have been developed to take 
it easier for programmers to use interactive systems. These tools 
range from text editors and incremental compilers to interactive 
debugging aids and even "automated programmering" aids like 
Teitelman's DWIM (Do What I Mean).' For example, Mitchell 
has observed2 that "efficient 'use' of the human is achieved by 
flexibility in the system" and has studied control mechanisms, 
data structures, and program dynamics to determine how to best 
create a smooth and functional human/computer interface. 

Unfortunately, very few such methods have been designed for 
applications users. In fact, development of these methods has 
received very little attention in the open literature. Furthermore, 
most of the published material treats the entire subject from the 
standpoint of the efficiencies of system design and virtually ig
nores the end-user. 

Y ourdon accurately observes, though, that "(a)pp]ications 
programmers almost never consider the consequences of a system 
failure in the middle of processing in their program".) However, 
he fails to add that applications programmers rarely consider 
anything out of the ordinary happening during the processing of 
their program. As a result of this neglect, an unusual action by 
a user often results in abnormal termination of the program, loss 
of data, loss of time, and loss of confidence in the computer 
system instead of some form of corrective measure which could 
have prevented more serious consequences. Hansen, in discussing 
what he terms "error engineering", notes that: 

"A system must protect itself from all such errors and, as 
far as possible, protect the user from any serious conse
quences. The system should be engineered to make cata
strophic errors difficult and to permit recovery from as 
many errors as possible ... the system must detect errors 
and let the user act on them, rather than simply.,. termi
nating the run".4 



A program which contains a thorough complement of these 
error-preventing and corrective measures may be said to be "idi
ot-proof',* i.e., it is designed to anticipate any possible action by 
its users and to respond in such a manner as to minimize the 
chances of program -or system failure while shielding the user 
from the etTects of such a failure. An idiot-proof program will 
continue to perform "intelligently" no matter what its users do. 
As a result, it can easily be used by the unsophisticated user and 
can assist him in using the program and the computer. 

For example, a program checking input from a remote termi
nal must be prepared not only for correct or meaningful input, 
but also for a number of other possibilities, including: 

(1) meaningless input, such as a string of special symbols; 
(2) no input at all, possibly due to a broken cqnnection, 

---------a--broken-t-erminal, Of the user--l-ea-viftg--fle--term.i.flal-
without terminating the program; 

(3) the user hitting the break key, the escape key, or another 
control character on his keyboard; 

(4) a transmission error, which results in illegal characters 
being received. 

A computer program which purports to be idiot-proof, then, 
must handle properly all of these eventualities. 

As this example shows, the ability to handle all possible inputs 
and all possible system problems is quite difficult and cannot 
always be handled with the present set of programming tools 
alone. Many·high-level programming languages presently in wide 
usage do not have the capabilities required to make all of these 
checks properly. Others, such as PL/P and SNOBOL46, otTer 
most, if not all, of the needed language facilities. Accordingly, 
some programming languages are badly suited for the design of 
idiot-proof interactive programs. 

Likewise, certain computer systems lack the necessary charac
teristics for designing idiot-proof interactive programs. Because 
there is likely to be a large volume of input/output in relation to 
the amount of actual processing, very high speed data movement 
is essential. System architectures which severely limit memory 
access are generally inadequate and most certainly too expensive 
to allow for the necessary tests and still provide a quick response. 
Because of the possibility of communications errors, another 
useful hardware feature is a front-end communications processor 
which does error checking and correcting. 

The complete design of an idiot-proof interactive program, 
then, requires not only a well-designed application program but 
also requires certain features to be present in the programming 
language and in the system software and hardware. Although the 
remainder of this paper will be primarily concerned with the 
design of applications programs and not with hardware and soft
ware selection, it should be remembered that no applications 
programs will be sufficiently idiot-proofed unless these other 
requirements are met, making the entire computer/programming 
environment well adapted for interactive usage. 

*The word "idiot" is recognized to have a precise meaning in the 
field of psychometrics different from its meaning here. 

The Design of 'Idiot-Proof Interactive Programs M35 

BASIC DESIGN PRINCIPLES 

There is one key point to bear in mind as the overriding factor 
throughout the development of idiot -proof programs. This point 
can be easily seen through Murphy's Law, which states that: 

ANYTHING THAT CAN GO WRONG WILL GO 
WRONG. 

We may slightly restate this law, for our purposes: 

ANY ERROR THAT CAN BE MADE WILL BE MADE. 

Stated as a rule for the programmer or system designer to follow: 

BE PREPARED FOR ANYTHING THAT THE USER 
OR THE SYSTEM MIGHT DO. 

This rule incorporates the two components required for complete 
IdToi=proofing: ---------------- -------- --------------- -- --------- --------- ---- - -

(1) checking for all user errors; 
(2) making the system "crash-proof' and shielding 

the user from any system failures. 

Before proceeding, it is necessary to make a distinction between 
'idiot-proof programs and 'user-oriented' programs. It is possible 
to create idiot-proof programs which severely restrict the format 
of legal input or force the user to change his normal way of 
thinking, failing to consider the user's needs. On the other hand, 
it is equally possible (and indeed common) to design a highly 
user-oriented program with application-directed mnemonics and 
fle~'~ble formats which assumes that the user is sophisticated in 
the use of computers, thus failing to idiot-proof. Idiot-proofing 
and user-orientation are then independent characteristics. It 
should be noted, however, that a truly user-oriented program 
should be idiot-proofed as an integral part of its design. 

Although the specific tests and corrective measures needed to 
thoroughly idiot-proof a program are highly application-ori
ented, as well as being dependent upon the programming lan
guage features and the hardware configuration, it is possible to 
present some general principles. It is expected that the means of 
implementing these principles will vary greatly among program
mers; therefore, they should simply be viewed as a set of guide
lines for the creation of idiot-proof interactive programs. 

Principle I - Provide a program action for every possible type of 
user input. 

In practical terms, there should not exist any program state
ment which can cause an abnormal termination unless there is 
also a provision for trapping any errors which may result. As 
mentioned earlier, it is necessary to provide for meaningless and 
improper responses, or no response, as well as to handle proper 
input. In this way, appropriate action can be taken. Otherwise, 
the program would either terminate at the point of incorrect 
input or would fail as a result of the input or an internal error. 
These undesirable actions can be avoided by specifying default 
actions in the event that the user is unable to give the proper form 
of input after a reasonable number of tries. 
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As an example, assume that the user has typed in a line of input 
and that this line is properly transmitted to the computer. The 
program must now first determine whether or not the input was 
meaningful (as opposed to rational). Consider the case in which 
the user is typing in a hand of playing cards, say for the game 
ofbridge7,8. There are a very large number of mistakes that a user 
can make: he can type in too few cards or too many, type in the 
same card more than once, or type in meaningless symbols. In 
all of these cases, corrective action must be taken, and the user 
must be given a number of tries to input the hand correctly. 
Whenever an improper response is made, a message should be 
produced indicating the nature of the problem, e.g. "THE JACK 
OF DIAMONDS APPEARS MORE THAN ONCE IN THIS 
HAND." In the event that the user is unable to input the hand 
properly in the designated number of tries, the program could 
deal out a hand to be bid, rather than trying to obtain the user's 
intended input. In this way, the program may avoid waiting 
indefinitely for the user, who mayor may not eventually respond 
correctly. An example of such a dialogue is shown in Figure 1. 

Principle II - Minimize the need for the user to learn about the 
computer system. 

From the standpoint of the nonprogrammer, the computer is 
simply a problem-solving tool which can be used to reduce the 
amount of manual processing required in its absence. There is no 
need, and usually very little desire, on the part of this non pro
grammer to learn about the complexities of the computer or the 
myriad problems which could complicate his effective utilization 
of the tool. It is the job of the applications programmer to shield 
this user from these details. Ideally, there are only four items that 
the user should have to know in order to perform his work: 

(1) how to log into the system; 
(2) how to log off the system; 
(3) how to request the program(s) to be used; 
(4) what character or signal is required to transmit 

a response to the program. 

Most interactive programs require much more from the user and 
thereby create situations which lead to systems errors and user 
frustration. For example, many interactive programs require the 
user, whether he knows it or not, to work with one or more files 
stored on a peripheral device such as a disk. It is essential that 
the user not be allowed to clobber the contents of such files. Thus, 
a user should not be allowed to update, delete, or even rename 
a disk file until a series of checks have been made to ascertain the 
legality of the instruction and the user's right to access records 
of that file. Ideally, the unsophisticated user will not even have 
to know that such disk files exist and certainly should not have 
to learn anything about the file structure of the computer system. 
For many applications, especially when file size is relatively 
small, it is desirable to keep at least two copies of the file online. 
In this way, a file that gets inadvertently destroyed can be auto
matically recreated from the duplicate file so that there are al
ways two valid copies available. It is important to remember that 
all of these operations must be kept invisible to the user. 

Along the same lines, the program must provide for automatic 
bookkeeping and regular cleanup of the user's working area. This 
process is necessary because the unsophisticated user regards the 
computer as a "black box" and is totally unaware of the problems 
of disk file maintenance and other similar, yet necessary, func
tions. 

PLEASE TYPE IN THE EAST HAND 

PLEASE TYPE IN THE SPADES ... NINE 2 4 QUEEN EIGHT 10 THR 5-

HEARTS ... GLITCH-

I) I DO NOT RECOGNIZE THE SYMBOL G 
PLEASE TYPE IN THE HEARTS AGAIN ... KIN J-

DIAMONDS ... VOID-

CLUBS ... SICKS J K FOUR-

2) I HAVE FOURTEEN CARDS. 
WHICH ONE SHOULD BE REMOVED? 
JACK OF HEARTS-

PLEASE TYPE IN THE WEST HAND. 

PLEASE TYPE IN THE SPADES ... NINE 2-

HEARTS ... K X X-

DIAMONDS ... J 10-

CLUBS ... Q 8 6 5-

3) I ONLY HAVE II CARDS. 
WE WILL HAVE TO BEGIN AGAIN. 

PLEASE TYPE IN THE SPADES ... 9 2-

HEARTS ... EIGHT 4 3 KING-

DIAMONDS ... J 10-

CLUBS ... Q 8 6 5-

4) I ONLY HA VE TWELVE CARDS. PLEASE TYPE IN MY LAST CARD. 
JACK OF DIAMONDS-

THFJACK OF DIAMONDS APPEARS MORE THAN ONCE I~ THIS 
HAND. WE WILL HAVE TO BEGIN AGAIN. 

PLEASE TYPE IN THE SPADES ... 2 NINE-

HEARTS ... K 843-

DIAMONDS ... J 10 4-

CLLBS ... EIGHT Q 6 5-

Figure 1. An idiot-proof dialog for input of a bridge hand. 

8Source - reference 7, 221-225) 



Principle III - Provide a large number of explicit diagnostics, 
along with extensive online user assistance. 

The need for meaningful diagnostics cannot be overempha
sized. A clear reply to the user's error will often prevent the user 
from making the same mistake again. Since the typical user is not 
a computer expert, messages must be expressed in some form that 
he can easily understand. Thus, a message such as "ERROR 23 
-- ABORT" has no meaning for the user; neither does "DIY BY 
ZERO AT 32774;>. On the other hand, the user can easily under
stand "ERROR - ILLEGAL COMMAND" or "ERROR - UN
RECOGNIZABLE NUMBER - PLEASE TYPE A NUMBER 
BETWEEN 1 and 10". Referring to Figure 1, it can be seen that 
specific diagnostics (numbered at the left side of the figure) are 
generated to handle the single problem of inputting 13 cards. 

An-evenoetfer-mearisoTiriinirriizlng -user eYrbris alTo\vln-g--tOe 
user to type "HELP" or "TEACH" at any point during the 
program. Properly implemented, this mechanism can be used to 
instruct the user as to the proper form of input at any given point 
during the running of the program. In this way, a user can learn 
about new or rarely used features of a program without making 
many errors first and without having to log out and leave the 
terminal to refer to a manual. Error prevention and automatic 
instruction, while not actually falling into the category of idiot
proofing, are important for making unsophisticated users feel at 
ease with a conversational program. 

HANDLING THE KNOWLEDGEABLE USER 

Although interactive programs must be protected against inex
perienced users, they cannot assume that all users are incompe
tent, else users will become dissatisfied with the program as they 
become more educated in its use; e.g., the explanations of pro
gram usage that typically are given to the first-time user become 
boring to a continuous user. Yet those explanations are neces
sary, as indicated by Principle III. The need to provide for a 
broad range of users' abilities and experience leads to other prin
ciples which take recognition of this fact. 

Principle IV - ProVIde program short-cuts for knowledgeable 
users. 

In an ideal situation, it would be nice to have the program de
velop a profile of the user's intelligence, based on the number of 
mistakes he makes while using the program or the number of 
times he has worked with the program. In this way, shorter 
messages could be used automatically for the intelligent user. 

More realistically, one should provide at least two modes of 
operation, which can be termed "QUICK'" and "NORMAL". 
"QUICK" mode allows for successful development of a large 
interactive system and extensive testing by the designer. In addi
iion, a user famiiiar with an interactive program no ionger wishes 
to see lengthy messages, such as expanded diagnostics, when the 
mere knowledge that an error has occurred is sufficient. Such 
users can request the "QUICK" option at the beginning of their 
program run (alternatively at any time during the run). 
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Principle V - Allow the user to express the same message in 
more than one way. 

The unsophisticated user cannot understand seemingly un
natural restrictions imposed upon him by computer programs. 
Many conversational programs operate on the assumption that 
input must exactly match some internal quantity. Thus, a quiz 
on state capitals will accept only the proper spelling "T AL
LAHASSEE", when many of those who know the answer are 
unable to speH it correctiy. Unnecessary delay is created by fail
ure to accept a reasonable facsimile of the correct answer. For 
many applications, the first couple of letters of a word are suffi
cient to identify a user response, particularly in a game playing 
environment. By scanning the first distinguishing letters of the 
input and determining the result accordingly, the effect of mis
sp~llil)$S~llJ1_be rninimiz~d, Ihis apprQach isespe_ciallY5J,Lc_c_e~sful 
when the program expects a short response in a fairly rigid for
mat; it would be of limited help in programs where the range of 
meaningful inputs is less rigidly constrained. 

A good example of this type of flexibility is interpretation of 
a number which a user types in. All of the following are mathe
matically equivalent and should be so treated by the program: 

2EO 2.00000 200.0E-2 2 

The GET LIST statement of PL/I will treat each of these inputs 
in the desired manner. If there is a nonnumeric character in the 
input stream, the CONVERSION condition will be raised and 
can be trapped. In most programming languages, however, the 
only way to achieve the effect of the GET LIST statement is to 
scan the input string sequentially. 

There is also little reason to repeat yes-or-no questions when 
some answer is given. There exist programs so rigid that they will 
not accept the input " YES" (with leading blank) as distin
guished from "YES" and will repeat the question, requiring the 
proper input to be in the proper columns. It is better to assume 
that any input beginning with the letter "N" signifies no, without 
regard to preceding blanks the characters following the "N". 
Thus, "NO", "NYET", and "NOPE" are treated identically; any 
input not beginning with "N" is treated as signifying "YES" 
induding, for example, "DA", "SURE", and "CERTAINLY". 
(Unfortunately, "NATURALLY" is a counterexample). 

SOFTWARE AND HARDWARE REQUIREMENTS 

While these five principles are important, complete idiot
proofing requires certain features to be present in the program
ming language and in the computer system. Unexpected program 
errors or hardware failures can occur at any time and there must 
be adequate protection against these contingencies. If the pro
gramming language has no provision for checking and trapping 
arithmetic overflows or invalid array subscripts, then it is possi
ble for the user to cause the program to fail unexpectedly, to lose 
all or part of his work, or to receive a meaningless message. 
Likewise, the programming language should have provision for 
checking a real-time clock, so that a user failing to respond can 
be prompted and eventually logged out. 
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Unfortunately, many high-level programming languages lack 
these necessary features for complete idiot-proofing, yet it is 
generally impractical to develop such programs in assembly lan
guage, even though most contain the necessary features. AN 
Standard FORTRAN9, for example, does not contain any of the 
necessary features, nor does Revised ALGOL 6010. They do 
exist, though, in extensions to these languages designed to run on 
computer systems with strong interactive facilities 1 1,12. These 
languages contain statements which allow program control to be 
transferred to any specified location when an error condition 
exists. In addition, their file handling statements include the 
ability to test for failure to open files, trying to read beyond the 
end of a file, and inability to read and write on files. 

Two languages which have most of these desirable features are 
PL/I and SNOBOL4. PL/I, for example, has over twenty ON
conditions, which can be set to check for computational condi
tions, input/output conditions, and other similar conditions, 
including a programmer-defined condition, all of which allow for 
control of program flow following the interruption of the pro
gram by the occurrence of one of these conditions. SNOBOL4 
allows the programmer to associate a transfer of control with 
almost every statement based upon the success or failure of the 
action specified by the statement. Thus errors may be trapped by 
inclusion of a failure branch specification with every SNOBOL4 
statement which might cause an error. Although these two lan
guages are quite different in structure, range of applications, and 
means of handling undesirable program conditions, they illus
trate that it is indeed possible to achieve a high degree of success 
in building idiot-proof programs. 

As noted earlier, implementation of these features often re
quire certain characteristics of the computer hardware. Certain 
computer systems are simply not designed for interactive use, 
even a sophisticated operating system can not overcome bad 
architectural design. For example, the operating system overhead 
for a system with only a single port to memory is so great that 
it is generally uneconomical to use it for interactive applications, 
especially if an attempt is made to provide rapid response as well. 
For many interactive applications, the computer system will be 
I/O-bound rather than compute-bound, so that improved mem
ory access results in improved system performance. For this 
reason, the rate of information flow is the most important mea
sure of a system's ability to handle a large number of conversa
tional users. File updating, information and retrieval, and 
nonnumeric applications in general require less "number-crunch
ing" than information transfer. This fact becomes even more 
important when one is working with displays, rather than tele
type terminals, because of the high speed needed to fill the screen. 

It should be clear that there are significant trade-offs involved 
in designing idiot-proof interactive programs. A good deal of 
programming effort, a sizeable amount of core storage, and con
siderable processing time is required to idiot-proof a program 
thoroughly. The extra cost of development, storage, and comput
ing must be measured against intangible quantities of ease of 
program usage and user satisfaction. With the steady decrease in 
cost of computer time and memory, and the advent of the rela
tively low cost computer mainframes and peripherals, it would 
appear that the balance is swinging in favor of the user. 

CONCLUSION 

There is a serious need for improved facilities for the design of 
idiot-proof interactive programs. With a growing number of non
programmers using computers, development of comfortable 
man-machine interfaces will outweigh many traditional consider
ations in the overall creation of interactive programs. 

The need to pay more attention to user needs will also affect 
the roles of computer professionals. Systems analysts will have to 
study applications more from the user's point of view than from 
the programmer's point of view, which will undoubtedly result 
in increased work for the programmer. Data processing manage
ment will have to include additional factors and modify tradi
tional considerations in selecting computing equipment. 

This new factor in applications program design will require the 
modification of existing programming languages and eventually 
will lead to the development of new languages designed to make 
it easier for programmers to write conversational programs. 
Many of the kinds of routines needed for idiot-proofing, such as 
scanning lines of input, interpreting typed numbers, handling 
user-generated interrupts, and preserving the integrity of user 
files, should be written and placed in program libraries. 

Once these facilities exist generally, it will be far easier to 
design and program for unsophisticated users. No longer will half 
(or more) of the code of interactive programs be devoted to 
handling explicitly the possible problems that regularly occur 
with conversational programs. It is only at this point that much 
of the user resistence to computers can be overcome and the 
computer can be made an effective tool for all. 
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DISPLAY TERMINALS CAN HELP PEOPLE TO USE COMPUTERS 
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EXPECTATIONS OF USERS 

A user likes to think of a display-terminal screen as a working 
surface upon which he can create objects and with which he can 
view and easily manipulate these objects. He is interested in such 
objects as text, line drawings, data clusters, and natural scenes. 
In reality, such objects may be black-and-white or in full color, 
and may be 2-, 3-, or higher-dimensional. 

A user likes to take natural actions, i.e., actions that do not 
require much learning and that are appropriate for the object of 
interest and the function to be performed. For example, a user 
might like to create text by writing or typing, to create drawings 
by sketching, and to "create" a natural scene by taking a photo
graph or by pointing a television camera. 

A user likes to take direct actions. He usually prefers pointing 
at an object rather than typing its name, and he prefers to move 
an object directly rather than to type a command that says 
"Jt.Aove object A to position x,y". 

A user expects his working surface to be responsive. When he 
attempts to move an object, he expects it to follow closely. In 
general, he likes things to happen immediately, but he usually 
realizes that the time required to fulfill a request should be 
roughly proportional to the complexity of the request. 

A user likes his display-terminal's working surface to be attrac
tive, large yet mobile, legible, reliable and - perhaps most of all 
- as accessible as a telephone, a typewriter, or a desk calculator. 
Finally, most users do not want to be bothered with extraneous 
details like complicated identification procedures, programming 
languages, computers, and terminal/computer interfaces. 

We will examine a few general application areas to clarify user 
expectations and requirements, and the performance characteris
tics of current display terminals. 

TEXT-ORIENTED APPLICATIONS 

Alphanumeric display terminals, i.e., those that can display 
only characters, are useful in a variety of text-oriented applica
tions in which both the information displayed and the user's 
interaction vary over wide ranges. During the preparation of 
documents such as reports and computer programs, the user 
enters a large amount of text and, during initial entry and after
ward, manipulates it by adding, deleting, changing, and moving 
individual characters and blocks of text. In data-entry applica
tions, the user, who may be prompted by computer-generated 
questions or a displayed form, enters data values which he verifies 
visually and which the computer may validate by applying sets 
of tests. In this case, as when editing a document, the user can 
work most efficiently if he can move easily in two dimensions to 
fill in or change items on a form. 

In still other applications, such as computer-aided instruction, 
retrieving stored files, and monitoring behavior of a computer 
program or a realtime process, the computer may display and 
quickly change natural scenes and large amounts of text on the 
display screen, but the user's actions may be limited and rather 
simple. 
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Readability 

Applications and operations such as these imply a number of 
requirements, the most fundamental of which is that displayed 
information should be readable. The screen should be bright 
enough that the characters can be seen in normal light. The 
contrast between the characters and their background should be 
sufficiently high for the smallest characters to be resolved at the 
user's normal working distance from the screen. 

Readability also depends on the character font. Characters are 
most legible if they are constructed from a number of line seg
ments or curves and if the height of a character is between 7 and 
10 line widths. In the more usual case where a character is formed 
as a dot matrix, 3 dots wide by 5 high is barely legible, 5 by 7 
(which is typical) is good, and as the matrix gets finer, a charac
ter's legibility and appearance improve. 

Character Sets 

Just as when using a typewriter or keypunch, the required 
character set depends on the application. Upper-case letter and 
numbers are usually adequate for data entry; document prepara
tion may require lower-case letters in addition; still other applica
tions may require special mathematical symbols or even italics. 
In practice, a 64-character set comprising upper-case letters and 
numbers together with some mathematical symbols and punctua
tion marks is standard; in some cases a 96-character set, which 
includes lower-case letters and some additional symbols, in addi
tion to the basic 64, is available. 

The Number of Displayed Characters 

The total number of characters that can be displayed on the 
screen is also an important consideration. A number of lines of 
text are necessary to provide a working context, particularly 
when preparing programs and reports, but also when entering 
data on a form. 10 to 30 (with about 20 typical) lines may usually 
be displayed, but some terminals provide for as many as 40. 
Screens that are 72 to 80 characters wide are usually adequate for 
programming applications. Report preparation requires screens 
that are 60 to 80 characters wide. Screens only 20 to 40 characters 
wide are often adequate for data entry and other applications. 

An additional way to provide the required context is to 
"scroll" or move the text up and down the screen in such a way 
that when text is deleted at the top (or bottom) new text is 
displayed at the bottom (or top). Some terminals not only provide 
for scrolling, but also enhance this by including memories suffi
ciently large to store more text than can be displayed on the 
screen without communicating with the computer. 

Speed of Terminals 

The time it takes a terminal to display a given amount of text 
is important in several ways. Most, but not all, current display 
terminals use a CRT (cathode-ray tube) display screen that is 
coated with a low-persistence phosphor. An image is changed by 
drawing a new one while the old one quickly fades. A conse
quence 

quence of this is that a fixed image must be "refreshed" (i.e., 
redrawn) 30 to 40 times a second simply to maintain it. This 
works well if the terminal is fast enough to redraw all displayed 
information at this rate. However, ifit is not fast enough, refresh
ing does not occur often enough to prevent the image from fad
ing, and the result is a very annoying flickering effect. 

The terminal's speed must also satisfy users' requirements for 
responsiveness. When a user causes a small amount of text to be 
displayed, he expects it to appear instantly (i.e., in one refresh 
cycle). Even when a user causes an entire new screen of inform a
tion to be displayed, he will not tolerate more than a few seconds 
delay if the information is already available to the terminal. For 
scrolling to be acceptable, text should be redisplayed at a new 
(vertically upward or downward) position at one-second or 
shorter intervals. 

Establishing a Text-Entry Position 

There are several techniques for establishing a 2-dimensional 
typing position on the display screen when the user creates and 
edits text or enters data on a form. All involve moving a marker 
imaged on the screen, called a cursor, which indicates the posi
tion of the next typed character. A cursor usually looks like an 
underline and, on some terminals, blinks. 

A hardware-based automatic cursor-positioning technique 
that aids in filling out forms moves the cursor from one data
entry field to another as the user completes the form. Another 
common cursor-positioning technique, which is independent of 
any displayed text, uses a set of keyboard keys for moving the 
cursor left, right, up, down. When the directional keys have a 
repeat (continuous operation when held down) mode, they can 
be used to position the cursor quickly and easily. Other devices 
such as a trackball (a mounted, rotatable ball) and a joystick (a 
stick-like device which has one end held fixed) cause a cursor to 
be moved when they are manipulated. Finally, pointing devices 
such as a light pen (a stylus for pointing at the screen), a tablet 
stylus (a stylus used in conjunction with a horizontal electronic 
tablet), or a touch screen (a screen at which one points with his 
finger) can be used for positioning the cursor with a single, direct 
action. 

Text Editing 

Once the user has positioned the cursor, he may edit the text 
by typing a series of special editing-control keys and character 
keys. The simplest editing feature provides for typing over (and 
thereby changing) existing text, but some terminals also provide 
for inserting, deleting, and erasing text. 

When inserting, the new text is entered in place and the text 
to the right of the cursor position is shifted to the right of the new 
text. Some terminals limit insertion to one character at a time and 
simply make the line of interest longer (possibly "wrapping it 
around" onto an automatically inserted, otherwise blank, line); 
some provide only for character and line insertion. Other termi
nals have no such limit, but rather maintain the line margins by 
automatically moving text from one line to another in all follow
ing lines as the user types. 



sions), in the layout of forms, in the examination of stick-and-ball 
chemical molecules from any aspect, and in the exploration of 
such figures as antenna radiation patterns. This type of applica
tion requires convenient techniques for describing the desired 
manipulation as well as quick response to a manipulation request. 
Other applications that require a quick change in the displayed 
information are those that involve observing an event as it occurs 
in actual or simulated "real time". These include watching the 
behavior of a simulated mathematical model, participating in an 
interactive simulation such as driving a simulated cai on a simu
lated highway, using a simulated air-traffIc-control or other ra
dar-like screen, or monitoring performance of a real system. 

The most demanding applications for graphic terminals are 
those that involve both complex diagrams and a high degree of 
interaction. Computer-aided design, for example, may require 
the user to point, to drag figures from place to place, to sketch, 
10 -Type,-and-to--pelform--vai1()us other functions-on a variety of 
diagrams. Other applications, such as abstracting a line drawing 
from a natural scene by sketching, may involve similar user 
actions, but with reference to a photograph of terrain or of a 
human face, an X-ray, or an electronmicrograph. 

Comparison of Alphanumeric and Graphic Terminals 

Before describing the requirements for graphic terminals it is 
useful to clarify the difference between alphanumeric and graphic 
terminals. Some graphic terminals are simply alphanumeric ter
minals with a graphic feature added on, but usually even the 
alphanumeric aspects of the two types of terminals are different. 

In the case of the alphanumeric terminal there is a fixed set of 
(say 20 by 40) positions where characters may be displayed. 
Thus, the terminal need only store the type of character (includ
ing blank) to be located at each of the (say 8(0) positions and 
store a description (e.g., a dot matrix) for each character in its 
character set. The fixed format is also compatible with a fairly 
simple display generator and straightforward cursor control and 
editing features. 

A graphic terminal, on the other hand, has a large number 
(e.g., 480 by 640 or 1024 by 1024) of addressable points. Each 
point can be the center of one or more characters, the start of a 
line segment, or the end of a line segment. Because of this, images 
(even if they are only of characters) for graphic terminals are 
stored as a series of descriptors. This complexity results in larger 
storage requirements, more computer-to-terminal data transmis
sion (and transmission time), more complicated display genera
tion, faster display generation required to assure responsiveness 
and lack of flicker, and consequently a higher cost for a graphic 
terminal than for an alphanumeric terminal. Furthermore, be
cause characters can be located at arbitrary positions on a 
graphic display screen, hardware-based cursor control and edit
ing features may be impractical. 

The alphanumeric terminal requirements described above 
(with regard to brightness, contrast, character, readability, possi
ble gray tones, and color) apply to graphic terminals as well. The 
lack-of-flicker and display-speed requirements also apply, but are 
more stringent in the graphics case because here the images can 
be both more dense and more complex. 
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Deletion is the opposite of insertion; i.e., text is moved to the 
left and upward when characters are deleted. For any given 
terminal, deletion usually has the same restrictions as insertion. 
Erasure, unlike deletion, replaces characters with blanks; it has 
a starting position (the cursor position) and a specified extent 
such as a single character, the rest of the line, or the rest of the 
displayed text. 

Pseudo Graphics 

Alphanumeric terminals can display pseudo-graphical infor
mation in addition to text. For example, if one wishes to plOi a 
graph, vertical and horizontal "lines" can be formed from the 
characters "I" and "-", and "curves" can be formed from the 
characters, singly or in columns. The resulting curves are rough 
not only because their points are unconnected but also because 
theri pOints elm -be locatecraionly th-e u5uar-charaCter--posiflons. 
Some alphanumeric terminals have a "limited graphic capabil
ity", which usually means that they can draw horizontal and 
vertical lines or can display dots at a higher density than the 
normal characters or both. This is handy for displaying graphs, 
tables, forms to be filled in, and a variety of other figures. 

Arbitrary Pictures 

Another technique for displaying forms and other fixed figures 
is to use pictures rather than computer-generated versions. Tele
vision-based and plasma panel terminals provide for displaying 
pictures simultaneously with computer-generated text and line 
drawings. The pictures may be arbitrarily chosen natural scenes; 
hence this capability is useful in computer-aided instruction and 
other applications where arbitrary visual reference material is 
helpful. 

GRAPHIC-ORIENTED APPLICATIONS 

Graphic terminals, i.e., those that can display line drawings as 
well as text, have a wide range of applications, costs, and capabili
ties. The simplest applications treat a graphic terminal as if it 
were an alphanumeric terminal. 

Applications in which the terminal is used primarily to exam
ine, but not manipulate, computer-generated images require very 
little interaction on the part of the user but may place heavy 
demands on the terminal. In some such applications, a set of 
curves may be displayed that represents the solution to an engi
neering design problem, or a computer- or man-generated dia
gram may be displayed to give the user a quick look before he 
has it drawn by a high-precision x-y plotter. Other applications 
require a high density of displayed points and many gray levels 
or color, for studies of image-processing techniques or for the 
display of solid figures, i.e., computer-generated figures that ap
pear to be artist's drawings in that they are shaded and give an 
impression of solidity. 

The manipulation of diagrams is important in such applica
tions as signal and data analysis (where waveforms and other 
data are examined in various representations, scales, and dimen
sions), in 
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Line Dra wing 

Lines, like characters, should be legible and pleasing. Some 
terminals move a phosphor-exciting electron beam to produce a 
continuous, uniform line; others represent a line as a sequence of 
dots or horizontal and vertical line segments. Dots should. be 
small and close together to avoid a string-of-beads effect; line 
segments should be small to avoid a staircase effect. Line widths 
and the contrast ratio between a line and its background should 
be chosen to provide for resolving nearby characters and lines. 

The user can know that different lines have different meanings 
by providing for several types (e.g., solid, dashed, and dotted), for 
colors, for several line brightness levels, or a combination of 
these. Brightness levels should be chosen to be distinct, and this 
requires brightness ratios of at least 2 to 1. Because more than 
about four levels is not particularly useful from the user's view
point, it is better to maximize the brightness ratios (given a 
particular brightness range) than to produce more levels. 

In order to construct truly arbitrary line drawings, it must be 
possible to draw a line between any two points on the screen. 
Actually a terminal provides only a finite number of addressable 
points, restricting the allowable starting and ending (and some
times intermediate) points of lines. Usually a range of 5002 to 
10002 is adequate, and sometimes a density as low as 2502 is 
sufficient. However, where curves must appear very smooth, and 
there is not a special hardware curve generator, or in applications 
such as image processing and drawing solid figures, considerably 
more addressable points may be required. 

Figure Manipulation 

In highly interactive graphic applications, the user may have 
the ability to "drag" and sketch figures as well as to point and 
type. This requires an inp~t device that is continuously tracked 
as it is moved over the display screen or associated surface; it also 
requires a terminal or computer that can handle the tracking. In 
dragging, the dragged figure should follow the motion of the 
user's input device, and so it must be continually redisplayed at 
its new position. In order for the figure's motion to appear contin
uous, it should be redisplayed many times a second. When the 
user is sketching, a line, composed of dots or short segments, may 
be displayed as if emanating, like ink, from the moving input 
device. Thus sketching also requires a responsive display terminal 
that can quickly update a small portion of the displayed image. 

Some applications deal with such complex figures, or must 
manipulate figures at such a high rate, that functions which could 
normally be performed by software must be performed by dis
play-terminal hardware. One such function, called clipping or 
scissoring, cuts off a line at specified (or display-screen) bounda
ries even though its description indicates that it extends outside 
these boundaries. The extension could appear in an unexpected 
place on the screen or could interfere with another figure if the 
terminal did not have this feature. Windowing, which makes use 
of scissoring, provides for filling one rectangle (possibly the entire 
screen) with that portion of a figure that lies within another 
rectangle. Zooming provides for sequential windowing with a set 
of consecutively smaller or larger concentric rectangles. Finally, 
some terminals can rotate figures in two or three rlimenr;;ionr;;. 

HARDCOPY 

Often when one leaves a display terminal, whether to think or 
to let someone else use it, he likes to take away with him remind
ers of his working session. A device that produces a hardcopy 
(i.e., paper or film) representation of what appears on the termi
nal's display screen can therefore be very handy. 

A hardcopy device for use with an alphanumeric terminal can 
be a small printer. One type of graphic hardcopy device recreates 
the display-screen image on a small CRT and then reproduces it 
on paper or film using photographic or xerographic techniques. 
An x-y plotter is another common, but slow-speed. graphic hard
copy device. 

CURRENT DISPLAY TERMINALS 

A number of display technologies are now available. The old
est, based on the random-access refreshed cathode-ray tube 
(CRT), provides pleasing, readable images that can be quickly 
displayed and changed; but complex images can flicker, and these 
terminals require a storage mechanism and are expensive. Televi
sion-based terminals are inexpensive, present flicker-free images, 
and can display natural scenes, gray tones, and color; but they 
are slow, require a considerable amount of storage, and images 
are not of high quality. Storage-tube terminals display high-qual
ity (but dim) images without flicker and without requiring stor
age; however, because they create and erase images slowly and 
erasure is not selective, they are not suitable for highly interactive 
applications. Plasma-panel terminals, becoming available only 
recently, present projection of slides; they are slow, however, and 
resolution is not adequate for some applications. 

A number of input devices are available for entering text, 
pointing, moving objects on the display screen, and sketching. 
The most popular are the keyboard (which is a component of 
nearly every terminal) and the light pen. Graphic tablets, which 
can be high-data-rate, versatile devices (e.g., they can be used 
with a storage tube, whereas a light pen cannot), are now becom
ing more widely used than previously because of reduced costs. 
Touch screens are the development stage. 

A number of alphanumeric terminals are available, at less than 
$5000, that display easily-read characters, provide adequate tex
tual context, and have good built-in editing features. Most are 
video-based. Graphic terminals are available in a wide range of 
capabilities. The high-performance terminals use random-access 
refreshed CRTs. Although such terminals cost more than $50,-
000 not long ago, several are now available for $8000 to $15,000. 
The medium-performance, low-priced (under $10,(00) terminals 
are video-based or use storage tubes. Several terminals and termi
nal systems include minicomputers arld so can act as fairly pow
erful, stand-alone information processing devices. 
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The student in a computer science class, particularly an ad
vanced class, can put up with many idiosyncrasies in the com
puter. But he or she is hardly an "ordinary mortal" in terms of 
computer usage. However, the student of physics, sociology, art, 
or English, who employs the computer as part of the learning 
experiences in his class, is certainly an ordinary mortal using 
computers. 

It is with such mortals that I am concerned. The students using 
computers to learn about subject matters other than the com
puter itself. Much of my own experience is in physics classes, 1 

where we have at Irvine used the computer in a variety of modes 
during the last few years.2 But hopefully the experiences I have 
had can be generalized to other areas. I will discuss the following 
aspects: batch versus timesharing, terminals for mortals, time
sharing systems, editors, and responsive languages. Mostly I will 
compare currently available items, although I will make some 
suggestions, too. While I have students in mind as my ordinary 
mortals, I believe some of these ideas apply to other mortals. 

BA TCH VERSUS TIMESHARING 

I will offer no arguments, but simply claim categorically that 
timesharing use causes less pain to the casual student user than 
does batch. Many arguments for batch strike me as being in the 
"sour grapes" category, attempting to justify it because timeshar
ing is unavailable or weak. There are clearly some intermediate 
cases; a minicomputer, used by a single person, is often closer to 
timesharing than to batch, and the "personai computer" of the 
future moves even further here. But quick interaction is educa
tionally superior to slow interaction. 

TERMINALS FOR MORTALS 

For the student timesharing uSer, the terminal almost is the 
computer; he or she works almost entirely through the terminal, 
so it helps to shape attitudes about the computer process. A 
well-designed, well-working terminal which is a joy to use causes 
pleasure and increases student learning. 

Unfortunately the factors which usually determine the choice 
have little to do with increasing pleasure; the arguments are 
usually financial and frequentiy wrong. The most commonly 
selected student terminal is the Model 33 Teletype. This device 
is, I believe, noisy, slow in printing, unpleasant to use, and often 
in need of repair; I don't believe it should ever be purchased for 
student use. Even economically it is questionable, given the ne
cessity for frequent repair, and given the fact that less gets done 
at 110 baud than at 300 or 1200 baud. The alphanumeric CRT 
display, such as the Datapoint, ranks a little higher on my scale 
of usability with students - it at least can type as fast as ordinary 
mortals can read - but it lacks hardcopy (often still valuable with 
students in spite of arguments about future paperless worlds) and 
has only teletype capabilities. 

The two terminal types which are particularly competitive for 
student use today are the faster hardcopy units and the graphic 
units. Our experience with a Texas Instrument 720 has been very 
satisfactory; perhaps my only complaint there is the "gray on 
gray" writing. But graphics offers an entire new dimension to 
computer usage for ordinary mortals. Until recently it has been 
possible only for the wealthy, but terminals like the Tektronix 
4010 and 4013 make graphic output practical for all student 
users. In many student situations the desired output is graph
ical, not numerical, and so graphic terminals open entire new 
realms of possibilities. Our experience with both TI and Tek 
terminals indicate that they are well-engineered, with almost no 
downtime. 

Current terminals can certainly be improved) One unfortu
nate assumption is that some fixed collection of characters, usu
ally ASCII, will satisfy everyone. Everyone has his own favorite 
symbols which are "natural" to the area being studied, and com
puters should allow the symbols appropriate to that area. The 
Plato terminal does a good job with half the task, displaying any 
character shape under program control, but it still does not dis
play the "new" characters on the keyboard. Another needed 
improvement is less expensive graphic hardcopy devices. And, 
given the proliferation of terminal types, terminals should be able 
to identify themselves on request from the computer; our mortals 
should not be forced to tell the computer what terminal is being 
used. 
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TIMESHARING SYSTEMS 

A good timesharing system for the professional is not neces
sarily a good system for the novice. Unfortunately, computers are 
often picked by the professionals. 

What does the ordinary mortal want in a timesharing system? 
First, easy accessibility. Typically a small program must be en
tered, and then interpreted, or compiled and run. It sounds sim
ple, but details differ widely from system to system. What role, 
for example, do ASCII control characters play? Are they essen
tial, or are they needed only for the advanced user? Are the error 
messages understandable to the beginner? How readable is the 
system and language documentation for the beginner? 

Although the choices are critical, there appears to be almost 
no research in choosing a timesharing system for general student 
use. So views, including my own, are likely to be partially subjec
tive. Irvine has a somewhat unusual situation; both a Xerox 
Sigma 7 and a DEC PDP-lO system are available, affording 
opportunity to compare the two systems with a variety of users. 
A student group also made, as an advanced computer science 
project, a detailed comparison between the two machines.4 

My feeling, and I believe an accurate representation of the 
student study, is that the Sigma 7 Universal Timesharing System 
is definitely superior for the ordinary mortal. The PDP-lO comes 
into its own for advanced users who need its powerful forms of 
LISP and other esoteric languages; at Irvine its main usage is in 
upper division and graduate computer science courses. 

Some aspects of timesharing systems are financially related. 
The novice is better off with more languages available, because 
he can call existing language background. But a general purpose 
timesharing system costs more than a single language system, so 
the choice is often one of funds available. Most one-language 
systems are BASIC systems, and I don't regard this as desirable. 

EDITORS 

The beginner quickly learns that most programs do not work 
when first written, and so needs the services of an editor. Like 
timesharing systems, editors can be optimized to particular 
classes of use. Again, few empirical studies have been made in
volving ordinary mortals. It would be interesting to determine 
how long secretaries take to become familiar with various edi
tors. Fail-safe features are important - an editor should not allow 
a new user to inadvertantly wipe out large program sections. 

RESPONSIVE LANGUAGES 

The problem of languages and students is complex; students 
use the computer in a variety of ways, and the language needs 
differ. We can roughly distinguish between the situations where 
the student writes programs in some standard programming lan
guage, using the computer as an intellectual tool to solve prob
lems, and situations where the student interacts with programs 
developed to assist in learning. It is fashionable to present this as 
an either/or choice, but both modes can be useful in learning. 

The choice of language for student programing is clearly sub
ject-matter dependent. Thus a word processing area might find 
SNOBOL the language of choice. For the second grader, turtle 
geometry has some interesting possibilities. In considering 
science students, I believe that APL, and possibly PL/I, are clear 
choices over FORTRAN and BASIC.5 All are easy to learn for 
beginners, particularly if a reasonable subset is chosen, and rea
sonable learning methods are employed.6 APL allows users to 
think naturally of calculations as involving collections of num
bers, rather than individual numbers, and it provides ample room 
for intellectual growth as programming needs increase. APL also 
allows natural and powerful extensions to graphics. 7 

The student need not be concerned about the language facili
ties used to write dialogs for student-computer interaction. 8 But 
the degree of such interaction is important; the computer must 
be prepared to treat a very wide range of student responses to 
questions, both correct and incorrect, if the program is an effec
tive teaching tool. The computer scientist often believes that the 
problems of such effective response analysis requires natural lan
guage processing. But our experience in the Physics Computer 
Development Project suggests that the pedagogical judgment of 
what a student is likely to say at a given point is the critical factor. 
Furthermore, use with sizable numbers of students and saving of 
unanalyzed student responses is also an important part of im
proving responsiveness. One tendency that must be resisted in 
preparing dialogs is that of easing the programming task at the 
expense of restricting the student. Thus if a formula is to be typed 
at a given point, the program should try to recognize many 
different variants, rather than provide the student with very de
tailed information about how he should enter the desired expres
sion. 

FINALE 

Finally, I think it well to confess that we are all amateurs at 
this "ordinary mortal" problem. We have much to learn. 
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If one reviews the more heralded applications of technology to 
medicine, one quickly realizes that the emergence of an extremely 
ingenious technological device is not tantamount to its successful 
application. This seems especially true of the myriad of innova
tive devices introduced to our health care delivery system. De
spite demonstrations and evaluations which convincingly show a 
potential for increasing productivity, at improved or maintained 
levels of quality, too many of these innovations never realize their 
hoped-for potential. 

Some technologists would have us believe that this is a fact of 
iife resuiiing from the creation of a health care deiivery system 
that is over-fragmented and geared to serving populations of a 
size well below the threshold where technology becomes profita
ble. A major advantage of technology, in creating economies of 
scale, is lost when custom design becomes preferable to mass 
production, when machine standardization and compatibility 
become secondary to individualized system needs. It is not sur
prising that many of our ieading technoiogy advocates are now 
admitting that despite whatever advantages technology has to 
offer, within the current structure of our delivery system, ma
chines are more likely to increase, rather than decrease, the cost 
of medical care. 

The logic for large investments of Research and Development 
dollars for the primary purpose of increasing medical care pro
ductivity becomes questionable unless there is a comparable de
mand to increase the total amount of consumer services provided. 
Some of the more successful technological developments are 
based on health delivery organizational systems which were re
structured to take advantage of relatively large population bases. 
Others, more limited in the scope of their application, will be 
discussed in terms of their special adaptiveness to communica
tion, transportation, and medical information technologies. 

Many of these successful examples continue to be supported as 
major program activities of the National Center's Health Care 
Technology Division. As is so often the case, a high technology 
research and develoment base established to address health deliv
ery problems in terms of cost, access, and quality of care, tends 
to spawn its own set of technological problems, that are in turn 
best resolved by the established cadre of scientific expertise, facil
ities, and delivery systems. The National Center is giving priority 
to merging these technological resources \vith the technological 
demands created by growing emphasis on national programs 
directed at better utilization of physician manpower, physician 
extender concepts, peer review, health maintenance organiza
tions, and Federal, State and Local Data Systems. 
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Hospitals in this country that have automated their chemistry 
laboratories have demonstrated their ability to hold the line in 
terms of laboratory costs per unit of output. Despite a very rapid 
15% yearly rate of growth in their workload, compounded by 
shortages of space and skilled personnel, unit costs have been 
reduced by the introduction of automation technology. Studies 
show that the average cost of a clinical chemistry test, using 
manual procedures, approximates fifty cents at a daily volume of 
250 specimens. The introduction of automated procedures cuts 
this unit cost in half, although the cost to the patient may actually 
increase since the system now performs upward of eight tests on 
the same specimen, not all of which were ordered. At daily 
volumes approximating 1500 specimens per day, automation be
gins to result in significantly lower unit costs; and above 2500 
specimens, costs drop below 10 cents per test. Although the 
number of hospitals in this country of sufficient bed size to justify 
these processing volumes is small, there are good indications that 
the recently expressed interest of smaller, geographically proxi
mal hospitals to merge their laboratory facilities will produce the 
desired economies. The motivation for merger might well come 
from the analysis of data such as that being generated by Dr. 
Seligson at Yale, correlating decreased turnaround time for labo
ratory repprts with reductions in the average length of hospitali
zation. I'll report on additional developments concerning 
automated laboratory services later in my talk, but first I would 
discuss the somewhat analogous technological evolution that oc
curred in the area of automation of physiological signs. 

For the past three years, the National Center has supported a 
project, based in St. Luke's Hospital, Denver, Colorado, to inves
tigate the economies associated with the systematic community
wide introduction of a computer-assisted electrocardiogram 
analysis system. The results of this experience are very aptly 
described in a 130-page final report, copies of which are now 
available from the National Center. I found the report one of the 
better analyses documenting the impact of introducing a techno
logically advanced concept in a previously existent, highly com
petent component of the health care system. As in the case of the 
automated chemistry laboratories, the encouraging economic 
projections were realizable only through some restructuring of 
the traditional health care delivery organization. In 1969, Denver 
area hospitals manually processed over 120,000 electrocardio
grams, and projected a 12 percent annual rate of increase for this 
diagnostic procedure. Significant cost reductions were demon
strated through the centralization and automation of their elec
trocardiographic diagnostic services; however an inverse 
relationship between unit cost and volume was observed. In Den
ver the break-even point is 300 EKGs per day. Further increases 
in their daily processing volume will offer an economy of scale 
that cannot be duplicated by conventional EKG systems. Cardi
ologist manpower savings up to 75% were reported by placing 
this automated system in series with a rotating panel of cardiolo
gists representing all the participating hospitals. The cardiolo
gists reviewed the centrally-filed EKGs independently of the 
hospital origin of the patient. The implications of these statistics 
are clear. Given a sufficient volume of EKGs, recent technologi
cal developments have made it possible not only to reduce unit 
costs, but to effect an appreciable savings in medical manpower. 

I will now discuss an aspect of medicine that traditionally has 
absorbed a lion's share of the technological Rand D investment, 
although on a national scale it represents a relatively small spec
trum of the total health care delivery system. 

Data from the surgical intensive care unit at the University of 
Alabama indicate that introduction of automated monitoring and 
blood infusion programs can reduce post-cardiac surgical mortal
ity to as low as 7%. This favorable figure has been maintained 
in the face of an average post-surgical stay in the intensive care 
unit of one day, and a conservative patient-to-nurse ratio of 3 to 
1. Routinization and mechanization of these relatively complex 
medical manpower tasks have effected (1) a reduction in length 
of stay in the intensive care unit, and (2) decreased medical 
manpower requirements, both essential prerequisites to economic 
savings. Although representing only a small fraction of the over
all health care need, intensive care techniques are especially adap
tive to technical innovations, and even without major R&D 
efforts, continued refinement of existing technologies can be ex
pected to effect further improvements. 

In the almost explosive growth of hospital information system 
technology, the shared, modular systems utilizing small to medi
um-sized computers appear to offer the most economically prom
ising solution. Information handling as opposed to patient 
management is stressed, the objectives being to achieve automa
tion in a modular or incremental fashion through terminals con
nected via telephone to larger timeshared systems servicing many 
hospitals. For example, the census and bed control module at the 
Framingham Union Hospital (MA), by its requirement for daily 
physician updating of estimated length of stay, has achieved a 
14% utilization increase for the 150 medical/surgical beds in this 
288-bed hospital. Similar technological support modules applied 
to radiology and pharmacy information handling can be expected 
to achieve comparable cost reduction through rationalization of 
information flow within these departments. 

At the Massachusetts General Hospital Outpatient Clinic, an 
automated medical history is saving physician time. New patients 
are given a paper history and the results are keyed into a com
puter terminal which quickly generates an annotated printout of 
the history information. Here in Washington, patients of a five
man group practice in internal medicine produce a similar history 
output by entering their responses directly into a computer termi
nal. In both instances, the physician further annotates the histori
cal report during the physical examination, but at a considerable 
savings of his time. The coupling of automated history taking and 
triage procedures with paramedicals will result in even further 
savings in medical manpower. 

Physician consultative aids are available to support the practic
ing physician with knowledge of immediate use to him in the 
diagnosis and treatment of his patient. The major benefit of these 
programs is the transference of specialized and dynamic knowl
edge from the medical center, with its ready stores of literature 
and subspecialty consultation, to outlying medical care locations. 
Their use for library reference, poison control, and audio re
sponse to pertinent subject review is now state of the art, and 
protocols for fluid and electrolyte management, hypercalcemia 
and coagulation disorders, and aid with complex differential di
agnosis are being widely demonstrated. 
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Flow sheets of clinical logic have been constructed which en
able the paramedic, using a computer terminal, to collect (in a· 
logical fashion) patient historical, physical, and laboratory data 
for a large number of common complaints such as earache, sore 
throat, cough, backache, fatigue and headache. By emulating the 
decision moves used by physicians in the handling of these com
plaints, the protocols often enable the paramedic to handle a 
given patient from presentation to exit. Points at which a physi
cian's intervention is required are automatically flagged. In addi
tion to supporting the paramedic, computer protocols permit the 
physician to periodically review both the performance level of the 
paramedic and the clinical logic of the computer. F. 1. Moore 
reports in his "Information Technologies and Health Care" that 
the number of allied health workers varies inversely with the 
physician/population ratio. Further deployment of automated 
support and audit systems will expand the population base that 
a -pliyslclan-cIfn--adequarety-serve, --a-nd--greatiyincrease--patient

throughput in areas with few physicians. 
In these examples of the technological contribution to our 

educational process, it is evident that learning efficiency for a 
given subject is directly proportional to the immediate relevance 
of that subject for the learner. For the physician, protocols such 
as Bleich's fluid and electrolyte, hypercalcemia, and coagulation 
disorder programs, Worley and Ringe's differential diagnosis 
programs, and Barnett's cardiopulmonary resuscitation pro
grams, have their greatest impact when used as consultative aids 
for each specific patient. Paramedic protocols offering the great
est impact appear to be the operating support protocols such as 
the Lincoln Laboratories' Chronic Disease Management pro
gram and Dartmouth's Acute Disease Management and Audit 
programs. Patient education protocols showing the greatest 
promise are epitomized by the highly interactive programs di
rected at weight reduction, diabetes management, pediatric im
munization, or situational depression. 

It would not be difficult to extend this description of techno
logical applications to health care for several more pages. There 
are certainly many other applications, equally innovative, that 
have demonstrated technology's impact on the cost, accessibility 
and quality of care available in this country. Within the National 
Center we have attempted to place these innovations in real
world settings offering a maximum opportunity for further de
ployment and tranferability of the technology to other health 
care systems. During this deployment, or transference, stage it is 
becoming increasingly more evident that flexibility to adaptation 
is essential if widespread deployment is to be achieved. This has 
resulted in the creation of a completely new set of technologically 
oriented projects. For example; the centralization of laboratory 
services creates logistical problems perhaps best solvable by the 
twin technologies of transportation and communication, but 
equally responsive to miniaturization technology. On the one 
hand we have the specimen transfer and information handling 
problems of centralized laboratories that process several million 
samples per year. On the other hand is the concept of sophis
ticated miniature analyzers, mass~produced at a unit cost low 
enough to permit analysis at the primary site of patient care, the 
physician's office and outpatient clinic. This latter idea is attrac
tive to physicians who believe they can perform better if they 
have 

have the patient and his data in one place at the same time. 
Obviously any further decentralization along these lines obscures 
advantages I will shortly be citing about the centralization of the 
medical record. 

Systems for computer analysis of the electrocardiogram are 
also highly susceptible to modifications generated by communi
cation and miniaturization technology. Primarily developed for 
hospital in-patient applications, miniaturization of acquisition 
systems and even mobile self-contained computerized EKG sys
tems are now within the realm of technological practicality. The 
ubiquitous telephone, modified for automatic card dialers, auxil
iary Touch-Tone keyboards, and computer-generated voice re
sponse, has the capability of revitalizing the physician's office as 
the primary place for patient care at a level of quality deemed 
impossible only a few short years ago. The problem-oriented 
medical I ecOi d, adapted to computer techfli.ttties,aml--iRte-grate-4-
with essential administrative data, offers significant advantages 
for the patient, the primary care physician, and the health care 
system manager. Grossman has suggested that four distinct levels 
of care are potential beneficiaries of such an integrated record. 

"At the level of daily patient care, medical records can be 
searched and sorted by computer to group patients for spe
cial purposes. Patients who should receive influenza vaccine 
each winter, people with chronic diseases, endocrine abnor
malities and those over the age of 65 ... With such a record 
system, the computer can search the patient files and pro
duce a list of patients meeting these criteria. 

At the level of the individual physician's practice, the 
system serves as a source of feedback. Computer-generated 
reports can list in decreasing frequency the diagnoses the 
physician has made, the number and type of tests he has 
ordered, and the number and the type of medications he has 
prescribed. Reports can be produced by specialty so that aN. 
individual can compare his practice to that of the group as 
a whole, contributing to a sense of group enterprise rather 
than individuality among practitioners. 

At the levels of the health care institutions, accessibility 
of aggregate medical information brings an entirely new type 
of data to the administrative planning process. Because of 
the availability of exact diagnostic distribution, placement of 
personnel can be based on actual case loads and trends 
rather than predicted needs. The data also contribute to the 
control of costs, and medical and lay administrators can 
know much more precisely the individual utilization of 
available resources. 

Finally, at the level of health care evaluation, the avail
ability of structured medical data provides for an opportu
nity to build definitive criteria for quality of care. For 
example, in assessing the chronological course of diabetes 
mellitus, assessing the levels of blood sugar over time, or 
checking if the blood pressure of hypertensive patients falls 
below a certain required therapeutic level. The online avail
ability of these status records precludes the need to pull a 
patient's paper medical record for use with scheduled pa
tients, unscheduled walk-in patients, and telephone inqui
ries." 
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A model for this integrated record system is currently operat
ing at the Harvard Community Health Plan, where an online 
status report and laboratory system permit cathode-ray tube dis
plays for use by the member physicians in their offices, by the 
plan's administrative staff, and by paramedics for triage and 
educational purposes. The statistical reports generated closely 
approximate the four levels suggested by Grossman; Medical 
Aggregates (listing of diagnoses, tests ordered, and medication in 
order of frequency for each staff member); Utilization (the fur
ther division of aggregate table to reflect specialty visited, and 
frequency of visits, cross-tabulated with age, sex, and demo
graphic data); Membership Data (alphanumeric lists of member
ship by specific characteristics); and Special Studies (listings of 
women taking sequential birth control pills who should discon
tinue their use, profiles of the Welfare-supported population 
within the Plan, mailing lists of members meeting criteria for 
participation in emergency preventive health programs). These 
ongoing services also parallel the data components described in 
the general guidelines of Federal-State-Local-Health-Systems, re
quiring that "Systems be developed in association with efforts 
made to provide the information needed for patient care, quality 
assessment, fiscal responsibility, certification of need, and health 
planning". The Harvard model appears equally adaptable to 
other major health care delivery systems such as EMCRO, 
EHSDS, and Health Maintenance Organizations. 

Any description of a model health care delivery system, com
plete with hundreds of remote terminals and cathode-ray tubes, 
equally accessible by physicians, paramedics, administrators, and 
patients, immediately brings to the technologist's mind the con
cept of added system utilization through the introduction of a 
two-way visual communication system. For this final portion of 
my discussion on recent technological developments I would like 
to comment on the impact we might expect from the potentially 
explosive role that broadband communication systems might 
contribute to a health delivery system. First let me mention some 
of the questions health care technologists are asking. Can physi
cians remotely supervise patient care for a relatively large popula
tion of bedridden individuals by communicating directly with 
paramedical personnel through interactive television systems? 
(Adaptation of television sets for this use could radically reduce 

the cost of manpower dedicated to in-hospital and other confined 
patients.) Are physicians, linked by Picturephones or other 
broadband modalities to the hospitals with which they affiliate, 
able to review X-rays, EKGs, and laboratory results, and discuss 
these with the hospital's staff without leaving their offices? Can 
patients who are under examination in one physical location 
benefit from online consultation from remotely located special
ists? Can our considerable reserve of nurses turned housewives be 
brought back into the health care system by the installation of an 
interactive visual screen in their homes, linking this vitally 
needed talent to physician or patient? Is there a sense of "per
sonal presence" when patients and medical care professionals are 
in face-to-face communication via television, and will the avail
ability of such service ensure more equitable access to health care 
without further disruption of an already overburdened transpor
tation system? (For example, in Chicago, the cost of transporting 
an elderly patient from a nursing home to an out-patient clinic 
and back is eight dollars.) These and other questions are presently 
under investigation in a series of projects supported by the Na
tional Center which address the extent to which visual communi
cation can be substituted for travel. 

In all of these applications of technology to the delivery of 
health care there is an implied interdependence between those 
technologies whose primary impact is in the area of patient ser
vices and those technologies with primary impact on the educa
tional process. It is the entrainment of the health care 
professional into using computer technology in his own educa
tional process that most facilitates the use of similar technology 
in his medical practice patterns. All the examples I have chosen 
have promoted further trial and use of technical practices and 
devices, and are exercising a spreading train of influence in the 
emergence of other technological innovations. The impact of this 
technology, measured in terms of the cost, quality, and accessibil
ity of health care, will be better measured when its deployment 
reaches a more representative portion of the patient population. 
We may at that time find that the greater impact has already 
occurred, in the changing health delivery concepts of administra
tors, physicians, paramedics, and patients familiar with the ways 
of automated, push-button, interactive, visual, two-way, audio 
response technology. 
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One objective of the information processing community is to 
aid the problem-solving activities of its clients. In this paper we 
will discuss a methodology for serving the needs of the "user", 
that is, the end-user: the manager running an organization, the 
accountant understanding the financial condition of a company, 
the anthropologist studying a culture, the engineer designing 
some equipment, or the meteorologist predicting the weather. 
Each of these users has his own particular, idiosyncratic prob
lems. The computer should be an effective tool for him in dealing 
with these problems. Our methodology is designed to provide 
each of these users with an appropriate interface to the computer, 
with a ianguage which is natural to his view of reality. 

In this paper we examine the nature of today's ubiquitous 
applications packages, discuss our notion of applications lan
guages and present some of our experience with the REL system, 
which has been designed to incorporate our views on specialized 
user languages. 
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APPLICATIONS PACKAGES 

The bare hardware of a computer, from the point of view of 
the user, is impotent. An operating system augmented by a few 
language processors, e.g. FORTRAN and COBOL, is hardly 
more useful. Indeed, when constructing complex applications for 
an end user, the standard programming technique is to first build 
a set of data structures and utility routines which then become 
the user's environment and make the computer habitable. We 
will call any consistent set of such structures and routines an 
applications package. 

The need for many such applications packages is clearly dem
onstrated by their existence and wide usage. Examples are stan
dard programs for payroll and inventory control in business, the 
SPSSI package for statistical analysis, subroutine libraries and 
languages such as NAPSS2 for numerical analysis, and APT3 for 
machine tool control. Hundreds of other illustrations may easily 
be found. 4,5 

An these systems have a common property: they provide oper
ators which perform meaningful unit operations needed by their 
users. Their primitives draw up payrolls, compute correlations 
and solve differential equations. We wish to examine how the 
user invokes these primitive operations to fulfill his requirements. 
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In the most unsophisticated system, the user invokes a unitary 
operator: e.g. "produce the payroll". This is a complete program, 
perhaps operating on large bodies of data, with well-understood, 
structurally constant results. This type of applications package 
supports only a single aspect of its users' reality. Being optimized 
around a single task, it is not easily modifiable to meet even 
simple contingencies and it often quickly becomes inadequate. 
Problems change in structure as well as in data. Because the user 
has no concept of the computer representation of sub-parts of the 
whole problem, he is left with the use of a partly obsolete opera
tor, or he becomes dependent on his programmers to make even 
the most minor structural changes in his problem solutions. 

Concerns of typical computer users consist not of single, all
encompassing operations, but of a number of lower level tasks 
which in combination allow the solution of a range of related 
problems. For example, the accountant does not care merely to 
be able to produce his quarterly financial report. He has to be able 
to investigate data on various aspects of the company's fiscal 
status to understand his problems. His products are not just 
periodic reports, but also the tax and cash flow calculations, 
projections, special briefings, etc. Similarly, a physicist manipu
lating his experimental data looks not for a single answer, but for 
a multitude of indications and partial results which may help him 
understand the processes he is studying. 

A computer system which supports such investigations must 
embody a number of different primitive operators, to correspond 
to the variously complex conceptual units of the user. It must also 
allow the hierarchical combination of these primitives to build up 
the operations which match higher-level user concepts. 

The common production of standardized subroutine libraries 
in many fields attests to the widespread acceptance of this view. 
Such libraries, along with the standard algebraic computer lan
guages, allow the construction of hierarchically-composed calls 
on the primitives, offering flexibility and power. What, then, are 
the inadequacies of these sophisticated applications packages to 
the user? 

On the one hand, a computer system for a particular user must 
embody a large set of the conceptual primitives of his problem 
area in order to be useful to him. In addition, however, that 
system must also exclude the incursions of as many as possible 
of those computer concepts unrelated to the problem area. All of 
today's generally available programming languages have a strong 
bias in their syntactic and semantic capabilities to fit the needs 
of their designers, namely computer scientists. Their natural 
primitives include the control of storage, input and output, the 
declaration of procedures, data types, etc. Everyone of these 
concepts is foreign to the problem area in which the non program
mer user is working. Thus, although the subroutines in a library 
may well represent valid primitives to our user, the irrelevant 
concepts of program control, procedure calling, and data man
agement intrude upon and disrupt his problem solving.6 

Current users struggle with this disruption in different ways: 
the accountant must work through a programmer, removing 
himself from direct contact with his data; the physicist often 
becomes a programmer, sacrificing his productivity as a scientist 
to develop competence in a field of only incidental interest to his 
work. 

The information science community can provide better techni
cal solutions and more viable tools. 

APPLICATIONS LANGUAGES 

To be most effectively utilizable, the computer must metamor
phose to be each user's own conceptual machine. It must embody 
exactly those primitive notions which the user finds fundamental; 
it must support that structuring of complex problems which the 
user finds natural. And because the user must be able to commu
nicate easily with his machine, it must provide for communica
tion in a language which embodies the user's conceptual 
primitives and the means of composing them clearly and con
cisely. 

It is not generality that the language must provide. Indeed it 
is exactly in its ability to reflect the biases, limits, and idiosyn
cratic representation of the user's reality that a specialized lan
guage finds its greatest strengths. The user brings with him a host 
of presuppositions, the knowledge of his field, of which he is only 
peripherally aware, but whose logic underlies all of his problem
solving activities. General languages know nearly nothing about 
the problem domain. All checks, all limits, all structures must be 
explicitly expressed by the user. In any high-level application, the 
amount of knowledge which the user has about his data is enor
mous. To enter it as explicit instructions to the computer and to 
probe his data in a system which recognizes none of his tacit 
knowledge is unconscionably tedious. 

The implicit inclusion of the tacit knowledge of a specialized 
problem domain is the advantage which gives the applications 
language both expressive conciseness and computational effi
ciency in the problem-solving tasks of the particular end user.7 
With such a language the user can concentrate on his problem 
instead of the programming details. There is no intrusion of 
foreign concepts from the implementation - the user manipulates 
structures and operators that are familiar and relevant. The 
power of the language opens new options and capabilities in his 
use of the computer, and the naturalness of the language allows 
him to exploit those capabilities himself, bringing his own im
plicit knowledge and intuition to bear without having to work 
through a programmer. 

At the same time, the embodiment of the user's presupposi
tions implicitly in the prior programming of the primitive opera
tors results in increased computational efficiency. It is often 
erroneously assumed that higher-level, user-oriented languages 
entail increased computing times as well as excessive implemen
tation costs. Quite the contrary. The existence of specialized 
knowledge of the field of application allows more global optimi
zation of the basic primitives. And once programmed, these 
primitives can be composed in the solution of wide-ranging prob
lems, being reused a multitude of times without involving any 
new programming tasks. One can appreciate the extent of such 
savings by considering the compaction of records and optimiza
tion of access to peripheral storage which the programming of 
specialized primitives can embody, savings in ultimate computer 
time which can amount to orders of magnitude for large data 
bases. 8 



The fear has been expressed that the widespread development 
of such languages would lead to a large number of small user 
communities, each with its own highly specialized language, each 
unable to communicate data and methods of solution to the 
others. Consequently, the argument goes, we should concentrate 
upon standardizing our languages rather than specializing them, 
to allow the easy exchange of data, algorithms and personnel. 

We find two related answers to this line of argument. First, we 
do not believe that our current experience with sharing data or 
programs justifies the requirement of adherence to rigid stan
dards on the part of all computer users. Specialized languages 
already tend to arise in response to natural divisions which exist 
among groups of users. Hence, between groups isolated by spe
cialized languages, it is already unlikely that they would profit 
from sharing of common technique and common data. Second, 
t.M.jncreased capabilities provided a group by a specialized lan
guage may well justify acce-ptlng--ihe- costorreIati,ie-isOIiitlOii:It 
is the user community's responsibility to regulate language devel
opment to achieve an economic balance between specialized ca
pability and communication. Between groups where 
communication and sharing of data is desirable, their various 
specialized languages can explicitly facilitate precisely such com
mon access and cross-talk. 

Currently, the economic factors underlying the decision of 
whether or not to create a specialized language are dominated by 
implementation cost. Technical advances of the sort we will de
scribe can reduce this cost sufficiently to allow that decision to 
be made on the grounds discussed above. We now examine the 
task of implementing specialized languages. 

METALANGUAGES 

From the implementor's viewpoint, a computer language con
sists of a set of procedures containing the semantic primitives of 
the language, the set of data structures to which these are to be 
applied, and a syntax which allows the user to compose his 
operations and to apply them to his data. The task of the language 
implementor is to analyze the natural requirements of the user 
in these three areas and to design and code the procedures, data 
structures and syntactic processor to realize the language. 

We can examine the language writer's problem just as we 
looked earlier at the end-user's problem. We note that current 
programming languages do not have operators and data struc
tures in their semantics which specifically support language im
plementation. Because their facilities are much more primitive 
and detailed, the construction of applications languages is dif
ficult and costly. The language implementor needs a specialized 
language, just as the user does. The primitive concepts of this 
language must be parsing, storage management, permanent and 
temporary data base management, semantic compositions, etc. 
Again we emphasize that this implementor's language is not a 
generalized language. Not all implementors will want the same 
parser nor the same data base management scheme. However, for 
particular classes of language implementors, those implementing 
similarly-structured user or object languages, a particular imple
mentors' or meta- language is useful. 
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A metalanguage structures and supports the task of the appli
cations language implementor in the same way that the applica
tions language structures and supports the task of the user. It 
allows the implementor to concentrate on the problems of design
ing his language and supports its implementation. For example, 
provision within the metalanguage of an efficient parsing al
gorithm coupled with a simple means of expressing syntax rules 
will allow the programmer to utilize a natural syntax in his 
language. He is no longer forced to a simple syntax by the high 
cost of implementing anew a complex parser.. The metalanguage 
can embody much of the tacit knowledge of the language imple
mentor about the internal structure of the language. For instance, 
a rigid coupling between rules of grammar of the object language 
and the invocation of the associated semantic primitive routines 
allows the metalanguage to know the calling and return struc
tures of these semantic routines, and to use this knowledge to 
allow a rii-ore COIlClSe-aeSCflplioffofmeroutI-ne-S-alTctto-p-erform
error checking or optimization on the object language. The meta
language also directs the attention of the language implementor 
to the central issues of his task: the construction of the operators 
and data structures that are significant to the user and a natural 
syntax for combining them. 

REL -
THE RAPIDLY EXTENSIBLE LANGUAGE SYSTEM 

The REL System has been developed to give concrete realiza
tion to the ideas presented in this paper and allow us to get actual 
experience with the use of such a system. We will not further 
describe REL here, but will only enlarge upon those aspects 
which relate to ideas discussed in this paper. For a more complete 
description of REL, see references 9,10,11. 

The REL System provides a metalanguage for the implementa
tion of sentence-driven, syntax-directed, interpretive and extensi
ble applications languages 12. Within the REL environment, a 
language is represented by a set of general rewrite grammar rules, 
their corresponding processing routines, and the data structures 
of the associated data items. The grammar rules structure the 
operation of the language, define the valid syntactic constructs 
which the user may employ, cause invocation of the syntactic and 
semantic processing routines, and define which data types may 
be related in the language. As an example, consider the following 
grammar rule: 

<class;relation_image> => <relation> 'OF' <class> 

This may be a rule of grammar of a language which expresses 
aspects of a relation calculus. The rule, written exactly as shown 
here, states to the REL system that: 

• the syntactic construct "name of a relation" followed by the 
word "of' followed by "name of a class" is valid. 

iii such a construct represents another data item of the type 
"class", 

• this new item may be computed by applying the program 
named "relation_image" to the two old data items. 
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Notice how this metalanguage forces the implementor's attention 
to exactly the problems which should concern him: the primitive 
entities of his language, e.g. "class" and "relation"; the primitive 
operations of the language, e.g. "relatioILimage"; and the syntax 
by which these can be combined, e.g. "regions of salesmen", 
"vendors of components". 

We have emphasized that the user's language should fit his 
needs naturally. That means that he must often be able to define 
new operations on the basis of his previously existing operations 
to express new tasks and methods of solution. REL provides the 
applications programmer with a powerful tool to implement this 
ability for his language. Using whatever external syntax he finds 
natural for his users, the programmer can invoke an REL system 
utility which will add to the user language's grammar new rules 
which express the desired definitions of the user. 

REL APPLICATIONS LANGUAGES 

We have used REL to implement a variety of languages and 
have found it to be very supportive of them. Indeed, even if we 
had wanted to develop only one fairly complex language, we 
would have found it desirable to separate the REL system and 
general language processor facilities from the syntax and seman
tics of the particular language. Doing so has given us a frame
work in which to design our languages that has been at least as 
important as the support we have gotten to actually write the 
code. 

The languages that have been implemented under REL to date 
include REL English,13,14,15 the Animated Film Language 
(AFL),16 a language for solving ordinary differential equations, 
17 and a discrete simulation language.l s We present a few exam
ples from the first. 

REL English is a technical English question-answering lan
guage for the analysis of complex sets of highly interrelated data. 
Its primitive operations are based on the data and semantics of 
a relational algebra. Thus the language was designed with a view 
to serving users with messy, large-scale data-related models. REL 
English's current users include a cultural anthropologist, a re
search hospital, and elements of a military staff. 

The syntax of REL English is a complex, quite natural, deep 
case grammar which provides our users with powerful but con
cise statement and query capabilities. The primitive data entities 
of the language are individuals, classes, and binary relations. 
REL English has all the common notions of sentence structure, 
time, function words like "all", "what", and "the". It does not 
include any particular vocabulary but provides the ability for the 
user to introduce new words which denote individuals, classes 
and relations from his own problem domain. Further, it has the 
capability for defining new verbs in terms of relations and the 
verbs of being, and it provides the ability to extend itself by new 
syntactic forms which represent composed operations of the lan
guage, as specified by the user. 

Note that this much REL English is common to a wide variety 
of users. Relating to the earlier discussion of the cost of imple
menting specialized languages, we remark that to this point the 
cost of adding yet another English-hased language to REt is 
merely 

merely the effort of deciding that the relational data structure and 
an English statement and query capability are natural to the 
user's problem area. To specialize to the requirements of a partic
ular user, the extension facilities of REL English are used to 
introduce the relevant user concepts to the language. 

Our example will be the familiar one of the personnel data 
base. The initial preparation of the language consists of acquiring 
a copy of REL English and adding appropriate terms: 

employee := class 
department := relation 
immediate supervisor := relation 
salary := number relation 

We can then include all of the basic data on each person, usually 
taking it from some fixed-format file. At this point, the personnel 
manager can ask the usual questions: 

What is Sue Jones' salary? 
When was John Smith Bob Jones' immediate supervi
sor? 
How many departments have employees whose salary 
is over 20000? 

The manager will soon extend this simple language with mean
ingful and useful terms: 

def: senior employee: employee whose salary is at least 
18000 
def: subordinate: converse of immediate supervisor 

Are all managers senior employees? 
What proportion of senior employees are female? 
Which managers have more than five subordinates? 

The user can, of course, produce reports. The statement: 

What is the ratio of male employees to female em
ployees in each department? 

produces a columnar listing of the departments and their male 

female ratios. Other involved conceptualizations can be ex
pressed by verbs: 

earn := verb «object> is the salary of <agent» 

Does some employee earn more than his immediate 
supervisor? 

The capabilities represented here allow the user to efficiently 
explore the interrelationships which are meaningful to his task. 

The above is a small illustration of the type of applications 
language which we have implemented in the REL system. Each 
of the other languages mentioned have quite different syntax and 
semantics. Although our experience to date is limited, these ap
plications have been found to be directly and effectively usable 
by their intended users and inexpenSIve to implement. 



CONCLUSION 

The continued development of more sophisticated software 
and better, less expensive hardware should lead to a great in
crease in the number of computer users. As a tool for organizing 
and managing large, complex human problems, specialized com
puter languages promise to increase our effectiveness in handling 
a complicated world. Indeed, only by the support of specially 
tailored "natural" languages will the large group of new com
puier users have the ability to effectively deal with this growing 
resource. Whenever possible, the burden of making man-machine 
communication tractable should fall on the machine, where the 
burden is manageable through the use of specially designed meta
languages and applications languages. 

Our experience with REL gives us confidence that the notion 
of a metalanguage for the implementation of whole classes of 
apPlications languages -is Tegiti-mateanCl valuable. --Welntenrl to 
continue exploring the wide range of end-user oriented languages 
which find a natural home within our system, and we envision 
the future construction of other metalanguages (or programming 
systems) for different classes of applications languages. 

We would like to make a few final comments about the impact 
of the above ideas on the computer professions. We expect a 
redefinition of the relation between systems programmer, appli
cations programmer, and user. The user has problems to solve, 
which he can state in some language specialized to his universe 
of discourse. The task of the applications programmer, in our 
view, is to provide the user not with solutions to individual 
problems, but with computer languages and capabilities to allow 
the user to pursue the solutions of his problems in terms of 
concepts which are natural to his problem domain. The task of 
the systems programmer is to build efficient language processing 
systems and their associated metalanguages so that the applica
tions programmer can concentrate on the structuring of the data, 
preparation of the processing algorithms, and specification of the 
syntax natural to his user. The current work in computer systems 
such as REL will facilitate the task of the applications program
mer. 

Finally, the power (and thus the responsibility) of the applica
tions language implementor is great. As our everyday language 
affects our thoughts, our computer languages guide and limit our 
work. An appropriate and flexible applications language can 
greatly enhance the work of a user; a poor and rigid one can 
impoverish it. The future of our ability to effectively use one of 
our most powerful tools, indeed, of our ability to cope with an 
informationally overwhelming world, is at issue. 
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ENSURING INPUT DATA INTEGRITY 
IN A HIGH -VOLUME ENVIRONMENT 
by ROBERT F. STOVER and S. KRISHNASWAMY 

Honeywell Information Systems 
Framingham, MA 

SCOPE/INTRODUCTION 

The cost of errors in entered data can be significant in a com
pany's data entry operation. Currently available program-con
trolled data entry devices and systems afford the user an 
opportunity to detect the error, but they generally cost more, and 
the error detection may also impact throughput. 

The objective of achieving selective data integrity at lowest 
overall cost implies an understanding of errors, their detection 
and correction. 

This paper is based on multistation key-disk systems because 
of their generalized, extensive error detection and reformatting 
capabilities, subsets of which are found in other, single-station 
devices. The points should be applicable to all devices. 

Feedback 
Loop 

FigurE' 1. "rhf"'m~tic of rhr. Dflta Fntry Pr(l('",~~ 

ELEMENTS OF THE DATA ENTRY PROCESS 

Figure 1 shows the schematic of a generalized data entry pro
cess which really encompasses all the necessary steps from the 
source of data to the processor, together with the essential feed
back from each step to a previous step as appropriate. 

Descriptions of the Elements 

• Source: The actual source of data, like storage bins or point 
of sale, etc. The source is assumed to be a "pure" source with 
no processing. 

• Capture: The process of first entering selected data from the 
source into the system, for example, writing up the sales 
order. 

• Conversion: The process of converting the data into a form 
in which it can be read and manipulated by electronic pro
cessing machines. This can be transcription (keying) or me
chanical (OCR, OMR). 

• Collection: The process of collecting the converted data from 
data various sources or "batching", or "pooling", ifappropri
ate. 

• Pre-Process: A possible intermediate reformatting and la
belling step to get the data ready and organized for process
ing. Traditionally this has been done in the computer that 
does the processing. "Collection" may follow this step instead 
of preceding, or may be part of it. 

• Process: The data processing function with an associated 
central Data Base. 

• Transfer: The link between the boxes (Figure O. The method 
of conveying the information from one box to another, gener
ally involving some form of transportation like US Mail, 
trucking, data communication, etc. In its broadest general 
interpretation this function is present between any two boxes. 
It may imply cost and delay or may only be incidentaJ move
ment 
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The data processing function is included here only because 
traditionally it has actually been required to perform some func
tions like collections and preprocessing that are really data entry 
functions. This paper will not cover processing errors or details 
of the implementation of the feedback loop. 

SOURCES AND TYPES OF ERROR 

Considering each element of the data entry system in turn, the 
following kinds of error are possible: 

Capture 
Vital data may be missed or not captured in sufficient detail. 

The wrong data may be picked up or the data could be entered 
-------- -in-t-he--wr--emg--ar-ea-ef-t-he-f-emr.- .~ 

Conversion 
Mechanical devices like OCR could read erroneously or not at 

all if the input data does not fit a prescribed form. Keying of data 
may introduce skipped field, keying (typographical) errors, misa
ligned data and duplicate records. 

Collection and Preprocessing 
Mechanical errors occur when data is moved around within or 

between memory and external storage. Imperfect software could 
misinterpret entered data or introduce errors. Error detection 
and correction algorithms and procedures could themselves in
troduce errors. Automatic duplication of data in a field from data 
previously entered is an example of this. If subsequently the first 
occurrence of the data is corrected, all subsequent occurrences 
could be in error without appropriate software correction. Simi
larly, if a field used in arithmetic operation (hash totals, exten
sion) is changed subsequent to the operation, the field holding the 
result would be in error. Data loss could also be caused by 
external problems like mechanical failures (disk head crashes) or 
electrical (power) failures. 

Transfers 
Errors could also be caused during data transfer, as in commu

nications. On a larger scale, large batches of entered data, col
lected or pooled and transferred to the data base of the processing 
element, must be properly labeled and identified to ensure that 
the processor is fed with the right data set. 

!.'1direct Errors 
The user's data entry procedures and changes to them are 

potential error sources. The 80-column card constrains the entry 
format to the processor requirement, not the format of input 
data. Effectively the operator is editing while keying. If input 
exceeds 80 columns, the operator is forced to look up and rekey 
identifying field on each "card". In some cases the information 
is reduced to codes on the form. All these reduce the operator's 
comprehension of keyed data, raising the probability of error. 
The user is also naturally liable to change and improve his proce
dure, and any potential errors during this period must be mini
mized by a good data entry system. 

IllegaJ Data 
There is always the problem in any data entry system of a 

person attempting to pass illegal data such as nonexistent charge 
accounts. The system must also provide the necessary check digit 
algorithms to prevent this. 

Errors can therefore occur in any element of the data entry 
system itself, due to the complexity of the input forms or keying 
procedures. The errors may range from the total absence of essen
tial data to the entry of illegal data and includ,e invalid data, 
incorrectly entered data, or errors that are actually introduced by 
the data entry systems hardware or software itself. 

V ALUE OF ERROR 

-It-is-o£-rr.in:te importance 1{Lrealiz.eihaLall errQL~u~·re IlQJ of 
equal importance. It simply is not economically sound to strive 
for error-free data just because that is the "right" thing to do. 
Instead, more care should be placed on designing a system in 
which error detection, throughout, and cost of undetected errors 
are balanced. 

The nature of the data provides quick clues as to the nature of 
the potential problems. Textual data generally can tolerate errors 
because it is for reference purposes, i.e., human use, and errors 
can be detected since the symbols have easily recognized mean
ing. Numeric data must be precise and it is relatively easy to 
make errors. Coded data may be even worse since there are fewer 
applicable check methods. 

As stated, the objective is to get a required level of data integ
rity at minimum cost. This implies balancing error detection 
procedures against productivity. One must consider where the 
points of error detection are, where the knowledge to correct the 
error lies, and how well the detection procedure can isolate the 
error. 

DETECTION OF ERRORS 

Once the user has determined the errors that affect the system 
crucially enough to be detected and corrected, a number of meth
ods are available. The selection of methods depends on the nature 
of the errors and the points where they are to be checked. 

The following discussion is along the same lines as that on the 
sources of error. 

Capture 
Data errors incurred during capture are caught during conver

sion time. To prevent omission of data, the data entry (conver
sion) equipment can be programmed such that the user may 
specify that data "must be present" in specific crucial fields. The 
system must also provide means of record insertion and deletion 
to correct for totally missed or duplicated records respectively. 

Capture (and entry) of invalid data can be reduced to a degree, 
particularly for numeric data, if the attributes of that data are 
known. Thus, one can specify the range of values (range check) 
for the data to be entered, or the values that are legal (value set), 
or provide validation controls such as check digit algorithms. 
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Conversion 
Keying errors can be caught by keying controls, validation 

controls, and finally by verification. 
Keying controls can check if the data is to be in upper or lower 

case, whether the field can be skipped or duplicated from a prior 
occurrence, and the legal types of data in the field (like alpha
betic, numeric, blanks or special symbols). 

In addition, one could also specify minimum and maximum 
number of characters in the field, and if the field is numeric, 
specify that it is to be included in a hash total. A hash (or batch) 
total does not really check each field as it is entered, but gives an 
overall check for a defined collection of records. 

Crucial data that needs to be error-free, but is checked either 
incompletely or not at all by validation during entry, can be 
checked by two forms of verification - visual and key. Visual 
verification consists of providing the operator with a display of 
a record on a screen to permit correction either during initial 
entry or during a subsequent verification and correction run. 

A visual display by itself is not effective in detecting errors, as 
operators seldom look at displays while keying. If an error is 
detected by other means, such as validation controls, a display 
could be useful in correcting the error. A display is particularly 
useful to an operator familiar with the data being entered. In such 
cases, the operator would be able to spot the error and could 
possibly correct it generally if the error is in keying (wrong case, 
wrong key, etc.) Even here the use is limited, because if the error 
is in the validity of numeric or coded data the operator really 
cannot correct it any better than without the display. The value 
of displays is not clear in high-volume situations like tab room 
operation where the data is not meaningful to the operator. 

Key verification is the process of rekeying and comparing the 
records created in the two passes, character for character. It is 
really no more than a check on the keying. The keypunch verifier 
forces the user to rekey the entire card. Modern data entry sys
tems allow the user to specify the verification of only specific 
fields, bypassing noncritical data. It is also possible to bypass 
verification of fields that have already passed validation tests 
such as hash totaling. 

Con version and Preprocessing 
Though it appears trite to say so, processing errors are best 

prevented by good design of hardware and software. Mechanical 
errors are detected by parity and cyclic redundancy checks 
(eRC) in the hardware and by defensive programming to protect 
the data area and itself against equipment malfunctions. 

Errors from the detection algorithm itself can be prevented by 
good systems design and procedures that allow for all possible 
convolutions of error conditions and detection/correction proce
dures. A corrected first record of a duplicated field can be propa
gated through all duplicated fields either automatically, by 
resolving the duplications after all corrections are over, or by 
forcing the operator to correct every successive dup field. Arith
metic errors can be resolved by a separate total pass or by main
taining running totals that get corrected every time a component 
field is corrected, etc. If this type of error occurs frequently, a 
user must also be able to force reverification of a field or record 
that has had major corrt"ctions made. 

The data can be protected from external causes such as power 
failure by incorporating extensive checkpoint recovery proce
dures in the system itself, and by duplication (redundancy) of 
critical library information. 

Transfers 
Transfer errors such as communication errors are generally 

taken care of by built-in detection and correction procedures. On 
a larger scale, proper identification of batches of data by appro
priate labeling is done very well in shared processor systems, 
which can be programmed by the user to allow the creation of 
various types of labels from the supervisor's console or from 
within the system itself so that the resultant data stream meets 
the compatibility requirements of the host processing system. 
This not only reduces errors but actually lessens overall cost by 
cutting down or eliminating a separate editing pass at the main 
processor or elsewhere in the data entry system. 

Indirect Errors 
The power of the processor in a shared processor data entry 

system can be used extremely effectively to allow the user great 
latitude in changing his data entry procedures, keying procedures 
or input forms without introducing errors. Most key-disk pro
cessor systems have extensive reformatting capabilities. Input 
data is stored in intermediate storage on disk, reformatted as 
directed by the user, and output. 

If data entry procedures change, new data is added, some old 
data removed, or if input forms change, the user only needs to 
alter the output editing formats and the output would still fit the 
processing programs. Similarly, if a new application program 
uses the same input data but in a different format, this too can 
be accomplished by merely using a different output edit form. In 
all cases, the software modules that do individual editing on the 
data are already written and part of the system; all the user must 
do is enter an editing form that tells the system what editing 
facilities are to be used and in what sequence. The use of disk for 
intermediate storage, and the editing formats, release the user 
from the stifling grip of the 80-column card format. The greatest 
boon to the user is that the shared processor key-disk system can 
effectively decouple the output format from the input so that the 
operator can "key what you see" and yet the output is computer 
compatible. Single programmable stations are generally unable to 
provide the same complex or extensive reformatting capabilities 
as shared processor systems because of cost considerations. But 
they can also be programmed to allow for changes in input proce
dures and the program can be stored in auxiliary storage if neces
sary (like cassettes) to be used one at a time. 

IllegaJ Entries 
Illegal entries are generally checked with check digit proce

dures and cross-field validation procedures in which the type of 
information in some critical field is keyed to coded information 
of another. Error detection methods therefore are generally based 
on the nature of the data such as length, value, etc., to provide 
validity checks and on reverification procedures. Errors induced 
can be avoided or reduced by extensive checkpoint restart 
capahiJities find reformatting 
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CORRECTION PROCEDURES 

This section categorizes the correction procedures commonly 
available, with general comments on the characteristics of each. 

Spot Correction 
Spot correction procedures are almost always the first method 

if a proper one exists. All keying controls fall into this category. 
Also, there are validation procedures which provide for spot 
correction. 

A validation error will stop the entry operator immediately 
and allow it to be rekeyed. Usually this corrects the problem. 
However, if the data itself is wrong, then the operator must be 
allowed to proceed anyway since it cannot be assumed the opera
tor can correct or even identify the error. This separates this class 
of e~ror frol!?:_~e.y!~~.?_~t!ols. 

Error Marking 
As just mentioned, it is not always possible to correct errors 

when detected. The next best procedure is to mark them for later 
correction. This may be done in a variety of ways. The entry 
operator can be instructed to physically mark the document, 
overkey the field with an error indication, or delete the record 
and remove the document. A slightly better procedure might be 
to allow a format position following the field which is checked, 
so that a special character can be inserted if an error is given. A 
more elegant procedure is available on key-to-disk equipment. As 
data is stored on disk in an intermediate form, it is possible to 
append control characters in a way that is essentially invisible, 
i.e., not occupying any format position, and automatically con
trolled. Thus if a validation error is signalled and the operator 
does not correct it, the field is so marked. This mark is then used 
generally in two ways. First, the batch can be later reopened and 
the system instructed to search for the first error record (or the 
next error record, etc.) Second, during output the reformatting 
features can test for the error flag and do somthing entirely 
different if an error is present. This allows great flexibility in error 
control procedures. 

Second Pass 
Simple verification is unique because it requires no knowledge 

of the meaning of the data. It merely checks to see that the entry 
operator and verify operator transcribed the data the same. It 
requires full rekeying, which no other method does. 

Data Separation 
A technique is available on key-disk systems, particularly, to 

separate data containing errors from those that don't have errors. 
This usually is done on a batch basis and usually involves batch 
balance errors. The system informs the supervisor which batches 
have errors and which don't. Then the supervisor can pool the 
error-free batches onto tape under control of one reformatting 
procedure. For the batches with errors a separate reformatting 
can be used, and then the data is typically output on a printer. 
This procedure is designed to allow sight checking of the data. 
When the error is found the batch can be corrected and output 
under the first procedure. 

CURRENT EQUIPMENT CAPABILITIES 

Table I lists four different types of data entry equipment. The 
capabilities are listed in three groups for each. The first group are 
those commonly available and the second group are additional 
feature available on some systems. Group three are additional 
features which prevent errors in the handling, status, and records 
of larger units of data such as complete batches. 

There is a substantial increase in capabilities of the key-disk 
systems over the card punch and the key-to-tape, which are 
hard-wired devices that cannot be easily or cheaply enhanced. 
Key-disk systems share a normal processor which can be repro
grammed as required. 

Source data entry systems can be program-specialized to one 
application, but this could be expensive and attended by debug 
problems. 
. ... -Sume---source-dat-a-systems;--lw-,--are-vefY~~-€ 
standard because the operator understands the data and can 
correct detected errors without aids. 

Card Punch 

iverify 
Case control 

jOne-field batch 
balance 

(Check digit 

f 

: Permanent 
copy of data 

-
Key toTape 

Verify 
Case control 
One-field 

batch balance 
Check digit 

I 

Key to Disk 

Verify 
Case control 
Batch balance 
Check digit 
Allowable 

character set 

Multiple batch 

I balance 
i Subtotal balances 
i Crossfooting 

Special character 
sets 

Range check 
Value set 
Automatic program 

linking 
Reformatting 
Error testing 

on output 
Must-be-present 

field 
Minimum length I field 

i Cross field 
validation 

Source Data Entry 

Operator 
knowledge 

User 
programmed 

I 

I 
I 
I 
I 

i 
! 

I 
I , 

! 

-t-.... ~---+--------+--~---~ 
Hard record of 

batch status 
Record of super

visor actions 
Detailed statistics 

on each batch 
Labeling 

procedures 

Essentially 
mated to 
processing 
programs 

Table I. Data Entry System Error-checking Capabilities 
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IMPROVING THE PROCESS 

A system must be understood to be improved effectively. Bet
ter-managed data entry facilities have always kept detailed 
records on each phase of operation. Yet the process itself of 
keeping these records is a laborious and costly process subject to 
some error. Modern data entry systems are capable of recording 
very complete statistics as a normal part of operation. The plan
ning of any data entry system must include provision for statistics 
collection as feedback for system improvement, cost justifica
tions, etc. 

The statistics provided by a data entry system should be avail
able as either raw or processed results. Raw statistics include 
such information as operator identification, batch identification, 
start and stop time, number of records, number of keystrokes, 
number of keying errors, number of validation errors, number of 
verifying errors, and so forth. This allows the user complete 
freedom to do later processing as he requires. 

Processed statistics could analyze the raw statistics by opera
tor, for example, providing common measures of work done, 
keying rates, error rates, etc., for each person. Good performance 
can be quickly recognized and rewarded. Better control of train
ing can be realized on an individual basis by recognizing prob
lems earlier. Perhaps operators can be matched to the difficulty 
of jobs. This data may allow the supervisor to achieve better data 
integrity levels without any system changes. 

The systems analyst will more likely want to see the statistics 
analyzed on a job type basis. By averaging over many operators 
this gives direct information on the difficulty of a particular job. 
If the keying rate on one job is substantially lower than others, 
a need may exist to redesign the forms or alter the associated 
procedures. Keying rates are affected by data type, so this conclu
sion does not always follow. Jobs of similar types of data should 
be compared. Careful inspection of the types of errors incurred 
will discover other problems. It may be the people originating the 
form are careless, or the form requires data frequently not 
known, or the user misinterprets instructions on the use of the 
form, etc. 

Finally, the analyst has a complete source of statistics on the 
volume of data by job and total errors by type on each job. Since 
this data is constantly being generated by the system, the analyst 
always has a current picture of his part of the process. A major 
problem in proceeding from this point is to realize that it is only 
part of the data integrity problem. Since no entry system is per
fect, there will be errors going on to succeeding processing steps. 
The problem is to establish quantitative measures of either ac
ceptable error levels or a cost! error basis. These measures will 
probably be difficult to establish and will usually be estimated on 
the low side. It is difficult to trace the full effect of an undetected 
error and assign true costs. However, it is necessary to have these 
numbers to give the systems analyst a solvable problem. 

Ultimately, these concepts must be reduced to costs for evalu
ation. A useful approach is to assign costs based on a keystroke. 
The number desired has four main components: 

S = Operator Salary/Month 

D = Data Entry System Cost/Month 
Number of Operator<; 

R = Average keystroke rate in keystrokes/hour 

H = Working hours/month for an operator 

C = llQ = cost of a keystroke 
HR 

Typical numbers might be: 

C = 650 + 70 = $0.OOO56/keystroke for 
160(8000) keypunch equipment 

C = 650 + 150 
160(10000) 

= $0.00050/keystroke for 
key-to-disk equipment 

Several comments may be made here. Keystrokes are physical 
key depressions and not the number of format positions, e.g., not 
80 to the card. Note that doubling equipment costs is more than 
balanced by a 25% gain in keying rate. Such gains are commonly 
experienced in direct conversion of a job from punch to key-to
disk before changing the job to take advantage of new capabili
ties. All of the numbers in the definition of C are easily available 
or measurable. Using this definition allows the data integrity cost 
to be attacked as a function of only two major factors, number 
of keystrokes required to achieve a given level of data purity and 
the cost of the errors that remain (which must be provided or a 
negotiated estimate made). Questions of rates, etc., are eliminated 
from further discussion to clarify the problem at hand. Also note 
that if equipment is used more than one shift the cost is simply 
lowered for each operator. 

Each field in the document has its own needs with respect to 
data integrity. The type of errors possible, the cost of an un
detected errors, and the applicable detection methods must be 
considered on a field basis. Table II gives four commonly used 
types of error detection, with some of their characteristics. It 
illustrates the concepts one must consider in making a proper 
choice (all items in Table I must be viewed in a similar manner). 
Several types of errors can apply to a single field. 

Type Isolates Error Type Approximate Expected Number of 

Error to Detected Undetected Errors/Batch (for I field) 

Full Character Transcription FN E2 

Verification 10 

Batch Batch Transcription FE2 N(N-I) 

Balance 40 

Check Field Transcription, NE2 F (F-I) 

Digit Data 20 

Range Field Gross data NFE 
Check 

E = Probability of keying error on a specific keystrr>ke. 

N = Number of records in a batch. 

F = Average number of data keystrokes in the field. 

Table II. Typical Error Detection Methods 
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It should be noted again that the data entry system can be used 
to measure these expected error levels directly by controlled 
experiments. Let us hypothesize a simple example and see how 
such calculations might be applied. 

C = $0.0005/keystroke 

160 hours/month 

Batch = 200 documents 

100 Batches/day 

E = 1/2000 = .0005 (an average of 1 in 2000 keystrokes is in error) 

Only one type of job is being done, one document containing: 

Field Itein Max. Length Average 

1 Acct. No. 10 10 

2 Customer Name 20 12 

3 Amount 10 6 

4 Selling Dept. 3 

For this simple analysis we will ignore control keystrokes such 
as skip, dup, record release, etc., which depend on type of equip
ment being used. 

Field 1 must be correct or considerable problems will arise. 
Billing will be incorrect in two accounts, with considerable cus
tomer dissatisfaction. By the time the error is found, traced, and 
corrected, it is estimated that $100 of labor and computer costs 
are involved, plus intangibles. 

Field 2 can tolerate errors with little problem. It is used for 
sight checking and not for detecting the proper account. 

Field 3 clearly must be correct. Errors would cause other totals 
to be out of balance in later processing, causing much data to be 
rechecked. An error is estimated at $500. 

Field 4 can be in error with little problem. It is used for 
cross-checking only and, if in error, it can be traced with modest 
effort. 

Results of applying the given formulas to this example are 
shown in Table III. 

Case 2 

No Full 
Checks Verify 

-- --.~----

Entry cost 3.10 3.10 

Verify cost 3.10 

Field I errors/batch \.0 \.0 
Errors undetected \.0 0.00005 

Error cost 100.00 0.005 
Field 3 errorslbatch 0.6 0.6 

Errors undetected 0.6 0.00003 

Error cost 300.00 Om5 

Total costlbatch 403.10 6.22 

Table III. Cost Comparison 

Even such a simple analysis highlights several interesting 
points. It is good discipline to be forced to quantify arguments 
on data integrity so the choice can be analyzed. Undoubtedly one 
will comment that a certain figure in the example is arbitrary. So 
will another, but pick a different parameter. One point of the 
analysis is to bring out hidden differences in opinion which might 
be resolved by some direct measurements. Doing the analysis 
with two different sets of parameters may show that the contro
versial number is unimportant to the decision. Then one can 
refine the accuracy of the important ones. 

For example, the $100 and $500 costs/errors are very rough 
estimates, i.e., I-digit accuracy. However, great changes in these 
numbers will not affect any of the conclusions drawn except in 
Case 5. It is obvious from Cases 1 and 2 that error checking is 
required. Case 3 shows that errors are only important in certain 
cases. Case 4 shows a check digit to be a valuable addition. Case 
SIS a mudsurprtse; One c-ans-ay that 5500 is urrre~~-y high 
and tipped the scales. A more penetrating observation in Case 6 
is that if the data could be provided with 4 subtotals as weB as 
a grand total, and if the data entry system had subtotal checking 
capability, the cost/per batch would be 3.50 and a clear winner. 
The reason is that the batch balance error is sensitive to batch 
length, and the error is more highly localized. The result is inde
pendent of volume as would be expected, but we must reapply the 
volume figure to appreciate the actual daily savings realized. 

Items such as "must be present" field, minimum length specifi
cation, special character sets, etc., which considerably improve 
data integrity, can be added to the above simple analysis. 

SUMMARY 

We have presented the sources and types of error possible in 
a data entry system, the possible methods of detection, and proce
dures for correction. We have also indicated a quantitative 
method of evaluating the cost of errors in determining the extent 
of error checking needed in any system. With intelligent analysis 
of possible error situations and their costs, the user can set ac
ceptable error thresholds and meet the objective of selective data 
integrity at an optimum overall cost. 

J 4 5 6 

Partial Check Check 

Verify, Digit, Digit, 

Partial Check Batch Sub· 

Verify Digit Balance totals 

3.10 3.20 3.20 3.20 

\.60 0.60 0.38 0.09 

\.0 \.0 \.0 \.0 

0.00005 0.00027 0.00027 0.00027 

0.005 0.027 0.027 0.027 

0.6 0.6 0.6 0.6 

0.00003 0.00003 0.00150 0.00037 

om5 Om5 0.75 0.18 

4.72 3.84 4.35 3.50 
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DATA INTEGRITY IN THE GIANT SYSTEM 
by JED R. ALLEN and VERDON R. WALKER 

Management Systems Corporation 
Salt Lake City, UT 

The Genealogical Information and Name Tabulation 
(GIANT) System has been operational since late 1969. The 
GIANT System is operated by the Genealogical Society of The 
Church of Jesus Christ of Latter-day Saints. Computer process
ing is done on an IBM 360 Model 65 computer. 

The principal inputs into the GIANT System are "individual" 
records (records of births, christenings, or some other identifying 
events for individuals) and "marriage" records (records of a mar
riage or related event for couples). These records are submitted 
by patrons of the Genealogical Society and are usually a result 
of their personal genealogical research aimed at identifying and 
recording their ancestors. 

For certain localities where there is a concentration of ances
tors of members of the Church, the Genealogical Society itself 
has also input records on a controlled basis, thereby making them 
more accessible to persons attempting to identify their ancestors. 

An example of the contents of a typical individual and mar
riage record is now shown. 

Individual Record 

Individual -
Father -
Mother -
Birth Place -
Birth Date -

Thomas Crain 
William Crain 
Joney CowIe 
Andreas, Isle of Man, England 
9 April 1761 

Marriage Record 

Husband - John Johnson 
Wife - Alice Wright 
Husband's Father - Thomas Johnson 
Husband's Mother - Elizabeth ---
Wife's Father - Robert Wright 
Wife's Mother -
Marriage Date -
Marriage Place -

12 Oct 1573 
Fressingfield, Suffolk, England 



The ultimate repository of these records, after they have been 
input into the computer system, is the Genealogical Mass File. 
This file not only serves as a repository but also as a clearing
house, in that incoming records are compared to those already 
in this file and if they are duplicates they are rejected. The Genea
logical Mass File currently contains over 15 million individual 
records and 3 million marriage records. Approximately 3 million 
records are being added to the file each year. 

The purpose of this paper will not be to provide a detailed 
description of all phases of the GIANT System but rather will 
be limited to the discussion of these aspects of the system: 

• The steps taken to detect the duplicate input of records that 
are already in the file. 

• The handling and organization of the Genealogical Mass 
File, which currently occupies more than 42 IBM 2314 disk 
packS~------ - -- -- --- -- --

DUPLICATION DETECTION 

The Genealogical Society maintains and continually adds to a 
large collection of source genealogical records. These records are 
available in its library system for use in ancestral research. The 
same source could be used at different times by many different 
people. As people identify and submit records of their ancestors 
further and further back in time, the probability increases that 
ancestral lines of apparently unrelated people will begin to merge. 
These factors mean that there is a certain probability that an 
incoming record may already be in the Genealogical Mass File. 

In order to maintain the logical integrity of the file, much care 
is taken in the GIANT System to prevent duplicate records from 
being added to the file. The Genealogical Mass File will provide 
a data base of genealogical records organized in such a manner 
as to be useful for future analysis and research. 

In order to be able to handle variations in the spellings of 
names of people and localities, records are processed by a locality 
subsystem and a name subsystem before they are compared to 
records already in the file. The locality subsystem is based on a 
large computer catalog of locality records, containing variations 
of town, county and country spellings, each with an associated 
standard spelling. The actual locality spellings in each incoming 
record are compared to the locality catalog and the standard 
spellings found there will replace the actual spelling in the record. 
If the actual spelling is not in the catalog it is printed out for 
evaluation by geographers. The geographers will add the actual 
spelling to the catalog with its appropriate standard spelling. The 
new actual spelling could be a variation of an existing standard 
locality or it could be a new locality not yet in the catalog. 

Along with the standard spellings, the locality catalog also 
contains a longitude-latitude coordinate code for each town in 
the catalog. This code is also added to the record and serves as 
a fixed-length code for the town. The coordinate code also pro
vides the capability for distance calculations which, although not 
currently used, will be of value in the future for making searches 
within specified distances of a given locality. 

Some examples of variations of locality spellings are given: 
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New York 

NY 
NYk 
N York 
N Ykr. 
N Yrk. 
N.Y. 

Rensselaer County 

Renns. 
Rennsalaer 
Rennselar 
Renns!. Co. 
Rens 

N. York 
N. Yk. 
N. Yrk. 
N. Y. 
N.york 
N-Yrk 

Renslr 
Renslr. 
Renss 
Renss. Co. 
Renssalaer 

Petersburg Town (4245N 07320W) 

Peterburg Petersburg 

New York 
New York. 
Newyork 
NwYk 
Nw Yrk 

Renssaler 
Rensselaer 
Rensselar 
Rensseleer 
Rensselser 

Petersburgh 

The name subsystem operates in somewhat the same manner as 
the locality subsystem. The basis of the name subsystem is the 
name catalog. This catalog contains a given and a surname por
tion, and within each there is an additional geographic break
down according to linguistic group such as, U.S.A. and Canada, 
British Isles, Central European, etc. Name variations can be 
dependent upon the general linguistic area, so the provision has 
been made that different standard spellings can be assigned to the 
same actual spellings for differing localities. 

As in the locality system, all incoming names are matched to 
the name catalog. Names which are already in the catalog will 
pick up the standard spelling and a fixed length standard spelling 
code from the name catalog. If the actual spelling is not already 
in the catalog, then it is printed out for manual evaluation. The 
standard spelling is determined and added into the catalog. In 
many cases the standard spelling of the name is the actual spell
ing. There are currently over 1,250,000 surnames and nearly 
500,000 given names in the name catalog. 

An example of some of the variations of names are given below: 

George 

Gaorge 
Garge 
Geaorge 
Gearge 
Geirge 
Geo 

Hamilton 

Heamilton 
Hambelton 
Hambledon 
Hamblton 
Hamelton 

Geog 
Geoge 
Geogre 
Geoirge 
Geor 
Geor. 

Hamilinton 
Hamiliton 
Hamilten 
Hamilton 
Hamliton 

Geordg 
Georg 
Georg. 
George 
Georgh 
Georgi 

Hammilton 
Hamolton 
Homilton 
Hammelton 
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In the locality system the actual spellings are not retained but 
are actually replaced with the standard spellings in the individual 
and marriage records. In the name system the actual spellings 
input are always retained in the record. The standard spelling 
code is used, however, in the actual comparison made for dupli
cate records. 

After localities have been standardized and the name standard 
spellings and codes have been added to the records, they are 
ready to be compared to records already in the file. Any record 
in the file will have previously had it's locality and name spellings 
standardized. A statistical approach has been taken in making 
the decision of whether two records are actually of the same 
individual or couple. A table of "uniqueness factors" is used in 
the GIANT System. These uniqueness factors are currently rela
tively broad but can be refined as more data is available for 
analysis. Basically a uniqueness factor is assigned to each item of 
identification, such as, month of birth, given name, surname, 
father's given name, etc. This uniqueness factor is roughly the 
proportion of people who may have that identifier in the popula
tion being considered. 

The uniqueness factors for the common information between 
an incoming record and a possible duplicate record in the file are 
used to computer the probability that the common information 
would identify not more than one individual or couple. There are 
some items of identification that cannot conflict without invali
dating an otherwise duplicate situation. There are other items 
which can conflict and if the uniqueness value is sufficient, the 
duplicate condition will be accepted. In general, it can be stated 
that the records available from genealogical sources being used 
ordinarily contain sufficient information to permit unique iden
tification and duplication checking that is the statistically sound
est. 

GENEALOGICAL MASS FILE HANDLING AND ORGA
NIZATION 

There are currently over 18 million records on the Genealogi
cal Mass File. This amounts to slightly over 1 billion characters. 
The file is growing at the rate of over 3 million records per year. 

The Genealogical Mass File has both a static file portion and 
a dynamic file portion. Records are in sequence on each of these 
files by locality, then name, and then date. The majority of 
records are always on the static file with only inc-oming new 
records being added to the dynamic file. The static file is seg
mented into segments of two disk packs each. During actual 
processing, only one segment of the static file is mounted at a 
time. There are currently 21 segments in the static file. 

Each static file segment is organized in an "indexed sequen
tial" manner. The standard IBM indexed sequential access 
method has not been used, however. Rather, records are blocked 
into fixed length blocks of 1682 characters. Four blocks occupy 
one track and 80 blocks occupy one cylinder of the IBM 2314 
disk pack. Blocks of data are read using relative block addressing. 
One block per cylinder is an index block indexing the other 79 
data blocks on the cylinder. There are also 5 index blocks on each 
"egment which index the 400 cylinders on the segment. 

Since all new records being added to the Genealogical Mass 
File go into the dynamic file, there is no need for empty or 
overflow areas to be left in the static file. Other than a small 
amount of unused space left in each fixed length data block when 
the variable length records are blocked together, all space on the 
static file is used. 

In comparing incoming records to the static file, the indexes 
are always used to eliminate the necessity of reading every record 
in the file. The incoming records are in the same sequence as the 
file, so all processing against each segment is done in turn. After 
each segment is completed, it is dismounted and the two disks of 
the next segment are mounted. 

The records in the dynamic file are always blocked in the same 
manner as the records in the static file. The dynamic file is always 
read sequentially, however, so no index blocks are needed. Each 
time that a group of new records is processed against the Genea
logical Mass File, the entire dynamic file is read in sequence and 
all records from it are merged with those new records to be 
added. These records are then written out on a new output dy
namic file. 

The static-dynamic file approach does require the checking in 
two places for duplicate records. It does eliminate, however, the 
need for writing new records in each processing run into a file 
that is as large as the static file. If this were required, it would 
mean the leaving of empty spaces through the file to accommo
date the new records to be added. The problem would be particu
larly acute in the GIANT System since the input does tend to 
cluster. A person may submit a large number of records with the 
same surname from the same locality. Unless they duplicate, they 
would all go into the same area in the file. This problem is even 
more severe with batches input by the Genealogical Society 
which could contain. several thousand records from a particular 
locality. 

The dynamic file, of course, becomes larger each time a new 
group of records is added. Periodically a Genealogical Mass File 
reorganization is run in which all records on the dynamic file are 
merged with the static file and a new larger static file is created. 
The dynamic file then begins over from zero. Currently this 
Genealogical Mass File reorganization is done about twice a year 
in the GIANT System. 

A major advantage of the static-dynamic approach is that the 
static portion of the file can be considered as a read-only file 
during regular processing. This contributes to the integrity of the 
file by insulating it from logical programming errors. It will also 
lend itself well to the possible future use of read-only mass storage 
devices. 

CONCLUSION 

The operation of the GIANT System has not been without 
some problems. However, the integrity of the data being pro
cessed by the system and being stored on the Genealogical Mass 
File has always been maintained to a very high degree. 

It is hoped that the techniques and approaches used that have 
been described in this paper may be of value to others who are 
designing and operating similar large! dala handling systems. 
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DIGITAL RECORDING RELIABILITY 

FOR INFORMATION EXCHANGE APPLICATIONS 
by ROBERT T. McKENNA 

Goddard Space Flight Center 

Greenbelt, MD, US 

In the past several years both government and industry have 
been using computers with digital tape drives which record at 800 
characters per inch (cpi). As more equipment of this type is used, 
complaints of read failures from users increase. The most fre-

_quenLcJlmplaint is that!t~~~xl2-~d(!IL~e--PfQQl~m§_~hH~JIJ~~~_t
ing to read tapes which have been written on a computer other 
than their own, or sometimes within their own facility. 

The purpose of this paper is to identify the basic cause of this 
problem. It also will offer some solutions and alternatives to 
alleviate these complaints. 

At Goddard Space Flight Center (GSFC) our primary mission 
is launching and performing telemetry data processing of non
manned scientific satellites. In performing this function we ship 
each year approximately 75,000 digital tapes of processed data to 
experimenters involved with the onboard experiments, located in 
government agencies, universities, and foreign countries. We gen
erate these tapes on computers built by several different manufac
turers. Likewise, the experimenters read these tapes on many 
makes of computers of both domestic and foreign manufacture. 

We have been doing this type of processing for twelve years, 
during which we have encountered all types of interface and 
compatibility problems pursuant to interchanging information 
through these digital tapes. Because of these problems, we in
vested engineering time and effort to develop special hardware 
for the purpose of making measurements of the recorded data. 
These measurements are made of the amplitUdes, character skew, 
character spacing, asymmetry, special format characters, inter
record gaps, and specified recording formats. This specialized 
equipment is located in a laboratory which we call our Digital 
Tape Unit Test Facility. This facility not only performs routine 
tests but also does special tests on tapes and tape drives to resolve 
problems existing between computers managed by NASA as well 
as other government agencies and industry. Presently we test 250 
tape drives on a routine scheduled basis and perform 200 to 300 
special tests each month. 

Our test results have shown that the most common cause of 
compatibility problems is a condition called skew. Skew is a 
product of two factors whose end result is that the characters are 
not recorded perpendicular to the edge of the tape. These two 
factors are static skew and dynamic skew. Static skew is deter
mined by the physical alignment of the recording head and tape 
guides, and also the alignment of the individual track recording 
gaps within the head assembly (gap scatter). Dynamic skew is a 
result of the wandering and squirming of the tape as it passes 
across the recording head. Additional factors are the asymmetry 
and pattern sensitivity of the recording head. 

The sum of these two is total skew, usually just called skew 
because in application they are inseparable. Figure 1 shows tape 
characters and the effect of skew. 

NO SKEWED 
SKEW AND 

GAP SCATTER 

--H-
GAP GAP 

Figure 1 Tape characters and effects of skew. 

Having identified and described "skew", what part does it play 
in computer tape compatibility? First, it shows up to the com
puter user as parity errors and changes of record lengths. The 
physical problem is that the reading system cannot separate one 
tape character from another, resulting in the splitting or omission 
of characters. Referring to Figure 1, you can see that as the 
packing density increases, the space or window between charac
ters decreases. A reasonable distance or gap between characters 
must exist. This is to allow for reading termination of a character 
and preparation to read another, as well as providing a tolerence 
for the read head assembly's skew. 

I will present some facts and figures which will demonstrate 
the almost impossible task a manufacturer is confronted with in 
trying to maintain consistently reliable tape drive operations. I do 
not say that it cannot be done, but if it is done it requires constant 
adjustment and maintenance of varying degrees, sometimes ap
proaching equality of down time with up time. 

Figure 2 shows two methods of recording. The basic difference 
is that phase encoding has a transition for both "ones" and 
"zeros", whereas NRZ has a transition only when a "one" is 
recorded. The advantage of phase encoding, as related to skew, 
is that each track is self-clocking and the gap or window between 
characters is not as critical. 
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DATA 
PATTERN 0 0 0 

I I I 
NRZ 

I I I I I I 
PHASE ~ 

Figure 2 "Non Return to Zero" and "Phase Encoded" recording methods. 

800 cpi packing density requires a character to be written every 
1250 microinches ±3 percent. From Figure 1 it can be seen that 
to separate one character from another, a space must exist be
tween characters so that no ambiguous condition or indecision 
can occur as to which character a bit belongs. This is fundamen
tal. In addition, a tolerance for the skew and gap scatter of the 
read head must be allowed. Therefore the character skew must 
be less than half of the character spacing, minus an additional 
tolerance to provide for read head skew. For these reasons, the 
digital recording specification (American National Standard for 
Recorded Magnetic Tape for Information Interchange) specifies 
that the total write skew is to be less than 425 microinches. Figure 
3 is a timing diagram, showing the read process when reading a 
tape written with a skew of 425 microinches. 

CASE I 

--1 425 I- 825 --I 425 ~ 
READJLSL 

WINDOW 
TIMING 

CASE 2 

Figure 3 Timing diagram of read process. 

Case I is typical. The read window is opened upon receipt of the 
first bit, which in this case is in track 9. The window must be open 
for at least 425 microinches in order to read a tape written at the 
maximum skew tolerance. This provides a nice wide distance of 
825 microinches between characters to provide for the read head 
skew. Case 2 shows the critical problem. 

The recording specifications state that the character spacing 
tolerance can be +3 percent. The manufacturers specify ±3 per
cent of nominal tape speed for their drives. This means that -6 
percent can be expected for the character spacing as related to 
time. The effect of speed variation is to reduce the time between 
characters. Case 2 is the worst case; a character with a bit in track 
1 only is followed by one with a bit in track 9. Upon receipt of 
the bit in track 1, the read window must be opened for a period 
of at least 425 microinches as related to the tape speed, leaving 
only 400 microinches to the next character, whose first bit is in 
track 9. Within this 400 microinch gap you must subtract the -6 
percent tolerance, giving the effect of subtracting 75 microinches. 
Now the space between the characters is effectively 325 microin
ches. Therefore, to maintain reliable operation, read head static 
and dynamic skew must be less than 300 microinches. This is 
closer than the write skew tolerance, which is 425 microinches. 

Now we know what tolerances these tape drives must perform 
to, let us apply them to existing equipment and see if they can 
reliably and consistently hold the tolerances. Figure 4 shows 
histograms for six computer systems at Goddard Space Flight 
Center. These systems are made by the three largest manufactur
ers. The tape drives are their standard drives, maintained by their 
on site customer engineers. The point is that these tape handlers 
are representative of the best equipment produced and are main
tained in accordance with the best maintenance methods as pro
vided by the manufacturers. It must also be pointed out that all 
of these manufacturers quote skew tolerance specifications with 
write skew less than 425 microinches. 

You may evaluate this to be fact or fiction from the histograms 
in Figure 4. The data shown was accumulated during 1971. The 
horizontal axis represen 52 weeks. The vertical axis is the write 
skew measurement made at 112.5 inches/so The test equipment 
calibration error for skew measurement is 45 microinches. 

57 tape drives were tested (each from two to six times a week) 
for a total of 12,963 tests, as follows: 

(1) Three blocks of 960 characters each are loaded into core. These 
consist of three patterns, one for each recorded record: all ones, 
checkerboard, and a pattern sensitivity test pattern. 

(2) The computer outputs these patterns to each of its tape drives, 
writing these three patterns over until 960 records are written. 

(3) These tapes are then taken to the Digital Tape Unit Test Facility 
where the skew is measured. 

(4) The normal routine is that each drive is tested twice per week. 
(5) Should the skew of a tape exceed the established threshold, that 

drive is then taken "offline" and maintenance is performed. 
(6) When maintenance is complete, the drive is retested and must per

form within specifications before being placed online again. 

To interpret the histograms: Each week is represented by two 
vertical columns with the letter "H" used as a filler. The value 
range is from 01 to 99 with an * for values in excess of 99. So, 
for any week, it shows the number of tapes tested and the corre
sponding write skew measured. In making these measurements, 
the digital test transport moves the tape at 112.5 inches/so So we 
must convert the physical dimensions of microinches to time base 
measurements of microseconds. Now the skew is measured in 
microseconds as shown on the vertical axis. 
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Figure 4 GSFC computer systems histograms. 
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Lines are drawn across the histograms at the maximum skew 
tolerance for 556, 800, and 1600 cpi phase-mode recording. 
Looking specifically at 800 cpi NRZ, I have calculated the per
cent of failures for tapes tested to meet the write interchange 
specification (425 microinches, or 3.8 microseconds at 112.5 
inches/s). The downward trend as time progresses could be an 
effect of improved testing procedures and maintenance. In our 
experience, a failure rate of 3 to 4 percent is considered tolerable 
for our application. This would vary at other facilities, depending 
upon needs and applications. I do not present these figures as 
typical of all systems, but rather of a well-adjusted system, be
cause of the unique and persistent maintenance at our facility. 

Many government agencies, and occasionally industry, have 
asked us to resolve compatibility problems. This is done by test
ing both reading systems and writing system to find which one 
is not operating within specifications. From this experience, but 
-laek-ffi-g-s-tatisties;---i---is- my-- -opinion--that-many sy s telIlS woutd 
operate with a disastrous rate of unreliability should they be 
required to interchange data using 800 cpi digital tapes NRZ. 

In addition to these write performance tests, we also conduct 
a read performance test that measures read head skew and read 
window width. This is done by generating a special test tape, 
written so that ten records are written with zero skew. Then 
successive lO-record groups are written displacing track 1 by 56 
microinches for each ten records until track 1 is skewed 1000 
microinches. Then each successive track is treated the same. The 
net effect is that we have rotated a character so that it is skewed 
in one direction, then in the other. We now read this tape using 
a special computer program which types out the read analysis. 
This gives both read head skew and read window width. 

The data collection for the read performance is not available 
for presentation now. When it is, one can overlay the histogra any 
system's written tape results on another's read ability test histo
gram and quickly determine the compatibility or probable failure 
rate percentage. Significantly, the write performance histograms 
show that these systems cannot consistently write within specifi
cations. So it is probable that they cannot consistently read 
within the 300 microinches tolerance. 

Having identified the problems and described the precise toler
ances that a tape drive must maintain in order to write tapes 
which meet the recording specifications, what can a facility do 
to help itself overcome these problems? Several things: 

(1) System Planning. When planning for data interchange, 
consider the difference in reliability. Skew tolerance for 1600 
cpi phase mode is 625 microinches, as opposed to 425 for the 
800 cpi NRZ mode, and thus much more reasonable to 
maintain. From the histograms it is evident that the same 
drives can consistently meet the specifications for 1600 cpi 
but not for 800 cpi NRZ. Don't overlook the additional 
advantage of being able to correct one or more bit dropouts 
using phase mode. 

Systems which use incremental recorders should never 
record at 800 cpi. For severa! years I have tested many 
models and makes of these recorders. In my experience, they 
are not able to record at 800 cpi without very high incidence 
ill failures, often approaching inability to process any data 

at all. The problem is that the tape is being subjected to an 
instantaneous speed variation condition at recording time. 
The solution is to record at 556 cpi or preferably 200 cpi, and 
then submit the tape for duplicating on another computer 
system to generate the required output tape. This defeats the 
requirement to generate the output tape at the original 
source, but after one experiences many frustrations and de
lays by not being able to process the original tape it may not 
seem so unreasonable. 

(2) System Maintenance. To have good maintenance you must 
not simply rely on the customer engineers to perform only 
the maintenance contract specifications, independent of user 
control. A good working relationship must be established 
between customer engineers and the data center manager. 
This can be done by someone without a technical back
-gfffilIlG.--MakiR-g-a-list-ef-efttie-al-adjustment-s-ancl-eal-ibr-atioo 
is required. Then a schedule should be made for the required 
frequency of these maintenance tasks. Someone must follow 
through to ensure that no oversight or deficiency exists. This 
may sound basic, and is in fact presumed to be a normal 
method of maintenance, but I have visited facilities where 
maintenance on these critical adjustments is performed only 
remedially. If the start time and the read and write skew 
alignment are checked once or twice per week, fairly reliable 
interchange can be expected in most cases. The master skew 
alignment tapes, the basic tool of the customer engineer for 
aligning the read and write skew, are sometimes worn so 
badly that measured skew of these tapes exceeds 225 mi
croinches. It is good practice to retire these tapes on a sched
uled basis. The schedule depends on the number of drives 
within a given facility, as the wear rate in turn depends on 
the number of drives serviced. 

(3) Trouble-Shooting Technology. It is important that a com
puter facility manager have some ability to identify the most 
common types of problems. This requires that he covers 
only some of the basic types of compatibility failures. E.g., 
read parity errors. Where do they occur? Throughout the 
data record or only at the beginning? In this way a problem 
could probably be identified as a skew problem or a start
time problem. Some implementation of follow-up proce
dures is necessary to ensure that each piece of equipment is 
maintained on schedule and not neglected. One may also 
write a tape on each drive and see if it will read on all other 
drives within the facility. This does not guarantee compati
bility with another system; but it is better than no test at alL 
A latent benefit is customer engineers' recognition that the 
computer manager is interested and concerned, which usu
ally yields better and more responsive maintenance. 

(4) Tape Logistics. Many good tapes are destroyed by storage 
facility temperature variations. This can cause physical 
damage to tapes, recognizable by characteristics of spoking 
or cinching. Do not permit tapes to remain in trucks or 
shipping containers outside of your environment-controlled 
facility any longer than necessary. 
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ARCHIV AL PERFORMANCE 
OF NASA GFSC DIGITAL MAGNETIC TAPE 
by WILLIAM B. POLAND, JR. GILBERT E. PRINE and THOMAS L. JONES 

NASA/Goddard Space Flight Center Litton Industries Wolf Research & Development Corporation 
Riverdale, MD Greenbelt, MD College Park, MD 

INTRODUCTION 

For most of the last decade, the Goddard Space Flight Center 
(GSFC) has accumulated data from scientific spacecraft at a rate 
of approximately 1012 bits per year. This has resulted in an influx 
of instrumentation magnetic tape at a rate of approximately 2000 
miles per week, and an effiux from the Center to experimenters 
of approximately 2000 partially filled reels of processed digital 
computer tape per week. The same data are archived in compact 
form, along with computer programs, orbit/attitude data and 
other related items. Scientific data tapes have now been accumu
lated in substantial quantities since 1958, along with tapes for 
manned and other spacecraft, and now constitute an archive of 
several hundred thousand reels of computer tape. 

For a limited period in the early 1960's, a part of the accumu
lating archive was kept in space which did not have well-con
trolled temperature and humidity However, by far the larger 
portion of the GSFC archival tapes have been kept continuously 
in air-conditioned warehouse space in plastic containers pack
aged approximately 7 to a cardboard box. 

Virtually all of the tapes (including 100% of those studied) 
employ 7 -track format and were recorded at a density of 200 or 
556 cpi NRZI. They were obtained by competitive procurement 
based on a NASA specification. They were recorded primarily on 
Univac III-C and VIII-C tape units, but some were recorded on 
IBM 729 and CDC 607 tape units, and a few other types. 

The purpose of this study has been to assess the archival per
formance of digital tapes in such a way as to determine the major 
categories of error mechanisms operative in our storage environ
ment, to identify the strategy for optimizing use of the tape, and 
to determine quantitative expectations for operating tape perfor
mance as a function of age under the conditions which obtain in 
the GSFC archive. It is important to determine quantitatively the 
level of performance of digital tapes in order to be able to specify 
the level of performance which future magnetic tape or other 
storage systems must achieve in order to offer an improvement. 
Such data in quantitative form do not appear to exist in the 
current literature. Since large quantitities of tapes are being "re
habbed" (i.e., rehabilitated - erased, cleaned, reconditioned, re
wound on new reels, and returned to service), it presumably will 
be more difficult in the future to obtain a large sample of ran
domly selected tapes from the GSFC archive. 

This study is primarily applicable to the GSFC tape archive, 
but it is felt that our tape storage practices are typical for many 
installations. 

Since about 1967, a program to study archival performance of 
digital tapes has been pursued at a modest level of effort. This 
report summarizes the initial part of the program in which the 
investigation was confined to determining the archival perfor
mance of digital data tapes recorded in normal operations. 

EXPERIMENT DESIGN AND TEST CONDITIONS 

The study consisted of two major divisions based on random 
samples of archival data tapes retrieved and analyzed over the 
period from 1967 to 1971. 

Error Mechanisms 

First, approximately 1200 reels of tape were tested on the 
GSFC Digital Tape Unit Test Facility (DTUTF). In these tests, 
both the mechanical and magnetic conditions of the tape were 
evaluated, using an IBM 729 Mod. VI 7-track tape unit, and 
areas containing detected magnetic errors were examined for 
corresponding mechanical damage (including cinching), dimples, 
oxide defects, and errors not accompanied by a visible defect. Of 
these tapes 7% were "defective", i.e., had 50 or more parity 
errors per reel, and overall 44% had at least one parity error. The 
distribution of parity errors with respect to error mechanisms is 
summarized in Table III. 

Performance Evaluation 

The second part of the study dealt with operational behavior 
of the archival tapes in a realistic data processing environment. 
Approximately 390 tapes from the archive were tested in the 
Univac 1108 telemetry computing facility. These were randomly 
selected data tapes recorded in support of various spacecraft 
projects from 1960 to 1970. 

The measured quantity was the number of blocks (records) 
containing errors. This number depends strongly in some cases 
on the number of passes over a read-head which the tape unit 
must perform before a given block is considered to be erroneous. 
In these tests, only "permanent" errors were counted (i.e., only 
those errors which persisted after eight completed passes over the 
read-head). Tapes containing 50 or more blocks in error were 
merely categorized as high-error tapes and not studied further. 
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The tapes selected were recalled from the archive (the GSFC 
warehouse or the Washington National Records Center 
[WNRC]) in the normal fashion and were submitted for process
ing along with the evaluation program (T APECHEX). Where 
possible, the tapes were selected by a semi random scheme de
signed to give uniform coverage in time without introducing 
systematic data errors. From 1967-1971, 4 tapes were chosen 
from boxes containing 7 tapes stored at intervals of approxi
mately one month. A random selection scheme determined the 
position in the box of the four tapes used, and the types of data 
tapes were selected to produce an even mix from the tapes ar
chived during that time. 

For the post-1966 tapes it was possible to determine the date 
of storage to within two weeks from the bookkeeping records, 
giving consistently even time coverage. 
--- J-he data were-gather-e(Lin-SUCh--a--Wa¥---that---¥a~ 
might be applied in evaluating tape performance. Since no usable 
precedents were found, it was decided to apply an operating 
criterion which has grown up in the telemetry data processing 
area at GFSC as a matter of practice and expediency; a tape will 
be rejected if more than three parity errors are detected through
out its (nominal) 2400-foot length. As a result of rounding and 
unit conversion this criterion has been modified to 1 error/300 
metres (0.0033 errors/m). as the maximum acceptable error rate. 
The technique employed is to count not the actual parity errors 
but rather the number of blocks (i.e., records) in error per unit 
length. Since the errors are usually widely spaced, the rate of 
occurrence of blocks in error approximately equals the rate of 
parity errors. 

Several factors were not controlled or evaluated in the course 
of these tests: e.g., write current, head wear, read threshold, head 
magnetization effects, and playback amplitude. 

STATISTICAL METHODS 

To describe the probability distribution of tape length between 
errors, irrespective of position on tape, two interacting distribu
tions were used, WeibulP and Poisson.2 Although the most gen
eral expression for Weibull distribution contains three param
eters, two sufficed to describe reliability with respect to iape 
length. Time-related behavior was determined by dividing the 
data into separate age groups, obtaining the Weibull parameters 
for each data set, and fitting a nonlinear function to the computed 
probabilities for the required error rate (0.003 errors/m). 

Length between errors was determined after sorting the reels 
on days in storage and then testing them as one continuous piece 
of tape (i.e., as if the reels were placed end to end). 

The Weibull probability function can reduce to other distribu-
. Wms---in--Sp€~s-{e---.-g.,--DeRIl-al-,-negati-ve-·-eK-pooen-ti-al-:)-,----arul-· 
thus is ideal for fitting data, with one restriction: change in error 
rate must be monotonic with respect to a given variable for valid 
representation of reliability. Given the Poisson distribution 
parameters, and independence of the distributions, one composite 
or smoothed distribution function can be derived. A solution of 
two independent distributions can be generalized into a method 
for combining any number of distributions. 3 

In order to observe change in error rate with respect to position 
on a tape, a set of histograms was computed. Figure 1 shows the 
observed error rate compiled for 25-metre intervals along a reel 
of tape as related to time in storage. Four age categories were 
used for expediency. The error rate clearly displays at least two 
distinct and consistent features for all age groups. It is high in the 
initial 100 metres and low in the next 200. Another pattern 
appears in three of the age groups (300 to 400 m), and other 
features are indicated which might be delineated by more data. 
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To satisfy the requirement for a monotonic error rate, the 
analysis was carried out in such a way that each tape was effec
tively divided into zones defined by position in a reel, and the 
performance of similar zones for all tapes in an age group was 
analyzed. 

The presence of correlated errors decreases the validity of the 
estimated parameters. Some editing was performed to help pre
serve the validity of the analysis. Errors occurring in consecutive 
blocks were treated as the occurrence of a single error mecha
nism. 

Computer Program 

A computer program was developed to handle the Wei bull 
parameter estimation. The program separates the data into speci
fied age groups, computes the length between errors from the 
position data for each zone, and then finds the Wei bull parame
ters for each age group. Printer plots of positional error rates for 
each age group are displayed for evaluation. 

Position 1.5 Years 
(in 25 m) Rate # Reels 

1 x 25 m 48.4 111 
Zone 2 0.0 106 

1 3 4.2 101 
4 6.7 76 
5 0.0 53 
6 24.2 51 
7 11.1 43 

Zone 8 0.0 34 
2 9 0.0 29 

10 0.0 2 
11 0.0 28 
12 0.0 27 
13 0.0 27 

Zone 14 17.4 26 
3 15 20.0 20 

16 0.0 20 
17 0.0 19 
18 0.0 17 
19 0.0 15 

Zone 20 0.0 12 
4 21 0.0 11 

22 0.0 6 
23 0.0 2 
24 0.0 2 
25 0.0 1 
26 X* X 

Zone 27 X X 
5 28 X X 

29 X X 
30 X X 

ORGANIZATION OF THE PROCESSED DATA 

For this study, error rates were investigated for five position 
zones on the tape and four age groups. The zones are: 

(1) 0 to 100 m, the outer end region; 
(2) 101 to 300 m, a generally good data region; 
(3) 301 m to 400 m, thought to be the cinching region; 
(4) 40 1 m to 600 m, a good data region except in the oldest age 

group; and 
(5) 601 m to the inner end, the hub region where little data was 

available. 

The age groups used were from (1) 194 to 987 days in storage, 
tapes archived about 1969-1971; (2) 1110-1731 days, 1967-1968; 
(3) 1869-2901 days, 1964-1966; and (4) 2929-4006 days, 1961-
1963. The unsmoothed data for the analysis are summarized in 
Table I and Figure 1. A fuller presentation of the data and 
analysis are contained in the source documents.4.5 

4 Years 6.5 Years 9.5 Years 
Rate # Reels Rate # Reels Rate # Reels 
87.3 80 388.3 51 410.1 86 
44.6 76 194.5 47 97.5 82 
14.7 58 153.0 40 74.6 77 
0.0 49 271.1 34 85.7 70 
9.7 41 49.0 33 71.3 68 
0.0 41 25.0 32 55.8 66 
0.0 39 0.0 32 75.0 64 
0.0 39 0.0 31 81.6 64 
0.0 36 36.9 25 69.8 63 
0.0 33 19.0 21 77.2 63 
0.0 32 0.0 21 51.8 62 
0.0 31 39.8 21 66.6 61 

13.2 31 0.0 20 93.9 60 
0.0 30 0.0 20 96.5 58 

17.6 25 0.0 20 155.6 58 
0.0 22 0.0 20 160.3 56 
0.0 18 0.0 20 325.0 54 
0.0 17 0.0 20 246.8 47 
0.0 14 0.0 18 139.9 47 
0.0 12 0.0 18 64.8 45 
0.0 11 0.0 18 77.7 42 
0.0 11 0.0 18 41.8 40 
0.0 11 0.0 18 56.7 36 

89.2 10 0.0 18 13.6 34 
0.0 8 0.0 18 43.6 28 

53.0 8 0.0 18 16.3 27 
0.0 7 0.0 18 0.0 23 
0.0 2 0.0 10 41.1 13 
0.0 1 0.0 1 139.3 7 

X X 0.0 X 285.8 5 

Table I. Vnsmoothed Position Error Rates 

(Errors/\1etrc x 10-4) 

~ote: X mdlcates no tape m pOSlllOn mten-al and thus no error rate estlmatlOn. 
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From the analysis now described, two different time-varying 
probability distributions showing the overall aging behavior can 
be obtained, one for the entire tape and the second excluding zone 
1, the first 100 metres. Both time distributions can be fitted very 
precisely to the function illustrated in Figure 2 and 3. 

If the "life" of the tape is taken to be the median life (i.e., the 
age for which reliability is 50%), this function has convenient 
properties; on a log-log plot (Figure 3) the tape life Ao falls 
directly below the intersection of the asymptotes, and the slope 
of the descending asymptote equals the exponent. 
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Figure 3. Logarithmic Plot of Reliability vs Time in Storage 

In order to determine an effective strategy for archival record
ing, it is necessary to choose a block length which is short enough 
to have a reasonable probability of avoiding errors but long 
enough for efficient packing of the data on the tape. This can be 
estimated from the error probability distribution for length; i.e., 
the average probability that a given interval will be free from 
error irrespective of its position. 

Figures 4 through 7 show some length distributions for se
lected cases. Unfortunately, the data do not provide values for 
lengths less than 25 m. 
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Model R = 1/[1 + A/Ao)n], where 

R = probability that a tape has less than 1 error /300 m 
A = time in storage 
Ao = median tape life (time when R = 0.5) 
n = exponent 

A. Total Tape Data 

Estimated parameters: Ao = 5.7 years, n = 9.0 

Average Time in 95% 
Storage (years) Confidence 

1.5 

4.0 

6.5 

9.5 

0.9987 
0.6002 

0.9919 
0.9281 

0.5898 
0.0168 

0.0315 
0.0005 

Robs Rfit 

0.967 1.0 

0.975 0.9600 

0.2286 0.2347 

0.0145 0.0100 

Analysis of Variance: Regression mean square 
Error mean square 

2.310 
0.0013 
1777* 
99.97% 

F ratio 
Correlation 

B. Tape Data with First 100 m Excluded 

Estimated parameters: Ao = 7.5 years, n = 13.8 

Average Time in 95% 
Storage (years) Confidence Robs 

1.5 1.000 1.000 

4.0 1.000 1.000 

6.5 0.9862 0.879 0.878 
0.3670 

9.5 0.0757 0.039 0.037 
0.0160 

Analysis of Variance: Regression mean square 
Error mean square 

3.8 
5 x 10-6 

0.0327 

0.0149 

0.0061 

0.0045 

0.0 

0.0 

0.001 

0.002 

F ratio 
Correlation 

7.6 x 105 * 
virtually 100% 

*Well over 99% significance level 

Table II. Data for Time Reliability Function 
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RESULTS 

The data discussed above suggest the following major conclu
sions about the archival tapes at GSFC: 

• Performance. The performance of tape wound on a stan-
dard 10.5 in. reel depends significantly on position in the reel. 
Five distinct regions are identifiable by performance, the odd
numbered regions being characterized by relatively poor per
formance compared to the even-numbered regions. The error 
mechanisms associated with regions 1, 3, and 5 are not yet 
identified, but there is evidence that they are mechanical 
rather than magnetic in nature. 
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• Error Mechanisms. Tapes used in the GSFC computer facili
ties and placed in the archive have been subjected to a con
trolled environment typical of "laboratory" conditions. 
Temperature, humidity, and ambient level of dust and other 
contamination during use are considered not atypical of those 
found in most computing facilities and are often referred to 
as "semi-clean" room conditions (there was some departure 
from temperature and humidity control for some tapes placed 
in the archive prior to 1965). The identifiable error mecha
nisms occurring in tapes retrieved from this archive may be 
placed in the following categories: tape flaws exhibited by the 
tape itself and attributable to the manufacture or age-depend
ent degradation; trapped debris, arising fom the tape itself or 
acquired from the environment; abuse resulting from im
proper handling; cinching. The relative frequencies of failures 
JIl,_y~rtQ~~categQd~~ ~re lisJ:~9:_iI1 T~Qk JJJ. 

Normal Reels Defective Reels 

Mechanical Damage 
(including cinching) 53% 45% 

Dimples 23% 20% 
Oxide Defects 10% 25% 
No visible defect 14% 10% 

100% 100% 

Reels containing errors 40% 7% 

Table III. Error Mechanisms - Average for all Ages 

Noie: "Normal" reels have 50 or fewer parity errors per reel; 
"defective" reels have more than 50 parity errors per reel. 

• Median Life. The median life of tapes in the archive, based 
on an arbitrary performance criterion of 0.003 blocks in error 
per metre derived from operating practice, shows that the 
tape performance maintains a substantially constant and ac
ceptable level for the first four years of its life and then fails 
to meet our criterion at an age greater than about 5.7 years. 
This life can be extended about 30% if recording is excluded 
from the first 100 meters of the tape; median life is then about 
7.5 years. 

• Technology. An unknown fraction of the tapes entered in the 
GSFC archive were subjected to environmental stress (tem
perature and humidity) prior to 1965. The tapes in this group 
show a reasonably typical error profile, but are quantitatively 
inferior to those entered more recently. It is not clear from 
our limited data whether the poor performance of the group 
of oldest tapes results from excessive environmental stress, 
inferior tape technology, a continuing decaying process de
pendent on age, or a combination of these factors. It may be 
noteworthy that cinching can be induced rapidly by tempera
ture and humidity stress. However, since the overall error 
pattern existing in younger tapes appears to be accentuated 
in the oldest group, we believe a continuing decay process 
otTers the more probable explanation for the observed data. 

RECOMMENDATIONS 

The following items would appear to be good practice in pre
paring a tape archive based on the results obtained: 

• The data of Figure 1 suggest that archival performance can 
be improved by avoiding regions 1, 3, and 5 of the tape. If 
region 1 is omitted the median life will be extended by 1.8 
years. 

iI If ail of the tape must be used, a substantial improvement in 
performance can be obtained if cinching can be avoided. 
Means often recommended for alleviating cinching are stor
age in a temperature-controlled environment, programmed 
tension wind, or rewinding a tape at appropriate intervals. 
The data suggest a 4- or 5-year interval may be sufficient for 
th!~~IQQ~~~ __ Wlte"- dat~!!!~Lbe retained reliably for longer_ 
than the periods indicated in Figures 2 and 3, special provi
sion should be made to condition the tape or transcribe it. 

It would be highly desirable to obtain data from other facilities 
in a fashion which would permit comparison of results. The 
following parameters would be suitable for this purpose: 

Recording density 
Record current 
Read threshold 
Error detection 

556 cpi, 7-track 
saturation per ANSI Standard 
20% of normal playback amplitude 
count blocks in error 
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COMBINING REMOTE & CENTRALIZED 
DATA OPERATIONS ECONOMICALLY 

by ROBERTS. HULSE 

Hewlett-Packard Company 
San Diego, CA 

INTRODUCTION 

For many different reasons (obtaining increased sales, provid
ing better service to customers, or achieving more timely and 
wider distribution of products). companies have seen fit to geo
graphically locate and decentralize many of their operations -
sales offices, manufacturing or service operations, storage and 
distribution facilities. Although decentralization is a must for the 
continued success and future growth of such companies, there are 
still some functions, such as payroll processing, which are data 
dependent and which are performed more efficiently and less 
costly in a centralized operation, mainly because to do otherwise 
would involve the performing of numerous duplicative functions 
at each decentralized facility. 

As one example of combining remote and centralized data 
operations economically, this paper describes a "combined" pay
roll operation which economically links the data collection func
tion performed at remote decentralized locations with established 
data processing methods of the central facility, thereby obviating 
the need for performing duplicative data processing functions at 
the remote outlying locations. The method of operation described 
herein is equally applicable to inventory control applications, or 
other record-keeping husiness transactions that involve remote 
collection and centralized processing of data. 

NEED FOR AN ECONOMICAL 
"COMBINED REMOTE/CENTRALIZED" OPERATION 

By centralizing its payroll processing operation, a company 
would be able to achieve the following measurable benefits over 
having numerous decentralized payroll processing operations: 

(1) Development Dollar Savings 

A significant savings in "program development dollars" 
could be achieved if existing payroll programs at the central 
facility are used by the remote facilities instead of these facili
ties developing their own payroll-processing programs, and 
their own summary and statistical reporting programs, such 
as for vacation and tax reports. 

(2) Data Storage Savings 

Dollar savings on data storage and data maintenance charges 
could be realized by the remote facilities if data from these 
facilities are stored and maintained at the central facility 
instead of at each remote facility. This eliminates the need to 
maintain additional storage equipment and duplicative data 
files at the remote facilities. 
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(3) Data Processing Savings 

Data processing dollars would be saved if payroll processing, 
with its attendant file accesses and report generating, is per
formed as a single, complete centralized operation than as 
independent, disjunctive operations performed at the remote 
facilities as independent program "runs". 

Despite these obvious savings, and the opportunity cost that 
would also be saved if the resources used for individual progmm 
development, data storage and data processing at the remote 
facilities were used instead for other needed projects, there are 
instances where the turnaround time associated with centralized 
processing would be prohibitive, especially where the remote 
facility does not have a data communications capability enabling 
prompt communication of the payroll information to the central
ized facility for processirig:- For- exainple~--becauSe--oftfiesfiort 
time between the time of data entry and the time of receipt of 
paychecks, the processing of weekly payroll at the central facility 
might be unworkable. Also, the cost of having a computer at the 
remote site to communicate with a central computer may be 
prohibitive in light of insufficient volume of work at the remote 
site to justify its own computer. 

To achieve the cost savings associated with centralized pro
cessing, therefore, an economical combined remoteicentralized 
operation is needed that provides prompt turnaround times and 
has a low cost data communications capability. 

ONE ANSWER: AN ECONOMICAL STAND-ALONE UN
ATTENDED REMOTE DATA STATION 

An economical stand-alone data station (e.g., a communica
tions card reader for approximately $3(00), such as shown in 
Figure 1, would permit economical communication of payroll, 
inventory, or other data to a centralized facility without the need 
for a computer at every remote location. 

Such a remote, stand-alone card reader would operate unat
tended, and would be capable of: 

(1) Being polled by the central computer, at the computer's con
venience. 

This provides several advantages: First, by being polled at the 
central computer's convenience, the need for developing real
time interrupt subroutines, and increased line handling and 
data storage capabilities for the central computer is made 
unnessary. Also, the need to establish scheduled periods for 
data communications between the remote facility and the 
central computer would be obviated. Furthermore, by per
mitting the central computer to poll the remote facilities at 
its convenience (i.e., ask for data from the remote facilities 
only when it is ready to do so), this gives the central computer 
greater flexibility in scheduling and performing its other op
erations. Collaterally, such flexibility also enables new func
tions to be added to the central computer that otherwise 
could not be scheduled in. 

(2) Transmitting data by telephone at high or low speeds. 

This permits data to be transmitted at selected higher speeds 
of 120 or 240 characters per second over regular "dial-up" 
facilities or over a company's existing tie-lines. The data 
speed would be switch-selectable and would also include 
lower speeds of 110, 150, 300, 600 or 1050 baud, conforming 
to the capabilities of the central computer and its multiplexer. 

(3) Retransmitting one or more cards of information upon com
mand from the central computer. 

This permits retransmission of data from the remote facility 
in the event data received at the central computer is errone
ous. The retransmission request would be honored even if the 
cenifalTaciTity-fiad-lo -oreak-telepnone cOiiiiiCCtemporarily --
with the remote facility in order to service a realtime request 
for service from another source. The retransmission would 
occur when telephone contact is resumed. 

(4) Rejecting into a select hopper any card improperly filled out. 

This provides the central computer the opportunity to exam
ine the contents of each card, to request retransmission in the 
case of transmission or data error, and to reject the card in 
the event the error is not corrected. The card, if erroneous, 
can then be returned to the submitter for correction, and later 
re-entered. 

(5) Accepting marked, preprinted or punched cards. 

By having the capability to accept marked, preprinted or 
punched cards, card preparation is simplified. Nonchanging 
information, such as employee's name and number, can be 
preprinted or prepunched, while the changing information 
can be "pencil-marked". In the case of error, the marked 
information can be easily erased and remarked. 

(6) Compacting the data so as to minimize transmission costs. 

By having the capability to indicate precisely where data ends 
on a card, unnecessary spaces or other information on the 
remainder of the card need not be transmitted. This reduces 
the amount of data transmitted to only "essential data", 
thereby reducing the time and cost of data transmission. 

(7) Operating in series with other card readers, if necessary. 

This permits several card reader stations at the remote facility 
to use a single telephone line and modem in communicating 
with the central facility. This "multi-drop" method of opera
tion not only saves transmission cost by making the need for 
dupiicate telephone facilities unnecessary, but also provides 
for growth in the facility's operations by being able to handle 
both increased data volumes and differences in data function 
(e.g., payroll data collection, inventory data collection, etc.) 
performed at the different card reader stations. 
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A SUCCESSFUL REMOTE/CENTRALIZED PA YROLL 
OPERATION 

An efficient, economical payroll operation is now described, 
featuring the use of a H -P Model 7260A Card Reader as an 
unattended remote data collection station linking the Finance 
Department of the H-P San Diego Division to the central data 
processing system located at Corporate Headquarters in Palo 
Alto, CA. The remote reader is linked by regular telephone and 
two 202C modems to the central computer facility (Figure 1). 

Figure 1. A Stand-alone Data Station 

Payroll data is punched on SO-column cards, or optionally 
marked on 40 or 80-column cards (Figures 2 and 3). The carriage 
return character punched or marked on the card tenninates the 
data on the card, thereby "compacting" the data and preventing 
unnecessary spaces or other infonnation on the rest of the card 
from being transmitted. 
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Figure 2. Punched Data on SO-Column Card 
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7igure 3. Marked and Punched Data on 4O-Column Card 

After preparation, the cards are placed in the input hopper of 
the card reader. and the "Line On" (Power "On") button is 
depressed. From this point on, the reader is able to operate 
unattended, and to communicate with the distant centralized 
computer whenever that computer is ready to receive data. 

At its convenience (i.e., at scheduled periods or times when 
regular workload has decreased sufficiently), the central com
puter polls the remote reader and "commands" it to transmit the 
infonnation contained on the cards in its input hopper, a card at 
a time (Demand Mode). The computer checks to see if data was 
in fact sent, and if so, whether it was sent correctly. If not, it 
requests retransmission. If after a reasonable number of attempts 
the data received is still incorrect, the card containing the errone
ous data is rejected; transmission continues until the input hop
per is empty or the output hopper is full, at which time 
communication is ended. If status infonnation was sent instead 
of data, indicating a reader, telephone or modem malfunction, 
the computer tenninates transmission and turns otT the reader 
until the problem is corrected. (In periodically attended opera
tions, the computer may even ring a bell in the reader to signal 
that a problem has occurred there. The person in attendance 
would then manually correct the problem.) 

If data was being received successfully at the time the input 
hopper was found to be empty, or the output hopper full, it is 
stored on magnetic tape for later processing by the payroll pro
gram. As indicated in Figures 4 and 5, the application program 
controlling the data transfer from the card reader may be any 
simple control program. It may be as flexible as desired, tailored 
to individual applications such as payroll, inventory control or 
others, and/or to ditTerent modes of use of the remote reader -
e.g., as an attended or unattended device, or as a single or multi
drop device, with or without a remote printer terminal. 
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I~ I IS TAT-l0"OOOl, I ~"O • .370 0.340 

IF (tJP[ ...!-3) 36lJ, jbO, ?bfj 

GO TO ~2,1 

IH<r:J=r 
i;TRAIJ=r 
I...,t... T0 1.){ 
t- 00'-.'r,T f 6fjAl} 

LIlt 

1 
Prepare to poll Remote C~:-d Reader Station 
(reSerlJe storage for I.,pu! Data, initialize 
Counters and aefine Control Words) 

Select ASC II Code 
Request a Card of Data or Status Information 
Test for Card Reader Malfunction 
Test for Telephone or Modem Malfunctiol"1 
T .. t Input or Output Hopper Status 

Check Data 

Reset Retransmission Counter 
Store Data on Magnetic Tape 
Count Number 01 Cards Received 
Prepare to Read Another Card 
Check lor Valid End of Data 
Write End,ol-File on Magneric Tape 
Successful Stop 
Turn off Card Reader 
Error Stop 
Count NumbE'r of Retransmissions 
Check if 3 Retransmissions Made 
Request RetransmiSSion 
Prepare to Check the Retransmission 
Reject a Card 
Check if Reject Successlul 
Count Number of RejeCT Attempts 
Check if 3 Reject Attempts Made 
Prepare to Reissue the Rejec"! CO""''l1a nd 
Reset Reject Counter 
Reset Transmission Counter 
Prepare to Read Another Card 

Figure 4. Simple Application Program (in FORTRAN) 
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REQUEST 
RETRANSMISSION 

N 

PREPARE TO 
POLL REMOTE 
CARD READER 

STATION 

SELECT 
ASCII 
MODE 

Figure S. Simple Flowchart of Application Program 

TANGIBLE ECONOMIC BENEFITS DERIVED FROM 
THE REMOTE/ CENTRALIZED OPERATION 

Figure 6 shows the actual program development dollars saved 
when our remote facility decided to perform the data collection 
and data transmission payroll functions utilizing the data pro
cessing capabilities of the central facility. The development dol
lars shown represent direct iabor cost, assuming an average 
programmer's wage of $1175 a month. 

For some, the development dollars saved may be lower, but for 
many others, it may be significantly higher, depending upon the 
size (number of employees) of the remote facility and the exten
siveness of the overall company operation. 

In many instances the difference between the cost of adding 
disk capability to a "bare-bones" mini system at the remote 
facility and the cost incurred in making use of abundant disk 
capabilities at the central facility via remote reader is very signifi
cant. For example, the cost of implementing needed auxiliary 
storage at the remote facility could very well be about $358 per 

MAN- DEVELOPMENT 
PROGRAMS MONTHS DOLLARS SAVED 

Payroll 11.5 13,512 
Payroll Tax Report 1.4 1,645 
W2 and 941A FICA Reports 1 1,175 
Bureau of Labor Statistics Report 1.6 1,880 
Insurance Report 2.2 2,585 
Personnel Wage & Salary Report 2.4 2,820 
Workmen's Compensation Report 2 2,350 
Vacation & Sick Leave Report 3.5 4,112 

TOTAL 25.6 30,079 

Figure 6. Program Development Dollars Saved 

month. ($350 per drive per month on a I-year lease, plus $8 per 
-month rental for one disk pack.) I he cost of USing eXisting disk 
capabilities at the central facility could simply be the cost of the 
packs ($8.00 per month). This would represent a monthly disk 
storage saving of $350, or about $4,000 per year. 

In addition to development and storage dollars that are saved, 
processing dollars (i.e., program execution or computer run dol
lars) are also saved in a remote/centralized operation. It is esti
mated that for each out-of-pocket dollar spent either for an 
independent system at the remote facility or for service from a 
Service Bureau near the remote facility, the actual "inhouse" 
incremental cost to the company for the remote facility to use the 
system existing at the central facility is approximately 60-70% 
less than the cost to the company if the remote facility were to 
purchase its own system or use an "outside" processing service. 
This savings in processing cost, of course, varies with the number 
of users of the central system, the extent of each user's usage, and 
the extent to which the cental computer is depreciated. 

Compared to the cost of utilizing this "buffered remote reader 
method" for combining remote and centralized operations, the 
savings that accrue, as described previously, could be signifi
cantly greater than the cost associated with this method. Figure 
7 shows the approximate monthly cost of utilizing the buffered 
remote reader method. The figures reflect our experience in using 
the Model 7260 buffered mark/punch card reader as an unat
tended remote data collection/data communications device. 

With respect to power consumption cost, the reader uses 72 
watts when in stand-by mode waiting to be polled, and 135 watts 
when the motor is "on" and the reader is actually communicating 
with the distant computer. It is in unattended operation, ready 
to communicate, approximately 15 hours per day (i.e., from 5:00 
p.m. to 8:00 a.m.) for 20 work-days per month. Utilizing a 202e 
modem for 120 characters per second transmission, data trans
mission is achieved at the rate of 100 cards per minute (average 
of 72 characters on a card) or 300 cards within a single 3-minute 
long distance call limit. Polling occurs once a day. 

The monthly cost of operation is determined as: 

72 watts x 15 hours x 20 work days per month = 
21.6 kilowatt-hrs/month. 

135 watts x 1120 hour x 20 work days per month = 
0.135 kilowatt-hrs/month. 
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Assuming a rate of$2.67 for the first ten kilowatt-hrs used, and 
6.006 cents for each additional kilowatt-hr used, the monthly 
power consumption cost is determined as: 

10 kWh 
11.735 kWh at 6.006 cents/kWh 
21.735 kWh 

ITEMS 

Power Consumption 
Telephone Traffic 
DataSet/Modem 
Remote Reader 

BASIS OF CHARGES 

Approx. 21. 7 kWh/month 
Approx. 20 calls at $1 each 
Approx. $45 rental/month 
Approx. $3000, depreciated 

over 4 years. 

TOTAL MONTHLY COST (approx.) 

$2.67 
0.71 

$3.38 

MONTHLY 
COST 

$ 3.38 
20.00 
45.00 
62.50 

$130.88 

Figure 7. Approximate Monthly Cost of Operation of Remote Reader 

For higher daily volumes of data transmission (i.e., >24,000 
characters per day, in a scheduled polling operation), little addi
tional cost is incurred other than the incremental telephone time 
cost which, though minimal at the 1200 baud transmission rate 
(7200 characters per minute), would be even less with a 2400 
baud modern with superior turnaround capabilities. 

The dollar benefit that accrues with a remote reader operation 
is even more significant when multiplied by the number of remote 
facilities that can benefit from this method of operation. 

OTHER ECONOMICAL METHODS 

The payroll application described previously demonstrated the 
use of the remote reader as an unattended device operating in a 
"Demand Feed Mode" (card-at-a-time mode). However, other 
applications may find one of these methods preferable: 

(1) Multi-Drop Operation 

A multi-drop operation, such as shown in Figure 8, may be 
performed as an attended or unattended operation. By 
means of "roll-call polling" via a single telephone line, the 
central computer, in a single call to the several remote read
ers, addresses each reader in tum and unloads its data. This 
method of operation permits different types of data (payroll, 
inventory, sales, parts or other) to be transmitted to the 
central computer as a result of a single telephone call from 
the central facility to the remote facility. Actually, whether 
the operation is unattended or attended (because of the need 
to replenish the input hopper in the case of high volume, i.e., 
greater than 500 cards at a time), the application program 
that receives the data at the central computer identifies the 
data from the data type code it receives in the data (see 
columns 22 and 23 of Figure 2, and lines 170 and 180 in the 
program of Figure 4). In this way, different application 
programs can process different data in different ways. 

Each remote reader is unique in its multi-drop environ
ment. It can be specifically selected by the cental computer 
without any communication with the other readers. Like
wise, the configuration may be easily changed by the re
moval or adding of remote readers without affecting the 
operation of the other readers. 

To & From Central 
Computer Via 
Telephone Line 

Remote Card ReadE.rs 

Figure 8. Multi-Drop Method of Operation 

(2) Continuous Feed Mode Operation 

In addition to the demand feed mode of operation, the 
remote reader is also capable of "batch data transfer" when 
operated in continuous feed mode. Once the central com
puter commands it to continuously send data, data is contin
uously transmitted by the reader until its input hopper is 
empty or output hopper is full or transmission is specifically 
interrupted by the applications program. 

(3) Unit Record Method of Operation 

In the event a full card of data is to be transmitted each time, 
the carriage-return code need not be included (marked, 
punched not printed) on the card. Upon sensing the end of 
the card, the card reader transmits a carriage-return charac
ter following the data characters on the card. (The card 
reader always transmits a line-feed character upon sensing 
the beginning of card.) 

Many unit record operations lend themselves to this 
method of operation. Many different applications (educa
tional, medical, retail business or utility, to name a few) use 
a card as an input data form and a mark/punch reader as 
a data input device. These and many other applications can 
significantly benefit from the added capability in data collec
tion and data communications that a buffered, remote mark
/punch reader provides. 

SUMMARY 

A method was described for economically combining the data 
processing requirements of many decentralized (remote) com
pany operations with the capabilities of a central computer facil
ity. An economical remote mark/punch buffered card reader was 
used as a data collection device, capable of transmitting data at 
various speeds and communicatin g via ordinary telephone lines 
with a distant central data proce'.'- ,lg facility. Modes of usage 
were described, showing cost economies in data transmission, 
program development, data storage, data processing, and other 
benefits such as improved central operations scheduling and ease 
and flexibility in data preparation and data entry. 
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A LOW-COST APPROACH TO REMOTE DATA ENTRY 
by B. V. O'BRIEN 

Western Union Data Services Co. 

Mahwah, NJ 

An efficient approach to remote data entry is assuming in
creasing importance for typical geographically dispersed orga
nizations. Its importance is becoming more apparent as a result 
of the increasing visibility of the implications of two well-estab
lished trends in data processing. 

The first of these is the centralization of computer power for 
purposes of achieving scale economics, data base management 
efficiencies, and other considerations. The second trend is the 
dispersal of the data preparation function out to the original data 
sources for purpose of achieving rapid data accessibility, as well 
as the greater data entry accuracy associated with source data 
entry. 

The data system designer faced with the problem of putting a 
remote data entry system in place must resolve a number of 
questions for which facts and experience have not yet provided 
tools. One important question is the relative accuracy of data 
preparation at the source location where familiarity with the 
source information is available, as compared to accuracy in a 
centralized key entry location, where functional control is more 
available. 

The common design approach to this dilemma is simply to 
overwhelm the remote data entry problem with the kind of opera
tor guidance and error checking that can be accomplished in 
computerized intelligence. Until recently this has implied online 
data entry using either a CRT or some form of typewriter termi
nal. This approach has provided the essentially unlimited intelli
gence of the central computer to the remote data entry station. 
However, it also results in extremely high communications, soft
ware, and computer overhead costs. 

More recently, to alleviate some of these costs, many organiza
tions have gone from this online approach to an offline batch 
approach using an "intelligent" terminal. This puts the same kind 
of computerized intelligence level at the hands of the remote data 
entry operator, while significantly reducing the communications 
and overhead costs attendant to online operations. However, 
even with the significantly reduced costs of electronic logic, an 
intelligent terminal is still a very expensive device. In addition, 
the software costs, both at the terminal and at the computer 
center, may equal and more commonly exceed the software cost 
of the online approach. 
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We submit that with proper definition of the problem some 
percentage, perhaps a large percentage, of these remote data 
entry applications can be adequately served with a much simpler 
and much lower cost approach to a data entry system. Such an 
approach not only allows the sophisticated data entry system user 
to achieve a significant cost reduction but it also (probably more 
importantly) opens up the world of remote data entry to those 
many organizations and applications for whom remote data entry 
was apparently foreclosed by reason of cost. 

Let us first examine the key characteristics of the data entry 
requirement of a remote location. One fairly common character
istic is the need to enter many different types of transactions. 
Typically no one of these transactions is handled with any signifi
cant frequency, and the total daily volume of data prepared at the 
remote location is typically in the 10,000 to 20,000 character 
range. Another common and very important characteristic is that 
the urgency requirement of these transactions varies widely, 
ranging from minutes in some cases to weeks. 

Urgency has a way of falling into categories which are directly 
associated with functional operations. For example, operations 
where a customer is waiting, or where an employee is waiting and 
cannot proceed, generally have urgencies in the one-minute range 
(i.e. plus or minus a factor of 3; 20 seconds to three minutes). 
Operations in which an employee is waiting but can perform 
other functions tend to be in the one-hour range. Operations 
which start operations elsewhere (orders, reports, etc.) tend to be 
in the one-day urgency range (over';';ght to two days). A large 
percentage of the data entered at the typical remote terminal 
location tends to be in that next day urgency category. This 
obviously does not apply to those remote locations which are 
primarily customer response locations, such as phone bureaus or 
reservation desks. 

Given an application situation with these characteristics (and 
we submit that there are many such situations in actual practice), 
a relatively unsophisticated and low-cost terminal is an accept
able and in fact correct system solution. The problem of input 
errors solved with such complexity in other situations is more 
than adequately controlled by the operator's inherent familiarity 
with the source information and a capability to sight-verify the 
input documents. 

Since the data is prepared and stored in an omine mode, trans
mission speed can be chosen independently from the data prepa
ration speed, depending on the communications network, and the 
remote computer center can be economically arranged for speeds 
anywhere between 10 and 120 characters per second. 

An example of a low-cost remote data entry system is that 
operated by a manufacturing firm for its sales offices. Teleproc
essing is the basic method for providing these services. At each 
sales office there is a Teletype Model 33 ASR equipped with a 
magnetic cassette unit. The terminal is used as a keypunch device 
in the data preparation mode. It is then used as a remote con
trolled data transmission terminal for the data collection function 
and is also used as a remote report printer by the central com
puter. 

In the data preparation mode, individual format paper tape 
loops are prepared for each type of transaction prepared at the 
sales office. These include sales orders, amendments, sales sum
maries and accounting data, such as expense reports. For each 
type of transaction the operator places the applicable format tape 
loop in the tape reader, and using a foot switch steps the tape 
from one data field to the next, printing a prompting message and 
filling in blank data fields from the keyboard as she progresses, 
The resultant data is recorded in the magnetic tape cassette. 

At the end of the day the tape cassette is placed in the auto
matic answer mode and is polled from the central computer at 
night, and the entire day's transactions are collected. After pro
cessing each office's daily transactions, the computer places an
other call to that sales office and delivers a copy of the processed 
sales order, various summary reports and an edit error report. 
The edit error report is a listing of the transaction number and 
the cause of error of each of the errored input transactions. The 
following morning the operator prints out the various reports, 
corrects the errored transactions, and resubmits these with the 
new transactions that evening. 

The equipment cost at each sales office is about $150 per 
month for the Model 33 ASR, the magnetic tape cassette unit, 
and a 1200 baud data set. The average daily volume of 10,000 
characters per sales office is transmitted in about two minutes, 
using the company's regular W A TS lines. The data collection 
system at the computer centers is a minicomputer-based data 
collector and spooler obtained on a turnkey basis from a system 
supplier for a cost in the $2,000 per month range. The resulting 
system produces 360-compatible magnetic tape which is physi
cally transferred between the data collection system and the com
pany's batch data processing system. The data collection system 
required no changes in the company's basic data processing soft
ware. 

This kind of a "plain vanilla" approach to remote data entry 
has enabled at least one company to implement a data communi
cation system quickly, economically, and effectively. 
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RESEARCH PROSPECTS 

IN PROGRAMMABLE ASSEMBLY SYSTEMS 
by DANIEL E. WHITNEY 

Massachusetts Institute of Technology 
Cambridge, MA 

INTRODUCTION 

In most industrialized nations, the large volume manufacture 
of discrete parts has been highly automated. Accurate machin
ing, molding and forming allows parts to be interchangeable and 
thus to be assembled by relatively unskilled people. There now 
exists a wide variety of special-purpose machines, some extremely 
large, complex and expensive, for parts manufacture. These parts 
are assembled by people into substantially identical products. 
Assembly-line jobs can be quite boring, however, since the sub
stance of the job may repeat every ten to fifteen seconds. The 
resulting discontent plus high labor cost is exerting pressure to 
automate the assembly process. Other pressures to automate 
come from the Occuptional Safety and Health Act, and from 
efforts to improve product quality and uniformity. 

It might seem natural to build special-purpose machines for 
assembly similar to those currently in use for materials process
ing and, indeed, a few such machines have been built. (One 
machine reportedly assembles and tests 2400 automobile ciga
rette lighters per hour.) Several facts argue against taking this 
route, however: 

(1) From a financial point of view; fixed automation machinery 
is typically very expensive and its rigidity makes market 
forecasting errors quite serious. Product design changes are 
almost impossible to make. To pay for itself the machine 
must make many millions of items. 

(2) From a marketing point of view, there is a trend away from 
identical products and toward products which are special
ized (on short lead time, naturally) for individual customers. 
While some basic parts will be common to all versions of a 
product, many others will be different. This leads to what is 
called the model mix problem. 

(3) From a production point of view, the model mix problem 
has two main consequences. First, production volumes for 
each version of the product are relatively small and cannot 
be economically batched because the incoming order stream 
is random. People are adaptable to a random job stream, but 
only to a limited extent. Thus the second consequence is that 
assembly mistakes occur when the wrong part is installed. 

(4) From a personnel point of view, it should be recognized that 
while people are assembling things they are also performing 
vital inspection operations, seeing that the parts have been 
made properly, and that previous assembly steps have been 
carried out correctly. 

This all means that both manual assembly and fixed automated 
approaches have limited ability to cope with emerging produc
tion problems. The remainder of this paper classifies and brit:l1y 
describes current research efforts addressed to these problems. 
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RESEARCH APPROACHES 

It is generally assumed that future flexible assembly machines 
will consist of one or more mechanical arms with general purpose 
hands or tool grabbers, all controlled by a computer. Initially 
individual machines could be installed in existing assembly lines, 
but as time goes on it is likely that the assembly line concept will 
be modified, perhaps resulting in a cluster or star arrangement 
in which parts are fed from several directions rather than one. 

Current automated assembly systems are imitations of large
volume automated machining systems and thus share their rigid
ity. From a control point of view, they operate on the basis of 
open-loop positional control. This is true even of current indus
trial robots, which only recently have incorporated the ability to 
read micro switches and branch to different parts of their pro
grammed motion sequences. This does not, however, permit 
them to modify those motion sequences. Open-loop control also 
requires liberal use of expensive jigs and fixtures. 

Most assembly research approaches are based on closed-loop 
organization, in which computers are vital components. A basic 
assumption in closed-loop control is that sensory information in 
various modes is being monitored more or less continuously, with 
the intent of modifying the fine structure of the motion, rather 
than simply switching programs at isolated times. 

Fine-structure modifiability and the presence of computers as 
components also allow gross-structure modifiability in the sense 
that the machine can be reprogrammed to perform a different 
assembly task. Better, a machine loaded with &everal such pro
grams can switch on short notice from one product to another. 

Within the basic premises of reprogrammability and closed
loop control, several research threads seem to be emerging. One 
is traditional artificial intelligence robotics, with its emphasis on 
visual systems and scene analysis. Much of this work was origi
nally directed toward interaction with unfamiliar and unstruc
tured environments, such as the surface of Mars. The scene 
analysis skills developed seem most applicable to the inspection 
phase of assembly. They would also be applicable to gross posi
tioning if it is assumed that parts would be fed to a machine in 
random orientations. This is not a likely occurrence, however. Up 
to now the artificial intelligence laboratories have relied primar
ily on general-purpose digital computation for sensory analysis 
and robot arm control. The MIT and Stanford Groups are typical 
of this general approach. 

A growing trend, requiring more expertise in hardware and 
less in software, is to identify in detail the various sensory and 
control activities needed for closed-loop programmable assembly 
and to specify which could be realized in hardware or special 
parallel computing elements, and which are best left to general
purpose serial computers. The functions deemed necessary de
pend heavily on the assumption as to the machine's environment. 

One can assume that parts are fed in only roughly the correct 
orientation and that the machine itself must orient them the last 
few degrees. If so, then either the machine's hand must have the 
dexterity and sensory capacity to do this (aided by cooperative 
features applied to the parts for just this purpose), or else the 
assembly process must be itself aided at crucial points by chutes. 
jigs, channels, clever use of gravity, and so on. 

Either of these approaches could be costly and could bar easy 
changeover of the machine to a different product. Neither ap
proach, however, would have too much use for vision, which is 
not of much value during the process of fitting parts together. 

Realization that much information is available in the form of 
forces and moments during the actual process of fitting together 
has led to another approach, that of depending primarily on force 
feedback to perform assembly. This approach, depending on the 
parts being grasped in correct orientation within a very few de
grees, determines by means of contact information whatever 
small reorientations are needed to effect assembly. Small manu
facturing differences can be accommodated as well. Since the 
machine modifies the fine structure of its motions in response to 
felt forces, it will not jam if presented with grossly malshaped 
jJal ,,,. '-'. _ ._ r _., . 'b~""o' -.n\oaches include the 
Stanford Research Laboratory, Japanese UTlu 'I:$ity and industry 
groups, and at least one industrial concern in ~ US. 

The work at Stanford Research Institute) has (. \centrated on 
logical feedback of discrete events like touch contact. ~his is most 
useful in rendezvous between a machine's hand and c. object to 
be grasped. This has resulted in development of seve \1 small 
touch sensor devices and a computer control language fo. ~":luild
ing branching routines based on sensor returns. 

The joint MIT Mechanical Engineering-Draper Laborat 'v 
work2 has emphasized continuous analog signals arising fro. 
contact between one grasped object and another. Touch sensors 
are of little use for this because the object does not move relative 
to the hand during contact unless it has been poorly grasped. The 
interesting information consists of continuous forces and torques 
and may be used to guide parts together, even when tolerances 
are so close that prepositioning is impractical and vision cannot 
detect the small motions necessary. Much of the motion modifi
cation logic can be realized in hardware, making possible the high 
bandwidth that will no doubt be necessary if such machines are 
to operate at high speed. 

Future developments will likely see a combination of the touch 
sensor approach and the force sensing approach. Vision is more 
likely to be useful in inspection, but less in assembly itself. Issues 
remaining to be resolved include the economics of providing 
special jigs for each product compared with providing general 
sensors capable of guiding the parts together. A similar trade 
must be made between sensors (or computers) and product de
sign modifications to ease assembly. Finally, the economics of 
using flexible automation must be studied in detail. The major 
issues are the cost of labor and the cost of capital. The value of 
such a machine must be figured on its reliability and the uniform
ity of its product, plus the value of its flexibility as reflected in 
lower in-process and finished inventories and quicker response to 
customer orders. 
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FACTORY AUTOMATION AND DATA COLLECfION 
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Computer controls have been used in certain process industries 
for some time. Now computers are being used to control piece
part production machines and automation systems. Employed as 
reporters and/or analyzers of a machine's operations, they give 
managers current data for immediate study. 

Automatic machines require a carefully planned sequence of 
actions to integrate the movement of parts, action of clamps, and 
adv-ance-of tools. Tiihlbliioris areincTlidea-tOprevenfslfCliThlngs 
as a tool advancing unless a part is in place and clamped. An 
automatic control system must be capable of registering each 
action and supplying signals to initiate the next action or event. 

Because certain actions could cause great demage if they occur 
out of sequence or without other conditions of readiness, the 
controls automatically interrelate machine events which have 
occurred and those which are to occur. Stoppages or alternative 
actions will intercede if something does not happen as planned. 

MACHINE CONTROL 

When the .computer controls, the primary data outputs are 
mostly decisions resulting in machine actions, such as starting 
motors, energizing valves, or the mcwement of parts. Compared 
to a data processing computei, Ir.d.chine control computers and 
related equipment are smaller i:l size and fewer in number. They 
have a small processor th",~ needs few peripherals except the 
automatic machine itself This is typically a Teletype terminal 
with tape reader/writt>., to enter programs and changes into the 
computer, and sim;JJe reports such as production efficiency re
ports and diagnostic messages to be printed out. 

An auxiliary memory unit is required for either system, but 
size, capacity, and cost are very different. Data processing instal
lations usually have several large magnetic tape drives and disk 
drive units for keeping data ready for high-speed, random access. 
In contrast, just one disk drive with far less capacity will serve 
most machine control needs. Typically, one disk unit (usually 
integrated with the computer in its main housing), will be suffi
cient to store inactive programs, working information, and per
manent activity records such as pieces produced. This disk unit 
is usually integrated with the computer in its main housing. 

OPTIONAL DEVICES 

Optionai devices such as cathode ray tube displays or graphic 
plotters may be used as auxiliary output. Peripheral hardware is 
not emphasized in machine control because the machine sensors 
serve as primary data inputs, and the primary outputs are valves, 
motors, and similar components. 

ENVIRONMENT 

Environment adaptation is another major requirement for a 
machine control computer. lt must reside on a shop floor and 
tolerate any environment condition that workmen themselves do. 
lt must adapt to shop electrical conditions, such as AC current 
subject to unpredictable transient surges. Such "noise" must not 
be-ffiiStikeriTor- maCfiine slgnars-.l1sn6u1CroiHpuTsignals ast1t)--

volts AC - directly usable by motor starters and solenoid valves. 
Otherwise amplifiers or transformers are required, with atten
dant costs and problem susceptibility. 

INTERFACE 

Machine control computers work through an interface that 
links the computer to the machine, and must communicate via 
standard devices. Their signals and operating modes are far out 
of phase and character with operating characteristics of a high
speed computer. Bridging this gap requires an interpreter or 
interface, to receive and logically interrelate signals from the 
machine's many sensing devices. Interface circuits "save" the 
electrical logic results until the computer is ready to act. Then 
the computei output is converted by the interface circuits into 
appropriate electrical instructions for the production machine's 
motors and valves - and the reporting Teletype. The interface 
hardware is "hard-wired", and functions almost as a part of the 
computer, which has 100% control of it. In recent designs, inter
face hardware is all solid state; power differences are taken care 
of; electrical noise is prevented from being misinterpreted as data 
codes by a constantly-performed data validation routine. 

SOFTWARE 

Software, in addition to programs for ordinary machine action, 
must also provide for conditional reactions when something does 
not happen exactiy as it should or when supposed to. Machine 
programs should be easily changeable, as complex automation 
systems can be improved or made more efficient with experience. 

Poor software causes the computer to go through time-con
suming and unnecessary steps. More importantly, software 
should anticipate all contingencies and provide appropriate ad
justments or adaptive reactions. Otherwise, machine shutdown 
may be the software's only available answei to occurrence of a 
nonstandard condition. 

A machine control computer is real-time-oriented. lt must 
note conditions, make calculations, and feed back responses all 
within a few microseconds of when a condition occurs. 
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The software to support these control functions has been de
skilled to exactly duplicate relay design logic, which means that 
(from an engineering standpoint) tpday's existing control engi
neers can be instantly converted to applying this new technology. 

STANDARD PROGRAMS 

A set of machine control parameters and conventions applica
ble to virtually all automation arrangements can be established. 
A "library" of subroutines to embody these parameters and con
ventions allows them to be handled by most computers. The 
result is a program highly efficient in use of machine time and 
memory; individual programs can be developed quickly and eas
ily changed. Perhaps the most important thing is how easily the 
user's people can gain the facility to handle their own program 
changes without an in-depth knowledge of computers (in this 
concept, the master file of subroutines is contained on a tape and 
given to the user along with his systems). 

MACHINE MONITORING 

While some functions will require the computer to perform 
complex calculations, the operator will not even be concerned or 
aware of this. Only simple outputs will result, and ease the opera
tor's job rather than duplicate it. When the computer is applied 
to an automatic machine it may function as a monitor of this 
entire scheme of operations, or it may both monitor and control. 
In either case, the general system concept remains unchanged. As 
a monitor alone, the computer records and analyzes the machine 
actions. It makes exceptional diagnostic reports on machine trou
bles and silently records management data. 

When the operation of the machine varies from that defined 
as normal (as determined by the machine design parameters), the 
control system sends an indication to the data collector, which 
will perform a diagnostic report indicating the station number, 
function involved, and device number, if applicable. This pro
vides an immediate indication of the location and device that is 
causing the abnormal condition. 

DIAGNOSTIC REPORTS 

In developing a monitoring system there is a variable quantity 
of information that can be made available - information which 
can improve downtime, reduce inventory, improve product flow 
and scheduling. Improved downtime alone can provide large cost 
reductions and justify the system installation. 

When trouble occurs, the computer can check all sensing in
puts to pinpoint the problem area for the operator. In many cases 
it can summon help from its memory of pre-established service 
routines to find advice about the problem. Since all machine 
actions can be constantly timed and compared to standards, the 
causes of efficiency loss can be spotted immediately. 

Diagnostic and Machine Log Reports, created while the ma
chines are running, are primarily used for trouble-shooting. 

When machine operation varies from that defined as normal, 
the computer will print a diagnostic message indicating station 
number, function involved, and device number. This printout will 
be done as soon as the malfunction occurs. 

Diagnostic reports can reduce downtime by pinpointing the 
specific areas of failure. Four different diagnostics for each input 
provide the information needed to reduce downtime and indicate 
possible machine failure. They determine if a specific limit 
switch, pushbutton, temperature switch, or pressure switch has 
not released, not tripped, shows a ground, or is out of its allowa
ble time standard. These four messages basically cover all the 
possible trouble conditions. The first two, not released or not 
tripped, pinpoint the immediate cause of a machine being inoper
ative. Time diagnostics indicate machine degeneration, and po
tential downtime conditions can be detected before they occur. 

CYCLE TIMING 

Since timing is such an inherent part of computer operation, 
it is very simple to establish in a computer control program a 
cycle time base for all process control. 

Our proprietary systems concept of cycle monitoring means 
that each motion will be monitored in each of its movement 
planes in every cycle of the control. 

An example: A single cylinder slide has two motions, forward 
and back. We would establish a time standard for the forward 
motion, for example, say, 'six (6) seconds, and a time standard for 
the return motion, of say, eight tenths (0.8) seconds. Now, during 
the running operation, suppose the forward slide took 5.9 seconds 
in its forward motion. Since this does not represent a slow-up, we 
would accept this as being within the normal time standard. 
Suppose, however, on the next time cycle this device took 6.2 
seconds? We would then record in our data base memory that an 
overtime occurred of a two tenths (0.2) second duration. The 
number of occurrences and the amount of overtime would be 
accumulated for recording in a shift log or for reporting on a 
discrete data request log initiated when an operator might request 
it later. We have found through experience that about 40 to 50% 
of preventive maintenance procedures can be initiated from this 
log. 

Examples of malfunctions that could show up in a timing log 
would be: Improper lubrication, dull tooling, improper set-up, 
variations in air or hydraulic pressure, malfunctioning hydraulic 
or air valves, slipping motor belts, etc. 

Typical diagnostics are: 

Limit Switches - Limit switches not tripped 
- Limit switches not released 
- Limit switches overtime 

Machine Functions - Under cycle time 
- Over cycle time 
- Downtime & occurrences 
- Machine in auto time 
- Load & unload efficiences 

Motor Starters - Overloads tripped 
- Motor starter not picked up 



A Diagnostic Summary Report will list all diagnostics in de
scending order of occurrence. Therefore, those malfunctions or 
abnormal conditions that happen the most will be listed first. 

All system dia~nostics are typed out when they occur. This 
information is summarized at the end of each shift, or period 
specified, or on demand. It includes the number of cycles of the 
machine, the number of parts run and the total accumulated data 
printed on the Teletype during the period. 

BROKEN TOOL DETECTION 

We can easily use the cycle timing count of the computer to 
give an accumulating count of the cycles to which a tool has been 
subjected - and therefore an indication of its dullness. We'll do 
evell better. By adding some ne\\, and unique, low-cost transduc-
ers . ~-o~-bei~-developed,- ii--is-reasonableto-predlct-ihaTfaulty-
tool detection will be available in one to two years. 

The tool sensors envisioned will detect dull tools from their 
continuing operational behavior. 

TOOL MAINTENANCE RECORDS 

The computer, inherently able to record and condense data, 
can also be programmed to develop tool maintenance records in 
direct proportion to the data that the plants have available or are 
willing to make available. For example, take a transfer line that 
could enter a tool record, by tool number, each time the tool is 
introduced into the machine. The computer would tally the 
amount of cycles the tool encountered before it was replaced. 

Suppose, then, the tool numbers are maintained through the 
resharpening process and then input to the computer by the tool 
changer the next time he changes the tool. Obviously a complete 
history can be maintained on an individual tool, the amount of 
cycles obtained, how many times it has been resharpened, an 
amount of cycles obtained during each machine cycle of the tool. 
A history on a tool breakage can also be collected for analysis. 

TOTAL COMPUTER MANUFACTURING SYSTEM 

In the past individual systems were purchased for use by differ
ent organizations within the same company. This resulted in 
redundancy, unlinked file structures, nonstandard documenta
tion, impaired communication links, and often a waste of corpo
rate resources. Recent computer developments have expanded 
the concept of total data and total data analysis, exposing the 
previously unappreciated usefulness of large amounts of highly
detailed data. A piecemeal approach is no longer valid; "control" 
embraces the whole operation of a business. Accordingly, a truly 
integrated control system must be planned that reaches all levels 
of the management hierarchy. A plant wide computer controi, 
monitoring, and data-handling system offers centralized schedul
ing; control of product flow and production flow; a tool mainte
nance program; machine control; system monitoring and control; 
diagnostic reporting; and data concentration. 
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THE INFORMATION CENTER COMPUTER 

The Information Center Computer is a general purpose, dedi
cated timeshared computer that includes a central processor, a 
memory, and a variety of peripheral equipment. The central 
processor governs all peripheral in-out equipment, sequences the 
program, and performs all arithmetic, logical and data handling 
operations. The processor is connected to one or more memory 
units by a memory bus and to the peripheral equipment by an 
in-out bus. 

The functions achieved by this computer are: 

1. Scheduling: 

One function of any system is to aid management in deter
mining what sequence work should follow. Any number of 
occurrences can--·-affeci ·-ciiirent·work··scheaures~- Effective 
scheduling can be achieved if managers receive current data 
on the use of materials, machines, and labor. This type of 
system would aid management in the decision process, result
ing in improved forecasting and material procurement. Ad
vantages would be less inventory, less backlog, increased 
efficiency, and naturally a higher return on investments. 

2. Product Flow Control: 

Inventory control, warehousing, material handling, prod
uct assembly, and shipping are important factors in any man
ufacturing process. They represent a significant contribution 
or detriment to both the company's profit and costs. 

3. Production Flow Control: 

Tighter control of production is possible then the com
pany's desired outputs and constraints are expressed in a total 
system approach. Remember that production control is also 
quality control. When a total production control system is 
operating within the company's established standards, the 
percentage of bad parts will be reduced because defective 
material and faulty machines can be identified almost imme
diately. 

Product liability is becoming a more important aspect of 
the manufacturing process. The two basic legal theories re
garding liability for defective products are those of negligence 
and breach of warranty. The manufacturer can be liable for 
both the expressed and implied warranty. A greater sociai 
consciousness on the part of our society and the Federal 
Government's growing interest in consumer protection em
phasizes the need for centralization and total recall of pro
duction data. A complete record can be kept on each product 
as it flows through the plant, including all processing with 
such entries as date, time, weight, etc. From this it is possible 
to reconstruct a full history of the conditions under which 
each item was processed. This could be used for quality analy
sis and process study. If parts were subject to recall, these 
records would simplify the tracing and permit effective mea
sures to be incorporated into the processing of future parts. 
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4. Parts Records: 

It is possible to develop a complete history on a part 
throughout its life in the manufacturing system, and save this 
history on tape or disk files for various kinds of retrospective 
study. Three projects involving parts history accumulation 
are presently underway at Entrekin Computers. One, which 
exemplifies the idea, breaks down like this: As raw parts enter 
the plant they are assigned a lot number. These lot numbers 
are entered into a computer system on a first-in, first-out 
basis. These lot numbers are tracked throughout the entire 
plant and condensed into final, serial-numbered units of 
shipped commodities. In one instance, the numbered com
modity has 118 part lots associated with it. Each lot contains 
the following history: 

• Which machines process the lot 
• The amount of rejected parts per lot 
• The average gaging tolerance 
• The amount of repaired parts classified into what was 

repaired 
• The quality control backup 
• The average total machine efficiency during the process

ing of the lot (with relationship to the calendar base for 
processing) 

If at a future time the customer experiences a product 
breakdown, the serial number of the assembled product can 
be used in tracing the faulty part back to its respective casting 
lot number. This means that a part call-back of finished 
assemblies can be limited to the specific lot of castings which 
has included the fatigued part. This makes for a much better 
supplier-customer relationship and simplifies deficient part 
callback. In some cases it will be an economical answer to 
complying with new Federal safety regulations. 

5. Production Control: 

The computer, again due to the broad data base it accumu
lates, can be advantageously applied to a plant production 
control work. It can evaluate one machine against another, 
give a better picture of the interrelationship between several 
machines, and pinpoint areas for system improvement. It can 
analyze the inventory requirement of raw materials and de
tennine the amount of process inventory needed for each 
grouping of machines. 

One analytical assistance it can provide - one particularly 
popular with production control people - is the separation of 
machine efficiency from part-handling efficiency, for a better 
evaluation of the process line. 

For example, one system we developed, in analyzing ma
chine efficiency, considers only the time it takes to process a 
part from the moment it enters the load station until the part 
is deposited at the unload station. Time used in loading is 
considered separately; thus a report will show the exact 
amount of time lost by machine due to no parts on the load, 
or parts that remain on the unload list. 

Our corporation has been amazed by the types of data that 
production control has requested from our system data base 
for use in improving their overall production engineering. 
What we consider a relatively insignificant piece of data often 
proves to be key information when used by the production 
engineer, thinking in terms of his total systems configuration. 
We've seen a line speeded up significantly just because such 
data pinpointed a small system malfunction. 

This is exemplified by an automatic system for feeding 
parts to a transfer line on a random basis. It was set up to scan 
the parts coming into the system on a time basis. As soon as 
the computer detects the time base of the incoming parts 
spreading out, it notifies the production foreman. He immedi
ately takes steps to get the feeder machines back up to pro
duction capacity before the transfer line begins to starve for 
parts. 

INTEGRATED SYSTEM 

Logically it would be wise to blend all of the plant manufactur
ing systems into one integrated system. This system, employing 
one large realtime computer, would control a number of dedi
cated computer systems. Essentially this would be a computer
directed supervisory control system. 

Each dedicated computer system would be a system capable of 
running independent of the master information center. These 
may be satellites with direct control of the machines, and/or data 
concentrators. 

DATA CONCENTRATORS 

The satellite system is designed for a control and monitoring 
mode of operation. In a Data Concentrator System this is not 
necessarily the case. A Data Concentrator approach differs from 
that of a satellite system. The Data Concentrator utilizes two 
modes of operation during the monitoring of a system. For dis
cussion here we will call them MODE-1 and MODE-2. 

MODE-J - is a high-priority operation where the program 
monitors certain vital inputs at all times. These inputs will 
indicate completion of a machine cycle, production of a part, 
emergency stop, and machine down. With this mode of 
operation a constant monitor is kept on all inputs which 
produce vital data. 

MODE-2 - is the sequence monitor mode. In this mode of 
operation the computer actually monitors the entire sequen
tial operation of an entire machine. The reason is to detect 
and collect data which is not available in the first or second 
mode of operation. In this third mode the computer collects 
all the information of MODE-I, detects machine parame
ters, and times every motion of the machine to detect over
time conditions. The computer then interpolates this data 
and passes it in a meaningful form back to the data collection 
center. 



METHOD OF COLLECTING INFORMATION 

The Information Center is a total timesharing system. Each 
Data Concentrator passes information back to the Information 
Center during intervals determined by the Information Center. 

The collection of information is under program control of the 
Information Center. This allows the Information Center to bid 
for information and to determine when a particular machine 
should enter into the MODE-2 operation. The Data Concentra
tor will actually maintain the control sequence program, but the 
Information Center will initiate the program to maintain a 
"bench-mark" for data collection and assembly. 

In the MODE-l operation there are a limited number of inputs 
which provide the vital information required for system status 
and conditions of operation. These inputs will enable the Data 
Coocen-tI:atm:---t-G----det~-iLthe -machine--is-~--1he parts pro~ 
duced, the cycle time, machine efficiency, and cycles of opera
tion. If the machine is down, the Data Concentrator will enter 
into the MODE-2 operation, check all inputs from the machine 
and identify the actual cause of the problem. 

INTERCONNECTION 

The Data Concentrators are located out in the plant, inter
locked by data link to the In~rmation Center. This system is 
modular in design and can be field-expandable to add control 
function or material handling facilities at a later date. If an 
individual Data Concentrator becomes completely filled, others 
can be easily added and integrated into the overall system. The 
Data Concentrators run completely unattended, whereas the In
formation Center, located in a central control room, would have 
an operator to route the diagnostic data and monitor the overall 
system. 

The Data Concentrator has two modes of operation: critical 
and noncritical. Critical inputs are monitored continuously. 
Noncritical inputs are monitored periodically and when there is 
a malfunction in the system. Critical are such operations as part
counting inputs and back limit switch monitoring. 

Each Data Concentrator timeshares its operation among the 
machines it monitors. The Information Center monitors a com
plete machine cycle in its turn. For example, if the computer is 
monitoring ten (10) machines and each have a 10-second cycle, 
the Information Center will monitor each machine once every 
one hundred (100) seconds. However, during normal operation 
and part counting, other critical inputs are still being monitored. 

If a machine goes down, immediate service is rendered to that 
machine. The computer will examine its final state and determine 
the malfunction. The computer will print out a standard diagnos
tic as to the cause of the problem. The computer will detect all 
inputs for "released" or "not released" conditions. Overtime con
ditions and grounds are checked periodically. These will be im
plemented into the total figures in order to present compatibie 
statistics in the Summary Reports. 

The Information Center computer enables data collection on 
a timesharing basis and therefore more valuable use of computer 
time. 
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TREND MONITORING 

The system has capability to detect apparent operation trends, 
either deterioration or improvement. This is done at the end of 
the week through a special report, an analysis of the daily logs. 
For example, daily failure of a limit switch will indicate a trend 
toward total breakdown. Othei trends could be a daily inCiease 
in downtime, or an increase in overtime conditions and their 
duration, or the improvement of each of these conditions. 

These programs can be run on demand at any time. This 
provides management with a more effective tool in implementing 
fast reactions to trouble situations and preventing them. 

Trend programs also aid in evaluating corrective action to be 
taken, by-reporting on improvement or lack thereof, and in pro
viding figures for cost analysis and determining whether the 
correcti ve-action-\vaslnaeed-prOfiiaDre~ 

SYSTEM RESPONSIBILITY 

Management should expect to obtain expert assistance from 
the supplier in selecting the hardware for the system. The user 
must have trained personnel to handle the system, but part of the 
maintenance responsibility should be in the hands of the system 
supplier. The scope and quality of the services provided in the 
package paid for by the user are obviously important. They 
should include system engineering, system maintenance, docu
mentation, application assistance, and educational services. 

SYSTEM DOLLAR RETURN 

From early studies and past experience, computer systems 
have a 24 to 48-month payoff. A conservative 36-month payoff 
from date of start-up could be selected. A dollar value can be 
placed on the increased reliability of the system and the ease of 
repair - a direct reflection on downtime and loss of production. 
Complexity, changeability, and systems backup can have values 
affixed after actual evaluation. There is no real rule of thumb. 
Many aspects must be considered; complexity, plant physical 
layout, variance in equipment, cost, and system balance. 

You cannot arbitrarily put a computer on each station or each 
transfer line or for each plant. In the machine tool industry, 
machines originally worked as small, single-purpose, single-head 
machines. This progressed into more complex machines and 
transfer lines. Ultimately entire plant production was done on 
one large transfer machine. This is not practical, nor is it practi
cal to use a large number of single-purpose, single-tool machine. 
The answer lies somewhere in between. 

The question of what equipment to use is hard to answer with 
a simple set of guidelines or a meaningful formula. The total 
system can be justified by increased production, improved qual
ity, scrap reduction, improved manageriai control, or higher 
overall efficiency developed in the total process. Ability to log 
production records may reduce warranty expenses. Actually, 
these should be expected when a total plantwide computer con
trol and monitoring system is employed. 
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CAM - TODAY AND TOMORROW 
by JAMES S. LAMB 

IBM Corporation 
White Plains. NY 

INTRODUCTION ' 

Two of my associates published a brief paper] highlighting 
significant Production Automation literature. It covered more 
technology than American industry has implemented. More has 
been written on Computer-Aided Manufacturing (CAM) than 
anyone can read, and the field is still largely unstructured. 

Therefore this paper is undertaken humbly, less to contribute 
more literature than to encourage successful management direc
tion of early CAM projects. It is addressed to the industrial 
executive more than to the data processing professional - but the 
latter must play the key support role for CAM success. 

There is a subtle but recognized growing need for a new type 
of professional engineer, as a "Computer-Aided Manufacturing 
Systems Engineer". When these people grow in experience and 
stature, and college curricula evolve to enhance the discipline, 
manufacturing industries will be able to make quantum jumps in 
productivity. quality, and job satisfaction. 

This paper defines the sector of the manufacturing company 
involving CAM, and the environment in that sector. It then looks 
at data processing functions of today which could be applied to 
production realities, and proposes four steps an executive can 
take to establish (under control) a CAM action plan today, rather 
than waiting for tomorrow. 
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DEFINING THE CAM-RELATED SECTOR 
OF A MANUFACTURING COMPANY 

Figure 1 describes four major sectors as: 

• General Management and Administrative (including Mar
keting, Personnel, Finance: and Data Processing functions); 

• Development Engineering (where product requirements are 
converted to producible specifications for production and/or 
suppliers); 

• Production Planning (often called production control) where 
master production schedules and sales forecasts are con
verted to net requirements against on-hand and on-order in
ventories, and the necessary new orders are placed on plants 
or suppliers and tracked to completion; and 

• Production Engineering and Production Operations - the 
CAM sector - where manufacturing, industrial, quality and 
facilities engineering functions continually attempt to help 
the production operations staff operate the plant as a op
timum macro system to comply with the plant manager's key 
measurements. These include logistical and cost targets, a 
"good place to work", federal and state regulations, market 
demands for quality, and service at a competitve price. 

The CAM sector can also be defined further from an information 
flow perspective as shown in Figure 2. 

The Accept function, for example, can happen with an "in
basket" and "quill pen" system, or can be largely digitized, as in 
the case of some leading edge systems such as CADAM,2 where 
engineering drawings are given to production engineers in the 
form of magnetic media. 

So it can be with each function in Figure 2. The translation of 
accepted data into production language and the Generation of 
"instructions" to operate processes, for example, can be entirely 
manual (as they often are today in "routing files"), or done with 
considerable computer help and provided as digitized input from 
successful Design Automation approaches. 3 

Communication to the operational work station on the shop 
floor can be by traditional internal company mail (envelope) or 
"electronic mail" (teleprocessing). Operation ofa process can be 
fully manual, where the operator reads or has previously learned 
the operation to be performed, but we're all aware of increasing 
mechanization over the past 10 years where, e.g., transfer lines 
and automatic welders require only occasional manual interven
tion for set-up and maintenance. And now we see small punched-
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tape-driven computers or controllers doing more and more 
control of tedious, hazardous, or high-precision operations. 

Today, of course, most of these tapes do not get to the mini
computer or controller by electronic mail, but rather by "en
velope" or traditional methods. In fact, these early forms of 
digitized instructions are often stored in a traditional tool crib 
drawer rather than in an information handling machine, and the 
source code documentation, in annotated penmanship, is usually 
stored in another traditional file cabinet in the production engi
neering office. 

The high cost associated with this type of data management 
has not yet been measured by industry, and in fact is so much "a 
way of doing business" that one would be hard pressed to justify 
converting many of these data sets to computer file management 
today, because he would find it hard to quantify the traditionai 
costs displaced. 

The Monitor and Analyze functions have been addressed in 
closed-loop control of operations for several years, but until now 
they have not been implemented very often with human decision
makers in the loop. The batch mode today is what most industrial 
data processing centers are planning for, but are not yet ready to 
meet, the quasi-reai time decisionmaking needs of knowiedge 
workers (managers, expeditors, etc.) inside the CAM sector. In 
fact, most DP centers are still batch and volume output oriented 
to primarily service decisionmakers in other sectors such as cost 
accounting, and production and inventory control. 
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The Decide function in the CAM sector is an "online" func
tion, and people in the sector have devised ingenious nonauto
mated systems to get at approximate facts quickly when critical 
decisions must be made. These ingenious systems are, of course, 
imperfect (e.g., red cards for hot jobs, yellow sheets for shortage 
lists each morning, and key points in the work flow to manually 
count and inspect throughput), but in 1973 they are all we have 
in many industrial plants where new high-performance tooling is 
commonplace (or sought within budget limits). 
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ENVIRONMENT 

Figure 3 identifies five older traditional problems and five 
problems with new meaning in the 70's which confront CAM 
sector management. We'll discuss the five newer problems. First, 
the examples of quality demands in the auto industry are widely 
known, and yield problems in semiconductor production demand 
vastly increased process and handling control. 

Second, productivity is gradually being understood in the 
U.S.A. to be more than cheering on our machinists and assembly 
workers to achieve greater output; we know it somehow relates 
to the leverage a professional craftsman (or unskilled but willing 
worker) can gain through his efficient but meaningful interaction 
with increased capital tooling (e.g., crane operator). Output per 
man-hour is the classical economist's definition of productivity, 
but we have a long way to go in developing better measurement 
tools than that. If, for example, a tool operates with no direct 
man-hours and yields 4000 pieces yearly, is it a drag on year-to
year national productivity goals of over 3% increase? So the 
economist's measure may work at the plant or national level, but 
not always at the "work station" level. Lacking these measure
ments (even though some fine work has been done by MAPI4 and 
others), neither the worker nor ihe iooiing engineer is sure how 
to justify a case for increased capital outlays to tool up for large 
productivity gains. 

The worker isn't sure he will be better off when retrained for 
his new job, and the engineer can't prove (he can "predict" to 
justify) his tooling will yield the expected benefits until he actu
ally tools up, retrains the worker, and operates for a year or so. 

Third, safety and environmental legislation and energy costs, 
plus industrial security, provide a suite of problems which are 
consuming increasing professional staff time and capital budgets. 
They're topical enough to assume the reader's awareness without 
more discussion. 
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While the three previous problems are working against CAM 
sector people, a fourth problem arises: those who comprise much 
of the work force are changing in skill mix. Most will agree that 
today's 18-30-year-old group is more populous, articulate, liter
ate, and outspoken than at any time in our history. They also, 
however, are not enrolling as apprentice machinists, etc., as their 
grandfather may have done. The labor force is growing, but the 
old skills must be built into the equipment more and more. 

One might conclude that a full-scale automation effort would 
be a logical plant strategy to address the four preceding problems. 
Apparently many firms plan to do this, 5 but it brings on a fifth 
problem. Most firms are reticent about large automation efforts 
because of uncertainty that real results match expected benefits. 
This lack of widespread computer-based automation experience 
is somewhat like the shortage of traditional computer systems 
people a decade ago. 

The horns of the dilemma are either too fast an automation 
approach with poor results, or too slow a move to use today's 
available technology to solve key problems while competitors do. 
The basic need for professional CAM skills underlies this 
dilemma; as we begin to understand this need and fill it, we'll 
bridge the horns - the central theme of the rest of this paper. 

DA T A PROCESSING FUNCTIONS IN THE CAM SECTOR 

Figure 4 shows a three-part logical systems framework for a 
CAM system. It suggests a "host" or sharing role ror functions 
such as filing and access services (consider the digital data stored 
in the tool cribs on punched tape and the related hand-noted 
source code "upstairs"). It identifies the relationship of "com
puter terminal" functions for knowledge workers like quality 
engineers. It addresses data processing functions on the "plant 
floor" where minicomputers, controllers, transmission cables, 
sensors, consoles and data entry devices are employed. 
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Figure 5 shows an example of a typical (and topical) applica
tion, Direct Numerical Control, in this logical systems frame
work. Any application of data processing to the CAM sector 
should provide for necessary functions in each of the three areas. 

HOST SYSTEM FUNCTIONS 

• NC COMPILE CL FILE 

• POST PROCESS 

PRODUCTION ENGNRG • NC LIBRARY MGMT 

FUNCTIONS • TOOL/JOB STATUS 

~ • MGMT DATA • APT CODE INPUT 

• EDIT I • PLOT 

• PROVE OUT AT TOOL 

• MACHINABILITY • DATA COLLECTION 
+---+ 

• TOOLING DATA ANAL • OPERATOR GUIDANCE 

• DIRECT NC TOOL CONTROL 

• INQUIRE, DECIDE, EXPEDITE 

PLANT FLOOR OPERATIONS 

Figure 5. Exampk of !,;C/ONC Appli~ati()n Functions Within Log:i~al Sysl<:m 

Framework 

Consider the complexity of planning a plantwide system using 
the matrix in Figure 6. Six application zones interact with each 
other across the three logical systems areas. Further, one must 
address the functional requirements in the information flow dis
cussed in Figure 2. There is no clear way to achieve the potential 
benefits across a plant without a strong central CAM plan 
managed by professionals. 

SIX APPLICATION ZONES 

1. PLANT COMMUNICATIONS 
e.g. LOGISTICAL STATUS 

2. MACHINE MONITOR 
e.g. STAMPING LINES 

3. MACHINE CONTROL 
e.g. INJECTION MOLDERS 

4. MECHANICAL TEST 
e.g. COMBUSTION ENGINES 

5. ELEC/ELECTRONIC TEST 
e.g. RESISTORS, CARDS 

6. FACILITIES/POLLUTION 
MONITOR 
e.g. ELEC. POWER DEMAND 

TOTALS 

PLANT 
PROD'N HOST FLOOR 
ENGRG SYSTEM OPERATIONS TOTAL 

10-25% 

10·25% 

10·25% 

10-25% 

10·25% 

10·25% 

+- 40·60% ---+ 40·60% 100"10 

Figure 6. <\ rca' of Potential Fkndit in C.A. \1 



I prefer to call such a plan a "roadmap". It should directly 
attack key projected problems in the sector (year by year) while 
gradually building an orderly interactive data base. Figure 7 
shows a DP manager's view of such a roadmap (simplified) from 
the top down. A CAM systems engineer's view might show much 
more tooling detail from bottom-up perspective with little except 
functional emphasis on the inside of the System/370 Information 
Management System at the top. 

Company 
Data 
Base 
Includes 
COPICS 

Growing CAM Data Base 

• Plans & Plant Status 
• Control & Test Data 
• Analysis Data 
• Maintenance, etc. 

Audio-Visual 
Console Aids 

Possible 
Production 
Control Or 
Progress Center 

,-----------,----------, 
370 IMS Virtual : 
On Line Applicn's Host Regions I 
Company System: Initial Alternate I 
M!1'1 t . & Admin. For C.A.M. I 
Prod'n Planning Sub-host I 

~-E,ng-nr-g.----:._____=------_____ : 

i ~ 
Ilistri.buJe.d.S¥Slem....s. 

I I 
(Accept) 

I (Feedback) 

C.A.M. 

Sub-Host 
E.G. 370/135, OS·DSP 
DOS-CICS, ETC. 

~.~:~y--
Functional 
Sub-Hosts 
e.g. Engnrg. 

Terminals 

APG, 
APT, 
ETC. 

Figure 7. Gel1aalized Example - Cl1~tomer Sy~telll Framework or "Roadlllap" 

Such a plan requires more functional CAM skill than even 
many above-average plants have inhouse today. Many are going 
to outside suppliers for help. It is doubtful that the full job in all 
plants can be done by outside contractors, and I am personally 
convinced that our real jumps in productivity, quality and job 
satisfaction will only come when inhouse teams are developed 
and experienced. 

This is the job for professional manufacturing engineers to step 
up to. They will have to learn enough computer skill and physical 
interface skill to augment their tooling and costing know-how. 
Hard as this is, it would be more costly to have computer profes
sionals try to learn the tooling business in the short range. Nei
ther one, however, will succeed without the other, because the 
expanding world of data processing technology will never be fully 
mastered by the automation engineer, \vhose o\vn gro\~/ing field 
will keep him busy enough. There will have to be interdiscipli
nary CAM teams until the jobs are well understood, translated 
into university curricula, and sold to sophomores who will join 
the new branch of our technocracy in the 1980s and 90s. 

CAM Today and Tomorrow 11>6(11 
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CONCLUSION 

Four steps are recommended today to Production Sector Man
agement to begin the long journey toward the large and comple
mentary gains in productivity that CAM will provide: 

• Establish rapport between your production engineering man
agement, data processing management, and your data pro
cessing supplier. 

• Have statl' work done for your approval to provide a projected 
environment for your plant several years ahead. (IBM plants, 
for example, update annually a 2-year and 7-year plan, in
cluding a projection of the environment to help focus on 
tommorow's problems today). Identify the prioritized top 
problems, and articulate planned courses of action to mini
mize problem impacts. State some expected benefits and ac
ceptable pay bac k s--and-ret-t:tms-.-frem---C-AM---effflr-t-s- -fa-b-asis--fef.. 
roadmap planning and project justification). 

II Establish a professional CAM team (maybe 2 to 3 people 
initially) under your top tooling manager. Don't call them a 
committee, but rather give them an operational mission. Get 
them started developing a roadmap, but don't expect them 
and the DP manager to have all the answers before 6 to 12 
months. In parallel, for experience, let them start one or two 
CAM projects which address some top priority problems; 
expect satisfactory results in 9 to 18 months and expect your 
data processing supplier to do his share to support your CAM 
te~m. Make sure they address software, interfacing, mainte
nance and justification standards. 

• Manage! Assure yourself periodically that (1) the rapport is 
growing, (2) you translate promptly your changing priorities 
and expectations to your CAM team and "roadmap", (3) 
your CAM unit is on schedule and growing in the necessary 
professional skills and experience, and (4) your single "CAM 
roadmap" or plan can be implemented from the top down by 
your DP manager, and built from the bottom up by your 
M.E. manager. But be sure that each funded project moves 
along the "road map" so that "all your parts will fit together" 
to give you the leverage or synergy you expect. 
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CONTROLLING THE RESOURCES 
OF A N/C FABRICATION DEPARTMENT: 

THE GAP BETWEEN COMPUTER SYSTEMS AND REALITY 
by CLINT T. HAYS, JR. 

Douglas Aircraft Company 
Torrance, CA 

Being a Fabrication Manager otTers some peculiar opportuni
ties to study the language of manufacturing. I contact shop super
vision and workers on their level, and interface with executive 
management for interpretation. From short expressive sentences, 
dotted with 4-letter words, to eloquent nonreceptive dissertations 
on noncompliance to schedule, I live my life. Then, with Part 
Programmers who talk about APT, ASP, Arlem, Post Pro
cessors, computer priorities, R.J.E. units, main frame failures, 
high level languages, etc. I become disorientated. Then, finally, 
the computer specialist, who can do anything, but who has not, 
within a given time, completed one item. Suddenly, computer 
people frighten me. 

In manufacturing we find some definite desires and goals that 
are translated into a specific terminology. A quality product, on 
schedule, below cost. are terms that basically explaih a fabrica
tion managers job. 

The first item we can give up as a "trade ofr' is below cost. 
By the way, that is also the only item that we can give up in a 
fabrication oriented world, but not forever. The need for quality 
in aircraft should be obvious to all of us who flew to this meeting. 
Quality is then a constant item for control, but is a technical 
problem not necessarily people-oriented. 

To be "on schedule" is really where people like me spend most 
of their time. It is an unforgivable sin in aircraft to miss an 
assembly start date for a fabrication detail. The tools we use to 
be on schedule vary from notes on matchbook covers to compli
cated computer printouts with voluminous information that is 
generally one week old. The matchbook cover notes are specific 
data on the hottest job in the factory, gathered by subordinate 
personnel, checked personally by a fabrication supervisor, then 
suspected as being 50% in error by the Fabrication Manager. If 
it's hot enough, the Manager will put "hands on" the job himself. 
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The computer data is generated by edge-punched fabrication 
orders or other automated systems and printed out on a batch 
basis on regular intervals. This interval can be one day or one 
week. In any event, most Fabrication Managers do not have 
real-time reporting of order location or job process. Most cer
tainly they do not have an accurate exception to schedule alert 
through a computer system. So, Fabrication Managers spend 
most of their time with people-generated, handwritten exception 
to schedule reports requiring decisions for optional methods to 
guarantee schedule compliance. 

At the Torrance facility of McDonnell Douglas we have solved 
part of the problems in the Numerical Control section with a 
manual Numerical Control Management Center that utilizes the 
best configured computers in the world. These are Fabrication 
Foreman computers, model 1924. These computers can furnish 
--9ptioos,~-potential-p-roblems-amLsolutiOIl~nd---an 
undying desire to satisfy the user. They are easy to program, 
subject to very little maintenance, inexpensive, and generally easy 
to justify. Their main faults are nonrapid retrieval of data, the 
common cold, and the inability to communicate without using 
4-1etter words. 

Our system records, in near-real-time, the status of 70 N/C 
machine tools. Status here means operational status, up or down, 
machine hours negative to a schedule, machine hours ahead of 
schedule, individual job compliance to an operational machine 
schedule and to an end item completion schedule, and a queue 
of jobs preloaded or next in line for operational schedule. Also 
included are constraint items, priority items, and completion 
dates for elimination of constraints. 

Our communication links to the Management Control Center 
are 18 telephones, located on the shop floor, to one receiver at 
the Management Center, an Electrowriter connected with service 
organizations and a broadcast system to the machine shop floor. 
Very simple, effective, and adaptable to immediate change. 

We would like to automate this system. A computer (intelli
gent, of course), placed in a position to alert personnel to an 
exception to schedule, to demand response to a constraint, to 
store historical data, and to tell me upon demand (in a sentence 
or paragraph) what my problems or options might be, would be 
ideal. 

I think that a computer might do this for me. However, the 
people who seem to control computers in this world always want 
the prerogative of saying what data I should receive, and when. 
Without knowledge of my basic responsibilities or goals, com
puter people always have a system that would satisfy me - IF 
i would learn to read and respond to computer outputs. i am not 
a scientist, I am not a mathematician, I give orders in shop-level 
language. I understand the American language. I wish to receive 
data in a quickly understood medium so that translation to shop
level instruction can be made. 

Most computer-oriented people do not understand the rigors 
of a firm schedule or my responsibilities. Generally, I do not 
understand or communicate well with computer people. 

To apply computer technology to a factory environment 
within the foreseeable future, I believe that computers will need 
to be shop programmable, and subject to the schedule compliance 
problems of to days and tomorrows nitty-gritty Fabrication Man
agers. 

I believe in computers. They are the life line for my Numerical 
Control machines. They could be the answer to my sleepless 
nights. Let's put Computer Aided Manufacturing on a new pri
ority for fabrication. Past Due, Forecast Shortage, Assembly Jig 
Down, Aircraft on Ground, and now for Computers, 

HELP! 

GLOSSARY OF MANUFACTURING TERMS 

Assembly Start Date: The date in a manufacturing process when 
all components must be in a stockroom ready for assembly. 

Constraint Item: A fabrication detail which cannot be com
pleted on schedule because of a supporting function constraint. 

End Item Completion Schedule: The date when a fabrication 
department must complete a fabrication detail. 

EY(ception to Schedule: A fabrication detail process which is 
negative to a completion schedule. 

Fabrication Detail: A manufactured part fabricated to meet 
Engineering design specification. 

Fabrication Order: A set of specifications which detail the fabri
cation process and tools to be used in manufacturing a fabrication 
detail. 

Operational Machine Schedule: A machine operation by ma
chine operation schedule designed to meet an end item require
ment. 

Priority Item: Those fabrication detail processes which have 
violated the end item completion dates and require identification 
for management action. An exception to schedule. 

Schedule Compliance: Not an exception to schedule. 
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METRICATION AND SYSTEMS DESIGN 
by JOSEPH L. POKORNEY 

Innovative Management Systems 
Northbrook, IL 

THE UNITED STATES METRIC TRANSITION 

In 1790 the United States first considered and rejected a deci
mal measurement system. Thomas Jefferson presented a decimal 
system developed around a new "foot" based on a pendulum of 
such length that a swing from one end of its arc to the other and 
back would take two seconds. Subsequently, John Quincy Adams 
conducted an extensive study of the metric system and presented 
an eloquent discussion supporting its adoption in 1821. In 1866 
Congress legalized the use of the metric measurements on an 
optional basis. 

The U.S. signed the treaty of the Metre in 1889 even though 
we were not using the metric system. Four years later, by admin
istrative order, the new International Metric Standards were de
clared to be the nation's "Fundamental Standards", and the foot, 
pound, etc., were defined as precise percentages of the metre, 
kilogram, etc. Thus the U.S. became officially metric but not 
practically metric. Various legislative proposals were made in 
later years, but none could muster enough support to ensure 
passage. During this time most of the world's nations moved to 
accept the metric system, until at the present time the U.S. and 
a handful of small African and Asian nations represent a non met
ric island in a metric world. 

The preceding events led Congress to pass the Metric Study 
Act in 1968 August, directing the Secretary of Commerce to 
arrange for a broad inquiry and evaluation of metrication in 
America. In his report to Congress on 1971 July 29 entitled, A 
Metric America - A Decision Whose Time Has Come, J the 
Secretary of Commerce recommended that: 

• The United States change to the International Metric System 
deliberately and carefully. 

• This be done through a coordinated national program. 
• The Congress assign the responsibility for guiding the 

change, and anticipating the kinds of special problems de
scribed in the report, to a central coordinating body respon
sive to all sectors of our society. 

• Within this guiding framework, detailed plans and timetables 
be worked out by these sectors themselves. 

• Early priority be given to educating every American school
child and the public at large to think in metric terms. 

• Immediate steps be taken by Congress to foster U. S. partici
pation in international standards activities. 

• In order to encourage efficiency and minimize the overall 
costs to society, the general rule should be that any change
over costs should "lie where they fall". 

• The Congress, after deciding on a plan for the nation, should 
establish a target date ten years ahead, by which time the U.S. 
will have become predominantly, though not exclusively, 
metric. 

• There be a firm Government commitment to this goal. 

The administration introduced a resolution (H.J. Res. 1092) on 
1972 March 6, to the House of Representatives that would estab
lish a 21-member National Metric Conversion Board to oversee 
the lO-year U.S. conversion program. On August 18 the Senate 
passed an earlier version of this Bill. 

While the passage of this legislation will do much to accelerate 
the U.S. transition, in practice many metric units are already in 
common use in the U.S. We have purchased 35 millimetre film, 
50 millimetre lenses, 100 millimetre cigarettes, and milligrams or 
millilitres of pharmaceuticals for years. Metric segments of the 
U.S. economy at present include pharmaceuticals, antifriction 
bearings, skis, photography, Olympic sports, NASA, and even 
automobile parts. 

THE ADVANTAGES OF SI (SYSTEM INTERNATIONAL) 

For the past 180 years the advantages and disadvantages of the 
metric measurement system have been bitterly debated in the 
United States. While many of the arguments against were based 
on emotional conservatism, there is no denial that conversion will 
cost the American public in both dollars and inconvenience. 
However, the cost of continuing to be a foot/pound island in the 
midst of a metric world is much greater. 



Virtually every major industrial country and every trading 
partner of the United States is using a common metric measure
ment language. The current nonmetric islands in addition to the 
U.S. are: 

Barbados 
Burma 
Gambia 
Ghana 

Jamaica 
Liberia 
Muscat and Oman 
Nauru 

Sierra Leone 
Southern Yeman 
Tonga 
Trinidad 

The modernized metric system has many benefits, but they can 
generally be summarized into four major points: 

• SI is a unique measurement system in that each quantity has 
_ Qnh~_QD~_ unit as_~Q~l'!!~ci\\!ithHL~..:,J~J!gth : rpet~(!;_~c:t_~s -
kilogram; power - watt. This advantage is shown in Table I. 

• SI is an absolute system which is independent of gravity and 
can be easily replicated anyplace. Most of the base units are 
defined in terms of absolute physical phenomena. 

• SI is a coherent system; the product or quotient of two unit 
quantities produces a unit quantity. For example, a mass of 
1 kilogram accelerated a distance of 1 metre per second pro
duces a force of 1 newton (1 newton = 1 kg - 1 m/s2). A 
coherent measurement system is not hampered by the many 
conversion factors intrinsic to the United States customary 
measurement system. 

• SI is a simplified system because of the decimal structure and 
coherence. The use of fractions is reduced considerably in 
performing common calculations. The steps required for 
most common calculations are simpler, quicker and less er
ror-prone. 

Quantity 51 Unit US. Customary Units 

Length metre inch, foot, yard, rod, mile 
Mass kilogram ounce, pound, ton 
Temperature kelvin fahrenheit 
Force newton dyne, ounce, pound, poundal 
Energy joule foot pounds, British Thermal 

Units, calorie 
Power watt horsepower, tons (cooling) 
Pressure pascal pounds per square inch 

inches of H20 or mercury, bar 

Table I. Uniqueness of Metric Units 

METRICATION AND DATA PROCESSING 

Unfortunately, the National Bureau of Standards Metric Study 
totally overlooked the impact of metrication on data processing. 
While the major equipment manufacturers participated in the 
study, they chose to address only manufacturing problems while 
ignoring the systems and software implications. Thus the chal
lenge of metrication goes unrecognized within the data process
ing industry at the moment. However, as we examine the impact 
of metrication it will become obvious that if we consider ourselves 
data processing professionals, then the challenge must be met 
immediately. 

Metrication and Systems Design M95 

The transition to the modern metric measurement system will 
impact data processing systems in the following areas: the defini
tion of data field sizes, numeric precision or accuracy, conversion 
of historical data, and the logic of mathematical calculations. 

Data Field Sizes 

Each metric unit is intrinsically more or less precise than the 
cusiomary unit thai ii replaces. Thus centimetres are much more 
precise than inches, kilometres are more precise than miles, but 
metres are much less precise than feet, and kilograms are much 
less precise than pounds. This difference in accuracy dictates that 
metric units require more or less digits than do customary units 
to represent the same range of values. In an overly simple exam
ple, to represent 0 to 99 miles requires only two digits, while the 
~q~~-~l~;t-~~~·ge(~-~~t-ric u-~itsr of 0- to-T59-I<11Omet-res requires·--

a data field of three digits. Only 62 miles, i.e., 99 kilometres, can 
be represented by two digits. Similarly, the representation of mass 
in kilograms will require fewer digits than pounds for various 
ranges of values. Thus 100 to 218 pounds requires three digits, 
while the metric equivalent of 45 to 99 kilograms uses only two. 
Obviously, as we begin to process metric measurement data, the 
selection of appropriate field sizes will become quite significant. 

Accuracy 

The inherent difference in precision also has a major impact on 
numeric accuracy. If using data in cubic inches (in3) accurate to 
one decimal place or.± 0.05 inches; the same one decimal place 
in cubic centimetres (cm3) would provide ± 0.05 cm, or ± 0.-
00305 inches, much more accurate than needed. However, if I am 
using data in pounds accurate to one decimal place .± 0.05 lb., 
then the equivalent one decimal place in metric kilograms pro
vides accuracy to ± 0.05 kg or 0.110 lbs., which may not be 
adequate. The net effect of this difference in precision of each 
measurement system will be increased system sensitivity to field 
sizes, both to the right and left of the decimal point. 

Historical Data 

Systems that use measurement-sensitive data for forecasting, 
statistical analysis, or other analysis will be faced with a major 
discontinuity in data. It will be difficult to compare the last 5 
years' automobile performance data in gallons/mile with next 
year's data in litres/kilometre. Cost-accounting systems will sud
denly generate unit costs per kilogram or cubic metre, while all 
the previous data is in cost per pound or cubic yard. 

Mathematical Calculations 

The typical calculations that any data processing system per
form are affected by the inherent change in units and also by the 
elimination of many customary conversion factors. Because the 
SI system is coherent, most of the traditional conversion factors 
are no longer needed. For example, if we are solving the following 
ruel consumption problem, the customary and metric calcula
tions would be quite different. 
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Example A - Using Customary Units 

A generator supplies 300 KW at 84% efficiency. What 
horsepower is required to drive it? If its driving engine effi
ciency is 30% and its fuel has a caloric value of 18,000 
BTU/pound, what is its fuel consumption in pounds/hour? 

Power to generator 

Horsepower required 

Power input at 30% 

Heat content of fuel 

Fuel consumption 

300 357 kW 
M 

357 x 103 
480 hp 

746 

480 1600 hp 
T 

1600 x 550 BTU/s 
778 

1600 x 550 lb/s 
778 x 18000 

1600 x 550 x 3600 lb/hr 
778 x 18000 

2271b/hr 

Conversion Factors Used 

1 hp 
1 BTU 
1 hour 

746 watts 
778 Ft-Ib 
3600 seconds 

550 Ft-Ib/s 

Example B - Using SI Units 

A generator supplies 300 KW at an 84% efficiency. What 
power is required to drive it? If its driving engine is 30% 
efficient and its fuel has a calorific value of 42 mega joules/
kilogram, what is its fuel consumption in kilograms/hour? 

Power to generator 
(= Power required) 

Power input at 30% 

Heat content of fuel 

Fuel consumption 

300 
14' 

357 
.3 

357 kW 

1190 kW 

1190 kl/s (as 1 W = 1 l/s) 

1190 x 103 x 3600 
--==42"x 106 

102 kg/hr 

Due to SI coherency, only the 3600 s/hour constant was needed. 
Conversion to metric units will impact all systems that perform 
routine calculations using customary measurement units. Com
puter-assisted design packages and other engineering/scientific 
data systems will be impacted most severely. 

THE METRIC IMPACT 

The degree of impact from metric conversion will vary depend
ing upon the nature of the particular data processing system. 
Some systems will not be affected at all, or in such minor ways 
that they can readily accommodate the change. Other systems 
will have to be converted to accept and process both metric and 
customary data. It can be expected that some systems will be so 
difficult to convert that it will be more cost-effective to discard 
them and design replacements. 

The types of decisions facing data processing analysts can be 
shown by looking at a simple problem: 

An inventory system records data on gasoline consumption 
for various vehicles by processing transactions and main
taining totals. Some of the data is as follows: 

Type Data Picture Range in Gallons 

Transactions 99V9 0- 99.9 + .05 
Monthly total 99999V o - 99,999 ± 50* 
Yearly total 999999V 0- 999,999 ± 500* 

To process this data in metric units, the effect of processing litres 
must be examined. 1 litre = 0.2642 gallons or, conversely, 1 
gallon = 3.785 litres. If the transactions are changed to record 
litres, the existing data fields limit the range of value as follows: 

Data Picture Range in Litres Range in Gallons 

99V9 0- 99.9 t .05 0- 26 ± .013 
99999V o - 99999 j: 50* o - 26,420 ± 13* 

999999V o - 999999 -t 50* o - 264,200 o± 13* 

In effect, the range of values that can be processed has been 
limited to approximately 114 of the previous range. To improve 
this situation, the transaction data picture could be changed by 
adding a digit or by using the three digits more effectively in this 
way: 

Alternative A 

Data Picture 

999V9 
999999V 

9999999V 

Alternative B 

Data Picture 

999 
999,999 

9,999,999 

Range in Litres Range in Gallons 

0- 999.9 ± .05 0 - 264 ± .013 
o - 999999 ± 50* 0 - 264.200 _± 13* 
o - 9,999,999 ± 500* 0 - 2,642,000 ± 130* 

Range in Litres Range in Gallons 

0- 999 ± .5 0- 264 ± .13 
o - 999999 ± 500* 0 - 264,200 ± 130* 
o - 9999999 ± 5000* 0 - 2,642,000 t 1300* 

* Accuracy is limited by input data accuracy. 



However, the decision of which method to use is a tradeoff 
availability of storage, actual range of the data, and the desired 
accuracy. The second alternative provides much less accuracy 
with no increase in digits, while the first alternative provides 
much improved and possibly unneeded accuracy at the cost of 
one more digit. This analysis must be performed for each mea
surement-sensitive data item, although in the example the 
monthly and annual totals were modified by adding a digit for 
simplicity. 

Since the metric transition will progress in an orderly fashion 
over approximately 10 years, most systems will have to process 
both customary and metric units during the overlapping years. 
Typically, an inventory system or bill of materials processor 
would be required to handle both customary and metric-sized 
items. The result is a possible 10% to 30% increase in inventories 
gr materials processed by suc4~em~~ A _~J~i!~r ~~q!!ir~!!l~p.t 
for dual capabilities will exist in the generation of reports and in 
performing design calculations. 

Clearly, the United States metric transition presents a unique 
challenge to the data processing industry, in that it will impact 
the total industry, the impact will proceed in an orderly fashion, 
and we are aware of it. Thus we can and must act to meet it. The 
long lead time for systems conversion and redesign, combined 
with the rapid acceleration of the metric transition, dictate that 
the true data processing professional take action now to meet the 
metrication challenge. 

MEETING THE METRIC CHALLENGE 

To minimize the impact of metrication on an organization's 
data processing system, the data processing manager must lead 
the way to a structured solution. He obviously will have an uphill 
battle since many people are either not aware, not interested, or 
nonbelievers as far as metric conversion is concerned. While 
major countries have converted to the metric system recently 
(i.e., Great Britain and Japan), none have been so dependent 
upon computers as is the United States, and thus we have no 
reservoir of experience from which to draw. In analyzing the 
metric challenge, the following major tasks become evident. 

Metric A wareness Program 

The data processing manager should initiate a metric aware
ness program at the top level of the organization. This program 
could include informal talks, seminars or workshops as appropri
ate. Essentially, everyone must be made to understand the inevi
tability of metrication and the degree to which it will or will not 
impact their operations. 

Impact Analysis 

An impact analysis of every data processing system application 
in operation or being designed should be conducted. This analysis 
should determine the degree to which the system's input, process
ing or output is dependent upon measurement-sensitive data. The 
result of the impact analysis should be a classification of all 
systems 
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systems in terms of the degree of impact from metrication. In 
conducting this analysis the life cycle of each system must be 
considered, since the decision to convert or redesign a system 
should be based on the total costlbenefit of each system decision. 
The expected life of a particular system will have a significant 
effect on the costlbenefit analysis. 

Metric Conversion Plan 

Each data processing manager should develop a metric conver
sion plan. The plan should show the time phasing of the metric 
capability for each system. Specific resources required for the 
change should be identified. All system users should be involved 
in developing this plan since they will bear the brunt of any 
metric transition problems. 

Metric Design Efforts 

All new systems being designed should reflect the results of the 
impact analysis study. All measurement-sensitive systems should 
be designed with dual capabilities, i.e., both customary units and 
metric units. The mathematical processing should be clearly sep
arated from all logical operations to facilitate the eventual con
version to metric units. Obviously, field sizes should be selected 
with eventual conversion to metric as a primary factor. 

THE METRIC OPPORTUNITY 

While the U. S. metric transition is a challenge, it is also an 
opportunity for the data processing industry to demonstrate its 
professionalism by acting to reduce the effect of an inevitable 
change. Hopefully we can stop debating the relative worth of new 
hardware or software technology, stop engaging in the self criti
cism of the past few years, and have the foresight to anticipate 
a major change that will affect many of our users. If not, the EDP 
profession will again stand accused of not meeting the true needs 
of users. If each data processing manager would only analyze the 
impact of metrication on his organization, it would be possible 
at some future retrospective and historical meeting to point 
proudly at how easily we converted to processing centimetres 
instead of inches, litres instead of quarts, kilograms instead of 
pounds, and degrees kelvin instead of fahrenheit. 
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